
Optimizing Emerging Applications Through Software Hardware Co-Design

by

Yuhan Chen

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2024

Doctoral Committee:

Professor Trevor N. Mudge, Co-Chair
Assistant Research Scientist Nishil Talati, Co-Chair
Professor Ronald G. Dreslinski
Professor Zhengya Zhang

Yuhan Chen

chenyh@umich.edu

ORCID iD: 0000-0002-4835-8568

© Yuhan Chen 2024

DEDICATION

Dedicated to my parents Jianjun Chen and Xiaojuan Chen.

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Prof. Trevor Mudge, for his guidance and support through-

out my PhD journey. He not only provides excellent research insights but also advice in work

and life. It has been enjoyable to work with Prof. Trevor Mudge as I have the freedom to

work on topics I want to, and in the meantime, he is also available to help when I hit

obstacles.

I would also like to thank Dr. Nishil Talati and Prof. Ronald Dreslinksi for their generous

help in all aspects of research, from choosing research directions and how to conduct research

to paper writing. They selflessly helped me grow as a young researcher and, together with

Prof. Trevor Mudge, gave me invaluable support throughout the years.

I would like to thank Prof. Zhengya Zhang for being my committee member. Thank you

for taking your time and giving constructive advice on my proposal and thesis.

In addition, I would like to thank Prof. Hun-Seok Kim, Prof. David Blaauw, Prof. Scott

Mahlke, Prof. Alex Bronstein, Prof. Krisztian Flautner, Prof. Baris Kasikci, Dr. Tanvir

Ahmed Khan; I feel honored to have the opportunity to collaborate with you and learn from

your experience.

I am also extremely lucky to have the opportunity to work with a group of the most tal-

ented and nice colleagues, fellow students, and friends. I enjoy the time brainstorming ideas,

developing solutions, and writing papers with you. Specifically, I would like to thank Haojie

Ye, Sanjay Sri Vallabh Singapuram, Yichao Yuan, Alireza Khadem, Hee Woo Kim, Armand

Behroozi, Sanketh Vedula, Kuan-Yu Chen, Mason Nelson, Tarunesh Verma, Jingyuan Zhu,

Yufeng Gu, Yunjie Pan, Shibo Chen, Yuchen Xia, Wynn Kaza, Xin He, Siying Feng, Yichen

Yang, Xueyang Liu, Subhankar Pal, Aporva Amarnath, and many more. I had a great time

working with you as well as having fun outside research with you; thank you so much.

Finally, I would like to express my deepest gratitude to my family. I would like to thank

my parents Jianjun Chen and Xiaojuan Chen. They gave me endless support throughout

my entire life and raised me to be an honest and responsible person. Without them, I would

not have had the opportunity to pursue my PhD degree and become the person I am today.

I would also thank my grandparents, Qizhi Chen, Hongmei He, Changchun Chen, and Haiju

Qian, for their encouragement during my PhD years.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . x

LIST OF APPENDICES . xi

ABSTRACT . xii

CHAPTER

1 Introduction . 1

1.1 Emerging Applications . 1
1.2 Video Transcoding . 1
1.3 Graph Data Structure and Application . 2
1.4 Motivation . 3
1.5 Dissertation Contribution and Organization 3
1.6 Impact Statement . 5

2 Background . 7

2.1 Video Transcoding . 7
2.2 Graph . 7

2.2.1 Graph Properties . 8
2.3 Graph Algorithms . 10

2.3.1 Traditional Graph Algorithms . 10
2.3.2 Emerging Graph Algorithm: Graph Neural Networks (GNNs) . . . 10

2.4 Graph Sparsifition . 11
2.5 Hardware Characterization . 13

3 CPU Microarchitectural Performance Characterization of Cloud Video
Transcoding . 14

3.1 Background . 17
3.1.1 Video Transcoding . 17
3.1.2 x264 Encoder . 18

iv

3.1.3 CPU vs. GPU . 19
3.1.4 Video Selection . 20

3.2 Methodology . 20
3.2.1 Transcoding Metrics and Parameters. 21
3.2.2 Tools . 23
3.2.3 Profiling Setup . 25
3.2.4 Optimization Setup . 25

3.3 Evaluation Results . 27
3.3.1 Profiling . 27
3.3.2 Optimization . 36

3.4 Related Work . 37
3.5 Conclusion . 39

4 Demystifying Graph Sparsification Algorithms in Graph Properties
Preservation . 40

4.1 Overview . 41
4.1.1 Preliminaries . 41
4.1.2 Graph Metrics . 43
4.1.3 Graph Sparsification Algorithms . 49
4.1.4 Datasets . 54

4.2 Experimental Setup . 55
4.2.1 Graph Preparation . 55
4.2.2 Graph Sparsification . 55
4.2.3 Graph Metrics . 56
4.2.4 Software Framework . 58
4.2.5 Hardware Platform . 58

4.3 Results . 59
4.3.1 Basic Metrics . 59
4.3.2 Distance Metrics . 62
4.3.3 Centrality Metrics . 65
4.3.4 Clustering Metrics . 67
4.3.5 High-level Metrics . 70
4.3.6 Sparsification Time . 74
4.3.7 Summary of Results and Insights 75

4.4 Related Work . 76
4.5 Conclusion . 76

5 A Power Efficient GCN Accelerator with Multiple Dataflows 78

5.1 Background . 80
5.1.1 GCN Model . 81
5.1.2 Rich Diversity in GCN Models . 82
5.1.3 Phase Orderings . 83
5.1.4 Aggregation Dataflow . 84

5.2 Proposed Design . 86
5.2.1 PEDAL Architecture . 86

v

5.2.2 PEDAL Dataflows . 88
5.2.3 Choosing the Right Dataflow . 90

5.3 Evaluation . 91
5.3.1 Experimental Setup . 91
5.3.2 Decision Tree Accuracy . 93
5.3.3 Speedup and Power Efficiency . 93
5.3.4 Power and Area Breakdown . 94
5.3.5 Discussion . 95

5.4 Conclusion . 95

6 Conclusion And Future Work . 96

APPENDICES . 99

Appendix A: Pseudo Code for Sparsification Algorithms 99

Appendix B: Full Results for Sparsification Benchmark 110

BIBLIOGRAPHY . 129

vi

LIST OF FIGURES

FIGURE

3.1 Data volume of global consumer internet traffic from 2017 to 2022, by subsegment
(in exabytes per month) [4]. The trend shows a rapid growth of video traffic both
in absolute and relative terms. 15

3.2 Transcoding speed, video quality, and file size triangle. It shows the effects of
increasing crf and refs on the three metrics. A green line denotes a positive
impact, a red line represents a negative impact, a solid line denotes an active
impact (purpose of changing the option), and a dotted line indicates a passive
impact (side effect). 22

3.3 Heatmaps of front-end, back-end, and bad speculation bound pipeline slots (%) 28
3.4 Projection A & projection B . 29
3.5 Branch prediction and cache miss performance for different values of transcoding

parameters, crf and refs . 30
3.6 Stalls due to microarchitecture resources for different values of transcoding pa-

rameters, crf and refs . 31
3.7 Profiling results for different transcoding presets 33
3.8 Profiling results for different videos . 34
3.9 Speedup provided by AutoFDO-optimized FFmpeg binary and Graphite-

optimized FFmpeg binary. The number is the average of 32 combinations of
transcoding parameters (crf , refs , and presets). 36

3.10 Transcoding speedup over the baseline µarch configuration. The random sched-
uler uses the average improvement of four modified µarch configurations. The
one-to-one constraint is imposed on the smart scheduler but not on the best
scheduler. 37

4.1 Graph Connectivity on ca-AstroPh. 60
4.2 Degree distribution comparison on ogbn-proteins. Lower is better. Random per-

forms the best, Local Degree and Forest Fire do not do well in preserving degree
distribution. 61

4.3 Laplacian quadratic form comparison of different sparsifiers on com-Amazon.
Closer to 1 is better. ER-weighted performs the best. Random and other spar-
sifiers do not preserve Laplacian quadratic form. 62

vii

4.4 (a) Adjusted SPSP stretch factor of sparsifiers on ca-AstroPh with the constraint
of acceptable pair unreachable ratio. (b) Adjusted eccentricity stretch factor of
sparsifiers on ca-AstroPh with the constraint of acceptable vertex isolated ratio.
(c) Diameter comparison on ego-Facebook. For the stretch factor, closer to 1 is
better. For graph diameter, closer to ground truth (green line) is better. Rank
Degree and Local Degree have the best performance. G-Spar and SCAN do not
perform well. 63

4.5 Top-100 precision for Betweenness and Closeness centrality. Higher is better.
(a) Betweenness centrality on com-DBLP. (b) Closeness centrality on ca-AstroPh.
Local Degree, Rank Degree, and Random have the best performance. L-Spar ,
G-Spar , SCAN , and Forest Fire do not perform well. 65

4.6 Eigenvector centrality top-100 precision comparison on email-Enron. Higher is
better. Rank Degree and Random have the best performance. Forest Fire and
K-Neighbor do not perform well. 66

4.7 Katz centrality top-100 precision comparison of different sparsifiers on ego-
Twitter. Higher is better. Random has the best performance. Forest Fire does
not perform well. 67

4.8 Number of communities comparison on com-DBLP. Closer to the green line is bet-
ter. Local Degree, Spanning Forest , and t-Spanners have the best performance.
G-Spar , Rank Degree, and Random do not perform well. 68

4.9 Clustering coefficients comparison. Closer to the green line is better. (a) shows
the MCC on com-Amazon (b) shows the GCC on human gene2. No sparsifier is
effective in preserving the clustering coefficient. 69

4.10 Clustering F1 similarity comparison of different sparsifiers on ca-HepPh. Higher
is better. ER-unweighted , ER-weighted , K-Neighbor , Local Degree, L-Spar , and
Local Similarity perform the best. SCAN and G-Spar underperform. 69

4.11 PageRank centrality. Higher precision is better. (a) PageRank centrality on
web-Google. K-Neighbor and Random perform the best at a low prune rate,
ER-weighted and ER-unweighted perform the best at a high prune rate. Lo-
cal Degree, G-Spar , and SCAN do not perform well. (b) PageRank centrality
on ego-Facebook. Rank Degree has the best performance. G-Spar and SCAN
underperform. 71

4.12 Adjusted Mean Stretch Factor for min-cut/max-flow with the constraint of ac-
ceptable unreachable ratio on ca-HepPh. Closer to 1 is better. ER-weighted has
the best performance. 72

4.13 GNN comparison of different sparsifiers. Higher AUROC and accuracy are better.
The green line represents the inference results on the model trained by the full
graph. The red line represents the inference results on the model trained with
no graph (MLP only). (a) is evaluated with the GraphSAGE on ogbn-proteins.
(b) is evaluated with the ClusterGCN on Reddit. 73

4.14 Sparsification time comparison on ogbn-proteins 74

5.1 An example of the Vanilla GCN layer with N=7 nodes, and F1=4 and F2=2
features. White cells are zeros. A self-loop retains the feature vector of the node
for aggregation. 82

viii

5.2 Operation count for vanilla GCN, GS-mean, and GS-max models in AC and CA
orders. CA order does not apply to GS-max. 84

5.3 Inner product, outer product, and row-wise dataflows. 85
5.4 PEDAL architecture. (a) is the top-level architecture, (c), (b), and (d) are the

details inside APE, MPE, and the scheduler module, respectively. The blue lines
in the figures are the data path, and the orange lines are the control path. . . . 87

5.5 Performance of IP-AC, RW-AC, and RW-CA. 90
5.6 Speedup and power efficiency of PEDAL compared to CPU, GPU, HyGCN and

EnGN. Power efficiency is measured by power-delay product. × markers mean
missing data points due to GPU Out-Of-Memory or prior accelerators not re-
porting for some datasets or not supporting some GCN models. 92

B.1 Metric Evaluation on ego-Facebook . 111
B.2 Metric Evaluation on ego-Twitter . 112
B.3 Metric Evaluation on soc-Pokec . 113
B.4 Metric Evaluation on human gene2 . 114
B.5 Metric Evaluation on cage14 . 115
B.6 Metric Evaluation on com-DBLP . 116
B.7 Metric Evaluation on com-LiveJournal . 117
B.8 Metric Evaluation on com-Amazon . 118
B.9 Metric Evaluation on email-Enron . 119
B.10 Metric Evaluation on wiki-Talk . 120
B.11 Metric Evaluation on ca-AstroPh . 121
B.12 Metric Evaluation on ca-HepPh . 122
B.13 Metric Evaluation on web-BerkStan . 123
B.14 Metric Evaluation on web-Google . 124
B.15 Metric Evaluation on web-NotreDame . 125
B.16 Metric Evaluation on web-Stanford . 126
B.17 Metric Evaluation on com-friendster . 127
B.18 Clustering GCN Accuracy on Reddit . 128
B.19 GraphSAGE Accuracy on ogbn-proteins . 128

ix

LIST OF TABLES

TABLE

3.1 vbench videos info . 21
3.2 Selection of the important options for different presets, adapted from [6] 24
3.3 Transcoding parameters used for Sniper simulation 26
3.4 Different microarchitectural configurations for Sniper simulation. The baseline

is the default configuration provided by Sniper, Gainestown. fe op is optimized
to reduce front-end stalls with larger L1i-cache and iTLB. be op1 and be op2 are
optimized to reduce back-end stalls by increasing the capacity of data caches and
other pipeline resources. bs op is optimized to avoid bad speculation stalls by
replacing the default pentium m branch predictor with the Tage branch predictor. 27

4.1 Metrics’ applicability to types of graphs. 47
4.2 Sparsifiers’ applicability to types of graphs and characteristics. Note that all

sparsifiers work for undirected, unweighted, and connected graphs because they
are special cases of directed, weighted, and unconnected graphs, so they are not
listed. Deterministic means whether the sparsifier generates the same sub-graph
every time. 50

4.3 Graph datasets information. 53

5.1 Notation and acronyms used in this paper . 81
5.2 Aggregation and combination operations of GCN models [23]. 82
5.3 Datasets information. All datasets contain a single graph; all graphs are un-

weighted, undirected, and symmetrical. Non-zeros in the feature matrix are
stored in 32-bit fixed point. 83

5.4 Architecture configuration comparison of CPU, GPU, HyGCN, EnGN, AWB-
GCN and PEDAL . 91

5.5 Power and Area breakdown . 94

x

LIST OF APPENDICES

Appendix A: Pseudo Code for Sparsification Algorithms .99
Appendix B: Full Results for Sparsification Benchmark .110

xi

ABSTRACT

Emerging applications such as video transcoding and graph algorithms have seen fast devel-

opment and broad adoption recently. It is crucial to improve the performance of these emerg-

ing applications for cost-efficiency and scalability. This thesis focuses on video transcoding

and graph algorithms and uses software-hardware co-design to optimize their execution.

Video transcoding is rapidly growing as the demand for online streaming services continues

to strive, and understanding the hardware bottleneck in performing video transcoding is the

stepping stone to develop dedicated hardware for it.

Graph data structure is widely used in modeling complicated relationships between enti-

ties. Algorithms and applications that utilize the expressiveness of graphs are rapidly evolv-

ing and employed in various domains like social networks, chemistry, biology, and physics.

With the expanding family of graph algorithms and the exploding size of real-world graphs,

it is hard for hardware to keep up with the ever-growing demand for processing power for

graph algorithms. To make the issue worse, the irregular memory access pattern in graph

algorithms makes it hard to fully utilize traditional hardware like CPUs and GPUs.

In this thesis, I propose software and hardware co-design to improve the performance

of emerging applications. At a high level, I first present hardware characterization that

reveals the hardware bottlenecks with the change in software parameters. Then I benchmark

the performance of the most popular graph sparsification algorithms on their performance

in preserving graph properties. Finally, I propose a power-efficient accelerator supporting

multiple dataflows for Graph Convolutional Networks.

Specifically, first, I perform CPU characterization on video transcoding, revealing the

hardware bottlenecks (e.g. frontend, backend, branch misprediction, stalls) and how they

shift with software parameters. Second, I use graph sparsification to tackle the exploding

size of real-world graphs. I conduct a comprehensive benchmark on 12 graph sparsification

algorithms, exploring their performance in preserving 16 essential graph properties on 14 real-

world graphs, and give insights into how to choose the appropriate sparsification method for

different down-stream tasks. Last, I present PEDAL, a power-efficient Graph Convolutional

Network (GCN) accelerator designed to support multiple dataflows, achieving both high

execution efficiency and flexibility.

xii

CHAPTER 1

Introduction

1.1 Emerging Applications

An emerging application is an application that is new or has gained increasing attention

in recent years. The hardware characteristics of emerging applications are often not well

understood, and the execution is under-optimized. As they get more heavily deployed in

life, it is increasingly important to optimize them for execution efficiency and enable them

to scale further in the future. In this thesis, I will focus on video transcoding and graph

algorithms as representative emerging applications.

1.2 Video Transcoding

Video transcoding decodes videos from the source format and encodes them to the desired

format for distribution. The demand for online video streaming has rapidly increased in

recent years, and it costs streaming providers billions of dollars to transcode these videos [7].

Understanding the hardware bottleneck with different transcoding setups can guide the

development of dedicated hardware for transcoding, or better schedule different transcoding

tasks to the appropriate hardware, potentially saving both transcoding time and hardware

cost.

1

1.3 Graph Data Structure and Application

A graph is a data structure that models entity relationships using vertices and edges. The

flexibility and expressiveness make graphs an ideal tool for representing complex relationships.

For example, a graph can be used to describe a social network [64], where each vertex represents

a user, and an edge between vertices represents interactions between users. More information

can be embedded into a graph by assigning types to vertices and edges (Heterogeneous

graphs [157, 142]) and associating each vertex and edge an embedding that includes extra

information beyond the graph structure [149, 42, 69]. In the social network example, the

graph can be made heterogeneous. Different vertex types can represent a company account

or a personal account. Different edge types can represent various interactions like messaging,

friending, following, etc. A vertex embedding can include extra information like the age and

gender of a user.

Graphs are used in many algorithms and applications due to the expressiveness of graph

data structure. Citation networks[111] and road networks [119] are similar to the social

networks mentioned above, on which centrality-based algorithms like betweenness centrality

can extract important vertices from the graph, and distance-based algorithms like All-Pair-

Shorted-Path (APSP) and Dijkstra’s algorithm [55] can find the shortest path between any

two vertices. Page Rank [113] is another essential algorithm applied on web graphs to find

highly relevant pages to keywords, which is the backbone of today’s search engine. Graphs are

also used in scientific computing; for example, chemical and biological networks are used to

model protein structures [80, 79], and graph neural networks are used in practical physics to

model their interactions [129]. Graph Neural Networks (GNNs) are an emerging application

that builds neural networks that take graphs as input [85] and learn from the graph structure

and embeddings to make predictions for vertices, edges, and graphs.

2

1.4 Motivation

To improve the performance of emerging applications like video transcoding and graph

algorithms, one must understand the bottleneck first and then combine software and hardware

solutions to achieve the best results. There are multiple obstacles to running graph algorithms

and applications efficiently. One obstacle is the irregular memory access in the graph data

structure, which makes retrieving data from memory a bottleneck. Another obstacle is the

size of real-world graphs, which can be very large and require a lot of hardware resources and

time to process.

The way graphs are accessed usually requires retrieving data from non-continuous regions

in the memory, which makes it hard for caches to capture locality. This inherent irregular

memory access leads to the under-utilization of computing resources because it’s constantly

blocked by data retrieval [34].

The real-world graph datasets often consist of billions of vertices and trillions of edges,

making it hard for hardware to host the large amount of data. The overflowed data needs to

travel down the memory hierarchy and be spilled to the main memory or even disks. This,

together with the irregular memory access pattern, makes retrieving data even slower, leaving

the computing resources even more underutilized.

These problems motivate the need for dedicated software and hardware solutions to speed

up graph algorithms and applications. The efficient execution of graph algorithms is crucial

to expand them to large-scale graphs and achieve lower latency.

1.5 Dissertation Contribution and Organization

The goal of this dissertation is to address the aforementioned problems both from the software

angle and the hardware angle. At a high level, the contributions in this dissertation include

CPU characterization of video transcoding, benchmarking of graph sparsification algorithms,

and hardware Graph Convolutional Network accelerator. More specifically, the individual

3

contributions of each of the works are detailed below.

• CPU characterization on video transcoding (Chapter 3). Characterizing

hardware with changing software parameters helps understand where the hardware

bottleneck is and facilitates future modification to the hardware. This work characterizes

CPU when performing video transcoding with FFmpeg [1]. Although not directly related

to graphs, this work reveals the bottleneck shifts between the CPU frontend and backend

with the change of FFmpeg parameters and presets. The work focuses on two most

important parameters: crf and refs, which control the transcoding rates and number of

reference frames. This work found that increasing crf and refs will shift the bottleneck

from the frontend to the backend, and the roofline model can explain the observation

using operational intensity. The work also applied Graphite [117] and AutoFDO [46] and

achieved an average speedup of 4.66%, and without change to the hardware, achieved

3.72% speedup by applying a custom scheduler with the understanding of hardware

characterization. Understanding how software choices can change the bottleneck in

hardware is helpful in the following and future works.

• Demystifying graph sparsification (Chapter 4). Graph sparsification is a general

approach to reduce the amount of work in graph algorithms. I make the observation

that most real-world graphs contain redundant information that contributes little

to the final results. Pruning out a large portion of the graph will not significantly

impact the quality of downstream tasks. However, different graph algorithms and

applications depend on different graph properties, and the choice of sparsification

algorithms is essential in preserving these graph properties. This work is the first to

perform comprehensive benchmarking to reveal the relationship between sparsification

algorithms and their perseverance on graph properties. This work evaluated 12 graph

sparsification algorithms and analyzed 16 essential graph metrics on 14 real-world graphs

with diverse characteristics, collecting more than 30,000 data points and providing

4

insights into choosing the appropriate sparsification algorithm for the corresponding

graph properties. The work also open-sourced the easily extendable framework to add

more graph properties and sparsification algorithms for future research.

• GCN accelerator (Chapter 5). Graph Convolutional Network (GCN) is a type of

Neural Network that takes graphs as input and learns from the graph structure and

embeddings to predict vertices, edges, and graph properties. Due to graphs’ inherent

irregular memory access, GCNs often suffer from low execution efficiency. There are two

phases called aggregation and combination in GCNs. The way of performing aggregation

and the order of executing the two phases form multiple dataflows to perform GCN

execution. Existing accelerators for GCN only support one dataflow when executing

GCNs, which only achieves optimal efficiency with certain aggregation functions and

input graphs. This work proposes a hardware accelerator that supports three different

dataflows, accommodating linear and non-linear aggregation functions, small and large

graphs, and sparse and dense vertices embeddings. It achieves 144.5×, 9.36×, and

2.55× speedup compared to CPU, GPU, and HyGCN, respectively, and 8856×, 1606×,

8.4× and 1.78× better power efficiency compared to CPU, GPU, HyGCN, and EnGN

respectively. I also trained a decision tree with 400 synthetic datasets to automatically

and accurately choose the best dataflow for a GCN algorithm and input graph. The

decision tree chooses the best dataflow with 90% accuracy.

1.6 Impact Statement

The current and future impact of this dissertation work is summarized below.

• CPU characterization on video transcoding. This work reveals how software

parameter choices will affect the hardware bottleneck. The characteristics learned can

be used to guide the design of hardware accordingly to address the software needs. The

work demonstrated some simple utilization of the hardware characteristics by applying

5

Graphite, AutoFDO, and a custom scheduler to achieve better performance. This work

is included in the 2020 IEEE International Symposium on Workload Characterization.

• Demystifying graph sparsification. This work covers the most popular sparsification

algorithms and evaluates their performance on the most widely-used graph metrics, then

makes a comprehensive comparison and provides insights into how to select the best

sparsification algorithm for the downstream tasks. This work also created a framework

for evaluating sparsification algorithms. The framework is open-sourced and easily

extendable, which facilitates future research expanding to more sparsification algorithms

and graph metrics. The work is included in the 2024 International Conference on Very

Large Data Bases.

• GCN accelerator. Prior accelerator only supports certain dataflow when executing

GCNs, which either sacrifice efficiency or flexibility. This work is the first to propose a

hardware accelerator that supports three different dataflows and automatically selects

the best one corresponding to the aggregation function and the input graph characteris-

tics. Besides, due to the design using much fewer processing elements, it achieves better

power efficiency while still having comparable performance. This word is included in

the 2023 Design, Automation and Test in Europe Conference and is nominated for the

best paper award.

6

CHAPTER 2

Background

2.1 Video Transcoding

Video streaming is responsible for 82% of the Internet traffic in 2022 [4]. Video streaming

service providers like YouTube and Netflix need to perform video transcoding before streaming

the videos. Video transcoding is the process of decoding an encoded video into raw frames

and re-encoding the frames into a video using the specified encoding format, frame size, frame

rate, bit rate, etc. This accommodates end-users on various terminal devices with different

network conditions and demands different video qualities. Video transcoding often has a

wide range of requirements for the target video format, with various trade-offs between the

transcoding time and transcoded video quality. These discrepancies stress the hardware in

different ways and thus can have different bottlenecks in hardware.

2.2 Graph

A graph is a data structure consisting of vertices (also called nodes) and edges; the vertices

usually represent entities, and the edges usually represent the relationship between entities.

The edges can be both directed or undirected and weighted or unweighted. To define a

graph formally: G = (V , E ,w), where V and E denotes the set of vertices and edges in G

respectively, and w denotes the weights of the edges. In a directed graph, each edge has a

source and a destination vertex, while an undirected graph implies a bidirectional relationship.

7

In an unweighted graph, all edges have a default weight of 1. An adjacency matrix is used to

represent a graph, denoted by A, with the entries in A defined as:

Aij =

wi→j if eij ∈ E ,

0 otherwise.

2.2.1 Graph Properties

Graph properties (also called metrics) are used to describe the graph in specific ways. For

example, the degree distribution of a graph describes how skewed the distribution of the

number of neighbors (a.k.a degree) in a graph is; graph diameter describes the furthermost

distance between two vertices in a graph. These graph properties are utilized in graph

algorithms and applications to extract information from the graph. For example, degree

distribution may be used to distinguish a social network from a road network, as a social

network is likely more skewed than a road network; graph diameter may be more related to

distance-related algorithms like All Pair Shortest Path (APSP) and Single Source Shortest

Path (SSSP). In this thesis, the essential graph properties are included and grouped into five

groups. These graph properties are summarized as follows, and a more detailed description

can be found in Chapter 4.1.2.

Basic Metrics describes the high-level information of a graph. Degree Distribution

describes the skewness of edge distribution in a graph. Laplacian Quadratic Form is a

fundamental quantity in graph theory [39], and it facilitates the analysis of various graph

properties, including connectivity and spectral characteristics [32].

Distance Metrics describes the distance-related information of a graph. All Pairs

Shortest Path (APSP) measures the minimum distance between any pair of vertices. Distance

captures the proximity between two vertices. The Diameter of a graph is the maximum

distance between any pair of vertices. Vertex Eccentricity is the length of the longest shortest

8

path from a source vertex s to all other vertices. The minimum eccentricity is the graph

radius, and the maximum eccentricity is the graph diameter.

Centrality Metrics is a set of metrics that measure the significance or ranking of vertices

in a graph. Betweenness centrality suggests that vertices appearing on numerous shortest

paths rank higher. Closeness centrality uses the average distance to all other reachable

vertices to rank a vertex; the shorter the average distance is, the higher the ranking is.

Eigenvector centrality measures the influence of a vertex [22]. A high eigenvector score means

a vertex is connected to many vertices whose eigenvector scores are also high [110]. Katz

centrality is a variant of Eigenvector centrality, it Katz centrality quantifies the influence of a

vertex by considering the number of immediate neighbors and vertices connected to those

immediate neighbors [82].

Clustering Metrics is closely related to grouping vertices into communities. Number of

communities measure the degree of how scattered a graph is. k-means [98], agglomerative

clustering [109], and DBSCAN [58] are often used to perform graph clustering. Local

Clustering Coefficient (LCC) of a vertex v represents the proportion of pairs of neighbors

of v that are connected. It evaluates the density of connections among the neighbors of a

vertex [19]. Global Clustering Coefficient (GCC) [100] measures the fraction of closed triplets

in all triplets. A triplet of nodes can consist of two (open) or three (closed) undirected

edges [19]. Clustering F1 score assess the similarity between a given clustering and a reference

clustering [103].

Application-level Metrics are ones directly used in applications. PageRank is designed

to rank web pages [113]. The underlying concept suggests that pages linked by numerous

important pages bear greater significance. Min-cut and Max-flow measure the smallest total

weight of edges that disconnect the source vertex s from the sink vertex t, or the maximum

amount of flow that can traverse from the source vertex s to the sink vertex t. Graph Neural

Networks (GNNs) [127] are neural networks that operate on graphs. GNNs learn from the

9

graph structure and embeddings and make classification and prediction on vertex, edge, or

graph-level tasks [160, 92, 54].

2.3 Graph Algorithms

This section covers popular graph algorithms, grouped into traditional and emerging ones

(specifically GNNs). The traditional graph algorithms are mainly used in Chapter 4, and

GNNs are used in both Chapter 4 and Chapter 5.

2.3.1 Traditional Graph Algorithms

Traditional graph algorithms have existed for a long time and are widely used. Examples of

such algorithms are Page Rank (PR), Connected Components (CC), Single Source Shortest

Path (SSSP), Breadth First Search (BFS), etc. They are usually deterministic across runs,

for example, SSSP will generate the same vertex distance given the graph is not changed, and

PR may take different number of iterations to converge if initialized differently, but will have

identical or very close results eventually. These traditional graph algorithms focus on different

graph properties and reveal various aspects of the graph. SSSP focuses on distance-related

graph properties, and PR focuses on the ranking of vertices in a graph. Chapter 4 utilized

these graph algorithms to evaluate the effect of graph sparsification algorithms in preserving

them.

2.3.2 Emerging Graph Algorithm: Graph Neural Networks

(GNNs)

Emerging graph algorithms have drawn more attention in recent years. They are proposed

to solve real-world problems. For example, graph mining [106, 139] finds certain motifs in

a graph, which can be used for detecting certain behaviors or patterns like fraud detection.

Graph Neural Networks (GNNs) is another emerging graph algorithm that takes graphs as

input and uses neural networks to learn from the graph structure and embeddings. Then, the

10

network is used to make classification or prediction on vertex level, edge level, or graph level

tasks. In this thesis, GNN is used as a representative example of emerging graph algorithms.

In Chapter 4, I evaluate the performance of different graph sparsification algorithms on GNNs.

In Chapter 5, I propose PEDAL, a GCN accelerator to speed up GCN execution with high

power efficiency.

2.4 Graph Sparsifition

Graph sparsification is a technique that approximates a given graph by a sparse graph with a

subset of vertices and edges. An effective sparsification algorithm aims to maintain specific

graph properties relevant to the downstream task while minimizing the graph’s size. Graph

algorithms often suffer from long execution time due to the irregularity and the large real-world

graph size. Graph sparsification can significantly reduce the run time of graph algorithms by

substituting the complete graph with a much smaller sparsified graph without significantly

degrading the output quality. However, the interaction between numerous sparsifiers and

graph properties is not widely explored, and the potential of graph sparsification is not fully

understood. In this thesis, the 12 most representative graph sparsification algorithms are

covered, and I evaluate their performance in maintaining 16 widely-used graph metrics on 14

real-world input graphs spanning various categories, characteristics, sizes, and densities. The

graph sparsification algorithms are summarized as follows, and a more detailed description

can be found in Chapter 4.1.3.

Random sparsification sparsify the graph by randomly sampling a subset of edges to

keep in the sparsified graph. The edges are selected with equal probability. K-Neighbor

sparsification selects k edges for each vertex, and if a vertex has less than k vertices, all of

its edges are included. The edges are selected with probability proportional to their weights

(uniform for unweighted graphs). Rank Degree sparsification starts from seed vertices,

then ranks neighbors according to their degree in descending order. The edges connecting

11

each seed vertex to its top-ranked neighbors are selected and incorporated into the sparsified

graph. This process is repeated on newly added vertices to expand the graph. Local Degree

sparsification is similar to the Rank Degree sparsification as it preserves edges incident to

high-degree vertices. For each vertex, Local Degree incorporates edges to the top deg(v)α

neighbors ranked by their degree in descending order, where α ∈ [0, 1] controls the degree

of sparsification. Spanning Forest is a subgraph that consists of multiple spanning trees

with a minimal number of edges. Kruskal’s algorithm [87] and Prim’s algorithm [118] can be

used to construct a Spanning Forest . t-Spanner is a family of subgraphs that approximates

the pairwise distances between vertices in the original graph. A t-Spanner is a subgraph

such that any pairwise distance is at most t times the distance in the original graph. Forest

Fire sparsification model constructs the graph by adding one vertex at a time and forming

edges to specific subsets of the existing vertices. Subsequently, it “spreads” from v to other

vertices in the graph with a certain predefined probability, creating edges between v and the

newly discovered vertices. This process assembles “burning” through edges probabilistically,

hence the name Forest Fire [90]. Similarity-based sparsifiers Similarity-based sparsifiers

constitute a group of sparsification algorithms based on similarities between vertices measured

by specific metrics. Global Sparsification selects edges based on similarity scores globally.

G-Spar sorts the Jaccard scores globally and selects the edges with the highest similarity score.

SCAN [150] uses structural similarity measures to detect clusters, hubs, and outliers. Local

Sparsification selected edges based on similarity scores locally. The L-Spar [125] includes

edges with the highest Jaccard scores incident to each vertex locally. Local Similarity

sparsification works similarly to L-Spar , but it further ranks edges using the Jaccard score

and computes log(rank(edge))/log(deg(v)) as the similarity score. Effective Resistance

(ER) Sparsification is derived from the analogy of an electrical circuit and applied to

a graph. In this context, edges represent resistors, and the effective resistance of an edge

corresponds to the potential difference generated when a unit current is introduced at one

12

end of the edge and withdrawn from the other. Once the effective resistance is calculated, a

sparsified subgraph can be constructed by selecting edges with a probability proportional to

their effective resistances.

2.5 Hardware Characterization

Hardware characterization is crucial in understanding the hardware bottleneck for specific

algorithms. This understanding is essential in making hardware accelerator design decisions.

Many tools and methodologies are available to perform hardware characterization. Linux

Perf [10] is a profiling tool using CPU performance counters and various enhancements. Intel

Vtune [8] is a multi-platform profiling tool that is based on Performance Monitoring Unit

(PMU) counters and incorporates techniques like Event-Based Sampling (EBS). For hardware

characteristics that are hard to profile using only performance counters and to evaluate the

performance of custom hardware, simulation is widely used. Event-based hardware like the

Sniper The Sniper multi-core simulator [43] trades off a lower accuracy for a higher simulation

speed. Cycle-accurate simulators like gem5 [36] simulate accurately what happens at each

cycle; they are more accurate but take very long to run. Akram et al. put together a survey of

different simulators [25]. In this thesis, I use Linux perf, Intel Vtune, and sniper in Chapter 3,

and in Chapter 5, I implement a cycle-accurate simulator to evaluate the performance of the

proposed GCN accelerator.

13

CHAPTER 3

CPU Microarchitectural Performance

Characterization of Cloud Video Transcoding

Video streaming services are becoming increasingly popular, taking up a considerable portion

of Internet traffic today. According to the Cisco Visual Networking Index report [4], video

streaming took up 75% of the Internet traffic in 2017 and will take up 82% of the Internet

traffic in 2022. Besides video streaming, online gaming that also uses video traffic is rising

rapidly and is expected to grow 15 times by 2022. Figure 3.1 shows the Internet traffic from

2017 to 2022.

Video streaming service providers (e.g., YouTube, Netflix, and Facebook) transfer (upload

and download) only encoded videos to reduce video size and corresponding Internet traffic.

In most use cases, the uploaded video format differs from the distributed video format as the

video distribution must support a wide variation in network bandwidth, screen resolution, and

user preferences [99]. Consequently, streaming service providers apply a large number of video

transcoding—the process of decoding an encoded video into raw frames and re-encoding those

frames in a different encoding format [148]—operations. Therefore, performance optimization

of video transcoding workloads can save millions of dollars in computational and energy costs.

The performance implications of video transcoding have inspired a rich set of prior works.

Existing works have compared the performance of different transcoding algorithms [52, 104]

and variation in transcoding performance for different videos [99]. While these works fill

14

Figure 3.1: Data volume of global consumer internet traffic from 2017 to 2022, by subsegment
(in exabytes per month) [4]. The trend shows a rapid growth of video traffic both in absolute
and relative terms.

some gaps in understanding video transcoding workloads, several open questions exist in

CPU microarchitectural bottleneck identification for these workloads. In this work, I aim to

answer these questions by studying the microarchitectural characteristics of video transcoding

operations in response to variations in different transcoding parameters and inputs.

For performance characterization of video transcoding workloads, I utilize a wide range of

CPU hardware performance counters using Intel VTune [8] and Linux perf [10]. Specifically,

I leverage the Top-down Microarchitecture Analysis Method [153] to identify bottlenecks

in the CPU microarchitecture for different video transcoding operations. Based on this

methodology, I investigate the performance of the leading video transcoding software, FFm-

peg. FFmpeg offers many options to balance between transcoding speed, transcoded video

quality, and transcoded file size. I examine how different values of these parameters affect

15

microarchitectural performance issues for video transcoding workloads.

The intrinsic complexity of videos also affects transcoding performance. Videos with

high motion and frequent scene transitions are of higher complexity, and they require longer

transcoding time and a larger file size under the same quality constraint. vbench [99] is a

benchmark developed for cloud video services. It uses clustering techniques to select 15 videos

to cover a significant cross-section of a corpus of millions of videos. I use vbench to show how

different video complexity affects video transcoding performance.

In this work, I make the following contributions:

• I identify key performance bottlenecks in CPU microarchitecture for various video

transcoding workloads. Specifically, I observe that instruction cache, data cache, and

branch prediction units suffer from frequent inefficiency for video transcoding operations.

Moreover, microarchitectural performance issues change rapidly due to variations in

transcoding options and video complexity.

• I leverage the state-of-the-art profile-guided optimization technique (AutoFDO [46])

to improve instruction cache and branch prediction performance of video transcoding

workloads. I also apply a polyhedral optimizer (Graphite [117]) to improve the data

cache performance of video transcoding operations. AutoFDO provides a 4.66% average

speedup, while Graphite provides a 4.42% average speedup across workloads.

• I design a scheduler that assigns different video transcoding tasks to processors with

varying configurations of microarchitecture based on transcoding parameters and inputs.

In a simple case study, the designed scheduler performs 3.72% better than the random

scheduler and matches the performance of the best scheduler 75% of the time.

The rest of the paper is organized as follows: I provide the background of video transcoding

in §3.1. I describe the experimental methodology in §3.2. §3.3 reports experimental evaluation

results. I briefly summarize the related works in §3.4. Finally, I conclude in §3.5.

16

3.1 Background

Streaming videos have several important properties. A series of raw image frames constitute

a video, and the number of pixels in each frame is defined as video resolution. For example, a

full high-definition (Full-HD) video contains 1920 × 1080 pixels per frame and is also known

as a 1080p video. The number of frames for each second of video is defined as frame rate

and expressed in frames per second or FPS . Streaming service providers support videos of

different frame rates (24-60 FPS). Without compression, a single-second standard video (with

1080p resolution and 30 FPS frame rate) requires 178 MB of space [14]. Videos are encoded

in several standard formats to reduce this high storage and network transmission cost.

3.1.1 Video Transcoding

Video transcoding is the process of converting one encoding format to another, and it

is necessary because streaming service end-users have different requirements in terms of

video resolution, frame rate, and encoding format based on their device capability and

network condition. Today, more than 500 hours of videos are uploaded to YouTube every

minute [7]. Since each uploaded video must be transcoded at least once [99], streaming service

providers perform many video transcoding operations. Moreover, the cost of performing

video transcoding is expensive. For instance, Amazon Elastic Transcoder charges 0.03$ to

transcode a single-minute video clip [2]. At this rate, transcoding 500 hours of videos will

require around 1800$.

Video transcoding is performed in two stages: (1) an encoded video is decoded into raw

frames, and (2) these frames are encoded again in a different format. The decoding stage

is deterministic and, hence, relatively straightforward. On the other hand, the encoding

stage is much more complex as it models the video compression problem as a heuristic-

driven search space exploration problem. Moreover, the encoding stage has two primary

components: (1) Intra-frame encoding compresses pixels within a single frame by eliminating

17

spatial redundancy, and (2) Inter-frame encoding compresses pixels across different frames

by eliminating temporal redundancy. The intra-frame encoding divides a frame into several

macroblocks [78]. On the other hand, the inter-frame encoding categorizes each frame as I

(Intra-coded), B (Bidirectional predicted), or P(Predicted) picture frame [13].

FFmpeg is the leading video transcoding framework that can perform a wide range of

operations (e.g., decoding, encoding, transcoding, filtering, multiplexing, etc.) for different

video encoding formats [1]. Since FFmpeg is the most widely used video transcoding software,

I specifically focus on FFmpeg workloads. FFmpeg is typically compiled with x264, an

open-source library developed by VideoLAN that implements state-of-the-art video encoding

algorithms [16].

3.1.2 x264 Encoder

x264 is the state-of-the-art video encoder [16]. x264 achieves high performance with its rate

control, motion estimation, macroblock mode decision, and quantization algorithms. The

details of the algorithms are out of the scope of this work, but I describe what each of them

does as I focus on how different algorithm parameters affect the transcoding performance.

3.1.2.1 Rate Control

Rate control is the mechanism to impose a constraint on bitrate or quality. It can be

performed at three different granularities: at a coarse-grained level for a group of pictures

(GOP), for a single picture, and at a fine-grained level for macroblocks. There are mainly

six rate control modes: constant QP (CQP) controls the amount of quantization; average

bitrate (ABR) tries to achieve the target average bitrate; 2-pass average bitrate (2-Pass

ABR) is similar to ABR except it runs twice as the first pass provides a better estimation for

the second pass encoding; constant bitrate (CBR) imposes a constant bitrate; constant rate

factor (CRF) controls the quality rather than the bitrate, and constrained encoding (VBV)

constrains the bitrate to a certain maximum. Among the six modes, only CBR is applied at

18

the granularity of a macroblock. Other modes are applied at the granularity of the picture.

3.1.2.2 Motion Estimation

Motion estimation is the most complex and time-consuming component of the x264 encoding

process. It detects the motion of objects (e.g., translation, rotation, and tilting), encodes

only the motion information, and thus saves space by not storing the entire frame. x264

provides four integer-pixel motion estimation methods: diamond (dia), hexagon (hex), uneven

multi-hexagon (umh), and exhaustive (esa). Each mode represents a different search pattern,

each more complex and time-consuming than the previous, but generates better motion

estimation.

3.1.2.3 Macroblock Mode Decision

When encoding, each frame is partitioned into 16×16 macroblocks, which can be further

partitioned into smaller blocks. An I-frame can only have I-macroblocks because it must not

depend on other frames to decode, a P-frame can have both I-macroblocks and P-macroblocks,

a B-frame can have I-macroblocks, P-macroblocks, and B-macroblocks.

3.1.2.4 Quantization

After motion estimation and macroblock mode decision, the residue between the original

frame and prediction frame is computed. The x264 encoder uses trellis quantization [145, 105]

to improve the storage efficiency of the residue. Users can select one of three levels of trellis

quantization provided by the x264 encoder.

3.1.3 CPU vs. GPU

Videos can be transcoded in both CPUs and GPUs [5]. Typically, GPUs are faster than

CPUs in terms of video transcoding time. However, GPUs perform worse than CPUs in

terms of video compression ratio and quality. Hence, GPUs are leveraged to transcode only

live-streamed videos where transcoding speed matters more than the transcoded video size or

quality. Moreover, video transcoding in GPUs is relatively new and supports only a subset of

19

video formats [99]. In practice, GPUs are used only as a hardware accelerator instead of the

primary transcoder [26]. Therefore, in this work, I focus on video transcoding in CPUs.

3.1.4 Video Selection

Randomly selected videos could lead to biased and unrepresentative profiling results. In this

work, I use videos from vbench benchmark suite [99]. The videos from vbench benchmark suite

are representative of cloud transcoding workloads. vbench uses clustering techniques to select

15 videos of 5 seconds each from a corpus of millions of videos [99], and therefore is diverse

and representative of real videos. I study the microarchitectural characteristics of the video

transcoding operation for all vbench videos. I also use a video called Big Buck Bunny [3],

widely studied in prior works [89, 97]. I list the detailed information of videos in Table 3.1.

vbench also introduces a new video property, entropy, to represent the complexity of a video.

This property specifies the number of bits required to encode a video with the visually lossless

quality [99]. A higher entropy suggests the video is more complex, for example, involves more

motion or frequent scene transition and thus requires more computing resources and a higher

bitrate.

3.2 Methodology

Hardware platforms. I use a 4-core 3.5GHz Intel Xeon E3 CPU (NUMA with 1 socket).

The memory hierarchy of the machine consists of 64KB of private L1-cache (32KB private

instruction and 32KB private data), 256KB of private L2 cache, 8MB of shared L3 cache,

and 16GB of RAM.

Software platforms. All experiments are conducted in Ubuntu 16.04 (Linux kernel

version 4.15.0) using GCC version 5.5.0, ffmpeg version N-82144-g940b890, and x264 version

148-r2762-90a61ec.

20

Table 3.1: vbench videos info

Full Name Short Name Resolution FPS Entropy
desktop 1280x720 30.mkv desktop 720p 30 0.2
presentation 1920x1080 25.mkv presentation 1080p 25 0.2
bike 1280x720 29.mkv bike 720p 29 0.9
funny 1920x1080 30.mkv funny 1080p 30 2.5
cricket 1280x720 30.mkv cricket 720p 30 3.4
house 1920x1080 30.mkv house 1080p 30 3.6
game1 1920x1080 60.mkv game1 1080p 60 4.6
game2 1280x720 30.mkv game2 720p 30 4.9
girl 1280x720 30.mkv girl 720p 30 5.9
chicken 3840x2160 30.mkv chicken 2160p 30 5.9
game3 1280x720 59.mkv game3 720p 59 6.1
cat 854x480 29.mkv cat 480p 29 6.8
holi 854x480 30.mkv holi 480p 30 7
landscape 1920x1080 29.mkv landscape 1080p 29 7.2
hall 1920x1080 29.mkv hall 1080p 29 7.7

3.2.1 Transcoding Metrics and Parameters.

Video transcoding workloads maintain a unique trade-off among three key performance

metrics: (1) transcoding speed (measured by transcoding time in seconds), (2) transcoded

video quality (measured by Peak Signal to Noise Ratio [PSNR] in decibels [dB]), and (3)

transcoded video file size (measured by bitrate in Kbps or Mbps). FFmpeg, in combination

with x264, provides many encoding options to balance among these three performance metrics.

Among all such options, the most critical parameters are crf and refs [15, 12], and therefore,

I investigate the microarchitectural performance implications of video transcoding in response

to variation in these two parameters. Figure 3.2 shows how these parameters (crf and refs)

affect key transcoding metrics (speed, quality, and size).

crf actively controls the transcoded video quality. An increase in crf value results in

video quality degradation after encoding. In x264 encoding, crf can be varied from 0 to 51.

Videos encoded with crf 0 are lossless, while videos encoded with crf 51 are the worst quality.

x264 uses 23 as the default value for crf . crf also passively impacts transcoding speed and

21

transcoded file size. An increase in crf value results in faster transcoding time and smaller

transcoded file size.

On the other hand, refs directly controls the transcoded video file size. refs (Reference

frame number) specifies how many reference frames will be used during inter-frame encoding

in addition to the frame immediately prior to the current frame [9]. In x264 encoding, refs

can be varied from 1 to 16. An increase in refs value expands the encoding search space,

improves the compression possibility, and hence reduces transcoded video file size. However,

increasing the refs value also slows down the transcoding process due to larger search space

exploration. refs has no impact on transcoded video quality.

In addition to crf and refs , I also study the performance impact of different x264 presets

(a combination of standard values for all transcoding parameters) that vary other transcoding

Figure 3.2: Transcoding speed, video quality, and file size triangle. It shows the effects of
increasing crf and refs on the three metrics. A green line denotes a positive impact, a red
line represents a negative impact, a solid line denotes an active impact (purpose of changing
the option), and a dotted line indicates a passive impact (side effect).

22

options including motion estimation, macroblock mode decision, quantization, and frame

type decision.

3.2.2 Tools

3.2.2.1 VTune

The Intel VTune profiler [8] is a performance analysis tool that leverages a large number of

hardware performance counters provided by Intel Performance Monitoring Unit (PMU) [11].

Specifically, VTune uses the Top-down microarchitecture analysis method [153] to identify

performance bottlenecks for CPU workloads. In Top-down methodology, performance issues

are categorized into four major categories—retiring, bad speculation, front-end bound, and

back-end bound—measured in the percentage of pipeline slots. A pipeline slot represents

hardware resources needed to process one micro-operation (µOp). Ideally, the pipeline

slots should be filled with instructions and successfully retire, but limited resources or bad

speculations can lead to wasted pipeline slots.

Front-end bound pipeline slots are unused due to issues like instruction cache misses and

instruction decoder unavailability. On the other hand, back-end bound slots are unused

because of problems including data cache misses (memory bound) and computational unit

shortage (core bound). Bad speculation issues are mainly due to branch mispredictions.

Finally, retired slots denote properly utilized pipeline slots.

I leverage VTune to understand how different parameters and video workloads affect

microarchitectural performance problems during transcoding. Particularly, I investigate

how front-end bound, bad speculation and back-end bound issues are affected by different

transcoding settings. Moreover, I use VTune to determine the root cause of performance

problems.

23

3.2.2.2 Linux perf

Linux perf [10] provides a simple command-line interface to profile CPU executions. I leverage

perf mainly to reveal more fine-grained details such as L1, L2, L3, and branch misses per kilo

instructions (MPKI).

3.2.2.3 AutoFDO

AutoFDO [46] is the state-of-the-art feedback-directed optimization (FDO) tool. AutoFDO

captures the frequently-taken branches and optimizes their layout to reduce instruction cache

misses and branch mispredictions.

3.2.2.4 Graphite

Graphite [117] is a polyhedral analysis and optimization tool for GCC. It uses the polyhedral

model to optimize nested loops, where optimizations like loop tiling and loop fusion can be

applied to enable better cache locality. I use graphite to reduce back-end stalls during the

transcoding operation by improving L1, L2, and L3 cache hit rates.

Table 3.2: Selection of the important options for different presets, adapted from [6]

Option ultrafast superfast veryfast faster fast medium slow slower veryslow placebo
aq-mode 0* 1 1 1 1 1 1 1 1 1
b-adapt 0* 1 1 1 1 1 1 2* 2* 2*
bframes 0* 3 3 3 3 3 3 3 8* 16*
deblock [0:0]* [1:0] [1:0] [1:0] [1:0] [1:0] [1:0] [1:0] [1:0] [1:0]

me dia* dia* hex hex hex hex hex umh* umh* tesa*
merange 16 16 16 16 16 16 16 16 24* 24*
partitions none* +i8x8,+i4x4* -p4x4 -p4x4 -p4x4 -p4x4 -p4x4 all* all* all*

refs 1* 1* 1* 2* 2* 3 5* 8* 16* 16*
scenecut 0* 40 40 40 40 40 40 40 40 40
subme 0* 1* 2* 4* 6* 7 8* 9* 10* 11*
trellis 0* 0* 0* 1 1 1 2* 2* 2* 2*

* value differ from medium (default) preset

3.2.2.5 Sniper

Sniper [43] is an open-source x86 simulator that can accurately simulate CPU executions

with high speed. Moreover, Sniper allows modifying different microarchitecture parameters

to study the performance impact of varying different processor configurations. I utilize Sniper

24

to simulate the proposed scheduling algorithm with multiple µarch configurations.

3.2.3 Profiling Setup

3.2.3.1 Across crf & refs

I vary different transcoding parameters (crf from 1-51 and refs from 1-16) and investigate

816 different combinations for a single video, and study the profiling results. I use VTune to

capture the high-level profiling results grouped into four categories and then use perf to get

fine-grained results.

3.2.3.2 Across Presets

The x264 encoder provides ten predefined setups (presets) to vary different transcoding

parameters for different usage scenarios [6]. I list parameter values for these presets in

Table 3.2. All presets also specify a crf and refs number. I investigate the performance

impact of crf and refs separately; I use the default crf (23) and refs (3) values for different

presets. I investigate the performance impact of different presets for a single video.

3.2.3.3 Across Videos

Finally, I study the performance of transcoding for a wide range of videos from the vbench

benchmark suite with the parameters crf =23, refs =3, and x264 preset being medium.

3.2.4 Optimization Setup

Implementing new optimizations for video transcoding is not the primary focus of this work.

Instead, I study the impact of several optimizations to show the potential for improvement.

3.2.4.1 AutoFDO & Graphite

I optimize the video transcoding operation using AutoFDO to avoid instruction cache

misses (grouped under front-end issues in Top-down methodology) and branch mispredictions

(grouped under bad speculation issues in Top-down methodology). To apply AutoFDO, I use

the FFmpeg program to transcode multiple videos and collect execution profiles using perf

25

during transcoding. Then, I optimize FFmpeg by recompiling the program with the collected

profile.

I optimized the video transcoding operation using Graphite to reduce data cache misses

(grouped under back-end issues in Top-down methodology). Graphite is integrated into

GCC and can be directly used by enabling specific optimization flags (-floop-interchange

-ftree-loop-distribution -floop-block) during compilation. I enable those optimization

flags during the compilation of the FFmpeg program.

3.2.4.2 Smart Scheduler

Streaming service providers may have transcoding servers with different µarch configurations.

Even without optimizing the algorithm or implementation, knowing how to intelligently

assign tasks to the server that best fits the task can fully utilize the resources and save

transcoding time. The profiling results can be used as a reference to schedule transcoding

tasks to the fitting server.

I consider four transcoding tasks, each with different video, crf , refs , and preset combina-

tions, as shown in Table 3.3. I also modify the baseline µarch configuration of the Sniper

simulator (gainestown) to create 4 µarch configurations. Different µarch configurations are

optimized to reduce different types of pipeline issues by varying different microarchitectural

resources. Table 3.4 describes the baseline and four modified configurations. I use different

strategies to assign tasks to different µarch configurations (servers) and use the Sniper

simulator to measure the transcoding time.

Table 3.3: Transcoding parameters used for Sniper simulation

Task# Video crf refs Preset
1 desktop 30 8 veryfast
2 holi 10 1 slow
3 presentation 35 6 veryfast
4 game2 15 2 medium

26

Table 3.4: Different microarchitectural configurations for Sniper simulation. The baseline
is the default configuration provided by Sniper, Gainestown. fe op is optimized to reduce
front-end stalls with larger L1i-cache and iTLB. be op1 and be op2 are optimized to reduce
back-end stalls by increasing the capacity of data caches and other pipeline resources. bs op is
optimized to avoid bad speculation stalls by replacing the default pentium m branch predictor
with the Tage branch predictor.

Config Name L1d L1i L2 L3 L4 itlb ROB RS issue at dispatch branch predictor
baseline 32K 32K 256K 8M None 128 128 36 No Pentium m
fe op - 64K - - - 256 - - - -
be op1 64K - 512K 4M 16M - - - - -
be op2 - - - - - - 256 72 Yes -
bs op - - - - - - - - - Tage

- means same as baseline

I evaluate three different schedulers. The random scheduler randomly assigns tasks among

servers, so I use the average value of all four servers as its performance. The smart scheduler

assigns tasks to the best-fit server under the constraint that the four tasks must be assigned

to different servers (one-to-one constraint), preventing any server from over-utilizing or

under-utilizing. Finally, the best scheduler assigns tasks to the best-fit server without the

one-to-one constraint.

3.3 Evaluation Results

3.3.1 Profiling

3.3.1.1 Across crf & refs

Figure 3.3 shows the heatmaps of 816 combinations where crf is varied from 1 to 51 and

refs is varied from 1 to 16. The projections of each data point to the three axes represent

video quality (PSNR), file size (bitrate), and transcoding speed (time), respectively, and the

color represents either front-end, back-end, or bad speculation bound percentage in terms

of pipeline slots. All three heatmaps are of the same shape but represent different bounds.

As shown in Figure 3.3, both increasing crf and refs reduce front-end and bad speculation

bound slots but increase back-end bound slots.

27

(a) Front-end Bound (b) Back-end Bound

(c) Bad speculation bound

Figure 3.3: Heatmaps of front-end, back-end, and bad speculation bound pipeline slots (%)

Figure 3.4 shows two projections into planes A and B from Figure 3.3. Projection A has 51

horizontal lines for 51 discrete PSNR values. Each line represents one crf value as crf controls

the video quality. With crf fixed, increasing refs can help save file size. Each horizontal line’s

28

(a) Projection A (b) Projection B

Figure 3.4: Projection A & projection B

length shows the bitrate range when increasing refs from 1 to 16. The longer the horizontal

line is, the more it can benefit from increasing the refs value. With crf increasing, PSNR

decreases, meaning the video quality deteriorates. Also, with crf increasing, the line length

decreases, denoting a diminishing return for increasing refs .

Projection B is the relation between time and refs , where increasing refs does not linearly

decrease the file size. For each crf , there is an elbow point beyond which increasing refs has

little or no return. Moreover, increasing crf makes the line flatter, meaning high crf benefits

less from increasing refs , which aligns with the conclusion from projection A.

The main takeaways from the three heatmaps and two projections are: low crf benefits

more from increasing refs , and increasing refs has diminishing returns. The result is video-

dependent, and the elbow points can differ for different videos, but the trend shown is

universally applicable.

Further analysis shows the front-end bound slots are primarily due to the inefficiency

in micro-instruction translation engine (MITE), and decoded stream buffer (DSB), both

29

(a) Branch (b) L1 cache

(c) L2 cache (d) L3 cache

Figure 3.5: Branch prediction and cache miss performance for different values of transcoding
parameters, crf and refs .

related to decoding instructions (instruction to micro-op conversion). Front-end bound slots

represent only a small fraction of overall pipeline slots and do not change significantly for

different crf and refs combinations. Back-end issues are responsible for most of the wasted

30

(a) Resource - Any (b) Resource - ROB

(c) Resource - RS (d) Resource - SB

Figure 3.6: Stalls due to microarchitecture resources for different values of transcoding
parameters, crf and refs .

pipeline slots. The back-end bound issues can be further divided into memory-bound and

core-bound problems. Memory-bound slots mean the pipeline is stalled because the required

data is unavailable. Core bound means the pipeline is stalled because the hardware resources

31

(functional units) needed to perform operations are unavailable. In the evaluation, Bad

speculation bound slots are almost always due to branch mispredictions.

To further investigate these wasted pipeline slots, I evaluate the inefficiency of several

microarchitectural resources. Specifically, I study the variation in eight hardware performance

events in response to changes in crf and refs. Figure 3.5 and figure 3.6 show the results.

Figure 3.5a shows that branch mispredictions per kilo instructions decreases when both crf

and refs increase. Figure 3.5b, 3.5c, and 3.5d depicts misses per kilo instructions (MPKI) for

L1, L2, and L3 data caches respectively. These cache misses are mainly responsible for the

memory-bound component within the back-end bound slots. Figure 3.6a, 3.6b, 3.6c, and 3.6d

denotes inefficiency in pipeline execution units and constitute the core bound component

within the back-end bound slot. These inefficiencies show a similar trend of deteriorating

when either crf or refs increase. Here, store buffer (SB) efficiency is a notable exception as

the number of stalls due to unavailable store buffer decreases when refs increases.

The trend shown in both memory bound and core bound issues can be explained using

the roofline model [147], a performance model that correlates performance with operational

intensity. The roofline model defines operational intensity as how much computation is

performed for each byte of DRAM traffic. For low operational intensity, CPU performs

little arithmetic operation on each piece of data, and the workload is bound by memory.

As operational intensity increases, the utilization of the CPU and the overall performance

increase. The workload becomes compute-bound when the operational intensity is high

enough to occupy all CPU resources.

Increasing crf relaxes the quality constraint and requires less computation for the same

amount of data transfer, thus causing a lower operational intensity. On the other hand,

increasing refs increases the total number of executed instructions and memory traffic, but

more on memory traffic, thus lowering the operational intensity. For lower operational

intensity, processors have limited computations to hide the memory latency, resulting in

32

(a) Time, Bitrate, PSNR (b) FE, BE, BS

(c) Branch, Cache MPKI (d) Resources

Figure 3.7: Profiling results for different transcoding presets

higher memory-bound stalls.

The roofline model can also explain the lower amount of front-end bound slots. As the

CPU is waiting for memory traffic, it exhausts the non-arithmetic resources (e.g., Reorder

33

(a) FE, BE, BS (b) Branch, Cache MPKI

(c) Resources

Figure 3.8: Profiling results for different videos

buffer [ROB], reservation stations [RS], and store buffer [SB]) quickly. Consequently, the

CPU stops fetching new instructions and has fewer front-end bound stalls. Note that SB

stalls show different trends compared to ROB and RS stalls with a change in refs. That is

because, higher refs results in better video compression which requires less number of total

store operations.

34

3.3.1.2 Across Presets

Figure 3.7a shows how transcoding time, bitrate, and PSNR change for different transcoding

presets. Similarly, Figure 3.7b shows the percentage of front-end, back-end, and bad spec-

ulation bound slots (%) for different transcoding presets. From the fastest to the slowest

preset, transcoding time increases as expected. As crf is fixed, PSNR has a minor increase

while bitrate shows excellent improvement from ultrafast to superfast, and superfast to

veryfast, and then shows diminishing or even no returns with any slower presets. The trend

of transcoding time and bitrate suggests that without any strict time constraint, tuning up

the preset to veryfast can trade a small increment in transcoding time for file size reduction.

Figure 3.7c shows that the branch MPKI fluctuates with no clear direction. Data cache

MPKI goes down while using a slower preset. The trend agrees with Figure 3.7b, where only

back-end issues have a clear trend of going down. This is mainly because the memory-bound

component decreases. Figure 3.7d shows stalls due to resource unavailability, which can also

be explained with the roofline model [147]. A slower preset has a higher operational intensity,

thus it is less likely to run into memory-bound issues. Consequently, fewer instructions block

ROB, RS and SB waiting for memory.

3.3.1.3 Across Videos

I now investigate the variation in microarchitectural characteristics while transcoding different

videos. I first group videos based on different resolutions and then sort them based on different

entropy [99]. The gaps in Figure 3.8 separate different resolution groups. As Figure 3.8a shows,

with increased video entropy, front-end and bad speculation bound slots increase, and back-

end bound slots decrease. Figure 3.8b and 3.8c show the variation of branch misprediction,

memory bound, and core bound slots for different videos. As branch mispredictions dominate

the bad speculation issues for video transcoding workloads, branch MPKI and slots lost due

to bad speculation follow a similar trend. L1, L2, and L3 data cache MPKI follow the same

trend as the memory-bound slots. Similarly, stalls due to other pipeline resources follow the

35

same trend as the core-bound slots. The roofline model can also be applied here. Videos with

higher entropy are more complex and need higher operational intensity to encode under the

same quality constraint, leading to lower back-end bound issues.

3.3.2 Optimization

3.3.2.1 AutoFDO & Graphite

I optimize FFmpeg with AutoFDO and Graphite to reduce front-end, bad speculation,

and back-end bound stalls while transcoding different videos. Figure 3.9 shows the results.

AutoFDO provides an average speedup of 4.66%, with a maximum of 5.2%. On the other

hand, Graphite provides an average improvement of 4.42%, with a maximum of 4.87%.

Figure 3.9: Speedup provided by AutoFDO-optimized FFmpeg binary and Graphite-optimized
FFmpeg binary. The number is the average of 32 combinations of transcoding parameters
(crf , refs , and presets).

36

3.3.2.2 Smart Scheduler

Figure 3.10 shows the speedup provided by three schedulers over the default configuration. All

four µarch configurations have better microarchitectural resources than the default baseline,

so all schedulers show performance gain. However, on average, the characterization-driven

smart scheduler outperforms the random scheduler by 3.72%. Moreover, the smart scheduler

provides the same schedule as the best-fit server in three out of four cases.

Figure 3.10: Transcoding speedup over the baseline µarch configuration. The random
scheduler uses the average improvement of four modified µarch configurations. The one-to-
one constraint is imposed on the smart scheduler but not on the best scheduler.

3.4 Related Work

The performance of video transcoding significantly impacts computational and energy savings.

Realizing this significance, a rich set of prior works has investigated video transcoding

performance. I describe related works in four categories.

37

Performance profiling of video transcoding. Different prior works have investigated

video transcoding performance from different perspectives. For example, COVT [144] measures

the transcoding time and compression ratio for many transcoding presets and video types and

uses the results for efficient resource allocation. Other works [77, 49] aims to predict video

transcoding workloads’ power consumption. In comparison, I focus on microarchitectural

bottlenecks while transcoding various videos with different parameter values.

Algorithmic optimization. Many prior works have examined the algorithmic optimiza-

tion of video transcoding operations. For example, parallel transcoding on the Cloud [30, 96]

optimizes for parallelism, and DCT transcoder [95] optimizes for fast DCT-domain transcod-

ing. Sung et al. [135] propose a method to utilize the quadtree information from the decoding

process to accelerate the encoding process. Zhang et al. [158] observe that the video back-

ground barely changes for certain types of videos and utilize this observation to achieve fast

transcoding. In comparison, I notice the microarchitectural resource inefficiency during video

transcoding and leveraged state-of-the-art compiler optimizations to improve the hardware

resource utilization.

System/architectural optimization. Several prior works have designed efficient systems

for video transcoding. Specifically, [56, 163] optimizes the storage efficiency while transcoding

videos in content delivery networks (CDNs). GPU-accelerated VTU for MEC [26] leverages

GPUs to accelerate the transcoding operation. Cloud Transcoder [93] bridges the gap between

internet videos and mobile devices by offloading the bulk of the transcoding operation from

mobile devices to the cloud. The characterization of video transcoding provides several

insights into performance bottlenecks. These insights can be leveraged to design an efficient

video transcoding system in the future, as I have shown with the smart scheduler experiment.

Adaptive video streaming. Adaptive video streaming services tune video transcoding

parameters to generate videos of different quality [134, 29, 81]. The values of these parameters

are predicted based on the network condition [156, 151, 154, 65]. As I investigate the impact

38

of changes in transcoding parameters, the results can guide better resource utilization for

these adaptive video streaming services.

3.5 Conclusion

In this paper, I characterize the CPU microarchitectural performance of video transcoding

workloads. I vary all the major configurable options of video transcoding operation and explore

their impact on microarchitectural performance. I find that most transcoding workloads

suffer from back-end issues in the form of high data cache misses. At the same time, video

transcoding operations suffer from instruction cache misses and branch mispredictions in some

specific scenarios. To overcome data cache misses, I apply polyhedral optimizer, Graphite on

transcoding workloads, and achieve 4.42% average speedup. I show that the state-of-the-art

profile-guided optimization technique, AutoFDO, can reduce instruction cache misses and

branch mispredictions of video transcoding workloads to provide a 4.66% average speedup.

Finally, keeping the bottleneck diversity in mind, I propose a smart scheduler that assigns

the best microarchitectural configuration for different transcoding tasks. On average, the

proposed scheduler outperforms the random scheduler by 3.72% and matches with the best

scheduler in 75% of cases.

39

CHAPTER 4

Demystifying Graph Sparsification Algorithms

in Graph Properties Preservation

Graphs are ubiquitous because of their great expressiveness and flexibility. Graphs can

be used to represent complex relationships between individuals (vertices in the graph) by

making connections (edges in the graph). Graphs are widely used to represent data in various

application domains, e.g., social networks [64], citation and communication networks [111],

chemical and biological networks [80], etc. Many algorithms are also developed to exploit

the abundant features that graphs provide, e.g., Dijkstra’s algorithm [55], Ford-Fulkerson

algorithm [63], Graph Neural Networks [85], etc.

Despite their usefulness, graphs are often inefficient to work with due to memory irregularity.

Many works are proposed to tackle the problem [130, 139, 48]. However, most works develop

dedicated software or hardware solutions for a small set of graph algorithms, which leads to

a high design cost and limited applicability. In this work, I investigate graph sparsification, a

generally applicable technique to reduce the amount of work in graph algorithms.

Graph sparsification is a technique to approximate a given graph by a sparse graph that

preserves certain properties. This way, the downstream tasks can be executed on the sparsified

graph to improve run time. An ideal sparsification algorithm needs to achieve a high prune

rate while keeping the downstream task behavior close to that of the original full graph.

There are many sparsification algorithms with different focuses on the graph properties to

40

be preserved, and of different complexity. There are also many graph metrics that different

graph-centric algorithms rely on. However, with a large number of sparsification algorithms

and graph metrics, the connections between sparsifiers and their performance in preserving

the graph metrics are missing.

In this work, I extensively investigate 12 graph sparsification algorithms and evaluate their

performance in preserving 16 widely-used graph metrics in multiple groups. I also cover 14

real-world graphs spanning various categories with diverse characteristics, sizes, and densities.

The findings reveal that no single sparsifier does the best in preserving all graph properties,

and it is essential to select appropriate sparsifiers based on the downstream task.

In summary, I make the following contributions in this work:

• I summarize the most widely-used graph metrics and the most representative graph

sparsification algorithms and dig into the algorithmic details for a better understanding.

• I build a framework to perform graph sparsification and evaluate their performance

on various graph metrics at different prune rates. The framework is open-source and

extendable to future sparsification algorithms, graph metrics, and graphs.

• I perform N-to-N evaluation on the sparsification algorithms and graph metric, give a

comprehensive performance breakdown and provide insights with the results.

4.1 Overview

4.1.1 Preliminaries

In this section, I introduce the basic notions used in this paper.

Consider a graph G = (V , E ,w), where V and E denotes the set of vertices and edges in

G respectively, and w denotes the weights of the edges. A graph can be either directed or

undirected. In a directed graph, each edge has a source and a destination vertex, while an

undirected graph implies a bidirectional relationship. Furthermore, a graph can be weighted

41

or unweighted; in an unweighted graph, all edges have a default weight of 1. |V|, |E| represent

the number of vertices and edges, respectively. A graph is considered connected if a path

exists between any pair of vertices [20]. The adjacency matrix is denoted by A, with the

entries in A defined as:

Aij =

wi→j if eij ∈ E ,

0 otherwise.

The graph Laplacian matrix is denoted by L defined as follows:

Lij = D −A =

deg(vi) if i = j,

−wi→j if eij ∈ E ,

0 otherwise.

Note that the Laplacian matrix is only considered for undirected graphs, thus the graph

Laplacian is a positive semi-definite matrix. I now present a formal definition of the graph

sparsification problem.

Definition 1 (Graph Sparsification) Let G = (V , E ,w) be a given graph. A sparsified

subgraph H = (V , Ẽ , w̃) is constructed such that |Ẽ | = (1− ρ)|E|. The function f that creates

H from G, H = f(G), is called a graph sparsification algorithm (also referred to as a

sparsifier), while ρ is defined as the prune rate.

This study focuses solely on edge sparsification, implying that the original vertex set is kept

while selecting a subset of edges. This approach is adopted for several reasons: 1) the edge set

typically possesses a significantly larger size than the vertex set and contains more redundant

information, 2) the majority of sparsification algorithms focus on pruning edges rather than

vertices, and 3) most graph metrics require the complete set of vertices for evaluating the

performance of sparsification algorithms.

42

4.1.2 Graph Metrics

4.1.2.1 Basic Metrics

This section introduces some fundamental graph metrics.

Degree Distribution. The degree of a vertex is defined as the number of edges incident

to it. The degree distribution provides a comprehensive perspective on the graph’s structure,

enabling the classification of different types of graphs. For instance, a randomly generated

graph might exhibit a uniform degree distribution, whereas a real-world social network has a

power-law distribution.

Laplacian Quadratic Form. This is defined as xTLx, where L represents the graph

Laplacian, and x ∈ R|V| is an arbitrary vector. The Laplacian quadratic form is a fundamental

quantity in graph theory [39], and it facilitates the analysis of various graph properties,

including connectivity and spectral characteristics [32].

4.1.2.2 Distance Metrics

This section includes a collection of metrics associated with the pairwise distances between

vertices in graphs.

All Pairs Shortest Path (APSP). APSP measures the minimum distance between any

pair of source vertex u and destination vertex v. Breadth-First Search (BFS) and Dijkstra’s

algorithm [55] are often used to determine APSP. Distance captures the proximity between

two vertices. APSP are used in various domains such as data center network design [50] and

urban service system planning [122].

Diameter. The diameter of a graph G is defined as the maximum distance between

any pair of vertices u and v. If G is disconnected, its diameter is considered infinite. The

diameter is useful in various applications, including transportation network planning [38] and

the analysis of routing and communication network quality [57].

Vertex Eccentricity. Vertex eccentricity is defined as the length of the longest shortest

43

path from a source vertex s to all other vertices in G. Note that the minimum eccentricity is

the graph radius, and the maximum eccentricity is the graph diameter. Vertex eccentricity is

infinite for disconnected graphs. It identifies vertices located near the geometrical center of

the graph. Vertex eccentricity has practical applications in identifying network periphery in

routing network [102, 137]. Or identifying proteins readily functionally reachable by other

components in protein networks. [137, 114].

4.1.2.3 Centrality Metrics

Centrality measures are a set of metrics employed to assess the significance or ranking of

vertices in various manners.

Betweenness. Betweenness centrality for vertex v is defined as

Cbetweenness(v) =
∑
s ̸=v ̸=t

σst(v)

σst

.

Here, σst denotes the total number of shortest paths from vertex s to t, while σst(v) refers

to the number of shortest paths passing through v. The underlying intuition suggests that

vertices appearing on numerous shortest paths exhibit high betweenness centrality. It can be

employed to identify hubs in a transportation network [128] or to identify important vertices

(people) in social networks [41].

Closeness. Closeness centrality [33] of a vertex v is defined as

Ccloseness(v) =
1∑

u d(u, v)
.

Here, d(u, v) represents the shortest distance between vertices u and v. The underlying

intuition is that vertices with a shorter average distance to all other reachable vertices exhibit

high closeness centrality. It can identify essential genes in protein-interaction networks [71]

or crucial metabolites in metabolic networks [101].

44

Eigenvector. The eigenvector centrality of a vertex v is defined as

Ceigenvector(v) =
1

λ

∑
u∈N(v)

Ceigenvector(u).

where N(v) is the neighbour of v, and λ is the greatest eigenvalue of the adjacency matrix

A. Eigenvector centrality measures the influence of a vertex [22]. A high eigenvector score

means a vertex is connected to many vertices whose eigenvector scores are also high [110].

Google’s PageRank [113] and Katz centrality are two variants of eigenvector centrality. Katz

centrality is discussed in the next paragraph and PageRank in Section 4.1.2.5. Eigenvector

centrality is useful for assessing opinion influence in sociology and economics [120], or the

firing rate of neurons in neuroscience [62].

Katz. Katz centrality quantifies the influence of a vertex by considering the number

of immediate neighbors and vertices connected to those immediate neighbors [82]. Distant

neighbors are penalized by an attenuation factor αk, where k represents the hop distance

from the central vertex. In this paper, I use α = 1/(max(degree) + 1). The eigenvector

centrality is defined as

CKatz(v) =
∑
k

∑
u

αk(Ak)uv.

4.1.2.4 Clustering Metrics

Graph clustering groups vertices into communities, ensuring dense connections within com-

munities and sparse connections between communities. This section covers graph clustering-

related metrics.

Number of communities. The most basic metric in graph clustering is the number

of communities. For graphs with a known number of communities k, certain clustering

algorithms, such as k-means [98], can construct exactly k communities. Alternatively, some

algorithms like agglomerative clustering [109] and DBSCAN [58] can automatically determine

the optimal number of clusters.

45

Local Clustering Coefficient (LCC). LCC of a vertex v represents the proportion of

pairs of neighbors of v that are connected. It evaluates the density of connections among the

neighbors of a vertex [19]. The LCC is defined as follows:

LCC(v) =
|ejk : j, k ∈ Nv, ejk ∈ E|

αkv(kv − 1)
.

where Nv denotes the set of neighbors of the vertex v, and kv is the number of neighbors of

vertex v. Here, α = 1 for directed graphs, and α = 0.5 for undirected graphs. LCC, originally

proposed by Watts and Strogatz, is used to determine whether a graph is a small-world

network [143]. Mean clustering coefficient (MCC) is the mean of the local clustering

coefficient of all vertices.

Global Clustering Coefficient (GCC). GCC [100] measures the fraction of closed

triplets in all triplets. A triplet of nodes can consist of two (open) or three (closed) undirected

edges [19].

GCC(v) =
#Closed triplets

#All triplets
.

Clustering F1 score. The F1 score can be employed to assess the similarity between a

given clustering and a reference clustering [103]. Suppose there are k clusters Ci (i ∈ [1, k])

obtained from a specific algorithm for graph G and s reference clusters Rj (j ∈ [1, s]) to

compare with. Note that s may not be equal to k. The following matrix illustrates the

relationship between Ci and Rj:

R1 R2 ... Rs

C1 a11 a12 ... a1s

C2 a21 a22 ... a2s

...

Ck ak1 ak2 ... aks

46

In this matrix, aij represents the number of vertices shared between cluster Ci and reference

cluster Rj. The precision and recall of the clustering are defined as follows:

Precision =

∑
i∈[1,k] maxj{aij}∑
i∈[1,k]

∑
j∈[1,s] aij

, Recall =

∑
i∈[1,k] maxj{aij}

n

Subsequently, the F1 score for clustering is defined as:

F1 = 2 × Precision×Recall

Precision + Recall

The F1 score ranges from 0 to 1, where a higher value indicates greater similarity between

the clustering C and the reference R.

Table 4.1: Metrics’ applicability to types of graphs.

Metric Directed Weighted Unconnected

Degree Dist. ✓ ●† ✓

Diameter ✓ ✓ ✓‡

Eccentricity ✓ ✓ ✓‡

APSP ✓ ✓ ✓‡

Betweenness Cent. ✓ ✓ ✓

Closeness Cent. ✓ ✓ ✓

Eigenvector Cent. ✓∗ ✓ ✓

Katz Cent. ✓ ✓ ✓

#Communities ✗ ✓ ✓

LCC ✓ ●† ✓

MCC ✓ ●† ✓

GCC ✓ ●† ✓

Clustering F1 Sim ✗ ✓ ✓

PageRank ✓ ✓ ✓

Min-cut/Max-flow ✓ ✓ ✓‡

GNN ✓ ✓ ✓
∗ For directed graphs, the left eigenvector is used. A left
eigenvector is an eigenvector satisfies XLA = λLXL, where a right
(by default) eigenvector satisfies AXR = λRXR

† Weight not used, same as unweighted.
‡ In unconnected graphs, pairwise distance can be infinite,
and min-cut max-flow can be zero if two terminals selected
are in different communities. I exclude these pairs in the evaluation.

47

4.1.2.5 Application-level Metrics

In this section, I discuss metrics that are used in applications.

PageRank. PageRank, initially designed to rank web pages [113], is a foundational

algorithm for Google’s search engine. The underlying concept suggests that pages linked by

numerous important pages bear greater significance. PageRank computation typically employs

the power method. Each page (vertex) is assigned an initial score and iteratively calculates a

new score by adding up 1/k of the scores of pages linked to it, where k represents the number

of outgoing links from the source page. Eventually, the computation converges, and the score

of each page indicates its importance within the network. The primary distinction between

PageRank and eigenvector centrality (§ 4.1.2.3) lies in PageRank’s specificity for web-page

ranking, incorporating 1/k factor and additional parameters like damping factor [40] for

better robustness and accuracy, while eigenvector centrality is more suitable for general graph

analysis, not necessarily involve directed or weighted graphs.

Min-cut and Max-flow. In graph theory, a cut refers to the partitioning of a graph’s

vertices into two disjoint subsets [21]. A minimum s-t cut, or min-cut, represents the cut

with the smallest total weight of edges that disconnect the source vertex s from the sink

vertex t. The maximum flow, or max-flow, denotes the maximum amount of flow that can

traverse from the source vertex s to the sink vertex t, where the edge weight represents the

flow capacity. The max-flow and min-cut problems are equivalent, as the maximum flow a

network can accommodate is constrained by the network’s narrowest intersection, which is

the min-cut. Min-cut and max-flow can be applied to identify bottlenecks in water networks,

road networks, or electrical networks [119, 24].

Graph Neural Networks (GNNs). GNNs [127] are neural networks that operate on

graphs. GNNs learn from the graph structure by aggregating information from neighboring

vertices or edges and feeding the information to multi-layer perception (MLP) layers for

training. Some famous GNN models include Graph Convolutional Network (GCN), Graph

48

Attention Network (GAT), and ChebNet [85, 53, 140]. GNN can be used for classification or

prediction on vertex, edge, or graph-level tasks [160, 92, 54].

I summarize the graph metrics discussed and their applicability to different types of graphs

in table 4.1.

4.1.3 Graph Sparsification Algorithms

Graph sparsification is to approximate a given graph by a graph with fewer vertices or edges.

In this work, I consider graph sparsification algorithms that keep the same vertices of the

original graph and only remove edges. This is because most of the metrics discussed in the

previous section are vertex-centric; for example, distance metrics are for each vertex or each

pair of vertices; centrality metrics are about the ranking of vertices; PageRank is the vertex

ranking; min-cut and max-flow are also vertex pairwise.

In this section, I discuss graph sparsification algorithms evaluated in this work; they

constitute the most widely used and representative sparsification algorithms.

4.1.3.1 Random Sparsifier

The simplest way to sparsify the graph is by randomly sampling a subset of edges to keep it in

the sparsified graph. This is referred to as the Random sparsifier. It samples all edges in the

graph with equal probability and thus can be used to preserve vertex-relative (distribution-

based and ranking-based) properties. Random sparsifier is employed in GraphSAGE for

neighbor sampling [73].

4.1.3.2 K-Neighbor Sparsifier

K-Neighbor sparsifier [124] selects k edges for each vertex, and if a vertex has less than k

vertices, all of its edges are included. The edges are selected with probability proportional to

their weights (uniform for unweighted graphs). It can be used in Laplacian smoothing [124].

K-Neighbor guarantees each vertex has at least k edges, so it can be applied if the downstream

task requires high graph connectivity.

49

Table 4.2: Sparsifiers’ applicability to types of graphs and characteristics. Note that all
sparsifiers work for undirected, unweighted, and connected graphs because they are special
cases of directed, weighted, and unconnected graphs, so they are not listed. Deterministic
means whether the sparsifier generates the same sub-graph every time.

Sparsifier D? W? Un-C? PRC WC? Det? Complexity∗∗

Random (RN) ✓ ✓ ✓ ✓ ✗ ✗ O(ρ|E|)
K-Neighbor (KN) ✓∗ ✓ ✓ ✓‡ ✗ ✗ O(|E|)
Rank Degree (RD) ✓∗ ✓ ✓ ✓‡ ✗ ✗ O(ρ|E|)−O(ρ|E|)log(ρ|E|)
Local Degree (LD) ✓∗ ✓ ✓ ✓‡ ✗ ✓ O(|E|)−O(|E|log(|E|))
Spanning Forest (SF) ✗ ✓ ✓ ✗ ✗ ✓ O(|E|log(|V|))
t-Spanner (SP-t) ✗ ✓ ✓ ✗ ✗ ✓ O(|V|2log(|V|))
Forest Fire (FF) ✓ ✓ ✓† ✓‡ ✗ ✗ O(r|E|)
L-Spar (LS) ✓∗ ✓ ✓ ✓‡ ✗ ✓ O(k|E|)
G-Spar (GS) ✓∗ ✓ ✓ ✓ ✗ ✓ O(k|E|)
Local Similarity (LSim) ✓∗ ✓ ✓ ✓‡ ✗ ✓ O(|E|)
SCAN ✓∗ ✓ ✓ ✓ ✗ ✓ O(|E|)
ER ✗ ✓ ✓ ✓ ✓ ✗ O(|E|log(|V|)3)
The header of each column is: D? means whether the sparsifier works on a directed graph. W? means
whether the sparsifier works on a weighted graph. Un-C? means whether the sparsifier works on an
un-connected graph. PRC is prune rate control, and it means whether the sparsifier has a fine-grain,
coarse-grain, or no control over the prune rate. WC? means whether the sparsifier makes weight
changes to in the sparsified graph. Det? means whether the sparsifier generates deterministic results
across runs. ∗ Need to specify using in-degree or out-degree; in this work, I use out-degree.
∗∗ |V| =#Vertices, |E| =#Edges, ρ =prune rate, r =burnt ratio, k =#minwise hash. It can be a range
for some sparsifiers because different optimal algorithms can be used according to graph properties.
† Seeds are randomly selected, thus edges from communities with fewer vertices are less likely to be
included.
‡ Subject to constraint. Indirect or coarser grain control or has an upper limit for prune rate.

4.1.3.3 Rank Degree Sparsifier

Rank Degree sparsifier [141] starts with selecting a random set of “seed” vertices. Subsequently,

the vertices with edges to the seed vertices are ranked according to their degree in descending

order. The edges connecting each seed vertex to its top-ranked neighbors are selected and

incorporated into the sparsified graph. The recently added nodes in the graph serve as new

seeds to search for additional edges. This process continues until the target sparsification

limit is reached. Rank Degree biases to high-degree vertices, which are considered the hub

vertices in a graph, so it excels at keeping edges incident to the important vertices in graphs.

4.1.3.4 Local Degree Sparsifier

Similar to the Rank Degree sparsifier, the Local Degree sparsifier [72] preserves edges incident

to high-degree vertices, but in a deterministic manner. For each vertex, Local Degree

50

incorporates edges to the top deg(v)α neighbors ranked by their degree in descending order,

where α ∈ [0, 1] controls the degree of sparsification. Another difference compared to Rank

Degree is that Local Degree sparsifier makes sure each vertex will have at least one edge, so

Local Degree sparsifier is a good choice when one desires to keep both graph connectivity and

edges incident to important vertices.

4.1.3.5 Spanning Forest

A spanning tree is a subgraph that constitutes a tree (a connected graph without a cycle [18])

and includes all the vertices in the graph [17]. A Spanning Forest consists of multiple spanning

trees. Kruskal’s algorithm [87] and Prim’s algorithm [118] can be used to construct a Spanning

Forest . Although it is not strictly a sparsifier, as the prune rate cannot be controlled, Spanning

Forest is included because it reduces the size of graphs and is a fundamental notion in graph

theory. Spanning Forest is helpful when one strictly wants to keep the graph connectivity

the same as the original graph.

4.1.3.6 t-Spanner

A spanner is a subgraph approximating the pairwise distances between vertices in the original

graph. A t-Spanner is defined as a subgraph such that any pairwise distance is at most t

times the distance in the original graph, which can be formally expressed as:

∀u, v ∈ V , dH(u, v) ≤ tdG(u, v)

In this equation, t(> 1) denotes the stretch factor. A greedy algorithm [27] is employed for

constructing t-spanners. This algorithm starts with an empty edge set and then iteratively

adds the edge euv if the distance dH(u, v) between the vertices u and v in the current graph

exceeds t times the weight of euv. The process continues until all edges have been considered.

In addition to strictly keeping the graph connectivity, t-Spanner provides a better guarantee

on the pairwise distances between vertices and is a better choice than Spanning Forest when

51

such a property is desired.

4.1.3.7 Forest Fire

The Forest Fire model is a generative model for graphs, originally proposed by Leskovec et

al. [90]. The concept involves constructing the graph by adding one vertex at a time and

forming edges to certain subsets of the existing vertices. When a new vertex u is added

to the graph, it connects to an existing vertex v in the graph. Subsequently, it “spreads”

from v to other vertices in the graph with a certain predefined probability, creating edges

between v and the newly discovered vertices. This process assembles “burning” through

edges probabilistically, hence the name Forest Fire [90].

4.1.3.8 Similarity-based sparsifiers

Similarity-based sparsifiers constitute a group of sparsifiers based on similarities between

vertices measured by specific metrics.

Jaccard similarity [108] measures the similarity between two sets by computing the portion

of shared neighbors between two nodes (u and v), as defined below:

JaccardSimilarity(u, v) =
|N (u)

⋂
N (v)|

|N (u)
⋃
N (v)|

The Jaccard score of an edge is the Jaccard similarity between two constituent vertices of

the edge. Once Jaccard scores are computed, they can be used to perform similarity-based

sparsifications.

Global Sparsifiers. Global sparsifiers select edges based on similarity scores globally.

global Jaccard sparsifier (G-Spar) sorts the Jaccard scores globally and then selects the edges

with the highest similarity score. SCAN [150] uses structural similarity measures to detect

clusters, hubs, and outliers. The SCAN similarity score is a modified version of the Jaccard

52

score, defined as follows:

SCANSimilarity(u, v) =
|N (u)

⋂
N (v)| + 1√

(deg(u) + 1)(deg(v) + 1)

Once the scores are computed, the edges in the sparsified graph are included from high-score

edges to low-score edges.

Local Sparsifiers. Similarity scores can also be used to select edges in a local way. The

local Jaccard similarity sparsifier (L-Spar) [125] includes dc edges with the highest Jaccard

scores incident to each vertex locally, where c is a parameter. The Local Similarity sparsifier

works similarly to L-Spar , but it further ranks edges using the Jaccard score and computes

log(rank(edge))/log(deg(v)) as the similarity score. Finally, Local Similarity sparsifier selects

edges with the highest similarity scores.

The L-Spar and Local Similarity sparsifiers are particularly useful for preserving local

structure in the graph, such as clustering. They can be applied to social network analysis and

recommendation systems. By focusing on local similarities between vertices, these sparsifiers

provide a more accurate representation of the original graph’s local properties compared to

other sparsifiers.

Table 4.3: Graph datasets information.

Category Name D? W? C? #Nodes #Edges Density source

Social Network
ego-Facebook ✗ ✗ ✓ 4,039 88,234 1.08E-02 snap [91]
ego-Twitter ✓ ✗ ✗ 81,306 1,768,149 2.67E-04 snap [91]

Gene human gene2 ✗ ✓ ✗ 14,340 9,041,364 8.79E-02 SuiteSparse [51]
Community
Network

com-DBLP ✗ ✗ ✓ 317,080 1,049,866 2.09E-05 snap [91]
com-Amazon ✗ ✗ ✓ 334,863 925,872 1.65E-05 snap [91]

communication email-Enron ✗ ✗ ✗ 36,692 183,831 2.73E-04 snap [91]

Collaboration
ca-AstroPh ✗ ✗ ✗ 18,772 198,110 1.12E-03 snap [91]
ca-HepPh ✗ ✗ ✗ 12,008 118,521 1.64E-03 snap [91]

Web

web-BerkStan ✓ ✗ ✗ 685,230 7,600,595 1.62E-05 snap [91]
web-Google ✓ ✗ ✗ 875,713 5,105,039 6.66E-06 snap [91]

web-NotreDame ✓ ✗ ✗ 325,729 1,497,134 1.41E-05 snap [91]
web-Stanford ✓ ✗ ✗ 281,903 2,312,497 2.91E-05 snap [91]

GNN
Reddit ✗ ✗ ✓ 232,965 57,307,946 2.11E-03 pyg [73]

ogbn-proteins ✗ ✗ ✓ 132,534 39,561,252 4.50E-03 ogb [136, 76]

The header of each column is: D? means whether the graph is directed. W? means whether the graph
is weighted. C? means whether the graph is connected.

53

4.1.3.9 Effective Resistance (ER) Sparsifier

The concept of Effective Resistance (ER) is derived from the analogy of an electrical circuit

and applied to a graph. In this context, edges represent resistors, and the effective resistance

of an edge corresponds to the potential difference generated when a unit current is introduced

at one end of the edge and withdrawn from the other.

I refer readers to [132] for the details of how ER is calculated. Once the effective resistance

is calculated, a sparsified subgraph can be constructed by selecting edges with a probability

proportional to their effective resistances. Notably, Spielman and Srivastava further proved

that the quadratic form for Laplacian of such sparsified graphs is close to that of the original

graph. Then the following inequality holds for the sparsified subgraph with high probability:

∀x ∈ R|V| (1 − ϵ)xTLx ≤ xT L̃x ≤ (1 + ϵ)xTLx

where L̃ is the Laplacian of the sparsified graph, and ϵ > 0 is a small number. The insight

is that ER reflects the significance of an edge. ER is a spectral sparsifier, and it aims to

preserve the quadratic form of the graph Laplacian. It can be applied to applications that

rely on the quadratic form of graph Laplacian, such as min-cut/max-flow.

I list the sparsifiers discussed in the section and their applicability to types of graphs,

features, and time complexity in table 4.2.

4.1.4 Datasets

Table 4.3 lists the graph datasets used in this work; I select graphs from various categories

with different characteristics, sizes, and densities to ensure the diversity of graphs.

54

4.2 Experimental Setup

4.2.1 Graph Preparation

The graphs employed in this study are sourced from multiple graph dataset suites. I carry out

essential pre-processing steps on all graphs to ensure their proper preparation for sparsifier

execution and metric evaluation. The process can be summarized as follows:

1. I remove vertices with no edge incidence (i.e., isolated vertices), as they do not contribute

to graph information and can induce noise in metric evaluations. Then, vertices are

re-indexed to be zero-based and continuous.

2. For each directed graph, an undirected version is generated by symmetrizing each edge

(i.e., adding a [dst, src] edge to the graph if it does not already exist). This ensures

that sparsifiers that only operate on undirected graphs can function properly. Other

sparsifiers are still applied to the original directed graphs.

4.2.2 Graph Sparsification

In this section, I cover additional information regarding the graph sparsifiers. When applying

sparsifiers:

1. I sweep the prune rate from 0.1 to 0.9, with a step of 0.1. Some sparsifiers have a

coarser prune rate granularity (e.g., K-Neighbor , L-Spar), and I attempt to align them

with the specified prune rate. Some sparsifiers have a maximum prune rate (e.g., Local

Degree, K-Neighbor), so I sweep up to their maximum prune rate. Certain sparsifiers

have no control over the prune rate and only support a single prune rate (e.g., Spanning

Forest , t-Spanner), and I retain them as is.

2. For non-deterministic sparsifiers, the inherent randomness in the algorithm produces

different sub-graphs in each run. In such cases, I generate 10 graphs at each prune rate,

55

measure graph metrics using the mean value, and indicate their standard deviation in

the results. For deterministic sparsifiers, I generate a single graph at each prune rate.

3. For the Effective Resistance sparsifier, since it is the only one that modifies edge weights,

I consider two variants denoted as ER-weighted and ER-unweighted , respectively.

4.2.3 Graph Metrics

In this section, I cover additional information regarding the measurement of sparsifiers’ quality

on graph metrics.

4.2.3.1 Basic Metrics

Graph connectivity. I employ the source-destination pair unreachable ratio and the vertex

isolated ratio to measure graph connectivity. The former represents the fraction of vertex

pairs that do not have a path connecting them. The latter signifies the proportion of isolated

vertices, meaning no edges are incident to them. Both of these ratios provide insights into

the overall connectivity of a graph when assessing the effectiveness of sparsification methods.

Degree Distribution. I assess how closely the similarity of the degree distribution of

the sparsified graphs and that of the original graph using the Bhattacharyya distance [35],

defined as:

Bd(P,Q) = −ln

(∑
x∈X

√
P (x)Q(x)

)

where P and Q are two distributions. A value closer to 0 indicates a higher similarity in

distribution. I evenly divide the discrete degree distribution into 100 bins for all graphs.

Quadratic Form Similarity. To evaluate this, I generate 100 vectors x with random

entries. Next, I compute the quadratic form xTLx for the original and the sparsified graphs.

Then, I use the mean quadratic form ratio to assess the sparsification quality.

56

4.2.3.2 Distance Metrics

APSP and Eccentricity. The computation of the All-Pair-Shortest-Path (APSP) is time-

consuming for large graphs. Therefore, I randomly sample 100,000 source-destination pairs,

referred to as Some-Pair-Shortest-Path (SPSP), and report the average stretch factor, defined

as the distance ratio between the same pair in the sparsified and the original graph. I

exclude pairs belonging to different communities. Similarly, I randomly select 1000 vertices

to represent the eccentricity of all vertices.

Diameter. Computing the true diameter requires performing APSP, which is impractical

on large graphs. I employ an approximate diameter algorithm [55]. The algorithm starts with

a randomly chosen source vertex, identifies a target vertex farthest from it, and iteratively

repeats the process using the target vertex as the new source vertex. I validated the

approximate diameter against the true diameter on small graphs and verified that they are

closely aligned. To minimize potential bias introduced by the initial source vertex selection,

each graph is assessed using 10 different randomly chosen seed vertices to obtain the mean

diameter.

4.2.3.3 Centrality Metrics

I employ the top-k precision to evaluate the quality of centrality metrics. First, vertices are

ranked according to their centrality scores. Then, the top-k vertices in the sparsified graphs

are compared with those in the full graph. The proportion of overlapping vertices is referred

to as the top-k precision. In this paper, I set k to 100 because, typically, only a small subset

of vertices in graphs are critical, and accurately ranking them is more important.

Betweenness Centrality. Actual betweenness centrality calculation also requires comput-

ing APSP. In this paper, I adopt an approximate betweenness centrality algorithm proposed

by Geisberger et al. [66]. The algorithm is sampling-based, and a higher sampling number

achieves better estimation quality. I use a sampling number of 500 and compare it with exact

betweenness on small graphs, confirming the results are closely aligned.

57

4.2.3.4 Application-level Metrics

Min-cut/Max-flow. I randomly sample 100,000 src-dst pairs and measure the min-cut/max-

flow on both the original and sparsified graphs. Then, I use the mean stretch factor between

the sparsified and the original graph to evaluate the sparsification quality.

GNN. For GNNs, I evaluate two models: GraphSAGE and ClusterGCN. The quality

is measured in test accuracy or Area Under the Receiver Operating Characteristics [59]

(AUROC). AUROC ranges from 0.5 to 1. A higher accuracy or AUROC indicates better

GNN performance. For both GNN models, I train the network with sparsified graph and

test on the full graph because 1) training is the most time-consuming part and is the most

meaningful to apply sparsification, 2) testing on the full graph reveals how well the sparsified

graph captures full graph’s characteristics.

4.2.4 Software Framework

My software evaluation framework integrates several open-source libraries and my custom

implementations. I use NetworKit[133] for multiple sparsifiers and Laplacians.jl[131] for

the effective resistance sparsifier. I also implemented the K-Neighbor , Rank Degree, L-Spar ,

and t-Spanner algorithms.

For the evaluation metrics, I employ both NetworKit [133] and graph-tool [116] for

implementations of several discussed distance, centrality, clustering, and min-cut/max-flow

metrics. I use PyG [60] to implement the graph neural networks. Additionally, I implemented

degree distribution and quadratic form evaluation.

The framework is open-sourced and extendable to incorporate more sparsification algo-

rithms and graph metrics.

4.2.5 Hardware Platform

The experiments in this paper are performed on a server with an Intel Xeon Platinum 8380

CPU with 1 TB of memory. The graph neural networks run on an Nvidia A40 GPU with 48

58

GB memory.

4.3 Results

In this section, I evaluate the impact of various sparsifiers on the quality of graph metrics at

different prune rates. I perform comprehensive experiments on all sparsifiers, graph metrics,

and datasets discussed in this paper. Due to the extensive nature of the experiments (over

30,000 data points), I can only show a subset of performance results in the figures. The full

results are available in the appendix. I adhere to the following rules to present the results

without bias: (1) for readability, I only show a representative subset of sparsifiers for each

graph metric, including those that perform well or poorly and those that yield interesting

outcomes; (2) I always include Random as it serves as a naive sparsifier for comparison; (3) I

select at least one representative graph for each graph metric and discuss any discrepancies

observed in other graphs. I then compare sparsification times and briefly discuss the overhead

associated with sparsification. Finally, I summarize the results and provide insights.

4.3.1 Basic Metrics

Figures 4.1a and 4.1b show the source-destination pair unreachable ratio and vertex isolated

ratio, respectively. As the prune rate increases, the graph becomes more disconnected,

leading to an increase in isolated vertices. K-Neighbor excels at preserving graph connectivity

because it ensures that each vertex retains at least k edges. Two local sparsifiers, Local

Degree and Local Similarity , also show strong performance since they both select edges

to maintain locally, guaranteeing at least one edge for each vertex. ER performs well by

retaining high-resistance edges, which are the low-redundancy edges crucial for maintaining

graph connectivity. Spanning Forest and t-Spanners preserve the same level of connectivity

as the original graph, as ensured by the algorithms. Random does not effectively preserve

graph connectivity because it does not attempt to maintain edges critical for connectivity.

G-Spar and SCAN retain edges connecting similar vertices on a global scale, and these edges

59

are often intra-community edges that are not crucial for preserving connectivity, resulting

in the poorest performance. The acceptable unreachable/isolated ratio can be customized

according to specific applications. In this paper, I consider an increase of 20% or more in the

unreachable/isolated ratio compared to the original graph as excessive (shown as the grey

area in Figures 4.1a and 4.1b).

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.2

0.4

0.6

0.8

1.0

U
nr

ea
ch

ab
le

R
at

io

(a) Pair Unreachable Ratio

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Is
ol

at
ed

R
at

io

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER

(b) Vertex Isolated Ratio

Figure 4.1: Graph Connectivity on ca-AstroPh.

Degree Distribution. Figure 4.2 illustrates the degree distribution on ogbn-proteins.

A lower Bhattacharyya distance signifies a more similar degree distribution to the original

graph. Random demonstrates the best performance in preserving the degree distribution.

This is because Random treats all edges without bias, thus maintaining the same proportion

of edges for all vertices and keeping a similar degree distribution. Most graphs exhibit a

60

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

B
ha

tta
ch

ar
yy

a
D

is
ta

nc
e

RN
KN
LD
RD
FF

Figure 4.2: Degree distribution comparison on ogbn-proteins. Lower is better. Random per-
forms the best, Local Degree and Forest Fire do not do well in preserving degree distribution.

power-law degree distribution, so some sparsifiers struggle to preserve degree distribution.

For instance, Local Degree and Rank Degree retain edges connected to high-degree vertices.

Conversely, K-Neighbor maintains up to K edges for all vertices, eliminating surplus edges

from high-degree vertices. These biases negatively impact the preservation of the degree

distribution. Among all sparsifiers, Random consistently performs well across all graphs,

while Local Degree, Rank Degree, K-Neighbor , and Forest Fire under-perform on most graphs.

The performance of other sparsifiers moderately fluctuates across graphs due to different

graph characteristics.

Laplacian Quadratic Form. Figure 4.3 displays the Laplacian quadratic form similarity

on com-Amazon. A value closer to 1 indicates better quality. From the figure, ER-weighted

emerges as the clear winner. This is because the Laplacian quadratic form is the specific

attribute ER-weighted is designed to preserve. Note that only ER-weighted possesses this

property. ER-unweighted , along with other sparsifiers, exhibits no capability to preserve

Laplacian quadratic form similarity at all, and they show the same pattern as Random. The

pattern observed on com-Amazon is consistent across other undirected graphs. For directed

graphs (not shown due to space limit), the Laplacian quadratic form ratio for ER-weighted is

no longer guaranteed to be close to 1; this is because the symmetrization process deviates

the graph’s spectral property from that of the original directed graph. However, ER-weighted

61

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.2

0.4

0.6

0.8

1.0

Q
ua

dr
at

ic
Fo

rm
S

im
ila

rit
y

Random ER-weighted

Figure 4.3: Laplacian quadratic form comparison of different sparsifiers on com-Amazon.
Closer to 1 is better. ER-weighted performs the best. Random and other sparsifiers do not
preserve Laplacian quadratic form.

still maintains a constant ratio and offers a better guarantee than other sparsifiers.

4.3.2 Distance Metrics

SPSP. A practical sparsifier should keep the mean stretch factor close to 1 while keeping

the unreachable ratio relatively low. Figure 4.4a shows the mean stretch factor of 100,000

sampled source-destination pairs, with the constraint that the unreachable ratio is < 20%

over that in the original graph (white area in figure 4.1a). This allows for a comparison of the

mean stretch factor without a significant increase in the number of unreachable pairs. Local

Degree and Rank Degree demonstrate the best performance in preserving distances while

maintaining a low unreachable ratio. This is because both of them bias towards preserving

edges of high-degree vertices, which are typically hub vertices in the graph and often lie along

many shortest paths.

L-Spar , ER-unweighted , Forest Fire, and K-Neighbor also exhibit strong performance due

to their ability to maintain graph connectivity. Conversely, G-Spar and SCAN perform poorly

as they rapidly increase the unreachable ratio and have a higher stretch factor. Although

Spanning Forest and t-Spanners have a relatively high stretch factor, they guarantee the

62

0.2 0.4 0.6 0.8
Prune Rate

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
tre

tc
h

Fa
ct

or

(a) Adjusted SPSP Stretch Factor

0.2 0.4 0.6 0.8
Prune Rate

1.0

1.5

2.0

2.5

3.0

3.5

S
tre

tc
h

Fa
ct

or

(b) Adjusted Eccentricity Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0
5

10
15
20
25
30
35
40

D
ia

m
et

er

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-uw

(c) Diameter

Figure 4.4: (a) Adjusted SPSP stretch factor of sparsifiers on ca-AstroPh with the constraint
of acceptable pair unreachable ratio. (b) Adjusted eccentricity stretch factor of sparsifiers on
ca-AstroPh with the constraint of acceptable vertex isolated ratio. (c) Diameter comparison
on ego-Facebook. For the stretch factor, closer to 1 is better. For graph diameter, closer to
ground truth (green line) is better. Rank Degree and Local Degree have the best performance.
G-Spar and SCAN do not perform well.

63

connectivity of the original graph, allowing them to maintain the unreachable ratio. t-

Spanners fulfill the guarantee that the stretch factor is at most t but empirically show a

higher mean stretch factor than Local Degree. t-Spanners is useful when connectivity is

paramount, and a slightly higher stretch factor is tolerable.

Eccentricity. Figure 4.4b presents the performance of sparsifiers with the vertex isolation

ratio is < 20% higher than that in the original graph (white area in figure 4.1b). Local

Degree and Rank Degree best preserve eccentricity while keeping the unreachable ratio low.

L-Spar , ER-unweighted , Forest Fire, and K-Neighbor also show strong performance due to

their ability to maintain graph connectivity. G-Spar and SCAN perform poorly compared

to other sparsifiers. Spanning Forest and t-Spanners have a relatively high stretch factor

but guarantee the graph connectivity. Additionally, t-Spanners provide a theoretical upper

bound on the stretch factor, making them suitable for certain scenarios.

Diameter. Figure 4.4c presents the diameters of various sparsified graphs at various

prune rates. The green dashed line (8) indicates the diameter measured on the full graph

as ground truth. I observe that Local Degree and Rank Degree perform the best, consistent

with their strong performance in preserving distance. G-Spar , SCAN , and Local Similarity

perform poorly compared to other sparsifiers.

In general, distance-related metrics are consistent across graphs. Some graphs (e.g.,

com-Amazon) have a lower average degree, causing the unreachable ratio or vertex isolation

ratio to increase faster than in other graphs. Local Degree and Rank Degree consistently

demonstrate the best performance for all distance-related metrics; however, Local Degree more

effectively maintains the connectivity. G-Spar and SCAN always under-perform because

they both tend to keep intra-community edges. This leads to a more disconnected graph and

a high unreachable/isolation ratio.

64

0.2 0.4 0.6 0.8
Prune Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

P
re

ci
si

on

RN
LD
RD
FF
LS
GS
SCAN

(a) Betweenness Centrality

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

RN
LD
RD
FF
LS
GS
SCAN

(b) Closeness Centrality

Figure 4.5: Top-100 precision for Betweenness and Closeness centrality. Higher is better. (a)
Betweenness centrality on com-DBLP. (b) Closeness centrality on ca-AstroPh. Local Degree,
Rank Degree, and Random have the best performance. L-Spar , G-Spar , SCAN , and Forest
Fire do not perform well.

4.3.3 Centrality Metrics

Betweenness and Closeness Centrality. Figure 4.5a and 4.5b display the top-100

precision of betweenness centrality on com-DBLP and closeness centrality on ca-AstroPh.

Local Degree and Rank Degree exhibit the best performance. This is because the top-scored

vertices are typically hub vertices, and as explained in § 4.3.2, both Local Degree and Rank

Degree preserve edges incident to high-degree vertices, thus maintaining the betweenness and

closeness ranking of hub vertices. Random uniformly samples edges without bias and preserves

the relative ranking to some extent. G-Spar and SCAN perform poorly as they aggressively

65

disconnect graphs. I consistently observe Local Degree, Rank Degree, and Random perform

well, and G-Spar and SCAN perform poorly across graphs.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

RN
KN
LD
RD
FF

Figure 4.6: Eigenvector centrality top-100 precision comparison on email-Enron. Higher is
better. Rank Degree and Random have the best performance. Forest Fire and K-Neighbor
do not perform well.

Eigenvector Centrality. Figure 4.6 presents the top-100 precision of eigenvector cen-

trality on email-Enron. Rank Degree achieves the best performance because it retains edges

connected to high-degree vertices. Although eigenvector centrality is not directly linked to

degree, high-degree vertices have a higher probability of being directly or indirectly (via

n-hop neighbors) connected to important vertices. In comparison, Local Degree performs

worse than Rank Degree since it only considers the degree of immediate neighbors and may

disconnect vertices from vital vertices located more than 1-hop away. Random shows strong

performance due to its unbiased nature, which helps preserve relative ranking. Both Forest

Fire and K-Neighbor under-perform in preserving eigenvector centrality.

Katz Centrality. Figure 4.7 illustrates the top-100 precision of Katz centrality on

ego-Twitter. Random demonstrates the most effective performance. This is because Random

proportionally maintains the number of edges relative to the original degree for all vertices.

Thus, the graph’s hop structure closely resembles its original state. Empirically, K-Neighbor

and ER-unweighted also exhibit strong performance. Local Degree and Rank Degree do

not perform well since they solely focus on degree, thereby only accounting for immediate

66

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

RN
KN
LD
RD
FF
ER-uw

Figure 4.7: Katz centrality top-100 precision comparison of different sparsifiers on ego-Twitter.
Higher is better. Random has the best performance. Forest Fire does not perform well.

neighbors. Therefore, vertices with low-degree immediate neighbors but high k-hop (k > 1)

neighbors are severely penalized. Minor fluctuations in sparsifiers’ relative performance on

certain graphs can be attributed to the variation in the attenuation factor α. Overall, the

performance is consistent across graphs.

In summary, Local Degree, Rank Degree, and Random consistently excel in centrality-

related metrics. This is because Local Degree and Rank Degree retain edges connected to hub

vertices, and centrality metrics seek important vertices in the graph, which often correspond

to hub vertices. Conversely, Random maintains edges without bias, thus effectively preserving

the relative vertex ranking.

4.3.4 Clustering Metrics

Number of Communities. I employ the widely recognized Louvain method [37] for

community detection, assuming the number of communities is unknown, and use the number

detected in the original graph as the ground truth. Figure 4.8 presents a comparison of

community numbers on com-DBLP, with the green dashed line representing the ground truth;

the closer to it, the better. As the prune rate increases, the graph becomes increasingly

disconnected, and the number of communities consistently rises. Local Degree and K-Neighbor

excel in maintaining the community number relatively close to the ground truth because it

67

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

102

103

104

105

N
um

be
ro

fC
om

m
un

iti
es RN

KN
LD
RD
SF
SP-3
SP-5
SP-7
GS

Figure 4.8: Number of communities comparison on com-DBLP. Closer to the green line is
better. Local Degree, Spanning Forest , and t-Spanners have the best performance. G-Spar ,
Rank Degree, and Random do not perform well.

preserves connectivity. Spanning Forest and t-Spanners also demonstrate strong performance,

surpassing Local Degree at equivalent prune rates, as they ensure connectivity remains identical

to the original graph. Unlike Local Degree, Rank Degree struggles to preserve the community

number because it sparsifies globally without guaranteeing connectivity preservation. In

various graphs, Local Degree, Spanning Forest , and t-Spanners consistently outperform.

Clustering Coefficient. Figure 4.9 compares clustering coefficients on com-Amazon and

human gene2. I use the mean clustering coefficient (MCC) to evaluate the local clustering

coefficient (LCC), as it represents the average LCC of all vertices. The green dashed lines

indicate the MCC and GCC of the original graph. Generally, most sparsifiers exhibit

decreasing MCC and GCC as the prune rate rises, with only Local Similarity , SCAN , and

G-Spar exhibiting slight increases in MCC at lower prune rates. None of the sparsifiers

demonstrate outstanding performance in preserving MCC and GCC, as they all degrade

linearly with respect to the prune rate. Spanning Forest and t-Spanners consistently have an

MCC of 0 due to the absence of loops in the graph. Clustering coefficient results vary across

different graphs, with graph categories and directedness significantly impacting sparsifier

performance. Overall, no sparsifier proves effective in preserving clustering coefficients.

Clustering F1 Similarity. Relying solely on the number of communities to evaluate

68

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.1

0.2

0.3

0.4

0.5

M
C

C

RN
KN
SF
SP-3
SP-5
SP-7
LSim
GS
SCAN

(a) Mean clustering coefficient.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

G
C

C

RN
KN
LSim
GS
SCAN
ER-w

(b) Global clustering coefficient.

Figure 4.9: Clustering coefficients comparison. Closer to the green line is better. (a) shows
the MCC on com-Amazon (b) shows the GCC on human gene2. No sparsifier is effective in
preserving the clustering coefficient.

0.2 0.4 0.6 0.8
Prune Rate

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F1
S

im
ila

rit
y

RN
KN
LD
LS
GS
LSim
SCAN
ER-w
ER-uw

Figure 4.10: Clustering F1 similarity comparison of different sparsifiers on ca-HepPh. Higher is
better. ER-unweighted , ER-weighted , K-Neighbor , Local Degree, L-Spar , and Local Similarity
perform the best. SCAN and G-Spar underperform.

69

clustering quality is insufficient. Therefore, I employ the clustering F1 score to measure

clustering similarity (see § 4.1.2.4). Figure 4.10 shows the clustering F1 similarity comparison

on ca-HepPh, with F1 similarity ranging from 0 (worst) to 1 (best). The green dashed line

represents the clustering F1 similarity when applying clustering algorithms twice on the

original graph; it is not 1 due to the inherent randomness in the clustering algorithm. For all

sparsifiers, F1 similarity decreases as the prune rate increases. K-Neighbor exhibits the best

overall performance, while Local Similarity , Local Degree, and L-Spar also demonstrate strong

results. These sparsifiers share a focus on local edges, and locally similar vertices are more

likely to belong to the same community. Empirically, I also observe that ER-weighted and

ER-unweighted perform well, potentially due to ER’s preservation of low-redundant edges,

which are often crucial in clustering algorithms. In contrast, G-Spar and SCAN perform

poorly in preserving clustering similarity. Across graphs, K-Neighbor , Local Degree, Local

Similarity , L-Spar , ER-unweighted , and ER-weighted consistently rank as top performers,

while G-Spar and SCAN persistently underperform.

4.3.5 High-level Metrics

PageRank. Figures 4.11a and 4.11b present the top-100 precision of PageRank on web-

Google and ego-Facebook, respectively. Note that web-Google is a directed graph and ER only

supports undirected graphs. Thus, I symmetrize the graph before performing ER. Sparsifiers

that work on directed graphs are applied directly.

As illustrated in Figure 4.11a, ER-unweighted and ER-weighted demonstrate high precision

and consistency at various prune rates. On all web networks (web-NotreDame, web-BerkStan,

web-Google, web-Stanford), the performance of ER remains similar in that precision is almost

constant at different prune rates. However, ER does not always achieve the best performance

at low prune rates. For some graphs, the precision of ER remains constant but at a lower

level. This can be due to the symmetrizing process altering the original graph’s information.

The more symmetrical the original graph is, the less influence will be introduced. K-Neighbor

70

0.2 0.4 0.6 0.8
Prune Rate

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

RN
KN
LD
RD
GS
SCAN
ER-w
ER-uw

(a) PageRank Centrality on web-Google

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

RN
KN
LD
RD
GS
SCAN
ER-w
ER-uw

(b) PageRank Centrality on ego-Facebook

Figure 4.11: PageRank centrality. Higher precision is better. (a) PageRank centrality on
web-Google. K-Neighbor and Random perform the best at a low prune rate, ER-weighted
and ER-unweighted perform the best at a high prune rate. Local Degree, G-Spar , and SCAN
do not perform well. (b) PageRank centrality on ego-Facebook. Rank Degree has the best
performance. G-Spar and SCAN underperform.

also shows good performance at low prune rates. In contrast, G-Spar , SCAN , and Local

Degree fail to preserve PageRank effectively.

Figure 4.11b reveals ER sparsifier’s performance on unweighted graphs, using ego-Facebook

as an example. Rank Degree, Local Degree, Random, K-Neighbor , ER-unweighted , and

ER-weighted all exhibit similar performance in preserving PageRank. G-Spar and SCAN

continue to underperform. In comparison to directed graphs, ER no longer exhibits almost

constant precision at varying prune rates on undirected graphs. Rank Degree and K-Neighbor

consistently perform well on both directed and undirected graphs. Local Degree displays a

71

significant discrepancy in performance between directed and undirected graphs, excelling in

undirected graphs but consistently underperforming in directed ones. G-Spar and SCAN

show poor performance consistently.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Prune Rate

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

M
ea

n
S

tre
tc

h
Fa

ct
or RN

KN
FF
ER-w
ER-uw

Figure 4.12: Adjusted Mean Stretch Factor for min-cut/max-flow with the constraint of
acceptable unreachable ratio on ca-HepPh. Closer to 1 is better. ER-weighted has the best
performance.

Min-cut/Max-flow. Figure 4.12 presents the mean stretch factor on ca-HepPh, with the

constraint that the unreachable ratio remains < 20% higher than in the original graph. A mean

stretch factor closer to 1 means better performance. ER-weighted shows the best performance.

This can be attributed to ER being a spectral sparsifier, which preserves the spectral properties

of graphs [132]. Min-cut/max-flow methods are also closely related to the graph spectrum.

Flow-based graph partitioning [112] employs the Fiedler vector [61] (eigenvector corresponding

to the second smallest eigenvalue of the graph Laplacian). One can intuitively think of ER

as retaining high-resistance (low-redundant) edges in the graph, typically found in the

critical (narrowest) section of the max-flow problem. ER-weighted significantly outperforms

its unweighted counterpart ER-unweighted , as ER-weighted effectively compensates for the

weights of other edges when removing edges. K-Neighbor and Forest Fire show good empirical

performance as well. In contrast, G-Spar and SCAN underperform, and other sparsifiers

exhibit similarly mediocre results. The outcomes for min-cut/max-flow are consistent across

graphs, with ER-weighted as the top performer, followed by K-Neighbor and Forest Fire.

GNN. Figures 4.13a and 4.13b show the performance of sparsifiers on two distinct GNN

72

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.73

0.74

0.75

0.76

0.77

0.78

0.79

AU
R

O
C

RN
LD
RD
GS
LSim
SCAN

(a) GraphSAGE comparison of different sparsifiers on ogbn-
proteins

0.2 0.4 0.6 0.8
Prune Rate

0.910
0.915
0.920
0.925
0.930
0.935
0.940
0.945

A
cc

ur
ac

y
(%

)

RN
LD
RD
FF
GS
SCAN

(b) ClusterGCN comparison of different sparsifiers on Reddit

Figure 4.13: GNN comparison of different sparsifiers. Higher AUROC and accuracy are
better. The green line represents the inference results on the model trained by the full graph.
The red line represents the inference results on the model trained with no graph (MLP only).
(a) is evaluated with the GraphSAGE on ogbn-proteins. (b) is evaluated with the ClusterGCN
on Reddit.

models. GNN performance is measured using AUROC and vertex classification accuracy.

The green dashed line represents performance on the full graph, while the red dashed line

represents performance on the empty graph (a graph with no edges). I include the empty

graph to demonstrate the performance of GNN models based solely on vertex features without

any graph structural information. On the GraphSAGE model, Random and Local Similarity

perform the best; G-Spar and SCAN perform well at low prune rates but deteriorate rapidly

at higher rates. However, on the CluterGCN model, G-Spar and SCAN perform well at all

prune rates. Local Degree and Rank Degree consistently underperform compared to other

sparsifiers on both models. Due to the complexity of GNN algorithms, it is challenging to

73

draw straightforward conclusions. Overall, the performance of sparsifiers on GNNs differs

from model to model, which may be due to the inherent characteristics of GNN workloads.

4.3.6 Sparsification Time

0.1 0.5 0.9
Prune Rate

101

102

Ti
m

e
(s

)
RN
KN
LS
GS
LD
SCAN
LSim
FF
RD
ER

Figure 4.14: Sparsification time comparison on ogbn-proteins

Figure 4.14 shows the sparsification time of different sparsifiers at different prune levels.

For all sparsifiers, sparsification time decreases as the prune rate increases; this is expected

because the higher the prune rate, the fewer edges need to be picked. Across sparsifiers,

the sparsification time is also different. Random and K-Neighbor are the sparsifiers with

the lowest overhead due to their low algorithmic complexity. L-Spar , G-Spar , Local Degree,

SCAN , Local Similarity , Forest Fire, and Rank Degree show similar latency. ER is the

most complex algorithm. In the figure, the time for ER is only for sampling. I do not

include the computation time of the effective resistance because it is a one-time cost. The

computation of effective resistance takes 990 seconds for ogbn-proteins. And the execution

time of ER is approximately an order of magnitude higher than that of other sparsifiers.

However, depending on the application, a high-cost sparsifier like ER can still be useful if it

preserves the desired graph properties and the sparsification overhead is less than the time

that can be saved in performing the downstream task on the sparsified graph.

74

4.3.7 Summary of Results and Insights

Overall, The performance of all sparsifiers degrades as the prune rate increases. Usually, I

observe that the relative performance of sparsifiers is consistent across prune rates, meaning

superior sparsifiers at low prune rates will remain superior at high prune rates, and the

performance gap between the superiors and inferiors will be larger. On some occasions, the

performance of a sparsifier has an elbow point, beyond which the performance drops sharply.

This is because some sparsifiers cannot maintain certain properties beyond the elbow prune

rate. For example, in figure 4.6, the performance of Local Degree dropped abruptly when

increasing the prune rate from 0.8 to 0.9 because the number of edges is so low that it cannot

maintain the graph connectivity anymore.

To make sparsification effective, the selection of the sparsification algorithm should preserve

the graph property/properties on which the downstream application is based. I summarize

what each sparsifier preserves as below.

• Random : preserves relative (distribution-based or ranking-based) properties, for

example, degree distribution and top centrality rankings. It struggles to preserve

absolute (valued-based) properties, such as the number of communities, clustering

coefficient, and min-cut/max-flow.

• K-Neighbor , Spanning Forest , and t-Spanners: preserves graph connectivity;

keeps pair unreachable ratio and vertex isolated ratio low.

• Rank Degree and Local Degree : preserves graph connectivity and edges to high-

degree vertices (hub vertices). Perform well on distance metrics (APSP, eccentricity,

diameter) and centrality metrics.

• Forest Fire : simulates the evolution of graphs and does not strictly stick to the

original graph. Empirically, it does not excel at any of the metrics evaluated.

75

• G-Spar and SCAN : Empirically perform well in preserving ClusterGCN accuracy.

• L-Spar and Local Similarity : preserves the edge to similar vertices, thus preserving

clustering similarity.

• ER: preserves the spectral properties of the graph, specifically the quadratic form of

the graph Laplacian. It performs well in preserving min-cut/max-flow results.

4.4 Related Work

ML-based sparsifiers are a group of sparsifiers that use machine learning-related techniques

to sparsify graphs. SparRL [146] proposes a graph sparsification framework enabled by

deep reinforcement learning. NeuralSparse [159] presents a supervised graph sparsification

technique to improve performance in graph neural networks (GNN). Instead of focusing

on saving execution time by performing graph sparsification, NeuralSparse aims to remove

task-irrelevant edges from the graph, thus improving the accuracy of the downstream GNNs.

DropEdge [123] presents a method very close to the random sparsifier but samples a random

set of edges for each training epoch in a graph convolutional network (GCN); the goal is both

to reduce message passing overhead and reduce over-fitting with the full graph input.

4.5 Conclusion

This study provides a comprehensive evaluation of 12 graph sparsification algorithms, analyz-

ing their performance in preserving 16 essential graph metrics across 14 real-world graphs with

diverse characteristics. The findings revealed that no single sparsifier excels in preserving all

graph properties, and it is important to select appropriate sparsification algorithms based on

the downstream task. This study contributes to the broader understanding of graph sparsifi-

cation algorithms, and I provided insights to guide future work in effectively integrating graph

sparsification into graph algorithms to optimize computational efficiency without significantly

compromising output quality. New applications can be broken down into one or more graph

76

properties and sparsification algorithms can be chosen with the heuristic elaborated in this

work. The open-source framework implemented the 12 sparsification algorithms and 16 graph

properties evaluated in this work and provides an easy-to-use interface to bridge the two parts.

The framework offers a valuable resource for ongoing evaluations of emerging sparsification

algorithms, graph metrics, and growing graph data.

77

CHAPTER 5

A Power Efficient GCN Accelerator with

Multiple Dataflows

With the rapid development of deep learning in the last decade, neural networks are now

widely adopted in many applications such as image recognition [88], object detection [121],

and machine translation [28]. However, traditional neural networks are limited to handling

Euclidean data [70] such as one-dimensional (1D) text streams and two-dimensional (2D)

images, and do not generalize well on non-Euclidean data such as graphs [126] and mani-

folds [44]. Graph Neural Networks (GNNs) take a further step to explore graph-structured

data. Compared to Euclidean data, graphs have better expressiveness so that GNNs can

learn from the latent information of nodes and the connections between nodes. This extends

the application scope of deep learning to a broader range of applications [161, 138] such as

natural science [31].

Among different types of GNNs, Graph Convolutional Networks (GCN) is one of the most

prominent algorithms [86]. Motivated by Convolutional Neural Networks (CNNs), GCNs

generalize convolution to graph-structured data. GCN solves CNN’s limitation of only being

applicable to regular Euclidean data [161]. GCN is composed of two phases - aggregation

and combination. Aggregation collects information from neighboring nodes and edges. It

works on the input graph and often suffers from irregular memory accesses. Combination

uses multi-layer perceptron (MLP) to further process the aggregated results by multiplying

78

them with the trained weight matrices, which have regular memory accesses. GCN has many

variations [162, 74, 47], and has developed into a big algorithm family.

Due to the inherent irregular memory accesses in GCNs, CPUs and GPUs cannot make

good use of their massive computing resources. Thus, several works are proposed to enhance

resource utilization. HyGCN [152] uses dedicated processing engines for the aggregation

and combination phases to alleviate the memory irregularity in the aggregation phase while

exploiting the regularity in the combination phase. EnGN [94] applies edge reorganization to

compress the sparse adjacency matrix and uses a degree-aware vertex cache to store hot nodes.

AWB-GCN [67] observes that real-world graph datasets have power-law distributions, and it

optimizes Processing Elements’ (PE) utilization by performing workload balancing among

PEs. ReGNN [45] dynamically computes and reuses the aggregated features of redundant

neighbor sets to reduce memory accesses. GCoD [155] and I-GCN [68] try to improve graph

regularity by rearranging the adjacency matrix permutation.

Although prior works performed various optimizations to enhance resource utilization,

they use a fixed dataflow and are not flexible enough to run different GCNs efficiently. Firstly,

real-world datasets span a wide range of sizes and densities. They require different aggregation

dataflows based on the input dataset characteristics. Secondly, the order of aggregation and

combination phases can be altered when the aggregation function is linear (see §5.1). While

this results in better performance, the order must be respected with non-linear aggregation

functions. Thus, it is important to support different dataflows and orderings to achieve both

efficiency and flexibility.

In this paper, I make the following contributions:

• I perform quantitative and qualitative analysis on three widely used GCN algorithms:

vanilla GCN, GS-mean, and GS-max with five real-world datasets. I show that the

GCN algorithms and input dataset characteristics affect the choice of phase ordering

and dataflow for the best performance.

79

• I propose PEDAL, an accelerator for GCN inference. PEDAL features three dataflows

and supports both orderings of the aggregation and combination phases, achieving both

efficiency and flexibility.

• I train a decision tree with 400 synthetic datasets to automatically and accurately

choose the best dataflow and phase ordering for a GCN algorithm.

• I evaluate the performance of PEDAL using a cycle-accurate simulator and measure

its power and area using RTL synthesis. I show PEDAL achieves 144.5×, 9.36×, and

2.55× speedup compared to CPU, GPU, and HyGCN, and also 8856×, 1606×, 8.4×

and 1.78× better power efficiency compared to CPU, GPU, HyGCN, and EnGN.

To the best of my knowledge, this is the first work that explores different dataflows

and execution orders for the GCN workload and exploits this knowledge to choose the best

dataflow according to the input graph and GCN algorithm.

5.1 Background

GCN uses a convolutional layer to collect information for training and inference. While CNN

performs convolution on Euclidean data, GCN takes a graph (non-Euclidean data) as the

input. The input graph’s nodes (or edges) have a vector of features containing information

for training and inference. For example, in a social network, each node represents a user with

features like age, gender, etc [83].

Unlike the Euclidean data, where neighbors are spatially close in the memory (multi-

dimensional matrices), neighbors of graph-structured data are located apart. This results in

irregular memory accesses and imposes new challenges on the processors. This section gives

a brief background on GCN. Table 5.1 lists the notations and acronyms used in this paper.

80

Category
Notation

& Acronyms
Note

Dimension
N Number of nodes in the graph
F1 The feature dimension for the 1st layer
F2 The feature dimension for the 2nd layer

Matrix
A Adjacency matrix, dimension N x N
X Feature matrix, dimension N x F1, each row is a Feature vector

(transposed) for the corresponding node.
W Weight matrix, dimension F1 x F2

Acronyms

AC Short for Aggregation+Combination order
CA short for Combination+Aggregation order
IP-AC Short for Inner-Product, AC order dataflow
IP-CA Short for Inner-Product, CA order dataflow
RW-AC Short for Row-Wise, AC order dataflow
RW-CA Short for Row-Wise, CA order dataflow

Others
N(v) Neighbors of node v
d(M) density of matrix M
NNZ(M) number of non-zeroes of matrix M

Table 5.1: Notation and acronyms used in this paper

5.1.1 GCN Model

A GCN is composed of multiple layers. In each layer, feature information from the neighbors

is aggregated (aggregation phase) and multiplied by a weight matrix (combination phase)

and becomes the feature information for the next layer. The aggregation function can be sum,

mean, max, min, Long Short Term Memory (LSTM), or other more complicated functions.

The combination phase uses an MLP layer with a trainable weight matrix to transform the

aggregated features and reduce the dimension of the output features.

Each layer in GCN propagates node or edge information to its one-hop neighborhood.

Thus, an N-layer network effectively propagates features to its N-hop neighbors. Usually, a

couple of layers is enough as the information from closer neighbors is more important than

remote ones. Figure 5.1 shows an example of a vanilla GCN layer. Other variances of GCN

algorithms have a similar model but with different aggregation functions.

81

1

5

4

6

3

2

7

1

5

4

6

3

2

7

Input Graph Aggregation

1

5

4

6

3

2

7

Combination

x

Weight

Figure 5.1: An example of the Vanilla GCN layer with N=7 nodes, and F1=4 and F2=2
features. White cells are zeros. A self-loop retains the feature vector of the node for
aggregation.

5.1.2 Rich Diversity in GCN Models

I observe that state-of-the-art GCN models and popular input datasets come with diverse

aggregation functions and input feature densities. An efficient GCN processor must be flexible

enough to exploit different characteristics.

Table 5.2 shows the aggregation and combination functions of the three GCN models used

in this work. I call the original GCN proposed in [86] vanilla GCN. Vanilla GCN takes the

mean value of all neighboring nodes’ features and multiplies the aggregated results with a

weight matrix through an MLP layer. GraphSAGE [74] introduced neighbor sampling to

vanilla GCN. GS-mean and GS-max are two variations of GraphSAGE that use mean and

max for aggregation functions, respectively. In this work, I use a sampling number of 25 to

be consistent with the original GraphSAGE algorithm [74].

Algorithm Aggregation Combination

Vanilla GCN [86] B = mean(N(H l)) X = ReLU(BW)
GS-mean [74] B = mean(N(H l)) σ(Wl · Concat(B, hl))
GS-max [74] B = maxj∈N(hl)σ(W 1

l · hl
j) σ(W 2

l · Concat(B, hl))

Table 5.2: Aggregation and combination operations of GCN models [23].

I observe a variety of input datasets with different input sizes and feature matrix densities.

82

Table 5.3 shows the information of these datasets. Cora and CiteSeer have relatively small

input graphs with a sparse feature matrix. PubMed has a medium-sized input graph with a

10% dense feature matrix, and Reddit and Ogbn-products have a large input graph with a

dense matrix.

Dataset Name #Vertices #Edges F1 d(X) X size

Cora (CR) [86] 2708 10566 1433 1.27% 385KB
CiteSeer (CS) [86] 3327 9104 3703 0.85% 820KB
PubMed (PB) [86] 19717 88648 500 10% 7.5MB
Reddit (RD) [74] 232965 114.6M 602 100% 535MB
Ogbn-Prod (OP) [75] 2449029 123.7M 100 99% 925MB

Table 5.3: Datasets information. All datasets contain a single graph; all graphs are unweighted,
undirected, and symmetrical. Non-zeros in the feature matrix are stored in 32-bit fixed point.

5.1.3 Phase Orderings

The original GCN model performs the aggregation phase before the combination phase. This

is similar to CNNs, where convolution is performed before feeding the results to fully connected

layers. However, prior works [67, 94] have observed that reordering the phases - performing

combination before aggregation - can significantly reduce the operation count. This is because

the combination reduces the feature dimension, and by executing the combination phase

first, the matrix multiplication in the aggregation is performed on a smaller dimension. In

this work, I refer to the original order of performing Aggregation phase before Combination

phase as the AC order and the reverse order as the CA order.

Figure 5.2 shows the total number of arithmetic operations for AC order and CA order

for vanilla GCN and GraphSAGE with different datasets. On average, CA order achieves

93% operation count reduction for GCN and GS-mean. CA order does not apply to GS-max,

which uses a non-linear function for aggregation. Lower operation count makes CA order

preferable. However, it is only applicable when the alternation of the order does not affect

the correctness of the output.

83

Figure 5.2: Operation count for vanilla GCN, GS-mean, and GS-max models in AC and CA
orders. CA order does not apply to GS-max.

To ensure correctness, the aggregation function must be linear, meaning that Agg(a, b) ×

c == Agg(a× c, b× c), where ×c is the combination operation. For example, addition and

mean functions are linear operations because (a + b) × c == (a× c + b× c), while max and

min functions are not linear because max(a, b) × c! = max(a× c, b× c).

5.1.4 Aggregation Dataflow

The aggregation phase is essentially the multiplication of the adjacency matrix and the feature

matrix. There are three widely used matrix multiplication methods: inner-product (IP),

outer-product (OP), and row-wise (RW) as the candidates. Figure 5.3 shows inner-product,

outer-product, and row-wise matrix-matrix multiplication.

Inner-product performs element-wise operation with a row and a column of two matrices

on matching indices. It exploits output data reuse because each output is written only once,

but suffers from bad input reuse due to repeated reading of the second matrix for each row

in the first matrix. Besides, for very sparse matrices, the odds of having matching indices are

very low and can become a major overhead.

Outer-product performs pair-wise multiplication with a column and a row of two matrices

and generates a partial matrix of the same size as the final result. Outer-product enjoys input

data reuse because both input matrices are read only once, but it generates N partial result

matrices and needs element-wise merging of all the partial matrices to get the final result.

84

x

x

x

(a) Inner Product

(b) Outer Product

(c) Row-wise

Figure 5.3: Inner product, outer product, and row-wise dataflows.

Row-wise takes a row from the first matrix, uses its indices to retrieve the corresponding

rows from the second matrix, and reduces multiple rows to one using the aggregation function.

Row-wise has good output data reuse and avoids the index matching overhead in the inner-

product. The downside of row-wise is bad input data reuse as the second matrix will be

repetitively read, and its access pattern depends on the first matrix, causing irregular memory

accesses.

Out of the three aggregation dataflows, outer-product is unsuitable as it requires merging

partial results to get final results, which impedes the pipelining of the aggregation and

combination phases. The choice between inner-product and row-wise is explained in §5.2.3.

General-purpose architectures are ill-suited for efficiently executing GCN workloads, and

prior accelerators cannot adapt to a large design space of GCN workloads. Therefore,

designing an accelerator architecture that can support diverse GCN models, different phase

85

orderings, and aggregation dataflows is crucial to optimize performance and power efficiency.

5.2 Proposed Design

5.2.1 PEDAL Architecture

In this section, I present the architecture design of PEDAL.

Top-level. Figure 5.4(a) shows the top-level PEDAL architecture. PEDAL has two types

of Processing Elements (PEs) - Aggregation Processing Elements (APEs) for aggregation

and MAC Processing Elements (MPEs) for combination. PEDAL has 32 APEs and 16 MPEs,

an 8 MB feature buffer, a scheduler, and a backend HBM memory system. APEs and MPEs

are connected to the scheduler, which controls the task assignment and intermediate result

movement among APEs and MPEs. The feature buffer is connected to all APEs. It has

32 banks and can be used as a user-managed scratchpad or a user-transparent cache. The

scheduler has a 2 MB edge buffer and a 512 KB partial result buffer. Each MPE has a 32 KB

weight buffer. All MPEs, the scheduler, and the feature buffer are connected to the backend

HBM memory system.

APE. APEs are used to execute aggregation operations. Figure 5.4(c) shows the archi-

tecture of an APE. It has a task queue to receive tasks from the scheduler, a Finite-State

Machine (FSM) controller to execute the tasks, an index matcher that matches row indices

with column indices for the inner product, and an accumulator and a comparator. In this

work, the computing units in APEs are simplified to only an adder and a comparator for

addition and max/min operations. This minimizes the area and power consumption while

allowing APEs to perform a handful of the most popular algorithms like GCN, GS-mean, and

GS-max. Other computing units can be added to APEs if desired to enable other operations.

Index matcher. The index matcher finds the intersection of two sorted arrays. It keeps

two circular queues of 32 Column and Row indexes. A naive implementation compares the

top element of queues and returns them if they are equal. Otherwise, it pops the smaller one.

86

Task QueueFSM
Cntlr

Col
indices

Row
indices

>
>

+
Col
Data

Partial
result

Fe
at
ur
e

Bu
ffe

r

Sc
he

du
le
r

Scheduler

Task
Queue

FSM
Cntlr

MAC MAC MACMAC…

+ + + + + + + + + + + + + +

Weight Buffer

Scheduler HBM
APE

APE

APE

APE

…

MPE

MPE

MPE

MPE

…

Sc
he

du
le
r

HBM

Fe
at
ur
e
Bu

ffe
r/
Ca
ch
e

Partial Result Buffer Edge Buffer

busy assign to row# wait dispatched Cntdown

0 Y APE 8 49 ‐ N 1

1 N All MPE 18 #0 Y 16

HBM

AP
E/
M
PE

AP
E/
M
PE

AP
E/
M
PE

(c) APE

(a) Top‐level (b) MPE

(d) Scheduler

Index
matcher

…

Scheduler

ReLU
units

+ + + + + +
+

Figure 5.4: PEDAL architecture. (a) is the top-level architecture, (c), (b), and (d) are the
details inside APE, MPE, and the scheduler module, respectively. The blue lines in the
figures are the data path, and the orange lines are the control path.

In the worst case, this implementation needs to pop all elements of the queues sequentially.

To decrease this overhead, the index matcher is equipped with 2×8 comparators. They

compare the top elements with the 8 top indices of the other queues. In one cycle, the index

matcher pops as many indexes from one queue as its top element becomes smaller than or

equal to the other. Compared to the naive design, this design increases the performance by

3.97× while only adding 6% area overhead for 16 parallel comparators.

MPE. MPEs are used to execute the combination phase, which is the matrix multiplication

of the feature and the weight matrices. Figure 5.4(b) shows the architecture of an MPE.

It contains a task queue that receives jobs from the scheduler and an FSM Controller for

controlling the execution; instead of accessing a unified weight buffer for all MPEs, each

87

MPE has a private weight buffer. The columns of the weight matrix are evenly distributed

to MPEs, and each MPE will compute with the assigned portion of the weight matrix. Each

MPE has 64 Multiply-Accumulate (MAC) units and a hierarchical adder tree with 63 adders

to reduce the MAC results. Finally, the result is sent back to the partial result buffer in the

scheduler.

Scheduler. The scheduler is responsible for assigning tasks to APEs and MPEs and

keeping track of the status of each task. For example, tasks assigned to multiple APEs or MPEs

can retire only when all PEs finish. The scheduler also monitors the dependencies between

aggregation and combination phases. It only dispatches tasks that have no outstanding

dependencies. Finally, the scheduler takes care of the data movement between APEs and

MPEs when the results of one phase are needed in another phase. Figure 5.4(d) shows the

architecture of the scheduler. It has an edge buffer for the adjacency matrix, a partial result

buffer for the intermediate results from APEs and MPEs, and a schedule table that keeps

track of the status of each task.

5.2.2 PEDAL Dataflows

Decoupling Aggregation and MAC PEs enables PEDAL to support diverse dataflows. This

work features two ways of performing the aggregation phase: Inner-product (IP) and Row-

Wise (RW), as well as two different computation orders: AC order and CA order as discussed

in § 5.1. It gives us four different dataflows, namely IP-AC, IP-CA, RW-AC, and RW-CA.

The four dataflows are described in detail below:

IP-AC. In IP-AC, the feature matrix is assigned to APEs column-wisely. Each APE is

equipped with an equal-sized portion of the feature buffer (256KB). When the feature matrix

is too big to be loaded into the feature buffer, it will be split into chunks of columns, and

PEDAL loads the next chunk once the previous one is done. I assign as many columns as

possible to fill up the feature buffer of APEs, eliminating workload imbalance from uneven

distribution of non-zeros. The weight matrix is dense, so I assign an equal number of columns

88

to each MPE.

Each row of the adjacency matrix is an aggregation task, and each row of the aggregated

feature matrix is a combination task. The scheduler is responsible for scheduling, dispatching,

tracking, and retiring tasks. Each aggregation task is broadcast to all APEs, and each APE

will perform aggregation on the adjacency matrix row with the assigned feature matrix

columns using inner-product. Once an APE finishes a task, it will send the task id and partial

results to the scheduler. When all APEs finish a task, the scheduler retires the aggregation task

and dispatches the corresponding combination task to MPEs. MPEs perform inner-product

with the rows of the aggregated feature matrix and columns of the weight matrix.

IP-CA. IP-CA reverses the order of aggregation and combination to reduce the operation

count. However, performing in CA order leads to a crucial issue: the combination phase

generates the intermediate matrix row by row, while aggregation in the inner-product requires

all rows indicated by the adjacency matrix at once, which will not be available at the time

needed. Thus, I forfeit the IP-CA dataflow as it impedes the pipelining of aggregation and

combination and hurts the performance.

RW-AC. RW-AC is an alternative way of performing GCN algorithms in AC order.

In this dataflow, the feature buffer is used as a unified cache that is transparent to users.

Similar to IP-AC, each row of the adjacency matrix is an aggregation task, but instead

of broadcasting to all APEs, row-wise assigns each task to one APE. The APE retrieves

the rows from the feature matrix based on the column indices of non-zeros in the adjacency

matrix row. Each APE works independently from the other APEs and receives a new task

upon finishing one, thus dynamically achieving workload balancing. The combination phase

is the same as in IP-AC and is pipelined with the aggregation phase.

RW-CA. RW-CA performs the combination phase first to shrink the feature dimension

and then performs the aggregation in a row-wise manner. While IP-AC and RW-AC

dataflow pull the neighboring nodes’ features, RW-CA pushes the feature of a node to all its

89

neighbors. This is because the combination phase generates the intermediate feature matrix

row by row, and it is not feasible to pull features from neighbors as they may not be ready

yet. In RW-CA, the combination is performed the same way as in IP-AC and RW-AC.

When a row of the intermediate feature matrix is generated, it is broadcast to all APEs.

Each row of the adjacency matrix is an aggregation task, and it is evenly split into slices

and assigned to all APEs. Each APE aggregates the feature to the slice assigned, so there

is no memory contention across APEs. The feature buffer is evenly allocated to each APE

(256KB) and used as a cache.

5.2.3 Choosing the Right Dataflow

CR CS PB RD OP
Vanilla GCN

CR CS PB RD OP
GS-mean

CR CS PB RD OP
GS-max

Workload

1051061071081091010

Cy
cl

es

IP-AC RW-AC RW-CA

Figure 5.5: Performance of IP-AC, RW-AC, and RW-CA.

Figure 5.5 shows the performance of each dataflow for vanilla GCN, GS-mean, and GS-

max with five real-world datasets. The choice of dataflow (IP-AC, RW-AC, or RW-CA)

significantly affects the execution time. The best dataflow must be picked for each GCN

algorithm and dataset pair. A simple approach is to find the number of arithmetic operations

and compare them for different dataflows. However, this approach does not take memory

stalls into account. For example, while the operation count of vanilla GCN and Reddit

dataset is the same for IP-AC and RW-AC dataflows, the high cache miss rate of RW-AC

dataflow results in a longer execution time compared to IP-AC. The simple approach chooses

the right dataflow in only 73% of the evaluated GCN model and input dataset pairs. A better

90

approach is needed to make educated decisions based on the dataset characteristics and the

GCN model. I use N, NNZ(A), NNZ(X), and F1 as dataset characteristics, which are the

input dataset metadata.

With the complexity of so many dataset parameters, GCN variances, and execution orders,

a decision tree is needed to choose the best dataflow. I created 400 synthetic datasets where

N ranges from 1K to 1M, NNZ(A) from 2K to 200M, F1 from 100 to 3K, and NNZ(X) from

1K to 3B. I pick these parameters because they reflect the sizes and densities of the input

graphs and input features. These ranges are large enough to cover all the real-world datasets

evaluated in this paper. Besides, the synthetic datasets are generated such that non-zeros

in adjacency matrices have power-law distribution, and non-zeros in feature matrices have

Gaussian distribution based on observations from the real-world datasets. I build a decision

tree using scikit-learn [115], which uses an optimized version of CART (Classification and

Regression Trees). I use the synthetic datasets to train the decision tree and use it to predict

the best dataflow on real-world datasets.

Compute Unit On-chip Memory Off-chip Memory Area(mm2) Power(W)

CPU 80 cores @ 2.1GHz 96MB 256 GB/s DDR4 - (14nm) 125
GPU 10496 Shading Units @ 1.4GHz 16.25MB 936.2 GB/s 628 (8nm) 350

HyGCN
16 SIMD cores @ 1GHz

22.1MB 256 GB/s HBM 7.8 (12nm) 6.7
and 32x128 systolic array

EnGN 128x16 arrays @ 1GHz 1.6MB 256 GB/s HBM 3.54 (14nm) 3.87
PEDAL 32 APEs and 16 MPEs @ 1GHz 11MB 256 GB/s HBM 4.05 (12nm) 2.04

Table 5.4: Architecture configuration comparison of CPU, GPU, HyGCN, EnGN, AWB-GCN
and PEDAL

5.3 Evaluation

5.3.1 Experimental Setup

Baseline. I evaluate the CPU performance on Intel Xeon Gold 6230 CPU, and GPU

performance on NVIDIA GPU with Ampere architecture. I implement the baseline on

the state-of-the-art PyTorch Geometric [60] library. I also compare PEDAL with two prior

GNN accelerators: HyGCN [152] and EnGN [94] using the reported performance numbers.

91

CR CS PB RD OP
Vanilla GCN

CR CS PB RD OP
GS-mean

CR CS PB RD OP
GS-max

Geo-
mean

Workload

10 1
100
101
102
103

Sp
ee

du
p

(x
) CPU GPU HyGCN EnGN

(a) Speedup.

CR CS PB RD OP
Vanilla GCN

CR CS PB RD OP
GS-mean

CR CS PB RD OP
GS-max

Geo-
mean

Workload

10 1100101102103104105

Po
w

er
 E

ff
ic

ie
nc

y
(x

)

CPU GPU HyGCN EnGN

(b) Power efficiency.

Figure 5.6: Speedup and power efficiency of PEDAL compared to CPU, GPU, HyGCN and
EnGN. Power efficiency is measured by power-delay product. × markers mean missing data
points due to GPU Out-Of-Memory or prior accelerators not reporting for some datasets or
not supporting some GCN models.

Table 5.4 shows the configurations of PEDAL and baseline architectures.

PEDAL simulation. I build a cycle-accurate simulator in Python and C++ to measure the

computation cycles of PEDAL. The simulator is event-based and controlled by a state machine

to enforce dependencies. The memory access trace is recorded and fed to Ramulator [84] for

memory access latency. Ramulator includes both cache and HBM memory as a hierarchical

memory system. I implement the design in RTL and use Design Compiler to synthesize

with a commercial 12nm CMOS library at 1GHz clock frequency. I use eDRAM for on-chip

memory of PEDAL, HyGCN, and EnGN, and analyze with CACTI [107].

GCN algorithms and datasets. I evaluate the vanilla GCN algorithm and two variations

of GraphSAGE: GS-mean and GS-max in this work. The details of the algorithms can be

92

found in Table 5.2. Table 5.3 shows the datasets used in this work. I cover graph size from

small to large, and with the feature matrix from sparse to dense to thoroughly compare

PEDAL and prior works. I use the same hidden dimension (128) as in HyGCN for layer 1.

5.3.2 Decision Tree Accuracy

I used 80% of the synthetic datasets to train the decision tree and test on the remaining 20%

and achieved 90% accuracy. Then, I apply the decision tree to the real-world datasets, and

it selects the best dataflow with 93.3% accuracy. The only mistake happens on the vanilla

GCN and OP dataset in which the mispredicted dataflow (IP-AC) is only 9% slower than

the best dataflow (RW-AC). I calculate the execution time ratio between the decision tree

selected dataflow and the best dataflow on the synthetic test set. The average ratio is 1.047,

meaning that the decision tree selected dataflow has an execution time expectation less than

5% higher than the best dataflow.

5.3.3 Speedup and Power Efficiency

Figure 5.6a shows the performance of PEDAL compared to CPU, GPU, and prior accelerators.

The best dataflow is used for each GCN algorithm and dataset pair.

On average, PEDAL outperforms CPU and GPU by 144.5× and 9.36×. Compared to prior

accelerators, despite having less computing resources, PEDAL achieves 2.55× speedup over

HyGCN. Compared to EnGN, PEDAL also supports non-linear aggregation functions (e.g.,

GS-max) while achieving similar performance for linear aggregation functions.

Compared to prior works, where thousands of PEs are used for better performance, PEDAL

uses only 32 APEs and 16 MPEs to achieve similar or better performance in most cases.

Figure 5.6b shows the power efficiency of PEDAL. Power efficiency is measured using the

power-delay product. On average, PEDAL achieves 8856×, 1606×, 8.4× and 1.78× better

power efficiency than CPU, GPU, HyGCN, and EnGN, respectively. PEDAL is conservative

on adding an excessive amount of PEs because a) too many APEs to access the feature

93

buffer will cause serialization issue, b) too many APEs will cause cache thrashing to the

capacity-limited feature buffer, c) an appropriate ratio of APEs and MPEs is important to

load balance between aggregation and combination. By employing a lower number of PEs,

PEDAL achieves lower power consumption while keeping a comparable performance, thus

having better power efficiency.

5.3.4 Power and Area Breakdown

Module Components Power Area

APE

Accumulator 0.2% 0.07%
Index Matcher 7.7% 1.80%

Controller 0.7% 0.20%
TaskQueue 1.04% 2.98%

MPE

Adder Tree 2.4% 6.42%
MAC 42.8% 11.41%

Controller 0.45% 0.31%
Weight Buffer 0.9% 12.91%
Task Queue 0.53% 1.48%

Feature Buffer Buffer 40% 49.93%

Scheduler

Partial Results 0.07% 0.40%
Edge Buffer 2.9% 11.83%
Controller 0.06% 0.07%

ReLU 0.15% 0.00%

Table 5.5: Power and Area breakdown

PEDAL has an average power consumption of 2.04W, which is 69.6% and 47.3% lower than

HyGCN and EnGN, respectively (Table 5.4). Compared to HyGCN with general-purpose

SIMD units, PEDAL customizes processing elements and requires less computing power.

Besides, the limited feature buffer size of EnGN increases the miss rate drastically for large

datasets, such as Reddit. This results in higher eDRAM power consumption compared to

PEDAL that uses 8MB of feature buffer. The total area of PEDAL is 4.05 mm2, which is

48.1% smaller than HyGCN and 14.4% higher than EnGN, respectively. Table 5.5 lists each

component’s power and area breakdown.

94

5.3.5 Discussion

PEDAL supports multiple dataflows and phase orderings. Figure 5.2 shows that operation

distributions vary in different dataflows, making either APEs or MPEs the bottleneck; solely

adding more resources to the architecture can only help certain dataflow but not all. Besides,

PEDAL also needs to support Row-Wise mode, where the feature buffer is used as a unified

cache. Adding too many APEs requires increasing the size of the feature buffer to ensure

access latency. Either of the solutions is too expensive for the potential performance gain of

this design.

5.4 Conclusion

In this work, I present PEDAL, a power-efficient accelerator for GCN inference supporting

multiple dataflows. To accommodate different input graph sizes and densities, as well as GCN

variants with different aggregation functions, PEDAL features multiple dataflows, namely IP-

AC, RW-AC, and RW-CA, to support performing GCN inference in both phase orderings

efficiently. I evaluate the performance of PEDAL using a cycle-accurate simulator and do

RTL synthesis to get power and area. PEDAL achieves 144.5×, 9.36×, and 2.55× speedup

compared to CPU, GPU, and HyGCN respectively, and 8856×, 1606×, 8.4× and 1.78×

better power efficiency compared to CPU, GPU, HyGCN and EnGN respectively.

95

CHAPTER 6

Conclusion And Future Work

Emerging applications are increasingly important parts of our life, and it is crucial to

improve their execution efficiency and scalability. This thesis focuses on video transcoding

and graph algorithms, performs hardware characterization to find the bottleneck, and uses

software-hardware co-design to improve their performance.

The graph is a data structure that can effectively model the complicated relationship

between entities. Graphs are widely used in everyday life and scientific research; for example,

social networks and road networks are represented using graphs, and molecules in chemistry

and biology, and particles in physics are also described using graphs. The inherent irregular

memory access pattern and the growing size of real-world graphs make it challenging to run

graph-based algorithms in today’s general-purpose hardware like CPUs and GPUs. It is

crucial to speed up the execution of graph algorithms through both software optimization

and hardware design.

This dissertation presented CPU characterization on video transcoding, revealing how

the bottlenecks change with respect to software parameters. Then, it presented a software

solution and a hardware design to speed up graph algorithms. On the software side, I used

graph sparsification to substitute the full graph with a much smaller sparsified graph to

achieve speedup. I comprehensively studied how different graph sparsification algorithms

perform in preserving graph properties. On the hardware side, I designed an accelerator

for GCNs, which supports multiple dataflows, achieving both flexibility and efficiency when

96

executing different GCNs and input graphs.

More specifically, first, I performed CPU characterization on video transcoding to under-

stand the hardware bottlenecks and how they change with different software parameters. The

characterization helps future hardware optimization for specific applications. Guided by the

characterization results, the work used Graphite, AutoFDO, and hardware-aware scheduler

and achieved an average speedup of 4.42%, 4.66%, and 3.72%, respectively.

Second, graph sparsification is used to substitute the full graph with a sparsified graph.

The sparsified graph has much fewer edges and, thus, is much smaller in size. A sparsified

graph is considered a good delegate of the full graph if the results of the downstream tasks are

close to that of the full graph. The lack of understanding of how different graph sparsification

algorithms affect different graph properties makes it hard to make an informed choice of

the appropriate sparsification algorithm. I conducted a comprehensive benchmark on 12

graph sparsification algorithms, explored their performance in preserving 16 essential graph

properties on 14 real-world graphs, and gave insights into how to choose the best sparsification

algorithm for different downstream tasks.

Last, I presented PEDAL, a power-efficient GCN accelerator. This work observed prior

accelerators only support one dataflow, which does not execute all GCNs at the best efficiency.

PEDAL proposed an accelerator that supports three dataflows, considering both efficiency

and flexibility. PEDAL also used a decision tree to automatically choose the best dataflow for

a given GCN model and input graph. PEDAL achieved an average speedup of 144.5×, 9.36×

and 2.55× compared to CPU, GPU and HyGCN, respectively, and achieved an average power

efficiency by 8856×, 1606×, 8.4×, and 1.78× compared to CPU, GPU, HyGCN, and EnGN,

respectively.

While the software and hardware solutions presented in this thesis significantly reduced

the amount of work and improved execution efficiency, there are further research directions

can be explored to speed up the graph algorithms even more.

97

Understanding the execution cost and bottleneck of graph sparsification. Chap-

ter 4 revealed the performance of 12 sparsification algorithms on preserving different graph

properties. However, when it comes to the cost of performing these sparsification algorithms,

it only briefly compared the cost using sparsification time. More benchmarking can be

performed to understand the execution time and memory footprint for each sparsification

algorithm and how they are related to the prune rates and input graph characteristics.

It is also important to know the sparsification overhead compared to the execution time

of the downstream tasks for the end-to-end speedup. Finally, there are opportunities to

develop dedicated hardware for some of the time-consuming but well-performed sparsification

algorithms and integrate it as part of the graph algorithm accelerator.

Support for more operations to extend the applicability to broader GNNs.

Chapter 5 presented an accelerator that supports multiple dataflows to achieve both execution

efficiency and flexibility. To achieve optimal power efficiency, the accelerator only included the

most popular operations. This limits the accelerator to certain types of Graph Convolutional

Networks, which is a subset of the Graph Neural Network family. More operations can

be added to the accelerator, extending it to more GNN models. The design can also be

modularized to quickly design an accelerator for a specific GNN model with minimal changes.

98

APPENDIX A

Pseudo Code for Sparsification Algorithms

This appendix provides pseudo-code to some of the sparsification algorithms as a supplement

to Chapter 4.

99

A.1 Rank Degree Sparsifier

Algorithm 1 Rank Degree sparsifier
1: procedure RankDegreeSparsifier(G)

2: Input: G: Graph to sparsify

3: Input: ρ: 0 < ρ ≤ 1 selects top ρ ∗#neighbors for each vertex

4: Output: H: Sparsified graph

5:

6: seeds = [u1, u2, ..., us] ▷ selects s vertices uniformly at random

7: VH = ∅, EH = ∅ ▷ initialize vertex and edge sets in H

8: while —VH— ¡ —VG— do

9: new seeds=∅

10: for all u ∈ seeds do

11: neighs=getNeighborsOf(u)

12: ranks = {} ▷ dictionary, key is vertex, value is degree

13: for all v ∈ neighs do

14: ranks[v] = getDegreeOf(v)

15: sort ranks by value

16: select top k=ρ×len(neighbors), v1, ..., vk

17: new seeds = new seeds
⋃

[v1, ..., vk]

18: EH = EH
⋃
[(u, v1), ..., (u, vk)]

19: seeds=new seeds

20: H = {V ertex(VG), Edge(EH)}

21: return H

100

A.2 Local Degree Sparsifier

Algorithm 2 Local degree score
1: procedure getEdgeScore(G)

2: Input: G: Graph to calculate edge scores

3: Output: Scores: An array of edge scores for each edge

4:

5: scores = [0, ..., 0] ▷ scores is an array of length #edges

6: for all vi ∈ V do ▷ iterate all vertex v in V

7: di = degree(vi)

8: neighbor degree = {} ▷ dictionary, key is edge id, value is degree

9: for all vj ∈ Neighbor(vi) do ▷ find degrees of all neighboring vertex

10: dj = degree(vj)

11: eid = eij.edgeID

12: neighbor degree[eid] = dj

13:

14: sort(neighbor degree) ▷ sort by degree

15:

16: last rank, last degree, num same = 0

17: neighbor rank = {} ▷ dictionary, key is edge id, value is rank

18: for all item ∈ neighbor degree do ▷ compute the rank of neighbors by degree

19: eid = item.key

20: dj = item.value

21: if dj == last degree then ▷ same rank for same degree

22: num same++

23: else

24: last rank += num same

25: num same = 1

26: last degree = dj

27: neighbor rank[eid] = lask rank

28:

29: for all item ∈ neighbor degree do

30: eid = item.key

31: rank = item.value

32: s = 1.0 - log(rank)/log(di)

33: // score for an edge can be updated multiple times, take the max score

34: scores[eid] = max(scores[eid], s)

35: return scores

101

A.3 t-Spanner

Algorithm 3 Greedy algorithm for t-spanner construction
1: procedure Construct t-spanner(G, t)

2: Input: G: Original graph

3: Input: t: stretch factor, must be an odd number ¿ 1

4: Output: H: t-spanner graph

5:

6: H ← (V ,∅) ▷ Init H to have the same set of vertices, and no edges

7: for all euv ∈ E in non-decreasing order do

8: if dH(u, v) > tw(u, v) then

9: add euv to H

10: return H

A.4 Forest Fire

The Forest Fire model can be described more formally as follows (modified from [90]):

1. A new vertex u chooses an existing vertex v uniformly at random, and forms an edge

to it.

2. Two random numbers x and y are generated geometrically distributed with means

p/(1 − p) and rp/(1 − rp), where p is the forward burning probability, and r is the

backward burning ratio.

3. Vertex v selects x outgoing edges and y incoming edges that are not visited yet, if there

are not enough unvisited edges, select all. For undirected edges, every edge can be

both an outgoing and incoming edge. Let w1,w2, ...,wx+y denote the other end of the

selected edges.

4. Vertex u forms edges to the w1,w1, ...,wx+y.

5. Repeat (3) and (4) recursively to each of the w1,w2, ...,wx+y, until no edge can be

added.

102

Algorithm 4 Forest Fire Score
1: procedure getEdgeScore(G)

2: Input: G: Graph to calculate edge scores

3: Input: bp: The probability a neighbor vertex is burnt, from 0.0 to 1.0

4: Input: targetBurnRatio: In total targetBurnRatio * m edges will be burnt

5: Output: Scores: An array of edge scores for each edge

6:

7: burnt count = 0 ▷ keep track of total number of burnt edges

8: scores = [0, ..., 0] ▷ scores is an array of length #edges

9: burnt = [0, ..., 0] ▷ burnt is an array of length #edges

10:

11: while burnt count ¡ targetBurnRatio * numberOfEdges(G) do

12: visited = [false, ..., false] ▷ visited is an array of length #vertices

13: vertexQ = [] ▷ a queue for vertex to be visited

14: vertexQ.add(randomVertex(G)) ▷ pick a random starting vertex

15:

16: while vertexQ is not empty do

17: u = vertexQ.pop()

18: visted[u.id] = True

19: neighs = getAllUnvisitedVertices()

20: while neighs is not empty do

21: r = randNum() ▷ r is a random float from 0.0 to 1.0

22: if r ≤ bp then

23: break ▷ decides to burn the vertex, not propagate further

24: v = pickRandom(neighs) ▷ pick a random vertex to propagate fire

25: remove(neighs, v) ▷ pick a random vertex to propagate fire

26: vertexQ.add(v)

27: eid = getEdgeID(u, v)

28: burnt count++

29: max burnt = max(burnt)

30: scores = burnt/max burnt ▷ normalize burnt count to be the scores

31: return scores

103

A.5 Similarity-based Sparsifiers

Algorithm 5 G-Spar
1: procedure G-Spar(G)

2: Input: G: Graph to calculate edge scores

3: Output: H: G-Spar sparsified graph

4:

5: scores = {} ▷ scores is a dictionary, key is edge id, value is edge score

6: for all e ∈ E do

7: eid = e.id

8: score = JaccardScore(e)

9: scores[eid] = score

10: sort scores by value

11: pick top s% edges to form H

12: return H

Algorithm 6 L-Spar
1: procedure L-Spar(G)

2: Input: G: Graph to calculate edge scores

3: Input: c: Exponent parameter

4: Output: H: L-Spar sparsified graph

5:

6: for all v ∈ V do

7: d = degreeOf(v)

8: E ′=getEdgesOf(v)

9: scores = {} ▷ scores is a dictionary, key is edge id, value is edge score

10: for all e ∈ E ′ do

11: eid = e.id

12: score = JaccardScore(e)

13: scores[eid] = score

14: sort scores by value

15: add top dc edges to H

16: return H

104

Algorithm 7 Edge Triangle Count
1: procedure EdgeTriangleCount(G)

2: Input: G: Graph to calculate triangle edge scores

3: Output: triangle count: Triangle count for each edge

4:

5: triangle count = [0, ..., 0] ▷ array of length #edges

6: incident triangle count = [None, ..., None] ▷ array of length #vertices

7:

8: for all u ∈ V do ▷ first vertex in triangle

9: for all v ∈ getNeighborsOf(u) do

10: incident triangle count[v] = 0 ▷ mark all neighboring vertices not None

11: for all v ∈ getNeighborsOf(u) do ▷ second vertex in triangle

12: for all w ∈ getNeighborsOf(w) do ▷ third vertex in triangle

13: if incident triangle count[w] is not None then ▷ triangle found

14: // count triangles to the vertices first, each triangle is counted 3 times

15: if u ≥ v then

16: incident triangle count[v]++

17: if u ≥ w then

18: incident triangle count[w]++

19:

20: // add local triangle count to global, reset local triangle count

21: for all v ∈ getNeighborsOf(u) do

22: eid = getEdgeId(u, v)

23: if incident triangle count[v] > 0 then

24: triangle count[eid]+=incident triangle count[v]

25: incident triangle count[v] = None

26: return triangle count

The Edge Triangle Count is not a standalone sparsification algorithm. It is listed here because

it is used to calculate the local similarity score and the SCAN structural similarity score.

105

Algorithm 8 Local similarity score
1: procedure LocalSimilarityScore(G)

2: Input: G: Graph to calculate triangle edge scores

3: Output: scores: Local similarity scores for each edge

4:

5: scores = [0, ..., 0] ▷ array of length #edges

6:

7: triangle count = EdgeTriangleCount(G)

8: for all u ∈ V do

9: neighbors sims = {} ▷ dictionary, key is edge id, value is similarity

10: du = getDegreeOf(u)

11: for all v ∈ getNeighborsOf(u) do

12: dv = getDegreeOf(v)

13: eid = getEdgeId(u, v)

14: sim = triangle count[eid]/(du+dv-triangle count[eid])

15: scores[eid] = max(scores[eid], sim)

16: return scores

Algorithm 9 SCAN Structural Similarity Score
1: procedure SCANStructuralSimilarityScore(G)

2: Input: G: Graph to calculate triangle edge scores

3: Output: scores: SCAN structural similarity scores for each edge

4:

5: scores = [0, ..., 0] ▷ array of length #edges

6:

7: triangle count = EdgeTriangleCount(G)

8: for all u ∈ V do

9: neighbors sims = {} ▷ dictionary, key is edge id, value is similarity

10: du = getDegreeOf(u)

11: for all v ∈ getNeighborsOf(u) do

12: dv = getDegreeOf(v)

13: eid = getEdgeId(u, v)

14: sim = (triangle count[eid]+1)/
√

(du + 1) ∗ (dv + 1)

15: scores[eid] = sim

16: return scores

106

A.6 Effective Resistance (ER) Sparsifier

I briefly summarize the derivation of the effective resistance. Interested readers should refer

to [132] for more details.

I first define the following notations:

R: real number.

G: Input Graph, in this write-up, G must be symmetrical (undirected).

|V|: Number of Vertices in G.

|E|: Number of Edges in G.

A: ∈ R|V|×|V|, Adjacency Matrix of G.

D: ∈ R|V|×|V|, Degree Matrix of G, where ith diagonal entry is the degree of ith vertex, if the

graph is weighted, then it’s the sum of all edge weights related to vertex i.

L: ∈ R|V|×|V|, Laplacian Matrix of G, L = D −A.

B: Incidence Matrix, ∈ R|E|×|V|. Each row in B represents an edge, where the head vertex is

-1, the tail vertex is 1, and all others are 0s. The head and tail of an undirected edge are

randomly assigned.

W : Weight Matrix, ∈ R|E|×|E|, is a diagonal matrix, and each diagonal entry represents an

edge weight. If the graph is unweighted, then W becomes an Identity Matrix I.

χu: A unit vector of length |V|, where only the uth element is 1, others are 0s.

Ruv: The effective resistance of edge uv.

The derivation of the effective resistance is as follows:

L = BTWB (proof omitted) (A.1a)

107

According to Kirchhoff’s law, the current flow in is

always the same as the current flow out of the vertex,

BT i = cext (A.1b)

According to Ohm’s law,

i = WBν (A.1c)

Combing eq. (A.1a), (A.1b), and (A.1c),

BTWBν = Lν = cext (A.1d)

Let L+ be the pseudo-inverse of L, because Laplacian

matrix is positive semi-definite, and doesn’t have an

inverse

ν = L+cext (A.1e)

Now set cext = χu−χv, then eq. (A.1e) can be written

as

ν = L+(χu − χv) (A.1f)

Multiply both sides by (χu − χv)T ,

(χu − χv)Tν = (χu − χv)TL+(χu − χv) (A.1g)

Notice that (χu − χv) is equivalent to the transpose of

ith row in B, denoted by B[i], thus,

B[i]Tν = B[i]L+B[i]T (A.1h)

108

Eq. (A.1h) applies to every i, thus can generalized to

BTν = BL+BT (A.1i)

The l.h.s. of eq. (A.1g) is the voltage difference between

u and v, which can be used to represent the effective

resistance of the edge connecting u and v. Thus, the

effective resistance is defined as

Ruv = (χu − χv)TL+(χu − χv)

= (χu − χv)TL+LL+(χu − χv)

= (χu − χv)TL+BTWBL+(χu − χv)

= ((χu − χv)TL+BTW 1/2)(W 1/2BL+(χu − χv))

= ||W 1/2BL+(χu − χv)||22

(A.1j)

109

APPENDIX B

Full Results for Sparsification Benchmark

I only showed a subset of the results in Chapter 4. This appendix presents the full results

generated in the sparsifiers benchmark. Each page shows one dataset, and the sub-captions

note which metric each subgraph measures. Some figures are missing, and there are three

possible reasons: 1) Some metrics are supported for directed graphs, they are Clustering F1

Similarity, Number of Communities, and Modularity; 2) Some experiments couldn’t finish

within 24 hours, especially on time-consuming metrics like Eigenvector Centrality and large

graphs; 3) Some experiments run out of memory and triggered OOM kill by the OS.

110

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8
Bh

at
ta

ch
ar

yy
a

Di
st

an
ce RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER

(a) Degree Distribution

0.2 0.4 0.6 0.8
Prune Rate

0

50

100

150

200

250

Di
am

et
er

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(b) Diameter

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Un
re

ac
ha

bl
e

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(c) Average SPSP Unreachable
Ratio

0.2 0.4 0.6 0.8
Prune Rate

2
4
6
8

10
12
14

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(d) SPSP Stretch Factor

0.2 0.4 0.6 0.8
Prune Rate

2
4
6
8

10
12
14

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(e) SPSP Stretch Factor with
Unreachable Ratio Constraint

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Iso
la

te
d

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(f) Vertex Isolated Ratio

0.2 0.4 0.6 0.8
Prune Rate

0

5

10

15

20

25

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(g) Eccentricity Stretch Factor

0.2 0.4 0.6 0.8
Prune Rate

0

5

10

15

20

25

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(h) Eccentricity Stretch Factor
with Isolated Ratio Constraint

0.2 0.4 0.6 0.8
Prune Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

M
ea

n
Cl

us
te

rin
g

Co
ef

f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(i) Mean Clustering Coefficient

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

Gl
ob

al
 C

lu
st

er
in

g
Co

ef
f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(j) Global Clustering Coeffi-
cient

0.2 0.4 0.6 0.8
Prune Rate

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

F1
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(k) Clustering F1 Similarity

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(l) Betweenness Centrality Pre-
cision

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(m) Closeness Centrality Preci-
sion

0.2 0.4 0.6 0.8
Prune Rate

0.96

0.98

1.00

1.02

1.04

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(n) Katz Centrality Precision

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(o) Eigenvector Centrality Pre-
cision

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(p) PageRank Precision

0.2 0.4 0.6 0.8
Prune Rate

101

102

103

Co

m
m

un
iti

es

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(q) Number of Communities

0.2 0.4 0.6 0.8
Prune Rate

0.3
0.4
0.5
0.6
0.7
0.8
0.9

M
od

ul
ar

ity

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(r) Modularity

0.2 0.4 0.6 0.8
Prune Rate

0.2

0.4

0.6

0.8

1.0

Qu
ad

ra
tic

 F
or

m
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(s) Quadratic Form Similarity

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(t) Max Flow Stretch Factor

0.2 0.4 0.6 0.8
Prune Rate

0.2

0.4

0.6

0.8

1.0

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(u) Max Flow Stretch Factor
with Unreachable Ratio Con-
straint

Figure B.1: Metric Evaluation on ego-Facebook

111

0.2 0.4 0.6 0.8
Prune Rate

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Bh
at

ta
ch

ar
yy

a
Di

st
an

ce RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER

(a) Degree Distribution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0
50

100
150
200
250
300

Di
am

et
er

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(b) Diameter

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.2

0.4

0.6

0.8

1.0

Un
re

ac
ha

bl
e

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(c) Average SPSP Unreachable
Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

2

4

6

8

10

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(d) SPSP Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

2

4

6

8

10

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(e) SPSP Stretch Factor with
Unreachable Ratio Constraint

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.2

0.4

0.6

0.8

1.0

Iso
la

te
d

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(f) Vertex Isolated Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(g) Eccentricity Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(h) Eccentricity Stretch Factor
with Isolated Ratio Constraint

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

M
ea

n
Cl

us
te

rin
g

Co
ef

f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(i) Mean Clustering Coefficient

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.1

0.2

0.3

0.4

Gl
ob

al
 C

lu
st

er
in

g
Co

ef
f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(j) Global Clustering Coeffi-
cient (k) Clustering F1 Similarity

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(l) Betweenness Centrality Pre-
cision

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(m) Closeness Centrality Preci-
sion

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(n) Katz Centrality Precision (o) Eigenvector Centrality Pre-
cision

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(p) PageRank Precision

(q) Number of Communities (r) Modularity

0.2 0.4 0.6 0.8
Prune Rate

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Qu
ad

ra
tic

 F
or

m
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(s) Quadratic Form Similarity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.5

1.0

1.5

2.0

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(t) Max Flow Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(u) Max Flow Stretch Factor
with Unreachable Ratio Con-
straint

Figure B.2: Metric Evaluation on ego-Twitter

112

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0
Bh

at
ta

ch
ar

yy
a

Di
st

an
ce RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER

(a) Degree Distribution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0
50

100
150
200
250
300

Di
am

et
er

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(b) Diameter

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Un
re

ac
ha

bl
e

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(c) Average SPSP Unreachable
Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

2
4
6
8

10
12
14
16

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(d) SPSP Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

2
4
6
8

10
12
14
16

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(e) SPSP Stretch Factor with
Unreachable Ratio Constraint

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.2

0.4

0.6

0.8

1.0

Iso
la

te
d

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(f) Vertex Isolated Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0

5

10

15

20

25

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(g) Eccentricity Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0

5

10

15

20

25

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(h) Eccentricity Stretch Factor
with Isolated Ratio Constraint

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.00

0.05

0.10

0.15

0.20

M
ea

n
Cl

us
te

rin
g

Co
ef

f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(i) Mean Clustering Coefficient

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.00

0.05

0.10

0.15

0.20

0.25

Gl
ob

al
 C

lu
st

er
in

g
Co

ef
f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(j) Global Clustering Coeffi-
cient (k) Clustering F1 Similarity (l) Betweenness Centrality Pre-

cision

(m) Closeness Centrality Preci-
sion

(n) Katz Centrality Precision (o) Eigenvector Centrality Pre-
cision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(p) PageRank Precision

(q) Number of Communities (r) Modularity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Qu
ad

ra
tic

 F
or

m
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(s) Quadratic Form Similarity (t) Max Flow Stretch Factor

(u) Max Flow Stretch Factor
with Unreachable Ratio Con-
straint

Figure B.3: Metric Evaluation on soc-Pokec

113

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.1

0.2

0.3

0.4
Bh

at
ta

ch
ar

yy
a

Di
st

an
ce RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER

(a) Degree Distribution

0.2 0.4 0.6 0.8
Prune Rate

0.04

0.02

0.00

0.02

0.04

Di
am

et
er

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(b) Diameter

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Un
re

ac
ha

bl
e

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(c) Average SPSP Unreachable
Ratio

0.2 0.4 0.6 0.8
Prune Rate

0
5

10
15
20
25
30
35
40

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(d) SPSP Stretch Factor

0.2 0.4 0.6 0.8
Prune Rate

0
5

10
15
20
25
30
35
40

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(e) SPSP Stretch Factor with
Unreachable Ratio Constraint

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Iso
la

te
d

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(f) Vertex Isolated Ratio

0.2 0.4 0.6 0.8
Prune Rate

0
5

10
15
20
25
30
35

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(g) Eccentricity Stretch Factor

0.2 0.4 0.6 0.8
Prune Rate

0
5

10
15
20
25
30
35

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(h) Eccentricity Stretch Factor
with Isolated Ratio Constraint

0.2 0.4 0.6 0.8
Prune Rate

5

0

5

10

15

M
ea

n
Cl

us
te

rin
g

Co
ef

f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(i) Mean Clustering Coefficient

0.2 0.4 0.6 0.8
Prune Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Gl
ob

al
 C

lu
st

er
in

g
Co

ef
f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(j) Global Clustering Coeffi-
cient

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(k) Clustering F1 Similarity

0.2 0.4 0.6 0.8
Prune Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(l) Betweenness Centrality Pre-
cision

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(m) Closeness Centrality Preci-
sion

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(n) Katz Centrality Precision

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(o) Eigenvector Centrality Pre-
cision

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(p) PageRank Precision

0.2 0.4 0.6 0.8
Prune Rate

103

104

Co

m
m

un
iti

es

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(q) Number of Communities

0.2 0.4 0.6 0.8
Prune Rate

0.2

0.3

0.4

0.5

0.6

M
od

ul
ar

ity

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(r) Modularity

0.2 0.4 0.6 0.8
Prune Rate

0

5

10

15

20

Qu
ad

ra
tic

 F
or

m
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(s) Quadratic Form Similarity

0.2 0.4 0.6 0.8
Prune Rate

0

5

10

15

20

25

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(t) Max Flow Stretch Factor

0.2 0.4 0.6 0.8
Prune Rate

0

5

10

15

20

25

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(u) Max Flow Stretch Factor
with Unreachable Ratio Con-
straint

Figure B.4: Metric Evaluation on human gene2

114

0.2 0.4 0.6 0.8
Prune Rate

0
1
2
3
4
5
6

Bh
at

ta
ch

ar
yy

a
Di

st
an

ce RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER

(a) Degree Distribution

0.2 0.4 0.6 0.8
Prune Rate

0
25
50
75

100
125
150
175

Di
am

et
er

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(b) Diameter

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Un
re

ac
ha

bl
e

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(c) Average SPSP Unreachable
Ratio

0.2 0.4 0.6 0.8
Prune Rate

0
25
50
75

100
125
150
175
200

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(d) SPSP Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Prune Rate

0

20

40

60

80

100

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(e) SPSP Stretch Factor with
Unreachable Ratio Constraint

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Iso
la

te
d

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(f) Vertex Isolated Ratio

0.2 0.4 0.6 0.8
Prune Rate

0
25
50
75

100
125
150
175
200

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(g) Eccentricity Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Prune Rate

0

20

40

60

80

100

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(h) Eccentricity Stretch Factor
with Isolated Ratio Constraint

0.2 0.4 0.6 0.8
Prune Rate

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

M
ea

n
Cl

us
te

rin
g

Co
ef

f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(i) Mean Clustering Coefficient

0.2 0.4 0.6 0.8
Prune Rate

0.2
0.1
0.0
0.1
0.2
0.3
0.4

Gl
ob

al
 C

lu
st

er
in

g
Co

ef
f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(j) Global Clustering Coeffi-
cient (k) Clustering F1 Similarity (l) Betweenness Centrality Pre-

cision

(m) Closeness Centrality Preci-
sion

0.2 0.4 0.6 0.8
Prune Rate

0.00
0.01
0.02
0.03
0.04
0.05
0.06

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(n) Katz Centrality Precision (o) Eigenvector Centrality Pre-
cision

0.2 0.4 0.6 0.8
Prune Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(p) PageRank Precision

(q) Number of Communities (r) Modularity

0.2 0.4 0.6 0.8
Prune Rate

0

10

20

30

40

50

Qu
ad

ra
tic

 F
or

m
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(s) Quadratic Form Similarity

0.2 0.4 0.6 0.8
Prune Rate

0

10

20

30

40

50

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(t) Max Flow Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Prune Rate

0

10

20

30

40

50

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(u) Max Flow Stretch Factor
with Unreachable Ratio Con-
straint

Figure B.5: Metric Evaluation on cage14

115

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.1

0.2

0.3

0.4
Bh

at
ta

ch
ar

yy
a

Di
st

an
ce RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER

(a) Degree Distribution

0.2 0.4 0.6 0.8
Prune Rate

0
200
400
600
800

1000
1200

Di
am

et
er

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(b) Diameter

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Un
re

ac
ha

bl
e

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(c) Average SPSP Unreachable
Ratio

0.2 0.4 0.6 0.8
Prune Rate

0
5

10
15
20
25
30
35

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(d) SPSP Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Prune Rate

1.0

1.5

2.0

2.5

3.0

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(e) SPSP Stretch Factor with
Unreachable Ratio Constraint

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Iso
la

te
d

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(f) Vertex Isolated Ratio

0.2 0.4 0.6 0.8
Prune Rate

0

10

20

30

40

50

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(g) Eccentricity Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Prune Rate

1.0

1.5

2.0

2.5

3.0

3.5

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(h) Eccentricity Stretch Factor
with Isolated Ratio Constraint

0.2 0.4 0.6 0.8
Prune Rate

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

M
ea

n
Cl

us
te

rin
g

Co
ef

f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(i) Mean Clustering Coefficient

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

Gl
ob

al
 C

lu
st

er
in

g
Co

ef
f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(j) Global Clustering Coeffi-
cient

0.2 0.4 0.6 0.8
Prune Rate

0.3
0.4
0.5
0.6
0.7
0.8

F1
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(k) Clustering F1 Similarity

0.2 0.4 0.6 0.8
Prune Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(l) Betweenness Centrality Pre-
cision

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(m) Closeness Centrality Preci-
sion

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(n) Katz Centrality Precision (o) Eigenvector Centrality Pre-
cision

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(p) PageRank Precision

0.2 0.4 0.6 0.8
Prune Rate

102

103

104

105

Co

m
m

un
iti

es

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(q) Number of Communities

0.2 0.4 0.6 0.8
Prune Rate

0.75

0.80

0.85

0.90

0.95

1.00

M
od

ul
ar

ity

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(r) Modularity

0.2 0.4 0.6 0.8
Prune Rate

0.2

0.4

0.6

0.8

1.0

Qu
ad

ra
tic

 F
or

m
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(s) Quadratic Form Similarity

0.2 0.4 0.6 0.8
Prune Rate

0.2
0.4
0.6
0.8
1.0
1.2
1.4

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(t) Max Flow Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Prune Rate

0.6

0.7

0.8

0.9

1.0

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(u) Max Flow Stretch Factor
with Unreachable Ratio Con-
straint

Figure B.6: Metric Evaluation on com-DBLP

116

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Bh
at

ta
ch

ar
yy

a
Di

st
an

ce RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER

(a) Degree Distribution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0
500

1000
1500
2000
2500
3000
3500

Di
am

et
er

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(b) Diameter

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Un
re

ac
ha

bl
e

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(c) Average SPSP Unreachable
Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0
5

10
15
20
25
30
35

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(d) SPSP Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

1
2
3
4
5
6
7

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(e) SPSP Stretch Factor with
Unreachable Ratio Constraint

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Iso
la

te
d

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(f) Vertex Isolated Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0

20

40

60

80

100

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(g) Eccentricity Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

2
4
6
8

10
12

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(h) Eccentricity Stretch Factor
with Isolated Ratio Constraint

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.1

0.2

0.3

0.4

M
ea

n
Cl

us
te

rin
g

Co
ef

f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(i) Mean Clustering Coefficient

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Gl
ob

al
 C

lu
st

er
in

g
Co

ef
f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(j) Global Clustering Coeffi-
cient

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.2
0.3
0.4
0.5
0.6
0.7
0.8

F1
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(k) Clustering F1 Similarity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(l) Betweenness Centrality Pre-
cision

(m) Closeness Centrality Preci-
sion

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.96

0.98

1.00

1.02

1.04

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(n) Katz Centrality Precision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(o) Eigenvector Centrality Pre-
cision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(p) PageRank Precision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

103

104

105

106

Co

m
m

un
iti

es

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(q) Number of Communities

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

M
od

ul
ar

ity

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(r) Modularity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.2

0.4

0.6

0.8

1.0

Qu
ad

ra
tic

 F
or

m
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(s) Quadratic Form Similarity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(t) Max Flow Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(u) Max Flow Stretch Factor
with Unreachable Ratio Con-
straint

Figure B.7: Metric Evaluation on com-LiveJournal

117

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8
Bh

at
ta

ch
ar

yy
a

Di
st

an
ce RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER

(a) Degree Distribution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

100
0

100
200
300
400
500

Di
am

et
er

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(b) Diameter

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Un
re

ac
ha

bl
e

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(c) Average SPSP Unreachable
Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0
5

10
15
20
25
30
35
40

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(d) SPSP Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6
Prune Rate

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(e) SPSP Stretch Factor with
Unreachable Ratio Constraint

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Iso
la

te
d

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(f) Vertex Isolated Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(g) Eccentricity Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6
Prune Rate

0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(h) Eccentricity Stretch Factor
with Isolated Ratio Constraint

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

M
ea

n
Cl

us
te

rin
g

Co
ef

f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(i) Mean Clustering Coefficient

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Gl
ob

al
 C

lu
st

er
in

g
Co

ef
f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(j) Global Clustering Coeffi-
cient

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

F1
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(k) Clustering F1 Similarity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(l) Betweenness Centrality Pre-
cision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(m) Closeness Centrality Preci-
sion

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(n) Katz Centrality Precision (o) Eigenvector Centrality Pre-
cision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(p) PageRank Precision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

103

104

105

Co

m
m

un
iti

es

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(q) Number of Communities

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.88
0.90
0.92
0.94
0.96
0.98
1.00

M
od

ul
ar

ity

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(r) Modularity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.2

0.4

0.6

0.8

1.0

Qu
ad

ra
tic

 F
or

m
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(s) Quadratic Form Similarity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(t) Max Flow Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6
Prune Rate

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(u) Max Flow Stretch Factor
with Unreachable Ratio Con-
straint

Figure B.8: Metric Evaluation on com-Amazon

118

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Bh
at

ta
ch

ar
yy

a
Di

st
an

ce RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER

(a) Degree Distribution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0

200

400

600

800

1000

Di
am

et
er

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(b) Diameter

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.2

0.4

0.6

0.8

1.0

Un
re

ac
ha

bl
e

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(c) Average SPSP Unreachable
Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0

10

20

30

40

50

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(d) SPSP Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Prune Rate

1.0

1.5

2.0

2.5

3.0

3.5

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(e) SPSP Stretch Factor with
Unreachable Ratio Constraint

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Iso
la

te
d

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(f) Vertex Isolated Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0

20

40

60

80

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(g) Eccentricity Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Prune Rate

1

2

3

4

5

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(h) Eccentricity Stretch Factor
with Isolated Ratio Constraint

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

M
ea

n
Cl

us
te

rin
g

Co
ef

f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(i) Mean Clustering Coefficient

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Gl
ob

al
 C

lu
st

er
in

g
Co

ef
f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(j) Global Clustering Coeffi-
cient

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

F1
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(k) Clustering F1 Similarity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(l) Betweenness Centrality Pre-
cision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(m) Closeness Centrality Preci-
sion

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(n) Katz Centrality Precision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(o) Eigenvector Centrality Pre-
cision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(p) PageRank Precision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

103

104

Co

m
m

un
iti

es

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(q) Number of Communities

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.6

0.7

0.8

0.9

1.0

M
od

ul
ar

ity

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(r) Modularity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.2

0.4

0.6

0.8

1.0

Qu
ad

ra
tic

 F
or

m
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(s) Quadratic Form Similarity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(t) Max Flow Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Prune Rate

0.70
0.75
0.80
0.85
0.90
0.95
1.00

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(u) Max Flow Stretch Factor
with Unreachable Ratio Con-
straint

Figure B.9: Metric Evaluation on email-Enron

119

0.2 0.4 0.6 0.8
Prune Rate

0.000
0.005
0.010
0.015
0.020
0.025
0.030

Bh
at

ta
ch

ar
yy

a
Di

st
an

ce RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER

(a) Degree Distribution

0.2 0.4 0.6 0.8
Prune Rate

0

500

1000

1500

2000

2500

Di
am

et
er

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(b) Diameter

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.975
1.000
1.025
1.050
1.075
1.100
1.125
1.150
1.175

Un
re

ac
ha

bl
e

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(c) Average SPSP Unreachable
Ratio

0.2 0.4 0.6 0.8
Prune Rate

0
20
40
60
80

100
120

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(d) SPSP Stretch Factor

0.2 0.4 0.6 0.8
Prune Rate

0
20
40
60
80

100
120

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(e) SPSP Stretch Factor with
Unreachable Ratio Constraint

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.975
1.000
1.025
1.050
1.075
1.100
1.125
1.150
1.175

Iso
la

te
d

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(f) Vertex Isolated Ratio

0.2 0.4 0.6 0.8
Prune Rate

0

50

100

150

200

250

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(g) Eccentricity Stretch Factor

0.2 0.4 0.6 0.8
Prune Rate

0

50

100

150

200

250

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(h) Eccentricity Stretch Factor
with Isolated Ratio Constraint

0.2 0.4 0.6 0.8
Prune Rate

0.000
0.002
0.004
0.006
0.008
0.010
0.012

M
ea

n
Cl

us
te

rin
g

Co
ef

f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(i) Mean Clustering Coefficient

0.2 0.4 0.6 0.8
Prune Rate

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Gl
ob

al
 C

lu
st

er
in

g
Co

ef
f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(j) Global Clustering Coeffi-
cient (k) Clustering F1 Similarity

0.2 0.4 0.6 0.8
Prune Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(l) Betweenness Centrality Pre-
cision

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(m) Closeness Centrality Preci-
sion

(n) Katz Centrality Precision (o) Eigenvector Centrality Pre-
cision

0.2 0.4 0.6 0.8
Prune Rate

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(p) PageRank Precision

(q) Number of Communities (r) Modularity

0.2 0.4 0.6 0.8
Prune Rate

0.25
0.50
0.75
1.00
1.25
1.50
1.75

Qu
ad

ra
tic

 F
or

m
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(s) Quadratic Form Similarity

0.2 0.4 0.6 0.8
Prune Rate

0
2
4
6
8

10
12
14
16

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(t) Max Flow Stretch Factor

0.2 0.4 0.6 0.8
Prune Rate

0
2
4
6
8

10
12
14
16

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(u) Max Flow Stretch Factor
with Unreachable Ratio Con-
straint

Figure B.10: Metric Evaluation on wiki-Talk

120

0.2 0.4 0.6 0.8
Prune Rate

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Bh
at

ta
ch

ar
yy

a
Di

st
an

ce RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER

(a) Degree Distribution

0.2 0.4 0.6 0.8
Prune Rate

0

100

200

300

400

500

Di
am

et
er

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(b) Diameter

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.2

0.4

0.6

0.8

1.0

Un
re

ac
ha

bl
e

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(c) Average SPSP Unreachable
Ratio

0.2 0.4 0.6 0.8
Prune Rate

0

5

10

15

20

25

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(d) SPSP Stretch Factor

0.2 0.4 0.6 0.8
Prune Rate

1

2

3

4

5

6

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(e) SPSP Stretch Factor with
Unreachable Ratio Constraint

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Iso
la

te
d

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(f) Vertex Isolated Ratio

0.2 0.4 0.6 0.8
Prune Rate

0
5

10
15
20
25
30

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(g) Eccentricity Stretch Factor

0.2 0.4 0.6 0.8
Prune Rate

1

2

3

4

5

6

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(h) Eccentricity Stretch Factor
with Isolated Ratio Constraint

0.2 0.4 0.6 0.8
Prune Rate

0.0
0.2
0.4
0.6
0.8
1.0
1.2

M
ea

n
Cl

us
te

rin
g

Co
ef

f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(i) Mean Clustering Coefficient

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

Gl
ob

al
 C

lu
st

er
in

g
Co

ef
f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(j) Global Clustering Coeffi-
cient

0.2 0.4 0.6 0.8
Prune Rate

0.2
0.3
0.4
0.5
0.6
0.7
0.8

F1
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(k) Clustering F1 Similarity

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(l) Betweenness Centrality Pre-
cision

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(m) Closeness Centrality Preci-
sion

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(n) Katz Centrality Precision

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(o) Eigenvector Centrality Pre-
cision

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(p) PageRank Precision

0.2 0.4 0.6 0.8
Prune Rate

103

104

Co

m
m

un
iti

es

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(q) Number of Communities

0.2 0.4 0.6 0.8
Prune Rate

0.6

0.7

0.8

0.9

1.0

M
od

ul
ar

ity

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(r) Modularity

0.2 0.4 0.6 0.8
Prune Rate

0.2

0.4

0.6

0.8

1.0

Qu
ad

ra
tic

 F
or

m
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(s) Quadratic Form Similarity

0.2 0.4 0.6 0.8
Prune Rate

0.2

0.4

0.6

0.8

1.0

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(t) Max Flow Stretch Factor

0.2 0.4 0.6 0.8
Prune Rate

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(u) Max Flow Stretch Factor
with Unreachable Ratio Con-
straint

Figure B.11: Metric Evaluation on ca-AstroPh

121

0.2 0.4 0.6 0.8
Prune Rate

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Bh
at

ta
ch

ar
yy

a
Di

st
an

ce RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER

(a) Degree Distribution

0.2 0.4 0.6 0.8
Prune Rate

0

200

400

600

800

Di
am

et
er

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(b) Diameter

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.2

0.4

0.6

0.8

1.0

Un
re

ac
ha

bl
e

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(c) Average SPSP Unreachable
Ratio

0.2 0.4 0.6 0.8
Prune Rate

0

5

10

15

20

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(d) SPSP Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(e) SPSP Stretch Factor with
Unreachable Ratio Constraint

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Iso
la

te
d

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(f) Vertex Isolated Ratio

0.2 0.4 0.6 0.8
Prune Rate

0

10

20

30

40

50

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(g) Eccentricity Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

1
2
3
4
5
6
7

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(h) Eccentricity Stretch Factor
with Isolated Ratio Constraint

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

M
ea

n
Cl

us
te

rin
g

Co
ef

f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(i) Mean Clustering Coefficient

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Gl
ob

al
 C

lu
st

er
in

g
Co

ef
f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(j) Global Clustering Coeffi-
cient

0.2 0.4 0.6 0.8
Prune Rate

0.2
0.3
0.4
0.5
0.6
0.7
0.8

F1
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(k) Clustering F1 Similarity

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(l) Betweenness Centrality Pre-
cision

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(m) Closeness Centrality Preci-
sion

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(n) Katz Centrality Precision

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(o) Eigenvector Centrality Pre-
cision

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(p) PageRank Precision

0.2 0.4 0.6 0.8
Prune Rate

103

104

Co

m
m

un
iti

es

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(q) Number of Communities

0.2 0.4 0.6 0.8
Prune Rate

0.5

0.6

0.7

0.8

0.9

1.0

M
od

ul
ar

ity

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(r) Modularity

0.2 0.4 0.6 0.8
Prune Rate

0.2

0.4

0.6

0.8

1.0

Qu
ad

ra
tic

 F
or

m
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(s) Quadratic Form Similarity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.2

0.4

0.6

0.8

1.0

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(t) Max Flow Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(u) Max Flow Stretch Factor
with Unreachable Ratio Con-
straint

Figure B.12: Metric Evaluation on ca-HepPh

122

0.2 0.4 0.6 0.8
Prune Rate

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Bh
at

ta
ch

ar
yy

a
Di

st
an

ce RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER

(a) Degree Distribution

0.2 0.4 0.6 0.8
Prune Rate

0
1000
2000
3000
4000
5000
6000

Di
am

et
er

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(b) Diameter

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.6

0.7

0.8

0.9

1.0

Un
re

ac
ha

bl
e

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(c) Average SPSP Unreachable
Ratio

0.2 0.4 0.6 0.8
Prune Rate

0
5

10
15
20
25
30

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(d) SPSP Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Prune Rate

0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(e) SPSP Stretch Factor with
Unreachable Ratio Constraint

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Iso
la

te
d

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(f) Vertex Isolated Ratio

0.2 0.4 0.6 0.8
Prune Rate

0

5

10

15

20

25

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(g) Eccentricity Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Prune Rate

0
1
2
3
4
5
6
7
8

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(h) Eccentricity Stretch Factor
with Isolated Ratio Constraint

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

M
ea

n
Cl

us
te

rin
g

Co
ef

f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(i) Mean Clustering Coefficient

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.1

0.2

0.3

0.4

Gl
ob

al
 C

lu
st

er
in

g
Co

ef
f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(j) Global Clustering Coeffi-
cient (k) Clustering F1 Similarity

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(l) Betweenness Centrality Pre-
cision

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(m) Closeness Centrality Preci-
sion

0.2 0.4 0.6 0.8
Prune Rate

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(n) Katz Centrality Precision (o) Eigenvector Centrality Pre-
cision

0.2 0.4 0.6 0.8
Prune Rate

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(p) PageRank Precision

(q) Number of Communities (r) Modularity

0.2 0.4 0.6 0.8
Prune Rate

0.25
0.50
0.75
1.00
1.25
1.50
1.75

Qu
ad

ra
tic

 F
or

m
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(s) Quadratic Form Similarity

0.2 0.4 0.6 0.8
Prune Rate

0
5

10
15
20
25
30

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(t) Max Flow Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Prune Rate

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(u) Max Flow Stretch Factor
with Unreachable Ratio Con-
straint

Figure B.13: Metric Evaluation on web-BerkStan

123

0.2 0.4 0.6 0.8
Prune Rate

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Bh
at

ta
ch

ar
yy

a
Di

st
an

ce RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER

(a) Degree Distribution

0.2 0.4 0.6 0.8
Prune Rate

0
250
500
750

1000
1250
1500
1750

Di
am

et
er

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(b) Diameter

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.5

0.6

0.7

0.8

0.9

1.0

Un
re

ac
ha

bl
e

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(c) Average SPSP Unreachable
Ratio

0.2 0.4 0.6 0.8
Prune Rate

0

10

20

30

40

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(d) SPSP Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6
Prune Rate

1.0

1.5

2.0

2.5

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(e) SPSP Stretch Factor with
Unreachable Ratio Constraint

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Iso
la

te
d

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(f) Vertex Isolated Ratio

0.2 0.4 0.6 0.8
Prune Rate

0

5

10

15

20

25

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(g) Eccentricity Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6
Prune Rate

0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(h) Eccentricity Stretch Factor
with Isolated Ratio Constraint

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
Cl

us
te

rin
g

Co
ef

f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(i) Mean Clustering Coefficient

0.2 0.4 0.6 0.8
Prune Rate

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Gl
ob

al
 C

lu
st

er
in

g
Co

ef
f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(j) Global Clustering Coeffi-
cient (k) Clustering F1 Similarity

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(l) Betweenness Centrality Pre-
cision

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(m) Closeness Centrality Preci-
sion

0.2 0.4 0.6 0.8
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(n) Katz Centrality Precision (o) Eigenvector Centrality Pre-
cision

0.2 0.4 0.6 0.8
Prune Rate

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(p) PageRank Precision

(q) Number of Communities (r) Modularity

0.2 0.4 0.6 0.8
Prune Rate

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Qu
ad

ra
tic

 F
or

m
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(s) Quadratic Form Similarity

0.2 0.4 0.6 0.8
Prune Rate

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(t) Max Flow Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6
Prune Rate

0.5
1.0
1.5
2.0
2.5
3.0
3.5

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(u) Max Flow Stretch Factor
with Unreachable Ratio Con-
straint

Figure B.14: Metric Evaluation on web-Google

124

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.00

0.05

0.10

0.15

0.20

0.25
Bh

at
ta

ch
ar

yy
a

Di
st

an
ce RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER

(a) Degree Distribution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0
500

1000
1500
2000
2500
3000
3500

Di
am

et
er

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(b) Diameter

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.850
0.875
0.900
0.925
0.950
0.975
1.000
1.025
1.050

Un
re

ac
ha

bl
e

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(c) Average SPSP Unreachable
Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0
5

10
15
20
25
30
35

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(d) SPSP Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0
5

10
15
20
25
30
35

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(e) SPSP Stretch Factor with
Unreachable Ratio Constraint

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.70
0.75
0.80
0.85
0.90
0.95
1.00

Iso
la

te
d

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(f) Vertex Isolated Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0

20

40

60

80

100

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(g) Eccentricity Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0

20

40

60

80

100

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(h) Eccentricity Stretch Factor
with Isolated Ratio Constraint

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
Cl

us
te

rin
g

Co
ef

f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(i) Mean Clustering Coefficient

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Gl
ob

al
 C

lu
st

er
in

g
Co

ef
f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(j) Global Clustering Coeffi-
cient (k) Clustering F1 Similarity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(l) Betweenness Centrality Pre-
cision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(m) Closeness Centrality Preci-
sion

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(n) Katz Centrality Precision (o) Eigenvector Centrality Pre-
cision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(p) PageRank Precision

(q) Number of Communities (r) Modularity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Qu
ad

ra
tic

 F
or

m
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(s) Quadratic Form Similarity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Prune Rate

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(t) Max Flow Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Prune Rate

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(u) Max Flow Stretch Factor
with Unreachable Ratio Con-
straint

Figure B.15: Metric Evaluation on web-NotreDame

125

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0

1

2

3

4
Bh

at
ta

ch
ar

yy
a

Di
st

an
ce RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER

(a) Degree Distribution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0
50

100
150
200
250
300
350

Di
am

et
er

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(b) Diameter

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.5

0.6

0.7

0.8

0.9

1.0

Un
re

ac
ha

bl
e

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(c) Average SPSP Unreachable
Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0
5

10
15
20
25
30
35

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(d) SPSP Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Prune Rate

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(e) SPSP Stretch Factor with
Unreachable Ratio Constraint

0.0 0.2 0.4 0.6 0.8 1.0
Prune Rate

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Iso
la

te
d

Ra
tio

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(f) Vertex Isolated Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0
2
4
6
8

10
12
14
16

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(g) Eccentricity Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Prune Rate

1
2
3
4
5
6

St
re

tc
h

Fa
ct

or

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(h) Eccentricity Stretch Factor
with Isolated Ratio Constraint

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Cl

us
te

rin
g

Co
ef

f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(i) Mean Clustering Coefficient

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0000
0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175
0.0200

Gl
ob

al
 C

lu
st

er
in

g
Co

ef
f

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(j) Global Clustering Coeffi-
cient (k) Clustering F1 Similarity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(l) Betweenness Centrality Pre-
cision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(m) Closeness Centrality Preci-
sion

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(n) Katz Centrality Precision (o) Eigenvector Centrality Pre-
cision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(p) PageRank Precision

(q) Number of Communities (r) Modularity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.25
0.50
0.75
1.00
1.25
1.50
1.75

Qu
ad

ra
tic

 F
or

m
 S

im
ila

rit
y

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(s) Quadratic Form Similarity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0
1
2
3
4
5
6

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(t) Max Flow Stretch Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Prune Rate

1.0
1.5
2.0
2.5
3.0
3.5
4.0

M
ea

n
St

re
tc

h
Fa

ct
or RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(u) Max Flow Stretch Factor
with Unreachable Ratio Con-
straint

Figure B.16: Metric Evaluation on web-Stanford

126

0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0

0.1

0.2

0.3

0.4

0.5
Bh

at
ta

ch
ar

yy
a

Di
st

an
ce RN

KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER

(a) Degree Distribution (b) Diameter (c) Average SPSP Unreachable
Ratio

(d) SPSP Stretch Factor

(e) SPSP Stretch Factor with
Unreachable Ratio Constraint

(f) Vertex Isolated Ratio (g) Eccentricity Stretch Factor (h) Eccentricity Stretch Factor
with Isolated Ratio Constraint

(i) Mean Clustering Coefficient
(j) Global Clustering Coeffi-
cient (k) Clustering F1 Similarity (l) Betweenness Centrality Pre-

cision

(m) Closeness Centrality Preci-
sion

(n) Katz Centrality Precision (o) Eigenvector Centrality Pre-
cision

0.5 0.6 0.7 0.8 0.9
Prune Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Pr
ec

isi
on

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(p) PageRank Precision

0.5 0.6 0.7 0.8 0.9
Prune Rate

105

106

107

Co

m
m

un
iti

es

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(q) Number of Communities

0.5 0.6 0.7 0.8 0.9
Prune Rate

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

M
od

ul
ar

ity

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER-w
ER-uw

(r) Modularity (s) Quadratic Form Similarity (t) Max Flow Stretch Factor

(u) Max Flow Stretch Factor
with Unreachable Ratio Con-
straint

Figure B.17: Metric Evaluation on com-friendster

127

0.2 0.4 0.6 0.8
Prune Rate

0.910
0.915
0.920
0.925
0.930
0.935
0.940
0.945

Ac
cu

ra
cy

 (%
)

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER

Figure B.18: Clustering GCN Accuracy on Reddit

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.73
0.74
0.75
0.76
0.77
0.78
0.79

AU
C-

RO
C

RN
KN
RD
LD
SF
SP-3
SP-5
SP-7
FF
LS
GS
LSim
SCAN
ER

Figure B.19: GraphSAGE Accuracy on ogbn-proteins

128

BIBLIOGRAPHY

[1] About ffmpeg. https://www.ffmpeg.org/about.html.

[2] Amazon elastic transcoder pricing.
https://aws.amazon.com/elastictranscoder/pricing/?nc1=h_ls.

[3] Big buck bunny about page. https://peach.blender.org/about/.

[4] Cisco visual networking index (vni) complete forecast update, 2017–2022.
https://www.cisco.com/c/dam/m/en_us/network-intelligence/

service-provider/digital-transformation/knowledge-network-webinars/

pdfs/1213-business-services-ckn.pdf.

[5] Cpu or gpu: Which processing power you should boost to improve transcoding speed.

[6] Encoding presets for x264.
https://dev.beandog.org/x264_preset_reference.html.

[7] Hours of video uploaded to youtube every minute as of may 2019.
https://www.statista.com/statistics/259477/

hours-of-video-uploaded-to-youtube-every-minute/.

[8] Intel® vtune™ profiler. https://software.intel.com/content/www/us/en/
develop/tools/vtune-profiler.html.

[9] Linux encoding.
https://sites.google.com/site/linuxencoding/x264-ffmpeg-mapping.

[10] Perf wiki. https://perf.wiki.kernel.org/index.php.

[11] Understanding how general exploration works in intel® vtune™ amplifier.

[12] Understanding rate control modes (x264, x265, vpx).
https://slhck.info/video/2017/03/01/rate-control.html.

[13] Video compression picture types.
https://en.wikipedia.org/wiki/Video_compression_picture_types.

[14] Video space calculator. https://www.digitalrebellion.com/webapps/videocalc?
format=uncompressed_8_1080&frame_rate=f30&length=1&length_type=seconds.

129

https://www.ffmpeg.org/about.html
https://aws.amazon.com/elastictranscoder/pricing/?nc1=h_ls
https://peach.blender.org/about/
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf
https://dev.beandog.org/x264_preset_reference.html
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://sites.google.com/site/linuxencoding/x264-ffmpeg-mapping
https://perf.wiki.kernel.org/index.php
https://slhck.info/video/2017/03/01/rate-control.html
https://en.wikipedia.org/wiki/Video_compression_picture_types
https://www.digitalrebellion.com/webapps/videocalc?format=uncompressed_8_1080&frame_rate=f30&length=1&length_type=seconds
https://www.digitalrebellion.com/webapps/videocalc?format=uncompressed_8_1080&frame_rate=f30&length=1&length_type=seconds

[15] [x264-devel] making sense out of x264 rate control methods. https:
//mailman.videolan.org/pipermail/x264-devel/2010-February/006934.html.

[16] x264 homepage. http://www.videolan.org/developers/x264.html.

[17] Spanning tree. https://en.wikipedia.org/wiki/Spanning_tree, Nov 2022.

[18] Tree (graph theory). https://en.wikipedia.org/wiki/Tree_(graph_theory), Nov
2022.

[19] Clustering coefficient. https://en.wikipedia.org/wiki/Clustering_coefficient,
Feb 2023.

[20] Connected graph. https://mathworld.wolfram.com/ConnectedGraph.html, 2023.

[21] Cut (graph theory). https://en.wikipedia.org/wiki/Cut_(graph_theory), Feb
2023.

[22] Eigenvector centrality.
https://en.wikipedia.org/wiki/Eigenvector_centrality, Jan 2023.

[23] Sergi Abadal et al. Computing graph neural networks: A survey from algorithms to
accelerators. ACM Comput. Surv., 54(9), oct 2021.

[24] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall, Inc., USA, 1993.

[25] Ayaz Akram and Lina Sawalha. A survey of computer architecture simulation
techniques and tools. IEEE Access, PP:1–1, 05 2019.

[26] Antonino Albanese, Paolo Secondo Crosta, Claudio Meani, and Pietro Paglierani.
Gpu-accelerated video transcoding unit for multi-access edge computing scenarios. In
Proceeding of ICN, 2017.

[27] Ingo Althöfer, Gautam Das, David Dobkin, and Deborah Joseph. Generating sparse
spanners for weighted graphs. In John R. Gilbert and Rolf Karlsson, editors, SWAT
90, pages 26–37, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg.

[28] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate, 2016.

[29] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Stoica, and
Hui Zhang. Developing a predictive model of quality of experience for internet video.
ACM SIGCOMM Computer Communication Review, 43(4):339–350, 2013.

[30] Gerassimos Barlas. Cluster-based optimized parallel video transcoding. In Parallel
Computing, pages 226–244. Elsevier, 2012.

[31] Peter W. Battaglia et al. Interaction networks for learning about objects, relations and
physics. CoRR, abs/1612.00222, 2016.

130

https://mailman.videolan.org/pipermail/x264-devel/2010-February/006934.html
https://mailman.videolan.org/pipermail/x264-devel/2010-February/006934.html
http://www.videolan.org/developers/x264.html
https://en.wikipedia.org/wiki/Spanning_tree
https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://en.wikipedia.org/wiki/Clustering_coefficient
https://mathworld.wolfram.com/ConnectedGraph.html
https://en.wikipedia.org/wiki/Cut_(graph_theory)
https://en.wikipedia.org/wiki/Eigenvector_centrality

[32] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for
embedding and clustering. In T. Dietterich, S. Becker, and Z. Ghahramani, editors,
Advances in Neural Information Processing Systems, volume 14. MIT Press, 2001.

[33] Elisabetta Bergamini, Michele Borassi, Pierluigi Crescenzi, Andrea Marino, and
Henning Meyerhenke. Computing top-k closeness centrality faster in unweighted
graphs, 2017.

[34] Maciej Besta, Robert Gerstenberger, Emanuel Peter, Marc Fischer, Micha l Podstawski,
Claude Barthels, Gustavo Alonso, and Torsten Hoefler. Demystifying graph databases:
Analysis and taxonomy of data organization, system designs, and graph queries, 2023.

[35] A. Bhattacharyya. On a measure of divergence between two multinomial populations.
Sankhyā: The Indian Journal of Statistics (1933-1960), 7(4):401–406, 1946.

[36] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti,
Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and
David A. Wood. The gem5 simulator. SIGARCH Comput. Archit. News, 39(2):1–7,
aug 2011.

[37] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
Fast unfolding of communities in large networks. Journal of Statistical Mechanics:
Theory and Experiment, 2008(10):P10008, oct 2008.

[38] Geoff Boeing. Measuring the complexity of urban form and design. Urban Design
International, 23:281–292, 11 2018.

[39] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Elsevier, New York,
1976.

[40] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search
engine. Computer Networks, 30:107–117, 1998.

[41] RONALD S. BURT. Structural Holes: The Social Structure of Competition. 1992.

[42] HongYun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. A comprehensive
survey of graph embedding: Problems, techniques, and applications. IEEE
Transactions on Knowledge and Data Engineering, 30(9):1616–1637, 2018.

[43] Trevor E. Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and Lieven Eeckhout.
An evaluation of high-level mechanistic core models. ACM Transactions on
Architecture and Code Optimization (TACO), 2014.

[44] Rudrasis Chakraborty et al. Manifoldnet: A deep neural network for manifold-valued
data with applications. IEEE TPAMI, pages 1–1, 2020.

[45] Cen Chen et al. Regnn: A redundancy-eliminated graph neural networks accelerator.
In 2022 HPCA, pages 429–443, 2022.

131

[46] Dehao Chen, Tipp Moseley, and David Xinliang Li. Autofdo: Automatic
feedback-directed optimization for warehouse-scale applications. In 2016 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), pages 12–23.
IEEE, 2016.

[47] Jie Chen et al. FastGCN: Fast learning with graph convolutional networks via
importance sampling. In ICLR, 2018.

[48] Yuhan Chen, Alireza Khadem, Xin He, Nishil Talati, Tanvir Ahmed Khan, and Trevor
Mudge. Pedal: A power efficient gcn accelerator with multiple dataflows. In
Proceedings of the 26th Design, Automation, and Test in Europe (DATE) conference,
DATE 2023, April 2023.

[49] Kihwan Choi, Karthik Dantu, Wei-Chung Cheng, and Massoud Pedram. Frame-based
dynamic voltage and frequency scaling for a mpeg decoder. In Proceedings of the 2002
IEEE/ACM international conference on Computer-aided design, pages 732–737, 2002.

[50] Andrew R. Curtis, Tommy Carpenter, and S. Keshav. Rewire: An optimization-based
framework for data center network design. 2011.

[51] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection.
ACM Trans. Math. Softw., 38(1), dec 2011.

[52] Jan De Cock, Aditya Mavlankar, Anush Moorthy, and Anne Aaron. A large-scale
video codec comparison of x264, x265 and libvpx for practical vod applications. In
Applications of Digital Image Processing XXXIX, volume 9971, page 997116.
International Society for Optics and Photonics, 2016.

[53] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural
networks on graphs with fast localized spectral filtering. 2016.

[54] Andac Demir, Toshiaki Koike-Akino, Ye Wang, Masaki Haruna, and Deniz Erdogmus.
Eeg-gnn: Graph neural networks for classification of electroencephalogram (eeg)
signals. In 2021 43rd Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), pages 1061–1067, 2021.

[55] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math.,
1(1):269–271, dec 1959.

[56] Ramesh K. Sitaraman Dilip Kumar Krishnappa, Michael Zink. Optimizing the video
transcoding workflow in content delivery networks. In Proceedings of the 6th ACM
Multimedia Systems Conference, pages 37–48. ACM, 2015.

[57] Richard Draves, Jitendra Padhye, and Brian Zill. Comparison of routing metrics for
static multi-hop wireless networks. SIGCOMM Comput. Commun. Rev.,
34(4):133–144, aug 2004.

132

[58] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Proceedings
of the Second International Conference on Knowledge Discovery and Data Mining,
KDD’96, page 226–231. AAAI Press, 1996.

[59] Tom Fawcett. An introduction to roc analysis. Pattern Recognition Letters,
27(8):861–874, 2006. ROC Analysis in Pattern Recognition.

[60] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch
geometric. CoRR, abs/1903.02428, 2019.

[61] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical
Journal, 23(2):298–305, 1973.

[62] Jack McKay Fletcher and Thomas Wennekers. From structure to activity: Using
centrality measures to predict neuronal activity. International Journal of Neural
Systems, 28(02):1750013, 2018.

[63] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics, 8:399–404, 1956.

[64] Linton Freeman. The development of social network analysis. 01 2004.

[65] Aditya Ganjam, Faisal Siddiqui, Jibin Zhan, Xi Liu, Ion Stoica, Junchen Jiang, Vyas
Sekar, and Hui Zhang. C3: Internet-scale control plane for video quality optimization.
In 12th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 15), pages 131–144, 2015.

[66] Robert Geisberger, Peter Sanders, and Dominik Schultes. Better approximation of
betweenness centrality. In Proceedings of the Meeting on Algorithm Engineering &
Expermiments, page 90–100, USA, 2008. Society for Industrial and Applied
Mathematics.

[67] Tong Geng et al. Awb-gcn: A graph convolutional network accelerator with runtime
workload rebalancing. In MICRO, pages 922–936, 2020.

[68] Tong Geng et al. I-gcn: A graph convolutional network accelerator with runtime
locality enhancement through islandization. In MICRO, 2021.

[69] Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications, and
performance: A survey. Knowledge-Based Systems, 151:78–94, 2018.

[70] Alex Graves et al. Multi-dimensional recurrent neural networks. In Artificial Neural
Networks - ICANN, 2007.

[71] Matthew W. Hahn and Andrew D. Kern. Comparative Genomics of Centrality and
Essentiality in Three Eukaryotic Protein-Interaction Networks. Molecular Biology and
Evolution, 22(4):803–806, 12 2004.

133

[72] Michael Hamann, Gerd Lindner, Henning Meyerhenke, Christian L. Staudt, and
Dorothea Wagner. Structure-preserving sparsification methods for social networks,
2016.

[73] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning
on large graphs. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, page 1025–1035, Red Hook, NY, USA, 2017.
Curran Associates Inc.

[74] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning
on large graphs, 2018.

[75] Weihua Hu et al. Open graph benchmark: Datasets for machine learning on graphs,
2020.

[76] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine
learning on graphs. arXiv preprint arXiv:2005.00687, 2020.

[77] Yicheng Huang, An Vu Tran, and Ye Wang. A workload prediction model for decoding
mpeg video and its application to workload-scalable transcoding. In Proceedings of the
15th ACM international conference on Multimedia, pages 952–961, 2007.

[78] Yu-Wen Huang, Bing-Yu Hsieh, Tung-Chien Chen, and Liang-Gee Chen. Analysis, fast
algorithm, and vlsi architecture design for h. 264/avc intra frame coder. IEEE
Transactions on Circuits and systems for Video Technology, 15(3):378–401, 2005.

[79] Donald J. Jacobs, A.J. Rader, Leslie A. Kuhn, and M.F. Thorpe. Protein flexibility
predictions using graph theory. Proteins: Structure, Function, and Bioinformatics,
44(2):150–165, 2001.

[80] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási. The large-scale
organization of metabolic networks. Nature, 407(6804):651–654, oct 2000.

[81] Junchen Jiang, Vyas Sekar, Henry Milner, Davis Shepherd, Ion Stoica, and Hui Zhang.
{CFA}: A practical prediction system for video qoe optimization. In 13th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 16), pages
137–150, 2016.

[82] Leo Katz. A new status index derived from sociometric analysis. Psychometrika,
18:39–43, 1953.

[83] Myunghwan Kim and Jure Leskovec. Modeling social networks with node attributes
using the multiplicative attribute graph model, 2011.

[84] Yoongu Kim, Weikun Yang, and Onur Mutlu. Ramulator: A fast and extensible dram
simulator. IEEE Computer Architecture Letters, 15:45–49, 2016.

134

[85] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks, 2016.

[86] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks, 2017.

[87] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. 1956.

[88] Y. Lecun et al. Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 1998.

[89] Stefan Lederer, Christopher Müller, and Christian Timmerer. Dynamic adaptive
streaming over http dataset. In Proceedings of the 3rd multimedia systems conference,
pages 89–94, 2012.

[90] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graph evolution:
Densification and shrinking diameters. ACM Trans. Knowl. Discov. Data, 1:2, 2006.

[91] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[92] Zekun Li, Zeyu Cui, Shu Wu, Xiaoyu Zhang, and Liang Wang. Fi-gnn: Modeling
feature interactions via graph neural networks for ctr prediction. In Proceedings of the
28th ACM International Conference on Information and Knowledge Management,
CIKM ’19, page 539–548, New York, NY, USA, 2019. Association for Computing
Machinery.

[93] Zhenhua Li, Yan Huang, Gang Liu, Fuchen Wang, Zhi-Li Zhang, and Yafei Dai. Cloud
transcoder: Bridging the format and resolution gap between internet videos and mobile
devices. In Proceedings of the 22nd international workshop on Network and Operating
System Support for Digital Audio and Video, pages 33–38, 2012.

[94] Shengwen Liang et al. Engn: A high-throughput and energy-efficient accelerator for
large graph neural networks. IEEE TC, 2021.

[95] Chia-Wen Lin and Yuh-Reuy Lee. Fast algorithms for dct-domain video transcoding.
In Proceedings 2001 International Conference on Image Processing (Cat. No.
01CH37205), volume 1, pages 421–424. IEEE, 2001.

[96] Song Lin, Xinfeng Zhang, Qin Yu, Honggang Qi, and Siwei Ma. Parallelizing video
transcoding with load balancing on cloud computing. In 2013 IEEE International
Symposium on Circuits and Systems (ISCAS2013), pages 2864–2867. IEEE, 2013.

[97] Yaning Liu, Joost Geurts, Jean-Charles Point, Stefan Lederer, Benjamin Rainer,
Christopher Müller, Christian Timmerer, and Hermann Hellwagner. Dynamic adaptive
streaming over ccn: A caching and overhead analysis. In 2013 IEEE international
conference on communications (ICC), pages 3629–3633. IEEE, 2013.

135

http://snap.stanford.edu/data

[98] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information
Theory, 28(2):129–137, 1982.

[99] Andrea Lottarini, Alex Ramirez, Joel Coburn, Martha A. Kim, Parthasarathy
Ranganathan, Daniel Stodolsky, and Mark Wachsler. Vbench: Benchmarking video
transcoding in the cloud. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS
’18, page 797–809, New York, NY, USA, 2018. Association for Computing Machinery.

[100] R. Duncan Luce and Albert D. Perry. A method of matrix analysis of group structure.
Psychometrika, 14:95–116, 1949.

[101] Hong-Wu Ma and An-Ping Zeng. The connectivity structure, giant strong component
and centrality of metabolic networks. Bioinformatics, 19(11):1423–1430, 07 2003.

[102] Damien Magoni and Jean Jacques Pansiot. Analysis of the autonomous system
network topology. SIGCOMM Comput. Commun. Rev., 31(3):26–37, jul 2001.

[103] Vijini Mallawaarachchi. Evaluating clustering results, Oct 2020.

[104] Amrita Mazumdar, Brandon Haynes, Magda Balazinska, Luis Ceze, Alvin Cheung,
and Mark Oskin. Perceptual compression for video storage and processing systems. In
Proceedings of the ACM Symposium on Cloud Computing, pages 179–192, 2019.

[105] Loren Merritt. X264: A high performance h.264/avc encoder. 2006.

[106] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network
motifs: Simple building blocks of complex networks. Science, 298(5594):824–827, 2002.

[107] Naveen Muralimanohar and Rajeev Balasubramonian. Cacti 6.0: A tool to understand
large caches.

[108] Allan H. Murphy. The finley affair: A signal event in the history of forecast
verification. Weather and Forecasting, 11(1):3 – 20, 1996.

[109] Daniel Müllner. Modern hierarchical, agglomerative clustering algorithms, 2011.

[110] M. E. J. Newman. Mathematics of Networks, pages 1–8. Palgrave Macmillan UK,
London, 2016.

[111] Mark EJ Newman. Coauthorship networks and patterns of scientific collaboration.
Proceedings of the national academy of sciences, 101(suppl 1):5200–5205, 2004.

[112] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis
and an algorithm. In Proceedings of the 14th International Conference on Neural
Information Processing Systems: Natural and Synthetic, NIPS’01, page 849–856,
Cambridge, MA, USA, 2001. MIT Press.

[113] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking : Bringing order to the web. In The Web Conference, 1999.

136

[114] Georgios A Pavlopoulos, Maria Secrier, Charalampos N Moschopoulos, Theodoros G
Soldatos, Sophia Kossida, Jan Aerts, Reinhard Schneider, and Pantelis G Bagos. Using
graph theory to analyze biological networks. BioData mining, 4:1–27, 2011.

[115] F. Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 2011.

[116] Tiago P. Peixoto. The graph-tool python library. figshare, 2014.

[117] Sebastian Pop, Albert Cohen, Cédric Bastoul, Sylvain Girbal, Georges-André Silber,
and Nicolas Vasilache. Graphite: Polyhedral analyses and optimizations for gcc. In
Proceedings of the 2006 GCC Developers Summit, page 2006. Citeseer, 2006.

[118] Robert C. Prim. Shortest connection networks and some generalizations. Bell System
Technical Journal, 36:1389–1401, 1957.

[119] Varun Ramesh, Shivanee Nagarajan, Jason J. Jung, and Saswati Mukherjee. Max-flow
min-cut algorithm with application to road networks. Concurrency and Computation:
Practice and Experience, 29(11):e4099, 2017. e4099 cpe.4099.

[120] Theodoros Rapanos. What makes an opinion leader: Expertise vs popularity. Games
and Economic Behavior, 138:355–372, 2023.

[121] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection, 2016.

[122] Amedeo R. Odoni Richard C. Larsona. Urban operations research. 1981.

[123] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards
deep graph convolutional networks on node classification, 2019.

[124] Veeranjaneyulu Sadhanala, Yu-Xiang Wang, and Ryan J. Tibshirani. Graph
sparsification approaches for laplacian smoothing. In International Conference on
Artificial Intelligence and Statistics, 2016.

[125] Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan. Local graph sparsification for
scalable clustering. In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’11, page 721–732, New York, NY,
USA, 2011. Association for Computing Machinery.

[126] Franco Scarselli et al. The graph neural network model. IEEE Transactions on Neural
Networks, 2009.

[127] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. IEEE Transactions on Neural Networks,
20(1):61–80, 2009.

[128] Jan Scheurer and Sergio Porta. Centrality and connectivity in public transport
networks and their significance for transport sustainability in cities. 07 2006.

137

[129] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in
particle physics. Machine Learning: Science and Technology, 2(2):021001, dec 2020.

[130] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen. Graphr: Accelerating graph
processing using reram. In 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 531–543, Los Alamitos, CA, USA, feb 2018.
IEEE Computer Society.

[131] Daniel Spielman. Laplacians.jl. https://github.com/danspielman/Laplacians.jl,
2023.

[132] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
SIAM Journal on Computing, 40(6):1913–1926, 2011.

[133] Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Networkit: A tool
suite for large-scale complex network analysis, 2014.

[134] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu Wang, Tao Liu,
and Bruno Sinopoli. Cs2p: Improving video bitrate selection and adaptation with
data-driven throughput prediction. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 272–285, 2016.

[135] Minyong Sung, Minwoo Kim, Minsik Kim, and Won Woo Ro. Accelerating hevc
transcoder by exploiting decoded quadtree. In The 18th IEEE International
Symposium on Consumer Electronics (ISCE 2014), pages 1–2. IEEE, 2014.

[136] Damian Szklarczyk, Annika Gable, David Lyon, Alexander Junge, Stefan Wyder,
Jaime Huerta-Cepas, Milan Simonovic, Nadezhda Doncheva, John Morris, Peer Bork,
Lars Jensen, and Christian von Mering. String v11: protein-protein association
networks with increased coverage, supporting functional discovery in genome-wide
experimental datasets. Nucleic acids research, 47, 11 2018.

[137] Frank W. Takes and Walter A. Kosters. Computing the eccentricity distribution of
large graphs. Algorithms, 6(1):100–118, 2013.

[138] Nishil Talati et al. A deep dive into understanding the random walk-based temporal
graph learning. In IISWC, 2021.

[139] Nishil Talati, Haojie Ye, Sanketh Vedula, Kuan-Yu Chen, Yuhan Chen, Daniel Liu,
Yichao Yuan, David Blaauw, Alex Bronstein, Trevor Mudge, and Ronald Dreslinski.
Mint: An accelerator for mining temporal motifs. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 1270–1287, 2022.

[140] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,
and Yoshua Bengio. Graph attention networks, 2017.

[141] Elli Voudigari, Nikos Salamanos, Theodore Papageorgiou, and Emmanuel J.
Yannakoudakis. Rank degree: An efficient algorithm for graph sampling. In 2016
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining (ASONAM), pages 120–129, 2016.

138

https://github.com/danspielman/Laplacians.jl

[142] Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, and Philip S. Yu. A
survey on heterogeneous graph embedding: Methods, techniques, applications and
sources. IEEE Transactions on Big Data, 9(2):415–436, 2023.

[143] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’
networks. Nature, 393(6684):440–442, 1998.

[144] L. Wei, J. Cai, C. H. Foh, and B. He. Qos-aware resource allocation for video
transcoding in clouds. IEEE Transactions on Circuits and Systems for Video
Technology, 27(1):49–61, 2017.

[145] Jiangtao Wen, Max Luttrell, and John Villasenor. Trellis-based rd optimal
quantization in h. 263+. IEEE Transactions on Image Processing, 9(8):1431–1434,
2000.

[146] R. Wickman, X. Zhang, and W. Li. A generic graph sparsification framework using
deep reinforcement learning. In 2022 IEEE International Conference on Data Mining
(ICDM), pages 1221–1226, Los Alamitos, CA, USA, dec 2022. IEEE Computer Society.

[147] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful
visual performance model for multicore architectures. Commun. ACM, 52(4):65–76,
April 2009.

[148] Jun Xin, Chia-Wen Lin, and Ming-Ting Sun. Digital video transcoding. Proceedings of
the IEEE, 93(1):84–97, 2005.

[149] Mengjia Xu. Understanding graph embedding methods and their applications. SIAM
Review, 63(4):825–853, 2021.

[150] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas A. J. Schweiger. Scan: A
structural clustering algorithm for networks. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’07, page
824–833, New York, NY, USA, 2007. Association for Computing Machinery.

[151] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi Zhang,
Philip Levis, and Keith Winstein. Learning in situ: a randomized experiment in video
streaming. In 17th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 20), pages 495–511, 2020.

[152] M. Yan et al. Hygcn: A gcn accelerator with hybrid architecture. In HPCA, 2020.

[153] Ahmad Yasin. A top-down method for performance analysis and counters architecture.
In 2014 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 35–44. IEEE, 2014.

[154] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A control-theoretic
approach for dynamic adaptive video streaming over http. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication, pages 325–338,
2015.

139

[155] Haoran You et al. Gcod: Graph convolutional network acceleration via dedicated
algorithm and accelerator co-design. In HPCA, 2022.

[156] Ben Zhang, Xin Jin, Sylvia Ratnasamy, John Wawrzynek, and Edward A Lee.
Awstream: Adaptive wide-area streaming analytics. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication, pages
236–252, 2018.

[157] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V. Chawla.
Heterogeneous graph neural network. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD ’19, page
793–803, New York, NY, USA, 2019. Association for Computing Machinery.

[158] X. Zhang, T. Huang, Y. Tian, M. Geng, S. Ma, and W. Gao. Fast and efficient
transcoding based on low-complexity background modeling and adaptive block
classification. IEEE Transactions on Multimedia, 15(8):1769–1785, 2013.

[159] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng
Chen, and Wei Wang. Robust graph representation learning via neural sparsification.
In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pages 11458–11468. PMLR, 13–18 Jul 2020.

[160] Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji Geng.
Meta-gnn: On few-shot node classification in graph meta-learning. In Proceedings of
the 28th ACM International Conference on Information and Knowledge Management,
CIKM ’19, page 2357–2360, New York, NY, USA, 2019. Association for Computing
Machinery.

[161] Jie Zhou et al. Graph neural networks: A review of methods and applications. AI
Open, 2020.

[162] Chenyi Zhuang and Qiang Ma. Dual graph convolutional networks for graph-based
semi-supervised classification. In WWW, 2018.

[163] Zhenyun Zhuang and Chun Guo. Building cloud-ready video transcoding system for
content delivery networks (cdns). In 2012 IEEE Global Communications Conference
(GLOBECOM), pages 2048–2053. IEEE, 2012.

140

	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	Abstract
	Introduction
	Emerging Applications
	Video Transcoding
	Graph Data Structure and Application
	Motivation
	Dissertation Contribution and Organization
	Impact Statement

	Background
	Video Transcoding
	Graph
	Graph Algorithms
	Graph Sparsifition
	Hardware Characterization

	CPU Microarchitectural Performance Characterization of Cloud Video Transcoding
	Background
	Methodology
	Evaluation Results
	Related Work
	Conclusion

	Demystifying Graph Sparsification Algorithms in Graph Properties Preservation
	Overview
	Experimental Setup
	Results
	Related Work
	Conclusion

	A Power Efficient GCN Accelerator with Multiple Dataflows
	Background
	Proposed Design
	Evaluation
	Conclusion

	Conclusion And Future Work
	Appendices
	Pseudo Code for Sparsification Algorithms
	Appendix A: Pseudo Code for Sparsification Algorithms
	Rank Degree Sparsifier
	Local Degree Sparsifier
	t-Spanner
	Forest Fire
	Similarity-based Sparsifiers
	Effective Resistance (ER) Sparsifier

	Full Results for Sparsification Benchmark
	Appendix B: Full Results for Sparsification Benchmark
	Bibliography

