
GRACE: A Scalable Graph-Based Approach to Accelerating
Recommendation Model Inference

Haojie Ye
University of Michigan

Ann Arbor, Michigan, USA
yehaojie@umich.edu

Sanketh Vedula
Technion

Haifa, Israel
sanketh@campus.technion.ac.il

Yuhan Chen
University of Michigan

Ann Arbor, Michigan, USA
chenyh@umich.edu

Yichen Yang
University of Michigan

Ann Arbor, Michigan, USA
yangych@umich.edu

Alex Bronstein
Technion

Haifa, Israel
bron@cs.technion.ac.il

Ronald Dreslinski
University of Michigan

Ann Arbor, Michigan, USA
rdreslin@umich.edu

Trevor Mudge
University of Michigan

Ann Arbor, Michigan, USA
tnm@umich.edu

Nishil Talati
University of Michigan

Ann Arbor, Michigan, USA
talatin@umich.edu

ABSTRACT
The high memory bandwidth demand of sparse embedding layers
continues to be a critical challenge in scaling the performance of
recommendation models. While prior works have exploited het-
erogeneous memory system designs and partial embedding sum
memoization techniques, they o�er limited bene�ts. This is because
prior designs either target a very small subset of embeddings to
simplify their analysis or incur a high processing cost to account for
all embeddings, which does not scale with the large sizes of modern
embedding tables. This paper proposes GRACE—a lightweight and
scalable graph-based algorithm-system co-design framework to
signi�cantly improve the embedding layer performance of recom-
mendation models. GRACE proposes a novel Item Co-occurrence
Graph (ICG) that scalably records item co-occurrences. GRACE
then presents a new system-aware ICG clustering algorithm to �nd
frequently accessed item combinations of arbitrary lengths to com-
pute and memoize their partial sums. High-frequency partial sums
are stored in a software-managed cache space to reduce memory
tra�c and improve the throughput of computing sparse features.
We further present a cache data layout and low-cost address compu-
tation logic to e�ciently lookup item embeddings and their partial
sums. Our evaluation shows that GRACE signi�cantly outperforms
the state-of-the-art techniques SPACE and MERCI by 1.5⇥ and 1.4⇥,
respectively.

CCS CONCEPTS
• Computer systems organization! Cloud computing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9918-0/23/03. . . $15.00
https://doi.org/10.1145/3582016.3582029

KEYWORDS
DLRM, Embedding Reduction, Algorithm-System Co-Design

ACM Reference Format:
Haojie Ye, Sanketh Vedula, Yuhan Chen, Yichen Yang, Alex Bronstein,
Ronald Dreslinski, TrevorMudge, and Nishil Talati. 2023. GRACE: A Scalable
Graph-Based Approach to Accelerating Recommendation Model Inference.
In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3 (ASP-
LOS ’23), March 25–29, 2023, Vancouver, BC, Canada. ACM, New York, NY,
USA, 20 pages. https://doi.org/10.1145/3582016.3582029

1 INTRODUCTION
Deep Learning Recommendation Models (DLRMs) are widely em-
ployed to predict rankings of news feeds and entertainment con-
tent [18, 21]. An earlier work [26] shows that DLRMs consume ama-
jority of AI inference cycles of data centers. DLRM exhibits a mix of
workload characteristics with fully connected dense neural network
layers and sparse embedding layers. The sparse embedding layers
are the primary performance bottlenecks of DLRM execution due to
their highmemory bandwidth requirement [24, 26, 28, 34, 38, 43, 44].
Because this application runs at a population scale, the execution
bottlenecks signi�cantly increase the Total Cost of Ownership
(TCO) and power consumption of data centers [5, 35]. Therefore,
improving DLRM performance directly results in saving millions
of dollars in cost and carbon emission [66].

The key challenge in accelerating the DLRM embedding layer
performance is to exploit spatial and temporal locality. This chal-
lenge is because of the irregular nature of the workload’s memory
access pattern over large embedding tables. Recently, several tech-
niques have attempted to improve the DLRM embedding layer
inference performance either by caching partial sums of embed-
dings leading to reduced memory tra�c [34, 48] or by exploiting
the heterogeneous memory systems [1, 34, 38]. These approaches,
however, fall short in the following manner. First, FAE [1] and Rec-
NMP [38] employ heterogeneous memory systems to exploit the
power-law in the item access frequency distribution; however, they
do not improve the memory tra�c. Second, SPACE [34] employs

282

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada H. Ye, S. Vedula, Y. Chen, Y. Yang, A. Bronstein, R. Dreslinski, T. Mudge, and N. Talati

a heuristic threshold to select a small subset of popular items and
stores exhaustive combinations of two-item partial sums that leads
to low memory bandwidth reduction. Third, MERCI [48] employs
an expensive user trace processing technique to store partial sums
of more than two items. It has three main drawbacks: (i) the algo-
rithm does not scale to large embedding tables, (ii) the algorithm
operates on the level of sub-groups of embeddings and it does not
capture a global view of user-item interactions; thus the resulting
partial sum formation is based on a limited scope of user-item in-
teractions, leading to sub-optimal memory tra�c reduction, and
(iii) its design is unaware of memory heterogeneity. An ideal de-
sign goal is to signi�cantly reduce memory tra�c while exploiting
memory heterogeneity in a scalable fashion.

This paper presents GRACE—a scalable graph-based algorithm-
system co-design that signi�cantly improves the memory system
performance of DLRM embedding reduction on commodity hard-
ware. Due to the software-only nature of its design, GRACE can be
immediately deployable in today’s data centers. The design goals
of GRACE are four-fold: (1) exploit spatial and temporal locality in
the workload, (2) signi�cant memory tra�c reduction, (3) memory
heterogeneity awareness, and (4) scalability to large embedding
table sizes. To this end, we cast the problem of scalably identifying
popular item combinations of arbitrary lengths to a graph problem.
Using the outcome of this problem, we present a generic system
design framework to improve DLRM performance.

Speci�cally, GRACE analyzes the item preferences of di�erent
users to construct an Item Co-occurrence Graph (ICG). Nodes in
this graph represent items, and edge weights represent the num-
ber of times two items are co-accessed. Mapping co-occurrence
frequencies to a graph o�ers a global view of co-occurrence events
that can scale to a large number of users/items. We then propose a
novel clustering algorithm for ICG that �nds frequently accessed
item combinations. Each resulting cluster is a set of co-accessed
items. To best exploit this algorithmic framework, GRACE stores
the partial sums of frequently co-accessed item combinations into
a software-managed cache space. The ICG clustering algorithm
is cache layout aware. GRACE e�ectively navigates the trade-o�
between memory tra�c reduction and heterogeneous memory
bandwidth utilization by appropriately distributing partial sums
and single-item embeddings into cached and non-cached spaces.
ICG construction and clustering, and partial sum cache data in-
jection are performed o�ine without a�ecting ongoing inference
cycles. At runtime, GRACE exploits both cached partial sums and
frequently accessed single-item embeddings to signi�cantly reduce
the memory tra�c and improve spatial and temporal locality.

To showcase the e�ectiveness of GRACE, we use a case study
of a heterogeneous CPU-GPU system, widely deployed in today’s
data centers [25, 45, 63, 76] for executing DLRMs. In this system,
the capacity-limited GPU memory acts as a software-managed
cache. Our evaluation1 shows that GRACE outperforms the state-
of-the-art techniques SPACE [34] and MERCI [48] by 1.5⇥ and 1.4⇥,
respectively. We further show that GRACE reduces the memory
tra�c of embedding reduction by 1.5⇥ and 1.1⇥ over SPACE and
MERCI. GRACE also improves performance over prior works by

1We use an in-house implementation for SPACE [34], and open-source implementa-
tion [3] of MERCI [48] by the authors.

balancing the tra�c between the heterogeneous memory system.
The graph clustering algorithm in GRACE scales well with the in-
crease in the number of user/items, reducing the processing cost by
8.3⇥ compared to MERCI. The scalable nature of GRACE enables
analysis of large user-item interaction traces and embedding tables
in a practical fashion. We demonstrate the generality of GRACE
by presenting case studies of two additional hardware platforms: 1)
a homogeneous GPU memory and 2) a DIMM-HBM heterogeneous
memory with Processing-In-Memory (PIM) capability. These stud-
ies show consistent improvements of GRACE over prior systems.

Compared to the state-of-the-art system MERCI, GRACE makes
the following novel contributions. First, GRACE fundamentally
redesigns the problem of �nding frequently accessed item com-
binations by formulating it as a graph problem. This formulation
provides a global view of the user-item access trace, as opposed
to MERCI, which operates with a limited scope of user-item inter-
actions. Second, GRACE proposes a scalable clustering algorithm
whose complexity grows linearly with the number of items and
is independent of the number of users. To compare, the runtime
complexity of MERCI is quadratic in the number of items and in-
creases linearly with the number of users. Third, GRACE design
is memory heterogeneity-aware, which caters to the data center
systemmodeling of the DLRMworkload deployment [24, 63], while
MERCI is designed only for homogeneous memory systems.

To summarize, the key contributions of GRACE are as follows:
• Casting the problem of �nding popular item combinations
in DLRM to a graph problem.

• Introduction of novel Item Co-occurrence Graph (ICG) that
scalably records co-accessed item combinations for DLRM.

• A system-aware and scalable graph clustering algorithm
aimed at �nding arbitrary-length popular item combinations
within the capacity-limited cache space.

• GRACE—an algorithm-system co-design that reduces mem-
ory tra�c and exploits heterogeneous memory system to
improve end-to-end DLRM throughput by 1.40⇥ and 1.35⇥
compared to the state-of-the-art frameworks SPACE [34]
and MERCI [48], respectively.

• GRACE is open-source for the bene�t of the broader research
community: https://github.com/Linestro/GRACE.

2 BACKGROUND
2.1 Personalized Recommendation Models
The goal of DLRM is to predict the Click-Through Rate (CTR) [13,
18, 54, 72, 78], i.e., the probability of a user clicking on an advertised
item. A major data center operator Meta (previously Facebook) has
claimed [26] that DLRM models consume more than 60% of their
AI inference cycles in production, which makes them a leading
candidate for optimization. In contrast to traditional deep neural
network (DNN) models, DLRM features a hybrid architecture of
multi-layer perceptron (MLP) models and embedding layers. The
“dense” input features (e.g., age, gender, and location of the user)
are processed by the �rst MLP to generate dense features. The
sparse input features (e.g., previous user-item interactions), on the
other hand, are processed by the embedding layers. An embedding
layer contains a large embedding table that stores feature vectors
of di�erent items. A user’s past interactions with items are used

283

GRACE: A Scalable Graph-Based Approach to Accelerating Recommendation Model Inference ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

NoCPU GPU0 GPUN-1

CPU
Memory GPU Memory

(a)

Sparse Features Dense Features

In GPU
Memory

Yes

TX Indices
to GPU

Read Emb

Reduce

Read Emb

Reduce

TX Features to GPU

Bottom MLP

TX Results to
GPU

Top MLP

+
Reduce

Concat

||(b)

Hot Embeddings
Bottom + Top MLP

Cold
Embeddings

Figure 1: (a) A heterogeneous CPU-GPU system executing
DLRM inference, and (b) work�ow of DLRM inference exe-
cution with a heterogeneous system.

to index these tables to extract items’ features. These features are
then reduced to represent the summary of the user’s interests. This
layer performs sparse computation because a user only interacts
with a handful of items out of millions of available items. These
sparse and dense features are thereafter concatenated and fed into
another MLP layer to predict the CTR.

2.2 DLRM Inference with GPU Support
DLRM systems in production [25, 45, 63, 76] employ a hybrid CPU-
GPU design to execute MLPs and memory-bandwidth–demanding
embedding layers in DLRM models. A simpli�ed depiction of exe-
cuting DLRM models on a hybrid CPU-GPU system is presented in
Fig. 1(a). GPU executes MLPs to exploit higher compute throughput.
The high-bandwidth GPU memory is used to handle the memory
bandwidth-intensive reduction operations of the embedding lay-
ers. However, the embedding tables that store all item features can
amount from tens of GBs to TBs, making it impossible to �t the
entire table into GPU memory. Thus, the GPU memory acts as a
software-managed cache space to store a portion of the embedding
tables [1, 25, 34, 45, 63]. Low-bandwidth CPU memory with high
capacity is employed to store and reduce the rest of the embedding
entries that do not �t in the GPU. We further show in Fig. 1(b) the
state-of-the-art DLRM inference framework that incorporates a
GPU. After receiving a batch of user requests, the requested em-
bedding indices are transferred (TX) to the GPU and are evaluated
for whether each of them is on CPU or GPU. The embedding reduc-
tion operations will distribute to the corresponding memory and
CPU/GPU reduces the embeddings to produce the results for each
user before the results are �nalized on GPU for top MLP layers.

2.3 Exploiting Popular Choices in DLRMs
Real-world DLRM inputs follow a power-law distribution [1, 22, 48,
58, 68], where a small collection of popular items accounts for a
large fraction of embedding table accesses. Below, we summarize
prior works that exploit power-law distribution for optimization.

• FAE [1] proposes a framework that constructs an empirical
distribution of item access frequencies by pro�ling a portion
of the user-item access trace. The framework then calibrates
a popularity threshold and uses the GPU memory to store
the highly accessed embeddings.

• RecNMP [38] proposes a small cache structure to each rank-
level near-memory processing module to bypass the DRAM
loads of frequently accessed items.

• SPACE [34] employs a hybrid memory architecture with
HBM and DIMM, where HBM stores popular user choices.
SPACE introduces two new concepts called gather locality

Memory Traffic Reduction (x)

He
te

ro
ge

ne
ou

s
M

em
or

y
Aw

ar
e

1 2

Goal

MERCI

SPACEYes

No

FAE,
RecNMP

(a) (b)

0

0.5

1

1.5

2

2.5

Inf HBM SPACE MERCI ORACLE-OF-2

Pe
rfo

rm
an

ce

Approach

Figure 2: The landscape of DLRM embedding layer optimiza-
tion design space and their respective performance over an
in�nite GPU memory model.

and reduction locality. The power-law nature of the item
access frequencies implies that preferential treatment of pop-
ular items (i.e., placing them in HBM) can promote gather
locality. Reduction locality, on the other hand, is availed by
storing partial reductions of any two popular item vectors.
Speci�cally, SPACE uses psum2, i.e., reduction of embedding
vectors of pairs of popular items. To exploit these two types
of locality, SPACE pre-processes the user-item access trace to
extract popular item choices and their combinations. These
popular embedding vectors are stored in capacity-limited
HBM that enables high-bandwidth access, while other em-
bedding vectors are extracted from DIMMs.

• MERCI [48] generalizes SPACE by storing partial sums of
more than two items. MERCI inspects the user-item interac-
tion trace, analyzes popular co-accessed items, and merges
them into clusters. Within the cluster, all partial sums are
stored using the additional DRAM storage.

3 UNDERSTANDING THE CHALLENGES IN
ACCELERATING DLRM INFERENCE

3.1 Growing Data Sizes and Demands
The recent development of DLRM observes a super-linear growth
of capacity and bandwidth demands. The evolution in DLRM has
resulted in much richer embedding features, leading to increased
data volumes. The memory footprint of DLRM has increased by 16
times, reaching an order of terabytes within four years [52, 77]. Ad-
ditionally, the inherently irregular nature of memory accesses over
large embedding tables results in a signi�cant portion of accesses
that cannot be served using capacity-limited caches, increasing the
o�-chip memory bandwidth requirements. The bandwidth demand
of DLRM embedding layers has increased by 30 times to 2TB/s, dra-
matically outpacing the bandwidth growth of accelerator memories
and interconnections [63].
3.2 Limitations of Prior Works
Fig. 2(a) shows the landscape of optimization directions divided
into memory tra�c reduction and heterogeneous memory aware
placement for better memory bandwidth utilization. The goal is
to achieve both high memory tra�c reduction and high memory
bandwidth utilization of the heterogeneous memory at the same
time. However, we show in the following that none of the prior
works supports designs in both optimization directions, and thus,
results in sub-optimal performance.

Memory tra�c reduction. In what follows, we discuss prior
works that attempt to improve the DLRM embedding layer per-
formance. As many items are frequently accessed together, these
works propose storing their partial sums, resulting in a memory
tra�c reduction. SPACE [34] uses a subset of the most popular

284

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada H. Ye, S. Vedula, Y. Chen, Y. Yang, A. Bronstein, R. Dreslinski, T. Mudge, and N. Talati

items and caches partial sums (psum) all two–item combinations of
popular items to produce reduction locality. This reduces the mem-
ory bandwidth requirement. However, we show that SPACE only
reduces the memory tra�c by 1.09⇥ on average (detailed in Fig. 10).
While the most popular single items are likely to be accessed by
di�erent users, there is no guarantee of users accessing all possi-
ble two popular item combinations frequently. We �nd that only
an average of 25% of popular psum of two items stored in SPACE
represent 95% of the accesses to the cache space. This shows that a
majority of cached partial sums in SPACE are accessed signi�cantly
less frequently. This caching space can be better utilized by stor-
ing other more frequent patterns. Also, SPACE only tracks psums
among O

�p
=
�
frequently accessed items, where n is the number

of items, making the strategy unscalable to large datasets.
MERCI [48] �nds that items that co-occur can bene�t from memo-
ization of their partial sums. Such memoization can be generalized
to clustering the co-occurred items and storing all psums within
each cluster. MERCI proposes generating the most cost-e�cient
item clusters to �ll the cache space. However, the main drawback
is the complexity of generating such clusters. MERCI �rst classi�es
each item as a single-item cluster and recursively measures the
bene�t of merging any two clusters. By merging two clusters, all
the partial sums within the clustered items are stored to reduce the
memory bandwidth requirement. The amount of bandwidth reduc-
tion is measured by inspecting the inverse map of the full training
trace. The clustering incurs an overhead of O

�
⇠ ⇥ =2 ⇥<

�
, where

C is the maximum capacity of generating psums, n is the number of
items andm is the number of users in the training trace. In practice,
MERCI breaks the total item set into k sub-groups using an o�-the-
shelf algorithm [8] and only merges within the sub-group. This

reduces the complexity to O
✓
⇠ ⇥ : ⇥

⇣
=
:

⌘2
⇥<

◆
. Nevertheless, the

complexity of MERCI grows super-linearly with the increase in the
number of items and number of users, making the algorithm not
scalable to large datasets.

Memory heterogeneity awareness. Both FAE [1] and Rec-
NMP [38] set a heuristic threshold to distribute popular items to
GPU/RankCache and exploit the high bandwidth memory of the
heterogeneous system. SPACE stores popular embeddings (and
psums) to produce gather locality.

To analyze the importance of memory heterogeneity awareness,
we measure the performance of executing DLRM on a host machine
that uses a heterogeneousmemory system (con�guration detailed in
§6). For baseline performance analysis, we assume an in�nite GPU
memory capacity and naively migrate all embeddings (no psums) to
the cache space, i.e., the GPU memory. We further tested an oracle-
of-2 framework that assumes psum of any 2 item embeddings
can be accessed, and memory throughput on the heterogeneous
memory system achieves a perfect balance between the CPU and
GPU memory. While an oracle-of-3 or more is possible, we choose
an oracle-of-2 to compare with MERCI and GRACE because it
provides a reasonable roo�ine for the reduction factor. Fig. 2(b)
shows that with the same additional capacity on GPU, two strategic
frameworks SPACE and MERCI only outperform the baseline by
1.14⇥ and 1.20⇥ on average, while oracle-of-2 outperforms the
baseline by 2.16⇥. We conclude 2 key reasons for this gap.

(a) Lowmemory tra�c reduction ratio. The main speedup of
SPACE stems from setting a heuristic threshold and storing popular
item embeddings on HBM. This empirically distributes the tra�c to
both CPU memory and GPU memory, achieving a higher collective
bandwidth. However, the tra�c reduction ratio only goes up to
1.09⇥ in SPACE due to the reduction strategy being unscalable to
large datasets. FAE and RecNMP fall into the same category with a
tra�c reduction ratio of 1 (no reduction).

(b) Lack of heterogeneous memory awareness.MERCI �nds
items clustering assignments that maximize the memory tra�c
reduction using psums. However, this does not necessarily lead to
optimal performance. By caching psums to the capacity-limited
GPU, the bandwidth requirement is reduced, but this comes at the
cost of excessively populating the cache space with psums that are
rarely accessed. The occupied memory capacity for storing such
psums prevents adding single-item embeddings to the GPU. This
causes many item embeddings to be accessed from DIMM-based
low bandwidth memory, throttling the overall memory throughput
(detailed in §7.1). An ideal clustering algorithm should be memory
heterogeneity aware and balance the trade-o� between memory traf-
�c reduction and the heterogeneous memory throughput to achieve
optimal performance.

3.3 Challenges in Scalable System Design
Today’s DLRM models involve several million items accessed by
tens of millions of users [52, 77]. Scalably identifying frequently
accessed item combinations that result in an e�ective memory
tra�c reduction remains a major challenge. Additionally, prior
works do not systematically optimize for a collective bandwidth
reduction of the heterogeneous memory system, resulting in a
memory throughput imbalance.

4 GRACE ALGORITHMIC FRAMEWORK
This section presents a novel algorithmic framework of GRACE to
tackle the aforementioned challenges. The framework designs the
content of the capacity-limited cache space to maximize the DLRM
inference performance. The designed cache space can contain both
popular item embeddings and partial sums of item combinations of
arbitrary lengths. We then present complexity and runtime over-
head analysis to demonstrate the practicality of our algorithm.

4.1 Design Goals
The goal of the GRACE algorithmic framework is to make the most
e�cient use of the cache space to store frequently accessed items
and their combinations, given the capacity limitation. In particular,
the algorithmic framework must meet the following expectations:

• No exhaustive caching. As discussed in §3, storing all pairs of
highly accessed items leads to an O

�
=2

�
space complexity,

where n is the number of highly accessed cached items. In
this setting, it is not guaranteed for all of the two frequently
accessed items to be frequently co-accessed; caching partial
sums of rarely co-accessed items wastes cache space. Thus,
the algorithm must not exhaustively cache all the possible
partial sums of highly accessed items.

• Scalable with trace size. The algorithm to build the cache
space must have low complexity. In practice, the user-item
interaction trace size can grow in�nitely, and the number
of users and items can scale to many millions. Therefore, a

285

GRACE: A Scalable Graph-Based Approach to Accelerating Recommendation Model Inference ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

high-complexity algorithm to �nd popular partial sums to
cache can lead to prohibitive analysis times.

• System awareness. The algorithm should account for di�erent
dataset characteristics and underlying system con�gurations,
and be extensible to multiple embedding tables to achieve
optimal performance in realistic deployment environments.

4.2 Algorithm Details
Given the user-item interaction trace, the goal of the algorithm is
to �nd the most frequently accessed items and item combinations.
Naively counting frequencies of all item combinations results in
a combinatorial explosion, thus it is not feasible even for a small
number of item combinations. To tackle this problem, here we
introduce the notion of an Item Co-occurrence Graph (ICG). In an
ICG, the nodes represent items, and edge weights represent the
frequency of co-occurrence of items across the sampled user access
patterns. We cast the problem of scalably tracking frequencies
of arbitrary-sized item combinations as a graph problem on the
ICG. The user-item interaction trace can have di�erent orders of
items being accessed (i.e., irregular accesses) by users, and the
trace size can grow in�nitely. Key advantages of representing user-
item interaction trace via ICG are (i) the graph size is invariant
to the number of users, (ii) it is an order-agnostic representation
of user-item trace, (iii) the number of nodes in the graph grows
only linearly in the number of items. Heavily weighted edges in
the ICG e�ciently capture highly co-accessed combinations of
items gathered from all user-item interactions. Thus, ICG provides
a succinct global view over the user-item interaction trace, and
allows for the design of e�cient graph analysis algorithms that
scale to large numbers of users and items. In what follows, we
present a uni�ed algorithmic framework that identi�es frequently
accessed single items and their combinations using the ICG. This
is a two–phase algorithm: the �rst phase records user preferences
and constructs of the ICG, and the second phase clusters this graph
to �nd popular items and their combinations.

ICG Construction Phase.We are provided with sampled his-
torical data of items accessed by users. Each user has a list of ac-
cessed items organized in a data structure user_accesses. We
use these user-item accesses to construct the ICG which contains
the frequency of co-occurrence of items aggregated across users.
Alg. 4 (see Appendix §A.1) presents the pseudo-code of this graph
construction phase. To build the ICG, we �rst randomly sample
users. For each sampled user, we bu�er all pairs of items accessed
by the user as item co-occurrences. We then use this item co-
occurrence bu�er to construct a weighted graph by increasing the
edge-weight by 1 for each co-occurrence. The bu�er of edges/item
co-occurrences can be constructed online by a �re-and-forget pro-
cess without impacting the performance of ongoing DLRM infer-
ence; the weighted ICG is constructed o�ine during the cache
design phase. Further discussion on our proposed usage model is
presented in the sequel (§5.1).

ICG Clustering Phase. This phase clusters the ICG. The goal of
this algorithm is to identify frequently occurring item combinations
from the user access patterns. Post clustering, the nodes (items)
from the same cluster are deemed to be accessed together frequently.
One way to cluster the graphs is by employing o�-the-shelf graph
clustering algorithms such as Metis [46]. Notably, these clustering

Algorithm 1 Pseudocode for partitioning ICG into clusters
1: procedure C������ICG() ù O�ine ICG clustering
2: Input: G: Item Co-occurrence Graph (ICG)
3: Input: nodes: Vertex set of G sorted by their degrees
4: Input: capacity_budget: Number of cache lines allowed in cache space
5: Output: cluster_list: Assignment of ICG nodes into di�erent clusters
6:
7: node_idx=0; cluster_id=0; occupied_space=|nodes|

8: active_list[u]=0, 8 u 2 nodes ù indicator whether a node is clustered
9: while node_idx < |nodes| do
10: anchor_node = nodes[node_idx]

11: remaining_memory = capacity_budget - occupied_space

12: // Create a cluster using an anchor node
13: cluster = F���C������(G, anchor_node, active_list,

14: remaining_memory)
15: // Calculate occupied space, break if OOM
16: occupied_space += 2

cluster.size()
- 1 - cluster.size()

17: if occupied_space >= capacity_budget then
18: break
19: cluster_list[cluster_id] = cluster

20: cluster_id += 1

21: while !active_list[nodes[node_idx]] do
22: node_idx += 1 ù increment until reaching the �rst active node
23: return cluster_list

algorithms optimize for di�erent criteria and do not create clusters
that minimize DLRM bandwidth as we show in §7.

GRACE proposes a novel clustering algorithm that clusters the
graph with the objective of maximizing bandwidth reduction in DLRM.
Our proposed algorithm is caching space-aware, i.e., it also accounts
for capacity-limited cache space for clustering decisions. Post clus-
tering, GRACE caches the partial sums of embeddings of all item
combinations within each cluster. During inference, these cached
partial sums are used to (i) reduce memory tra�c, and (ii) avail e�-
cient memory accesses to increase end-to-end DLRM throughput.

Alg. 1 presents the pseudocode of the proposed ICG clustering
phase. The proposed algorithm uses a greedy approach to form
the clusters. The inputs to the clustering algorithm are: (i) the ICG
generated in the ICG Construction Phase; (ii) a sorted vertex list,
where nodes are sorted by their degrees in ICG; (iii) a capacity
budget, denoting the number of lines of item embeddings/psums
allowed in the cache space. We maintain an active list of vertices
that are not clustered and update this list as the algorithm pro-
gresses. The algorithm loops over all active vertices and attempts
to greedily form new clusters. Within each loop, the largest degree
vertex that is active is chosen as an anchor node and is passed to
F���C������() to form a cluster of an arbitrary size. Upon forming
a cluster, occupied_space is updated. For each cluster, the algo-
rithm saves all combinations of its constituent items, taking an
additional size of 2cluster_size � 1 � cluster_size compared to
originally stored item embeddings. The algorithm terminates when
the occupied_space reaches the capacity budget. We now detail
how to form clusters.

Forming a cluster. Alg. 2 presents the pseudocode for forming
individual clusters. The function receives four inputs: (a) the ICG,
(b) anchor_node—a starting node from which we attempt to form
a cluster, (c) active list of nodes that are not yet clustered; (d) re-
maining cache capacity. Given an anchor node, all its neighbors
that are part of the active list become the candidates to be added
to the cluster. We use a cost-bene�t model to estimate the cost
e�ciency obtained by including a new node in the cluster. To select
the best candidate to add to the existing cluster, we compute the
estimated bene�t of each of the candidates to the cluster, and admit
the node that yields the maximum expected bene�t. This algorithm

286

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada H. Ye, S. Vedula, Y. Chen, Y. Yang, A. Bronstein, R. Dreslinski, T. Mudge, and N. Talati

Algorithm 2 Pseudocode for an algorithm to form a new cluster
under a capacity budget.
1: procedure F���C������(g, anchor_node, active_list) ù O�ine
2: Input: G: Item co-occurrence graph (ICG)
3: Input: anchor_node: The node selected to create the cluster
4: Input: active_list: List of unclustered nodes
5: Input: remaining_capacity: Remaining memory within the cache space
6: Output: cluster: Formed cluster containing anchor_node
7: Constant: MAX_CLUSTER_SIZE: Maximum size of any cluster
8:
9: candidates = {anchor_node}

10: best_candidate = anchor_node

11: current_benefit = 0

12: while true do
13: cluster.append(best_candidate)

14: candidates.remove(best_candidate)

15: active_list.erase(best_candidate)

16: // Potential candidates while inducting the next node into cluster
17: candidates.add(active_list \ neigh(best_candidate))

18: best_candidate = -1

19: current_benefit *= tolerance_factor

20: if cluster.size() >= MAX_CLUSTER_SIZE then
21: break
22: if 2cluster.size()+1 � 1 >= remaining_memory then
23: break
24: for all candidate 2 candidates do
25: // Estimate bene�t of adding the candidate to the cluster
26: est_benefit = E�������B������(G, cluster, candidate)

27: if est_benefit > current_benefit then
28: current_benefit = est_benefit

29: best_candidate = candidate

30: if best_candidate < 0 then
31: return cluster

32: return cluster

is greedy because it chooses the next best node from the candidate
set to insert into the clusters. When a new node is admitted to
the cluster, it is removed from the candidate set and the active list.
For the next iteration, the candidate set is updated to contain the
neighbors of all the nodes in the cluster so far that are in the active
list. In each round, after determining a new node to join the cluster,
we record the total estimated bene�t so far. When new candidates
are evaluated, they are deemed valid to join the cluster if the cost
e�ciency yielded by their addition to the cluster is greater than the
previous cost e�ciency (within a speci�ed tolerance level). This
procedure terminates when one of the following criteria is satis�ed:
(i) no valid candidates are found to add to the cluster based on the
estimated bene�ts; (ii) the cluster size exceeds a maximum cluster
limit imposed externally; (iii) the cluster exceeds the total memory
budget in the cache space. Finally, the formed cluster is returned.

Cost-bene�t model for joining a cluster. The goal of the cost-
bene�t model is to estimate the bene�t of admitting a candidate
node into a given cluster. Measuring the exact bene�t of adding
a node to a cluster of items requires going over the entire trace
of user accesses to measure the frequency of all subsets of items.
The resulting complexity would be exponential with the size of the
cluster. Therefore, it is prohibitively expensive and unrealistic even
for small datasets. The key idea of our approach is to exploit the item
co-occurrence graphs to estimate the expected savings of a cluster
without explicitly counting the frequency of all combinations. Our
estimates rely on inclusion-exclusion rules in combinatorics [10].
This allows us to build lower and upper bounds on the frequency of
larger tuples (triplets, quadruplets, and beyond) by only measuring
the frequency of pairs (i.e. the number of co-occurrences). These
lower and upper bounds on frequencies directly allow us to estimate
the lower and upper bounds of the expected bandwidth reduction
resulting from caching all subsets of a given cluster.

a b

c

5

3 4 x

a

b

c

4-x5-x

3-x

Adding node c

= 2×$ + 1× 5− $ + 1× 4− $
+	1× 3− $

= 12− $; $ ∈ 0,3

(a) (b) (c)

Saving

Min benefit: 9, max benefit: 12

Figure 3: An example demonstrating the cost-bene�t model
of adding a node to an existing cluster.

We provide an intuitive explanation of our cost-bene�t estima-
tion using an example. In Fig. 3, suppose we are provided with
a cluster that already contains items 0 and 1, and our goal is to
estimate the bene�t of adding item 2 to the cluster. As depicted in
Fig. 3(a), suppose items 0 and 1 are co-accessed 5 times, items 1
and 2 are co-accessed 4 times, and items 0 and 2 are co-accessed 3
times. However, note that the graph, since it encodes only pairwise
relations, does not o�er any information on how often all three
items are accessed together. We can represent this information in
the form of a Venn diagram where (0,1), (1, 2), and (2,0) corre-
spond to di�erent sets, as depicted in Fig. 3(b). We assume that
the intersection of three sets has G elements. Storing the partial
sum of 0,1 & 2 , denoted by ?BD<(0,1, 2), reduces the number of
embedding fetches from 3 to 1 when all these items are accessed
together. Storing the partial sums of pairs, on the other hand, would
save one embedding fetch if the pair is co-accessed. Based on this
knowledge, we can calculate the total savings of caching all pairs
and the triplet as shown in Fig. 3(c) as a function of G . Given the
number of co-accesses between (0,1) = 5, (1, 2) = 4, and (2,0) = 3,
the maximum frequency of (0,1, 2) could be 3 and the minimum
frequency of (0,1, 2) could be 0. Therefore, caching all combina-
tions of 0, 1, and 2 yields worst-case and best-case savings of 9 and
12, respectively.

Forming a cluster with nodes 0,1, and 2 implies that we cache
these embeddings and their partial sums: emb(a), emb(b), emb(c),
and additionally psum(a, b), psum(b, c), psum(a, c), and psum(a, b,
c), i.e., 4 additional cached partial sums. Consequently, the cost-
bene�t model estimates the maximum and minimum bene�t of
adding a node 2 to the cluster of nodes 0 and 1 would be 9/4
(min_expected_saving in Algorithm 3) and 12/4 (max_expected
_saving in Algorithm 3). In practice, we observe that the exact
bene�t of adding a node to a cluster is around the midpoint of
the maximum and minimum estimated bene�ts. We use a linear
interpolation factor U between the lower and upper bounds of the
bene�t to estimate the cost e�ciency of the proposed cluster as
shown in Algorithm 3. §B.4 discusses the sensitivity of tuning of this
estimation. GRACE uses a graph-based algorithm, which readily
applies to multiple embedding tables (shown in §A.3).

4.3 A Walk-Through Example
To best understand the proposed algorithms, Fig. 4 shows a walk-
through example of our ICG building and clustering phases. Fig. 4(a)
shows the user-item interaction trace, where 5 di�erent users are
accessing unique items. In this example, we set the maximum cache
capacity to 10 cached items, tolerance factor to 0.4, and U to 0.5.
Note that our algorithms are not restricted to these parameters and
can work for any parameter setting, these parameters are chosen
for simplicity.

Fig. 4(b) shows the ICG that is formed as a result of shown user
preference trace. In this example, the node IDs correspond to items

287

GRACE: A Scalable Graph-Based Approach to Accelerating Recommendation Model Inference ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

0 4 5 1

0 2

3

4 5

Res. Clusters

+

u0:0,1,2,3
u1:2,4,5
u2:0,2,3
u3:4,5
u4:2,3,4

User Preferences

0

2 3

1 4

5

3
2 2

2

2

11 1 1

1

Build Graph

2 33

0
2

4
2

1
21

2 33

2
0

3
5

2

2
1

2

3 0 4 5 1

2 33

0
22

4 524

5
24

4
3

1
1

2,0 =2/1
2,3 =3/1
2,4 =2/1
2,5 =1/1
2,1 = 1/1

Est.Benefit
2,3,0 =[5/4, 7/4]
2,3,1 =[4/4, 5/4]
2,3,4 =[5/4, 6/4]
2,3,5 =[4/4, 5/4]

Est.Benefit

Pick node 3

Est.Benefit=3
Est.Benefit=6/4
Tolerance>40%
prev Est.Benefit

Est.Benefit=0

Est.Benefit=0
Est.Benefit(4,5)=2/1

Est.Benefit=2

Te
rm

in
at

e
sp

ac
e

ex
ce

ed
ed 0

2
0+2
3
0+3
2+3
0+2+3
4
5
4+5

Cached Space

Active List

Cluster Node

Pick node 5

5
1 1

1

(a)

(b)

(c) (d) (e) (f) (g)

(h) (i) (j) (k)

1
1

Te
rm

in
at

e
sp

ac
e

ex
ce

ed
ed3 0 4 5 1 0 4 5 1 4 5 1

Pick node 0

5 1 5 1 1

Figure 4: (a) User-item preference trace, (b) resulting ICG, (c-j) a walk-through example of the ICG clustering algorithm, and (k)
resulting clusters and cached embeddings.

Algorithm 3 Pseudocode to estimate the cost bene�t of a node
joining an existing cluster
1: procedure E�������B������(G, cluster, candidate) ù O�ine
2: Input: G: Item co-occurrence graph (ICG)
3: Input: cluster: the current formed cluster so far
4: Input: candidate: candidate node to join cluster

5: Output: est_benefit: estimated savings per cache line
6:
7: g = subgraph(G, cluster)

8: // Construct g’, the resulting cluster if candidate was added to g

9: g’ = g.add_node(G, candidate)

10: // Estimate cost bene�t by the creation of g’
11: lower_bound = min_expected_saving(g’)

12: upper_bound = max_expected_saving(g’)

13: // g’ is the resulting cluster if candidate was added, thus |g’ | � 2
14: est_benefit = (1�U)⇥lower_bound + U⇥upper_bound

2(|g’|) �1� |g’|
15: return est_benefit

from 0 to 5. The edge weights of ICG represent the number of
times items corresponding to its source and destination nodes are
co-accessed. For example, items 2 and 3 are co-accessed by three
users, i.e., users 0, 2, and 4, hence, a weight of 3 is assigned to the
edge between ICG nodes 2 and 3. This graph is a result of the ICG
building phase, the next phase is clustering this graph.

The ICG clustering algorithm starts by assigning all nodes to the
active list, and picking the �rst node to start forming clusters. As
shown in Fig. 4(b), because node 2 has the highest degree (i.e., item
2 is the most popular), the �rst node that starts building clusters is
node 2 (Fig. 4(c)). Based on line 24 of Algorithm 2, all the neighbors
of node 2 from the active list are picked to estimate the bene�t–per–
cached–space of adding them to an existing cluster. Based on the
ICG connectivity, node 3 has the best estimated bene�t of 3/1 for
getting added to the cluster. Therefore, our algorithm picks node 3,
and forms a cluster of nodes 2 and 3. Note that this cluster takes 3
cache spaces, which is less than the cache budget of 10. Therefore,
this algorithm continues and it attempts to �nd new nodes to add
to the same cluster.

As shown in Fig. 4(f), the cluster expansion continues by examin-
ing the neighbors of ICG nodes 2 and 3 to the existing cluster. Using
nodes 0, 1, 4, and 5, the algorithm calculates the cost of adding
each of these nodes to an existing cluster of nodes 2 and 3. The
�gure shows the range of bene�ts calculated by our algorithm, and

using an U of 0.5, node 0 has the highest estimated bene�t of 6 / 4
(the denominator of 4 is because the cluster of three nodes would
consume 4 additional caching locations). Because this bene�t is
within a tolerance limit of the previously estimated bene�t (i.e., 6
/ 4 > 0.4 ⇥ 3), node 0 is added to the cluster. At this point, 7 out
of 10 cache spaces are claimed, and adding any more nodes to the
cluster would result in more than 10 cache spaces. Therefore, this
clustering algorithm terminates, and it picks up a new node 4 from
the active list to form a fresh cluster. The result of this iteration of
clustering is a 2-node cluster with nodes 4 and 5.

Fig. 4(k) shows the result of this clustering algorithm, where
two clusters are formed with 2 and 3 nodes. It also shows the
consumption of cache space taken by these two clusters. Here, 0+ 2
means the partial sum of items 0 and 2. Of note are two important
details: (i) clusters can be of di�erent sizes (size of 2 and 3 in
this example); (ii) the partial sums of all combinations of items
in a cluster are cached. The cache layout is carefully tailored to
compute addresses easily (detailed in §5.3). In practice, the cache
space budget is much higher, and this algorithm forms several
clusters of di�erent sizes.

4.4 Overhead Analysis
Complexity Analysis. Denote the number of users by<, and the
average length of item interactions per user by ? . The complexity of
ICG construction (Algorithm 4) is O

�
<?2

�
. Let = be the number of

nodes (items) in ICG, 3 be the average degree per node, and : be the
average size of a cluster. The complexity of a single evaluation of
the cost model is O

�
:2

�
. In Algorithm 2, the while(true) loop is

iterated : times; each iteration makes 3 calls to the E�������B���
����() function (Algorithm 3). Therefore the overall complexity
of F���C������() is O

�
3:3

�
, executed =

: times. Thus, the overall
complexity of clustering the ICG is O

�
=3:2

�
.

We highlight the following merits of our algorithmic framework:
(i) the ICG construction phase is linear in the number of users;
(ii) the clustering algorithm is linear in the number of items. This
allows our approach to scale to a large number of users and items.
The ICG clustering complexity is quadratic to : . Our evaluation
shows that : goes up to 8 for the best DLRM performance, making
the clustering algorithm practical.

288

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada H. Ye, S. Vedula, Y. Chen, Y. Yang, A. Bronstein, R. Dreslinski, T. Mudge, and N. Talati

stm ani mRvGElp RII twi spR clR 01 02 03 04
Workload

0

100

200

Cl
us
We
ri
ng
 T
im
e
(s
)

1532139724642329

G5ACE Clustering 0E5CI Clustering

Figure 5: Clustering time comparison of GRACE and MERCI
using a 128-thread implementation among di�erent datasets.

O
nl
in
e

O
ffl
in
e

User Preferences

Remapping Table
Data Center

0 2
0 3

6 9

Co-occurrence
Recording

0

2 3

6 9

0

2 3

6 9

0
2

0+2
3

Construct ICG

Cluster ICG

Cache Emb/Psum

book5,…
book3,…
book9,…

Update
(offline)

book0: 200
book1: 35
book2: 129 1

2

34

5

Figure 6: Usage model of GRACE.
RuntimeAnalysis.To evaluate the runtime overhead ofGRACE

clustering algorithm, we implement a parallel version of this algo-
rithm in C++ using OpenMP. To best match our estimation to a
data center deployment scenario, we run this clustering algorithm
on a high-end server-grade CPU discussed in §6.2. Using a 128-
thread implementation, Fig. 5 compares the clustering speeds of
GRACE and MERCI. GRACE achieves 8.3⇥ faster clustering on
average among all datasets, and 26.6⇥ among the mixed datasets
that have a larger number of items. This shows that the GRACE
algorithmic framework meets one of its key goals, i.e., designing a
practical and scalable algorithm. With the low-cost scalable cluster-
ing algorithm, GRACE can adapt to frequent user-item preference
behavior changes even at an update frequency of hours.

5 GRACE SYSTEM DESIGN
The algorithmic framework of GRACE is generic and can apply to
various types of memory systems. Here, we consider the use case
of a CPU-GPU heterogeneous system and present GRACE system
design. Our system modeling choice is motivated by the fact that
this type of system is widely adopted in today’s data centers that
execute DLRMs [25, 45, 63, 76].
5.1 Usage Model
Fig. 6 depicts a high-level overview of the usage model of GRACE.
It consists of online pro�ling of user-item interactions, o�ine ICG
construction, clustering, and populating the cache spacewith partial
sums of clusters. GRACE is immediately deployable on commodity
hardware platforms. In what follows, we detail the GRACE online
and o�ine components.

Online pro�ling. While running DLRM inference in a data
center, GRACE samples a subset of users, and records their item in-
teractions. Speci�cally, it records which items are accessed together
(i.e., pairwise item co-occurrence recording as depicted in Fig. 6)
and lazily updates the ICG. The lazy nature of graph updates means

that the incoming edges to the graph can be bu�ered and processed
at a later point in time. This ensures that the recording phase does
not interfere with the performance of the ongoing DLRM inference.

O�line analysis. As presented in Fig. 6, GRACE collects the
edges recorded during the online pro�ling phase, and constructs
the ICG o�ine. The constructed ICG is then clustered to �nd fre-
quently accessed item combinations as discussed in §4. For each
cluster, GRACE identi�es and fetches the embedding vectors of
the constituent nodes, computes psums, and caches embedding vec-
tors and psums into the cache space. GRACE generates clusters
in decreasing order of expected cost-bene�t e�ciency, as shown
in Algorithm 1. It then stores clusters of psums accordingly to the
GPU and then the CPU. As shown by prior industrial [63] and aca-
demic [1, 34, 48] works, DLRMs employ a remapping table to keep
track of cached items. GRACE re-purposes this remapping table to
re�ect the cached item set. More details on how to �lter cached and
non-cached accesses, and how to determine the addresses of psums
are presented in §5.3. Note that the clustering of ICG and comput-
ing/caching psums does not a�ect DLRM inference latency as they
are carried out o�ine. Using psums does not change the reduction
results; GRACE does not a�ect DLRM inference accuracy.

Justi�cation of the usagemodel.As shown in priorworks [50],
data center operators typically employ feedback-driven [11] and
post-link optimizations [47, 56] to improve the performance of their
workloads. In the case of DLRMworkload, for example, a data center
operator like Meta may pro�le and record user-item interactions
for a week, analyze them o�ine to create a cache space, and deploy
the updated system for inference in subsequent weeks. Several
prior works [5, 11, 39–41, 56] have successfully demonstrated that
pro�le-guided techniques, similar to GRACE, are practical and they
are deployed in data centers today.

5.2 Heterogeneity Awareness
One of the key goals of GRACE is to achieve a heterogeneous
memory-aware framework that also optimizes for high aggre-
gate memory utilization. To compare, MERCI optimizes for a single
metric of maximizing the memory tra�c reduction. Large clusters
formed by MERCI, while yielding a greater bandwidth reduction,
prevent most embeddings from being stored in a capacity-limited
cache space. In that case, the main memory becomes the throt-
tling bottleneck in processing user requests, and it prevents a high
heterogeneous memory utilization.

To combat this, GRACE can be tuned to form appropriately
sized clusters to store a greater diversity of item embeddings and
combinations to e�ectively use the cache space. GRACE uses the
parameters MAX_CLUSTER_SIZE and tolerance_factor discussed
in Algorithm 1 to navigate the complex trade-o� space of memory
tra�c reduction and balance of the heterogeneous memory band-
width. To be able to apply GRACE to arbitrary input and get the
best speedup, GRACE uses a lightweight decision engine to �nd the
best parameter given dataset characteristics. We use three features
from the dataset input: number of items, average pooling factor, and
average node degree in ICG to train the decision engine. We use the
decision tree implementation from scikit-learn [60] library and use
an optimized CART (Classi�cation and Regression Trees) algorithm.
The decision engine can pick the optimal or near-optimal combina-
tion of maximum cluster size and tolerance without exhaustively

289

GRACE: A Scalable Graph-Based Approach to Accelerating Recommendation Model Inference ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

4, 6, 26, 27, 69, 72, 73, 89, 97Accessed Item IDs:

4, 6, 26, 27 69, 72, 73, 89, 97
Index SplitGPU CPU

See Alg. 5 for
address

computation
Addr
Gen

Cluster Size Decreases

GPU Memory

Clusters of
same size
grouped
together

0x200

CPU Memory

Addr
Gen

0x25c

Address Generation
Example

Offset ID: 0, 2

0 1 0+
1 2

0x200

0+
1+
2

0+
2

1+
2

offset
001 011 111

Addr(0+2):
0x200+1’b101-1

101

Cluster Size Decreases

Figure 7: Example of GRACE cache space layout and address
generation. User access IDs are compared with the starting
address of each unique length of the cluster group to �nd
any clustered accesses. Those clustered accesses have their
partial sum ready in the memory, the address of which can
be directly computed based on their IDs.

experimenting with all possible combinations. The decision engine
accuracy performance is detailed in Appendix §C with a full sweep
of di�erent maximum cluster sizes and tolerance combinations
shown in Fig. 20.

5.3 Address Generation
As detailed in §5.1, GRACE constructs and clusters an ICG, and
stores psums into a cache space o�ine. To e�ciently use these
psums to improve end-to-end performance, it is crucial to design an
e�cient cache address computation logic. To this end, we propose
a cache data layout and corresponding address generation tech-
nique for e�cient GRACE system design. The goal of our designed
combined cache data layout and address generation is to compute
the address based on the accessed user index at an extremely low
cost in software. Fig. 7 shows the proposed layout of cached data,
where the clusters of the same sizes are grouped together and laid
out adjacent to one another in the address space. Notably, GRACE
employs a software-managed cache space to avoid hardware addi-
tions to commercial hardware platforms. Because software injects
cache lines o�ine, it does not disturb the ongoing inference cycles.
To understand cache layout and address generation with a simple
example, assume that the largest size cluster is 4 nodes. GRACE
�rst stores all 4-node clusters, then 3-node clusters, and so on. The
item IDs are remapped in the order of clusters. Algorithm 5 (see
Appendix §A.2) presents the pseudocode for generating redirected
addresses. Given the embedding index of the accessed item, the
address generation logic can quickly derive whether the index be-
longs to the CPU or the GPU. The memory location of the cluster,
the cluster size, cluster ID, and o�set within the cluster are used
to determine speci�c psum addresses (Fig. 7 right). With the above
cache layout, the user index only needs to compare with the starting
address of each unique length of the cluster group (in practice at
most 8 entries) and then compute the address of the embedding
vector/partial sum without accessing additional data structures.

5.4 End-To-End System Design
Fig. 7 presents the end-to-end system execution of GRACE. The
psums are pinned in the CPU and GPU memory using GRACE
software. Similar to an earlier work, we execute on a heteroge-
neous CPU/GPU system [14], and we use 1 GB super pages to
avoid any paging overhead. GRACE re-purposes the remapping

table [1, 34, 48, 63] in software to process the incoming user re-
quests of embedding layers. The remapped and sorted indices split
the requests to either CPU or GPU. With a software-de�ned cache
space, the item indices can directly translate into the cluster ID
and o�set within the cluster. Using Alg. 5, the redirected addresses
are used to correctly serve the requested indices with psums in
the heterogeneous memory. The item embedding reduction is then
executed on both CPU and GPU simultaneously before the CPU
results are sent and reduced with the GPU results (see Fig. 1(b)).
Each batch synchronously reduces item embeddings and computes
sparse features on GPUs before processing the top MLP layers. The
address generation process of the batch of users is overlapped with
the item embedding reduction of the previous batch to ensure that
address generation is not on the critical path. We show in §7.1
that the latency of address generation is negligible compared to
embedding reduction time.

6 METHODOLOGY
6.1 Real-World Datasets
We use a variety of datasets from di�erent web service vendors,
shown in Table 1. We choose datasets of di�erent sizes and average
pooling factors. The average pooling factor of a dataset is de�ned as
the number of items, on average, reduced by each user to compute
sparse embeddings.

Table 1: Real-world datasets from web service vendors.
Category Dataset Name Avg. Pool. Factor #Items

Small
Steam (stm) [36, 59, 71] 71.8 10,978

Anime (ani) [2] 106.3 11,200
MovieLens20M (mov) [27] 144.4 26,744

Medium
DBLP (dblp) [62] 61.8 540,459

AmazonO�ces (o�) [29] 64.0 598,943
Twitch (twi) [61] 30.5 739,991

Large AmazonSports (spo) [29] 96.1 1,505,707
AmazonClothes (clo) [29] 82.0 2,345,346

In addition to evaluating uniform datasets, we also present an
evaluation with a mixture of the datasets to model the real-world
recommendation system that has multiple embedding tables of
di�erent sizes and properties. Table 2 lists the mix of our datasets.
For each dataset, we split by 50:50 ratio to pro�le the behavior and
estimate inference performance (we sweep the training/test ratio
in §B.3). We use the embedding dimension of 1024 and the user
batch size of 1024. For end-to-end speedup analysis, we use DLRM
models in Table 3.

Table 2: Experimented mixture of datasets.

Dataset Name Mixture of Dataset Classes

M1 twi-mov-ani-stm 1M+3S
M2 clo-o�-dblp-ani 1L+2M+1S
M3 spo-o�-dblp-twi 1L+3M
M4 clo-spo-o�-dblp 2L+2M

6.2 System Con�guration
For sampled user traces, we build ICG and form clusters using
the GAPBS [6] framework. We deploy all the inference tasks on a
high-end server and measure the performance. For a heterogeneous
memory system deployment, we use an Intel Xeon Platinum 8380
CPUwith 80 physical cores and 512GB 32-channel DDR4-3200 main
memory as the CPU host. We use NVIDIA A40 with 48 GB GDDR6

290

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada H. Ye, S. Vedula, Y. Chen, Y. Yang, A. Bronstein, R. Dreslinski, T. Mudge, and N. Talati

memory as the GPU device. The embedding table reduction oper-
ation executed on CPU uses AVX-512 instructions, same as [25].
We use OpenMP to parallelize multiple embedding-reducing opera-
tions from di�erent users and we veri�ed the full utilization of CPU
bandwidth. We also veri�ed the correctness of the embedding layer
functionality since GRACE does not alter any reducing results of
embedding layer operations.

While GRACE presents a generic algorithmic and system design
framework to improve DLRM inference throughput, we evaluate
GRACE and prior works [34, 48] using a heterogeneous CPU-GPU
system for a fair comparison. GRACE, however, can be generalized
and adapted to any heterogeneous memory con�guration with a
main memory and cache space.

Table 3: DLRM models for end-to-end performance analysis.

DLRMModel Bottom MLP Top MLP Num. of table

RM1 [24, 26] 128-64-32 256-64-1 8
RM2 [24, 26] 256-128-64 128-64-1 32
RM3 [24, 26] 2560-1024-256-32 512-256-1 10
RM4 [78] - 200-80-2 3

6.3 State-of-the-Art Baselines
In�nite GPUmemory. This solutionmodels an in�nite GPUmem-
ory capacity that can host full embedding tables in GPU memory,
regardless of size. It does not store any psums.

CPU only. This baseline models hosting full embedding tables
in the CPU memory. We use all 80 cores for executing DLRM.

O�-the-shelf clustering techniques. We use the state-of-the-
art graph clustering algorithm Metis [46] that can apply to ICG
clustering. Metis uses a recursive k-way multi-level graph parti-
tioning algorithm to form clusters.

FAE [1].We model an ideal performance of FAE that places a
subset of highly accessed item embedding vectors in a cache space.
There is no memory tra�c reduction mechanism in FAE. To report
the optimal performance of FAE, we sweep every possible cut-o�
frequency value for each dataset separately. The performance is
also an indicator of the upper bound performance of utilizing the
heterogeneous memory without reducing the memory tra�c.

SPACE [34]. SPACE is a state-of-the-art recommendation sys-
tem inference framework that uses static analysis of user pref-
erences to �nd popular items. It signi�cantly outperforms other
hybrid DRAM management frameworks [15, 16, 65]. SPACE caches
the single popular items and an exhaustive set of combinations of
two items in GPU memory. SPACE o�ers a rich design space in
terms of the fraction of single versus partial embedding sums stored
in the cache space. We report the results for the best-performing
parameter setting by extensively sweeping the value of this fraction.

MERCI [48].MERCI is a state-of-the-art framework to generate
clusters of psums to reduce the memory tra�c. Although MERCI is
proposed for a DIMM-only system, we assume that their clusters of
psums are stored in GPU memory. We use the open-source imple-
mentation [3] from authors. Additionally, we navigate the subgroup
size-performance trade-o� in MERCI to �nd the best-performing
parameters and report the optimal performance numbers.

Oracle-of-2. We model an oracle with a psum of 2 that can �nd
partial sums of any 2 item embeddings. While an oracle-of-3 or
larger is possible in theory, we choose the oracle-of-2 because it

provides a reasonable reduction factor roo�ine to compare the mod-
eled systems. For this oracle, we assume that it perfectly balances
the memory bandwidth in a heterogeneous memory system (§6.2).

7 EVALUATION RESULTS
7.1 Performance Analysis
GRACE vs. prior works. Fig. 8 compares the embedding layer
throughput ofGRACEwith CPU only,Metis clustering [46], FAE [1],
SPACE [34], MERCI [48], and an Oracle-of-2 normalized to an in-
�nite GPU memory solution. GRACE and prior works use extra
memory capacity to store embedding vectors/partial sums that is
equal to 1⇥ the size of the original embedding table. The �gure
shows that CPU slows down the execution by 3.7⇥ compared to
the in�nite GPU memory baseline. This is because the compute
throughput and peak memory bandwidth of GPU are much higher
than CPU. FAE achieves 1.1⇥ better performance than the base-
line. We sweep every possible cut-o� frequency for each dataset
separately and report the best performance. FAE only marginally
improves the performance of the baseline because of no memory
tra�c reduction. Moreover, the �gure shows that, on average,
the o�-the-shelf clustering algorithm (Metis) only achieves 0.34⇥
the baseline performance. The slowdown is attributed to the fact
that a generic clustering algorithm does not contribute to partial
sum reductions or heterogeneous memory utilization e�ectively.
This clearly motivates the design of a novel ICG clustering
algorithm to best accelerate DLRM inference.

Fig. 8 shows that GRACE outperforms SPACE and MERCI by
1.5⇥ and 1.4⇥, on average. As discussed in §6.3, we report the best
performance of SPACE and MERCI based on extensive parameter
tuning. This signi�cant performance improvement is attributed to
the GRACE algorithm and system design that (a) �nds popular item
combinations of arbitrary lengths in a scalable fashion, and (b) is
memory heterogeneity aware by e�ectively navigating the trade-o�
of expanding the partial sum sizes or storing more item embeddings.
GRACE e�ectively bridges the performance gap between prior
works and oracle-of-2 by 52.1%. The performance of SPACE and
MERCI are limited due to limited reduction in memory tra�c and
memory heterogeneity unawareness, respectively. This, in turn,
shows that GRACE �nds high-quality popular item combinations to
e�ectively reduce the memory tra�c, and rejects over-sized clusters to
prevent DRAM throttling. This optimizes the collective heterogeneous
memory bandwidth. Interestingly, we �nd thatGRACE performance
is positively correlated with the average ICG node degree. The best-
performing datasets over prior works (stm, ani, mov, and M1) have
the highest ICG average node degrees of (1405, 1148, 2107, and 900).

Heterogeneous memory time split. To further understand
the performance of di�erent baselines, Fig. 9 shows the time split
for the embedding reduction in CPU and GPU memories. Ideally,
a system that splits memory tra�c to balance the execution times
spent on CPU and GPU can achieve high throughput.

SPACE moderately reduces the GPU execution time by 15% com-
pared to a system with in�nite GPU memory, which determines
the overall throughput of SPACE. Because GPU has a much higher
memory bandwidth available compared to CPU, a moderate mem-
ory tra�c redirected from GPU to CPU memory will result in a
signi�cant increase in CPU memory time. This result underscores

291

GRACE: A Scalable Graph-Based Approach to Accelerating Recommendation Model Inference ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

stP ani PRv GEOS RII twi sSR FOR 01 02 03 04 G0
DDtDsets

0
1
2
3

Th
ro
ug
hp
ut

Im
pr
ov
em

en
t
(x
) InI. G3U 0eP

C3U 2nOy
0etis
FAE

S3ACE
0ERCI

GRACE
2UaFOe-RI-2

Figure 8: Embedding layer throughput of In�nite GPUMemory, CPU only, Metis [46], FAE [1], SPACE [34], MERCI [48], GRACE
and Oracle-of-2 normalized to In�nite GPU Memory. All works use 1⇥ additional table capacity to store partial sums.

0.25 0.5 0.75 1.0
GM oI execution tiPe bUeakGown noUP. to InI. GPU MeP (x)

G5ACE

0E5CI

SPACE

InI GPU

AGGU Gen
GPU

CPU
GPU

CPU
GPU

CPU
GPU

Figure 9: Embedding layer execution time breakdown across
CPU and GPU memory, averaged among all datasets, nor-
malized to the in�nite GPU memory execution time. Ideally,
the memory system achieves a balanced execution.

the value of achieving high memory tra�c reduction to speed up the
workload. MERCI performance, on the other hand, is determined by
the embedding reduction time on the CPU. This is because reducing
memory tra�c is the sole design objective of MERCI, which leads to
large cluster sizes. In a real-world heterogeneous memory setting,
this leads to spilling of many embedding psums to CPU memory,
inadvertently increasing its execution time.

The GRACE design e�ectively navigates the complex design
space of reducing memory tra�c by storing large clusters versus
distributing more memory tra�c to the heterogeneous memory
system. Fig. 9 shows that GRACE achieves a near-perfect execution
time split between CPU and GPU to maximize overall application
throughput. The address generation time is shown separately be-
cause it refers to the latency to compute memory addresses and
distribute psums/item embedding requests to CPU and GPU. This is
o� the critical path of the embedding reduction latency as it can be
pipelined with the previous batch reduction. Finally, the �gure also
shows that the address computation time is negligible (6%) com-
pared to the time to load and reduce item embeddings. The GRACE
runtime system thus can fully hide address computation latency by
overlapping it with the embedding reduction of the previous batch.

Memory tra�c reduction. Fig. 10 shows the comparison among
di�erent baselines. The oracle-of-2 achieves a 50% reduction in the
memory tra�c as it stores psums of all two-item embeddings (not
practical). SPACE only reduces memory tra�c by 9% because it
stores partial sums of two item combinations of a very small subset
of items. MERCI and GRACE can reduce memory tra�c by 37%
and 40%. Note that dblp has a memory reduction factor of 2.3⇥ for
GRACE, which is higher than the modeled oracle-of-2. Although
MERCI inspects full training traces to generate optimal clusters, the
high complexity of such inspection forces the algorithm to break
into sub-groups. During this process, co-accesses between di�erent

sub-groups are ignored and MERCI may miss the opportunity to
analyze a global set of co-accessed items. GRACE, on the other
hand, does not have such constraints and the ICG captures accesses
of all items. This result also shows that even in a traditional DIMM-
only memory system, GRACE results in higher memory reduction
and outperforms MERCI.

Tail latency comparison. Fig. 11 shows the 95th percentile
latency of processed batches of compared works, normalized to
the in�nite GPU memory solution. The �gure shows that GRACE
consistently outperforms the state-of-the-art works in terms of
tail latency as well as throughput. Speci�cally, GRACE improves
SPACE by 1.54⇥ and MERCI by 1.41⇥.

End-to-end DLRM performance. By speeding up the embed-
ding reduction phase, GRACE also signi�cantly improves the end-
to-end throughput of DLRM. Fig. 12 shows that GRACE o�ers a
signi�cant end-to-end performance improvement of 1.6⇥ over in�-
nite GPU memory on embedding-heavy models such as RM2. In
MLP-heavy models such as RM3, GRACE achieves 1.2⇥ speedup,
outperforming prior works. DLRMs are executed at a population
scale. Even a single percent performance improvement in data cen-
ter applications leads to a signi�cant reduction in Total Cost of
Ownership (TCO) and global carbon footprint [5, 35]. DLRMs con-
sume more than 60% of AI inference cycles [26]. Fig. 12 shows that
GRACE provides signi�cant end-to-end performance improvement
of 1.2-1.6⇥ compared to MERCI and o�ers a low-cost solution, ob-
viating intrusive hardware modi�cations. Therefore, GRACE can
be immediately adopted in today’s data centers.

Understanding the improvements over MERCI.MERCI is
the state-of-the-art framework aiming at memory tra�c reduc-
tion in DLRM. Interestingly, we observe that GRACE outperforms
MERCI in both memory tra�c reduction and end-to-end through-
put. The reason behind this improvement is twofold. 1) GRACE has
a global view of user-item interactions, irrespective of the dataset
size. This is enabled by our novel graph construction that allows
scalable analysis at a global dataset scale. §4.4 shows that GRACE
analysis scales from both algorithmic complexity and runtime stand-
points. MERCI’s analysis, on the other hand, has a fundamental
limitation that it operates at a sub-group level and fails to capture
a global view of user-item interactions due to scalability issues.
2) While MERCI only aims to improve memory tra�c reduction,
the proposed GRACE algorithm is memory heterogeneity-aware.
GRACE not only improves memory tra�c reduction, but also re-
sults in a balanced memory tra�c distribution further improving
end-to-end throughput.

292

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada H. Ye, S. Vedula, Y. Chen, Y. Yang, A. Bronstein, R. Dreslinski, T. Mudge, and N. Talati

stP ani PRv GEOS RII twi sSR cOR 01 02 03 04 G0
DDtDsets

0

1

M
em

Rr
y
Tr
Df
fi
c

R
ed
uc
ti
Rn
 (
x)

1.
00

0.
99

0.
92

0.
63

0.
60

0.
50

1R reGuctiRn 0etis 63ACE 0E5CI G5ACE 2racOe-RI-2

Figure 10: Memory tra�c reduction in DLRM inference of compared works (lower is better).

stP ani PRv GEOS RII twi sSR FOR 01 02 03 04 G0
DDtDsets

0
1
2
3

95
-P
er
ce
nt
Lle

LD
te
nc
y

IP
pr
ov
eP

en
t
(x
) InI. G3U 0eP

C3U 2nOy
0etis
FAE

S3ACE
0ERCI

GRACE
2UaFOe-RI-2

Figure 11: Embedding layer 95th percentile latency of compared works normalized to In�nite GPU Memory.

R01 R02 R03 R04
DDtDsets

0

1

2

(n
d-
to
-e
nd

Th
ro
ug
hp
ut

Im
pr
ov
em

en
t
(x
)

InI. G3U 0eP
C3U 2nOy

0etis
FAE

S3ACE
0ERCI

GRACE
2UaFOe-RI-2

Figure 12: End-to-end DLRM inference performance of com-
pared works normalized to In�nite GPU Memory.

stP ani PRvGEOS RII twi sSR cOR 01 02 03 04 G0
DDtDsets

0

1

2

Th
ro
ug
hp
ut

Im
pr
ov
em

en
t
(x
)

InI. G3U 0eP
0etis

S3ACE
0ERCI

GRACE
2UacOe-RI-2

Figure 13: Embedding layer throughput comparison in a ho-
mogeneous GPU memory platform.

Comparison using additional hardware con�gurations.
GRACE algorithm-system co-design is agnostic to any speci�c
hardware con�guration. While a CPU-GPU platform represents a
baseline modeling for a majority of our evaluation, next, we show
the performance of GRACE using two other hardware platforms.

First, we compare the performance of various baselines on a
homogeneous GPU memory in Fig. 13. This experiment assumes
an in�nite GPU memory. Because this platform does not have
heterogeneous memory, the performance is directly correlated with
memory tra�c reduction. GRACE outperforms MERCI marginally
by 5%. This corroborates with the tra�c reduction ratio in Fig. 10.
Furthermore, GRACE signi�cantly outperforms Metis and SPACE
due to improved memory tra�c reduction.

Second, Fig. 14 shows the embedding layer throughput improve-
ment on a system having hybrid DIMM-HBMmemorywith Process-
In-Memory (PIM) technology (evaluation similar to SPACE [34]).
We simulate the embedding reduction operations in PIM using a

trace-based simulation methodology in Ramulator [42]. The mod-
eled DRAM consists of 8 DDR4-3200 channels and 2 stacks of
bandwidth-optimized cache space of HBM2 (speci�cations adopted
from [53, 55]). Fig. 14 shows an interesting trend that FAE outper-
forms SPACE. This shows that heterogeneous memory awareness
is increasingly important when the bandwidth capability varies
across di�erent platforms. The �gure also shows that the memory
heterogeneity-aware design of GRACE can adapt to di�erent tech-
nological parameters, and consistently o�er the best performance
compared to the state-of-the-art. By optimizing memory tra�c
reduction and distribution, GRACE outperforms MERCI by 1.5⇥.

Table 4: Absolute throughput numbers (i.e., #batches pro-
cessed per second) of an in�nite GPU memory baseline.

Dataset stm ani mov dblp o� twi
Throughput 976 1125 668 1594 2787 4965

Dataset spo clo M1 M2 M3 M4
Throughput 1924 2332 361 492 667 583

Absolute performance numbers.To enable better reproducibil-
ity of results and future comparison with GRACE, Table 4 shows
the absolute throughput numbers of an in�nite GPU memory base-
line as shown in Fig. 8. This result is obtained by running a full
embedding layer on the GPU platform (§6.2). The reported absolute
numbers are of the same order as a recent industrial work Deep-
RecSys [24] (our baselines are more optimistic than DeepRecSys
as our embedding layer execution baseline is natively optimized
using CUDA/C++ compared to PyTorch). All other absolute num-
bers reported by our compared works can be inferred by scaling
the absolute numbers with speedups shown in the �gures.

7.2 Sensitivity Analysis
GPU memory capacity. In practice, the capacity budget for the
high bandwidth memory can be less than 1.0⇥ because of the
capacity-limited GPU memory and large embedding table sizes.
Multiple embedding tables also share the GPU memory capacity
resources. To measure the e�ectiveness of GRACE in a more con-
strained environment, we sweep the allowed cache space capacity
to 0.5 ⇥ and 0.25 ⇥ embedding table size. Fig. 15 its e�ect on embed-
ding reduction performance. With more constrained cache space,

293

GRACE: A Scalable Graph-Based Approach to Accelerating Recommendation Model Inference ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

stP ani PRv GEOS RII twi sSR FOR 01 02 03 04 G0
DDtDsets

0
1
2
3
4

Th
ro
ug
hp
ut

Im
pr
ov
em

en
t
(x
) InI. G3U 0eP

C3U 2nOy
0etis
FAE

S3ACE
0ERCI

GRACE
2UaFOe-RI-2

Figure 14: Embedding layer throughput comparison for a DIMM-HBM heterogeneous memory with PIM capability.

stP ani PRvGElS RII twi sSR clR 01 02 03 04 G00

2
G3U PePRUy caSacity 1.0x

stP ani PRvGElS RII twi sSR clR 01 02 03 04 G00

2
G3U PePRUy caSacity 0.5x

stP ani PRvGElS RII twi sSR clR 01 02 03 04 G0
DDtDsets

0

2

 T
hr
ou
gh
pu
t

Im
pr
ov
em

en
t
(x
)

G3U PePRUy caSacity 0.25x

S3ACE 0E5CI G5ACE

Figure 15: Performance sensitivity of compared works for
di�erent GPU memory capacities normalized to SPACE.

MERCI further exacerbates DIMMmemory throughput by using the
constrained space for storing psums. GRACE , however, can adapt
to the more constrained space by rejecting clusters at an earlier
threshold. GRACE balances the throughput of the heterogeneous
memory system. On average, GRACE outperforms SPACE by 1.63⇥
and 1.54⇥ in the tested con�gurations of constrained cache space.

7.3 Additional Results
Extensive experiments and further insights on energy analysis and
sensitivity studies are presented in detail in Appendix §B.

8 RELATEDWORK
Pro�ling of recommendation systems [24, 26] shows that the
embedding layer accounts for more than 25% and 80% of the infer-
ence latency in the Meta RM1 and RM2 model. These RM models
consume more than 60% of Meta’s data center AI inference cycles.
While using specialized DNN accelerators or employing batched in-
ference can signi�cantly [9, 12, 17, 23, 30–33, 51] improve the DNN
layer throughput, the embedding layer performance is still bottle-
necked by the memory bandwidth [24, 26, 28, 34, 38, 43, 44, 76].

Exploiting the embedding table locality.Analysis of the user-
item interactions has been studied in prior works [1, 7, 20, 34, 37,
38, 43, 58, 63, 64, 68, 71, 75], such as reducing the dimension and
exploiting the power-law characteristics observed in the embedding
table operations. SPACE [34] is the most recent work that exploits
both singular hot items and exhaustive combinations of partial
sums of two hot items. MERCI [48] captures the most e�cient
psums to reduce the memory tra�c. GRACE explores the design
space of both memory tra�c reduction and heterogeneous memory
utilization and GRACE analysis is derived by analyzing real-world
service vendors instead of arti�cially generated distribution [24, 25].

Near memory processing and memory technology for im-
proving embedding table operations. Near memory processing
is explored in many prior works [38, 43, 57, 69, 70]. They serve as
the heterogeneous memory module and signi�cantly increase the
available memory bandwidth. Fafnir [4] uses a tree-like reduction
hierarchy among di�erent ranks to improve the reduction e�ciency
near the memory logic. Other memory technologies have been stud-
ied in prior works including SSD (solid-state drive) [67, 73] and
NVM (non-volatile memory) [19] to aid the embedding layer op-
eration, which has a dual challenge of large capacity and a high
bandwidth requirement. GRACE assumes a hybrid DRAM model
and uses GPU memory as a software-managed cache and this algo-
rithm framework can generalize to these newmemory technologies.

9 CONCLUSION
This paper proposed GRACE—a novel algorithm-system co-design
framework to signi�cantly accelerate DLRM inference by speeding
up the embedding reduction stage. To reduce the memory tra�c
of sparse DLRM layers, GRACE proposed mapping the problem
of �nding popular item combinations to a graph problem. GRACE
presented an Item Co-occurrence Graph (ICG) to scalably ana-
lyze popular item combinations. GRACE then proposed a low-cost
graph clustering algorithm that �nds popular item combinations of
arbitrary lengths and inserts these frequently accessed item combi-
nations into a software-managed cache space. The GRACE runtime
system exploited partial embedding sums to signi�cantly reduce
memory tra�c. Our evaluation showed that GRACE signi�cantly
outperforms state-of-the-art prior works SPACE and MERCI by
1.5⇥ and 1.4⇥, respectively.

10 DATA AVAILABILITY STATEMENT
The code of this work is also available on Zenodo [74].

ACKNOWLEDGMENT
We thank the anonymous reviewers and our shepherd Laurent Bind-
schaedler for their insightful feedback. The material is based on
research sponsored by Air Force Research Laboratory (AFRL) and
Defense Advanced Research Projects Agency (DARPA) under agree-
ment number FA8650-18-2-7864. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and
conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the o�cial policies
or endorsements, either expressed or implied, of Air Force Re-
search Laboratory (AFRL) and Defense Advanced Research Projects
Agency (DARPA) or the U.S. Government. This work was also sup-
ported by the United States-Israel BSF grant number 2020135.

294

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada H. Ye, S. Vedula, Y. Chen, Y. Yang, A. Bronstein, R. Dreslinski, T. Mudge, and N. Talati

A APPENDIX: ADDITIONAL ALGORITHMS
A.1 ICG Construction Algorithm
Algorithm 4 presents the pseudocode of the graph construction
phase into ICG. All pairs of items accessed by the user as item
co-occurrences. We use an item co-occurrence bu�er to construct
a weighted graph by increasing the edge-weight by one for each
co-occurrence.

Algorithm 4 Pseudocode for item co-occurrence graph (ICG) con-
struction
1: procedure B����ICG(user_accesses) ù O�ine
2: Input: user_accesses: Historical data of item accesses by sampled users
3: Output: G: Item co-occurrence graph (ICG)
4:
5: recorded_edges = []

6: for all user_access 2 user_accesses do ù Online lazy recording
7: num_items = user_access.size() ù #items accessed by user
8: // For each user access, iterate over all unique item pairs
9: for i in (0, num_items) do
10: for j in (i + 1, num_items) do
11: item_i = user_access[i]; item_j = user_access[j];

12: // Lazy bu�ering of graph edges
13: recorded_edges.append(edge(item_i, item_j))

14:
15: Initialize empty graph G

16: for edge in recorded_edges do ù O�ine graph construction
17: if edge not in G then
18: G.add_weighted_edge(edge, 0)

19: G.increment_edge_weight(edge)

20: return G

A.2 Address Generation Algorithm
We detail the address generation process in Algorithm 5. One user
from a batch accesses remapped indices. The remapped indices
are sorted, streamed in, and compared with the starting address
of grouped clusters on CPU and GPU. After �nding the group, the
index can directly translate into cluster ID and o�set within the
cluster because clusters are grouped by size.

If the access results in amiss to the previous cluster, the address of
accessing the single-item embedding at item_offset is located at
2item_offset�1 from the starting address of the cluster. If the access
is a hit of the previous cluster, it indicates that psum is accumulated
previously. Because the memory layout of embeddings and partial
sums is in a bitmap fashion within a cluster, one-bit activation will
direct to the address with the psum that accumulates the hit index.
The new psum address is generated by adding a 2item_offset to the
previous item embedding/psum address.

After directing all access indices to the proper address across the
heterogeneousmemory, the corresponding embedding items/partial
sums are reduced to satisfy the batch of users’ embedding layer
requests.

A.3 Multiple Embedding Table Support
Real-world DLRM models have multiple embedding tables that
share the available capacity-limited HBM resources. We propose
Algorithm 6 to design cache space for multiple embedding tables.
Similar to previous industrial proposals [24, 43, 54, 78], we assume
that the embedding tables are independent, i.e., items in an embed-
ding table do not reduce with items in a di�erent table. Algorithm 6
shows the clustering pseudo-code to support multiple embedding
tables. The procedure only di�ers when building the ICG. Because
di�erent embedding tables have mutually exclusive nodes, for each

Algorithm 5 Pseudocode for Address Generation on User Accesses
1: procedure A������G��(user_accesses) ù Online
2: Input: user_accesses: Incoming data of item accesses by runtime users
3: Input: start_addr: Starting address of each cluster size group
4: Output: redirected_accesses: Redirected addresses of item embeddings and partial sums

that users request for correct reduction
5:
6: prev_c_id = None

7: prev_g_size = None

8: temp_addr = None

9: redirected_accesses = []

10: for all access 2 user_accesses do
11: // Find which group, cluster, and whether CPU/GPU the access belongs to
12: g_size = access.get_g_size();

13: c_id = (access - start_addr[g_size]) / g_size;

14: item_offset = (access - start_addr[c_id]) % g_size;

15: // If access has a di�. cluster from prev access, commit prev redirected addr
16: if c_id != prev_c_id or g_size != prev_g_size then
17: redirected_accesses.append(temp_addr);

18: temp_addr = start_addr[g_size] + c_id ⇥

⇣
26_B8I4 � 1

⌘
19: temp_addr +=

⇣
2item_offset � 1

⌘
;

20: else
21: temp_addr +=

⇣
2item_offset

⌘
;

22: // Accumulate to the redirected addr to get item embeddings / partial sums
23: prev_c_id = cluster;

24: prev_g_size = g_size;

25: redirected_accesses.append(temp_addr);

26: return redirected_accesses

Algorithm6 Pseudocode for building the item co-occurrence graph
(ICG) for multiple embedding tables
1: procedure B����M����T����ICG(user_accesses_per_table) ù O�ine
2: Input: user_accesses_per_table: Historical data of item accesses by sampled users for

each embedding table
3: Output: G’: Uni�ed item co-occurrence graph (ICG) of multiple embedding tables
4:
5: Offset = []

6: item_id_offset = 0

7: for all t 2 embedding_tables do ù Item renaming for each embedding table
8: Offset.append(item_id_offset);

9: item_id_offset += total_size_emb[t];

10:
11: recorded_edges = []

12: for all t 2 embedding_tables do ù Iterate through multiple tables
13: for all user_access 2 user_accesses_per_table[t] do
14: num_items = user_access.size() ù #items accessed by user
15: // For each user access, iterate over all unique item pairs
16: for i in (0, num_items) do
17: for j in (i + 1, num_items) do
18: item_i = user_access[i] + Offset[t];

19: item_j = user_access[j] + Offset[t];

20: // Lazy bu�ering of graph edges
21: recorded_edges.append(edge(item_i, item_j))

22:
23: Initialize empty graph G’

24: for edge in recorded_edges do ù O�ine graph construction
25: if edge not in G’ then
26: G’.add_weighted_edge(edge, 0)

27: G’.increment_edge_weight(edge)

28: return G’

29:
30: procedure C������M����T����ICG() ù O�ine ICG clustering
31: Input: G’: Item Co-occurrence Graph (ICG) for multiple embedding tables
32: Input: renamed_nodes: Vertex set of G’ sorted by their degrees
33: Input: capacity_budget: Number of cache lines allowed in cache space
34: Output: cluster_list: Assignment of ICG nodes of multiple tables
35: // The same clustering algorithm directly applies on the renamed nodes.
36: cluster_list = C������ICG(G’,renamed_nodes,capacity_budget)
37: return cluster_list

item index, we add an o�set of the previous table size to avoid
duplication of the same item ID in di�erent embedding tables. We
build the ICG accordingly and the resulting ICG has a collection of
all nodes of di�erent embedding tables.

With this ICG, the problem of cluster forming for all embedding
tables is evaluated in the same graph using the same C������ICG
algorithm in Algorithm 2. In this ICG, we can systematically analyze
the clustering bene�t-cost e�ciency and assign the HBM capacity

295

GRACE: A Scalable Graph-Based Approach to Accelerating Recommendation Model Inference ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

budget to each of the embedding tables. No heuristics are required
to �nd a proper distribution of capacity for each embedding table.
This shows the bene�t of casting such a problem into a graph
problem. Di�erent embedding tables equivalently become disjoint
partitions of an overall ICG, and can be evaluated altogether.

B APPENDIX: ADDITIONAL RESULTS
B.1 Performance Analysis: MERCI Variants
One of the reasons GRACE outperforms MERCI is that GRACE
imposes a limit on the maximum size of the cluster. As shown in
Fig. 9, this can e�ectively limit large clusters and allows a larger
number of item embeddings/psums to be placed on the size-limited
GPU memory. This way, the GPU memory utilization increases,
achieving a more balanced distribution of memory tra�c. This mo-
tivates us to test variants of MERCI that can bene�t from a similar
advantage. Fig. 16 presents the performance of MERCI-k variants.
Here, MERCI-k limits the maximum cluster size to k. We sweep k
from 2 to 5, and k equal to in�nity (equivalent to vanilla MERCI
design:MERCI-inf). Fig. 16 shows that GRACE consistently outper-
forms all MERCI variants. While MERCI-k improves the memory
tra�c distribution compared to MERCI-inf, this further limits the
memory tra�c reduction. Fig. 16 shows that, compared to a MERCI
variant that optimizes heterogeneous memory utilization, GRACE
stills o�ers improved throughput by balancing both memory tra�c
reduction and distribution.

B.2 Energy Consumption Analysis
Fig. 17 compares the energy saving of di�erent baselines normal-
ized to the in�nite GPU memory solution. Because GPU memory
consumes much less energy per data transfer byte than DIMM-
based memory [49, 53], in�nite GPU memory achieves low power
consumption. GRACE achieves the best energy consumption com-
pared with other works and even performs marginally 4% better
energy consumption than in�nite GPU memory. This is because
although GRACE keeps some embeddings in DIMM-based memory
to exploit a larger collective bandwidth for the best performance, it
e�ciently utilizes psum to serve requests, which saves energy both
on CPU and GPU. Note that if GRACE is speci�cally con�gured
to optimize for energy consumption, GRACE-Energy can save 18%
energy compared to an in�nite GPU memory con�guration.

B.3 Sensitivity Analysis
Training ratio sensitivity. Fig. 18 shows that GRACE consis-
tently outperforms prior works even using a limited training set to
learn popular item combinations. Because every single user-item
interaction can produce multiple co-accessed patterns, even though
a limited set of the pro�led user-item interaction, GRACE can ex-
tract co-access patterns e�ectively. GRACE achieves even a higher
speedup at a limited training set, achieving 1.66⇥ and 1.46⇥ over
SPACE and MERCI respectively at train/test ratio of 10:90.

Anchor node selection policy. Fig. 19 shows the performance
sensitivity of sweeping ICG anchor node selection in Algorithm 1.
In addition to ICG node degree, the other available options include
anchor node selection based on the item access frequency or all
random. The degree-based clustering performs marginally better

than frequency-based and outperforms random anchor node selec-
tion. This shows the robust nature of ICG clustering algorithm. It
enables GRACE to outperform prior works without any speci�c
requirement for choosing an anchor node for clustering.

B.4 Optimal Algorithmic Parameter Search
We show the parameter search process and their sensitivity involved
in Algorithm. 2.

Performance sensitivity on U . We sweep the value of U to
�nd its e�ect on performance. This parameter is used in estimating
the bene�t of adding nodes to existing clusters in the proposed
clustering algorithm (see line 14 in Algorithm 3). We sweep U

Table 5: Performance of di�erent U normalized to the best
performing U , averaged across datasets.

U 0 0.25 0.5 0.75 1.0
GM 0.934 0.987 0.997 0.997 0.996

from 0 to 1, and �nd its e�ect on the performance of each work-
load. Table 5 presents the performance of each U normalized to the
best performance, averaged across all workloads. This shows that
GRACE performance does not change signi�cantly for U � 0.25,
and achieves an optimal performance with U = [0.5, 0.75] (high-
lighted in green).

MAX CLUSTER SIZE and tolerance factor. Fig. 20 shows the
performance sensitivity of GRACE for di�erent maximum cluster
sizes and tolerance factors. Maximum cluster size is a parameter
used in the proposed algorithm to limit the sizes of the formed
clusters (see line 20 in Algorithm 2). Tolerance factor adds a margin
for the estimated bene�t to drop while still allowing a new node to
be added to an existing cluster (see line 19 in Algorithm 2). Both
hyperparameters modulate the cluster sizes. Fig. 20 only shows the
most interesting data points for each dataset; in reality, we sweep
the tolerance factor from 0 to 100.

Intuitively, allowing larger clusters leads to higher memory traf-
�c saving if partial sums of several items are cached. This, however,
limits the diversity of items to be cached due to limited cache space,
limiting the ability to divert more memory tra�c to the cache space.
Therefore, there is a rich trade-o� space between savings due to
each cluster and the diversity of cached items. GRACE navigates
this trade-o� space to �nd the optimal hyperparameter for each
workload. We show the tuning process of these parameters below.

C APPENDIX: DECISION ENGINE DESIGN FOR
PREDICTING OPTIMAL PARAMETER
SETTING

The choice of maximum cluster size and tolerance a�ects the quality
of the selected popular items and their combinations, thus a�ecting
the overall performance. The optimal choice is di�erent for di�erent
input characteristics. Fig. 20 shows the speedup for each input graph
under di�erent maximum cluster size and tolerance combinations.
To be able to apply GRACE to arbitrary input and get the best
speedup, we build a decision engine to pick the optimal or near-
optimal combination ofmaximum cluster size and tolerancewithout
exhaustively experimenting with all possible combinations.

We use three features from the input: number of items, aver-
age pooling factor, and average node degree in ICG to train the

296

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada H. Ye, S. Vedula, Y. Chen, Y. Yang, A. Bronstein, R. Dreslinski, T. Mudge, and N. Talati

stP ani PRv GEOp RII twi spR cOR 01 02 03 04 G0
DDtDsets

0
1
2
3

Th
ro
ug
hp
ut

Im
pr
ov
em

en
t
(x
) InI. G3U 0eP

0E5CI-2
0E5CI-3
0E5CI-4

0E5CI-5
0E5CI-inI

G5ACE
2UacOe-RI-2

Figure 16: Throughput improvement of MERCI-k over compared baselines (higher is better).

stP ani PRv GEOS RII twi sSR FOR 01 02 03 04 G0
DDtDsets

0

1

(n
er
gy
 S
Dv
in
g
(x
)

InI. G3U 0eP
C3U 2nOy

0etis
FAE

S3ACE
0ERCI

GRACE
GRACE-EneUgy

Figure 17: Energy saving in DLRM inference of compared
works normalized to In�nite GPUMemory (higher is better).

stP ani PRvGElS RII twi sSR clR 01 02 03 04 G00.0

2.5 7rain/7est 5atiR 50:50

stP ani PRvGElS RII twi sSR clR 01 02 03 04 G00.0

2.5 7rain/7est 5atiR 25:75

stP ani PRvGElS RII twi sSR clR 01 02 03 04 G0
DDtDsets

0.0

2.5

 T
hr
ou
gh
pu
t

Im
pr
ov
em

en
t
(x
)

7rain/7est 5atiR 10:90

S3ACE 0E5CI G5ACE

Figure 18: Performance sensitivity of compared works for
di�erent train/test ratios normalized to SPACE. GRACE con-
sistently outperforms the compared works even when the
training set is limited.

stP ani PRvGElS RII twi sSR clR 01 02 03 04 G0
DDtDsets

0

1

2

Th
ro
ug
hp
ut

Im
pr
ov
em

en
t
(x
)

InI. G3U 0eP
S3ACE

0ERCI
GRACE-GegUee

GRACE-IUeq.
GRACE-UanGRP

Figure 19: Performance sensitivity of compared works for
di�erent anchor node selection policies normalized to SPACE.
The available options are selected based on ICG node degree,
the item access frequency, and random.

decision engine. We use the decision tree implementation from
scikit-learn [60] library, which uses an optimized CART (Classi-
�cation and Regression Trees) algorithm. The decision tree �nds
the feature that yields the largest information gain at each level.
The output of the decision engine is the maximum cluster size and
tolerance combination that gives optimal performance. We de�ne
the combination that gives the best speedup result as the strict
optimal combination, and we de�ne a set of combinations that
gives a speedup no less than relaxing coe�cient (rc) to the optimal
speedup as the relaxed optimal combination set. We use the
strict optimal combination to train the decision engine, and con-
sider the decision engine’s prediction accurate if it gives a result
that falls in the relaxed optimal combination set.

We train the decision engine with 80-20 random split for train-
test data, and we repeat the procedure 50 times with di�erent
random seeds. The decision engine achieves an average accuracy
of 92.7% under a 90% relaxing coe�cient.

D ARTIFACT APPENDIX
D.1 Abstract
This paper presents an algorithm-system co-design for improving
the performance of the embedding layer in Deep Learning Recom-
mendation Models (DLRMs). This document brie�y describes how
to reproduce the main result of our paper. The performance results
shown in the paper are machine-dependent. For example, Fig. 8,
Fig. 13, and Fig. 14 show results on a CPU-GPU system, HBM-only
system, and DIMM-HBM system with Processing-In-Memory (PIM)
capability, respectively. To enable reproducing results in a timely
fashion on di�erent machines, we discuss the methodology to re-
produce the main result of our paper that is machine-independent
(Fig. 10). Speci�cally, our instructions include 1) how to download
the input datasets, 2) how to pre-process these datasets, 3) how to
reproduce the memory tra�c reduction results for each baseline,
and 4) how to generate a plot similar to Fig. 10. Expected result:
compared to a no-reduction baseline, GRACE reduces the memory
tra�c by 1.7⇥.

D.2 Artifact Check-List (Meta-Information)
• Algorithm: Deep Learning Recommendation Model (DLRM)
• Program: c++ and python3

• Compilation: g++ 9.4.0

• Dataset: Steam (stm), Anime (ani), MovieLens20M (mov), DBLP
(dblp), AmazonO�ces (o�), Twitch (twi), AmazonSports (spo), Ama-
zonClothes (clo), mixture of datasets twi-mov-ani-stm (M1), mixture
of datasets clo-o�-dblp-ani (M2), mixture of datasets spo-o�-dblp-
twi (M3), mixture of datasets clo-spo-o�-dblp (M4)

297

GRACE: A Scalable Graph-Based Approach to Accelerating Recommendation Model Inference ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

0 10 20 30

2

3

4

5

6

7

8

LnfL

1.63 1.63 1.63 1.63

2.45 2.48 2.5 2.5

2.15 2.1 2.12 2.14

1.5 1.44 1.44 1.43

1.15 1.1 1.09 1.08

0.96 0.93 0.92 0.9

0.87 0.84 0.83 0.81

0.7 0.7 0.7 0.7

6teDP 6SeeduS (x)

40 50 60 70

2

3

4

5

6

7

8

LnfL

1.42 1.43 1.42 1.43

1.81 1.76 1.63 1.47

1.85 1.98 1.79 1.49

1.09 1.21 1.95 1.49

0.82 0.86 1.4 1.49

0.71 0.73 0.93 1.5

0.66 0.66 0.74 1.5

0.59 0.6 0.66 1.5

AnLPe 6SeeduS (x)

0 10 20 30

2

3

4

5

6

7

8

LnfL

1.3 1.29 1.29 1.29

1.75 1.74 1.75 1.74

2.09 2.06 2.07 2.08

1.51 1.47 1.46 1.46

1.14 1.07 1.07 1.07

0.94 0.9 0.9 0.9

0.85 0.82 0.82 0.82

0.77 0.77 0.77 0.77

0ovLe 6SeeduS (x)

40 50 60 70

2

3

4

5

6

7

8

LnfL

1.93 1.93 1.93 1.93

1.13 1.19 1.3 1.94

0.47 0.49 0.53 1.95

0.31 0.32 0.34 1.95

0.25 0.25 0.27 1.92

0.22 0.22 0.23 1.89

0.2 0.21 0.21 1.89

0.18 0.18 0.19 1.88

DBL3 6SeeduS (x)

30 40 50 60

2

3

4

5

6

7

8

LnfL

1.28 1.28 1.28 1.28

1.44 1.47 1.47 1.38

0.85 0.86 0.92 1.42

0.52 0.53 0.57 0.97

0.39 0.39 0.4 0.68

0.32 0.32 0.33 0.45

0.28 0.27 0.28 0.35

0.21 0.21 0.21 0.28

2ffLce 6SeeduS (x)

40 50 60 70

2

3

4

5

6

7

8

LnfL

1.18 1.18 1.18 1.18

0.71 1.12 1.22 1.18

0.68 0.76 1.23 1.18

0.44 0.57 1.16 1.18

0.44 0.46 0.97 1.19

0.39 0.4 0.79 1.19

0.35 0.36 0.64 1.19

0.3 0.3 0.44 1.19

7wLtch 6SeeduS (x)

20 30 40 50

2

3

4

5

6

7

8

LnfL

1.28 1.28 1.28 1.28

1.5 1.51 1.5 1.49

0.9 0.9 0.92 0.99

0.54 0.54 0.55 0.59

0.39 0.39 0.39 0.4

0.31 0.31 0.31 0.31

0.26 0.26 0.26 0.26

0.19 0.19 0.19 0.19

6Sorts 6SeeduS (x)

40 50 60 70

2

3

4

5

6

7

8

LnfL

1.35 1.35 1.35 1.35

1.15 1.22 1.43 1.36

0.65 0.69 0.91 1.36

0.41 0.43 0.68 1.36

0.31 0.32 0.47 1.36

0.26 0.26 0.34 1.36

0.23 0.23 0.27 1.36

0.17 0.17 0.23 1.36

COothes 6SeeduS (x)

40 50 60 70

2

3

4

5

6

7

8

LnfL

1.27 1.28 1.27 1.27

1.45 1.44 1.36 1.29

1.66 1.63 1.45 1.29

1.81 1.9 1.56 1.29

1.29 1.33 1.82 1.29

1.07 1.09 1.38 1.29

0.96 0.96 1.09 1.29

0.75 0.75 0.87 1.29

01 6SeeduS (x)

40 50 60 70

2

3

4

5

6

7

8

LnfL

1.44 1.44 1.44 1.44

1.58 1.6 1.62 1.46

0.93 0.99 1.35 1.46

0.59 0.61 0.77 1.47

0.45 0.46 0.53 1.47

0.38 0.38 0.42 1.47

0.33 0.34 0.36 1.47

0.25 0.25 0.3 1.47

02 6SeeduS (x)

40 50 60 70

2

3

4

5

6

7

8

LnfL

1.48 1.48 1.48 1.48

1.24 1.29 1.47 1.49

0.62 0.67 0.93 1.5

0.39 0.41 0.53 1.5

0.3 0.31 0.36 1.51

0.25 0.26 0.29 1.51

0.22 0.23 0.25 1.51

0.18 0.18 0.2 1.51

03 6SeeduS (x)

40 50 60 70

2

3

4

5

6

7

8

LnfL

1.5 1.5 1.5 1.5

1.1 1.11 1.27 1.51

0.63 0.67 0.92 1.51

0.4 0.42 0.56 1.52

0.3 0.31 0.38 1.52

0.25 0.26 0.29 1.52

0.22 0.22 0.25 1.52

0.17 0.17 0.2 1.52

04 6SeeduS (x)

M
ax
im
um

 C
lu
st
er
 S
iz
e

ToleranFe)aFtor (%)
Figure 20: Performance sensitivity of GRACE to maximum cluster size and tolerance factor normalized to In�nite GPUMemory.

• Run-time environment: Implementation should run natively
• Hardware: CPU with 64 GB main memory or more
• Execution: Bash script for automatic compilation and execution
• Metrics: Memory tra�c reduction
• Output: Memory access count in hbm_only_*_log/ folders, repro-
duced Fig. 10 in the paper in Fig10_plot/ folder

• Experiments: Memory access counts for GRACE, MERCI, SPACE,
and Metis

• How much disk space required (approximately)?: 70GB
• How much time is needed to prepare work�ow (approxi-
mately)?: 3 hours

• How much time is needed to complete experiments (approxi-
mately)?: 9 hours without Metis, 15 hours with Metis

• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT License (MERCI)
• Data licenses (if publicly available)?: Creative Commons At-
tribution ShareAlike License (dblp), CC0: Public Domain License
(ani)

• Work�ow framework used?: GAPBS

D.3 Description
D.3.1 How to access? The artifact code base can be downloaded
from https://github.com/Linestro/GRACE. A third-party code base
MERCI is needed and can be obtained by downloading from https:
//github.com/SNU-ARC/MERCI.git. The README �le in the root
directory of GRACE repository contains instructions to download
open-source data sets and commands to reproduce Fig. 10.

D.3.2 Hardware dependencies: Any commodity CPU should be
adequate for running the code implementation.

D.3.3 So�ware dependencies: We use python 3.9 and g++ 9.4.0 on
Ubuntu 20.04.5 LTS (GNU/Linux 5.4.0-135-generic x86_64).

D.3.4 Datasets: We use real-world datasets for evaluation. The
datasets are obtained from the following links:

• DBLP: [link]
• AmazonSports: [link1] [link2]
• AmazonO�ces: [link1] [link2]
• AmazonClothes: [link1] [link2]
• Anime: [link]
• Twitch: [link]
• Movie: [link]
• Steam: [link]

D.4 Installation
Download the GRACE code base from https://github.com/Linestro/
GRACE. In ⌧'�⇠⇢/ folder, download the MERCI code base from
https://github.com/SNU-ARC/MERCI.git

D.5 Experiment Work�ow
Due to the large number of commands, please refer to
GRACE/README.md for the commands for each step to run.
Step 1: Create necessary folders GRACE/ and GRACE/MERCI/.

298

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada H. Ye, S. Vedula, Y. Chen, Y. Yang, A. Bronstein, R. Dreslinski, T. Mudge, and N. Talati

Step 2: Download and process datasets. (3 hours)
Step 3: Perform datasets cleaning. (10 minutes)
Step 4: Prepare mixed datasets. (2 hours)
Step 5: Generate ICG with training set. (3 hours)
Step 6: Reformat datasets into inference streaming set. (5 minutes)
Step 7:Reproducememory access count for GRACE,MERCI, SPACE.
(1 hour)
Step 8: (Optional) Reproduce memory access count for Metis. (3
hours)
Step 9: Reproduce Fig. 10 in the paper using the memory access
count collected in steps 7 and 8.

D.6 Evaluation and Expected Results
After the runs have completed running, the raw results are in
hbm_only_grace_log/, hbm_only_merci_log/,
hbm_only_space_log/, and hbm_only_metis_log/.
The reproduced Fig. 10 is in Fig10_plot/, and it should be close to
the Fig. 10 in the paper; a small error (< ±5%) accepted because each
time the training-testing set split (by default 50:50) is randomized.

REFERENCES
[1] Muhammad Adnan, Yassaman Ebrahimzadeh Maboud, Divya Mahajan, and

Prashant J Nair. 2021. Accelerating recommendation system training by leverag-
ing popular choices. arXiv preprint arXiv:2103.00686 (2021).

[2] My anime list. 2016. Anime recommendations database. https://www.kaggle.
com/CooperUnion/anime-recommendations-database.

[3] SNU Architecture and Code Optimization (ARC) Lab. 2021. MERCI Code Reposi-
tory. https://github.com/SNU-ARC/MERCI.

[4] Bahar Asgari, Ramyad Hadidi, Jiashen Cao, Da Eun Shim, Sung-Kyu Lim, and
Hyesoon Kim. 2021. FAFNIR: Accelerating Sparse Gathering by Using E�cient
Near-Memory Intelligent Reduction. In 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). 908–920. https://doi.org/10.
1109/HPCA51647.2021.00080

[5] Grant Ayers, Nayana Prasad Nagendra, David I August, Hyoun Kyu Cho, Svilen
Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, Tipp Moseley,
and Parthasarathy Ranganathan. 2019. Asmdb: understanding and mitigating
front-end stalls in warehouse-scale computers. In Proceedings of the 46th Interna-
tional Symposium on Computer Architecture. 462–473.

[6] Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The GAP Benchmark
Suite. CoRR abs/1508.03619 (2015). arXiv:1508.03619 http://arxiv.org/abs/1508.
03619

[7] Erik Brynjolfsson, Yu Hu, and Duncan Simester. 2011. Goodbye pareto principle,
hello long tail: The e�ect of search costs on the concentration of product sales.
Management Science 57, 8 (2011), 1373–1386.

[8] Ümit V Çatalyürek and Cevdet Aykanat. 2011. Patoh (partitioning tool for
hypergraphs). In Encyclopedia of parallel computing. Springer, 1479–1487.

[9] Adrian M. Caul�eld, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-
Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael,
Lisa Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. 2016. A cloud-scale
acceleration architecture. In 2016 49th Annual IEEE/ACM International Symposium
onMicroarchitecture (MICRO). 1–13. https://doi.org/10.1109/MICRO.2016.7783710

[10] Mauro Cerasoli and Aniello Fedullo. 2002. The inclusion-exclusion principle.
Journal of Interdisciplinary Mathematics 5, 2 (2002), 127–141.

[11] Dehao Chen, Tipp Moseley, and David Xinliang Li. 2016. AutoFDO: Auto-
matic feedback-directed optimization for warehouse-scale applications. In 2016
IEEE/ACM International Symposium on Code Generation and Optimization (CGO).
IEEE, 12–23.

[12] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2014. DaDianNao: A
Machine-Learning Supercomputer. In 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture. 609–622. https://doi.org/10.1109/MICRO.2014.
58

[13] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan
Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.
2016. Wide & Deep Learning for Recommender Systems. CoRR abs/1606.07792
(2016). arXiv:1606.07792 http://arxiv.org/abs/1606.07792

[14] Hyeonseong Choi and Jaehwan Lee. 2021. E�cient Use of GPU Memory for
Large-Scale Deep Learning Model Training. Applied Sciences 11, 21 (2021), 10377.

[15] Chiachen Chou, Aamer Jaleel, andMoinuddin KQureshi. 2015. BEAR: Techniques
for mitigating bandwidth bloat in gigascale DRAM caches. ACM SIGARCH
Computer Architecture News 43, 3S (2015), 198–210.

[16] Chia Chen Chou, Aamer Jaleel, and Moinuddin K Qureshi. 2014. Cameo: A
two-level memory organization with capacity of main memory and �exibility of
hardware-managed cache. In 2014 47th Annual IEEE/ACM International Sympo-
sium on Microarchitecture. IEEE, 1–12.

[17] Marshall Choy. [n. d.]. Accelerating the Modern Machine Learning Workhorse:
Recommendation Inference. https://sambanova.ai/blog/accelerating-the-
modern-ml-workhorse-recommendation-inference/

[18] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[19] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy, Sergey
Pupyrev, Kim Hazelwood, Asaf Cidon, and Sachin Katti. 2018. Bandana: Us-
ing non-volatile memory for storing deep learning models. arXiv preprint
arXiv:1811.05922 (2018).

[20] AA Ginart, Maxim Naumov, Dheevatsa Mudigere, Jiyan Yang, and James Zou.
2021. Mixed dimension embeddings with application to memory-e�cient recom-
mendation systems. In 2021 IEEE International Symposium on Information Theory
(ISIT). IEEE, 2786–2791.

[21] Carlos A Gomez-Uribe and Neil Hunt. 2015. The net�ix recommender system:
Algorithms, business value, and innovation. ACM Transactions on Management
Information Systems (TMIS) 6, 4 (2015), 1–19.

[22] Asela Gunawardana and Guy Shani. 2015. Evaluating recommender systems. In
Recommender systems handbook. Springer, 265–308.

[23] Cong Guo, Yangjie Zhou, Jingwen Leng, Yuhao Zhu, Zidong Du, Quan Chen,
Chao Li, Bin Yao, and Minyi Guo. 2020. Balancing e�ciency and �exibility
for DNN acceleration via temporal GPU-systolic array integration. In 2020 57th
ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[24] Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen, Gu-
YeonWei, Hsien-Hsin S Lee, David Brooks, and Carole-JeanWu. 2020. Deeprecsys:
A system for optimizing end-to-end at-scale neural recommendation inference.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 982–995.

[25] Udit Gupta, Samuel Hsia, Je� Jun Zhang, Mark Wilkening, Javin Pombra, Hsien-
Hsin S. Lee, Gu-Yeon Wei, Carole-Jean Wu, and David Brooks. 2021. RecPipe:
Co-designingModels andHardware to Jointly Optimize Recommendation Quality
and Performance. CoRR abs/2105.08820 (2021). arXiv:2105.08820 https://arxiv.
org/abs/2105.08820

[26] Udit Gupta, Xiaodong Wang, Maxim Naumov, Carole-Jean Wu, Brandon Reagen,
David Brooks, Bradford Cottel, Kim M. Hazelwood, Bill Jia, Hsien-Hsin S. Lee,
Andrey Malevich, Dheevatsa Mudigere, Mikhail Smelyanskiy, Liang Xiong, and
Xuan Zhang. 2019. The Architectural Implications of Facebook’s DNN-based
Personalized Recommendation. CoRR abs/1906.03109 (2019). arXiv:1906.03109
http://arxiv.org/abs/1906.03109

[27] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[28] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law,
Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong, and
Xiaodong Wang. 2018. Applied Machine Learning at Facebook: A Datacenter
Infrastructure Perspective. In 2018 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). 620–629. https://doi.org/10.1109/HPCA.
2018.00059

[29] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative �ltering. In proceedings
of the 25th international conference on world wide web. 507–517.

[30] Ranggi Hwang, Taehun Kim, Youngeun Kwon, and Minsoo Rhu. 2020. Centaur: A
chiplet-based, hybrid sparse-dense accelerator for personalized recommendations.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 968–981.

[31] Wenqi Jiang, Zhenhao He, Shuai Zhang, Thomas B. Preußer, Kai Zeng, Liang
Feng, Jiansong Zhang, Tongxuan Liu, Yong Li, Jingren Zhou, Ce Zhang, and
Gustavo Alonso. 2020. MicroRec: Accelerating Deep Recommendation Systems
to Microseconds by Hardware and Data Structure Solutions. CoRR abs/2010.05894
(2020). arXiv:2010.05894 https://arxiv.org/abs/2010.05894

[32] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.
2020. A Uni�ed Architecture for Accelerating Distributed {DNN} Training in
Heterogeneous GPU/CPU Clusters. In 14th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 20). 463–479.

[33] Norman P. Jouppi, Cli� Young, Nishant Patil, David A. Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Cli�ord Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Je�rey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,

299

GRACE: A Scalable Graph-Based Approach to Accelerating Recommendation Model Inference ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

William Gulland, Robert Hagmann, Richard C. Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Ja�ey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin,
GordonMacKean, AdrianaMaggiore, MaireMahony, KieranMiller, Rahul Nagara-
jan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, Jonathan Ross, Amir Salek, Emad Samadiani,
Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg,
Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle,
Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon.
2017. In-Datacenter Performance Analysis of a Tensor Processing Unit. CoRR
abs/1704.04760 (2017). arXiv:1704.04760 http://arxiv.org/abs/1704.04760

[34] Hongju Kal, Seokmin Lee, Gun Ko, and Won Woo Ro. 2021. SPACE: Locality-
Aware Processing in Heterogeneous Memory for Personalized Recommendations.
In 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 679–691.

[35] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Pro�ling a warehouse-
scale computer. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture. 158–169.

[36] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE,
197–206.

[37] Liu Ke, Udit Gupta, Mark Hempstead, Carole-Jean Wu, Hsien-Hsin S Lee, and
Xuan Zhang. 2022. Hercules: Heterogeneity-Aware Inference Serving for At-Scale
Personalized Recommendation. arXiv preprint arXiv:2203.07424 (2022).

[38] Liu Ke, Udit Gupta, Carole-Jean Wu, Benjamin Youngjae Cho, Mark Hempstead,
Brandon Reagen, Xuan Zhang, David M. Brooks, Vikas Chandra, Utku Diril, Amin
Firoozshahian, Kim M. Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Meng Li, Bert Ma-
her, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz, Mikhail Smelyanskiy,
and XiaodongWang. 2019. RecNMP: Accelerating Personalized Recommendation
with Near-Memory Processing. CoRR abs/1912.12953 (2019). arXiv:1912.12953
http://arxiv.org/abs/1912.12953

[39] Tanvir Ahmed Khan, Nathan Brown, Akshitha Sriraman, Niranjan K Soundarara-
jan, Rakesh Kumar, Joseph Devietti, Sreenivas Subramoney, Gilles A Pokam,
Heiner Litz, and Baris Kasikci. 2021. Twig: Pro�le-guided BTB prefetching for
data center applications. In MICRO-54: 54th Annual IEEE/ACM International Sym-
posium on Microarchitecture. 816–829.

[40] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles Pokam, Heiner
Litz, and Baris Kasikci. 2020. I-spy: Context-driven conditional instruction
prefetching with coalescing. In 2020 53rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO). IEEE, 146–159.

[41] Tanvir Ahmed Khan, Dexin Zhang, Akshitha Sriraman, Joseph Devietti, Gilles
Pokam, Heiner Litz, and Baris Kasikci. 2021. Ripple: Pro�le-guided instruction
cache replacement for data center applications. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 734–747.

[42] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2015. Ramulator: A fast and exten-
sible DRAM simulator. IEEE Computer architecture letters 15, 1 (2015), 45–49.

[43] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. 2019. Tensordimm: A practical
near-memory processing architecture for embeddings and tensor operations
in deep learning. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture. 740–753.

[44] Youngeun Kwon, Yunjae Lee, andMinsoo Rhu. 2021. Tensor casting: Co-designing
algorithm-architecture for personalized recommendation training. In 2021 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 235–248.

[45] Youngeun Kwon and Minsoo Rhu. 2022. Training personalized recommenda-
tion systems from (GPU) scratch: look forward not backwards. arXiv preprint
arXiv:2205.04702 (2022).

[46] Dominique LaSalle and George Karypis. 2016. A parallel hill-climbing re�nement
algorithm for graph partitioning. In 2016 45th International Conference on Parallel
Processing (ICPP). IEEE, 236–241.

[47] Rahman Lavaee, John Criswell, and Chen Ding. 2019. Codestitcher: inter-
procedural basic block layout optimization. In Proceedings of the 28th International
Conference on Compiler Construction. 65–75.

[48] Yejin Lee, Seong Hoon Seo, Hyunji Choi, Hyoung Uk Sul, Soosung Kim, JaeW Lee,
and Tae Jun Ham. 2021. MERCI: e�cient embedding reduction on commodity
hardware via sub-querymemoization. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems. 302–313.

[49] Bingchao Li, Choungki Song, Jizeng Wei, Jung Ho Ahn, and Nam Sung Kim. 2016.
Exploring new features of high-bandwidth memory for GPUs. IEICE Electronics
Express (2016), 13–20160527.

[50] Heiner Litz, Grant Ayers, and Parthasarathy Ranganathan. 2022. CRISP: critical
slice prefetching. In Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems. 300–
313.

[51] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou, Olivier
Teman, Xiaobing Feng, Xuehai Zhou, and Yunji Chen. 2015. Pudiannao: A
polyvalent machine learning accelerator. ACM SIGARCH Computer Architecture
News 43, 1 (2015), 369–381.

[52] Michael Lui, Yavuz Yetim, Özgür Özkan, Zhuoran Zhao, Shin-Yeh Tsai, Carole-
Jean Wu, and Mark Hempstead. 2021. Understanding capacity-driven scale-out
neural recommendation inference. In 2021 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 162–171.

[53] Micron. 2015. DDR4 SDRAM Data sheet, MT40A2G4, MT40A1G8,
MT40A512M16. https://www.micron.com/-/media/client/global/documents/
products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf

[54] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean
Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherni-
avskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kon-
dratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang
Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation Model
for Personalization and Recommendation Systems. CoRR abs/1906.00091 (2019).
arXiv:1906.00091 http://arxiv.org/abs/1906.00091

[55] Mike O’Connor, Niladrish Chatterjee, Donghyuk Lee, John Wilson, Aditya
Agrawal, Stephen W Keckler, and William J Dally. 2017. Fine-grained DRAM:
Energy-e�cient DRAM for extreme bandwidth systems. In 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 41–54.

[56] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019. Bolt:
a practical binary optimizer for data centers and beyond. In 2019 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). IEEE, 2–
14.

[57] Jaehyun Park, Byeongho Kim, Sungmin Yun, Eojin Lee, Minsoo Rhu, and
Jung Ho Ahn. 2021. TRiM: Enhancing Processor-Memory Interfaces with Scal-
able Tensor Reduction in Memory. In MICRO-54: 54th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (Virtual Event, Greece) (MICRO
’21). Association for Computing Machinery, New York, NY, USA, 268–281.
https://doi.org/10.1145/3466752.3480080

[58] Yoon-Joo Park and Alexander Tuzhilin. 2008. The long tail of recommender
systems and how to leverage it. In Proceedings of the 2008 ACM conference on
Recommender systems. 11–18.

[59] Apurva Pathak, Kshitiz Gupta, and Julian McAuley. 2017. Generating and person-
alizing bundle recommendations on steam. In Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1073–1076.

[60] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[61] Jérémie Rappaz, Julian McAuley, and Karl Aberer. 2021. Recommendation on
Live-Streaming Platforms: Dynamic Availability and Repeat Consumption. In
Fifteenth ACM Conference on Recommender Systems. 390–399.

[62] Ryan Rossi and Nesreen Ahmed. 2015. The network data repository with in-
teractive graph analytics and visualization. In Twenty-ninth AAAI conference on
arti�cial intelligence.

[63] Geet Sethi, Bilge Acun, Niket Agarwal, Christos Kozyrakis, Caroline Trippel, and
Carole-Jean Wu. 2022. RecShard: Statistical Feature-Based Memory Optimization
for Industry-Scale Neural Recommendation. arXiv preprint arXiv:2201.10095
(2022).

[64] Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang. 2020.
Compositional embeddings using complementary partitions for memory-e�cient
recommendation systems. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 165–175.

[65] Jaewoong Sim, Alaa R Alameldeen, Zeshan Chishti, Chris Wilkerson, and Hye-
soon Kim. 2014. Transparent hardware management of stacked dram as part of
memory. In 2014 47th Annual IEEE/ACM International Symposium on Microarchi-
tecture. IEEE, 13–24.

[66] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F Wenisch. 2019. Softsku:
Optimizing server architectures for microservice diversity@ scale. In Proceedings
of the 46th International Symposium on Computer Architecture. 513–526.

[67] Xuan Sun, Hu Wan, Qiao Li, Chia-Lin Yang, Tei-Wei Kuo, and Chun Jason Xue.
2021. RM-SSD: In-Storage Computing for Large-Scale Recommendation Inference.
In 28th IEEE International Symposium on High-Performance Computer Architecture
(HPCA 2022).

[68] Idan Szpektor, Aristides Gionis, and Yoelle Maarek. 2011. Improving recommen-
dation for long-tail queries via templates. In Proceedings of the 20th international
conference on World wide web. 47–56.

[69] Nishil Talati, Ameer Haj Ali, Rotem Ben Hur, Nimrod Wald, Ronny Ronen, Pierre-
Emmanuel Gaillardon, and Shahar Kvatinsky. 2018. Practical challenges in de-
livering the promises of real processing-in-memory machines. In 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1628–1633.

[70] Nishil Talati, Saransh Gupta, Pravin Mane, and Shahar Kvatinsky. 2016. Logic
design within memristive memories using memristor-aided loGIC (MAGIC). IEEE

300

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada H. Ye, S. Vedula, Y. Chen, Y. Yang, A. Bronstein, R. Dreslinski, T. Mudge, and N. Talati

Transactions on Nanotechnology 15, 4 (2016), 635–650.
[71] Mengting Wan and Julian McAuley. 2018. Item recommendation on monotonic

behavior chains. In Proceedings of the 12th ACM conference on recommender
systems. 86–94.

[72] Ruoxi Wang, Bin Fu, G. Fu, and Mingliang Wang. 2017. Deep & Cross Network
for Ad Click Predictions. Proceedings of the ADKDD’17 (2017).

[73] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-Jean Wu,
David Brooks, and Gu-Yeon Wei. 2021. RecSSD: near data processing for solid
state drive based recommendation inference. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems. 717–729.

[74] Haojie Ye, Sanketh Vedula, Yuhan Chen, Yichen Yang, Alex Bronstein, Trevor
Mudge, Ronald Dreslinski, and Nishil Talati. 2023. Artifact of "GRACE: A Scal-
able Graph-Based Approach To Accelerating Recommendation Model Inference".
Zenodo. https://doi.org/10.5281/zenodo.7699872

[75] Hongzhi Yin, Bin Cui, Jing Li, Junjie Yao, and Chen Chen. 2012. Challenging the
long tail recommendation. arXiv preprint arXiv:1205.6700 (2012).

[76] Buyun Zhang, Liang Luo, Xi Liu, Jay Li, Zeliang Chen, Weilin Zhang, Xiaohan
Wei, Yuchen Hao, Michael Tsang, Wenjun Wang, et al. 2022. DHEN: A Deep and
Hierarchical Ensemble Network for Large-Scale Click-Through Rate Prediction.
arXiv preprint arXiv:2203.11014 (2022).

[77] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Mingming Sun,
and Ping Li. 2020. Distributed hierarchical gpu parameter server for massive
scale deep learning ads systems. Proceedings of Machine Learning and Systems 2
(2020), 412–428.

[78] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through
rate prediction. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 1059–1068.

Received 2022-10-20; accepted 2023-01-19

301

