
28

Domain-Specific Architectures: Research Problems and
Promising Approaches

ANISH KRISHNAKUMAR and UMIT OGRAS, University of Wisconsin–Madison
RADU MARCULESCU, The University of Texas at Austin
MIKE KISHINEVSKY, Intel Corporation
TREVOR MUDGE, University of Michigan

Process technology-driven performance and energy e!ciency improvements have slowed down as we ap-
proach physical design limits. General-purpose manycore architectures attempt to circumvent this chal-
lenge, but they have a signi"cant performance and energy-e!cient gap compared to special-purpose solu-
tions. Domain-speci"c architectures (DSAs), an instance of heterogeneous architectures, e!ciently combine
general-purpose cores and specialized hardware accelerators to boost energy e!ciency and provide program-
ming #exibility. Indeed, the hardware, software, and systems aspects in DSAs are highly tailored to maximize
the energy e!ciency of applications in a target domain. As DSAs and their conceptualization advance rapidly,
there is a strong need to understand the research problems that need immediate attention. This article dis-
cusses the primary research directions in the design and runtime management of DSAs. Then, it surveys
some promising approaches and highlights the outstanding research needs.

CCS Concepts: • Computer systems organization→ Architectures; System on a chip; • Hardware→
Emerging architectures; On-chip resource management;

Additional Key Words and Phrases: Domain-speci"c architectures, domain-speci"c system-on-chip, DSA run-
time resource management, hardware architectures, emerging systems, runtime frameworks

ACM Reference format:
Anish Krishnakumar, Umit Ogras, Radu Marculescu, Mike Kishinevsky, and Trevor Mudge. 2023. Domain-
Speci"c Architectures: Research Problems and Promising Approaches. ACM Trans. Embedd. Comput. Syst. 22,
2, Article 28 (January 2023), 26 pages.
https://doi.org/10.1145/3563946

1 INTRODUCTION
Process technology-driven power, performance, and energy e!ciency improvements have re-
cently slowed down signi"cantly [74, 166]. In addition, performance cannot be further improved
by scaling the frequency arbitrarily due to the power wall [55, 180]. Consequently, two primary

This material is based on research sponsored by the Air Force Research Laboratory (AFRL) and Defense Advanced Research
Projects Agency (DARPA) under agreement number FA8650-18-2-7860. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.
Authors’ addresses: A. Krishnakumar and U. Ogras, University of Wisconsin–Madison; emails: {anish.n.krishnakumar, uo-
gras}@wisc.edu; R. Marculescu, The University of Texas at Austin; email: radum@utexas.edu; M. Kishinevsky, Intel Cor-
poration; email: michael.kishinevsky@intel.com; T. Mudge, University of Michigan; email: tnm@umich.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro"t or commercial advantage and that copies bear this notice and
the full citation on the "rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci"c permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
1539-9087/2023/01-ART28 $15.00
https://doi.org/10.1145/3563946

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

https://orcid.org/0000-0003-2419-1860
https://orcid.org/0000-0002-5045-5535
https://orcid.org/0000-0003-1826-7646
https://orcid.org/0000-0002-5593-9694
https://orcid.org/0000-0001-7845-2187
https://doi.org/10.1145/3563946
mailto:permissions@acm.org
https://doi.org/10.1145/3563946
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3563946&domain=pdf&date_stamp=2023-01-24

28:2 A. Krishnakumar et al.

drivers of higher performance-per-watt cease to provide the expected gains. At the same time,
the instruction-level parallelism techniques, such as processor pipelining, prefetching, and
out-of-order execution, provide only marginal bene"ts, thereby leaving a substantial scope for
improvement in performance and energy e!ciency [95].

Homogeneous multicore architectures integrate multiple identical cores onto the same die to
provide higher computational capabilities under similar area budgets [66, 93]. They opened new av-
enues to parallel processing capabilities with higher performance at a modest power consumption
increase, thereby allowing drastic energy e!ciency improvements [68]. However, homogeneous
cores cannot simultaneously satisfy competing application requirements, such as low power and
high performance. Low-power cores, such as the Arm Cortex-M series, have limited performance.
In contrast, high-performance cores, such as the Arm Cortex-A72/A76 processors, consume higher
power due to the out-of-order execution nature, large caches, and deep execution pipelines. Het-
erogeneous multiprocessor architectures address this problem by integrating low-power and high-
performance cores [83, 135]. Therefore, heterogeneous architectures are extensively used in most
processing systems, such as mobile phones, laptops, desktops, and servers [5, 82, 127].

Heterogeneous architectures signi"cantly improve performance and energy e!ciency com-
pared to their homogeneous counterparts. However, they still have a substantial gap with
application-speci!c integrated circuits (ASIC). To provide a quantitative comparison,
Figure 1(a) shows the energy e!ciency of applications implemented on CPU, GPU, FPGA, and
ASIC. CPU implementations require the least design e$ort and also provide low energy e!-
ciency [187]. GPUs and FPGAs improve energy e!ciency and performance by exploiting single-
instruction multiple data (SIMD) execution and parallelism bene"ts, respectively [59, 151]. Ap-
plication code is converted to GPU-compatible code to run on GPUs, and hardware description
languages or high-level synthesis for FPGAs. ASICs provide the highest energy e!ciency since
they are speci"cally designed for the target application [85]. However, the ASIC e$ort, which in-
cludes design, development, fabrication, and software development, could require several months
to years. Therefore, there is a critical need to continue the evolution of computing architectures
to provide ASIC-like energy e!ciency with the shortest possible time-to-market.

Domain-speci!c architectures (DSAs) represent an emerging instance of heterogeneous ar-
chitectures that optimize data #ow for applications in a target domain through hardware accelera-
tion while providing programming #exibility [6, 10, 86]. Examples of recently growing domains in-
clude machine learning and arti!cial intelligence (AI). For instance, machine learning and AI are
extensively being used for image processing, scheduling, recommendation systems, spam "ltering,
stock market analysis, and medical applications [120, 134, 142, 183]. Hence, there is a strong need
for computing architectures that enable seamless, high-performance, and energy-e!cient execu-
tion of these domain applications. DSAs aim at improved programmability by including general-
purpose cores and the highest energy e!ciency by integrating special-purpose processors and
hardware accelerators. The domain-speci"c nature of DSAs stems from the fact that the hardware
accelerators and data #ows are highly tailored to the type of computations in the applications of a
particular domain. Broadly speaking, DSAs encompass any computing architecture that provides
the following:
• Superior energy e!ciency through specialized processing: The specialized processors accel-

erate the frequently occurring domain-speci"c computations in hardware, thereby boosting
energy e!ciency. For example, a custom-designed fast Fourier transform (FFT) hardware
accelerates the direct- and inverse-FFT operations, whereas a systolic matrix multiplication
processor accelerates machine learning and AI applications.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

Domain-Specific Architectures 28:3

Fig. 1. (a) Trends in energy e!iciency and design e!ort in giga operations per second per wa" (GOPS/wa") for
applications implemented on CPU, GPU, FPGA, and fixed-function/special-purpose ASIC. (b) An illustration
of a domain-specific architecture (DSA) combining the flexibility benefits of CPU and GPU implementations,
the performance benefits of FPGA, and the energy e!iciency of fixed-function ASIC implementations.

• Programmability/"exibility: DSAs aim to improve the programming #exibility for both do-
main and non-domain applications. For example, DSAs that target neural network inference
must be programmable to execute multilayer perceptrons, convolutional neural networks,
and recurrent neural networks. In addition, they must be capable of executing other neural
network inference operations that cannot be easily implemented using specialized hardware.
Finally, they should be able to execute non-domain applications to improve #exibility and
enable broader usage.
• Heterogeneous processing elements: The diverse types of processing elements (PEs) in DSAs

cater to contrasting application requirements such as low power, high performance, energy
e!ciency, and programmability.

The potential of DSAs is also evident in recent and growing commercial examples. Google’s
tensor processing unit comprises hardware designs, systems, and software stacks to accelerate
machine learning training and inference [133, 138]. Tensor processing units provide 3× to 7×
speedup over state-of-the-art GPUs and 80× better energy e!ciency than general-purpose pro-
cessors [86, 96, 181]. Nvidia’s data center processing unit (DPU) is another DSA that integrates
high-performance ARM cores and hardware accelerators with an extensive software eco-system
optimized for AI, cloud supercomputing, network security, and wireless communication [32]. In-
tel’s infrastructure processing unit (IPU) is a programmable network device that integrates
with server CPUs to accelerate networking control, storage management, and security. O%oading
the infrastructure operations to the infrastructure processing unit reduces the overhead of infras-
tructure tasks to improve overall performance and energy consumption [31]. In the low-power
domain, RedMulE o$ers a sub-100 mW DSA for deep learning that comprises RISC-V cores and
dedicated matrix-multiplication accelerators [168]. In summary, DSAs have started making sub-
stantial strides in all domains to o$er superior energy e!ciency and short time-to-market. This
article aims to discuss the primary research directions in DSAs and survey the academic work
performed in these directions. Section 2 overviews the research directions in DSAs.

2 OVERVIEW OF PRIMARY RESEARCH DIRECTIONS IN DSAs
DSAs have the potential to enable high energy e!ciency and programmability across multiple
applications. However, critical research and infrastructure design challenges must be addressed
before DSAs can become a mainstream computing paradigm [74, 86, 119]. For instance, design-
ers must choose the optimal number and type of PEs to balance design time, cost, complexity,
area, and energy e!ciency. Novel and rapid hardware design techniques that condense the design

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

28:4 A. Krishnakumar et al.

Fig. 2. Prime research directions in the conceptualization, design, and development of DSAs. Applications
are represented as directed flow graphs. The nodes in the graph represent the key computational kernels
within each application, and the edges of the graph denote the communication volumes between kernels.

time and costs allow for a shorter time-to-market [72, 119]. Similarly, DSAs require novel and
state-of-the-art simulation, compilation, and emulation frameworks to minimize the gap between
conceptualization and market availability of a product [170]. In summary, there is a strong need to
understand the factors that currently limit the design and deployment of DSAs. To this end, this
survey article identi"es the key research areas (summarized in Figure 2) that need new ideas and
solutions to make DSAs default choices for designers, developers, and end users:
• Domain representation: Application source code must be analyzed to extract the domain-

speci"c kernels and construct the data #ow graphs that can exploit the data- and task-level
parallelism both in applications and hardware [171]. Understanding the domain applications
plays a critical role in selecting the PEs for the DSA, as described in Section 3.
• Hardware architecture and design: With the saturation of energy e!ciency of general-

purpose processors, DSAs require novel hardware architectures and innovative solutions
to exploit parallelism and maximize energy e!ciency for domain-speci"c kernels. Section 4
discusses hardware architectures for DSAs.
• Resource management in DSAs: Exploiting the full potential of DSAs involves optimally allo-

cating the tasks to PEs, and selecting their voltage-frequency levels at runtime using resource
management algorithms described in Section 5.
• Evaluation frameworks and productivity tools: Section 7 presents the need and frameworks

for rapid design space exploration to aid top-level design decisions in the early development
phase and emulation platforms to aid functional validation and software development in
DSAs.
• Software development: The challenge in programming DSAs with heterogeneous PEs de-

mands innovation in software frameworks and toolchains. Section 6 also serves as a
bridge between techniques for domain representation, hardware design, and resource
management.

The rest of the article is organized as follows. Section 3 presents the ideas and directions of
focus under domain representation. Section 4 discusses energy-e!cient hardware architectures
for DSAs. The resource management techniques and algorithms to exploit the potential of these
designs are discussed in Section 5. Section 6 presents the software development aspects, whereas
Section 7 surveys the tools and evaluation frameworks that aid the design process from the con-
ceptualization phase to the end product. Section 8 discusses the interaction between the various
DSA research directions. Section 9 concludes the survey.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

Domain-Specific Architectures 28:5

Fig. 3. Domain representation techniques extract the key application indicators (e.g., kernels and data flow
graphs) and facilitate the design of hardware, so#ware, and resource management techniques. The nodes in
the data flow graph represent the kernels/tasks in the applications. The edges represent the dependencies
between the kernels, and the edge weights denote the amount of data transferred between the kernels.

3 DOMAIN REPRESENTATION
The design of DSAs critically depends on #rst analyzing applications to classify them into the
target domains. Then, structured information (also called computational kernels) is extracted from
these applications of interest (domain applications) [13, 74, 123]. The frequently occurring compu-
tation kernels in an application domain are potential candidates for specialized implementations
since bene"ts over repeated operations can lead to signi"cant overall savings. Extracting the #ow
graph of an application provides precise control and data #ow dependencies, thereby allowing
the computing platforms to exploit the inherent parallelism and maximize performance [57]. The
nodes of the #ow graph represent the computational kernels, the edges between the nodes rep-
resent the dependency between the di$erent kernels, and the weight of the edges denotes the
volume of data communicated between two kernels, as shown in Figure 3 [27, 170]. The tasks that
can be performed together present opportunities for parallel execution in DSAs. The information
about the critical kernels and the scoped applications is utilized to determine the number and type
of PEs [46]. The domain representation techniques for DSAs draw their inspiration from parallel
computation models and languages [156]. The study of these techniques constitutes the domain
representation research in DSAs, as overviewed in Figure 3.

Applications and domains are evolving at an unprecedented pace, making manual analysis of
the applications arduous and impractical. Examples include the use of computer vision and im-
age processing algorithms in autonomous driving applications, wireless and radar applications in
communication and surveillance, and machine learning in AI [12, 27, 28, 105]. Hence, there is a
strong need for frameworks that can automatically scope the application domain and extract the
kernels and the data-parallel #ow graphs [27]. The kernel and #ow graph information help design-
ers determine the number and type of PEs required by the DSA. Application tracing tools allow
developers to log data as the programs execute, which is utilized to extract the kernel and #ow
graph information [36]. For instance, the low-level virtual machine (LLVM) compiler backend
uses application instrumentation to construct an intermediate platform-independent representa-
tion and generate application traces [188]. The kernel information in the applications and the data
#ow graphs are extracted from the traces [27, 28, 100, 170]. This #ow enables chip developers to
make intelligent choices of the hardware elements that can maximize energy e!ciency.

Heterogeneous systems-on-chip (SoCs), especially hardware accelerator rich systems, face
an enormous challenge in moving data among the di$erent PEs [73]. Networks-on-chip
(NoCs) are typically employed to improve the on-chip communication latencies [118]. Critical

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

28:6 A. Krishnakumar et al.

Fig. 4. An overview of hardware components in DSAs.

problems include reducing the on-chip communication and e!ciently mapping the PEs to the
NoC [27, 73, 122]. The application trace analysis also provides the volume of data communicated
between two kernels. This enables us to exploit optimal mapping and placement of the PEs in the
NoC to minimize the on-chip communication latency and energy [187]. In summary, the domain
representation analysis is the "rst and one of the crucial steps in developing DSAs. It acts as a
key enabler for hardware development (Section 4), resource management algorithms (Section 5),
and the software stack (Section 6). Uhrie et al. [171] use compiler intermediate representations
to produce application traces and segment the computational kernels [171]. Then, the data
dependencies between the kernels are identi"ed from the traces. However, the limitation here
remains the runtime of the tool. To this end, DSAs demand dynamic analysis and transformation
techniques (potentially even using just-in-time compilation approaches) to scope applications,
and extract the kernels and #ow graphs with minimal runtime.

4 HARDWARE ARCHITECTURE AND DESIGN
This section focuses on approaches to design highly energy e!cient hardware for the acceleration
candidates identi"ed by domain representation approaches discussed in Section 3. Customized
hardware designs allow architects to exploit parallelism and orchestrate a highly optimal data #ow
to maximize energy e!ciency for domain-speci"c computations [138]. We cover the components
in hardware architectures in the context of DSAs, as shown in Figure 4.

Fixed-function accelerators. A "xed-function accelerator is designed to implement one speci"c
function, which may be parameterized for di$erent input sizes. Hardware accelerators target
the kernels identi"ed in Section 3 to maximize energy e!ciency [39]. Fixed-function designs of-
fer the highest bene"ts since architects highly optimize them for speci"c operations. Their e!-
ciency begins to diminish when they have to generalize for multiple types of computation. The
autonomous driving pipeline in the work of Lin et al. [109] identi"es that deep neural network
inference and image feature extraction operations consume 95% of the computation time. Acceler-
ating these two operations using "xed-function accelerators provides a 93× overall improvement
in end-to-end latency. Another recent autonomous driving pipeline [10] accelerates 2D convolu-
tion, FFT, Viterbi decoding, object detection, and tracking operations using "xed-function accel-
erators. Similarly, a recent image processing pipeline [116] enables 133× speedup by accelerating
linear algebraic matrix operations, feature detection, and tracking operations using "xed-function
accelerators.

Specialized processors. A specialized processor, also called a special-purpose core, a specialized
core, or a domain-speci#c accelerator, includes any dedicated hardware design that implements

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

Domain-Specific Architectures 28:7

more than just one speci"c function (most often implements a group of similar functions). Devel-
oping a dedicated accelerator for each computationally intensive kernel can be highly time con-
suming. A specialized processor that accelerates multiple kernels reduces the design e$ort by facil-
itating extensive design reuse. The most commonly used specialized processors are coarse-grain
recon!gurable arrays (CGRAs), systolic arrays, general-purpose graphics processing units, and
FPGAs [45, 98, 126, 182, 189]. All of these computing philosophies employ SIMD execution and
enable high levels of parallelism or a combination of both [37, 38].

The similarity of operations in domain applications allows us to bene"t from specialized pro-
cessors. For example, a recent CGRA design [45] supports a range of image processing kernels,
namely gradient (medical imaging), convolution (digital signal processing), and the Sobel edge
detection algorithm (image processing). Similarly, the domain-adaptive systolic array processor
presented in the work of Chen et al. [41] accelerates several kernels in wireless communication
and linear algebra computation. The machine learning and AI domains bene"t substantially from
specialized processor implementations. For example, a recon"gurable architecture targeted for con-
volutional neural networks is presented in the work of Tu et al. [169]. It achieves one to two orders
of magnitude higher performance than state-of-the-art designs on AlexNet [102], VGG-19 [154],
GoogLeNet [163], and the ResNet-50 [84] models. GPUs are also widely used in neural network ap-
plications. They are used to train neural networks for autonomous driving applications, such as in
the Tesla autopilot system [88], and execute neural network inference on Nvidia Drive PX2 [115].
FPGA-based parallel implementations have accelerated a wide range of operations, from matrix
multiplications [52] to Fourier transforms [149], and are currently extensively deployed to enable
high-throughput and low-latency neural network inference computations [159, 190]. The design
of specialized processors carefully considers the range of kernels to be supported, which in turn
depends on the applications. At this juncture, specialized processors are transformed into DSAs
by incorporating domain knowledge to tailor the hardware design to the domain kernels [85, 86].

General-purpose processors. A DSA with only "xed-function and special-purpose processors be-
comes unusable in two scenarios: (1) tasks in domain applications that cannot be implemented
on "xed-function accelerators and specialized processors, and (2) applications outside the target
domain. In both scenarios, customized hardware leaves little #exibility on the table to execute
incompatible tasks. For this reason, using general-purpose cores in DSAs provides #exibility for
other domain applications, albeit with lower energy e!ciency [101].

On-chip interconnect. Accelerator-rich designs, such as DSAs, experience signi"cant data move-
ment between the di$erent PEs and can account for up to 40% of the total execution time [153].
Therefore, it is crucial to deploy e!cient on-chip communication hardware such that data is moved
in a highly energy e!cient manner [87, 170]. Prominent interconnect solutions include point-to-
point networks, bus-based interconnects, crossbar-based interconnects, and NoCs [118, 158]. NoCs
provide ultra-low latency (in the order of tens of nanoseconds for up to 16 PEs) compared to cross-
bar interconnects (in the order of hundreds of nanoseconds) at the expense of chip area and power
consumption [2, 118]. The target domain for the particular DSA and the performance, area, power,
and energy constraints play a crucial role in choosing between the di$erent solutions to enable
e!cient on-chip data movement.

The hardware designs and architectures presented in this section achieve superior energy e!-
ciency for their target applications. However, this process requires extensive design skills, time,
and expertise. Agile development techniques and high-level synthesis approaches are a giant leap
forward in the automatic generation of custom hardware [72, 119]. However, there is still a signif-
icant gap in automatically generating specialized hardware while being aware of other hardware

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

28:8 A. Krishnakumar et al.

units, communication and coherency models, and application constraints such as latency, power,
energy, throughput, and bandwidth.

5 RESOURCE MANAGEMENT IN DSAs
DSAs o$er multiple alternative PEs to execute tasks, such as general-purpose cores, hardware
accelerators, and specialized processors. To exploit the potential of DSAs, one of the most critical
aspects remains the ability to e!ciently utilize the available PEs for task execution [101, 175, 187].
This section discusses the resource management aspects of DSAs, key bottlenecks, and outstanding
research problems.

The techniques fall broadly into two categories: (1) static (or design-time) and (2) dynamic
(or runtime) techniques. Static algorithms utilize the design-time information to manage the re-
sources [11, 165, 167]. These algorithms can provide optimal or heuristic solutions since they are
not bounded by computation and latency constraints [193]. Static approaches cannot access run-
time information and are ine!cient in several scenarios [101]. DSAs inherently support several
simultaneous applications that could demand a substantial amount of system resources. Static
algorithms may su!ce in limited application-speci"c scenarios; however, DSAs require e!cient
runtime resource management techniques. Although several static and dynamic approaches have
been proposed previously [24, 70, 99, 141, 155], the following fundamental challenges drive the
research need for novel dynamic techniques that target DSAs:
• Heterogeneity: PEs with di$erent power and performance characteristics for various appli-

cations require algorithms to evaluate all valid execution alternatives to obtain the optimal
solution. Considering the characteristics of all heterogeneous PEs at runtime makes the re-
source management problem complex.
• Streaming arrivals: Most applications (e.g., video/signal processing, autonomous driving,

radar systems) continuously perform identical operations on streaming data frames. The
complexity lies in e!ciently managing the resources when randomly arriving frames over-
lap with currently executing and pending tasks from previous frames.
• Concurrent applications: SoCs execute several applications simultaneously. Resource manage-

ment techniques must recognize the divergent application characteristics and satisfy their
compute requirements, performance, power, and deadline constraints.

The type of applications and the choice of hardware components in the DSA play a critical role in
developing resource management techniques. Therefore, the outputs of domain representation and
hardware design are critical inputs to the study of task scheduling techniques (Section 5.1), voltage-
frequency scaling policies (Section 5.2), and other aspects (Section 5.3), as shown in Figure 5.

5.1 Task Scheduling and Mapping
DSAs typically execute several streaming applications simultaneously [28, 101]. Task scheduling
algorithms assign tasks to the PEs on the DSA to optimize performance (e.g., execution time),
power, and energy consumption objectives. Static schedulers utilize only design-time information,
whereas dynamic scheduling techniques exploit the runtime information to make e$ective deci-
sions [167, 175]. Since task scheduling in heterogeneous SoCs is NP-complete, "nding the optimal
solution is not feasible at runtime for practical problem sizes [26, 172].

Task scheduling algorithms are broadly classi"ed into (1) optimization-based approaches,
(2) heuristic techniques, and (3) machine learning based schedulers [120, 167, 193]. Optimization-
based approaches formulate the task scheduling problem using objective functions and constraints
that describe the applications and the computing platform [165]. The complexity of optimization-
based approaches prohibits their use in dynamic scheduling scenarios [193]. Similarly, simulated

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

Domain-Specific Architectures 28:9

Fig. 5. The key areas of focus in DSA resource management techniques that interface with the domain
applications and DSA hardware. The domain representation outputs and hardware design decisions are used
to design task scheduling, voltage-frequency scaling, and other resource management techniques.

annealing and genetic algorithm based scheduling algorithms, such as the ones proposed by
Jin et al. [94], also su$er from excessive runtime overheads. The high overheads make them
impractical for runtime applications. Heuristic schedulers address this challenge and are ex-
tensively studied in the literature. HEFT (heterogeneous earliest "nish time) is a well-known
static list scheduling heuristic technique for heterogeneous platforms [167]. HEFT inspired a
family of schedulers that optimize for di$erent objectives [11, 26, 112]. Other static heuristic
schedulers such as minimum execution time, tabu search, and genetic and simulated annealing
algorithms are presented in the work of Braun et al. [29]. Heuristic schedulers are tailored to
sub-optimal objectives and do not generalize well. Recently, machine learning based approaches
have been deployed for task scheduling. The DeepRM [120] framework presents the use of
reinforcement learning (RL) with deep neural networks to perform scheduling in data clusters.
The Decima [121] framework uses RL with graph neural networks for the same cluster scheduling
problem. RL su$ers from the complexity of the reward function design and convergence times.
Hence, the imitation learning based approach presented in the work of Krishnakumar et al. [101]
poses scheduling in DSAs as a classi"cation problem; then, it uses supervised learning techniques
to approximate an Oracle created o%ine. This technique generalizes to several objectives and
dynamic scenarios but does not consider the application deadlines [193, 194] and real-time
constraints [48]. Therefore, there is a strong need for a combination of optimality, deadline
awareness, and low runtime complexity in task scheduling algorithms for DSAs.

The task scheduling algorithms discussed previously choose between the PEs such as CPUs,
hardware accelerators, and specialized processors for a particular task at runtime. However, decid-
ing where to map the di$erent tasks within the SIMD/execution units and communicate between
them in a specialized processor is still an outstanding problem. Speci"cally, the specialized proces-
sors (discussed in Section 4) comprise several small execution units, which we refer to as sub-PEs.
These processors support the simultaneous execution of several tasks [41, 75]. The factors that in-
#uence the task mapping within these processors include the number of sub-PEs, latency, commu-
nication information, memory requirements, power, and energy constraints for each simultaneous

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

28:10 A. Krishnakumar et al.

task [111]. Optimization-based and heuristic techniques (e.g., modulo scheduling techniques) stat-
ically generate compile-time mappings [43, 177, 184, 192]. A recent technique [178] introduces
dynamic con"guration to adapt a systolic array at runtime based on the neural network sizes.
A more general formulation of the sub-PE mapping problem can be found in the work of Chou
et al. [44]. The critical challenge remains to generate a completely automatic and optimal mapping
at runtime with the least possible latency and energy consumption overheads.

5.2 Dynamic Thermal-Power Management Techniques
State-of-the-art PEs and cores support multiple voltage and frequency (V-F) levels. Another
critical aspect in exploiting the potential of DSAs is optimally selecting these power states at run-
time [108, 152]. The V-F levels of PEs play a primary role in determining power and performance,
and the power consumption determines the temperature of the PEs [25]. For example, using the
highest V-F levels to maximize performance increases power consumption and, in turn, the temper-
ature [81]. Furthermore, portions of the SoC may be placed in di$erent levels of sleep states where
they are partially or entirely powered o$ to save energy and control temperature [180]. Like task
scheduling, V-F selection for the cores is also NP-complete [164]. Therefore, e!cient dynamic
thermal-power management (DTPM) techniques are essential to utilize DSAs e!ciently while
maintaining the chip temperature within limits [130].

The DTPM techniques also fall into categories similar to the task scheduling algorithms, namely
optimization-, heuristic-, and machine learning based techniques. The extensive use of hetero-
geneous multiprocessor systems-on-chip (MPSoCs) in battery- and energy-constrained sys-
tems has attracted substantial research in this domain. The heuristic techniques proposed by Han
et al. [80] and Reddy et al. [146] use the di$erence between achieved and target metrics to adjust the
frequencies. The approach presented by Moazzemi et al. [128] combines the bene"ts of traditional
control-theoretic approaches and heuristics to develop a lightweight and e!cient frequency scal-
ing policy. Recent approaches presented in other works [51, 117, 152] use machine learning to train
policies to determine the optimal operating frequency and generalize to unseen workloads. Tem-
perature management on heterogeneous SoCs is also critical as the on-die power density critically
increases [25, 50, 150]. Current approaches for power and thermal management techniques focus
on homogeneous and heterogeneous CPU cores and also on GPUs, comprehensively discussed in
the work of Pasricha et al. [137]. A few techniques consider hardware accelerators in their power
management policies [53, 185]. However, DSAs demand novel techniques that consider all types of
hardware accelerators and specialized cores since they can signi"cantly contribute to the overall
power, energy, and temperature.

5.3 Other Resource Management Research Directions
Although task scheduling, mapping, and DTPM ideas dominate the primary aspects of resource
management, modern-day SoCs look at other aspects to satisfy requirements such as reliability
and security to meet user expectations and privacy standards. For instance, SoCs and processors
from Apple, Intel, and RISC-V include a secure enclave to protect user data when the platform is
experiencing security attacks [1, 3, 131]. Instead of relying solely on the secure enclave to protect
sensitive data, building security into other aspects enhances the security of the design. DSAs seek
adaptation and advancement of ideas from prior work on heterogeneous MPSoCs.

Risk and security. Integrating security into scheduling algorithms and dynamic voltage fre-
quency scaling (DVFS) governors is at the expense of chip area, scheduling latency, power
and energy overheads, and design complexity. Therefore, low complexity and runtime overheads
remain essential requirements of security-aware techniques. Commercial SoCs integrate several

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

Domain-Specific Architectures 28:11

Fig. 6. The so#ware stack processes the application source codes expressed in domain-specific or traditional
languages. The so#ware tools include specialized compilers and a pre-compiled library of highly optimized
kernels to execute applications in runtime frameworks on the target DSA.

third-party IPs to promote design reuse and improve the design cycle [136]. However, using ex-
ternal IPs has the severe risk of untrusted designs, leading to security #aws. To this end, a multi-
dimensional optimization approach improves the security of the MPSoC through task scheduling
with negligible impact on performance and no additional hardware cost [110]. In this approach,
task duplication and isolation are the two techniques that aid in detecting hardware Trojans in the
presence of third-party IPs. Recent literature has shown that security attacks can extract sensitive
data by exploiting the temperature patterns on the chip [91]. Indeed, the ThermalAttackNet [49]
discusses the potential of DVFS governors in avoiding the detection of stored passwords using
on-chip temperature patterns. Therefore, integrating such techniques into resource management
algorithms improves the security of DSAs.

Reliability and robustness. With the increasing use of SoCs in safety-critical applications (e.g., au-
tonomous driving, avionics, and medical applications), there is a critical emphasis on reliable and
robust computing [103, 186]. The chip temperature plays a critical role in the mean time to failure
since it directly impacts the metal fatigue. A tradeo$ between power consumption and reliability
(in the mean time to failure) is explored by estimating the failure rate at a given chip tempera-
ture in the work of Rosing et al. [148]. The DVFS technique proposed in this article integrates
a reliability metric into its optimization problem to increase the mean time to failure. Further-
more, di$erential aging of cores in an SoC results in certain cores failing sooner than the other
counterparts. To address this challenge, the scheduling approach presented by Huang et al. [90] in-
cludes the mean time to failure in the objective function along with deadline constraints. Although
the preceding techniques focus on prolonging the time to failure, task scheduling techniques also
provide reliable and robust decisions in the presence of system faults [54, 89]. For space-based ap-
plications, state-of-the-art approaches must provide reliable and robust decision in high-radiation
environments [54, 58, 139]. In summary, emerging reliability and robustness requirements demand
resource management approaches for DSAs to take them into consideration to enhance usability.

6 SOFTWARE DEVELOPMENT
Customized hardware designs are typically notoriously hard to program. Hence, one of the funda-
mental research challenges is maximizing the performance and energy e!ciency of DSAs while
relieving the end users from the platform-speci"c details. DSA software infrastructures aim to fa-
cilitate end-user application development and make it agnostic to the hardware platform using the
tools and frameworks summarized in Figure 6.

6.1 Domain-Specific Languages
Domain-speci!c languages (DSLs) are designed for particular application domains. DSLs
enhance expressiveness and programmer productivity to generate highly optimized code

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

28:12 A. Krishnakumar et al.

implementations to improve platform performance and portability [125]. They o$er high program-
ming accessibility, reduced code complexity, and improved programmer productivity through pre-
de"ned domain-speci"c abstractions [30]. DSL-based compilers utilize these abstractions to enable
targeted optimizations [143]. The Delite DSL [160] embeds into Scala (a general-purpose program-
ming language) and translates code constructs to programming models such as C++, CUDA, and
OpenCL. Halide enables high-performance image processing through domain-speci"c constructs
and generates e!cient implementations for x86, ARM, and GPUs [145]. The Graphit DSL for graph-
based computations generates fast and optimized implementations by considering the graph
structure, algorithm, and the underlying hardware platform [191]. The heterogeneous parallel
virtual machine (HPVM) DSL and compiler infrastructure makes strong strides toward DSAs
as it targets highly heterogeneous and parallel systems [100]. The use of DSLs eases the design
and programming of DSAs, aiding the e$ort to maximize its performance and energy e!ciency
[18, 119].

6.2 Compilers and Debuggers
Programming heterogeneous SoCs, especially DSAs, is a monumental challenge for the following
reasons: (1) hardware heterogeneity, (2) identifying parallelism in applications and hardware, and
(3) memory hierarchy and data movement [86, 100, 161, 171]. The HPVM compiles applications
into data #ow graphs and develops a representation that exploits the parallelism of the underlying
hardware [100]. The framework presented in the work of Xiao et al. [187] includes a compiler
that constructs #ow graphs from applications using the low-level virtual machine intermediate
representation [106]. Then, the framework identi"es the optimal number and type of resources to
maximize energy e!ciency while balancing the computation and on-chip communication costs.
The runtime framework in the work of Mack et al. [113] also includes a compilation step that
maps application code to DSA platforms. All of these compilers exploit the task- and data-level
parallelism inherent in the applications and the hardware. Furthermore, debuggers that improve
the code and platform debug capabilities enhance the usability of DSAs.

6.3 Kernel Library
The performance of kernels and applications strongly depends on the programmer’s speci"c imple-
mentation. For instance, the execution times of the Fourier transform operation using the GSL [64],
FFTW [60], MKL [179], and FFTPACK [129] libraries vary by up to three orders of magnitude [65].
DSAs include a library that contains highly optimized implementations of domain-speci"c kernels
to improve performance. The compiler identi"es kernels in the application source code and substi-
tutes them with the optimized implementations from the library [47, 107]. Therefore, a #ow that
integrates a kernel library that swaps the kernels at compile-time/runtime maximizes performance
and reduces the programmer’s burden.

6.4 Performance Monitors and Profilers
DSAs strive to keep the end users oblivious to the underlying platform architecture such that archi-
tecture expertise and hardware knowledge are not expected from them [74]. However, end users
still like to analyze the performance of their applications and evaluate the ine!ciencies and bot-
tlenecks in the applications. To this end, the performance monitoring unit, perf, and performance
application programming interface are some of the tools that abstract the behavior of the CPU exe-
cution pipeline (e.g., control unit, cache, and memory) into key performance indicators [152]. These
tools are primarily applicable for general-purpose processor-based MPSoC systems. DSAs con-
tain various PEs; hence, the pro"ling tools require adaptation to obtain performance indicators of
hardware accelerators and specialized processors. The performance application programming

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

Domain-Specific Architectures 28:13

interface (API) infrastructure is extended to hardware accelerators and validated for a prototype
implemented on Xilinx Zynq FPGA [161]. Nvidia provides pro"ling tools to collect a variety of
performance counters helpful for general-purpose graphics processing unit applications [132, 140].
CPUs, GPUs, and other PE types comprise their own performance monitoring mechanisms. Like-
wise, DSAs need a uni"ed framework that aggregates performance indicating counters from all
PEs to serve two essential purposes: (1) enable resource management algorithms to make smarter
decisions based on the performance counters, and (2) assist programmers in analyzing application
performance and bottlenecks [74].

6.5 Runtime Frameworks
All PEs in DSAs, including general-purpose processors, specialized cores, and "xed-function accel-
erators, expose APIs for programming them. End users want their existing applications to execute
in DSAs with no or minimal modi"cations and developmental e$ort [113]. Moreover, the end users
are agnostic to the architecture and the type of hardware components. Therefore, there is a crit-
ical need for runtime frameworks that use the application source code and execute them on the
heterogeneous hardware using state-of-the-art resource management techniques [17]. Runtime
frameworks bridge the hardware components, resource management algorithms, and domain rep-
resentation techniques in DSAs. During application execution, they identify the domain-speci"c
kernels, allocate them to the PEs, and run them on the energy-e!cient hardware. Software run-
time frameworks also integrate the compiler, kernel library, and pro"ler aspects to improve per-
formance and user productivity. For example, the StarPU framework [17] schedules applications
to CPU-GPU systems. It exploits the inherent heterogeneity and parallelism to achieve better per-
formance than state-of-the-art systems. The userspace runtime framework presented in the work
of Mack et al. [114] supports plug-and-play selection of scheduling algorithms for application ex-
ecution in accelerator-rich DSAs.

7 DESIGN AND EVALUATION FRAMEWORKS FOR RAPID DESIGN
Heterogeneous architectures, particularly DSAs, integrate several in-house and third-party hard-
ware components. This integration increases the design complexity, leading to veri"cation and
physical implementation challenges [35, 162]. The DSA design choices are evaluated by several
objectives, such as power, performance, energy, and throughput [23, 79]. The shrinking time-to-
market requirements pose tight timelines for chip designers. The stringent time requirements de-
mand methodologies, strategies, and evaluation tools for rapid DSA design and development.

7.1 Design Methodologies and Strategies
Design methodologies and strategies reduce human e$ort, design-time, and development costs
[62, 147]. The ideas that are critical for DSAs to minimize the time-to-market, reduce design costs,
improve developer productivity, and build e!cient designs are listed next:
• Design modularity and reuse: Modularity allows smaller pieces of the design to be developed

independently. Furthermore, the modules can be substituted by newer versions with minimal
changes to the rest of the design [119]. Modularity also helps with extensive design reuse
for frequently used logic and hardware blocks [20].
• Open instruction set architectures: The in#uence of open-source software paved the way for

open instruction set architectures (ISAs) [86]. The RISC-V ISA is one such prominent
example [76]. Open ISA promotes collaboration, design reuse, a$ordability, and, most im-
portantly, security [4]. Proprietary ISAs obscure the more delicate details within a closed set

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

28:14 A. Krishnakumar et al.

Table 1. Overview of the Types of Evaluation Frameworks and Their O!erings in DSA Realization

High-Level Simulation
Frameworks

Cycle-Accurate
Simulation Frameworks

Emulation
Frameworks

Evaluation Accuracy Moderate High Highest
Speed of Evaluation Fastest Slow Fast

Ease of Flexibility Highest Moderate Low
Evaluation of Resource

Management Algorithms Fast Slower Slowest

Modeling Technique Analytical and
approximate models

Fine-grained models (and/or)
real implementations Real implementations

Design Space Exploration Fast Slower Slowest
Software Development Not supported Limited support Full support

Firmware Development Not supported Not supported Full support
Functional Validation Not supported Not supported Supported

of individuals, whereas open ISAs promote security by allowing the community to evaluate
the risks and robustness [14].
• Open-source hardware and tools: Open-source hardware encourages design reuse and ex-

ploiting pre-validated hardware. It allows the community to collectively develop superior
hardware, like the success of the Linux kernel. Signi"cant emphasis is also being placed on
developing open-source hardware design tools [4, 9, 33, 92].
• Agile hardware development "ow: The agile methodology empowers small teams (fewer than

10 members) and realizes work in short sprints (2–4 weeks). The sprints are thoroughly
planned and evaluated by regular reviews [144]. The remarkable success of agile #ows in
software development strongly in#uences its adoption in hardware development [18]. Al-
though some software concepts are not directly applicable to hardware due to the di$erences
in timelines, the hardware community welcomes the approach with adaptations to reduce
the DSA time-to-market.

7.2 Evaluation Frameworks
The DSA design complexity and time-to-market requirements motivate the need for rapid and ef-
"cient design space exploration [173]. The complexity of these architectures also requires compre-
hensive veri"cation techniques. Functionally validating designs before tape-out reduce the chance
of post-silicon failures and improve the time-to-market. Modern SoCs demand early "rmware and
software development to further shrink the design cycles, typically before tape-in. To this end, em-
ulation platforms enable functional validation and early software development. They can reduce
the software bring-up time to less than 24 hours within the availability of the chip. The goals of
simulation and emulation frameworks and their support in realizing DSAs are presented in Table 1.
This section discusses the initial work targeting this research direction, the current gaps, and the
e$orts required to bridge this gap.

Simulation frameworks. Simulation and modeling of full systems can be broadly classi"ed into
(1) speci"cation-level modeling, (2) transaction-level modeling, and (3) cycle-accurate model-
ing [61]. Cycle-accurate simulators use precise behavioral models to obtain accurate estimates,
but they incur prohibitively long runtimes to perform rapid design space explorations [16, 176].
High-level simulators use approximate and analytical models to trade o$ estimation accuracy for
speed [12, 16]. Gries [77] discusses the necessity, advantages, and methods for fast design space
exploration in MPSoCs. The SpecC and SystemC languages have fueled the growth of transaction-
level modeling based system design and exploration [63, 71, 78]. DSLs are an abstraction layer

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

Domain-Specific Architectures 28:15

between users and the simulation tools to provide platform information [56]. Aspen, a DSL, for-
mally speci"es the application’s functional behavior and an abstract platform model [157]. The
model and application behavior are then utilized to project runtime and roo#ine charts, and evalu-
ate performance. An abstract model to explore dynamic mapping strategies for NoC-based MPSoCs
in [34] achieves a 91% reduction in simulation compared to RTL-based models. In addition, a large
body of work further accelerates design space exploration of MPSoCs on FPGA [7, 8, 22].

Rapid DSA design exploration using high-level simulation has been explored in other works [12,
175]. Both simulators are examples of host-compiled simulation frameworks [69]. They bridge the
gap between high-level models and real implementations by integrating pro"ling-based timing
estimates. The STOMP simulator facilitates easy evaluation of scheduling policies for DSAs in the
presence of real-time applications and deadline constraints [175]. The DS3 simulator allows users
to evaluate scheduling algorithms, DVFS policies, and SoC con"gurations with metrics such as
power, execution time, and energy consumption [12].

Emulation platforms. Emulation frameworks overcome the limitation of simulators by enabling
functional veri"cation, and early software and "rmware development [22, 67, 124]. The emula-
tion frameworks are broadly classi"ed into virtual model-based emulators and FPGA-based frame-
works that rely on the actual implementation [42]. It is worth noting that only FPGA-based frame-
works allow functionality validation since they use the actual implementation, as compared to
representative models in virtual platforms.

The emergence of SystemC and transaction-level-based modeling also signi"cantly enhanced
the development of virtual emulation frameworks [40]. The quick emulator (QEMU) deploys ab-
stract models of the computing elements and transaction-level models for its interactions with the
rest of the system [21]. QEMU also enables developers to bring up a variety of guest operating sys-
tems and execute applications on the CPU through dynamic binary translations [19]. Along these
lines, ARM provides fast models that are accurate and representative models of their IPs such as
CPUs, interconnects, sub-systems, and other peripheral components [174]. Fast models allow the
bring-up of the Linux OS, and programmers to develop software, "rmware, and applications.

FPGA-based frameworks also improve task scheduling and DTPM policies by utilizing more
realistic estimates in MPSoCs [15, 130]. An MPSoC-based sensor- and actuator-rich cyber-physical
SoC is prototyped in the work of Sarma and Dutt [151], enabling hardware and software co-design.
Other frameworks for MPSoCs are presented and discussed in the work of Khamis et al. [97] and
Kurth et al. [101]. The MPSoC-based frameworks must be adapted for DSAs by integrating the
other components, such as specialized cores, hardware accelerators, and on-chip interconnects. In
that direction, the FPGA-based user-space emulation framework in the work of Mack et al. [114]
integrates hardware and software to evaluate resource management policies for DSAs. Although
this work is an initial step in the DSA direction, frameworks that scale to the entire design are
critical to bridge the gap between the requirements and state-of-the-art approaches.

8 INTERACTION BETWEEN THE DSA RESEARCH DIRECTIONS, INSIGHTS, AND
OPEN CHALLENGES

8.1 Interactions between the Research Directions
This section discusses the interactions between the research directions presented so far, as out-
lined in Figure 7. Domain representation e$orts analyze the applications and present computa-
tional kernels that are potential candidates for implementation in special-purpose hardware. The
hardware architecture and design exploit this information to develop customized and e!cient pro-
cessing for these potential candidates using either "xed-function or specialized accelerators. Hard-
ware design techniques also leverage the data dependencies between the kernels in applications to

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

28:16 A. Krishnakumar et al.

Fig. 7. Interactions between the research directions for the realization of DSAs. The kernel and flow graph
information of domain applications and target metrics drive the hardware architecture and design of PEs.
The application and hardware PE information is exploited by the resource management techniques. The DSA
configurations are evaluated for functionality and performance using simulators, emulation frameworks, and
the so#ware stack.

design an appropriate on-chip communication network, such as bus, point-to-point network, and
NoC. Similarly, the domain analysis provides design-time and runtime information to the resource
management algorithms. Design-time information includes the kernel characteristics and their in-
teractions that a$ect latency, execution time, and communication volumes. Resource management
algorithms exploit this information o%ine to deploy targeted scheduling and power management
techniques for the chosen PEs. The domain-speci"c information in the applications helps narrow
down the vast design space. Simulation frameworks perform rapid design space explorations and
systematically evaluate resource management algorithms. The domain representation techniques
and software stack share similar tools and infrastructure, such as compilation and performance
pro"ling APIs. They target speci"c hardware by providing the relevant compiler and API support.
Finally, emulation frameworks accelerate software development, enable performance evaluation,
and facilitate functional validation to improve the time-to-market for DSAs.

8.2 Insights and Open Challenges
DSAs are making solid advances toward becoming the preferred choice for future computing sys-
tems. DSA design and development e$orts require signi"cant attention as the algorithms, design
methodologies, and tools evolve. Furthermore, the subtle interaction between the di$erent DSA
research aspects requires substantial research focus. The ever-lasting pursuit of maximizing per-
formance and energy e!ciency while minimizing the cost and design e$ort leaves the following
open research questions:
• How can we reduce the time required to generate application traces, scope them and extract

the #ow graphs?
• Can we perform DSA hardware-aware application code compilation using state-of-the-art

and just-in-time compilation techniques?

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

Domain-Specific Architectures 28:17

• Can we automatically generate highly optimized and specialized hardware based on high-
level requirements, such as performance, power, and throughput?
• How can we architect easily programmable and #exible yet highly specialized hardware?
• Can we design light-weight and near-optimal resource management algorithms considering

all application requirements, such as performance, power consumption, energy e!ciency,
and deadlines?
• Can we explore preemption-based resource management techniques with hardware acceler-

ators (that do not allow context switching) to address real-time needs?
• How can we automatically generate software support for custom-designed hardware accel-

erators and reduce the development time?
• How can we accurately and quickly calibrate high-level simulators with pre-silicon data or

real hardware, speed up cycle-accurate simulations, and reduce the development times for
emulation frameworks?
• How can we embed security and privacy into all DSA design aspects and components?
• How can we seamlessly integrate the di$erent DSA research directions and tools to maxi-

mize performance and energy e!ciency with minimum intervention from users and devel-
opers?

A few challenges involved in DSA design listed in the di$erent sections are compiled here. These
and similar questions demand innovation and research for performant and energy-e!cient DSA-
based computing systems.

9 CONCLUSION
The slowdown of Moore’s law and Dennard scaling has limited the power and performance gains
obtained with the evolution of technology process nodes over the years. There is a strong need
for innovation in several aspects, such as ISA, microarchitecture, algorithms, hardware, and soft-
ware, to achieve drastic improvements in energy e!ciency. Beyond these conventional approaches,
DSAs promise to achieve superior energy e!ciency by combining general-purpose cores and hard-
ware accelerators for applications in a target domain. Furthermore, DSAs integrate sophisticated
runtime resource management algorithms and a software stack to maximize performance and en-
ergy e!ciency.

This survey discussed various research directions and challenges in designing and developing
DSAs. We also presented some promising approaches and gaps to be addressed to develop and use
DSAs quickly. As we witness tremendous innovation, DSAs are expected to contribute to the quest
for higher performance and energy e!ciency in future computing systems.

ACKNOWLEDGMENTS
The views and conclusion contained herein are those of the authors and should not be interpreted
as necessarily representing the o!cial policies or endorsements, either expressed or implied, of the
Air Force Research Laboratory (AFRL) and Defense Advanced Research Projects Agency (DARPA)
or the U.S. Government.

REFERENCES
[1] Apple. [n.d.]. Apple Secure Enclave. Retrieved May 15, 2022 from https://support.apple.com/guide/security/secure-

enclave-sec59b0b31$/web.
[2] Cadence. [n.d.]. ARM CoreLink Interconnects Whitepaper. Retrieved May 15, 2022 from https://ip.cadence.com/

uploads/251/white-paper-interconnect-solutions-debugging-issues-advanced-ARM-CoreLink-pdf.
[3] ARM. [n.d.]. ARM TrustZone. Retrived May 15, 2022 from https://developer.arm.com/documentation/PRD29-GENC-

009492/c/TrustZone-Hardware-Architecture.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://ip.cadence.com/uploads/251/white-paper-interconnect-solutions-debugging-issues-advanced-ARM-CoreLink-pdf
https://developer.arm.com/documentation/PRD29-GENC-009492/c/TrustZone-Hardware-Architecture

28:18 A. Krishnakumar et al.

[4] Google. [n.d.]. Google’s Thrust Towards Open-Source Hardware. Retrieved May 15, 2022 from https://opensource.
googleblog.com/2019/05/google-fosters-open-source-hardware.html.

[5] Aakash Jani. 2022. Year in Review: PC Processors Adopt Hybrid CPUs. Retrieved May 15, 2022 from https://www.
techinsights.com/blog/year-review-pc-processors-adopt-hybrid-cpus.

[6] Retrieved May 15, 2022 from https://futurenetworks.ieee.org/images/"les/pdf/FirstResponder/Tom-Rondeau-
DARPA.pdf.

[7] Siemens. [n.d.]. Veloce2 Emulator. Retrieved May 15, 2022 from https://www.mentor.com/products/fv/emulation-
systems/veloce.

[8] Synopsys. [n.d.]. ZeBu Server 4. Retrieved May 15, 2022 from https://www.synopsys.com/veri"cation/emulation/
zebu-server.html.

[9] Tutu Ajayi, Vidya A. Chhabria, Mateus Fogaça, Soheil Hashemi, Abdelrahman Hosny, Andrew B. Kahng, Minsoo
Kim, et al. 2019. Toward an open-source digital #ow: First learnings from the OpenROAD project. In Proceedings of
the 56th Annual Design Automation Conference. 1–4.

[10] Aporva Amarnath, Subhankar Pal, Hiwot Tadese Kassa, Augusto Vega, Alper Buyuktosunoglu, Hubertus Franke,
John-David Wellman, Ronald Dreslinski, and Pradip Bose. 2021. Heterogeneity-aware scheduling on SoCs for au-
tonomous vehicles. IEEE Computer Architecture Letters 20, 2 (2021), 82–85.

[11] Hamid Arabnejad and Jorge G. Barbosa. 2013. List scheduling algorithm for heterogeneous systems by an optimistic
cost table. IEEE Transactions on Parallel and Distributed Systems 25, 3 (2013), 682–694.

[12] Samet Arda, Anish Krishnakumar, Ahmet Alper Goksoy, Joshua Mack, Nirmal Kumbhare, Anderson Luiz Sartor, Ali
Akoglu, Radu Marculescu, and Umit Y. Ogras. 2020. DS3: A system-level domain-speci"c system-on-chip simulation
framework. IEEE Transactions on Computers 69, 8 (2020), 1248–1262.

[13] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Husbands, Kurt Keutzer,
David A. Patterson, et al. 2006. The Landscape of Parallel Computing Research: A View from Berkeley. Technical Report
No. UCB/EECS-2006-183. EECS Department, University of California, Berkeley.

[14] Krste Asanović and David A. Patterson. 2014. Instruction Sets Should Be Free: The Case for RISC-V . Technical Report
No. UCB/EECS-2014-146. EECS Department, University of California, Berkeley.

[15] David Atienza, Pablo G. Del Valle, Giacomo Paci, Francesco Poletti, Luca Benini, Giovanni De Micheli, Jose M. Men-
dias, and Roman Hermida. 2008. HW-SW emulation framework for temperature-aware design in MPSoCs. ACM
Transactions on Design Automation of Electronic Systems 12, 3 (2008), 1–26.

[16] Rabie Ben Atitallah, Smail Niar, Samy Meftali, and Jean-Luc Dekeyser. 2007. An MPSoC performance estimation
framework using transaction level modeling. In Proceedings of the International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA’07). 525–533.

[17] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. 2011. StarPU: A uni"ed platform
for task scheduling on heterogeneous multicore architectures. Concurrency and Computation: Practice and Experience
23, 2 (2011), 187–198.

[18] Rick Bahr, Clark Barrett, Nikhil Bhagdikar, Alex Carsello, Ross Daly, Caleb Donovick, David Durst, et al. 2020. Cre-
ating an agile hardware design #ow. In Proceedings of the 57th ACM/IEEE Design Automation Conference (DAC’20).
1–6.

[19] Daniel Bartholomew. 2006. QEMU: A multihost, multitarget emulator. Linux Journal 2006, 145 (2006), 3.
[20] Amir H. Behzadan, Brian W. Timm, and Vineet R. Kamat. 2008. General-purpose modular hardware and software

framework for mobile outdoor augmented reality applications in engineering. Advanced Engineering Informatics 22,
1 (2008), 90–105.

[21] Fabrice Bellard. 2005. QEMU, A fast and portable dynamic translator. In Proceedings of the USENIX Annual Technical
Conference: FREENIX Track, Vol. 41. 10–5555.

[22] Giovanni Beltrame, Luca Fossati, and Donatella Sciuto. 2009. ReSP: A nonintrusive transaction-level re#ective MP-
SoC simulation platform for design space exploration. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 28, 12 (2009), 1857–1869.

[23] Mehmet E. Belviranli and Je$rey S. Vetter. 2019. FLAME: Graph-based hardware representations for rapid and pre-
cise performance modeling. In Proceedings of the Design, Automation, and Test in Europe Conference and Exhibition
(DATE’19). 1775–1780.

[24] Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. 2000. A survey of design techniques for system-level
dynamic power management. IEEE Transactions on Very Scale Integration (VLSI) Systems 8, 3 (2000), 299–316.

[25] Ganapati Bhat, Gaurav Singla, Ali K. Unver, and Umit Y. Ogras. 2017. Algorithmic optimization of thermal and power
management for heterogeneous mobile platforms. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
26, 3 (2017), 544–557.

[26] Luiz F. Bittencourt, Rizos Sakellariou, and Edmundo R. M. Madeira. 2010. DAG scheduling using a lookahead variant
of the heterogeneous earliest "nish time algorithm. In Proceedings of the Euromicro Conference on Parallel, Distributed,
and Network-Based Processing. 27–34.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

https://opensource.googleblog.com/2019/05/google-fosters-open-source-hardware.html
https://www.techinsights.com/blog/year-review-pc-processors-adopt-hybrid-cpus
https://futurenetworks.ieee.org/images/files/pdf/FirstResponder/Tom-Rondeau-DARPA.pdf
https://www.mentor.com/products/fv/emulation-systems/veloce
https://www.synopsys.com/verification/emulation/zebu-server.html

Domain-Specific Architectures 28:19

[27] Behzad Boroujerdian, Ying Jing, Devashree Tripathy, Amit Kumar, Lavanya Subramanian, Luke Yen, Vincent Lee,
et al. 2022. FARSI: An early-stage design space exploration framework to tame the domain-speci"c system-on-chip
complexity. ACM Transactions on Embedded Computing Systems. Online, June 16, 2022.

[28] Pradip Bose, Augusto Vega, Sarita Adve, Vikram Adve, Sasa Misailovic, Luca Carloni, Ken Shepard, David Brooks,
Vijay Janapa Reddi, and Gu-Yeon Wei. 2021. Secure and resilient SoCs for autonomous vehicles. In International
Workshop on Domain Speci#c System Architecture (DOSSA), in conjunction with IEEE International Symposium on High-
Performance Computer Architecture (HPCA). https://scholar.google.com/scholar?hl=en&as_sdt=0%2C50&q=Secure+
and+resilient+SoCs+for+autonomous+vehicles&btnG=.

[29] Tracy D. Braun, Howard Jay Siegel, Noah Beck, Ladislau L. Bölöni, Muthucumaru Maheswaran, Albert I. Reuther,
James P. Robertson, et al. 2001. A comparison of eleven static heuristics for mapping a class of independent tasks
onto heterogeneous distributed computing systems. Journal of Parallel and Distributed Computing 61, 6 (2001),
810–837.

[30] Kevin J. Brown, Arvind K. Sujeeth, Hyouk Joong Lee, Tiark Rompf, Hassan Cha", Martin Odersky, and Kunle Oluko-
tun. 2011. A heterogeneous parallel framework for domain-speci"c languages. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques. 89–100.

[31] Brad Burres, Dan Daly, Mark Debbage, Eliel Louzoun, Christine Severns-Williams, Naru Sundar, Nadav Turbovich,
Barry Wolford, and Yadong Li. 2021. Intel’s hyperscale-ready infrastructure processing unit (IPU). In Proceedings of
the IEEE Hot Chips 33 Symposium (HCS’21). 1–16.

[32] Idan Burstein. 2021. Nvidia data center processing unit (DPU) architecture. In Proceedings of the IEEE Hot Chips 33
Symposium (HCS’21). 1–20.

[33] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Tomasz Czajkowski, Stephen D.
Brown, and Jason H. Anderson. 2013. LegUp: An open-source high-level synthesis tool for FPGA-based proces-
sor/accelerator systems. ACM Transactions on Embedded Computing Systems 13, 2 (2013), 1–27.

[34] Everton A. Carara, Roberto P. De Oliveira, Ney L. V. Calazans, and Fernando G. Moraes. 2009. HeMPS—A frame-
work for NoC-based MPSoC generation. In Proceedings of the International Symposium on Circuits and Systems.
1345–1348.

[35] Luca P. Carloni. 2016. The case for embedded scalable platforms. In Proceedings of the ACM/EDAC/IEEE Design Au-
tomation Conference (DAC’16). 1–6.

[36] Jeronimo Castrillon, Rainer Leupers, and Gerd Ascheid. 2011. MAPS: Mapping concurrent data#ow applications to
heterogeneous MPSoCs. IEEE Transactions on Industrial Informatics 9, 1 (2011), 527–545.

[37] Nagadastagiri Challapalle, Sahithi Rampalli, Makesh Chandran, Gurpreet Kalsi, Sreenivas Subramoney, John Samp-
son, and Vijaykrishnan Narayanan. 2020. PSB-RNN: A processing-in-memory systolic array architecture using block
circulant matrices for recurrent neural networks. In Proceedings of the Design, Automation, and Test in Europe Con-
ference and Exhibition (DATE’20). 180–185.

[38] Nagadastagiri Challapalle, Sahithi Rampalli, Nicholas Jao, Akshaykrishna Ramanathan, John Sampson, and Vijaykr-
ishnan Narayanan. 2020. FARM: A #exible accelerator for recurrent and memory augmented neural networks. Jour-
nal of Signal Processing Systems 92, 11 (2020), 1247–1261.

[39] Nagadastagiri Challapalle, Karthik Swaminathan, Nandhini Chandramoorthy, and Vijaykrishnan Narayanan. 2021.
Crossbar based processing in memory accelerator architecture for graph convolutional networks. In Proceedings of
the IEEE/ACM International Conference on Computer Aided Design (ICCAD’21). 1–9.

[40] Amir Charif, Gabriel Busnot, Rania Mameesh, Tanguy Sassolas, and Nicolas Ventroux. 2019. Fast virtual prototyp-
ing for embedded computing systems design and exploration. In Proceedings of Rapid Simulation and Performance
Evaluation: Methods and Tools. 1–8.

[41] Kuan-Yu Chen, Chi-Sheng Yang, Yu-Hsiu Sun, Chien-Wei Tseng, Morteza Fayazi, Xin He, Siying Feng, et al. 2022.
A 507 GMACs/J 256-core domain adaptive systolic-array-processor for wireless communication and linear-algebra
kernels in 12nm FINFET. In Proceedings of the 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology
and Circuits’22).

[42] Wen Chen, Sandip Ray, Jayanta Bhadra, Magdy Abadir, and Li-C. Wang. 2017. Challenges and trends in modern SoC
design veri"cation. IEEE Design & Test 34, 5 (2017), 7–22.

[43] S. Alexander Chin and Jason H. Anderson. 2018. An architecture-agnostic integer linear programming approach to
CGRA mapping. In Proceedings of the 55th Annual Design Automation Conference. 1–6.

[44] Chen-Ling Chou, Umit Y. Ogras, and Radu Marculescu. 2008. Energy-and performance-aware incremental mapping
for networks on chip with multiple voltage levels. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 27, 10 (2008), 1866–1879.

[45] Jason Cong, Hui Huang, Chiyuan Ma, Bingjun Xiao, and Peipei Zhou. 2014. A fully pipelined and dynamically com-
posable architecture of CGRA. In Proceedings of the Annual International Symposium on Field-Programmable Custom
Computing Machines. 9–16.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C50&q=Secure+and+resilient+SoCs+for+autonomous+vehicles&btnG=

28:20 A. Krishnakumar et al.

[46] Jason Cong, Vivek Sarkar, Glenn Reinman, and Alex Bui. 2010. Customizable domain-speci"c computing. IEEE Design
& Test of Computers 28, 2 (2010), 6–15.

[47] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Je$ries, Jian Li, Nick Kreeger, et al. 2021. TensorFlow
Lite Micro: Embedded machine learning for TinyML systems. Proceedings of Machine Learning and Systems 3 (2021),
800–811.

[48] Robert I. Davis and Alan Burns. 2011. A survey of hard real-time scheduling for multiprocessor systems. ACM Com-
puting Surveys 43, 4 (2011), 1–44.

[49] Somdip Dey, Amit Kumar Singh, and Klaus McDonald-Maier. 2021. ThermalAttackNet: Are CNNs making it easy to
perform temperature side-channel attack in mobile edge devices? Future Internet 13, 6 (2021), 146.

[50] Somdip Dey, Amit Kumar Singh, and Klaus Dieter McDonald-Maier. 2019. P-EdgeCoolingMode: An agent-based
performance aware thermal management unit for DVFS enabled heterogeneous MPSoCs. IET Computers & Digital
Techniques 13, 6 (2019), 514–523.

[51] Bryan Donyanavard, Tiago Mück, Santanu Sarma, and Nikil Dutt. 2016. SPARTA: Runtime task allocation for energy
e!cient heterogeneous manycores. In Proceedings of the International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS’16). 1–10.

[52] Yong Dou, Stamatis Vassiliadis, Georgi Krasimirov Kuzmanov, and Georgi Nedeltchev Gaydadjiev. 2005. 64-bit
#oating-point FPGA matrix multiplication. In Proceedings of the International Symposium on Field-Programmable
Gate Arrays. 86–95.

[53] Sandeep D’Souza and Ragunathan Rajkumar. 2018. CycleTandem: Energy-saving scheduling for real-time systems
with hardware accelerators. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS’18). 94–106.

[54] Laura A. Rozo Duque, Jose M. Monsalve Diaz, and Chengmo Yang. 2015. Improving MPSoC reliability through adapt-
ing runtime task schedule based on time-correlated fault behavior. In Proceedings of the Design, Automation, and Test
in Europe Conference and Exhibition (DATE’15). 818–823.

[55] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug Burger. 2011. Dark silicon
and the end of multicore scaling. In Proceedings of the 38th Annual International Symposium on Computer Architecture
(ISCA’11). IEEE, Los Alamitos, CA, 365–376.

[56] Roland Ewald and Adelinde M. Uhrmacher. 2014. SESSL: A domain-speci"c language for simulation experiments.
ACM Transactions on Modeling and Computer Simulation 24, 2 (2014), 1–25.

[57] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The program dependence graph and its use in optimiza-
tion. ACM Transactions on Programming Languages and Systems 9, 3 (1987), 319–349.

[58] Farshad Firouzi, Ali Azarpeyvand, Mostafa E. Salehi, and Sied Mehdi Fakhraie. 2012. Adaptive fault-tolerant DVFS
with dynamic online AVF prediction. Microelectronics Reliability 52, 6 (2012), 1197–1208.

[59] Alcides Fonseca and Bruno Cabral. 2017. Prototyping a GPGPU neural network for deep-learning big data analysis.
Big Data Research 8 (2017), 50–56.

[60] Matteo Frigo and Steven G. Johnson. 1998. FFTW: An adaptive software architecture for the FFT. In Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’98), Vol. 3. 1381–1384.

[61] Daniel D. Gajski, Samar Abdi, Andreas Gerstlauer, and Gunar Schirner. 2009. Embedded System Design: Modeling,
Synthesis and Veri#cation. Springer Science & Business Media.

[62] Daniel D. Gajski, Sanjiv Narayan, Loganath Ramachandran, Frank Vahid, and Peter Fung. 1996. System design
methodologies: Aiming at the 100 h design cycle. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 4,
1 (1996), 70–82.

[63] Daniel D. Gajski, Jianwen Zhu, Rainer Dömer, Andreas Gerstlauer, and Shuqing Zhao. 2012. SpecC: Speci#cation
Language and Methodology. Springer Science & Business Media.

[64] Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman, Patrick Alken, Michael Booth, Fabrice Rossi,
and Rhys Ulerich. 2002. GNU Scienti#c Library. Network Theory Limited.

[65] P. Gambron and S. Thorne. 2020. Comparison of Several FFT Libraries in C/C++. Technical Report. STFC.
[66] David Geer. 2005. Chip makers turn to multicore processors. Computer 38, 5 (2005), 11–13.
[67] Nicolas Genko, David Atienza, Giovanni De Micheli, and Luca Benini. 2007. Feature-NoC emulation: A tool and

design #ow for MPSoC. IEEE Circuits and Systems Magazine 7, 4 (2007), 42–51.
[68] Pawel Gepner and Michal Filip Kowalik. 2006. Multi-core processors: New way to achieve high system perfor-

mance. In Proceedings of the International Symposium on Parallel Computing in Electrical Engineering (PARELEC’06).
9–13.

[69] Andreas Gerstlauer. 2010. Host-compiled simulation of multi-core platforms. In Proceedings of the 21st IEEE Interna-
tional Symposium on Rapid System Protyping. 1–6.

[70] Andreas Gerstlauer, Christian Haubelt, Andy D. Pimentel, Todor P. Stefanov, Daniel D. Gajski, and Jürgen Teich. 2009.
Electronic system-level synthesis methodologies. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 28, 10 (2009), 1517–1530.

[71] Frank Ghenassia (Ed.). 2005. Transaction-Level Modeling with SystemC. Vol. 2. Springer.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

Domain-Specific Architectures 28:21

[72] Davide Giri, Kuan-Lin Chiu, Guy Eichler, Paolo Mantovani, and Luca P. Carloni. 2021. Accelerator integration for
open-source SoC design. IEEE Micro 41, 4 (2021), 8–14.

[73] Davide Giri, Paolo Mantovani, and Luca P. Carloni. 2018. NoC-based support of heterogeneous cache-coherence
models for accelerators. In Proceedings of the IEEE/ACM International Symposium on Networks-on-Chip (NoCS’18).
1–8.

[74] Daniel S. Green. 2018. Heterogeneous Integration at DARPA: Path#nding and Progress in Assembly Approaches. DARPA.
[75] Oded Green, Robert McColl, and David A. Bader. 2012. GPU merge path: A GPU merging algorithm. In Proceedings

of the ACM International Conference on Supercomputing. 331–340.
[76] Samuel Greengard. 2020. Will RISC-V revolutionize computing? Communications of the ACM 63, 5 (2020), 30–32.
[77] Matthias Gries. 2004. Methods for evaluating and covering the design space during early design development. Inte-

gration 38, 2 (2004), 131–183.
[78] Thorsten Grötker, Stan Liao, Grant Martin, and Stuart Swan. 2007. System Design with SystemCTM. Springer Science

& Business Media.
[79] Ashok Halambi, Peter Grun, Vijay Ganesh, Asheesh Khare, Nikil Dutt, and Alex Nicolau. 2008. EXPRESSION: A

language for architecture exploration through compiler/simulator retargetability. In Proceedings of the Design, Au-
tomation, and Test in Europe Conference and Exhibition (DATE’08). 31–45.

[80] Sodam Han, Yonghee Yun, Young Hwan Kim, and Seokhyeong Kang. 2020. Proactive scenario characteristic-aware
online power management on mobile systems. IEEE Access 8 (2020), 69695–69711.

[81] Vinay Hanumaiah, Digant Desai, Benjamin Gaudette, Carole-Jean Wu, and Sarma Vrudhula. 2014. STEAM: A smart
temperature and energy aware multicore controller. ACM Transactions on Embedded Computing Systems 13, 5s (2014),
1–25.

[82] Vinay Hanumaiah and Sarma Vrudhula. 2012. Energy-e!cient operation of multicore processors by DVFS, task
migration, and active cooling. IEEE Transactions on Computers 63, 2 (2012), 349–360.

[83] ODROID Wiki. [n.d.]. Hardkernel. ODROID-XU3. Retrieved May 15, 2022 from https://wiki.odroid.com/old_product/
odroid-xu3/odroid-xu3.

[84] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778.

[85] John Hennessy and David Patterson. 2018. A new golden age for computer architecture: Domain-speci"c hard-
ware/software co-design, enhanced. In Proceedings of the ACM/IEEE 45th Annual International Symposium on Com-
puter Architecture (ISCA’18).

[86] John L. Hennessy and David A. Patterson. 2019. A new golden age for computer architecture. Communications of the
ACM 62, 2 (2019), 48–60.

[87] Jingcao Hu and Radu Marculescu. 2005. Energy-and performance-aware mapping for regular NoC architectures. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 24, 4 (2005), 551–562.

[88] Zhengbing Hu, Qingying Zhang, Sergey Petoukhov, and Matthew He. 2021. Advances in Arti#cial Systems for Logistics
Engineering. Springer.

[89] Jia Huang, Jan Olaf Blech, Andreas Raabe, Christian Buckl, and Alois Knoll. 2011. Analysis and optimization of fault-
tolerant task scheduling on multiprocessor embedded systems. In Proceedings of the 7th IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis. 247–256.

[90] Lin Huang, Feng Yuan, and Qiang Xu. 2009. Lifetime reliability-aware task allocation and scheduling for MPSoC
platforms. In Proceedings of the Design, Automation, and Test in Europe Conference and Exhibition (DATE’09). 51–56.

[91] Michael Hutter and Jörn-Marc Schmidt. 2013. The temperature side channel and heating fault attacks. In Proceedings
of the International Conference on Smart Card Research and Advanced Applications. 219–235.

[92] Peter Jamieson, Kenneth B. Kent, Farnaz Gharibian, and Lesley Shannon. 2010. Odin II—An open-source Verilog
HDL synthesis tool for CAD research. In Proceedings of the 18th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines. 149–156.

[93] James Je$ers, James Reinders, and Avinash Sodani. 2016. Intel Xeon Phi Processor High Performance Programming:
Knights Landing Edition. Morgan Kaufmann.

[94] Shiyuan Jin, Guy Schiavone, and Damla Turgut. 2008. A performance study of multiprocessor task scheduling algo-
rithms. Journal of Supercomputing 43, 1 (2008), 77–97.

[95] Norman P. Jouppi and David W. Wall. 1989. Available instruction-level parallelism for superscalar and superpipelined
machines. ACM SIGARCH Computer Architecture News 17, 2 (1989), 272–282.

[96] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B. Jablin, George Kurian, James
Laudon, et al. 2021. Ten lessons from three generations shaped Google’s TPUv4i: Industrial product. In Proceedings
of the ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA’21). 1–14.

[97] Mostafa Khamis, Sameh El-Ashry, Ahmed Shalaby, Mohamed AbdElsalam, and M. Watheq El-Kharashi. 2018. A
con"gurable RISC-V for NoC-based MPSoCs: A framework for hardware emulation. In Proceedings of the 11th Inter-
national Workshop on Network on Chip Architectures (NoCArc’18). 1–6.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

https://wiki.odroid.com/old_product/odroid-xu3/odroid-xu3

28:22 A. Krishnakumar et al.

[98] Sung Kim, Morteza Fayazi, Alhad Daftardar, Kuan-Yu Chen, Jielun Tan, Subhankar Pal, Tutu Ajayi, et al. 2022. Versa:
A 36-core systolic multiprocessor with dynamically recon"gurable interconnect and memory. IEEE Journal of Solid-
State Circuits 57, 4 (2022), 986–998.

[99] Joonho Kong, Sung Woo Chung, and Kevin Skadron. 2012. Recent thermal management techniques for microproces-
sors. ACM Computing Surveys 44, 3 (2012), 1–42.

[100] Maria Kotsifakou, Prakalp Srivastava, Matthew D. Sinclair, Rakesh Komuravelli, Vikram Adve, and Sarita Adve. 2018.
HPVM: Heterogeneous parallel virtual machine. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. 68–80.

[101] Anish Krishnakumar, Samet E. Arda, A. Alper Goksoy, Sumit K. Mandal, Umit Y. Ogras, Anderson L. Sartor, and
Radu Marculescu. 2020. Runtime task scheduling using imitation learning for heterogeneous many-core systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39, 11 (2020), 4064–4077.

[102] Alex Krizhevsky, Ilya Sutskever, and Geo$rey E. Hinton. 2012. ImageNet classi"cation with deep convolutional neu-
ral networks. In Advances in Neural Information Processing Systems 25 (2012).

[103] Vipin Kumar Kukkala, Sudeep Pasricha, and Thomas Bradley. 2020. SEDAN: Security-aware design of time-critical
automotive networks. IEEE Transactions on Vehicular Technology 69, 8 (2020), 9017–9030.

[104] Andreas Kurth, Pirmin Vogel, Alessandro Capotondi, Andrea Marongiu, and Luca Benini. 2017. HERO: Het-
erogeneous embedded research platform for exploring RISC-V manycore accelerators on FPGA. arXiv preprint
arXiv:1712.06497 (2017).

[105] Henning Lategahn, Andreas Geiger, and Bernd Kitt. 2011. Visual SLAM for autonomous ground vehicles. In Proceed-
ings of the International Conference on Robotics and Automation. 1732–1737.

[106] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis and transfor-
mation. In Proceedings of the International Symposium on Code Generation and Optimization. 75–86.

[107] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. 2009. OpenMP to GPGPU: A compiler framework for automatic
translation and optimization. ACM SIGPLAN Notices 44, 4 (2009), 101–110.

[108] Ching-Chi Lin, You-Cheng Syu, Chao-Jui Chang, Jan-Jan Wu, Pangfeng Liu, Po-Wen Cheng, and Wei-Te Hsu. 2015.
Energy-e!cient task scheduling for multi-core platforms with per-core DVFS. Journal of Parallel and Distributed
Computing 86 (2015), 71–81.

[109] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, E. Haque, Lingjia Tang, and Jason Mars.
2018. The architectural implications of autonomous driving: Constraints and acceleration. In Proceedings of
the 23rd International Conference on Architectural Support for Programming Languages and Operating Systems.
751–766.

[110] Chen Liu, Jeyavijayan Rajendran, Chengmo Yang, and Ramesh Karri. 2014. Shielding heterogeneous MPSoCs from
untrustworthy 3PIPs through security-driven task scheduling. IEEE Transactions on Emerging Topics in Computing 2,
4 (2014), 461–472.

[111] Leibo Liu, Jianfeng Zhu, Zhaoshi Li, Yanan Lu, Yangdong Deng, Jie Han, Shouyi Yin, and Shaojun Wei. 2019. A survey
of coarse-grained recon"gurable architecture and design: Taxonomy, challenges, and applications. ACM Computing
Surveys 52, 6 (2019), 1–39.

[112] Joshua Mack, Samet Arda, Umit Y. Ogras, and Ali Akoglu. 2021. Performant, multi-objective scheduling of highly
interleaved task graphs on heterogeneous system on chip devices. IEEE Transactions on Parallel and Distributed
Systems 33 (2021), 2148–2162.

[113] Joshua Mack, Sahil Hassan, Nirmal Kumbhare, Miguel Castro Gonzalez, and Ali Akoglu. 2022. CEDR—A compiler-
integrated, extensible DSSoC runtime. ACM Transactions on Embedded Computing Systems. Online, April 13, 2022.

[114] Joshua Mack, Nirmal Kumbhare, Anish Krishnakumar, Umit Y. Ogras, and Ali Akoglu. 2020. User-space emulation
framework for domain-speci"c SoC design. In Proceedings of the 2020 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW’20). 44–53.

[115] Arnav Malawade, Mohanad Odema, Sebastien Lajeunesse-DeGroot, and Mohammad Abdullah Al Faruque. 2021.
SAGE: A split-architecture methodology for e!cient end-to-end autonomous vehicle control. ACM Transactions on
Embedded Computing Systems 20, 5s (2021), 1–22.

[116] Dipan Kumar Mandal, Srivatsava Jandhyala, Om J. Omer, Gurpreet S. Kalsi, Biji George, Gopi Neela, Santhosh Kumar
Rethinagiri, et al. 2019. Visual inertial odometry at the edge: A hardware-software co-design approach for ultra-low
latency and power. In Proceedings of the Design, Automation, and Test in Europe Conference and Exhibition (DATE’19).
960–963.

[117] Sumit K. Mandal, Ganapati Bhat, Chetan Arvind Patil, Janardhan Rao Doppa, Partha Pratim Pande, and Umit Y. Ogras.
2019. Dynamic resource management of heterogeneous mobile platforms via imitation learning. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems.

[118] Sumit K. Mandal, Anish Krishnakumar, and Umit Y. Ogras. 2021. Energy-e!cient networks-on-chip architectures:
Design and run-time optimization. In Network-on-Chip Security and Privacy. Springer, 55–75.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

Domain-Specific Architectures 28:23

[119] Paolo Mantovani, Davide Giri, Giuseppe Di Guglielmo, Luca Piccolboni, Joseph Zuckerman, Emilio G. Cota, Michele
Petracca, Christian Pilato, and Luca P. Carloni. 2020. Agile SoC development with open ESP. In Proceedings of the
IEEE/ACM International Conference on Computer Aided Design (ICCAD’20). 1–9.

[120] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016. Resource management with deep
reinforcement learning. In Proceedings of the ACM Workshop on Hot Topics in Networks. 50–56.

[121] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and Mohammad Alizadeh. 2019.
Learning scheduling algorithms for data processing clusters. In Proceedings of the ACM Special Interest Group on
Data Communication (SIGCOMM’19). ACM, New York, NY, 270–288.

[122] Radu Marculescu, Umit Y. Ogras, Li-Shiuan Peh, Natalie Enright Jerger, and Yatin Hoskote. 2008. Outstanding re-
search problems in NoC design: System, microarchitecture, and circuit perspectives. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 28, 1 (2008), 3–21.

[123] Laurent Marsan and Marie-France Sagot. 2000. Algorithms for extracting structured motifs using a su!x tree with an
application to promoter and regulatory site consensus identi"cation. Journal of Computational Biology 7, 3-4 (2000),
345–362.

[124] John R. Mashey. 2021. Interactions, impacts, and coincidences of the "rst golden age of computer architecture. IEEE
Micro 41, 6 (2021), 131–139.

[125] Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and how to develop domain-speci"c languages.
ACM Computing Surveys 37, 4 (2005), 316–344.

[126] Sparsh Mittal. 2020. A survey of FPGA-based accelerators for convolutional neural networks. Neural Computing and
Applications 32, 4 (2020), 1109–1139.

[127] Sparsh Mittal and Je$rey S. Vetter. 2015. A survey of CPU-GPU heterogeneous computing techniques. ACM Com-
puting Surveys 47, 4 (2015), 1–35.

[128] Kasra Moazzemi, Biswadip Maity, Saehanseul Yi, Amir M. Rahmani, and Nikil Dutt. 2019. HESSLE-FREE: Heteroge-
neous systems leveraging fuzzy control for runtime resource management. ACM Transactions on Embedded Comput-
ing Systems 18, 5s (2019), 1–19.

[129] Ashwin Vishnu Mohanan, Cyrille Bonamy, and Pierre Augier. 2018. FluidFFT: Common API (C++ and Python) for
fast Fourier transform HPC libraries. arXiv preprint arXiv:1807.01775 (2018).

[130] Fabrizio Mulas, David Atienza, Andrea Acquaviva, Salvatore Carta, Luca Benini, and Giovanni De Micheli. 2009.
Thermal balancing policy for multiprocessor stream computing platforms. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 28, 12 (2009), 1870–1882.

[131] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss, and Frank Piessens. 2020. Plundervolt:
Software-based fault injection attacks against Intel SGX. In Proceedings of the IEEE Symposium on Security and Privacy
(SP’20). 1466–1482.

[132] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael Abu-Ghazaleh. 2018. Rendered insecure: GPU side
channel attacks are practical. In Proceedings of ACM SIGSAC Conference on Computer and Communications Security.
2139–2153.

[133] Thomas Norrie, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li, James Laudon, Cli$ Young, Norman Jouppi,
and David Patterson. 2021. The design process for Google’s training chips: TPUv2 and TPUv3. IEEE Micro 41, 2 (2021),
56–63.

[134] Niall O’Mahony, Sean Campbell, Anderson Carvalho, Suman Harapanahalli, Gustavo Velasco Hernandez, Lenka
Krpalkova, Daniel Riordan, and Joseph Walsh. 2019. Deep learning vs. traditional computer vision. In Proceedings of
the Science and Information Conference. 128–144.

[135] Edson Luiz Padoin, Laércio Lima Pilla, Márcio Castro, Francieli Z. Boito, Philippe Olivier Alexandre Navaux, and
Jean-François Méhaut. 2015. Performance/energy trade-o$ in scienti"c computing: The case of ARM big.LITTLE
and Intel Sandy Bridge. IET Computers & Digital Techniques 9, 1 (2015), 27–35.

[136] Zhixin Pan and Prabhat Mishra. 2021. Automated test generation for hardware Trojan detection using reinforcement
learning. In Proceedings of the 26th Asia and South Paci#c Design Automation Conference. 408–413.

[137] Sudeep Pasricha, Raid Ayoub, Michael Kishinevsky, Sumit K. Mandal, and Umit Y. Ogras. 2020. A survey on energy
management for mobile and IoT devices. IEEE Design & Test 37, 5 (2020), 7–24.

[138] David Patterson. 2018. 50 years of computer architecture: From the mainframe CPU to the domain-speci"c TPU
and the open RISC-V instruction set. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference-
(ISSCC’18). IEEE, Los Alamitos, CA, 27–31.

[139] Arturo Pérez, Alfonso Rodríguez, Andrés Otero, David González Arjona, Alvaro Jiménez-Peralo, Miguel Ángel Ver-
dugo, and Eduardo De La Torre. 2020. Run-time recon"gurable MPSoC-based on-board processor for vision-based
space navigation. IEEE Access 8 (2020), 59891–59905.

[140] Martín Pi Puig, Laura Cristina De Giusti, Marcelo Naiouf, and Armando Eduardo De Giusti. 2019. A study of hardware
performance counters selection for cross architectural GPU power modeling. In XXV Congreso Argentino de Ciencias
de la Computación (CACIC’19).

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

28:24 A. Krishnakumar et al.

[141] Andy D. Pimentel, Cagkan Erbas, and Simon Polstra. 2006. A systematic approach to exploring embedded system
architectures at multiple abstraction levels. IEEE Transactions on Computers 55, 2 (2006), 99–112.

[142] Ivens Portugal, Paulo Alencar, and Donald Cowan. 2018. The use of machine learning algorithms in recommender
systems: A systematic review. Expert Systems with Applications 97 (2018), 205–227.

[143] Jing Pu, Steven Bell, Xuan Yang, Je$ Setter, Stephen Richardson, Jonathan Ragan-Kelley, and Mark Horowitz. 2017.
Programming heterogeneous systems from an image processing DSL. ACM Transactions on Architecture and Code
Optimization 14, 3 (2017), 1–25.

[144] Timo Punkka. 2012. Agile hardware and co-design. In Proceedings of the Embedded Systems Conference. 1–8.
[145] Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly Barnes, Sylvain Paris, Marc Levoy, Saman Amaras-

inghe, and Frédo Durand. 2017. Halide: Decoupling algorithms from schedules for high-performance image process-
ing. Communications of the ACM 61, 1 (2017), 106–115.

[146] Basireddy Karunakar Reddy, Amit Kumar Singh, Dwaipayan Biswas, Geo$ V. Merrett, and Bashir M. Al-Hashimi.
2017. Inter-cluster thread-to-core mapping and DVFS on heterogeneous multi-cores. IEEE Transactions on Multi-Scale
Computing Systems 4, 3 (2017), 369–382.

[147] Teresa Riesgo, Yago Torroja, and Eduardo De la Torre. 1999. Design methodologies based on hardware description
languages. IEEE Transactions on Industrial Electronics 46, 1 (1999), 3–12.

[148] Tajana Simunic Rosing, Kresimir Mihic, and Giovanni De Micheli. 2007. Power and reliability management of SoCs.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 15, 4 (2007), 391–403.

[149] Ahmed Saeed, M. Elbably, G. Abdelfadeel, and M. I. Eladawy. 2009. E!cient FPGA implementation of FFT/IFFT
processor. International Journal of Circuits, Systems and Signal Processing 3, 3 (2009), 103–110.

[150] Onur Sahin and Ayse K. Coskun. 2016. Providing sustainable performance in thermally constrained mobile devices.
In Proceedings of the 14th ACM/IEEE Symposium on Embedded Systems for Real-Time Multimedia. 72–77.

[151] Santanu Sarma and Nikil Dutt. 2014. FPGA emulation and prototyping of a cyberphysical-system-on-chip (CPSoC).
In Proceedings of the IEEE International Symposium on Rapid System Prototyping. 121–127.

[152] Anderson L. Sartor, Anish Krishnakumar, Samet E. Arda, Umit Y. Ogras, and Radu Marculescu. 2020. HiLITE: Hier-
archical and lightweight imitation learning for power management of embedded SoCs. IEEE Computer Architecture
Letters 19, 1 (2020), 63–67.

[153] Yakun Sophia Shao, Sam Likun Xi, Vijayalakshmi Srinivasan, Gu-Yeon Wei, and David Brooks. 2016. Co-designing
accelerators and SoC interfaces using gem5-Aladdin. In Proceedings of the 49th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO’16). 1–12.

[154] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556 (2014).

[155] Amit Kumar Singh, Muhammad Sha"que, Akash Kumar, and Jörg Henkel. 2013. Mapping on multi/many-core sys-
tems: Survey of current and emerging trends. In Proceedings of the 50th ACM/EDAC/IEEE Design Automation Confer-
ence (DAC’13). 1–10.

[156] David B. Skillicorn and Domenico Talia. 1998. Models and languages for parallel computation. ACM Computing
Surveys, 2 (1998), 123–169.

[157] Kyle L. Spa$ord and Je$rey S. Vetter. 2012. Aspen: A domain speci"c language for performance modeling. In Pro-
ceedings of the International Conference on High Performance Computing, Networking, Storage, and Analysis (SC’12).
1–11.

[158] Ashley Stevens. 2014. Quality of Service (QoS) in ARM® Systems: An Overview. White Paper. ARM, Cambridge, UK.
[159] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma, Sarma Vrudhula, Jae-Sun Seo, and Yu

Cao. 2016. Throughput-optimized OpenCL-based FPGA accelerator for large-scale convolutional neural networks.
In Proceedings of the International Symposium on Field-Programmable Gate Arrays. 16–25.

[160] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf, Hassan Cha", Martin Odersky, and Kunle Oluko-
tun. 2014. Delite: A compiler architecture for performance-oriented embedded domain-speci"c languages. ACM
Transactions on Embedded Computing Systems 13, 4s (2014), 1–25.

[161] Leonardo Suriano, Daniel Madroñal, Alfonso Rodríguez, Eduardo Juárez, César Sanz, and Eduardo de la Torre. 2018. A
uni"ed hardware/software monitoring method for recon"gurable computing architectures using PAPI. In Proceedings
of the 13th International Symposium on Recon#gurable Communication-Centric Systems-on-Chip (ReCoSoC’18). 1–8.

[162] Karthik Swaminathan and Augusto Vega. 2021. Hardware specialization: From cell to heterogeneous microprocessors
everywhere. IEEE Micro 41, 6 (2021), 112–120.

[163] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 1–9.

[164] Zhuo Tang, Ling Qi, Zhenzhen Cheng, Kenli Li, Samee U. Khan, and Keqin Li. 2016. An energy-e!cient task sched-
uling algorithm in DVFS-enabled cloud environment. Journal of Grid Computing 14, 1 (2016), 55–74.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

Domain-Specific Architectures 28:25

[165] Umair Ullah Tariq, Hui Wu, and Suhaimi Abd Ishak. 2018. Energy-aware scheduling of conditional task graphs on
NoC-based MPSoCs. In Proceedings of the 51st Hawaii International Conference on System Sciences.

[166] Thomas N. Theis and H.-S. Philip Wong. 2017. The end of Moore’s law: A new beginning for information technology.
Computing in Science & Engineering 19, 2 (2017), 41–50.

[167] Haluk Topcuoglu, Salim Hariri, and Min-You Wu. 2002. Performance-e$ective and low-complexity task scheduling
for heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems 13, 3 (2002), 260–274.

[168] Yvan Tortorella, Luca Bertaccini, Davide Rossi, Luca Benini, and Francesco Conti. 2022. RedMulE: A compact FP16
matrix-multiplication accelerator for adaptive deep learning on RISC-V-based ultra-low-power SoCs. arXiv preprint
arXiv:2204.11192 (2022).

[169] Fengbin Tu, Shouyi Yin, Peng Ouyang, Shibin Tang, Leibo Liu, and Shaojun Wei. 2017. Deep convolutional neural
network architecture with recon"gurable computation patterns. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 25, 8 (2017), 2220–2233.

[170] Richard Uhrie, Daniel W. Bliss, Chaitali Chakrabarti, Umit Y. Ogras, and John Brunhaver. 2019. Machine understand-
ing of domain computation for domain-speci"c system-on-chips (DSSoC). In Open Architecture/Open Business Model
Net-Centric Systems and Defense Transformation 2019, Vol. 11015. International Society for Optics and Photonics,
SPIE, 180–187.

[171] Richard Uhrie, Chaitali Chakrabarti, and John Brunhaver. 2020. Automated parallel kernel extraction from dynamic
application traces. arXiv preprint arXiv:2001.09995 (2020).

[172] J. D. Ullman. 1975. NP-complete scheduling problems. Journal of Computer and System Sciences 10, 3 (1975), 384–393.
https://doi.org/10.1016/S0022-0000(75)80008-0

[173] Peter Van Stralen and Andy Pimentel. 2010. Scenario-based design space exploration of MPSoCs. In Proceedings of
the IEEE International Conference on Computer Design. 305–312.

[174] Prashant Varanasi and Gernot Heiser. 2011. Hardware-supported virtualization on ARM. In Proceedings of the 2nd
Asia-Paci#c Workshop on Systems. 1–5.

[175] Augusto Vega, John-David Wellman, Hubertus Franke, Alper Buyuktosunoglu, Pradip Bose, Aporva Amarnath, Hi-
wot Kassa, Subhankar Pal, and Ronald Dreslinski. 2021. STOMP: Agile evaluation of scheduling policies in hetero-
geneous multi-processors. In Proceedings of the 3rd International Workshop on Domain Speci#c System Architecture
in Conjunction with the 27th IEEE International Symposium on High-Performance Computer Architecture (DOSSA-3 @
HPCA’21).

[176] Nicolas Ventroux, Alexandre Guerre, Tanguy Sassolas, L. Moutaoukil, Guillaume Blanc, Charly Bechara, and Raphaël
David. 2010. SESAM: An MPSoC simulation environment for dynamic application processing. In Proceedings of the
10th IEEE International Conference on Computer and Information Technology. 1880–1886.

[177] Matthew J. P. Walker and Jason H. Anderson. 2019. Generic connectivity-based CGRA mapping via integer linear
programming. In Proceedings of the Annual International Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM’19). 65–73.

[178] Bo Wang, Sheng Ma, Guoyi Zhu, Xiao Yi, and Rui Xu. 2022. A novel systolic array processor with dynamic data#ows.
Integration 85 (2022), 42–47.

[179] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and Yajuan Wang. 2014. Intel math
kernel library. In High-Performance Computing on the Intel® Xeon PhiT M . Springer, 167–188.

[180] Liang Wang and Kevin Skadron. 2013. Implications of the power wall: Dim cores and recon"gurable logic. IEEE Micro
33, 5 (2013), 40–48.

[181] Yu Emma Wang, Gu-Yeon Wei, and David Brooks. 2019. Benchmarking TPU, GPU, and CPU platforms for deep
learning. arXiv preprint arXiv:1907.10701 (2019).

[182] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han Hu, Yun Liang, and Jason Cong. 2017.
Automated systolic array architecture synthesis for high throughput CNN inference on FPGAs. In Proceedings of the
54th Annual Design Automation Conference. 1–6.

[183] Jenna Wiens and Erica S. Shenoy. 2018. Machine learning for healthcare: On the verge of a major shift in healthcare
epidemiology. Clinical Infectious Diseases 66, 1 (2018), 149–153.

[184] Dhananjaya Wijerathne, Zhaoying Li, Anuj Pathania, Tulika Mitra, and Lothar Thiele. 2021. HiMap: Fast and scal-
able high-quality mapping on CGRA via hierarchical abstraction. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 41, 10 (2021), 3290–3303.

[185] Yen-Kuan Wu, Shervin Shari", and Tajana Simunic Rosing. 2011. Distributed thermal management for embedded
heterogeneous MPSoCs with dedicated hardware accelerators. In Proceedings of the IEEE 29th International Conference
on Computer Design (ICCD’11). 183–189.

[186] Yi Xiang and Sudeep Pasricha. 2015. Soft and hard reliability-aware scheduling for multicore embedded systems with
energy harvesting. IEEE Transactions on Multi-Scale Computing Systems 1, 4 (2015), 220–235.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

https://doi.org/10.1016/S0022-0000(75)80008-0

28:26 A. Krishnakumar et al.

[187] Yao Xiao, Shahin Nazarian, and Paul Bogdan. 2019. Self-optimizing and self-programming computing systems: A
combined compiler, complex networks, and machine learning approach. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems 27, 6 (2019), 1416–1427.

[188] Yao Xiao, Shahin Nazarian, and Paul Bogdan. 2021. Plasticity-on-chip design: Exploiting self-similarity for data com-
munications. IEEE Transactions on Computers 70, 6 (2021), 950–962.

[189] Yan Xiong, Jian Zhou, Subhankar Pal, David Blaauw, Hun-Seok Kim, Trevor Mudge, Ronald Dreslinski, and Chaitali
Chakrabarti. 2020. Accelerating deep neural network computation on a low power recon"gurable architecture. In
Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’20). 1–5.

[190] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. 2015. Optimizing FPGA-based ac-
celerator design for deep convolutional neural networks. In Proceedings of the International Symposium on Field-
Programmable Gate Arrays. 161–170.

[191] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and Saman Amarasinghe. 2018.
Graphlt: A high-performance graph DSL. Proceedings of the ACM on Programming Languages 2, OOPSLA (2018),
Article 121, 30 pages.

[192] Zhongyuan Zhao, Weiguang Sheng, Qin Wang, Wenzhi Yin, Pengfei Ye, Jinchao Li, and Zhigang Mao. 2020. To-
wards higher performance and robust compilation for CGRA modulo scheduling. IEEE Transactions on Parallel and
Distributed Systems 31, 9 (2020), 2201–2219.

[193] Junlong Zhou, Jin Sun, Peijin Cong, Zhe Liu, Xiumin Zhou, Tongquan Wei, and Shiyan Hu. 2019. Security-critical
energy-aware task scheduling for heterogeneous real-time MPSoCs in IoT. IEEE Transactions on Services Computing
13, 4 (2019), 745–758.

[194] Junlong Zhou, Mingyue Zhang, Jin Sun, Tian Wang, Xiumin Zhou, and Shiyan Hu. 2022. DRHEFT: Deadline-
constrained reliability-aware HEFT algorithm for real-time heterogeneous MPSoC systems. IEEE Transactions on
Reliability 71, 1 (2022), 178–189.

Received 5 July 2022; revised 13 July 2022; accepted 10 August 2022

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 28. Publication date: January 2023.

