
MeNDA: A Near-Memory Multi-way Merge Solution for Sparse
Transposition and Dataflows

Siying Feng
fengsy@umich.edu

University of Michigan
Ann Arbor, Michigan, USA

Xin He
xinhe@umich.edu

University of Michigan
Ann Arbor, Michigan, USA

Kuan-Yu Chen
knyuchen@umich.edu
University of Michigan

Ann Arbor, Michigan, USA

Liu Ke
ke.l@wustl.edu

Washington University in St. Louis
St. Louis, Missouri, USA

Xuan Zhang
xuan.zhang@wustl.edu

Washington University in St. Louis
St. Louis, Missouri, USA

David Blaauw
blaauw@umich.edu

University of Michigan
Ann Arbor, Michigan, USA

Trevor Mudge
tnm@umich.edu

University of Michigan
Ann Arbor, Michigan, USA

Ronald Dreslinski
rdreslin@umich.edu

University of Michigan
Ann Arbor, Michigan, USA

ABSTRACT
Near-memory processing has been extensively studied to optimize
memory intensive workloads. However, none of the proposed de-
signs address sparse matrix transposition, an important building
block in sparse linear algebra applications. Prior work shows that
sparse matrix transposition does not scale as well as other sparse
primitives such as sparse matrix vector multiplication (SpMV) and
hence has become a growing bottleneck in common applications.
Sparse matrix transposition is highly memory intensive but low
in computational intensity, making it a promising candidate for
near-memory processing. In this work, we propose MeNDA, a scal-
able near-DRAM multi-way merge accelerator that eliminates the
o!-chip memory interface bottleneck and exposes the high internal
memory bandwidth to improve performance and reduce energy con-
sumption for sparse matrix transposition. MeNDA adopts a merge
sort based algorithm, exploiting spatial locality, and proposes a
near-memory processing unit (PU) featuring a high-performance
hardware merge tree. Because of the wide application of merge sort
in sparse linear algebra, MeNDA is an extensible solution that can
be easily adapted to support other sparse primitives such as SpMV.
Techniques including seamless back-to-back merge sort, stall re-
ducing prefetching and request coalescing are further explored to
take full advantage of the increased system memory bandwidth.
Compared to two state-of-the-art implementations of sparse matrix
transposition on a CPU and a sparse library on a GPU, MeNDA is
able to achieve a speedup of 19.1×, 12.0×, and 7.7×, respectively.
MeNDA also shows an e"ciency gain of 3.8× over a recent SpMV
accelerator integrated with HBM. Incurring a power consumption
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro#t or commercial advantage and that copies bear this notice and the full citation
on the #rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci#c permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’22, June 18–22, 2022, New York, NY, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8610-4/22/06. . . $15.00
https://doi.org/10.1145/3470496.3527432

of only 78.6 mW, a MeNDA PU can be easily accommodated by
commodity DIMMs.

CCS CONCEPTS
• Computer systems organization→ Architectures; • Hard-
ware→ Hardware accelerators.

KEYWORDS
Near-memory processing, Hardware accelerator, Sparse linear al-
gebra, Sparse matrix transposition, Sparse matrix-vector multipli-
cation, Hardware merge tree, Multi-way merge accelerator
ACM Reference Format:
Siying Feng, Xin He, Kuan-Yu Chen, Liu Ke, Xuan Zhang, David Blaauw,
Trevor Mudge, and Ronald Dreslinski. 2022. MeNDA: A Near-Memory
Multi-way Merge Solution for Sparse Transposition and Data$ows. In The
49th Annual International Symposium on Computer Architecture (ISCA ’22),
June 18–22, 2022, New York, NY, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3470496.3527432

1 INTRODUCTION
As a fundamental primitive in many important application domains
such as graph analytics, machine learning, and scienti#c compu-
tation [3, 8, 17, 20, 22, 38, 41, 45, 47, 55, 58], Sparse Basic Linear
Algebra Subprograms (SpBLAS) are notoriously memory intensive
due to the irregular memory access pattern. Recently, there has
been a surge in customizing hardware accelerators near memory to
tackle sparse BLAS applications such as sparse gathering [2, 24, 30],
sparse matrix vector multiplication (SpMV) [2, 42, 52], and graph
analytics [1, 12, 36, 57, 60]. However, none of these works address
sparse matrix transposition.

Sparse matrix transposition converts a sparse matrix stored in
the column-major order to the row-major order or vice versa. It is
an essential building block for a wide range of applications, such
as biconjugate gradient [18], standard quasi-minimal residual [19]
and algebraic multigrid methods [53]. In addition, many recent
graph analytics frameworks adaptively switch between di!erent

245

ISCA ’22, June 18–22, 2022, New York, NY, USA Feng et al.

representations of the data$ow, which requires either frequent
sparse matrix transposition on-the-$y, or multiple copies of the
input graph in di!erent orders [43].

Merge sort is a common approach for sparse matrix transposi-
tion [49]. Some recent near-memory processing (NMP) proposals
implement outer product based SpMV by adopting a reduction tree
to merge sort the partial columns [2, 42]. But these designs tar-
geting SpMV cannot perform sparse matrix transposition for two
reasons. First, reduction trees in these systems usually perform
merge sort based on the row indices of matrix elements, and thus
do not care about the order of the column indices, while sparse
matrix transposition needs to take into account the order of both
indices. Second, unlike SpMV, which outputs a dense vector, sparse
matrix transposition outputs a sparse matrix, which is irregular and
requires much higher output bandwidth. To support sparse matrix
transposition, all these issues need to be addressed.

In contrast to many other sparse primitives, sparse matrix trans-
position involves no arithmetic operations but integer comparisons
to reorder the nonzero elements. Therefore, the performance of
sparse matrix transposition highly depends on the attainable mem-
ory bandwidth. However, the e!ective system bandwidth that can
be utilized by transposition is restricted both by the theoretical
peak bandwidth that the memory interface can provide and the
contention at the memory interface, which is con#rmed by the
roo$ine model and the scalability analysis presented in Sec. 2.2. All
these constraints make sparse matrix transposition a promising
candidate for NMP because NMP exposes the high internal memory
bandwidth of memory devices and avoids the contention bottle-
neck at the memory interface. Instead of integrating accelerators
with 3D/2.5D-stacked memory devices, in this paper we focus on a
DIMM-based design for its cost-e"cient capacity scaling, which is
critical for workloads involving large datasets.

Designing a near-DRAM solution for sparse matrix transposition
poses four unique challenges. First, for lack of reduction, sparse
matrix transposition requires high bandwidth for both input fetch-
ing and output streaming. Hence, sending the output directly to
the host like prior sparse gathering proposals [2, 24] is not feasible.
Second, due to the large dataset size and the limited on-chip stor-
age, recent CPU implementations [49] for transposition transfer
intermediate data back-and-forth between the host and the main
memory, exhibiting a signi#cant amount of memory tra"c. Be-
cause near-DRAM accelerators have more strict area restrictions
and consequently even less area for SRAM, reducing the amount
of intermediate data transfer is more di"cult. Third, performing
parallel transposition on multiple concurrent processing units (PUs)
is non-trivial. To exploit the high internal bandwidth, accelerators
are usually employed in the bu!er chip of a DIMM beside each
rank. Thus communications across PUs in di!erent DIMMs need to
go through the o!-chip memory interface, which is prohibitively
expensive and can easily become the performance bottleneck [46].
Finally, near memory transposition puts additional requirements
on the data layout. The transposition process should not change
the data representation and should allow easy access to the matrix
non-zero elements (NZs) as the standard compressed formats after
transposition. These requirements together make designing an e"-
cient and scalable PU with minimal modi#cations to the commodity
DIMM hardware a challenging task.

To tackle these challenges, we propose MeNDA, an scalable NMP
solution for sparse matrix transposition. The key component of
MeNDA is a lightweight PU featuring a hardware merge tree de-
ployed in the bu!er chip of a DIMM. The merge tree is designed to
be very wide to reduce the number of merge sort iterations, which
is proportional to the amount of intermediate data transfer, and
supports seamless execution of multiple rounds of merge sort to
minimize stalls in execution. Techniques including stall reducing
prefetching and request coalescing are also explored to further
improve the memory bandwidth utilization. MeNDA proposes a
novel data layout to avoid communications between PUs and keep
a consistent compressed format for both the input and output ma-
trix, enabling a software-agnostic transposition backend. The data
layout also considers workload balancing to maximize parallelism
and memory bandwidth utilization.

Merge sort is widely employed in sparse linear algebra appli-
cations, making MeNDA an e"cient solution for many sparse
data$ows. Finally, to showcase its applicability to other sparse
data$ows, we illustrate how MeNDA can be adapted to perform
SpMV, which is a fundamental kernel for machine learning and
graph analytics [2, 17, 38, 42].

Speci#cally, this paper makes the following contributions:

(1) An in-depth characterization of sparse matrix transposition
which unveils the memory-bound nature and the request
contention bottleneck at the memory interface, motivating
the adoption of NMP.

(2) A scalable NMP solution for sparse matrix transposition,
MeNDA, which explores DIMM- and rank-level parallelism
by placing custom PUs beside each DRAM rank. The PUs
feature lightweight hardware merge trees and are enhanced
with techniques including seamless back-to-back merge sort,
stall reducing prefetching, request coalescing and workload
balancing to fully utilize the exposed high internal memory
bandwidth.

(3) Adaptation of MeNDA to SpMV, demonstrating that MeNDA
is an extensible and e"cient solution to multi-way merge
data$ows in SpBLAS.

(4) A heterogeneous programming model to completely hide
the implementation details of MeNDA from the host and
enhance ease of adoption.

(5) Qualitative and quantitative analyses of the bene#ts and
overhead of integrating MeNDA into existing designs for
sparse linear algebra applications.

MeNDA is an e"cient solution that can be easily integrated
into the bu!er chip of a commodity DIMM. Experiments show
that MeNDA achieves an average speedup of 19.1× and 12.0× over
scanTrans and mergeTrans on CPU, respectively, and 7.7× over
cuSPARSE on GPU. Compared to a recent near-memory SpMV ac-
celerator based on HBM, MeNDA shows an e"ciency gain of 3.8×.

2 BACKGROUND AND MOTIVATION
Sparse matrix transposition is widely used in SpBLAS applications,
but has receivedmuch less attention thanmany other sparse kernels,
such as sparse matrix matrix multiplication (SpMM) and SpMV [49].
Based on the roo$ine model and the thread scaling analysis, sparse

246

MeNDA: A Near-Memory Multi-way Merge Solution for Sparse Transposition and Dataflows ISCA ’22, June 18–22, 2022, New York, NY, USA

matrix transposition can potentially achieve great performance ben-
e#ts and energy savings from NMP since it has low computational
intensity while being heavily memory bandwidth bound.

2.1 Preliminaries on Sparse Matrix Formats and
Sparse Matrix Transposition

Sparse matrices are often stored in compressed formats to save
storage and avoid computations on zero elements. Commonly used
formats are compressed sparse row (CSR) and compressed sparse
column (CSC). As shown in Fig. 1, CSR(/CSC) stores a sparse matrix
in three arrays: (1) an index array for the column(/row) index of
each NZ, (2) a value array for the value of each NZ, and (3) a pointer
array for the start pointer of NZs of each row(/column).

� �
� �

	
 �
�

� � �
� �

� � �

� � # % �� � �#

� � � � " � ! � � ! � � � ! "

� � � � 	
 � � � � � � � � � �

� � ! $ �� �� �! �#

� � � ! � " � ! � � � " � "

� 	 � � � � � � � � �
 � � � �

�
����	�

���	�

����	

� �� ��� � �� �� ���

����	�

���	�

����	

� �� ��� � �� �� ���

Figure 1: Sparsematrix transposition and compressed storage
formats for sparse matrices.

Sparse matrix transposition transforms a M×N sparse matrix
! to a N×M matrix !! by swapping the row index and column
index of each NZ. Therefore, transposing a sparse matrix is in
essence equivalent to converting a sparse matrix from the CSR
format to the CSC format, or the opposite. As can be seen from
Fig. 1, the CSC representation of a sparse matrix ! is equivalent to
the CSR representation of its transpose !! . For simplicity, we will
use converting a matrix from CSR to CSC to denote general sparse
matrix transposition from this point of the paper.

Sparse matrix transposition is an essential building block in both
the processing and pre-processing stages of sparse linear algebra ap-
plications [49]. Typical examples are linear system solvers such as
biconjugate gradient [18] and standard quasi-minimal residual [19].
Despite the fact that considering the scenario of consuming a #xed
sparse matrix, the overhead of pre-processing (including sparse ma-
trix transposition) can be amortized by iterative execution, many
recent works have shown that this overhead is becoming no longer
negligible as the dataset size grows and have taken this overhead
into account in the evaluation [34, 54]. There are also applications
that are not iterative enough to amortize the transposition over-
head or have to transpose a changed sparse matrix each iteration.
For example, the simultaneous localization and mapping problem
requires a new information matrix at each step, and performing
!!! on the new matrix dominates the execution time [15, 32].

Since Beamer et al. [5] #rst proposed a hybrid approach for
Breadth First Search, many recent graph analytics frameworks
have built upon this work and adopted dynamic recon#guration be-
tween a sparse and a dense representation of the data$ow based on
the active vertex set [9, 13, 17, 21, 33, 37, 43, 48, 50, 56, 59]. The dy-
namic recon#guration greatly improves performance but requires
the original graph! for one representation and its transpose!! for

the other representation during execution. A common misconcep-
tion regarding the transposition overhead is shown in the top bar
in Fig. 2(a), i.e. the transposition overhead is minor compared to the
execution time of an end-to-end workload and can be easily amor-
tized. However, the reality (middle bar in Fig. 2(a)) is that recent
breakthroughs in algorithms and architectures have signi#cantly
improved the performance of graph processing. Consequently, run-
time transposition using a state-of-the-art implementation [49] can
introduce a 126% performance overhead to a recently proposed
graph framework [17]. Therefore, graph frameworks usually store
more than one copy of the input graph in di!erent formats to avoid
the performance overhead of transposing the graph on-the-$y.

Although many recent e!orts have been spent on optimizing
sparse primitives, sparse matrix transposition has not received as
much attention. As shown in Fig. 2(b), the execution time of SpMM
has been improved from being comparable to that of sparse matrix
transposition (OuterSPACE, 2018) to being much less than that of
transposition (SpArch, 2020). These e!orts only further increase
the percentage of time taken by sparse matrix transposition in
a workload, making it a more noteworthy bottleneck. Therefore,
coming up with an e"cient solution for sparse matrix transposition
has become increasingly important.

	 ��������
�	����� �� ����� ����� ������� �	�� ����� ���� ������ ��	����������

 �������� ��� �� ��	����������������	�� 	�� ���������������������

Figure 2: (a) Breakdown of SSSP execution time on
CoSPARSE[17] for graph amazon based on common miscon-
ceptions, using mergeTrans[49], and using our work. (b) Exe-
cution time comparison of recent proposals for transposition
(mergeTrans) and SpMM (OuterSPACE[38] / SpArch[58]). Re-
cent hardware breakthroughs have greatly optimized sparse
applications, e.g. SpMM and SpMV, whereas little research
e!ort has been spent on accelerating sparse matrix transpo-
sition, making transposition a more evident bottleneck.

2.2 Characterizations on Sparse Matrix
Transposition

To understand the bottleneck of sparse matrix transposition, we per-
formed characterizations on mergeTrans [49], a merge sort based
sparse matrix transposition implementation on CPUs. The method-
ology for these experiments is detailed in section 5.

2.2.1 Roofline Analysis. A roo$ine mode [51] of sparse matrix
transposition is built and presented in Fig. 3(a). The throughput
is measured through the number of NZs generated per second
(NNZ/s), which is a metric introduced in [40]. The roo$ine model

247

ISCA ’22, June 18–22, 2022, New York, NY, USA Feng et al.

�# �������� ��������� ������ ���� �������

��������� ��
 ��������� ��
 ��������� ��
 ��������� ��

�' ' &*. +-, ('*- *.* �) (,('** ('*- *.* �+ (,('** * (/* /,- �- (,('** ' &-(&(*
�(+(* (.. ('*- *.* �* ')' &-(('*- *.* �, (,('** ('*- *.* �. (,('** +), ,//

���������� ���� �	 -,!. ��"�

+/!, ��"�

.�

�������� �	

�������� �	 �.

+!(�

�# �������� �����

���������	���������	
�

����
������� ��	��� ��	 ��
����������� �� ������
� ��
	 ��� ������
���������

Figure 3: (a) Roo"ine model of mergeTrans [49] running with
64 threads. Sparse matrix transposition is memory band-
width bound because the data points are close to the "roof", i.e.
the red and blue lines that label the peak throughputs which
can be achieved when the systemmemory bandwidth is fully
utilized. (b) Memory bandwidth utilized by mergeTrans with
an increasing number of threads. The memory bandwidth
utilization saturates before reaching maximum due to the
bottleneck at the memory interface.

shows that sparse matrix transposition lies in the memory bound
region. Speci#cally, the throughput achieved is within only 25% of
the theoretical maximum and bottlenecked by the system memory
bandwidth. The impact of exposing the high internal memory band-
width on throughput is revealed by lifting the roo$ine by 8× [24].
The throughput is improved by 4.1-5.2×, which shows the potential
bene#t of applying NMP on sparse matrix transposition. Mean-
while, sparse matrix transposition has much lower computational
intensity than common sparse routines such as SpMM and SpMV
because no $oating point operations are involved. The high mem-
ory requirement and low arithmetic intensity make sparse matrix
transposition a promising candidate for NMP [11].

2.2.2 Thread Scaling Analysis. Prior work shows that the perfor-
mance of state-of-the-art sparse matrix transposition implementa-
tions does not scale well with increasing number of threads [49].
To further analyze the scalability of sparse matrix transposition,
we measured the utilized bandwidth with an increasing number
of threads, as shown in Fig. 3(b). While the theoretical peak band-
width, represented by the green horizontal line, is at 76.8 GB/s,
the achievable maximum bandwidth is at around 62 GB/s [24]. In
Fig. 3(b), the utilized memory bandwidth starts to saturate at 16
threads and reaches the maximum at 64 threads at 59.6 GB/s. In
practice, little performance bene#t is observed beyond 16 threads
and further bandwidth saturation is undesirable due to signi#cantly
increased memory latency. What e!cient sparse matrix transpo-
sition will most bene"t from is an approach that reduces memory
latency and relieves the contention at the o#-chip memory interface
by avoiding transferring data back-and-forth between the host and
the memory device.

3 MENDA SYSTEM ARCHITECTURE
Prior work proposed two algorithms for parallel sparse matrix trans-
position - a count sort based algorithm (scanTrans) and a merge
sort based algorithm (mergeTrans) [49]. In this work, we adopted
the merge sort algorithm not only because merge sort presents

higher spatial locality but also because merge sort is widely used
in sparse linear algebra [17, 38, 42]. Inspired by prior near-DRAM
accelerators [4, 24], the near-memory processing units (PUs) are
embedded in the bu!er chips of DIMMs to minimize the modi#-
cations to commodity DRAM devices. The proposed solution is
scalable as a higher throughput can be achieved by populating a
memory channel with multiple MeNDA enabled DIMMs. To take
full advantage of the exposed high internal memory bandwidth,
the custom PU features a very wide multi-way merge tree support-
ing seamless back-to-back merge sort, stall reducing prefetching
and request coalescing. To further improve parallelism, a novel
data layout is proposed to eliminate communications and balance
workloads among PUs.

3.1 Algorithm and Data"ow
MeNDA applies the merge sort algorithm to perform sparse matrix
transposition. Fig. 4 demonstrates the data$ow of transposing the
matrix in Fig. 1 using a 4-leaf hardware merge tree. An "-leaf merge
tree merges " incoming sorted streams into a single sorted stream in
a round. Since the 4-leaf merge tree does not have enough hardware
resources to merge sort all matrix rows, more than one iteration is
needed. As shown in Fig. 4, in iteration 0, the #rst four rows and
the last three rows are merged subsequently. Then in iteration 1,
the two sorted streams are merged into the #nal output. In practice,
the number of iterations required to #nish transposition equals
"#$"% , where " refers to the number of leaves in the merge tree and
% refers to the number of non-empty matrix rows.

The input and output data are both stored in the compressed
format, i.e. the input in CSR and the output in CSC. If the algorithm
needs more than one iteration to #nish, the intermediate data are
stored in the coordinate format (COO). COO stores the row index,
column index, and value of each NZ in three separate arrays so that
accesses to the intermediate data can exploit bank-level parallelism.
Due to matrix sparsity, an intermediate sorted stream may contain
numerous empty rows/columns. Therefore, COO tends to take up
less storage than CSR/CSC and is also easier to decode. The memory
space for the input sorted streams are freed immediately after they
are processed. Therefore, a runtime storage overhead of & (" · %) is
required, where " << % . In contrast, storing a second copy of the
matrix requires an overhead of & (% 2).

3.2 Processing Unit (PU) Microarchitecture
MeNDA places PUs in the data bu!er chips of DIMMs beside each
rank to minimize modi#cations to DRAM devices and to explore
DIMM- and rank-level parallelism. Each PU concurrently trans-
poses a partition of the matrix and issues memory requests to the
corresponding ranks in parallel. The e!ective memory bandwidth
available to MeNDA thus scales with the total number of ranks.

A MeNDA PU consists of a merge tree, prefetch bu!ers, a con-
troller, a request queue, and a memory interface unit (Fig. 5). In the
merge tree, each processing element (PE) is connected to two child
PEs through a FIFO unless it is a leaf node. An "-leaf merge tree thus
has "−1 PEs and "#$2" levels, i.e. at least "#$2" cycles are required for
data to travel from a leaf PE to the root PE. The existence of FIFOs
allows each PE to pop one data packet every cycle without a critical
path from the root to the leaf PEs. The root PE is connected to an

248

MeNDA: A Near-Memory Multi-way Merge Solution for Sparse Transposition and Dataflows ISCA ’22, June 18–22, 2022, New York, NY, USA

 "
� �

! $
� �

 $ &
	
 �

%
�

 " ! # ! " # "
 ! " # $ $ % &
� 	 � � � �
 �

�����
�����
����	

! #
� �

" % &
� � �

$ % $ & % $ & &
 ! " " # % % &
� � � � � � � �

�����
�����
����	

 " %
� � �

 " $! % $ & # % ! " # $ & " &

� 	 � � � � � � � � �
 � � � �

 # % (! !" !% !'������

�����

����	

 " $ ') !" !$!'������

��� ���! ���" ���# ���$ ���% ���&

�����
����	

�����
����	

�	��	 ���� ������ � �	��	 ���� ������ !�

�	��	 ���� ������ "�

������ ���������
 �	�	 ����	��
��� � ��� � � � ����

����� ���������
 �	�	 ����	��
�� � ����

�������
	�� ����	��
�����

�	��	 ���� ������ "�

�	��	 ���� ������ � �	��	 ���� ������ !�

�

	
�

�
�

 �

�

� � �
� �

� � �

�
	

�
�

�
�

�

�
�

�
�

�
�
� �

�

	
�

�

�
�

�

� �
�

�
�

�
� �

����	��� �

����	��� �

�	�

�	�
 !
�	�
 "
�	�
 #

�	�

�	�
 !
�	�
 "

�	�
 �	�
 !

Figure 4: Data"ow of MeNDA performing transposition on the sparse matrix in Fig. 1. Each round of merge sort is executed
sequentially on a 4-way merge tree. Left: The outcome of each round in the dense data structure. Right: The real data input and
output of each round that are stored in memory. The input and output data are stored in the compressed data storage formats
(CSR/CSC), and the intermediate data are stored in the coordinate format (COO).

����� �&�(��

���&�'' ���#��&

�
� ��"�&�(#&

��%)�'(�����) �&
���"� !
"�"�

�"�!�'#�$ ����� ��������$
������
���� !��

$(& ���&
�"� ���&
*� ���&

'(�&(

����#"�

�

���/ �2� ���/ ��

����� ��� 	�

�����$ ��!������ ���!

�
� �

� � � �

�)($)(
�)���&

���!������

���!���%��
�"�!������

0

�

*��(#& � �!�"('
$�&(�� �#)!"'

�#!$)(� �"�('
�)���& �"�('

���'
����'(�&'

�$
� �"�('

�� �,
�)���&

�

�
�

���

�

��

���

���

���

���
0 0

��"�����"���
�)���& ��*���

��

��

��

	/�"� +#&
�/�"�

	/* 8
�/*

	/�# @
�/�#

'� ��(
3;.:4

: ; : 5:-;6
: ; ; 5:-:6
: : � 5;-�6
; � � 5:-	/�"�6

7	. ��($����(- �. &���($����(- �. �#"1(��&��

'�
 �

�(

: ; <

	/�"�
�/�"�

#)(/�"�

:

	

����&�	�������!�����������"� ���)�(�#" �"�(
#)(

>=�

?

� � � � � � � �

	����!�� �"����

Figure 5: Architecture of MeNDA (left) and a MeNDA PU (right). A PU consists of a merge tree, prefetch bu!ers, a controller, a
request queue, and a memory interface unit. The extra units required to support SpMV, i.e. a delay bu!er and "oating point
adders and multipliers, are labelled in red.

output bu!er, which allows store requests to be sent at memory
block granularity (64B). Each leaf PE is connected to two prefetch
bu!ers through FIFOs. Prefetch bu!ers are in charge of sending
memory load requests and feeding the leaves with correct data. The
controller is an FSM that assigns each prefetch bu!er the start and
end addresses of the corresponding sorted streams. Theoretically,
in each cycle, only one load request is sent to the prefetch bu!ers
because only one element is popped from the root PE. Similarly,
only one store request is sent to the prefetch bu!ers to #ll in the
data from the memory bus because only one memory response can
return each cycle. Therefore, to reduce power consumption, the
prefetch bu!ers are implemented as multi-bank SRAM. The design
goal of the merge tree is to saturate the internal memory bandwidth
while #tting in the bu!er chip, which, according to the evaluation,
is satis#ed by the current design.

Data are transferred among PEs through data packets containing
a 1-bit valid signal and the 32-bit row index, the 32-bit column index,
and the 32-bit value of a NZ. Only when both child PEs provide valid

packets will a PE pop the data packet with the smaller column index
and send to its parent PE or the output bu!er if it is the root PE.
All the memory requests are sent to a request queue with separate
queues for loads and stores and processed by a memory interface
unit, which mimics a memory controller. The memory interface
unit consists of a request scheduler that selects the request with
the highest priority from the request queue, an address decoder
that translates the incoming physical address to a DRAM address,
and a command generator that generates DRAM commands for the
chosen request. The request scheduler selects requests based on a
#rst come #rst serve #rst ready (FCFS-FR) policy that prioritizes
requests ready to launch and DRAM row hits.

3.3 Seamless Back-to-back Merge Sort
Real-world sparse matrices tend to be extremely large and sparse,
causing each iteration of sparse matrix transposition, especially
the #rst iteration, to handle many rounds of merge sort of short
input streams. Hence, it is important to reduce the stalls between

249

ISCA ’22, June 18–22, 2022, New York, NY, USA Feng et al.

di!erent rounds of merge sort. An end-of-line signal is added to the
data packet to signify the end of a sorted stream and allow seamless
execution of multiple rounds of merge sort. The prefetch bu!er sets
the end-of-line signal when the last element of a sorted stream is
sent. The PEs propagate the end-of-line signal when both child PEs
set the end-of-line signal. Instead of starting a new round of merge
sort after the current round of merge sort has #nished, the prefetch
bu!ers feed their PEs with data for the next round immediately
after the end-of-line signal is set.

� �

� 	 � �
�

�

� � �

	 � �
���	

�

�

� 	 �

� �

�

� 	 � �

�

�

�

� 	 � �

� �
�

�

	

� � � �

� � �
�

	 �

� � � �

� �
�

	

� �

� � � �

� �

�

� �

� � �

� �

�

� �

� � �

� � ���
�

����� � ����� � ����� � �����

����� ! ����� " ����� # ����� $

����� % ����� &

���	

���	

���� �����
���	� ���� �����

���	�
� ���	 ��� ! " ��� " �
���	
� ���	 ��� " # ���	 ��� #
! ��� ! �
���	 & ��� # �
���	

���
� ��� ���	� � ����� ���	�	�	��

Figure 6: Timing diagram of data propagation for merge sort
shown in Fig. 1 on a 4-leaf merge tree assuming a memory
latency of 3 cycles. The cycle number and the corresponding
memory activities are shown in the bottom right table. End-
of-line signal propagation is shown with red arrows.

Fig. 6 illustrates the seamless execution of the #rst and second
rounds of merge sort in Fig. 4. Load requests for the second round
of merge sort are sent in cycle 1, 2 and 6, i.e. as soon as the prefetch
bu!ers become empty. Propagating the end-of-line signals enables
the merge tree to produce e!ective results without stalls. If the
merge sort is executed one after another, in the scenario presented
in Fig. 6, the #rst round of the merge sort ends at cycle 10 and then
the three load requests for the second round are sent. The second
round of the merge sort is not able to start until cycle 15 due to
memory stalls, and the merge tree thus remains idle for 5 cycles.
The use of the end-of-line signals not only maximizes the hardware
resource utilization but also help distribute burst memory requests
at the start of a new round of merge sort evenly over time.

3.4 Memory Bandwidth Utilization
Optimizations

The prefetch bu!ers aim tomake the best use of the fetchedmemory
blocks and reduce merge tree stalls. However, even launching load
requests as soon as the prefetch bu!ers become empty would cause
the merge tree to stall while waiting for the memory responses.
Therefore, stall reducing prefetching is proposed so that mem-
ory load requests are sent whenever a prefetch bu!er can #t the
requested data. Assuming a prefetch bu!er can #t 16 NZs and 4

NZs have been popped to the leaf PE, if the number of NZs left in
the current sorted stream is less than or equal to 4, the memory
requests for the subsequent NZs will be issued. However, a prefetch
bu!er is not allowed to send memory requests for more NZs when
there are outstanding memory requests even if the prefetch bu!er
can accommodate the NZs. This is because, to reduce merge tree
stalls, it is more desirable to keep all prefetch bu!ers non-empty
than serially #lling each prefetch bu!er until full.

While stall reducing prefetching aims at taking full advantage of
the available memory bandwidth, request coalescing is designed
to reduce the total memory tra"c. Due to matrix sparsity, multiple
matrix rows can be co-located in the same memory block. In this
case, memory load requests for the same memory block can be
sent from di!erent prefetch bu!ers in the #rst iteration. Request
coalescing avoids sending these duplicate memory requests to the
memory device by checking the read request queue each time a
new load request is enqueued. If a load request to the same memory
block is found, the incoming request will be merged into the same
request queue slot. Since the memory response is broadcast to all
the prefetch bu!ers, merging the duplicate memory requests does
not a!ect the functional correctness of the design and there is no
need to keep track of the requesters. Because the prefetch bu!ers
are implemented as multi-bank SRAM and the prefetch bu!ers that
send the same memory requests are usually neighbors, the memory
response from a merged request can #ll multiple prefetch bu!ers in
one cycle by interleaving neighboring prefetch bu!ers to di!erent
SRAM banks. Minimal additional hardware is required to support
request coalescing. Speci#cally, a comparator is added to each en-
try of the read request queue to enable parallel address matching,
similar to a content-addressable memory (CAM). Synthesis of the
RTL model shows that the additional hardware has neglible impact
on the frequency and the area of PUs.

Taking the example in Fig. 6, if row 6 of the input matrix has only
one element # , stall reducing prefetching allows the load request
for # to be issued in cycle 1 instead of cycle 6. Request coalescing
merges this request into the prior request for row 4, making #
available in cycle 4 instead of cycle 9.

3.5 Input Operand Co-location and Workload
Balancing

In near-DRAM accelerators, communications between PUs, espe-
cially those across DIMMs, need to go through the o!-chip memory
interface and thus are prohibitively expensive. A common chal-
lenge is to keep all the input operands local in a single rank for
a rank-level PU [11]. To avoid communications between MeNDA
PUs, each PU is assigned a contiguous chunk of the sparse matrix,
i.e. each PU is responsible for transposing a horizontal partition
of the input sparse matrix. The original CSR format can then be
directly used without preprocessing, and it is also easy to locate an
NZ after transposition.

A naïve way to partition the sparse matrix is to use the most sig-
ni#cant bits (MSBs) of the address to assign NZs to a rank. However,
this could cause severe workload imbalance. For example, assuming
a total of 8 ranks, if the 3 MSBs of the input array ranges from 000
to 100, only rank 0 to rank 4 will be assigned work while rank 5 to
rank 7 remain idle throughout the execution. Since the execution

250

MeNDA: A Near-Memory Multi-way Merge Solution for Sparse Transposition and Dataflows ISCA ’22, June 18–22, 2022, New York, NY, USA

time of a PU is roughly proportional to the number of NZs (NNZ)
assigned to it, an NNZ based partitioning technique is desired.

���� �

���� �

���� �

���� �

������

�����	�

���	�
���� � ���� � ���� � ���� �

���� � ���� � ���� � ���� �

���� � ���� � ���� � ���� �

�������	� ��
	 ������ �����

Figure 7: Matrix partitioning across 4 ranks.

The workload balancing takes place during data allocation using
the technique proposed in [11]. The host #rst uses the number of
MeNDA PUs and the NNZ of the input matrix to determine the
NNZ assigned to each PU, and then allocates contiguous chunks of
physical memory accordingly. To ensure that the index and value
of each NZ assigned to a PU are mapped to the corresponding rank,
page coloring is used to specify the rank a physical page belongs
to, and thus the data assigned to a PU needs to be aligned by page.
However, the same technique does not apply to the row pointer
array because the rank that a row pointer belongs to depends on the
matrix distribution. Therefore, the host needs to calculate the start
and end row indices of the NZs assigned to a PU and then assigns
the corresponding pages of the row pointer array to the target rank
using page coloring. In the case that one page of the row pointer
array is needed by two ranks, the page will be duplicated and each
rank will have a private copy, leading to a maximum total storage
overhead of '($)_*+,) × #-(./* , which is negligible for typical
datasets. Fig. 7 shows a partitioned sparse matrix given 4 ranks.
The start and end addresses of the row pointer, index, and value
arrays of each rank are written to speci#c memorymapped registers
for PUs to calculate the target addresses during computation.

3.6 Adaptation to SpMV
Merge sort is widely used in SpBLAS. A typical example is outer
product based SpMV. The merge phase of SpMV has the same
data$ow as sparse matrix transposition, and thus can be imple-
mented directly on MeNDA. As transposition does not involve
$oating point computations, to support SpMV, a reduction unit con-
sisting of three pipelined $oating point adders is inserted between
the root PE and the output bu!er. In addition, a vectorized $oating
point multiplier is placed next to the prefetch bu!ers. The additional
hardware units required to support SpMV are highlighted with red
rectangles in Fig. 5. When executing sparse matrix transposition,
these units will be gated and incur no power overhead.

The input matrix is stored in a partitioned CSC format, which
matches the format of the transposed matrix generated by our work.
The reason to apply horizontal partitioning to the input matrix is
that each PU would generate a partition of the #nal vector instead
of a partial result vector. Due to the irregular distribution of sparse
matrices, the horizontal matrix partition processed by a PU can
have numerous empty columns. To reduce the memory loads to the
pointers and vector elements that correspond to the empty columns,
an auxiliary pointer array is constructed to label the memory blocks
in the pointer array that contain non-empty columns.

Each time the controller sends a load request for the column
pointers based on the auxiliary array, it also issues a request to fetch
the vector elements that need to be multiplied with these columns.
In contrast to sparse matrix transposition, the column indices are
not needed for computation because all columns are eventually
merged into a single vector. Hence, the space in the prefetch bu!ers
aimed to store the column indices for transposition is now reused to
store the vector elements instead. When a read request for the ma-
trix values returns, the data is sent to the multiplier. Meanwhile, the
prefetch bu!ers that are waiting for this memory response snoop
the memory bus and send the stored vector elements to the multi-
plier. However, the needed vector elements could be unavailable at
the moment because the load request for the vector elements is still
outstanding. This is very likely due to request reordering caused
by the scheduling policy and request coalescing. To deal with this
situation, a delay bu!er is designed to register the response and
notify the request scheduler to prioritize requests for vector ele-
ments until the request needed by the registered response is served.
The outputs of the multiplier are broadcasted and stored into the
prefetch bu!ers. Note that the multiplication is only performed in
the #rst iteration, i.e. the multiplier is disabled starting from the
second iteration. When an element with the smallest row index is
popped from the root PE, the root PE compares its index with prior
outputs and merges the elements with the same index using the
reduction unit. The intermediate vectors are stored in (index, value)
pairs, and the output vector is stored in a dense array.

4 PROGRAMMING MODEL AND INTERFACE
MeNDA adopts a heterogeneous programming model, similar to
prior NMP proposals [4, 24]. The host is responsible for memory
allocation and initialization for tasks o%oaded to PUs. Fig. 8(a)
shows the pseudo-code of a sample graph analytics workload based
on the CoSPARSE implementation [17]. In line 0-2, the host per-
forms memory allocation and workload balancing partitioning as
described in Sec. 3.5 for the input sparse matrix. The allocation
functions also write the necessary metadata to the corresponding
memory-mapped registers. The host can access the allocated data
structures with no modi#cations to the original implementation
because the allocation functions have taken care of the virtual to
physical address mapping, which is hidden from the host.

In line 10, the host launches the sparse matrix transposition
through a non-blocking function call NMP::transpose(), which
sets the start signals of PUs by writing to the memory-mapped
registers. While the PUs are transposing the matrix, the host can
concurrently execute other kernels. Prior work has proposed tech-
niques to e"ciently allow concurrent accesses from both the host
and NMP PUs [11]. However, it is still undesirable for the host to
execute memory intensive workloads because sparse matrix trans-
position is already heavily memory bandwidth bound. Since sparse
matrix transposition can easily saturate the memory bandwidth,
executing another memory intensive workload on the host will
only severely hurt the performance of both tasks.

Upon #nishing transposition, a PU sets the #nish signal and
updates the addresses of the transposed matrix in the memory-
mapped registers. In the case that the transposed matrix is required
for subsequent code execution, NMP::wait() can be used to block

251

ISCA ’22, June 18–22, 2022, New York, NY, USA Feng et al.

-- ���� ' ������"�����������"����(�"���
< 	�
++� �'H��"I �����0		�) 9 ���!) "'��++		�1*
= 	�
++� �'H����"I $��#�!0		�) 9 ���!) "'��++		�1*
> 	�
++� �'H��"I �%
" 0) 9 ���!) "'��++
�1*
? � �'H����"I $��"� 0	1) �!#�"0	1*

-- ���
���� ���!� �"� �"���
@ �%�"� ") �%���G 	�
++��"��%
� "�"���0"�����011*
A ��� 0� G �%�"� "* � H �%���* �FF1 4
B ��� 0� G �%
" 2�3* � H �%
" 2�F=3* �FF1
C �� "���/!#� FG $��#�!2�3 6�$��"� 2�����2�33*
D �!#�"2�3 FG �� "���/!#�* �� "���/!#� G <*
E 5
=< 	�
++" ��!��!�01* -- !�� !����" �&�" ��!��!�"���
== 	�
++%��"01* -- %��"��� �" ��!��!�"����"������!�

-- ���
���� !�� !� �"� �"���
=> ���
") �%��) $��#�! G 	�
++��"��� 0"�����011*
=? $/"�!�! G ���
����++��"���"� �!�!01*
=@ ��� 0$ + $/"�!�!1 4
=A ���� G ���
" 2$3*
=B ������!",�#!�0 �%��2����3)�$��#�!2����31*
=C 5 -- ���!" #�" � !� "�� ��!" �� ���� ������"!

� � � � � �

�
�
�
�
�
�
�
�

�8 �8 �8 �8 �8 �8 �8

�8 �8

������� =

��
 ��

���� <

���� =

������� <
���� <

���� =

������� =
���� <

���� =

������� >
���� <

���� =

������� ?

0�1 ������ �!�#��.���� �� ���
���� 0�1 ���
���� ��� �� ���"��"# �
6�8+ �������# ���� ����� ����!

���@ ���� ' ��"� ����

�8

Figure 8: (a) Sample pseudo-code of CoSPARSE using the pro-
gramming interface of MeNDA and (b) the microarchitecture
of the hardware substrate of CoSPARSE with 2 processing
tiles and 4 PEs per tile.

the host execution until the transposition #nishes, as shown in line
11. NMP::wait() is implemented similar to a conditional variable,
which gets noti#ed to resume the host execution as soon as the
#nish signals of all the PUs are set. After transposition, each rank
will hold a horizontal partition of the sparse matrix stored in CSC.
To access the data in a column, NMP::getAddr(i) is used to obtain
the start addresses of the data arrays in rank i (line 12).

4.1 Integrating MeNDA with Existing Platforms
The programming interface of MeNDA aims at minimizing the mod-
i#cations to the standard compressed storage format of sparse matri-
ces so that minimal code changes are required to integrate MeNDA.
The potential performance overhead of integrating MeNDA comes
in two ways. First, the proposed data layout assigns each rank with
a contiguous chunk of the sparse matrix with the same NNZ. This
requires modi#cations to the address mapping and support from
the page table of the operating system. Second, after transposition,
the sparse matrix is stored in multiple horizontal partitions in CSC,
which needs the host implementation to adapt to the partitioned
data storage. To access an entire column, the host needs to access
the sub-column in each rank.

To analyze the performance overhead, we implemented MeNDA
on CoSPARSE [17], a recent graph analytics framework on a re-
con#gurable hardware substrate [39]. An architecture overview
of CoSPARSE is shown in Fig. 8(b). CoSPARSE performs SpMV
in inner product using row-major COO for the dense iterations,
and outer product using CSC for the sparse iterations. To apply
MeNDA, the dense iteration implementations are the same except
that the memory address mapping is di!erent. For the sparse itera-
tions, since CoSPARSE uses preprocessing that performs horizontal
partitioning based on NNZ, CoSPARSE can directly use the post-
transposition data format and save preprocessing overhead with
minor modi#cations to the implementation. Assuming a CoSPARSE
system of ! tiles and 0 PEs per tile and where there are 1 DRAM
ranks in total, for simplicity, we let tile !/1 × + to !/1 × (+ + 1) − 1
work on the horizontal partition in rank + .

�$���'��� ����
�� �����

����
���������

�����'���� ��� �����

���� 	
�$���'��� ����
�� �����

����
���������

�����'���� ��� �����

���� (

�����# ������������ ������

% %

��� � �����# ����

�����"�� �����

%%

������������� ������"��

�$����
����

������ ���) �� �����

��� � �����# ����

������� ������� ������

��� �����

��� �����

�������
�#�� ���� ����

�#�� ���� ���� "&
!������

��������� �

���	��� ����	���� �������� ����	����

����������� �����#

�����$ �����

�������� �����

Figure 9: Experimental methodology for MeNDA.

Table 1: Parameters of Ramulator and MeNDA.

Ramulator CPU Parameters
L1 32KB L2 256KB LLC 3MB

Cache 64B block size, 8-way associative, 16 MSHR entries
Ramulator DRAM Parameters

Standard DDR4_2400R
Orginization 4Gb_x8
Scheduling 32-entry RD/WR queue, FRFCFS_PriorHit
Timing
Parameters

tRC=55, tRCD=16, tCL=16, tRP=16, tBL=4,
tCCDS=4, tCCDL=6, tRRDS=4, tRRDL=6, tFAW=26
Processing Unit Parameters

Frequency 800 MHz Number of Leaves 1024
No. FIFO Entry 2 No. Prefetch Bu!er Entry 32
No. Read/Write Queue Entry 32
FP Units (SpMV only) 16 3-stage FP Mult, 3 2-stage FP Add

Many recent designs use NNZ based partitioning [17, 42] and
thus similar implementations can apply. Even if the host needs to
access each DRAM rank to access and process a column, for graph
analytics workloads, the sparse iterations access only a small subset
of columns, and the dense iterations usually take up the majority
of the total execution time (Fig. 11). Therefore, there are many
use cases that would bene#t from MeNDA without introducing a
signi#cant performance overhead.

5 EXPERIMENTAL METHODOLOGY
This section details the experimental methodology that is used to
characterize mergeTrans and evaluate MeNDA.

5.1 Simulation Methodology
To model the performance of MeNDA, we designed a cycle-accurate
simulator and connected the memory interface to Ramulator [29],
as shown in Fig. 9 (left). The system parameters are shown in Tab. 1.
The area and power estimations are based on the synthesis of an
RTL model of the PU in 40nm using Synopsys design compiler.

Characterizations on mergeTrans The roo$ine model and the
thread scaling analysis (Fig. 3) are built through trace simulation of
mergeTrans[49] on Ramulator. We created a trace generator that
collects the memory trace and ran the traces in cpu mode of Ramu-
lator with a custom implementation of barrier synchronization to
improve simulation accuracy. The parameters used in Ramulator
are shown in Tab. 1.

252

MeNDA: A Near-Memory Multi-way Merge Solution for Sparse Transposition and Dataflows ISCA ’22, June 18–22, 2022, New York, NY, USA

Table 2: Speci#cations of CPU and GPU baselines.

Platform Speci#cations

CPU AMD Ryzen Threadripper 2990WX, 32 cores/64 threads at 3.0-
4.2 GHz, 128 GB DDR4 memory @ 68.3 GB/s, 213 mm2 (12 nm)

GPU NVIDIA Tesla V100, 5120 CUDA cores at 1.25 GHz, 16 GBHBM2
memory at 900 GB/s, 815 mm2 (12 nm)

Table 3: Speci#cations of Synthetic Uniform* (N#) and Power-
law†(p#) Matrices.

Matrix Dimension NNZ Matrix Dimension NNZ
N1/P1 262,144 3,435,973 N5/P5 524,288 8,388,608
N2/P2 262,144 1,717,986 N6/P6 1,048,576 8,388,608
N3/P3 262,144 858,993 N7/P7 2,097,152 8,388,608
N4/P4 262,144 429,496 N8/P8 4,194,304 8,388,608

*Generated by randomly sampling NZs until NNZ is reached.
†Generated using GenRMat(Dimension,NNZ,0.1,0.2,0.3) (snap.py).

Integration with CoSPARSE The performance impact of inte-
grating MeNDA is estimated on CoSPARSE [17] assuming a system
size of 8×16, i.e. 8 tiles with 16 PEs per tile. As shown in Fig. 9 (right),
the memory trace is collected using the gem5 simulator [6, 7] and
then processed by a memory re-mapping engine based on the strat-
egy described in Sec. 3.5. Both the original and the re-mapped
memory trace are then executed on Ramulator in dram mode to
obtain the performance of CoSPARSE after integrating MeNDA.

5.2 Baseline and Benchmarks
We evaluate MeNDA against scanTrans and mergeTrans from [49]
on the CPU and cusparseCsr2cscEx2 from cuSPARSE v11.4.0 on
the GPU. The speci#cations of the CPU and GPU are detailed in
Tab. 2. The CPU and GPU power are measured using AMDuProf
and nvidia-smi, respectively. The speci#cations of the evaluated
synthetic and real-world matrices are shown in Tab. 3 and Tab. 4,
respectively. The power-law matrices are generated using SNAP
RMat generator GenRMat. The real-world matrices are selected from
the SuiteSparse Matrix Collection [14].

Table 4: Speci#cations of SuiteSparse Matrices [14].

Matrix
Dimension,NNZ
Kind

Plot
Matrix
Dimension,NNZ
Kind

Plot
Matrix
Dimension,NNZ
Kind

Plot

amazon
262K,1.23M
Directed graph

ASIC_320K
321K,1.93M
Circuit simulation

bcsstk32
44K,2.01M
Structural problem

language
399K,1.22M
Directed graph

mac_econ
206K,1.27M
Economic problem

parabolic
525K,3.67M
Fluid dynamics

rajat21
411K,1.88M
Circuit simulation

sme3Dc
43K,3.15M
Structural problem

Slashdot0902
82K,948K
Directed graph

stomach
213K,3.02M
2D/3D problem

transient
178K,961K
Circuit simulation

twotone
120K,1.21M
Circuit simulation

venkat01
62K,1.72M
Fluid Dynamics

webbase-1M
1.00M,3.11M
Directed graph

wiki-Talk
2.39M,5.02M
Directed graph

6 EVALUATION AND ANALYSIS
This section evaluates the performance, area and power of MeNDA
for sparse matrix transposition and SpMV. In addition, the bene#ts
of integrating MeNDA with existing designs and the optimizations
proposed in Sec. 3.4 are presented. Finally, the performance impact
of the matrix properties and the system size and frequency on
MeNDA are studied.

6.1 Comparison with CPU and GPU Baselines
MeNDA is compared to state-of-the-art sparse matrix transposi-
tion implementations on CPU and GPU in Fig. 10. The speedup of
MeNDA over baselines comes from both the reduction in memory
tra!c and the improvement in memory bandwidth utilization. Tak-
ing wiki-Talk as an example, compared to mergeTrans, MeNDA
reduces the memory tra"c by 11.2× while exhibiting 2.7× higher
bandwidth utilization. These result from both the exposed high
internal memory bandwidth and the optimizations in Sec. 3.4. In
general, MeNDA achieves higher throughput on large, less sparse ma-
trices. MeNDA performs better on less sparse matrices because less
memory bandwidth is then spent on accessing and updating the
pointer array, which does not contribute to the throughput, which
is measured in NNZ/s. In the case that the number of iterations to
#nish transposition remains the same, MeNDA favors larger matri-
ces as bank-level parallelism can be better exploited when there are
more sorted streams to merge in the last iteration. mergeTrans and
scanTrans, however, do not scale as well for large, sparse matrices,
and perform the worst on wiki-Talk. Accordingly, MeNDA shows
the most speedup over mergeTrans and scanTrans on this matrix.

ASIC_320k
amazon

bcss
tk32

language

mac_e
con

parabolic
rajat21

sm
e3Dc

Slashdot

sto
mach

tra
nsie

nt

twotone

venkat01

webbase
wiki-Talk

geomean
0

10
20
30
40
50
60

Sp
ee

du
p

speedup over scanTrans
speedup over mergeTrans
speedup over cuSPARSE

Figure 10: Speedup ofMeNDAover scanTrans and mergeTrans
on CPU [49] and cuSPARSE on GPU. The red line labels the
speedup of 1.

The performance of cuSPARSE also favors less sparse matrices,
and is sensitive to matrix distribution. bcsstk32 and sme3dc have
similar dimensions and densities, but the throughput of cuSPARSE
on bcsstk32 is much higher than sme3dc. Because the performance
of MeNDA is not a!ected by matrix distribution, which is fur-
ther proved in Sec. 6.6, MeNDA achieves the highest speedup over
cuSPARSE on sme3dc and the lowest speedup for bcsstk32. Over-
all, MeNDA achieves an average speedup of 19.1×, 12.0× and 7.7×
compared to scanTrans, mergeTrans and cuSPARSE, respectively.

6.2 Area and Power Analysis
AMeNDA PU consumes 78.6 mW at 800 MHz and takes up 7.1 mm2

in 40 nm. The extra logic required to support SpMV adds negligible
area and up to 13.8 mW power consumption. Given the estimations
of prior works [4, 24] and that a typical data bu!er chip takes up

253

ISCA ’22, June 18–22, 2022, New York, NY, USA Feng et al.

100 mm2 [35], the PU is within the power constraint and can be
integrated into the bu!er chip of a DIMM, introducing a small area
and power overhead.

6.3 Bene#ts and Overhead Analysis on
End-to-end Workloads

To analyze the performance bene#ts and overhead of integrating
MeNDA into existing designs, the execution time of CoSPARSE
performing SSSP algorithm on the graph amazon with and without
MeNDA is illustrated in Fig. 11. Though the number of the sparse
iterations is twice that of the dense iterations, the majority (87%)
of execution time is taken up by the dense iterations. The potential
performance overhead of MeNDA comes from two sources – the
additional execution time due to the memory mapping required by
MeNDA and the execution time of the transposition.

	���	� �
���
���	 ���	� �
���
���	
���	��	�
���

Figure 11: Execution time of SSSP on CoSPARSE for amazon
without runtime transposition, with runtime transposition
using mergeTrans, and with runtime transposition using
MeNDA. CoSPARSE(∼2xStorage) avoids runtime transposi-
tion at the cost of storing two copies of the graph [17].

Although integrating MeNDA requires the matrix partition as-
signed to a PU to reside in a rank, as shown in Fig. 11, the change
in memory mapping has negligible impact on the execution time
of the SSSP algorithm. This is because the PEs in CoSPARSE work
on all matrix partitions concurrently to exploit memory-level par-
allelism, resulting in all the DRAM ranks being accessed in parallel.
Therefore, rank-level parallelism is still well exploited. Sparse ma-
trix transposition is launched each time CoSPARSE switches from
the dense data$ow to the sparse data$ow or the opposite. In prac-
tice, sparse matrix transposition is commonly performed at most
twice for a graph algorithm execution. As shown in Fig. 11, inte-
grating MeNDA for dynamic matrix transposition decreases the
transposition overhead from 126% to 5% while allowing CoSPARSE
to store only one copy of the graph in DRAM, reducing the required
storage by almost half, thus supporting a larger graph within a #xed
DRAM size. As dataset sizes keep growing, MeNDA can prevent
designs like CoSPARSE from expensive disk accesses when the
DRAM devices can only #t a single copy of the graph, at the cost
of introducing a minor transposition latency.

6.4 Memory Bandwidth Utilization
Optimization Analysis

The execution time of MeNDA with di!erent optimizations enabled
and prefetch bu!er sizes is shown in Fig. 12. A key observation is
that request coalescing greatly bene"ts the "rst iteration by reduc-
ing total memory tra!c while stall reducing prefetching improves
the performance of the following iterations by increasing memory
bandwidth utilization.

�	������ ������
���
������
�
�	����

������
���
������
�
�	����

������
���
������
�
�	����

����	���� � ����	���� �

Figure 12: The execution time of MeNDA applying di!erent
optimizations normalized to that of the baseline implementa-
tion. In the legend, "prefetch" refers to stall reducing prefetch-
ing enabled, "coal" refers to request coalescing enabled, and
the number refers to the size of the prefetch bu!ers.

Stall reducing prefetching fetches data needed in the future in
advance to keep the prefetch bu!ers non-empty and thus reduce
the stalls of the merge tree. Although stall reducing prefetching
has little impact on the total amount of memory tra"c, it improves
the memory bandwidth utilization by 8-16%, leading to 12-16%
better performance. Larger prefetch bu!ers enable the merge tree
to send out more prefetch requests. However, little performance
improvement is seen after the size of the prefetch bu!er reaches
32. This is because the memory bandwidth is already saturated and
the prefetch bu!ers are not able to send out more requests even
if there are vacancies. This is also demonstrated by the fact that,
when request coalescing is not enabled, stall reducing prefetching
can sometimes worsen the performance of the #rst iteration. The
reason is that the excessive prefetching requests block the critical
read requests on demand, resulting in performance degradation.

Request coalescing, instead, bene#ts the #rst iteration much
more than the other iterations, especially for sparser matrices. Be-
cause sparser matrices have fewer NZs per row, i.e. each memory
block can accommodate more rows, a single memory response can
#ll more prefetch bu!ers. On the other hand, after the #rst iteration,
sorted streams are usually much longer than a memory block, so
there is little opportunity for request coalescing. Therefore, the
following iterations barely bene#t from request coalescing. Exper-
iments show that request coalescing reduces the memory tra"c
of iteration 0 by up to 60%, leading to a maximum speedup of 2×.
Overall, stall reducing prefetching and request merging can achieve a
speedup of 1.2× to 2.1× compared to a baseline with no optimizations.

6.5 Scalability Analysis
MeNDA places PUs at DRAM rank-level, and thus the performance
scales with the number of ranks. In the synthetic matrices, % 1−% 4
have the same matrix dimensions but decreasing densities while
% 5−% 8 have the same NNZs but increasing matrix dimensions. As
shown in Fig. 13, the throughput of MeNDA scales almost linearly
with the increasing number of channels. The execution time of
transposing % 1 to % 4 decreases with NNZ while that of % 5 to % 8
remains similar. The throughput of MeNDA decreases slightly from
%1 to %4 and from %5 to %8 under a #xed number of channels.
This is because when the size of the pointer array increases with the
matrix dimension and becomes even larger compared to the index
and value array, accessing and updating the pointer array takes

254

MeNDA: A Near-Memory Multi-way Merge Solution for Sparse Transposition and Dataflows ISCA ’22, June 18–22, 2022, New York, NY, USA

up a larger portion of the memory bandwidth usage. However,
this does not contribute to the throughput, which is de#ned as
NNZ/s, and thus results in a throughput degradation. In summary,
the throughput of MeNDA is proportional to the total number of
ranks, and the execution time scales with the NNZ of the input matrix,
assuming the number of iterations in the execution is "xed.

����

������	� �	�� � ���������� � ������
 � ������
 � ������
� � �

Figure 13: Execution time and throughput of MeNDA sweep-
ing matrix size and density and the number of channels.

Transposing % 8 on one channel is an outlier because % 8 is the
largest synthetic matrix and requires three iterations to #nish while
all other matrices #nish within two iterations. Adding an iteration
to the execution signi#cantly increase the total memory tra"c
and severely degrades the throughput. Therefore, it is desirable to
minimize the number of iterations in the execution. In this work,
the nominal number of leaf PEs is 1024, which allows transposition
to be #nished within two iterations for matrices with a size up to
10242 × 1, where 1 is the total number of DRAM ranks.

6.6 Matrix Distribution Analysis
Many real-world matrices have irregular distributions, especially
those in the graph analytics domain. However, Fig. 14 shows that
the performance of MeNDA is barely a!ected by matrix distribution.
Although in most cases, the power-law matrices take longer to trans-
pose, the di#erences in execution time remain within 10%. This can
be attributed to the workload balancing strategy (Sec. 3.5), which
divides tasks evenly among PUs to improve parallelism, and the
seamless back-to-back merge sort feature (Sec. 3.3), which maxi-
mizes hardware resource utilization.

�������
	 � �������
	 � �������
	 � �������
	 ��	��
��� �
������

Figure 14: The execution time of the uniform matrices com-
pared with that of the power-law matrices with the same
sizes and densities.

6.7 Design Space Exploration
Fig. 15 (left) presents the execution time and energy delay prod-
uct (EDP) of MeNDA under di!erent frequencies. Because MeNDA
already saturates the memory bandwidth, increasing the system fre-
quency beyond 800 MHz brings little performance bene"t and simply

�������
����� ����� ���� � ���� � ���� � ���� � ���	
!�� ��� "�� ��� � ��� ���� �	��� � ! �	��� !� �	���

Figure 15: The execution time and energy delay product (EDP)
ofMeNDAsweeping the accelerator frequency (left) andnum-
ber of leave PEs (right).

boosts the power consumption, resulting in a higher EDP. Although
600 MHz presents a lower EDP, this work prioritizes performance
and selects 800 MHz as the nominal frequency. In a scenario where
EDP is the most important metric, a lower frequency can be used
at the cost of performance.

The execution time and EDP of MeNDA with merge trees of
di!erent sizes are shown in Fig. 15 (right). The size of the merge
tree does not a!ect the throughput, but impacts the number of
iterations needed to #nish the sparse matrix transposition. A PU
with a 1024-leaf merge tree can transpose% 5 to% 8 in two iterations.
With 256 leaves, three iterations are needed. With only 64 leaves,
%5 to %7 can still #nish in three iterations but %8 requires four
iterations. The reduction in power consumption resulted from using
a merge tree with fewer leaf PEs does not o!set the performance
degradation caused by the increase in the number of iterations.
Hence, the PU with a 1024-leaf merge tree has not only the best
performance but also the lowest EDP.

The execution time of % 6 is much longer than that of the other
matrices on a 256-leaf merge tree. This is because %6 does not
have enough rows that the third iteration only merges two sorted
streams, and loading the two sorted streams induces many row
con$icts. Although %5 has an even lower number of rows and
the third iteration has at most two sorted streams, the majority
of the NZs resides in one of the sorted streams. Therefore spatial
locality is well exploited when loading the long sorted stream. % 7
and %8, on the other hand, have much more rows than %6 and
thus have more sorted streams to merge in the third iteration. The
percentage of row con$icts in the third iteration is 57% for % 6 but
43% for %7. This is because the bank-level parallelism exploited
by loading multiple sorted streams reduces the row con$icts and
enables MeNDA to transpose % 7 and % 8 faster than % 6.

ASIC_320k
amazon

bcss
tk32

language

mac_e
con

parabolic
rajat21

sm
e3Dc

Slashdot

sto
mach

tra
nsie

nt

twotone

venkat01

webbase
wiki-Talk

geomean
0

2

4

6

Ef
fic

ie
nc

y(
G

TE
PS

/W
)

G
ai

n 3.2
2.6

6.0

2.6

4.5

3.1 3.5
4.4

3.2

5.5

3.2

5.1
5.8

3.4 2.9
3.8

Figure 16: Energy e$ciency gain of MeNDA over Sadi et
al. [42] for SpMV.

255

ISCA ’22, June 18–22, 2022, New York, NY, USA Feng et al.

6.8 SpMV Analysis
We evaluate SpMV against an HBM-based NMP SpMV accelera-
tor [42]. [42] interleaves the output vector elements among reduc-
tion trees to reduce the on-chip bu!er to a feasible size, taking
advantage of the regular output data. However, sparse matrix trans-
position outputs an irregular sparse matrix, which has an unknown
number of elements per row/column. Therefore, [42] cannot per-
form sparse matrix transposition without introducing frequent
synchronization and large on-chip bu!ers, which will severely de-
grade the performance. While [42] is a monolithic design with a
high peak throughput saturating the memory bandwidth of four
HBM stacks, MeNDA features lightweight PUs that can be inte-
grated into commodity DIMMs, which has better capacity scalability
than HBM devices. For a fair comparison, we use giga traversed
edges per second (GTEPS) per bandwidth (GB/s) as the performance
metric. As [42] achieves 0.049 GTEPS/(GB/s) on average, MeNDA
achieves a comparable average iso-bandwidth throughput of 0.043
GTEPS/(GB/s) with a maximum of 0.073 GTEPS/(GB/s). For e"-
ciency gain, we scale our power to match the technology while
keeping the performance because the performance of MeNDA is
limited by the memory bandwidth instead of the system frequency.
Overall, MeNDA presents an average improvement of 3.8× in e"-
ciency (GTEPS/W) (Fig. 16).

7 RELATEDWORKS
Near-DRAM Accelerators In recent years, many near-DRAM
accelerators have been proposed to accelerate memory bandwidth
bound workloads and save data transfer energy. Chameleon inte-
grates coarse-grain recon#gurable architectures (CGRAs) into the
data bu!er chip on load-reducedDIMMs [4]. Inspired byChameleon,
TensorDIMM [30] and RecNMP [24] place accelerators in the DRAM
bu!er devices to optimize sparse embedding operations in recom-
mender systems. The performance bene#ts of RecNMP are further
demonstrated on AxDIMM, an FPGA-based NMP prototyping and
evaluation platform [25]. Fafnir identi#es the limitations of Tensor-
DIMM and RecNMP and proposes a near-DRAM reduction tree con-
sisting of custom PEs for sparse gathering [2]. GraFboost [23] and
MetaStrider [44] are sort-reduce accelerators. GraFboost [23] tar-
gets datasets that exceed DRAM capacity and reside in $ash-based
systems. The intermediate data are reduced bymore than 80% before
written back to improve latency and $ash lifetime. MetaStrider [44]
deploys merger units and metadata storage at HBM memory con-
trollers and interleaves data by indices at bank-level to achieve
memory-level parallelism. In sparse matrix transposition, however,
there is no data reduction. More importantly, data interleaving can
cause output data fragmentation and create di"culties in quickly
locating speci#c NZs post-merge. In summary, none of the above
designs can perform sparse matrix transposition e"ciently as is.

There are also designs placing accelerators at bank (group) level
to further exploit the inherent parallelism in DRAM devices [10,
16, 26–28, 31]. However, these designs are mostly used for element-
wise or multiply-and-accumulate operations because they require
all input operands to sit within a speci#c bank (group). This is in-
feasible for sparse matrix transposition as it would pose challenges
not only to restricting the required input operands to reside in a

bank (group) but also to locating elements in the output matrix
after sparse matrix transposition.

HMC/HBM accelerators for SpMV and graph analytics
Apart from near-DRAM accelerators, plenty of designs have been
proposed to tightly integrate computation logic with 3D/2.5D-
stacked memory devices to optimize sparse linear algebra applica-
tions, such as SpMV and graph algorithms [1, 12, 36, 42, 52, 57, 60].
These designs usually involve communications between NMP cores,
which are prohibitively expensive for near-DRAM accelerators. Be-
sides, HBM/HMCdevices often su!er from limited capacitywhereas
capacity scalability is critical in sparse linear algebra workloads.

None of the aforehead mentioned works address sparse matrix
transposition, nor can they be used to perform sparse matrix trans-
position, including those designs featuring near-memory reduction
trees that can compute SpMV [2, 23, 42, 44]. However, based on the
insights in the prior works, we identify sparse matrix transposition
as a promising candidate for NMP because of its low arithmetic
complexity and high memory bandwidth requirements.

8 CONCLUSION
MeNDA is a scalable solution to near-DRAM multi-way merge for
sparse data$ows, including sparse matrix transposition and SpMV.
A MeNDA PU features a high-performance merge tree enhanced
with techniques to maximize bandwidth utilization. To ease the
deployment of MeNDA, a heterogeneous programming model is
designed and showcased by integrating MeNDA to a recent graph
analytics framework. Overall, MeNDA achieves an average speedup
of 19.1× over scanTrans and 12.0× over mergeTrans on CPU and
7.7× over cuSPARSE on GPU for sparse matrix transposition, and
shows an average e"ciency gain of 3.8× over an HBM-based SpMV
accelerator. Incurring a power overhead of 78.6mWper PU,MeNDA
can be accommodated by commodity DIMMs, introducing a small
area and power overhead.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful feedback. The
material is based on research sponsored by Air Force Research Lab-
oratory (AFRL) and Defense Advanced Research Projects Agency
(DARPA) under agreement number FA8650-18-2-7864. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily repre-
senting the o"cial policies or endorsements, either expressed or
implied, of AFRL and DARPA or the U.S. Government.

REFERENCES
[1] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.

2015. A scalable processing-in-memory accelerator for parallel graph process-
ing. In Proceedings of the 42nd Annual International Symposium on Computer
Architecture. 105–117.

[2] Bahar Asgari, Ramyad Hadidi, Jiashen Cao, Da Eun Shim, Sung-Kyu Lim, and
Hyesoon Kim. 2021. FAFNIR: Accelerating Sparse Gathering by Using E"cient
Near-Memory Intelligent Reduction. In 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). 908–920. https://doi.org/10.
1109/HPCA51647.2021.00080

[3] Bahar Asgari, Ramyad Hadidi, Tushar Krishna, Hyesoon Kim, and Sudhakar
Yalamanchili. 2020. Alrescha: A lightweight recon#gurable sparse-computation
accelerator. In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 249–260.

256

MeNDA: A Near-Memory Multi-way Merge Solution for Sparse Transposition and Dataflows ISCA ’22, June 18–22, 2022, New York, NY, USA

[4] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and Nam Sung Kim.
2016. Chameleon: Versatile and practical near-DRAM acceleration architecture
for large memory systems. In 2016 49th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO). 1–13. https://doi.org/10.1109/MICRO.2016.
7783753

[5] Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction-optimizing
breadth-#rst search. In SC’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. IEEE, 1–10.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The gem5 simulator. ACM SIGARCH computer
architecture news 39, 2 (2011), 1–7.

[7] N.L. Binkert, R.G. Dreslinski, L.R. Hsu, K.T. Lim, A.G. Saidi, and S.K. Reinhardt.
2006. The M5 Simulator: Modeling Networked Systems. IEEE Micro 26, 4 (2006),
52–60. https://doi.org/10.1109/MM.2006.82

[8] Azzedine Boukerche and Carl Tropper. 1998. A distributed graph algorithm
for the detection of local cycles and knots. IEEE Transactions on Parallel and
Distributed Systems 9, 8 (1998), 748–757.

[9] Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo Chen.
2019. Powerlyra: Di!erentiated graph computation and partitioning on skewed
graphs. ACM Transactions on Parallel Computing (TOPC) 5, 3 (2019), 1–39.

[10] Benjamin Y Cho, Jeageun Jung, and Mattan Erez. 2020. Accelerating Bandwidth-
Bound Deep Learning Inference with Main-Memory Accelerators. arXiv preprint
arXiv:2012.00158 (2020).

[11] Benjamin Y. Cho, Yongkee Kwon, Sangkug Lym, and Mattan Erez. 2020. Near
Data Acceleration with Concurrent Host Access. In Proceedings of the ACM/IEEE
47th Annual International Symposium on Computer Architecture (Virtual Event)
(ISCA ’20). IEEE Press, 818–831. https://doi.org/10.1109/ISCA45697.2020.00072

[12] Guohao Dai, Tianhao Huang, Yuze Chi, Jishen Zhao, Guangyu Sun, Yongpan
Liu, Yu Wang, Yuan Xie, and Huazhong Yang. 2018. Graphh: A processing-in-
memory architecture for large-scale graph processing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 38, 4 (2018), 640–653.

[13] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks,
Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018. Gluon: A communication-
optimizing substrate for distributed heterogeneous graph analytics. In Proceedings
of the 39th ACM SIGPLAN conference on programming language design and imple-
mentation. 752–768.

[14] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (Dec. 2011), 25 pages. https:
//doi.org/10.1145/2049662.2049663

[15] Frank Dellaert and Michael Kaess. 2006. Square Root SAM: Simultaneous local-
ization and mapping via square root information smoothing. The International
Journal of Robotics Research 25, 12 (2006), 1181–1203.

[16] Amin Farmahini-Farahani, Jung Ho Ahn, Katherine Morrow, and Nam Sung
Kim. 2015. NDA: Near-DRAM acceleration architecture leveraging commodity
DRAM devices and standard memory modules. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA). 283–295. https:
//doi.org/10.1109/HPCA.2015.7056040

[17] Siying Feng, Jiawen Sun, Subhankar Pal, Xin He, Kuba Kaszyk, Dong-hyeon
Park, Magnus Morton, Trevor Mudge, Murray Cole, Michael O’Boyle, Chaitali
Chakrabarti, and Ronald Dreslinski. 2021. CoSPARSE: A Software and Hardware
Recon#gurable SpMV Framework for Graph Analytics. In 58th Design Automation
Conference. ACM Association for Computing Machinery.

[18] Roger Fletcher. 1976. Conjugate gradient methods for inde#nite systems. In
Numerical analysis. Springer, 73–89.

[19] Roland W Freund and Noël M Nachtigal. 1991. QMR: a quasi-minimal residual
method for non-Hermitian linear systems. Numerische mathematik 60, 1 (1991),
315–339.

[20] Andrew Goldberg and Tomasz Radzik. 1993. A heuristic improvement of the
Bellman-Ford algorithm. Technical Report. STANFORD UNIV CA DEPT OF
COMPUTER SCIENCE.

[21] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. Powergraph: Distributed graph-parallel computation on natural graphs. In
10th USENIX Symposium on Operating Systems Design and Implementation (OSDI
12). 17–30.

[22] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer
Jaleel, Edgar Solomonik, Joel Emer, and Christopher W Fletcher. 2019. Exten-
sor: An accelerator for sparse tensor algebra. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 319–333.

[23] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu, and Arvind. 2018.
GraFboost: Using Accelerated Flash Storage for External Graph Analytics. In
Proceedings of the 45th Annual International Symposium on Computer Architecture
(Los Angeles, California) (ISCA ’18). IEEE Press, 411–424. https://doi.org/10.
1109/ISCA.2018.00042

[24] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas Chandra,
Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee,
Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz,

Mikhail Smelyanskiy, Xiaodong Wang, Brandon Reagen, Carole-Jean Wu, Mark
Hempstead, and Xuan Zhang. 2020. RecNMP: Accelerating Personalized Rec-
ommendation with Near-Memory Processing. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). 790–803. https:
//doi.org/10.1109/ISCA45697.2020.00070

[25] Liu Ke, Xuan Zhang, Jinin So, Jong-Geon Lee, Shin-Haeng Kang, Sukhan Lee,
Songyi Han, Yeongon Cho, Jin Hyun Kim, Yongsuk Kwon, Kyungsoo Kim, Jin
Jung, Ilkwon Yun, Sung Joo Park, Hyunsun Park, Joonho Song, Jeonghyeon Cho,
Kyomin Sohn, Nam Sung Kim, and Hsien-Hsin Sean Lee. 2021. Near-Memory
Processing in Action: Accelerating Personalized Recommendation with AxDIMM.
IEEE Micro (2021), 1–1. https://doi.org/10.1109/MM.2021.3097700

[26] Byeongho Kim, Jongwook Chung, Eojin Lee, Wonkyung Jung, Sunjung Lee, Jae-
wan Choi, Jaehyun Park, Minbok Wi, Sukhan Lee, and Jung Ho Ahn. 2020. MViD:
Sparse matrix-vector multiplication in mobile dram for accelerating recurrent
neural networks. IEEE Trans. Comput. 69, 7 (2020), 955–967.

[27] Byeongho Kim, Jaehyun Park, Eojin Lee, Minsoo Rhu, and Jung Ho Ahn. 2021.
TRiM: Tensor Reduction in Memory. IEEE Computer Architecture Letters 20, 1
(2021), 5–8. https://doi.org/10.1109/LCA.2020.3042805

[28] Heesu Kim, Hanmin Park, Taehyun Kim, Kwanheum Cho, Eojin Lee, Soojung
Ryu, Hyuk-Jae Lee, Kiyoung Choi, and Jinho Lee. 2021. GradPIM: A Practical
Processing-in-DRAM Architecture for Gradient Descent. In 2021 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA). 249–262.
https://doi.org/10.1109/HPCA51647.2021.00030

[29] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2016. Ramulator: A Fast and
Extensible DRAM Simulator. IEEE Computer Architecture Letters 15, 1 (2016),
45–49. https://doi.org/10.1109/LCA.2015.2414456

[30] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. 2019. TensorDIMM: A Practical
Near-Memory Processing Architecture for Embeddings and Tensor Operations
in Deep Learning. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (Columbus, OH, USA) (MICRO ’52). Association
for Computing Machinery, New York, NY, USA, 740–753. https://doi.org/10.
1145/3352460.3358284

[31] Sukhan Lee, Shin-haeng Kang, Jaehoon Lee, Hyeonsu Kim, Eojin Lee, Seungwoo
Seo, Hosang Yoon, Seungwon Lee, Kyounghwan Lim, Hyunsung Shin, Jinhyun
Kim, O Seongil, Anand Iyer, DavidWang, Kyomin Sohn, and Nam Sung Kim. 2021.
Hardware Architecture and Software Stack for PIM Based on Commercial DRAM
Technology : Industrial Product. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). 43–56. https://doi.org/10.1109/
ISCA52012.2021.00013

[32] John J Leonard, Hugh F Durrant-Whyte, and Ingemar J Cox. 1992. Dynamic map
building for an autonomous mobile robot. The International Journal of Robotics
Research 11, 4 (1992), 286–298.

[33] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph Hellerstein. 2010. GraphLab: A New Framework for Parallel Machine
Learning. In Proceedings of the Twenty-Sixth Conference on Uncertainty in Arti"cial
Intelligence (Catalina Island, CA) (UAI’10). AUAI Press, Arlington, Virginia, USA,
340–349.

[34] Jasmina Malicevic, Baptiste Lepers, and Willy Zwaenepoel. 2017. Everything
you always wanted to know about multicore graph processing but were afraid
to ask. In 2017 USENIX Annual Technical Conference (USENIX ATC 17). 631–643.

[35] Patrick J Meaney, Lawrence D Curley, Glenn D Gilda, Mark R Hodges, Daniel J
Buerkle, Robert D Siegl, and Roger K Dong. 2015. The IBM z13memory subsystem
for big data. IBM Journal of Research and Development 59, 4/5 (2015), 4–1.

[36] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith Kumar, and
Hyesoon Kim. 2017. Graphpim: Enabling instruction-level pim o%oading in
graph computing frameworks. In 2017 IEEE International symposium on high
performance computer architecture (HPCA). IEEE, 457–468.

[37] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight
infrastructure for graph analytics. In Proceedings of the twenty-fourth ACM sym-
posium on operating systems principles. 456–471.

[38] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siy-
ing Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge,
and Ronald Dreslinski. 2018. Outerspace: An outer product based sparse ma-
trix multiplication accelerator. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 724–736.

[39] Subhankar Pal, Siying Feng, Dong-hyeon Park, Sung Kim, Aporva Amarnath,
Chi-Sheng Yang, Xin He, Jonathan Beaumont, Kyle May, Yan Xiong, Kuba Kaszyk,
John Magnus Morton, Jiawen Sun, Michael O’Boyle, Murray Cole, Chaitali
Chakrabarti, David Blaauw, Hun-Seok Kim, Trevor Mudge, and Ronald Dres-
linski. 2020. Transmuter: Bridging the E"ciency Gap Using Memory and
Data$ow Recon#guration. In Proceedings of the ACM International Conference
on Parallel Architectures and Compilation Techniques (Virtual Event, GA, USA)
(PACT ’20). Association for Computing Machinery, New York, NY, USA, 175–190.
https://doi.org/10.1145/3410463.3414627

[40] Subhankar Pal, Dong-hyeon Park, Siying Feng, Paul Gao, Jielun Tan, Austin
Rovinski, Shaolin Xie, Chun Zhao, Aporva Amarnath, Timothy Wesley, Jonathan
Beaumont, Kuan-Yu Chen, Chaitali Chakrabarti, Michael Taylor, Trevor Mudge,
David Blaauw, Hun-Seok Kim, and Ronald Dreslinski. 2019. A 7.3 M Output

257

ISCA ’22, June 18–22, 2022, New York, NY, USA Feng et al.

Non-Zeros/J Sparse Matrix-Matrix Multiplication Accelerator using Memory
Recon#guration in 40 nm. In 2019 Symposium on VLSI Circuits. C150–C151. https:
//doi.org/10.23919/VLSIC.2019.8778147

[41] CA Philips. 1989. Parallel graph contraction. In Proceedings of the "rst annual
ACM symposium on Parallel algorithms and architectures. 148–157.

[42] Fazle Sadi, Joe Sweeney, Tze Meng Low, James C. Hoe, Larry Pileggi, and Franz
Franchetti. 2019. E"cient SpMV Operation for Large and Highly Sparse Matrices
Using Scalable Multi-WayMerge Parallelization. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (Columbus, OH, USA)
(MICRO ’52). Association for ComputingMachinery, New York, NY, USA, 347–358.
https://doi.org/10.1145/3352460.3358330

[43] Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph processing
framework for shared memory. In Proceedings of the 18th ACM SIGPLAN sympo-
sium on Principles and practice of parallel programming. 135–146.

[44] Sriseshan Srikanth, Anirudh Jain, Joseph M. Lennon, Thomas M. Conte, Erik
Debenedictis, and Jeanine Cook. 2019. MetaStrider: Architectures for Scalable
Memory-Centric Reduction of Sparse Data Streams. ACM Trans. Archit. Code
Optim. 16, 4, Article 35 (oct 2019), 26 pages. https://doi.org/10.1145/3355396

[45] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang. 2020.
Matraptor: A sparse-sparse matrix multiplication accelerator based on row-wise
product. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 766–780.

[46] Weiyi Sun, Zhaoshi Li, Shouyi Yin, Shaojun Wei, and Leibo Liu. 2021. ABC-
DIMM: Alleviating the Bottleneck of Communication in DIMM-based Near-
Memory Processing with Inter-DIMM Broadcast. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 237–250.

[47] James Vlasblom and Shoshana J Wodak. 2009. Markov clustering versus a"nity
propagation for the partitioning of protein interaction graphs. BMC bioinformatics
10, 1 (2009), 1–14.

[48] Hao Wang, Liang Geng, Rubao Lee, Kaixi Hou, Yanfeng Zhang, and Xiaodong
Zhang. 2019. Sep-graph: #nding shortest execution paths for graph processing
under a hybrid framework on GPU. In Proceedings of the 24th Symposium on
Principles and Practice of Parallel Programming. 38–52.

[49] Hao Wang, Weifeng Liu, Kaixi Hou, and Wu-chun Feng. 2016. Parallel Transpo-
sition of Sparse Data Structures (ICS ’16). Association for Computing Machinery,
NewYork, NY, USA, Article 33, 13 pages. https://doi.org/10.1145/2925426.2926291

[50] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Ri!el, and
John D Owens. 2016. Gunrock: A high-performance graph processing library on

the GPU. In Proceedings of the 21st ACM SIGPLAN symposium on principles and
practice of parallel programming. 1–12.

[51] Samuel Williams. 2009. Roo$ine: An Insightful Visual Performance Model for
Floating-Point Programs and Multicore. ACM Communications (2009).

[52] Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling Liang, Xing Hu,
and Yuan Xie. 2021. SpaceA: SparseMatrix VectorMultiplication on Processing-in-
Memory Accelerator. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 570–583.

[53] Jinchao Xu and Ludmil Zikatanov. 2017. Algebraic multigrid methods. Acta
Numerica 26 (2017), 591–721.

[54] Serif Yesil, Azin Heidarshenas, Adam Morrison, and Josep Torrellas. 2020. Speed-
ing up SpMV for power-law graph analytics by enhancing locality & vectorization.
In SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1–15.

[55] Guowei Zhang, Nithya Attaluri, Joel S Emer, and Daniel Sanchez. 2021. Gamma:
leveraging Gustavson’s algorithm to accelerate sparse matrix multiplication. In
Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 687–701.

[56] Kaiyuan Zhang, Rong Chen, and Haibo Chen. 2015. NUMA-aware graph-
structured analytics. In Proceedings of the 20th ACM SIGPLAN symposium on
principles and practice of parallel programming. 183–193.

[57] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang
Chen, Christos Kozyrakis, and Xuehai Qian. 2018. GraphP: Reducing communi-
cation for PIM-based graph processing with e"cient data partition. In 2018 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 544–557.

[58] Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. 2020. Sparch:
E"cient architecture for sparse matrix multiplication. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 261–274.

[59] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A computation-centric distributed graph processing system. In 12th USENIX
symposium on operating systems design and implementation (OSDI 16). 301–316.

[60] Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu, Yanzhi Wang,
and Xuehai Qian. 2019. Graphq: Scalable pim-based graph processing. In Proceed-
ings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.
712–725.

258

