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Abstract—Convolutional neural networks (CNNs) are built
with convolution layers which account for most of their com-
putation time. The differences in the convolution kernel types
(2D, point-wise, depth-wise), and input sizes lead to signifi-
cant differences in their computation and memory demands.
In this work, we exploit run-time reconfiguration to adapt to
the differences in the characteristics of different convolution
kernels on a low-power reconfigurable architecture, Transmuter.
The architecture consists of light-weight cores interconnected
by caches and crossbars that support run-time reconfiguration
between different cache modes – shared or private, different
dataflow modes – systolic or parallel, and different computa-
tion mapping schemes. To achieve run-time reconfiguration, we
propose a decision-tree-based engine that selects the optimal
Transmuter configuration at a low cost. The proposed method
is evaluated on commonly-used CNN models such as ResNet18,
VGG11, AlexNet and MobileNetV3. Simulation results show that
run-time reconfiguration helps improve the energy efficiency of
Transmuter in the range of 3.1⇥-13.7⇥ across all networks.

Index Terms—Energy-efficiency, CNN, runtime reconfigura-
tion, multicore architecture

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have shown supe-
rior performance in multiple domains, such as image process-
ing, computer vision, and natural language processing. This
has led to the implementation of these models on not only
CPUs and GPUs but also low-power end devices. Several
application-specific integrated circuits for CNN accelerators
that maximize both energy efficiency and performance have
been proposed [1]–[4]. Many of these accelerators use systolic
arrays [5] for 2D convolution since this is by far the most
dominant computation kernel.

The input data size and convolution kernel size vary from
network to network and also across layers in a single network.
Interestingly enough, while some input-convolution kernel size
combinations have the best performance on pipelined systolic
arrays, others have the best performance on multicores with the
shared cache. Thus it is desirable to have a flexible architecture
that can support the configuration that is best suited for the
specific layer parameter values.

Field programmable gate arrays (FPGA) are one of the
most widely used reconfigurable architectures. They have been
shown to achieve promising performance on accelerating DNN
algorithms [6]–[8]. Another viable option for neural networks
is coarse-grained reconfigurable architectures (CGRA) which

achieve high energy efficiency while maintaining programma-
bility [9]–[11]. However, none of these architectures change
their computation pattern from layer to layer.

In this work, we use a low-power reconfigurable architec-
ture, Transmuter [12], to demonstrate how performance can
be improved by choosing the architectural configuration that
best matches the layer-level characteristics of the CNN model.
Transmuter consists of clusters of programmable processing
units with reconfigurable memory. It can reconfigure the on-
chip memory type (shared/private/hybrid), dataflow (paral-
lel/systolic) and mapping scheme (distributed/shared inputs
and weights) at run-time with very low overhead (⇡ 10
cycles). For 2D convolution, the specific Transmuter config-
uration with the best performance varies from layer to layer.
For example, for VGG11 on CIFAR-10, parallel dataflow with
shared cache is the best performing configuration for the first
layer while systolic data flow with hybrid cache is the best
for intermediate layers where the channel numbers are large.
Thus to maximize the performance in every layer for different
CNN models, the Transmuter configuration has to be set to
the one with the best performance.

Our approach is to first determine the best Transmuter
configuration for a selected set of combinations of input and
kernel sizes and then derive a decision-tree-based predictor to
determine the best configuration at run-time. While the best
configuration for all combinations can be stored in a look-up
table if the number is small, this method is not scalable. The
use of the decision tree helps predict the best configuration
even when the layer parameters do not exactly match. Our
evaluation shows that the predictor has high accuracy on
choosing the right implementation and can achieve 3.12⇥
to 13.31⇥ higher energy efficiency compared to the baseline
Transmuter configuration on benchmark CNN models. The key
contributions are:

• Developed energy-efficient implementations of 2D con-
volution on various Transmuter configurations.

• Designed a decision-tree-based predictor for deriving
Transmuter configuration at run-time.

• Achieved, on average, 8.97⇥ speedup and 8.7⇥ increase
in energy efficiency on benchmark CNN models com-
pared to the baseline.
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II. BACKGROUND

A. 2D Convolution Basics
2D convolution (Conv2D) is the key kernel in convolution

neural networks (CNN). It accounts for 93.8% of execution
time in ResNet18 and 92.4% in VGG11. A Conv2D com-
putation is shown in Figure 1. The convolution kernel slides
through all locations of the input array and carries out multiply
and accumulate (MAC) operations between the kernel and
input values. The parameters of a Conv2D kernel include the
input array size (Nx ⇥Ny), kernel size (kx ⇥ ky), number of
input channels (IC), and number of output channels (OC). In
CNN models such as ResNet and VGG 16, the input feature
map sizes vary from 224⇥224 to 7⇥7, and the input and output
channel numbers vary from 16 to 2048. The most popular
kernel sizes are 3⇥ 3 and 1⇥ 1.

Fig. 1. a) Conv2D Computation. b) Distributed Weight and Distributed Input
Modes for GPE-level Computations

B. Transmuter
Transmuter is a low-power programmable architecture that

is reconfigurable [12]. It consists of multiple tiles of in-
order general-purpose processing (GPE) units, distributed on-
chip cache memories, crossbars and a high-bandwidth DDR
interface, as is shown in Figure 2. Each GPE is a small
processor with floating-point (FP) and load/store (LS) units
and uses a standard Arm ISA. Each tile consists of several
GPEs and one local control processor (LCP) which is primarily
responsible for distributing work across the GPEs. The GPEs
can be configured to operate in parallel mode or systolic
array mode. The L1 and L2 data caches can be configured
in shared/private cache mode and hybrid cache-scratchpad
memory (SPM) mode, where half of the cache banks are
configured as shared cache and the other half operate as SPM.
Transmuter can reconfigure the on-chip memory type, resource
sharing, and dataflow at run-time with a latency of 10 cycles.

III. METHOD DESCRIPTION

A. Run-time Reconfiguration parameters
The optimal architecture configuration depends on the layer

parameter values. For example, for layers with an input size

Fig. 2. Transmuter Architecture Block Diagram

of 224⇥ 224⇥ 3 (the input size of ImageNet dataset), shared
cache mode with parallel dataflow is the optimal configuration
that has more than 5⇥ lower latency compared to systolic
dataflow with hybrid cache mode implementations. But when
it comes to intermediate layers with smaller input sizes and
larger input channel numbers, such as the last residual block in
ResNet18, the systolic dataflow with hybrid mode implementa-
tion can significantly accelerate the computation time by more
than 10⇥. Thus, by choosing the hardware configuration and
dataflow mapping, the implementation of all conv2D kernels
can be optimized. In this work, the following reconfigurable
options are considered:

Cache configuration: Use shared cache, private cache, and
hybrid cache (combination of cache and scratchpad memory)
for both L1 and L2. The shared cache mode increases the
effective cache size for L1/L2 hierarchy while the private
cache mode avoids multi-core cache access conflict. The
hybrid cache mode assigns half of the cache as scratchpad
memory (SPM), which is software-managed, and the other half
as shared cache. In cases where the frequently reused values
are known apriori, SPM increases the data access efficiency.

Dataflow: Parallel or register-to-register (R2R) systolic. In
parallel dataflow, each GPE works independently. It loads the
input and weight values, computes, and writes back the output
values. In R2R systolic dataflow, each GPE in a systolic array
computes a local partial sum and passes the partial sum to the
next GPE in the array via the R2R data path. The last GPE in
the array computes and writes back the final output value to
the main memory.

Tile-level mapping: Distribute the computation across mul-
tiple Transmuter tiles using either distributing weight mode or
distributing input mode. In the distributed weight mode, the
input array is shared across all tiles, the weights are distributed
to each tile and each tile is responsible for computing the
output channels that correspond to its assigned set of weights.
In the distributed input mode, the input array is partitioned by
rows and assigned to each tile. The weights are shared across
tiles and each tile is responsible for the outputs that correspond
to its assigned set of input rows. For 3⇥ 3 convolution kernel
size, when IC is small, distributed weight mode performs
better, and when IC becomes larger, distributed input mode
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has better performance.
GPE-level computations: Here the computations assigned

to a tile are distributed across multiple GPEs or multiple
groups of GPEs (where each group corresponds to a systolic
array) in a tile. The two modes are shown in Figure1 (b). In
the distributed weight mode, the weights assigned to the tile
are distributed to the GPEs in that tile; each GPE computes
the output channels that correspond to the assigned weights.
In the distributed input mode, each GPE in the tile computes
the output rows using shared weights and the input rows
assigned to it. The choice of the computation scheme is highly
dependent on the sizes of input and weight assigned to each
tile. When the size of the input is large, distributed input
mode performs better, and when the size of weight is large,
distributed weight mode has better performance.

B. Decision Tree Engine
CNN models have a large diversity in the sizes of the inputs

and weights – they differ from network to network and across
layers in a network. Typically, the initial layers tend to have
larger input sizes and the later layers tend to have larger weight
sizes. We found that the shape of the input and weight affects
the performance of different Transmuter configurations.

To determine the optimal Transmuter configuration at run
time, we derive a predictor that provides a mapping from
the input parameter space to the configuration space. Since
determining the Transmuter performance for every possible
combination of input size and weight size for all candidate
networks is not possible, we only consider a select subset of
the input parameter space where the input sizes are powers of
2, and the convolution kernel sizes are 3⇥ 3 and 1⇥ 1.

Fig. 3. Predicting Transmuter configuration parameters using a decision tree-
based predictor

We propose a predictor using the decision tree method
to derive the optimal mapping of Conv2D layers. Decision
tree based predictors are lightweight and have been shown
to have good prediction performance. A recent example is
SparseAdapt [13] which was used to predict the optimal
Transmuter configuration for sparse matrix-matrix and matrix-
vector multiplication. We evaluated predictors built with one
multi-output decision tree and multiple single-output decision
trees and found that multiple single-output decision trees
for each configuration parameter lead to better performance.
Figure 3 shows part of the decision tree model that takes the
parameters of Conv2D layers as input and generates the op-
timal configuration parameters (cache configuration, dataflow,

tile-level mapping and GPE-level computation). The model is
executed on the host machine before the CNN computation
starts.

IV. EVALUATION AND PERFORMANCE

A. Platform configuration
In this work, we use a Transmuter architecture with 4 tiles,

each consisting of one LCP and 16 GPEs. The LCP and GPEs
operate at 1.0 GHz. The L1 cache consists of 16 4-kB cache
banks and the L2 cache consists of 4 4-kB cache banks. The
simulations are carried out using gem5 simulator [14] and the
simulation results include execution time and floating-point
operation numbers, etc.

The power consumption is computed as the sum of static
power and dynamic power of all Transmuter components. The
power consumed by the processing unit is modeled using
the Arm Cortex M4F core specification. The static power
and transaction energy per access of the reconfigurable cache
banks are modeled using CACTI 7.0 [15]. The power param-
eters are optimized by comparing to the power measurements
of a taped-out 4x8 Transmuter system in 28nm [16] and scaled
to 14nm node.

B. Decision Tree Engine Validation
To develop the decision tree engine, we first collected a

dataset of conv2D layers parameters and their corresponding
Transmuter configuration that achieved the lowest latency and
highest energy efficiency. Each sample is an array that consists
of input feature map size I, kernel size F, number of input
channels IC, and number of output channels OC. The optimal
configuration is represented by a 4-dimensional array with the
following encodings: For cache configuration, shared L1 cache
is 0 and hybrid L1 cache is 1; for dataflow, the parallel mode is
0 and R2R systolic mode is 1; for both tile-level mapping and
GPE-level computation, distributed input is 0 and distributed
weight is 1. We represented kernel sizes of 3 ⇥ 3 and 1 ⇥ 1
by F = 3 and F = 1, respectively. We used the power of 2
numbers for IC, OC, and I, namely, 8 to 256 for IC, 16 to 512
for OC, and I = 8 to I = 128 to represent input feature maps
of sizes 8⇥ 8 to 128⇥ 128, respectively. The total number of
samples is 230.

We used the Scikit-Learn python library [17] to train the
four decision trees. We evaluated the performance of decision
tree models with different depths and found that the prediction
accuracy increases as the depth increases. Since the accuracy
performance does not improve for depth larger than 11, we
fixed the depth to be 11.

To validate the robustness of the model, we randomly split
the dataset into a training set (200 samples) and a testing set
(30 samples) in each evaluation. We consider the model to be
correct when the predicted configuration matches the optimal
configuration completely. The reported accuracy is the average
accuracy from 100 evaluations.

The proposed predictor achieves 83.26% prediction accu-
racy. Figure 4 lists the samples where the predicted and
optimal configurations do not match. We see that the energy
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efficiency due to incorrect predictions is not too different from
that of the optimal configuration. The difference varies from
1.2%-7.1% with an average of 5.2%.

Fig. 4. Incorrectly predicted samples only have a small difference in
GFLOPS/W, with average difference of 5.2%

C. Network Evaluation
Next we evaluate the benefit of decision engine-aided run-

time reconfiguration on several commonly used CNN bench-
marks, namely AlexNet [18], VGG11 [19], MobileNetV3 [20]
and ResNet18 [21]. We use energy efficiency (GFLOPS/W)
and latency as the evaluation metrics. The baseline Transmuter
configuration is a shared cache-based parallel architecture with
the GPEs computing using distributed weights and shared
inputs; it does not support runtime reconfiguration. Table I
lists the speedup, energy, and energy efficiency (GFLOPS/W)
obtained by using run-time reconfiguration compared to the
baseline for the four CNN models.

TABLE I
NETWORK EVALUATION RESULTS

Model Speed Up Energy# Energy
Efficiency"

AlexNet 9.26⇥ 9.26⇥ 8.95⇥
VGG11 13.60⇥ 12.00⇥ 13.71⇥

MobileNetV3 3.32⇥ 3.25⇥ 3.12⇥
ResNet18 9.72⇥ 9.06⇥ 9.06⇥

AlexNet is a CNN model that uses 5 conv2D layers with I
varying from 13 to 224, IC varying from 3 to 384, and OC
varying from 64 to 384. The second layer with I = 56, IC =
64, F = 5, OC = 192 is the most time-consuming layer and
accounts for 58.62% of the overall execution time. The hybrid
mode with R2R systolic dataflow decreases the execution time
of this layer from 2.28 s to 0.28 s. Layer-level reconfiguration
speeds up the execution by 9.26⇥ and increases the energy
efficiency by 8.95⇥.

VGG models proposed for the CIFAR-10 data set have an
input image size of 32 ⇥ 32 ⇥ 3. The intermediate layers
(4 to 6) have large channel numbers, ranging from 64 to
512, which negatively affect the L1 cache performance of the
baseline configuration. The predicted configuration uses hybrid
cache mode with R2R systolic dataflow; the GPEs in the array
compute using distributed weights and shared inputs. Overall,
layer-level reconfiguration helps achieve 13.60⇥ speedup and
13.71⇥ increase in energy efficiency.

MobileNetV3 models simplify the Conv2D computation
using separable 2D convolution, where a convolution layer

is replaced with a depth-wise convolution and a point-wise
(1⇥ 1) convolution. The baseline configuration spends 66 ms
on point-wise conv2D layers, which is 90.6% of the overall
execution time. In comparison, the predicted configuration
uses hybrid cache mode with parallel or R2R systolic dataflow
(depending on the layer) and decreases the execution time to
16 ms. With run-time reconfiguration, MobileNetV3 achieves
3.32⇥ speedup and increases energy efficiency by 3.12⇥.

ResNet18 is an 18-layer CNN that uses residual bypass to
prevent the gradient from vanishing. The predicted configu-
ration implements the 3 ⇥ 3 Conv2D layers using the shared
cache with parallel dataflow in the first layer and hybrid mode
with systolic dataflow for all other layers. For 1⇥ 1 Conv2D,
hybrid mode with parallel dataflow is used. Overall, run-time
reconfiguration speeds up ResNet18 by 9.72⇥ and increases
the energy efficiency by 9.06⇥.

Fig. 5. Percentage of time spent in each of the configurations

Figure 5 shows the percentage of time spent in each
Transmuter configuration. The results show that the four CNN
models use only 3 to 5 distinct configurations that differ in
cache configuration, dataflow, and data mapping. The most
popular configuration is the systolic array with hybrid cache
mode (1-1-x-x). It accounts for 90.52% for AlexNet, 79.46%
for VGG11, 32.19% and 58.05% for ResNet18.

V. CONCLUSION

This paper investigates using run-time reconfiguration to
improve the energy efficiency of CNN implementations on
a low-power reconfigurable architecture, Transmuter. CNN
models use conv2D layers of different sizes and the opti-
mal Transmuter implementation changes as the size changes.
To determine the optimal implementation for Transmuter
at runtime, we proposed a decision-tree-based configuration
predictor. Our evaluation shows that the predictor achieves
an average prediction accuracy of 83.26% and the predicted
configurations have little performance difference compared to
the optimal configuration. We evaluate the performance of the
predictor on 4 popular CNN models. Run-time reconfiguration
with configuration predictor helps achieve a speedup of 3.32⇥
to 13.60⇥ and energy efficiency increase of 3.12⇥ to 13.71⇥
compared to the baseline model.
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