
Squaring the circle: Executing Sparse Matrix Computations on
FlexTPU—a TPU-like processor

Xin He, Kuan-Yu Chen, Siying Feng, Hun-Seok Kim, David Blaauw, Ronald Dreslinski, Trevor Mudge
University of Michigan
Ann Arbor, MI, USA

ABSTRACT
Systolic arrays have been successful to accelerate dense linear al-
gebra for deep neural networks (DNNs), but cannot handle sparse
computations e!ciently. Though early attempts have been made
to perform sparse matrix operations on weight-pruned DNNs, han-
dling highly sparse matrices with skewed nonzero distribution
commonly seen in real-world graph analytics remains challenging.
In this paper, we propose FlexTPU framework to repurpose tensor
processing units (TPUs) to execute sparse matrix-vector operations
(SpMV). First, we propose a lightweight Z-shape mapping of sparse
matrices onto the systolic array to eliminate the processing of zeros
as much as possible, regardless of the sparsity and nonzero distribu-
tion. On top of the mapping, we devise an SpMV data"ow executed
by an array of PEs, which are a slightly modi#ed version of the
conventional TPU PE. Second, in contrast to the excess preprocess-
ing mandatory for prior attempts, the Z-shape mapping facilitates
on-the-"y matrix condensing from the widely-used compressed
sparse matrix (e.g. CSR) representation. This is accomplished by a
proposed sparse data loader that includes an on-chip row decoder
and parallel nonzero loaders. We evaluate FlexTPU on a broad set
of synthetic and real-world sparse matrices. The experimental re-
sult shows that FlexTPU achieves 3.55× speedup and 3.27× energy
saving over a state-of-the-art design, Sparse-TPU. It performs even
better on sparse matrices with power-law distributions. Compared
to state-of-the-art library implementations on a CPU and a GPU,
FlexTPU also achieves an average speedup of 2.4× and 4.3×, and
energy saving of 130.4× and 495.3×, respectively. FlexTPU is also
evaluated against a recent recon#gurable (chip multi-processor)
CMP machine, Transmuter. FlexTPU outperforms Transmuter by
achieving 5.12× speedup and 2.65× energy saving.

1 INTRODUCTION
The demise of Dennard’s scaling has prompted computer archi-
tects to turn to application-speci#c integrated circuits (ASICs), i.e.
hardware accelerators, to handle linear algebra, due to the surge
of interests in the #elds of machine learning, scienti#c comput-
ing, and genomics. Adopting ASICs bridges the gap between the
increasing computational demands and the stagnating transistor
budgets [7, 11, 29, 42]. Unfortunately, the application space for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro#t or commercial advantage and that copies bear this notice and the full citation
on the #rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci#c permission and/or a
fee. Request permissions from permissions@acm.org.
PACT ’22, October 10–12, 2022, Chicago, IL, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9868-8/22/10. . . $15.00
https://doi.org/10.1145/3559009.3569665

customized design targeting a speci#c computational domain is
limited. For data centers handling diverse workloads [5, 21, 24], the
gain through piling up accelerators will be eventually capped by
on-chip resources and hit the “accelerator wall” [8, 13]. In this paper,
we show that we can avoid this accelerator bloat by repurposing
existing dense matrix accelerators like TPU to execute SpMV.

Cloud computing has raised the interests in graph analytics, and
example algorithms such as Breadth-First Search, Single Source
Shortest Path, PageRank and Collaborative Filtering, can be exe-
cuted with sparse matrix-vector multiplication (SpMV) using sparse
matrix represented graphs as inputs [45]. Existing graph frame-
works (e.g. Ligra) employ compressed sparse data formats, which
only store the non-zero entries (NZs) to eliminate any redundant
operation involving zero elements [1, 53]. However, the irregular
data structure and indirect memory reference pattern make it di!-
cult to vectorize computations for sparse input, and it is made worse
if the input sparse data has a skewed distribution. This irregular
and high sparsity has become a main obstacle for acceleration on
conventional parallel machines, such as GPUs and dense matrix
accelerators like Google’s TPU.

This paper evaluates repurposing systolic array architectures to
execute SpMV e!ciently. Two-dimensional systolic arrays, such as
Google’s TPU, have been proposed for energy-e!cient execution
of DNNs using dense linear algebra [22, 48]. The advantage of the
systolic array is the pipelining of arithmetic operations and the
inputs/outputs forwarding as well as the low-overhead PE design.
Pipelining and the removal of external memory accesses improve
the frequency, while the simplicity of the PE design (mainly a MAC
unit with a few registers) lowers the power consumption.

Mapping and executing a sparse matrix on the systolic array is
a compute-latency bound problem. Naively breaking down a large
sparse matrix into tiles of computation tasks and mapping the
tasks to the systolic array will inevitably incurs low NZ occupancy,
i.e. most PEs are holding zeros which will not contribute to the
#nal results and cannot be bypassed because of the highly regular
streaming interconnect. During the execution, the bandwidth and
the PEs are not fully utilized, and large amount of PEs only executes
a small amount of nonzeros. Therefore, the sparse matrix operation
takes an excess number of iterations to complete. In Fig 1, we
illustrate the mapping of a 9 × 9 sparse matrix that has 18 non-zero
entries (NZs) onto a 3 × 3 TPU systolic array. The size of the input
matrix is selected to be larger than the array to re"ect the real-
world large-scale sparse workloads, which often requires multiple
iterations (!"#$) of processing. As shown in Fig 1(b), TPU directly
partitions the input matrix based on the shape of the systolic array,
and the execution takes nine iterations of processing due to low
NZs occupancy. In order to execute sparse operations e!ciently,

148

PACT ’22, October 10–12, 2022, Chicago, IL, USA He, et al.

(a) Sparse matrix

1 2 3 4

5

6 7 8 9

10

11 12 13

14 15 16

17 18

5

1 2 3 4 9

17 18

14 15 16

7 8 9

4 5 6

1 2 3

16 17 18

13 14 15

10 11 12

5

1 2 3 4

11

6 7

18

16

ITER0 ITER1 ITER2 ITER3 ITER8

ITER0 ITER1 ITER2 ITER3 ITER4

(b) TPU

(c) STPU (d) FlexTPU

ITER0 ITER1

......

11 12 13

10

6 7 8

15

ITER7

Figure 1: Mapping of (a) a sparse matrix of size 9 × 9 with 18 NZs to (b) TPU, (c) STPU and (d) conceptual Z-shape mapping by
FlexTPU, assuming a 3 × 3 array size. FlexTPU has the best resource utilization and thus the smallest number of iterations.

the key is an e!cient NZ mapping and a data"ow that reduce the
number of iterations of execution.

Recent attempts to accelerate sparse operations using systolic
arrays include Kung et al. [26] (referred to as KMZ) and Sparse-
TPU [18] (referred to as STPU). These works preprocess the input
sparse matrix and perform sparse column merging (more details
are described in Section 2). However, the major disadvantage of
column merging, which is essential to these prior methods is that
the NZs are only condensed in the horizontal direction, leaving PEs
still unoccupied when handling very sparse matrices and sparse
matrices with skewed NZ distribution. The mapping of STPU on
the exemplary matrix is also illustrated in Fig 1(c). STPU performs
extensive column merging before the execution, e.g. the columns of
iteration 0 are composed by the matrix column 0, 2, 4 and 6. STPU
improves on TPU and requires #ve instead of nine iterations to
process the matrix. However, as seen in !"#$1 and !"#$3, only the
top-left PE has a valid NZ because %&'0 and %&'3 of the matrix
are the longest rows. And because of the high sparsity, some rows
may have fewer NZs which cannot #ll a row of PEs in the systolic
array, as shown in !"#$0 and !"#$2. Power-law matrices/graphs
are commonly seen in real world where a small portion of ver-
tices/nodes occupy the most edges in the graph, resulting in an
imbalanced row/column length. For example, citation graphs have
a small portion of nodes that receive several orders of magnitude
more citations than the average nodes. Even with the column merg-
ing technique, long columns will delay and dominate the execution
time, since STPU can only condense the sparse matrix horizontally.

Another major disadvantage of the column merging is its ex-
cessive preprocessing time, because merging sparse columns to
minimize the zero-entries is a typical packing problem which has
been proved to be NP-complete. For matrices consisting of millions
of nodes, iterating and merging numerous columns can only be
performed o$ine, making STPU less appealing to large or non-
constant sparse matrices (e.g. temporal graphs [39, 50]).

The column merging technique is restricted to map one matrix
row onto a row of PEs. To overcome this disadvantage, a straightfor-
ward mapping to fully occupy the PE array is to store consecutive
NZs from di%erent (short) matrix rows to the PEs in one row. This
mapping method demonstrates the potential to handle a sparse
matrix with even fewer number of iterations compared with TPU
and STPU, regardless of the input size, density, and NZ distribution.
To achieve this, three essential questions need to be addressed in

order to execute SpMV with this mapping. First, how are index
matching, mathematical operations and data forwarding performed
in a systolic manner. Second, how to develop the data"ow without
changing the pipelined and locally connected nature of a systolic
array while keeping the PE design simple. Last but not least, how to
construct the condensed format from the conventional compressed
sparse matrix representations during execution.

In this paper, we propose FlexTPU, an e!cient and "exible frame-
work built around the idea of mapping NZs of a sparse matrix
consecutively on a systolic array (i.e. Z-shape mapping). The core
of FlexTPU is an SpMV data"ow utilizing the proposed mapping.
In FlexTPU, PE operations are input-driven and the PEs perform
index matching, data registering, and data forwarding accordingly.
FlexTPU also proposes a system loader design to realize the end-to-
end execution of SpMV, which includes a global matrix row decoder
and parallel local NZ loaders. The system loader converts inputs in
widely-used conventional compress data representations (i.e. CSR)
to the proposed mapping, eliminating the need for preprocessing
and greatly improving the applicability of FlexTPU.

Speci#cally, this work makes the following contributions:

(1) We propose an e!cient Z-shape mapping that maps the NZs
of an input matrix compactly onto a systolic array.

(2) We present necessary changes to repurpose TPU PEs to
perform SpMV with the condensed matrix on the array.

(3) We describe a sparse input loader featuring a row decoder
and parallel NZ loaders which converts the compressed
sparse matrix to the condensed form.

(4) We evaluate FlexTPU and show that FlexTPU improves the
performance and energy consumption of STPU by 3.55× and
3.27× across a suite of real-world matrices. FlexTPU also
exhibits 5.12× speedup and 2.65× energy improvement over
Transmuter, a recon#gurable CMP machine targeting both
dense and sparse matrices.

2 BACKGROUND AND MOTIVATION
This section describes the data"ow of dense matrix vector multipli-
cation (DMV) on the systolic array architecture, and illustrates the
limitation of the same data"ow for SpMV. A few recent solutions
are also discussed to motivate our work.

149

Squaring the circle: Executing Sparse Matrix Computations on FlexTPU—a TPU-like processor PACT ’22, October 10–12, 2022, Chicago, IL, USA

2.1 DMV and SpMV on systolic arrays
Systolic array consists of a 2-dimensional locally-connected PE
array of multiply-and-accumulate (MAC) units and the registers
feeding it. To compute DMV, i.e. Wx = y, where W is the input
matrix, x is the input vector, and y is the output vector, the input
matrix W needs to be loaded into the PE array such that each
PE holds a matrix element. The mathematical computation starts
when the input vector x is streamed into the PE array from the top
edge. Each PE multiplies the incoming vector entry with the locally-
stored matrix element, accumulates the result with the partial sum
from the left neighbor, and passes the new partial sum to the right
neighbor. The output value that comes out of the right-most PE
corresponds to an element of the intermediate output vector. If the
matrix dimension is greater than the PE array dimension,W will
be partitioned. While the existing data"ow can be applied directly
to sparse matrix computation, it comes at a cost of poor hardware
utilization.When systolic array performs SpMV, anyMAC unit with
a zero-valued entry remains idle throughout the entire computation
and does not contribute to the #nal result. Since the majority of the
values in a sparse matrix are zeros, mapping a sparse matrix onto a
systolic array incurs signi#cant waste of computing resources and
memory bandwidth.

2.2 Accommodating SpMV on systolic arrays
A common approach targeting the resource under-utilization of
systolic arrays when dealing with sparse linear algebra is to convert
the matrix from a sparse storage format into a condensed format
before mapping to the systolic array. One of the earliest works that
adopt such techniques is done by Tarjan and Yao [46]. Tarjan and
Yao proposed a row-interleaved compressed format which merges
the NZ elements of di%erent rows of a sparse matrix into a single
sparse vector by assigning each row a di%erent o%set. However,
using this format will lead to datapath con"ict in the systolic array.

Recent work attribute the ine!ciency of performing sparse op-
erations in the systolic array to the excess amount of zeros mapped
onto the array. Targeting convolutional neural networks, Kung et
al. (KMZ) proposed extensive o$ine column merging of the sparse
#lter matrices to condense the matrix [26]. This work is specialized
for DNNs, which targets a relatively modest density range (∼ 20%)
and leverages the error-tolerance nature of DNNs to tolerate possi-
ble NZ collisions. In their design, KMZ employs bit-serial buses to
limit the negative impact on the power/area of the parallel buses
which deliver multiple integer inputs to a column of PEs. Hence
KMZ only supports integer arithmetic, and cannot cater to applica-
tions such as scienti#c computing, which requires computations
with high numeric precision.

Inspired by KMZ, STPU eliminates the parallel buses by stream-
ing the inputs sequentially. STPU improves the scalability when
handling sparse matrices with a wider density range without com-
promising accuracy. The proposed key techniques are merging
columns at partition-wise and with limited collisions, i.e. columns
that have NZs with the same index will collide during condens-
ing [18]. The former technique reduces the possibility that two
sparse columns have NZs with the same row index (i.e. collisions),
whereas the latter makes it possible to merge columns that only

have a limited number of collisions. Both techniques e%ectively
increase the density of the compressed matrix.

Though the above mentioned works e%ectively reduce the total
number of zeros mapped to the systolic array, they still face certain
limitations. First, they are not able to convert the sparse matrix
into a completely dense representation, i.e. there always exist PEs
that store zero elements. Second, the irregular nonzero distribution
in real-world matrices can signi#cantly a%ect the e%ectiveness of
the merging algorithms, due to the existence of extremely dense
rows/columns. Most importantly, the matrix compression tends
to induce a non-negligible preprocessing overhead. Though most
works claim that such overhead can be amortized by repeatedly
using the same matrix for computation, the preprocessing cost is
still signi#cant compared to the potential performance gains.

In this work, we highlight an e!cient Z-shape mapping of a
sparse matrix to systolic arrays without excessive preprocessing,
which enables the e!cient execution of SpMV on systolic arrays.

3 EXECUTING SPMV ON FLEXTPU
In this section, we #rst present the Z-shape mapping of a sparse
matrix and the corresponding data"ow for SpMV. Then we detail
the necessary modi#cations to TPU PEs which enable this data"ow,
without a%ecting the ability to handle dense matrix multiplication.

3.1 The proposed Z-shape Mapping
In contrast with STPU, FlexTPU proposes a Z-shape mapping by
arranging the NZs consecutively in a row-major order onto the sys-
tolic array. Speci#cally, the NZs are stored continuously from the
top-left PE to the bottom-right PE, forming a Z-shape pattern. We
name it “Z-shape” because when the mapping of a NZ in a matrix
row reaches beyond the right edge of the systolic array, the NZ will
wrap around to the leftmost PEs of the next row of the systolic array.
Figure 1(d) shows FlexTPU maps the NZs onto the systolic array
without incurring any unoccupied PEs, which only requires two it-
erations of processing. Note that here we make the assumption that
the number of iterations to execute SpMV is the dominant factor
in the execution time of SpMV, because TPU, STPU, and FlexTPU
exhibit a large di%erence in (!"#$, overwhelming the di%erence
in single iteration processing time. Also, the Z-shape mapping in
Figure 1 is conceptual and does not show the housekeeping PEs for
simplicity.

The detailed Z-shapemapping describes how the row/column
ids and values of matrix NZs are stored in the systolic array. To fully
de#ne a NZ, a PE can be designed to hold %&'_)* , +&,_)* and -.,
of the NZ as a tuple inside three registers. But the PEs holding the
NZs from the same matrix row will store identical %&'_)* , wasting
register storage. To eliminate the wasted register storage, the PEs
utilizing the Z-shape mapping is designed to employ only two
registers (/!%& and/'()), and/!%& can be interpreted as +&,_)* or
%&'_)* , depending on the content of/'() . The PE that stores the
+&,_)* and -., of NZs is referred to as a NORMAL PE, whereas the
PE that stores the %&'_)* is referred to as a SEPARATOR PE. When
the matrix NZs are loaded, the PE would be a SEPARATOR when
/'() is 0, otherwise it is a NORMAL PE.

Figure 2 shows the detailed mapping, with the SEPARATOR PEs
added, of the #rst iteration of SpMVwith the example sparse matrix

150

PACT ’22, October 10–12, 2022, Chicago, IL, USA He, et al.

(0,1.0) (4, 2.0) (6, 3.0) (7, 4.0)
(0, 0.0)

(2, 5.0) (1, 0.0) (0, 6.0) (1, 7.0)
(3, 0.0)

(6, 8.0) (7, 9.0) (3, 0.0) (4, 10.0)
(4, 0.0)

(0, 11.0) (6, 12.0) (8, 13.0) (N/A,N/A)
(5, 0.0)

PE(0, 0)

PE(1, 0)

PE(2, 0)

PE(3, 0)

PE(0, 1)

PE(1, 1)

PE(2, 1)

PE(3, 1)

PE(0, 2)

PE(1, 2)

PE(2, 2)

PE(3, 2)

PE(0, 3)

PE(1, 3)

PE(2, 3)

PE(3, 3)

(row, 0.0)(col, val) (col, val)
(row, 0.0)

(N/A,N/A)
(row, 0.0)

NORMAL SEPARATOR EDGE NORMAL EDGE SEPARATOR

PE
Category:

(2, 5.0) (1, 0.0) (0, 6.0) (1, 7.0)
(3, 0.0)

(2, 5.0) (1, 0.0) (0, 6.0) (1, 1.4)
(3, 0.0)

(2, 5.0) (1, 1.5) (0, 6.0) (1, 1.4)
(3, 0.6)

(2, 5.0) (1, 1.5) (0, 6.0) (1, N/A)
(3, 2.0)

V(0, 0.1) V(4, 0.5) V(6, 0.7) V(7, 0.8)

V(2, 0.3) V(-1, 0.0) V(0, 0.1) V(1, 0.2)

V(6, 0.7) V(7, 0.8) V(-1, 0.0) V(4, 0.5)

0.1*6.0 0.2*7.00.3*5.0

0.0+0.3*5.0 0.0+0.1*6.0

C
yc

le
1

C
yc

le
2

C
yc

le
3

C
yc

le
4

(2, 5.0) (1, 1.5) (0, 6.0) (1, N/A)
(3, 2.0)

C
yc

le
0

(2, 5.0) (1, 1.5) (0, 6.0) (1, N/A)
(3, 2.0)

(2, 5.0) (1, 0.0) (0, 6.0) (1, N/A)
(3, 2.0)

(2, 5.0) (1, 0.0) (0, 6.0) (1, N/A)
(3, 2.0)

(2, 5.0) (1, 0.0) (0, 6.0) (1, N/A)
(3, 0.0)

C
yc

le
1

C
yc

le
2

C
yc

le
3

C
yc

le
4

dumping_s
psum(1, 1.5)

dumping_s

dumping_s

dumping_s

psum(1, 1.5)

psum(1, 1.5)

psum(3, 2.0)

(a) Detailed mapping (b) Computing phase (c) Dumping phase

V(0, 0.1) V(6, 0.7) V(8, 0.9) V(-1, 0.0)

0.6+1.4

Figure 2: (a) Detailed mapping of the sparse matrix in Figure 1(a) to FlexTPU using a 4 × 4 systolic array. A NORMAL PE stores
the column index and value of an NZ. A SEPARATOR PE stores the row index of the NZ of its left neighbor. The PE at the right
edge of the systolic array is referred to as an EDGE PE. It stores an additional copy of the row index of its NZ if it is a NORMAL
PE. (b) and (c) show SpMV data!ow of PE(1,0) to PE(1,3) in computing phase and dumping phase, respectively. In computing
phase, a NORMAL PE does multiplication upon an index matching and sends the results to its right neighbor. A SEPARATOR
(EDGE) PE does accumulation when it receives a value from its left neighbor. In dumping phase, SEPARATOR/EDGE PEs send
results to their right neighbor but prioritize propagating results from its left neighbor.

mapped on a 4×4 systolic array. The NORMAL PEs holds the +&,_)*
and -., of consecutive NZs of the sparse matrix (e.g. the #rst row
of PE), separated by the SEPARATOR PEs to indicate the ending
of rows in the Z-shape mapping. The SEPARATOR PE also holds
the 0_123 for accumulating the partial results (e.g. PE (1, 1) with
(%&'_)* : 1, 0_123 : 0.0)). We also introduce a variant type of PE for
the right edge, an EDGE PE, which contains two additional registers,
compared to the rest of PEs in the array. The two additional registers
keep track of the %&'_)* , otherwise FlexTPU will not know which
matrix row the NZs stored in PEs left of it belong to, e.g. in the #rst
row of PEs, PE(0, 3) also holds the %&'_)* in addition to the +&,_)*
and -., . And we refer to this mode or con#guration of the EDGE
PE as EDGE NORMAL PE. On the other hand, it is also possible
that the last NZ of a matrix row is mapped to the second last PE in
an array row, in this case the EDGE PE will only record the %&'_)*
(e.g. PE(3,3)), indicated as the EDGE SEPARATOR PE. In summary,
there are two types of PEs STANDARD (not named) and EDGE,
each with two modes NORMAL and SEPARATOR.

3.2 SpMV data!ow in a systolic array
This section focuses on the data"ow inside the systolic array. The
input/output interface will be presented in the next section. In con-
trast to the TPU where PEs in the same row performmultiplications
and accumulations to generate a single output, FlexTPU can deal
with condensed formats and can produce multiple outputs from
a single row when NZs from multiple matrix rows are mapped to
the same row of PEs. FlexTPU operation consists of two phases: 1)
in the computing phase PEs perform input matching, conditional
nonzero multiplications in the NORMAL PEs, and accumulations
of the partial results in the SEPARATOR PEs; and 2) in the dumping
phase the SEPARATOR PEs forward the results rightward.

Computing phase starts with the input vector elements from
the input FIFO streaming down the systolic array. The elements
propagate downward one PE per cycle. NORMAL PEs compare

the index (4_)*5) of the incoming vector element (4_)*5,4_-.,)
against its stored +&,_)* . When a match occurs, the PE performs
multiplication between 4_-., and its stored -., and passes the
partial result (6_123) to its right neighboring PE. And the 6_123
will be forwarded rightward by other NORMAL PEs and #nally
get accumulated in the SEPARATOR PE. The computing phase is
illustrated in Figure 2(b). Taking the second array row in Figure 2(a)
as an example, at cycle 2, PE(1, 0), PE(1, 2), and PE(1, 3) receive
matching input elements and perform multiplications, and PE(1, 0)
and PE(1, 2) pass the products to their rightward neighbors. At cycle
3, PE(1, 1) and PE(1, 3) accumulate and store the incoming products
in their 0_123 registers. At cycle 4, PE(1, 3) accumulates the last
partial result. Finally, the partial results are stored in SEPARATOR
PE(1, 1) and EDGE PE(1, 3).

Dumping phase is invoked by a *230)78_1 signal to inform
the SEPARATOR PEs and EDGE PEs to stream out their stored
results. The *230)78_1 signal is propagated like a diagonal wave-
front to guarantee the results come out of the systolic array in the
correct order. Starting from the top left PE, the *230)78_1 signal
is propagated horizontally through PEs in the top row, at the same
time the signal is passed down to lower PEs one step per cycle.

When SEPARATOR PEs and EDGE PEs receive the *230)78_1
signal, they send the stored 0_123 along with %&'_)*5 rightward.
When a PE needs to pass an incoming 0_123 and its own 0_123 at
the same time, the PE is designed to prioritize passing the neighbor’s
0_123 #rst to keep the sparse outputs in ascending index order.
Figure 2(c) shows the dumping phase of the second systolic array
row. In cycle 1, PE(1, 1) receives the *230)78_1 signal and sends
its %&'_)* and 0_123 tuple (%&'_)* : 1, 0_123 : 1.5) rightward. In
cycle 2, PE(1, 2) passes the tuple rightward. In cycle 3, the EDGE
PE(1, 3) receives the *230)78_1 signal and prioritizes outputting its
neighbor’s 0_123 (%&'_)* : 1, -., : 1.5). Finally, in cycle 4 EDGE
PE(1, 3) outputs its own tuple (%&'_)* : 3, 0_123 : 2.0).

Single iteration latency. The data"ow completes when all
results are collected from the right edge. The *230)78_1 signal

151

Squaring the circle: Executing Sparse Matrix Computations on FlexTPU—a TPU-like processor PACT ’22, October 10–12, 2022, Chicago, IL, USA

is streamed right after the last vector element from the top-left
edge, and the last PE to receive the signal is the bottom right PE.
Also, the maximum number of results that reside in a row of PEs is
191:&,)+_,;7/2. Hence the upper bound of single iteration latency
is 3×191:&,)+_,;7 +191:&,)+_,;7/2 cycles (448 cycles for a 128×128

systolic array). Since the latency of STPU is 384 cycles per-iteration,
FlexTPU has a 16.7% longer latency per-iteration. However, this
small overhead is easily o%set by the great performance bene#ts
that result from the reduced number of iterations.

3.3 Detailed PE design
Most of FlexTPU’s circuitry goes into the array of PEs, and the
PE micro-architecture is illustrated in Figure 3. Low-cost PE-to-PE
local connections are employed for data passing. The vertical con-
nection transmits the tuple of a vector input (4_)*5,4_-.,) and
a 3-bit control signal from top to bottom, whereas one horizontal
connection carries the <!*(%&'_)* , 0_123) rightward while a sec-
ond horizontal one loads the NZs (tuples of/!%&_!* and/'()_!*)
from the right edge.

Separate multipliers and adders are used for multiplications and
additions in PEs instead of the multiply-and-accumulation (MAC)
unit used in the TPU PE. This is because in a single cycle, a PE
only performs either a multiplication or an accumulation. Although
this separation increases area overhead slightly, it o%ers a faster
maximum operational frequency and lower power consumption. It
is worth noting that using the decoupled but pipelined multipliers
and adders has negligible impact (one extra cycle overall) on the per-
formance of FlexTPU when executing dense matrix computations
like GEMM.

PE control for the sparse and the dense mode. Each PE has
a state machine which provides four states to control the actions:
IDLE, SPARSE-COMPUTE, SPARSE-DUMPING and DENSE. PEs in
the IDLE state only transmits the partial sum and the matrix NZs.
PE in the IDLE state will transition to the SPARSE-COMPUTE or
the DENSE state depending on the control signal it receives. When
switching from the IDLE state to the SPARSE-COMPUTE state, the
PE checks the received data tuple in the registers to determine the
PE mode (NORMAL or SEPARATOR), and operates accordingly.
Upon receiving a *230)78_1 signal, NORMAL PEs will transition
to IDLE state while others will transition to the SPARSE-DUMPING
state. PEs in the SPARSE-DUMPING state will pass the stored 0_123
rightward, and once the PEs #nish passing their partial sum, they
will transition back to the IDLE state. PEs in DENSE state perform
dense matrix multiplication in TPU fashion.

Double bu"ering. To overlap data loading and execution, after
the fashion of the TPU and the STPU, FlexTPU employs double
bu%ering of the matrix NZs inside each PE. Hence, the storage of
each PE includes two sets of registers to store NZs, a 2-bit regis-
ter indicating the validity of each set and an one bit register that
indicates which set is being used.

4 SYSTEM ARCHITECTURE
In this section, we demonstrate how FlexTPU functions at system
level, i.e. how sparse matrices in CSR format can be easily input
and output to and from the PE array, which di%erentiates this work

from earlier works that require extensive o$ine matrix column
merging. An overview of FlexTPU is shown in Figure 4(a).

For matrix elements, the system controller instructs the global
matrix row pointer decoder and local NZ loaders (e.g. 128 in this
paper) to read the NZs directly from a CSR-format sparse matrix.
Whereas for the vector inputs, the local NZ loaders also request the
multi-bank vector bu%er to load the vector elements to the vector
FIFOs which are attached to every column of PEs. Due to the #nite
size of the vector bu%er which can only store a limited number
of inputs, a common practice to deal with very large matrices is
partitioning [2, 12, 32, 40, 52]. In this work, FlexTPU repeatedly
processes each column partition so that the vector inputs used by
each partition can #t into the on-chip bu%er.

4.1 System-level overview of FlexTPU
To start data loading (see Figure 4(a)), the controller signals the
row decoder and matrix NZ loaders to load NZs into the systolic
array and vector FIFOs until the two blocks/iterations of the sparse
matrix are loaded. Once one block/iteration of the systolic array
and vector FIFOs are loaded, the system controller starts the SpMV
computation by instructing the FIFOs to stream in the input ele-
ments. The controller waits for the ,&.*_*&7; signal indicating that
the FIFOs have #nished loading data into the systolic array. After
receiving the ,&.*_*&7; signal from the vector FIFOs, the controller
sends the *230)78_1 signal to inform the SEPARATOR PEs and
EDGE PEs to stream out the results.

4.2 Loading a CSR matrix into the systolic array
Matrix row decoder: The matrix row decoder (Figure4(b)) is re-
sponsible for specifying the starting address and the number of
NZs for the NZ loader by parsing the row pointer array ()7*0:%) of
the CSR matrix. In the decoder, a row pointer bu%er keeps sending
memory load requests to fetch the next memory block in the row
pointer array as long as there is an empty slot in the bu%er. The
row decoder works on memory blocks of the row pointer array,
and when it #nishes using the current block, it will hold the last
row pointer and request a new block from the row pointer bu%er.

The row decoder monitors the number of PEs (+2%6#1) that have
been occupied in the current systolic array row. It can process up to
(row pointer values in each cycle, starting from the row indicated
by the 6"$ register, and calculates the total numbers of PEs needed
to accommodate each of the (rows. Speci#cally, for the)th row,
we need to consider all of the #rst) rows in the (rows. The total
number of PEs needed are the sum of the number of NZs (NNZ) in
row 0 to row) − 1 plus the number of non-empty rows to account
for the SEPARATOR PEs.

There are three possible conditions when processing the (rows.
1) If all (rows can #t into the current systolic row of PEs, i.e.
+2%6#1 +

∑
+−1
0

((=* + #%&'1+ < 191:&,)+_,;7, the row decoder
will push the row indices and the NNZs of the N rows to the cor-
responding row NZ loader, increment PTR by (, and accumulate
+2%6#1 by the number of PEs occupied. 2) If) out of N rows #t
and saturate the current row of PEs, i.e. +2%6#1 +

∑
!−1
0

((=* +
#%&'1! == 191:&,)+_,;7, the row decoder will push the row in-
dices and the NNZs of the #rst) rows to the NZ loader, move
6"$ to row () + 1), and reset +2%6#1 . 3) If row) partially #ts

152

PACT ’22, October 10–12, 2022, Chicago, IL, USA He, et al.

Widx

Wval

=

Widx

Wval

Ain

XVal XIdx

A
v
a
li
d

A
o

u
t

Avalid

Xval Xidx

NORM Comp

Widx_in

Wval_in

Widx

Wval

=

Widx

Wval

Ain

XVal XIdx

A
v
a
li
d

A
o

u
t

Avalid

Xval Xidx

NORMComp

Widx_in

Wval_in

Widx

Wval

=

Widx

Wval

Ain

XVal XIdx

A
v
a
li
d

A
o

u
t

Avalid

Xval Xidx

SEPR Comp

Widx_in

Wval_in

Widx

Wval

=

Widx

Wval

Ain

XVal XIdx

A
v
a
li
d

A
o

u
t

Avalid

Xval Xidx

SEPR Dump

Widx_in

Wval_in

Widx

Wval

=

Widx

Wval

Ain

XVal XIdx

A
v
a
li
d

A
o

u
t

Avalid

Xval Xidx

NORMDense

Widx_in

Wval_in

a) NORM PE - Multiplication b) NORM PE - Bypassing c) SEPARATOR PE - Accumulation d) SEPARATOR PE - Dumping e) Dense mode (TPU dataflow)

1-bit Low Signal 1-bit High Signal Data Signal Don't Care Signal Multiply Unit RegistersAccumulate Units = Compare Units

M
a

tc
h

e
d

M
a

tc
h

e
d

M
a

tc
h

e
d

M
a

tc
h

e
d

M
a

tc
h

e
d

Figure 3: Microarchitecture of a PE and its data!ow in di"erent phases. (a) NORMAL PE doing multiplication upon index
matching in computing phase. (b) NORMAL PE bypassing values upon index mismatching in computing phase. (c) SEPARATOR
PE doing accumulation in computing phase. (d) SEPARATOR PE propagating results in dumping phase. (e) Similar to TPU
data!ow, PE computing in dense mode is retained in FlexTPU and the added logic can be clock-gated.

(a) System Design (c) Row Nonzero Loader(b) Row Decoder

Systolic
Array

Figure 4: Design of (a) FlexTPU system, (b) the matrix row decoder and (c) the matrix NZ loader. The matrix row decoder and
the matrix NZ loaders read the input sparse matrix stored in CSR format o"-chip and form the packets on the !y to feed the
systolic array. The needed vector elements are loaded into the vector bu"er beforehand. The matrix NZ loaders populate the
vector FIFOs using the column indices of matrix NZs. The vector FIFOs stream the vector elements downward. The calculated
results are sent rightward to the result merger, which merges the partial sums and writes back to the main memory.

in the current row of PEs and over"ows to next row of PEs, i.e.
+2%6#1 +

∑
!−2
0

((=* + #%&'1!−1 < 191:&,)+_,;7 and +2%6#1 +
∑
!−1
0

((=* + #%&'1! > 191:&,)+_,;7, the row decoder will push
the row indices and NNZs of row 0 to row)−1 to the NZ loader and
reset +2%6#1 . The row decoder will also move 6"$ to matrix row
) − 1 and update the row pointer of row) − 1 to o%set the number
of NZs used in the current systolic row. In 1), the NZ decoder keeps
working for the same NZ loader in the next cycle, whereas in 2)
and 3) the NZ decoder starts working for the next NZ loader.

Finally, whenever the row decoder progresses to next systolic
row, the updated row pointer index will also be sent to the corre-
sponding NZ loader to form a start address for index/value array.

Matrix NZ loader: A matrix NZ loader is employed for every
systolic row and is responsible for populating the PEs in that row
and fetching the vector inputs from on-chip bu%er. The detailed
structure of a matrix NZ loader is shown in Figure 4(c). The NZ
loader keeps the row indices and the SEPARATOR information from
the matrix decoder in a FIFO, and also uses the address provided
by the matrix row decoder to read continuous memory blocks of
column indices and values to the index/value bu%er. To decide if the
next output is for a SEPARATOR or NORMAL PE, the NZ loader
also tracks the total number of NZs (>(" in the Figure4(c)) that
have been sent to the PE array in the current matrix row. When
>(" is equal to the NNZ of the current matrix row, this means

all NZs of the current matrix row has been sent and the matrix
loader can output the %&'_)*5 and 0_123 for the SEPARATOR PE,
reset the >(" , and pop the FIFO; otherwise the matrix loader will
output the +&,_)*5 and -., from the index/value bu%er pointed by
the 6"$ register, and increment >(" and 6"$ by one.

To make sure the PEs get the correct NZ, the matrix NZ loader
use a counter based method to pass data. The destination counter
value in the NZ loader is initialized to be 191:&,)+_,;7 − 1. Each
time the loader sends a matrix tuple, the counter is decremented by
one. Along with the matrix tuple, the loader also passes the counter
value to the right edge of the systolic array. The PEs will check the
counter value when it receives a valid matrix tuple. If the counter
value is greater than 0, the PE decrements the counter value and
passes the counter value and the matrix tuple to the left neighbor;
otherwise, the PE stores the data.

Loading vector FIFOs: To prepare the vector inputs, each time
a matrix NZ loader sends a NZ tuple (+&,_)*5, -.,) to the PE array, it
also uses +&,_)*5 to request the multi-bank vector bu%er to send the
vector element into the target vector FIFOs starting from leftmost
one. The column coordinate of the destination PE is also sent along
with the request to #ll the corresponding FIFO. Speci#cally, the
vector bu%er is designed to be multi-banked to provides enough
bandwidth that match the number of requests received per cycle,
which can be as many as the dimension of the systolic array.

153

Squaring the circle: Executing Sparse Matrix Computations on FlexTPU—a TPU-like processor PACT ’22, October 10–12, 2022, Chicago, IL, USA

4.3 Merging and outputting the results
As shown in Figure 4, the output interface includes the row-wise
output bu%ers and a global result merger. The calculated results
will be #rst sent to the corresponding row-wise output bu%er, and
then gathered in the global result merger which writes the #nal
results to the main memory.

The size of each output bu%er is half the width of the array,
matching the maximum number of rows that can be #t in a row
of PEs. When an output bu%er receives the propagated *230)78_1
signal, it also receives and stores a continuous stream of valid
results due to the systolic nature. When an output bu%er receives
a 0&00)78 signal from its upper fully-drained bu%er, it pops the
stored results to the accumulator through a pipelined multiplexer
tree connected to all the output bu%ers. This 0&00)78 mechanism
starts from the top bu%er to the bottom one, which guarantees the
results are in ascending order of the indices. Since only one output
bu%er would be actively popping data, there would be no collision
in the multiplexer tree which makes it light-weighted and scalable.

The adoption of the result merger is because, #rst, a matrix row
can span multiple rows of PEs, which produces multiple partial re-
sults to be merged, and second, since the input matrix is partitioned
vertically for better reuse of the vector elements, the output partial
results across di%erent partitions need to be merged. To merge re-
sults across consecutive rows of PEs (i.e. local merging), the merger
checks the incoming outputs with the prior results and performs
accumulation if the consecutive results have the same %&'_)* . To
merge the results across di%erent partitions (i.e. global merging),
the result merger fetches the previous results from the main mem-
ory based on the %&'_)* and accumulates the value. After merging,
the memory block is written back to the o%-chip memory through
the memory interface. Since the incoming data is in an ascending
order of the indices, a memory block would only be referenced at
most once when processing a partition. Thus, no cache is needed
and a memory block bu%er is enough. Each output bu%er is also
double-bu%ered to hide the write back latency.

Table 1: Speci#cations of CPU/GPU/Transmuter [36].

Platform Speci#cations Library

CPU
Intel i7-6700K, 4 cores/8 threads at 4.2 GHz, 16 GB
DDR3 memory @ 34.1 GB/s, 122 mm2 (14 nm)

MKL 2018.3.222

GPU
NVIDIA Tesla V100, 5120 CUDA cores@1.25 GHz,
16 GBHBM2memory at 900 GB/s, 815mm2 (12 nm)

cuSPARSE [33]

Transmuter
16 tiles of 16 ARMCortexM4F cores interconnected
with non-coherent crossbar at 1 GHz (16 nm)

CoSPARSE [12]

5 EXPERIMENTAL METHODOLOGY

5.1 Simulator and Physical Design
We #rst compared our proposed FlexTPU against STPU andGoogle’s
TPU, assuming a 128 × 128 PE systolic array across all designs. We
implemented a custom cycle-accurate C++ simulator for all three
designs to model the RTL behavior. To accurately compare both area
and power, we modeled the PE designs in FlexTPU, TPU, and STPU
using SystemVerilog. Speci#cally, we implemented the "oat32 arith-
metic precision for all three types of PEs. And we synthesized each
design using the Synopsys Design Compiler with a 28 nm CMOS
standard cell library and a target clock frequency of 700 MHz. To
accurately measure the power consumption, we make extensive

Table 2: Matrices from SuiteSparse [9] and SNAP database [4]
with their plots, dimensions, number of non-zeros (nnz),
average nnz per row/column and problem domain.

Matrix Plot
Dim.
nnz
nnzrow

Kind

facebook
4K
88K
21.8

Friend- ship
network

nopoly
10.7K
70.8K
6.6

Undirected
graph

slashdot-
0902

82.2K
948K
11.5

Friend- ship
network

soc-
Epinions1

75.9K
508K
6.7

Trusting
network

wiki-vote
7.1K
103K
14.6

Voting graph

"icker-
Edges

105K
2.3M
21.9

Patent
citation
network

Matrix Plot
Dim.
nnz
nnzrow

Kind

cage12
130K
2.0M
15.6

Genomics

af23560
23.5K
460K
19.6

Math-matics

o%shore
259K
4.2M
16.3

Electro-
magnetic

bcircuit
68.9K
375K
5.45

Circuit
simulation

rajat28
87.2K
606K
7.0

Circuit
simulation

scircuit
171K
958K
5.6

Circuit
simulation

use of test vectors to obtain the Switching Activity Interchange
Format (SAIF) as input for the gate level synthesized designs. For a
fair comparison, we focus on the evaluation of the systolic array,
because the memory-array interface design and on-chip memory
organization are not detailed in either TPU or STPU.

We also compared FlexTPU against the CPU, the GPU and a
recent recon#gurable accelerator, Transmuter [36]. For fairness, we
performed a full system implementation of the FlexTPU framework
using System Verilog. In addition to the systolic array, this includes
the global row decoder (with processing granularity (= 16), row
loaders, swizzle-switch network-based crossbar distribution net-
works (128 in × 128 out) [10, 41], on-chip memory with a double
bu%ered vector bu%er (128 banks of 256 × 32bit) and vector FIFOs
(128 FIFOs of 128 × 64bit), an output unit which has 128 64 × 64bit
bu%ers, and a system controller to orchestrate the execution. An
HBM system of 16 channels that is able to deliver up to 128GB/s
bandwidth is used. We applied the same methodology to obtain
the additional area and power of the full FlexTPU system as above.
Area numbers for SRAM bu%ers/FIFOs are obtained from the TSMC
28nm CMOS LOGIC High Performance Single Port SRAMCompiler.
We compare FlexTPU against state-of-the-art library packages on
commercial systems, namely, Intel MKL (Version 2018.3.222) on the
CPU and cuSPARSE (Version 11.7) on the GPU. We also compared
FlexTPU with Transmuter running the CoSPARSE SpMV Frame-
work. Transmuter is a programmable and recon#gurable many-core
accelerator, whereas CoSPARSE is an e!cient SpMV framework
which exploits Transmuter’s recon#gurability. The speci#cations
are summarized in Table 1.

5.2 Datasets
We used three datasets to evaluate our proposed FlexTPU. The
#rst set comprises synthetic sparse matrices taken from two dis-
tinct distributions. One group of matrices are taken from a uni-
formly random distribution of nonzero elements, and the sizes of
the matrices range from 1,024 to 32,768, while the density range
is between 3.125E-4 and 0.01. The other group are taken from the

154

PACT ’22, October 10–12, 2022, Chicago, IL, USA He, et al.

power-law distribution, and the matrices are generated by the Stan-
ford Network Analysis Project (SNAP) R-MAT data generator [4].
The generator is con#gured with default parameters (a: 0.6, b: 0.1, c:
0.15) to generate undirected power-law graphs. The second set is a
collection of 12 real-world sparse matrices from SNAP [28] and the
SuiteSparse Matrix Collection [9], which covers a wide spectrum
of real-world sparse matrices from diverse domains such as social
networks, "uid dynamics problems, circuit simulation problems,
etc, as detailed in Table 2. The last set includes eight NetworkX-
generated synthetic sparse matrices used in CoSparse [12, 16]. Each
matrix follows uniformly a random distribution or the power-law
distribution and has the same NNZ (∼ 4?).

6 EVALUATION
This section #rst provides a detailed evaluation of the systolic array
and compares FlexTPU to STPU and TPU. For the full system imple-
mentation, FlexTPU is compared against the state-of-the-art library
implementations of SpMV on a CPU and a GPU, and CoSPARSE
SpMV framework on Transmuter.

6.1 Power and area analysis of FlexTPU
We report the PE power for each working mode and the PE area
of FlexTPU, STPU, and TPU in Table 3. Though the FlexTPU PE
introduces additional control logic and registers, the area over-
head of FlexTPU compared to that of TPU is 11%, similar to the
12% overhead reported in the STPU. The low overhead is because
FlexTPU separates the "oating point multiplier and adder with a
register rather than using a monolithic multiply-and-accumulate
(MAC) unit like STPU and TPU, creating a shorter critical path.
This enables the use of slower logic gates to meet the same target
frequency, and these slower logic gates incur smaller area and lower
power consumption. As shown in the area breakdown, a multiplier
and an adder take 600232 less area than a MAC unit. Although the
additional registers and logic require 549232 extra area, using a
separated multiplier and adder more than compensates for this over-
head. We also observe reduced power consumption when the PE
performs computations and passes data to its neighbors, which also
stems from the shortened critical path of the separated multiplier
and adder. It is worth noting that in DENSE mode FlexTPU exhibits
5.07% power overhead compared to TPU in dense mode, because
of the clock-gating on the added logic, indicating that FlexTPU is
still capable to handle dense matrix operations e!ciently. We also
analyze the power and area of di%erent modules in FlexTPU, as
shown in Table 4. Most of the energy and area is consumed by the
systolic array, which is the core part of FlexTPU.

Takeaways. FlexTPU applies non-intrusive and low overhead
modi#cations to PEs. FlexTPU can also execute dense operations
with minor overhead by clock-gating the inactive logic.

6.2 Comparison against TPU and STPU
6.2.1 Evaluation on scalability. We conduct a thorough evaluation
of SpMV with a set of synthetic power-law matrices and uniformly-
random matrices. In this scalability evaluation, we #x the size of
sparse matrices at 16, 384 and sweep the density from 3.125 × 10−4

to 1 × 10−2. Also, we #x the total matrix NNZ to be 167, 772 and
sweeps the matrix dimension from 1, 024 to 32, 768. The speedup

Table 3: Power and area analysis of PEs in TPU, STPU and
FlexTPU (double bu"ering enabled). FlexTPU introduces less
power/area overhead than STPU.

PE Type Mode Power (mW) Area (um2)

FlexTPU

Mult PASS 1.38
Registers:
MUL+ADD:
Other logic:

Total:

889.6
3,598.3
717.9

5,205.8

Add PASS 0.98
PASS 0.41
IDLE 0.04

DENSE 2.28

STPU

ACCU 4.31 Registers:
MAC:

Other logic:
Total:

841.6
4,197.6
216.6

5,255.2

HOLD/LATCH 1.23
BYPASS 1.24
IDLE 0.05

TPU
ACCU 2.17 Registers: 560.6

IDLE 0.05
Comb: 4,135.0
Total: 4,695.6

Table 4: Power and area of main modules in FlexTPU

Components Area (mm2) Power (W)

Systolic Array 85.4 (93.6%) 7.46 (88.4%)

Output Merger/Bu%er 1.13 (1.24%) 0.06 (0.71%)

Input Loader 1.19 (1.30%) 0.11 (1.30%)

Vector FIFO 1.24 (1.36%) 0.16 (1.90%)

Vector Bu%er 0.90 (0.99%) 0.09 (1.07%)

Input crossbar 1.34 (1.47%) 0.56 (6.64%)

Total 91.2 8.45

and energy saving of STPU and FlexTPU over TPU are shown in
Figure 5. For the uniformly random sparse matrices, when #xing
the matrix dimensions in Figure 5a, generally both FlexTPU and
STPU outperform TPU by achieving 122.3× and 51.3× speedup, and
51.5× and 19.9× energy reduction, respectively. It is worth noting
that at a low density level (3.125 × 10−4) FlexTPU shows 5.37×
speedup over STPU. When the density increases to 1.25 × 10−3,
the advantage diminishes to 1.85× over STPU. Eventually, FlexTPU
shows 1.84× slowdown to STPU at 0.01 density level. The bene#ts
of FlexTPU over STPU diminishes as matrix density increases due
to the following reason. Although STPU performs column packing,
the condensed multi-column group can only make use of a limited
number of PEs in the systolic array, leading to more processing
iterations. In other words, the matrix is only condensed horizontally.
In contrast, FlexTPU maps di%erent matrix rows onto the same
systolic array row, so FlexTPU actually applies "two-dimensional
packing" to an input sparse matrix. But when the density increases
the “horizontal” packing in STPU will utilize most PEs in a row.
At a 5 × 10−3 density level, 83.5% of the PEs in a row are used on
average in STPU. We see a similar trend when #xing the total NNZ
in the uniformly randommatrices,. FlexTPU and STPU outperforms
TPU by achieving 164.3× and 39.9× speedup, and 68.1× and 26.5×
energy reduction, respectively. At a low density level, i.e. 1.56 ×
10−4, FlexTPU outperforms STPU with 5.80× lower execution time,
whereas at a higher density level, i.e. 0.01, FlexTPU is 1.12× slower
than STPU.

6.2.2 Evaluation on sensitivity to matrix distribution. Figure 5b
and 5d show the results for #xing the matrix size and #xing the

155

Squaring the circle: Executing Sparse Matrix Computations on FlexTPU—a TPU-like processor PACT ’22, October 10–12, 2022, Chicago, IL, USA

���
��
��
��

���
��
��
�

���
��
��
���
��
�
���
�� ���

�

0DWUL[�'HQVLW\

�

��

���

���

���

6S
HH
GX
S�
RY
HU
�7
38

�

��

��

��

���

���

���

(Q
HU
J\
�6
DY
LQ
J�
RY
HU
�7
38

6738�6SHHGXS
)OH[738�6SHHGXS
6738�(QHUJ\�6DYLQJ
)OH[738�(QHUJ\�6DYLQJ

(a) Uniformly random mats
(Dimension = 16,384)

���
��
��
��

���
��
��
�

���
��
��
���
��
�
���
�� ���

�

0DWUL[�'HQVLW\

�

��

���

���

���

���

6S
HH
GX
S�
RY
HU
�7
38

�

��

��

��

���

���

���

(Q
HU
J\
�6
DY
LQ
J�
RY
HU
�7
38

6738�6SHHGXS
)OH[738�6SHHGXS
6738�(QHUJ\�6DYLQJ
)OH[738�(QHUJ\�6DYLQJ

(b) Power-law mats
(Dimension = 16,384)

��
��

��
��

��
��

��
��

��
��
�
��
��
�

0DWUL[�'LPHQVLRQ

�

���

���

���

���

6S
HH
GX
S�
RY
HU
�7
38

�

��

���

���

���

���

���

(Q
HU
J\
�6
DY
LQ
J�
RY
HU
�7
38

6738�6SHHGXS
)OH[738�6SHHGXS
6738�(QHUJ\�6DYLQJ
)OH[738�(QHUJ\�6DYLQJ

(c) Uniformly random mats
(# NZ = 167,772)

��
��

��
��

��
��

��
��

��
��
�
��
��
�

0DWUL[�'LPHQVLRQ

�

���

���

���

���

���

6S
HH
GX
S�
RY
HU
�7
38

�

��

���

���

���

���

���

(Q
HU
J\
�6
DY
LQ
J�
RY
HU
�7
38

6738�6SHHGXS
)OH[738�6SHHGXS
6738�(QHUJ\�6DYLQJ
)OH[738�(QHUJ\�6DYLQJ

(d) Power-law mats
(# NZ = 167,772)

Figure 5: Speedup and Energy saving over TPU of STPU and FlexTPU for sparse matrices with varying size and densities.

total NNZ for power-law matrices. When #xing the size of the ma-
trices and sweeping the density as shown in Figure 5b, FlexTPU and
STPU outperforms TPU by achieving 134.6× and 37.4× speedup,
and 50.0× and 13.3× energy reduction, respectively. We spot two
key di%erences between the results of uniformly-random matrices
and that of the power-law matrices. First, compared to uniformly-
random matrices, the speedup of STPU over TPU drops from 51.3×
to 37.4× when dealing with the power-law matrices, whereas the
speedup of FlexTPU increases from 122.3× to 134.6×. Second, the
cut-o% density where FlexTPU starts to lose against STPU is shifted
to a much higher density level, e.g. from around 1.25 × 10−3 to
around 0.01. This is because for sparse matrices of the same size
and NNZ, power-law graphs usually have a small number of ex-
tremely long columns and rows which prevent STPU frommapping
the NZs e!ciently to the systolic array. By contrast, FlexTPU ac-
tually bene#ts from long rows because fewer SEPARATOR PEs
are used. We conclude that FlexTPU handles power-law matrices
more e!ciently than STPU. Figure 5d shows the results when #xing
the total matrix NNZ and sweeping the matrix dimension for the
power-law matrices. In this #gure, FlexTPU and STPU outperform
TPU by a speedup of 177.3× and 43.0×, and an energy reduction of
67.1× and 17.5×, respectively. Similarly, compared to the uniformly
random matrices, the cut-o% density for power-law matrices shifts
from 0.01 to 0.16. To conclude, for very sparse matrices, FlexTPU
outperforms STPU in both execution time and energy. In addition,
FlexTPU works better for power-law matrices than STPU. These
two advantagesmake FlexTPU amore suitable solution for handling
real-world sparse matrices, for example, large-scale graphs that are
very sparse and commonly have the power-law distribution.

Takeaways. FlexTPU bene#ts from condensing the sparse ma-
trix both vertically and horizontally. The results show that FlexTPU
outperforms STPU for very sparse matrices. Speci#cally, for uni-
formly random matrices with density lower than 1%, FlexTPU
achieves higher performance and e!ciency. Compared to STPU,
FlexTPU also handles power-law matrices more e!ciently, as the
breakeven density increases by 8-16×.

6.2.3 Evaluation on real-world datasets. Next, we evaluate the
speedup and energy saving of FlexTPU and STPU compared to

TPU on the set of real-world datasets, which is shown in Figure 6.
On average, FlexTPU achieves 531.6× speedup and 202.4× energy
saving, and STPU reports 149.8× speedup and 61.8× energy saving
over TPU. FlexTPU outperforms STPU by a speedup of 3.55× and
an energy reduction of 3.27×. We notice that in the facebook matrix,
FlexTPU and STPU achieve the smallest speedup (24.38× and 9.42×,
respectively) and energy reduction (9.66× and 2.70×, respectively).
And compared to STPU, FlexTPU only achieves 5x reduction in the
number of iterations, whereas the average reduction of all matrices
is 9.56×. This is because facebook has a 5.4 × 10−3 density, making
it the densest matrix among all the real-world matrices.

IDF
HE
RR
N

IOLF
NU(
GJ
HV

6OD
VKG
RW�
��
�

VRF
�(S
LQL
RQ
V�

:L
NL�
9R
WH

DI�
��
��

EF
LUF
XLW

FDJ
H�
�
QR
SR
O\

RII
VKR
UH

UDM
DW�
�

VFL
UFX
LW

JH
RP
HD
Q

���

���

���

6S
HH
GX
S�
RY
HU
�7
38

���

���

���

(Q
HU
J\
�6
DY
LQ
J�
RY
HU
�7
38

6738�6SHHGXS
)OH[738�6SHHGXS

6738�(QHUJ\�6DYLQJ
)OH[738�(QHUJ\�6DYLQJ

Figure 6: Speedup and Energy saving over TPU of STPU and
FlexTPU for real-world sparse matrices.

6.3 Comparison with CPU, GPU and
Transmuter

We evaluate the speedup and energy saving of the full system im-
plementation of FlexTPU to a CPU and GPU executing SpMV, as
shown in Figure 7. On average, FlexTPU achieves 2.4× speedup
and 130.4× energy saving over CPU and achieves 4.3× speedup and
495.3× energy saving over GPU. We also observe that for larger
matrices, e.g., slashdot-0902, soc-Epinions1, !icker-Edge and cage12,
GPU shows higher performance than CPU because higher degree
of parallelism can be exploited despite the irregular data access-
ing/processing pattern and thread divergence. CPU also shows

156

PACT ’22, October 10–12, 2022, Chicago, IL, USA He, et al.

IDF
HE
RR
N

IOLF
NU(
GJ
HV

6OD
VKG
RW�
��
�

VRF
�(S
LQL
RQ
V�

:L
NL�
9R
WH

DI�
��
��

EF
LUF
XLW

FDJ
H�
�
QR
SR
O\

RII
VKR
UH

UDM
DW�
�

VFL
UFX
LW

JH
RP
HD
Q

�

�

��

��

6S
HH
GX
S

���

���

���

����

(Q
HU
J\
�6
DY
LQ
J

6SHHGXS�RYHU�&38
6SHHGXS�RYHU�*38

(QHUJ\�6DYLQJ�RYHU�&38
(QHUJ\�6DYLQJ�RYHU�*38

Figure 7: Speedup and Energy saving of FlexTPU over CPU
and GPU for matrices in SNAP dataset.

X����
�����

���(�
���

X����
�����

����(
����

X����
�����

����(
����

X����
�����

����(
����

S����
�����

���(�
���

S����
�����

����(
����

S����
�����

����(
����

S����
�����

����(
����

�

�

�

�

�

6S
HH
GX
S

�

�

�

�

�

(Q
HU
J\
�6
DY
LQ
J

6SHHGXS�RYHU�7UDQVPXWHU (QHUJ\�6DYLQJ�RYHU�7UDQVPXWHU

Figure 8: Speedup and Energy saving of FlexTPU against
Transmuter (with CoSPARSE SpMV framework) .

IDF
HE
RR
N

IOLF
NU(
GJ
HV

6OD
VKG
RW�
��
�

VRF
�(S
LQL
RQ
V�

:L
NL�
9R
WH

DI�
��
��

EF
LUF
XLW

FDJ
H�
�
QR
SR
O\

RII
VKR
UH

UDM
DW�
�

VFL
UFX
LW

JH
RP
HD
Q

�

��

��

��

��

���

%D
QG
ZL
GW
K�
�*
%�
V�

Figure 9: Bandwidth usage of FlexTPU.

high performance on scircuit because the structural sparsity can
be exploited. For both small graphs like facebook and wiki-Vote and
diagonal matrices like af23560, FlexTPU achieves 1.49×, 1.63×, and
1.23× speedup over the CPU, respectively. This is because facebook
and wiki-Vote have the highest density and the smallest size among
all the real-world matrices, while af23560 has NZs concentrated on
the diagonal. A CPU with a large on-chip cache can fully exploit
the locality to access the sparse matrix and the input vector.

We also compare against the CoSPARSE SpMV framework ex-
ecuted on Transmuter recon#gurable architecture, as shown in
Figure 8. We use the same NetworkX synthetic matrices evaluated
in CoSPARSE to perform SpMV [12, 16]. A set of uniformly-random
matrices (left half) and power-law matrices (right half) with same
NNZ (i.e. 4M) are evaluated. On average, FlexTPU achieves 5.12×
speedup and 2.65× energy reduction compared to Transmuter. We
notice that the advantage of FlexTPU over Transmuter reduces

when handling power-law matrices. This is because the existence
of dense rows/columns in power-law matrices results in fewer non-
empty matrix rows/columns. For Transmuter, fewer input elements
are accessed and fewer output vector elements are generated, which
are more likely to #t in its on-chip cache.

Finally, we also evaluate the bandwidth usage of FlexTPU across
the sparse graphs, as shown in Figure 9. The average bandwidth
usage is 74.4GB/s, while the maximum is 103.2GB/s, which can be
accommodated by the HBM memory. Compared to STPU, which
utilizes around 500GB/s bandwidth on average, FlexTPU’s high
performance is much less dependent on bandwidth.

7 RELATEDWORKS
Though the inner product is the conventional way for matrix mul-
tiplication, many alternatives have been explored for sparse matrix
multiplications. OuterSPACE [35] accelerates sparse matrix multi-
plication using an outer product data"ow on a recon#gurable ar-
chitecture that recon#gures the on-chip memory subsystem based
on the memory access pattern for the multiplication and the merge
phase of the computation. Sparch [52] improves Outerspace by re-
ducing the o%-chip memory transactions for partial sums and aug-
menting input data reuse. Sadi et al. [40] builds a high-performance
SpMV accelerator featuring a high-throughput multi-way merge
network, a data compression scheme to reduce o%-chip tra!c, and
optimizations for power-law matrices. Matraptor [43] uses row-
wise products for SpMM and introduces a new storage format to
allow parallel input data streaming. FlexTPU uses TPU as the hard-
ware substrate with minor modi#cation to hardware to relieve the
pressure of the accelerator wall. Accordingly, the inner product is
used because the data"ow #ts naturally on systolic arrays.

Novel sparse formats have been proposed to assist sparse linear
algebra acceleration. ExTensor [19] uses hierarchical intersection
detection with skip mechanism for fast index matching in sparse
tensor algebra. SMASH [23] employs a hierarchical bitmap com-
pression of sparse matrices and designs a lightweight hardware
unit for indexing. Tensaurus [44] supports e!cient processing of
mixed sparse/dense tensor computations by accelerating a common
compute pattern with a co-design of hardware and sparse storage
format. Alrescha [3] breaks down data-dependent computation in
sparse workloads into parallel operations and remaining data depen-
dencies are handled by recon#gurable computation units. Sparse
matrices are stored in a custom dense format compatible with the
data access pattern. Instead of introducing a new sparse format,
FlexTPU directly loads from CSR format and sends the condensed
NZs to the systolic array, eliminating expensive preprocessing.

Handling Sparsity on Systolic Arrays. By allowing PEs to
pass data directly to neighbors, systolic arrays enable e!cient data
communication and sharing, and thus have been widely adopted
for deep neural network (DNN) acceleration. Recent years have wit-
nessed a growing interest in DNN pruning, which aims to improve
DNN performance by getting rid of redundant weight elements to
reduce the amount of both data and computation. Much e%ort has
been made in exploiting the sparsity in DNNs [6, 14, 17, 27, 30, 49,
51]. The sparsity and irregularity in DNNs have posed challenges
for systolic array based accelerators. Due to the rigid shape and

157

Squaring the circle: Executing Sparse Matrix Computations on FlexTPU—a TPU-like processor PACT ’22, October 10–12, 2022, Chicago, IL, USA

interconnect, systolic arrays su%ered from severe resource under-
utilization and ine!cient data loading and accumulation overhead
for sparse, irregular DNNs [38]. Kung et al. [26] proposed a convo-
lutional neural network (CNN) packing strategy to create a denser
format for e!cient implementation on a bit-serial systolic array.
STPU [18] targets sparse matrix multiplication on systolic arrays
with a co-designed approach of #rst introducing a novel sparse
matrix compressing algorithm and then designing a systolic array
based architecture to accommodate the computation. Compared
to Kung et al. and STPU, FlexTPU has negligible preprocessing
overhead and focuses on exploring an e!cient data"ow to take
advantage of the data layout of the CSR format.

Recon#gurable Architecture. Recent recon#gurable acceler-
ators employ a massive amount of PEs interfaced with multi-cast
interconnects and recon#gurable on-chip memory to adapt to dif-
ferent applications, incurring performance/power overhead to gain
the extra "exibility [8, 15, 20, 25, 31, 34, 36, 37, 47].

8 CONCLUSION
Systolic arrays have been widely adopted for dense linear alge-
bra, but are also known to encounter signi#cant resource under-
utilization when handling sparse linear algebra. Recent works have
proposed several matrix compression algorithms to convert sparse
matrices to a denser format and thus improve the utilization rate
of PEs. However, such approaches not only induce non-negligible
preprocessing overhead, but are also vulnerable to irregular matrix
distribution. In this work, we propose a novel mapping of sparse
matrices to the systolic array that requires minimal preprocess-
ing and guarantees full utilization of the available PEs regardless
of the matrix size, density and distribution. An e!cient data"ow
and a low-cost PE design are further explored to support sparse
matrix computations. The evaluation shows that across a suite of
real-world benchmarks, the proposed design, FlexTPU achieves an
average speedup of 2.4× and 4.3× and an average energy saving of
130.4× and 495.3× compared to state-of-the-art libraries on a CPU
and a GPU, respectively.

ACKNOWLEDGEMENT
The material is based on Defense Advanced Research Projects
Agency (DARPA) under agreement number FA8650-18-2-7864. The
U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright nota-
tion thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily repre-
senting the o!cial policies or endorsements, either expressed or
implied, of Defense Advanced Research Projects Agency (DARPA)
or the U.S. Government.

REFERENCES
[1] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.

2016. A scalable processing-in-memory accelerator for parallel graph processing.
ACM SIGARCH Computer Architecture News 43, 3 (2016), 105–117.

[2] Kadir Akbudak, Oguz Selvitopi, and Cevdet Aykanat. 2018. Partitioning models
for scaling parallel sparse matrix-matrix multiplication. ACM Transactions on
Parallel Computing (TOPC) 4, 3 (2018), 1–34.

[3] Bahar Asgari, Ramyad Hadidi, Tushar Krishna, Hyesoon Kim, and Sudhakar
Yalamanchili. 2020. Alrescha: A lightweight recon#gurable sparse-computation
accelerator. In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 249–260.

[4] D. A. Bader and K. Madduri. [n. d.]. Snap: small-world network analysis and
partitioning. http://snap-graph.sourceforge.net

[5] Maria Carla Calzarossa, Luisa Massari, and Daniele Tessera. 2016. Workload
characterization: A survey revisited. ACM Computing Surveys (CSUR) 48, 3 (2016),
1–43.

[6] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2:
A "exible accelerator for emerging deep neural networks on mobile devices.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2 (2019),
292–308.

[7] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, Karthik
Gururaj, and Glenn Reinman. 2014. Accelerator-rich architectures: Opportunities
and progresses. In 2014 51st ACM/EDAC/IEEE Design Automation Conference
(DAC). IEEE, 1–6.

[8] Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. 2019. Towards Gen-
eral Purpose Acceleration by Exploiting Common Data-Dependence Forms. In
Proceedings of the 52Nd Annual IEEE/ACM International Symposium on Microar-
chitecture (Columbus, OH, USA) (MICRO ’52). ACM, 924–939.

[9] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011),
1–25.

[10] Ronald Dreslinski, Korey Sewell, Thomas Manville, Sudhir Satpathy, Nathaniel
Pinckney, Geo% Blake, Michael Cieslak, Reetuparna Das, Thomas Wenisch, Den-
nis Sylvester, et al. 2012. Swizzle switch: A self-arbitrating high-radix crossbar
for noc systems. In 2012 IEEE Hot Chips 24 Symposium (HCS). IEEE, 1–44.

[11] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam,
and Doug Burger. 2012. Dark silicon and the end of multicore scaling. IEEE Micro
32, 3 (2012), 122–134.

[12] Siying Feng, Jiawen Sun, Subhankar Pal, Xin He, Kuba Kaszyk, Dong-hyeon
Park, Magnus Morton, Trevor Mudge, Murray Cole, Michael FP O’Boyle, et al.
2021. CoSPARSE: A Software and Hardware Recon#gurable SpMV Framework
for Graph Analytics. In 58th Design Automation Conference. ACM Association for
Computing Machinery.

[13] Adi Fuchs and David Wentzla%. 2019. The accelerator wall: Limits of chip spe-
cialization. In 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 1–14.

[14] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and T. N. Vijaykumar.
2019. SparTen: A Sparse Tensor Accelerator for Convolutional Neural Networks.
In Proceedings of the 52Nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (Columbus, OH, USA) (MICRO ’52). ACM, New York, NY, USA,
151–165. https://doi.org/10.1145/3352460.3358291

[15] Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam. 2011.
Dynamically specialized datapaths for energy e!cient computing. In 2011 IEEE
17th International Symposium on High Performance Computer Architecture. IEEE,
503–514.

[16] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,
dynamics, and function using NetworkX. Technical Report. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).

[17] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. EIE: E!cient Inference Engine on Compressed
Deep Neural Network. CoRR abs/1602.01528 (2016). arXiv:1602.01528 http:
//arxiv.org/abs/1602.01528

[18] XinHe, Subhankar Pal, Aporva Amarnath, Siying Feng, Dong-Hyeon Park, Austin
Rovinski, Haojie Ye, Yuhan Chen, Ronald Dreslinski, and Trevor Mudge. 2020.
Sparse-TPU: Adapting Systolic Arrays for Sparse Matrices. In Proceedings of the
34th ACM International Conference on Supercomputing (ICS ’20). ACM, 12 pages.

[19] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer
Jaleel, Edgar Solomonik, Joel Emer, and Christopher W. Fletcher. 2019. ExTensor:
An Accelerator for Sparse Tensor Algebra. In Proceedings of the 52Nd Annual
IEEE/ACM International Symposium on Microarchitecture (Columbus, OH, USA)
(MICRO ’52). ACM, NewYork, NY, USA, 319–333. https://doi.org/10.1145/3352460.
3358275

[20] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F. Martinez. 2007. Core
Fusion: Accommodating Software Diversity in Chip Multiprocessors. In Proceed-
ings of the 34th Annual International Symposium on Computer Architecture (San
Diego, California, USA) (ISCA ’07). ACM, 186–197.

[21] Zhen Jia, Lei Wang, Jianfeng Zhan, Lixin Zhang, and Chunjie Luo. 2013. Char-
acterizing data analysis workloads in data centers. In 2013 IEEE International
Symposium on Workload Characterization (IISWC). IEEE, 66–76.

[22] Norman P. Jouppi, Cli% Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Cli%ord Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Je%rey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Ja%ey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,

158

PACT ’22, October 10–12, 2022, Chicago, IL, USA He, et al.

Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of a
Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium
on Computer Architecture (Toronto, ON, Canada) (ISCA ’17). ACM, New York, NY,
USA, 1–12. https://doi.org/10.1145/3079856.3080246

[23] Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula, Roknod-
din Azizi, Skanda Koppula, Nika Mansouri Ghiasi, Taha Shahroodi, Juan Gomez
Luna, and Onur Mutlu. 2019. Smash: Co-designing software compression and
hardware-accelerated indexing for e!cient sparse matrix operations. In Proceed-
ings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.
600–614.

[24] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Pro#ling a warehouse-
scale computer. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture. 158–169.

[25] Martha Mercaldi Kim, John D. Davis, Mark Oskin, and Todd Austin. 2008. Poly-
morphic On-Chip Networks. In Proceedings of the 35th Annual International
Symposium on Computer Architecture (ISCA ’08). IEEE Computer Society, 101–
112.

[26] H.T Kung, Bradley McDanel, and Sai Qian Zhang. 2019. Packing Sparse Convo-
lutional Neural Networks for E!cient Systolic Array Implementations: Column
Combining Under Joint Optimization. In International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). ACM, New
York, NY, USA, 13. https://doi.org/10.1145/3297858.3304028

[27] Ching-En Lee, Yakun Sophia Shao, Jie-Fang Zhang, Angshuman Parashar, Joel
Emer, Stephen W Keckler, and Zhengya Zhang. 2018. Stitch-x: An accelerator
architecture for exploiting unstructured sparsity in deep neural networks. In
SysML Conference, Vol. 120.

[28] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[29] Ikuo Magaki, Moein Khazraee, Luis Vega Gutierrez, and Michael Bedford Taylor.
2016. Asic clouds: Specializing the datacenter. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). IEEE, 178–190.

[30] Mostafa Mahmoud, Isak Edo, Ali Hadi Zadeh, Omar Mohamed Awad, Gennady
Pekhimenko, Jorge Albericio, and Andreas Moshovos. 2020. Tensordash: Ex-
ploiting sparsity to accelerate deep neural network training. In 2020 53rd Annual
IEEE/ACM International Symposium onMicroarchitecture (MICRO). IEEE, 781–795.

[31] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, and Mark
Horowitz. 2000. Smart Memories: A Modular Recon#gurable Architecture. In
Proceedings of the 27th Annual International Symposium on Computer Architecture
(Vancouver, British Columbia, Canada) (ISCA ’00). ACM, New York, NY, USA,
161–171.

[32] Yusuke Nagasaka, Akira Nukada, and Satoshi Matsuoka. 2017. High-performance
and memory-saving sparse general matrix-matrix multiplication for nvidia pascal
gpu. In 2017 46th International Conference on Parallel Processing (ICPP). IEEE, 101–
110.

[33] Maxim Naumov, L Chien, Philippe Vandermersch, and Ujval Kapasi. [n. d.]. Cus-
parse library.

[34] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-
alingam. 2017. Stream-Data"ow Acceleration. In Proceedings of the 44th Annual
International Symposium on Computer Architecture (Toronto, ON, Canada) (ISCA
’17). ACM, 416–429.

[35] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siy-
ing Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge,
and Ronald Dreslinski. 2018. Outerspace: An outer product based sparse ma-
trix multiplication accelerator. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 724–736.

[36] Subhankar Pal, Siying Feng, Dong-hyeon Park, Sung Kim, Aporva Amarnath,
Chi-Sheng Yang, Xin He, Jonathan Beaumont, Kyle May, Yan Xiong, et al. 2020.
Transmuter: Bridging the e!ciency gap using memory and data"ow recon#gura-
tion. In Proceedings of the ACM International Conference on Parallel Architectures
and Compilation Techniques. 175–190.

[37] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao,
Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. 2018.
Plasticine: a recon#gurable accelerator for parallel patterns. IEEE Micro 38, 3
(2018), 20–31.

[38] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul, and T.
Krishna. 2020. SIGMA: A Sparse and Irregular GEMM Accelerator with Flexible
Interconnects for DNN Training. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 58–70. https://doi.org/10.1109/
HPCA47549.2020.00015

[39] Luis EC Rocha and Naoki Masuda. 2014. Random walk centrality for temporal
networks. New Journal of Physics 16, 6 (2014), 063023.

[40] Fazle Sadi, Joe Sweeney, Tze Meng Low, James C. Hoe, Larry Pileggi, and Franz
Franchetti. 2019. E!cient SpMV Operation for Large and Highly Sparse Matrices

Using Scalable Multi-WayMerge Parallelization. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (Columbus, OH, USA)
(MICRO ’52). Association for ComputingMachinery, New York, NY, USA, 347–358.
https://doi.org/10.1145/3352460.3358330

[41] Korey Sewell, Ronald G Dreslinski, Thomas Manville, Sudhir Satpathy, Nathaniel
Pinckney, Geo%rey Blake, Michael Cieslak, Reetuparna Das, Thomas F Wenisch,
Dennis Sylvester, et al. 2012. Swizzle-switch networks for many-core systems.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2, 2 (2012),
278–294.

[42] Yakun Sophia Shao and David Brooks. 2015. Research infrastructures for hard-
ware accelerators. Synthesis Lectures on Computer Architecture 10, 4 (2015), 1–99.

[43] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang. 2020.
Matraptor: A sparse-sparse matrix multiplication accelerator based on row-wise
product. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 766–780.

[44] Nitish Srivastava, Hanchen Jin, Shaden Smith, Hongbo Rong, David Albonesi,
and Zhiru Zhang. 2020. Tensaurus: A versatile accelerator for mixed sparse-dense
tensor computations. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 689–702.

[45] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary, Subramanya R
Dulloor, Michael J Anderson, Satya Gautam Vadlamudi, Dipankar Das, and
Pradeep Dubey. 2015. Graphmat: High performance graph analytics made pro-
ductive. Proceedings of the VLDB Endowment 8, 11 (2015), 1214–1225.

[46] Robert Tarjan and Andrew Yao. 1979. Storing a Sparse Table. Commun. ACM 22,
11 (1979), 606–611.

[47] Michael Bedford Taylor, Jason Sungtae Kim, Jason E. Miller, David Wentzla%,
Fae Ghodrat, Ben Greenwald, Henry Ho%mann, Paul R. Johnson, Jae W. Lee,
Walter Lee, Albert Ma, Arvind Saraf, Mark Seneski, Nathan Shnidman, Volker
Strumpen, Matthew I. Frank, Saman P. Amarasinghe, and Anant Agarwal. 2002.
The Raw Microprocessor: A Computational Fabric for Software Circuits and
General-Purpose Programs. IEEE Micro 22, 2 (2002), 25–35.

[48] Paul Teich. 2018. Tear Apart Google’s TPU 3.0 AI Coprocessor. https://www.
nextplatform.com/2018/05/10/tearing-apart-googles-tpu-3-0-ai-coprocessor/

[49] Paul N Whatmough, Sae Kyu Lee, David Brooks, and Gu-Yeon Wei. 2018. DNN
engine: A 28-nm timing-error tolerant sparse deep neural network processor for
IoT applications. IEEE Journal of Solid-State Circuits 53, 9 (2018), 2722–2731.

[50] Sijie Yan, Yuanjun Xiong, and Dahua Lin. 2018. Spatial temporal graph convo-
lutional networks for skeleton-based action recognition. In Thirty-second AAAI
conference on arti"cial intelligence.

[51] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen.
2016. Cambricon-X: An accelerator for sparse neural networks. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1–12.
https://doi.org/10.1109/MICRO.2016.7783723

[52] Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. 2020. Sparch:
E!cient architecture for sparse matrix multiplication. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 261–274.

[53] Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu, Yanzhi
Wang, and Xuehai Qian. 2019. GraphQ: Scalable PIM-Based Graph Process-
ing. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 712–725.

159

