
A 507 GMACs/J 256-Core Domain Adaptive Systolic-Array-Processor for Wireless Communication
and Linear-Algebra Kernels in 12nm FINFET

Kuan-Yu Chen, Chi-Sheng Yang, Yu-Hsiu Sun, Chien-Wei Tseng, Morteza Fayazi, Xin He, Siying Feng,
Yufan Yue, Trevor Mudge, Ronald Dreslinski, Hun-Seok Kim, David Blaauw

University of Michigan, Ann Arbor, USA. knyuchen@umich.edu

 Abstract: We present DAP (Domain Adaptive Processor), an
adaptive systolic-array-processor of 256 programmable cores in
12 nm CMOS for wireless communication workloads. DAP uses
a globally homogeneous but locally heterogeneous architecture,
decode-less reconfiguration instructions for data streaming, sin-
gle-cycle data communication between functional units (FUs), and
lightweight nested-loop control. We show how configuration flex-
ibility and fast program loading allows a wide range of communi-
cation workloads to be mapped and swapped in sub-µs, supporting
continually evolving communication standards such as 5G. DAP
achieves 507 GMACs/J and a peak performance of 264 GMACs.

Introduction: With the increased use of accelerators to aug-
ment general purpose and GPGPU processing, the trade-off be-
tween efficiency and flexibility has become a key concern. The
need for flexibility is particularly pertinent for wireless communi-
cation workloads where new standards are frequently introduced
and require modification of computational kernels [1]. These
workloads are characterized by data streaming which make them
especially suitable for systolic-array architectures which can
achieve high efficiency but traditionally have limited flexibility.

To address this issue, we propose DAP that implements a con-
figurable systolic-array fabric designed to execute a wide range of
wireless communication kernels with near-ASIC energy effi-
ciency. Four types of Processing Elements (PEs), each with both
complex and real number arithmetic FUs, are organized in locally
heterogeneous clusters, with clusters replicated homogeneously
across the full 256-PE fabric. Decode-less FU activation and rout-
ing reconfiguration instructions and a lightweight nested-loop pro-
gram control minimize overhead and reduce the needed instruc-
tion memory to a mere 128-entries per PE. A light-weight single-
port Register File Unit (RU) with dual crossbars enables efficient
direct FU-to-FU streaming (zero cycle inter-FU latency) minimiz-
ing data-movement and buffering energy.

Architecture Overview: The top-level architecture (Fig. 1)
consists of the systolic array of PEs, Management Units (MUs) for
data movement into and out of the array, and 32 banks of 8kB
scratchpad (256KB total) connected to an AXI bus for the external
host interface. There are 4 types of PEs that perform different op-
erations: complex multiply and accumulate (MAC), intelligent
storage (IS), CORDIC and division (COR-DIV) and LOGICAL.
The PEs support 32-bit fixed point complex numbers and com-
municate with their neighbors in all 8 directions and can be indi-
vidually clock gated. Each PE has 4 states, LOAD for loading pro-
gram into instruction memory (IMEM), EXECUTE for program
execution, ROUTE for acting as a programmable router, and IDLE.

PE Architecture: Communication kernels rely on data stream-
ing operations with little or no control flow where a single FU is
executed continuously or periodically for many cycles, streaming
data into other FUs in a highly deterministic manner. Hence, we
eliminated traditional cycle upon cycle instruction fetch and de-
code and instead utilize stream instructions that simultaneously
specifies the data flow configuration (crossbars and queues) and
the operation of FUs (which are enabled or not) combined with
loop control which specifies how many cycles the configuration
stays in place (Fig 2). Hence, a single instruction can stay in place
for many cycles, greatly minimizing control overhead and code
size. Further, data is streamed from one FU, through a storage reg-
isters or queue, to another FU in a single cycle. Streaming data
from a FU in one PE to a FU in neighbor PE takes two cycles,
greatly improving PE to PE communication efficiency compared
to network-on-chip architectures which must decode address-
headers and execute routing algorithms. Since instruction fields
are directly copied into the control registers, instruction decode
overhead is essentially eliminated and since embedded loop con-
trol greatly reduces program size, an entire DAP can be pro-
grammed in 100’s of cycles (sub-µs), allowing on-the-fly kernel

swapping (unlike FPGAs), allowing simultaneous support of mul-
tiple protocols that share PEs in a time multiplexed fashion.

Implementation of nested loops use a loop control unit and 2-
bit loop field (LC) in each instruction. Two shift registers record
the return address and the remaining number of loop iterations.
Both shift right when entering a new loop and shift left when the
loop number reaches zero. We implemented 3 levels of shift reg-
isters, allowing for 3 nested loops which was found sufficient for
a wide range of communication kernels.

A conventional CPU or GPGPU typically implements a large
number of FUs and registers resulting a large, multi-port register
file. In our design with 4 FUs per PE, this would result in a register
file with over 12 ports, which would dominate the power and area
consumption of the PE. Instead, we restrict the data movement
based on common patterns for a wide set of kernels, and handle
connections between the FUs with two sequential crossbars (Fig.
3, left) that are pre-set with the stream instructions. Each FU’s in-
puts are directly connected to specific registers (or small queues
with 4 entries in the MAC PE) thereby eliminating the need for
multiple register outputs. The FU’s outputs then connect to the 12-
input to 12-output crossbar which allows direct FU-to-FU stream-
ing. In addition, data can be routed to move registers or a global
FIFO (4 entry, Fig. 3, left) through a smaller 16-to-4 crossbar to
allow additional data storage, data alignment, and broadcast to a
selectable set of FU inputs.

The IS PE has a 2kB storage to address longer buffering, nec-
essary in certain kernels such as FFT. The COR-DIV PE performs
vector rotate, magnitude/angle computation, divide, and square
root operations. There are two CMAC FU inside each MAC PE
(Fig. 3, left) each of which can be reconfigured as either 1 com-
plex-number MAC or 4 real-number MACs (Fig. 3, right). This
feature greatly benefits real-valued kernels by providing 4x the
number of MAC units (8 total for the MAC PE). Multipliers in the
CMAC FU occupy two pipeline stages and adders a single stage.
However, the multipliers continue to set the clock frequency leav-
ing adders with significant delay slack. We utilize this slack, by
adding 2 operation-fused adders (red box, Fig 3, right) which ex-
ecute in a single cycle with the CMAC adders, providing addi-
tional computation without impacting clock frequency. The global
scratchpads outside of the PE array and in the IS PEs can be con-
figured into either complex or real number mode by multi-banking.

DAP supports multitasking in which the PE array runs different
kernels simultaneously. A dataflow graph of the desired kernels is
first broken down into DAP-supported FUs, and connections are
then programmed into the intra- and inter-PE datapaths. Different
kernels in the same workload can directly interface with each other
without moving data in and out of the global scratchpad. Fig 4-6
shows example mappings of 2D convolution, OFDM, and MMSE
MIMO detection. There are multiple phases in OFDM; packet de-
tection, channel estimation, and demodulation. For packet detec-
tion, the output of FIR is directly used as the autocorrelation input
without leaving the PE array. Upon packet detection, DAP can be
reprogrammed within 0.5us to reuse the same PEs for channel es-
timation, FFT, and symbol demodulation (Fig. 5). DAP’s ability
to merge and seamlessly connect different kernels largely elimi-
nates scratchpad access overhead. MIMO detection is combina-
tion of multiple kernels including QR decomposition, matrix mul-
tiplication, and back substitution. After computing the MMSE ma-
trix and PEs are reprogramed (0.2us latency) to perform matrix
vector multiplication. In this mapping, no IS PE is required since
an entire matrix is stored in the queues connected to the CMAC.

DAP is fabricated in 12nm CMOS and occupies 21mm2. A total
of 17 kernels were mapped to DAP of which 7 more common ones
are shown in Fig. 7 for space reasons. In addition, the performance
and efficiency of an artificial kernel that maximizes PE utilization

2022 Symposium on VLSI Technology & Circuits Digest of Technical Papers978-1-6654-9772-5/22/$31.00 ©2022 IEEE 202

20
22

 IE
EE

 S
ym

po
siu

m
 o

n
V

LS
I T

ec
hn

ol
og

y
an

d
Ci

rc
ui

ts
(V

LS
I T

ec
hn

ol
og

y
an

d
Ci

rc
ui

ts)
 |

97
8-

1-
66

54
-9

77
2-

5/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
V

LS
IT

ec
hn

ol
og

ya
nd

Ci
r4

67
69

.2
02

2.
98

30
33

0

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 23,2022 at 17:28:18 UTC from IEEE Xplore. Restrictions apply.

are shown in Fig. 8. Fig. 9-10 compares DAP to both fixed-func-
tion accelerators and programmable processors. Technology scal-
ing at iso-throughput was done based on SPICE simulations of
FO4 energy and delay. DAP maintains an efficiency to within
2.23× of the fixed-function accelerators that execute only a single
kernel. Among programmable domain specific processors, it has
highest peak performance of 264 GMACs at 1.0 V, 506 MHz.

 Acknowledgements: This work was sponsored in part by the
U.S. Government under the DARPA DSSoC program, award
#FA8650-18-2-7860.

References:
[1] Fang-Li Yuan et al., VLSI 2014. [2] J. P. Cerqueira et al., VLSI 2019.
[3] G. Desoli et al., ISSCC 2017. [4] M. Anders et al., VLSI 2018.

Fig. 5 Mapping of OFDM demodulation
Top: Packet detection
Bot: Channel estimation & demodulation

Fig. 1 DAP overview; 4 types of PE; Management unit

Fig. 2 Loop Control unit; Nested loop example

Fig. 3 Complete data flow and control flow in CMAC PE; CMAC unit with Operation Fusion

Fig. 4 Mapping of 2D convolution

Fig. 6 Mapping of MIMO detection
Top: Calculating WMMSE

Bot: Matrix Vector Multiplication

Fig. 8 DAP efficiency and performance
at different supply voltage levels

Fig. 7 Measurement results of kernels / workloads

Fig. 9 Comparison with programmable architectures

Fig. 10 Comparison with dedicated accelerators

Fig. 11 Chip micrograph and summary

Sc
ra
tc
hp
ad

Sc
ra
tc
hp
ad

AXI

Request

Access

State
Control

Port

Port

PortPort
RU

LC

IS

IMEM

Data

Instruction

Control

COR:COR-DIV, LOGI: LOGICAL
RU: Register Unit, IS: Intelligent Storage

LC: Loop Control, SPM: Scratchpad Memory,

D
ire

ct
 IO

 In
te

rfa
ce

D
ire

ct
 IO

 In
te

rfa
ce

MAC

IS LOGI

COR MAC

IS LOGI

COR

LOGI…

…
MUMU

COR

… …

Sc
ra
tc
hp
ad

Sc
ra
tc
hp
ad

MAC

IS LOGI

COR MAC

IS LOGI

COR

LOGI

…

…
MUMU

COR

C
ro

ss
ba

r

Data Transceiver

PE
Manager

PE
Manager

Data

Control

Pattern
address range

CMD

SPM
Data

Neighboring MU

Sc
ra

tc
hp

ad

……
…

…

State
Control

Port

Port

PortPort
RU

LC

LOGIC

IMEM

Instruction

State
Control

Port

Port

PortPort
RU

LC

CMAC

IMEM

Data

Instruction

Control
State

Control
Port

Port

PortPort
RU

LC

CORDIV

IMEM

Instruction

Memory
mapped
Register

Neighboring MU

Data
Data Transceiver

R

R

C

I

R

R

C

B

R

R

C

I

R

R

C

B
Kernel 2

Kernel 1

Input

…

R

R

R

R
Buffer (IS)

psum
psum

…

… …

Output

Output

Input psumISMAC LOGICOR

…

psum

Input
Input

C: Convolu4on B: Buffer
R: Route I: Idle

Add
Out

Mult
Out

OF** In

Mult OPB

Mult OPA

Add OPB

Add OPA

Mult
Out

M
ov

e
C

ro
ss

ba
r

In
pu

t R
eg

is
te

r C
ro

ss
ba

r

Port

C
M

AC
 1

Move
Register

Global
FIFO

Add OPA

*CMD: Configuration Command
**OF: Operation Fusion

Add OPB

Mult OPA

Mult OPB

C
M

AC
 2

Port

Port

OF** In

Add
Out

1 Complex-number MAC

4 Real-number Mac

Operation
Fusion

OF** In

OF** In

Operation
Fusion

Port

Destination
Register

IMEM
LC

Configuration Register

Loop Ctrl.

Instruc(on

Port Ctrl.
Port Ctrl.

Port Ctrl.

Port Ctrl.
CMD*

CMD*FU Ctrl.

FU Ctrl.

Peak Performance Efficiency / Throughput
Trade-off Number of

Required PEs*
Kernel / Workload Throughput Efficiency Throughput Efficiency

FIR (GMACs, GMACs/J) 252.2 254.5 45.19 409 0.5 / tap

GeMM (GMACs, GMACs/J) 148.1 162.2 42.33 242.13 2 / row

2DConv (GMACs, GMACs/J) 231.7 250.5 58.35 375.63 2 / row

256 pt FFT(Gsamples/s, nJ/FFT) 4.41 53.96 0.974 31.6 13

4 X 4 QR (Mmatrix/s, nJ/matrix) 16.07 19.3 3.54 8.62 12

4 X 4 Back Subs4tu4on (Mmatrix/s, nJ/matrix) 107 2.69 15.67 1.24 2

OFDM (Gbits/s, Gbits/J)
FIR, FFT, autocorrela4on 46.46 59.57 9.896 108.74 19

MIMO
MMSE (Mmatrix/s, nJ/matrix) 1.95 178.5 0.33 82.89 20

DMV (Gbits/s, Gbits/J) 213.12 310.68 34.87 576.76 2

*Rou4ng PEs excluded

Max Efficiency: 0.42V
507GMACs/J, 2.13GMACs

Max Performance: 1.0V
272.2GMACs/J, 264GMACs

* includes only compute cores, interface and peripheral circuits
** Calculated from plot and scaled to iso-throughput and for technology
*** Throughput cannot match with this work, compare with max throughput
reported. **** es4mated based on plots. All bitwidth are 16 bit.

This Work VLSI’14[1]* VLSI’19[2]***

Technology 12 nm 40 nm 65 nm

Total Cores 256 16 16

Data memory per
core (KB) 1.47 None 0.5

Frequency Range
(MHz) 8.55-506 25-500 0.1-20****

FIR
(GMACs/J) 409, 0.65V 467**, 0.73V 26, 0.54V

4X4 QR
(nJ/Matrix) 8.62, 0.65V 6.05**, 0.49V N/A

256 Point FFT
(nJ/FFT) 31.6, 0.65V N/A 1855, 0.54V

Number of
Kernels 17 5 5

2D Convolu4on GeMM

This Work ISSCC’17[3]* This Work VLSI’18[4]**

Technology 12 nm 28 nm 12 nm 14 nm

Voltage (V) 0.65 0.575 0.65 0.9

Efficiency (GMACs/J) 375 810 242 541

Energy Gap 2.16x 2.23x

All bitwidth are 16 bit. * Listed numbers are scaled to iso-throughput and technology
** Throughput cannot match with this work, compare with max throughput reported

G
lo

ba
l S

cr
at

ch
pa

d

M
an

ag
em

en
t U

ni
t

PE Array

4.6mm

4.
6m

m

G
lo

ba
l S

cr
at

ch
pa

d

M
an

ag
em

en
t U

ni
t

Technology GF 12nm CMOS

Area (mm2) 21.16

Voltage (V) 0.42-1.0

Frequency (MHz) 8.55-506

Peak Efficiency
(GMACs/J) 507

Peak Performance (GMACs) 264

On-Chip Memory (KB) 522

C

R

R

R

S

B

R

R

S

R
…

R

I

I

R

R

R

C

R

C

R

Output

…
Input

C

R

R

I

F

B

F

B
…

R

I

E

R

R

R

C

R

C

R

Output

…
Input

D

B

C: Convolu4on B: Buffer S: Summa4on F: Bujerfly
D: Demodula4on E: Channel Es4ma4on R: Route I: Idle

Input psum FIR output
Delayed FIR output Product

Received LTF LTFFFT bujerfly output
HDemodulated output

Autocorrela6on

16 Tap
FIR

64 point FFT
Channel Es4ma4on

Demodula4on

Reprogram Time : 0.5us

Buffered Data

16 Tap
FIR

Cycle
Current Slot 0 Slot 1

PC Loop# Addr. Loop# Addr. Loop#
0 A
1 B
2 C 2 B 2
3 D 2 B 2
4 E 1 D 1 B 2
5 F 1 D 1 B 2
6 D 0 D 0 B 2
7 E 0 D 0 B 2
8 F 0 D 0 B 2
9 G 2 B 2
10 H 2 B 2
11 B 1 B 1
12 C 1 B 1
13 D 1 B 1
14 E 1 D 1 B 1

PC+1 Address …

……

PC A B C D E F G H I
Loop
Control / Start

[3] / Start
[2] / End / End /

Record B

Shift B

Record D

Return D

Shift BExit Loop

Return B

Record D

Shift B

Address Address

Loop # * Loop # Loop #Loop

Slot 0 Slot 1 Slot 2Current

-1

Loop Control PC_next Loop_next Shift Register Action
Start [i] PC+1 i-1 Address / loop # registers

shift right**
End
(loop > 0)

Address
(Slot 0)

Loop - 1 Loop # (slot 0) = Loop - 1

End
(loop = 0 & slot 1 invalid)

PC+1 N/A Address / loop # registers
shift left

End
(loop = 0 & slot 1 valid)

PC+1 Loop #
(slot 1)

Address / loop # registers
shift left

Other PC+1 Loop N/A

*Loop # (slot 0) is updated with Loop, i.e. Loop # (slot 0) always equals to Loop
**Upon a right shift, Addr. # (slot 0) = PC, Loop # (slot 0) = input loop count i-1

Shift Registers

Loop Control
(From IMEM)

PC
(To IMEM)

Loop Control Unit

Loop
Number

(From RU)

X

R

O

B

X

R

O

B

R

R

M

R

I

R

M

R

X

R

O

B

X

I

O

B

C

I

S

I

R

I

M

R

R

I

M

I

R

I

M

R

I

I

M

I

Back Substitution. R à R-1

4X4 Matrix Multiply
R-1K = WMMSE

4X4QR: {As, I} = {R, Q-1}

4X4 Matrix Multiply
H’H + N0I = As

4X4 Matrix Multiply
Q-1H’ = K

H, N0

WMMSE

Matrix Row
Rota4onal Matrix

R
Reciprocal

R-1

psum
K Q-1 WMMSE

H, N0

Reprogram Time : 0.2us

R

I

M

R

R

I

M

I
y

M: MAC B: Buffer O: Matrix Rota4on X: Rota4onal Matrix
S: Itera4ve Mul4ply Subtract C: Reciprocal R: Route I: Idle

Move
Reg !

4X4 Matrix Vector Multiply
! = WMMSE y

As

2022 Symposium on VLSI Technology & Circuits Digest of Technical Papers 203Authorized licensed use limited to: University of Michigan Library. Downloaded on September 23,2022 at 17:28:18 UTC from IEEE Xplore. Restrictions apply.

