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ABSTRACT
Graph Pattern Mining (GPM) algorithms mine structural patterns
in graphs. The performance of GPM workloads is bottlenecked by
control !ow and memory stalls. This is because of data-dependent
branches used in set intersection and di"erence operations that
dominate the execution time.

This paper #rst conducts a systematic GPM workload analysis
and uncovers four new observations to inform the optimization
e"ort. First, GPM workloads mostly fetch inputs of costly set oper-
ations from di"erent memory banks. Second, to avoid redundant
computation, modern GPM workloads employ symmetry breaking
that discards several data reads, resulting in cache pollution and
wasted DRAM bandwidth. Third, sparse pattern mining algorithms
perform redundant memory reads and computations. Fourth, GPM
workloads do not fully utilize the in-DRAM data parallelism.

Based on these observations, this paper presents NDMiner, a
Near Data Processing (NDP) architecture that improves the per-
formance of GPM workloads. To reduce in-memory data trans-
fer of fetching data from di"erent memory banks, NDMiner inte-
grates compute units to o$oad set operations in the bu"er chip
of DRAM. To alleviate the wasted memory bandwidth caused by
symmetry breaking, NDMiner integrates a load elision unit in hard-
ware that detects the satis#ability of symmetry breaking constraints
and terminates unnecessary loads. To optimize the performance of
sparse pattern mining, NDMiner employs compiler optimizations
and maps reduced reads and composite computation to NDP hard-
ware that improves algorithmic e%ciency of sparse GPM. Finally,
NDMiner proposes a new graph remapping scheme in memory and
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a hardware-based set operation reordering technique to best optimize
bank, rank, and channel-level parallelism in DRAM. To orchestrate
NDP computation, this paper presents design modi#cations at the
host ISA, compiler, and memory controller. We compare the perfor-
mance of NDMiner with state-of-the-art software and hardware
baselines using a mix of dense and sparse GPM algorithms. Our
evaluation shows that NDMiner signi#cantly outperforms soft-
ware and hardware baselines by 6.4× and 2.5×, on average, while
incurring a negligible area overhead on CPU and DRAM.

CCS CONCEPTS
• Hardware → Emerging architectures.

KEYWORDS
Graph pattern mining, near data processing, hardware-software
co-design
ACM Reference Format:
Nishil Talati, Haojie Ye, Yichen Yang, Leul Belayneh, Kuan-Yu Chen, David
Blaauw, Trevor Mudge, and Ronald Dreslinski. 2022. NDMiner: Accelerat-
ing Graph Pattern Mining Using Near Data Processing. In Proceedings of The
49th Annual International Symposium on Computer Architecture (ISCA ’22).
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3470496.3527437

1 INTRODUCTION
Graph Pattern Mining (GPM) algorithms are used in numerous
applications, including bioinformatics [14], cyber-security [18, 42],
social network analysis [55, 57], and spam detection [28]. Despite
their prevalence, GPM workloads are severely stalled on modern
hardware platforms [8, 12, 60]. A majority of this performance
slowdown is attributed to the irregular memory and complex data-
dependent branch instructions used in set intersection and di"er-
ence operations that dominate GPM workload execution times.

Prior hardware works have addressed the ine%ciencies of GPM
workloads either by proposing domain-speci#c accelerators [12, 60]
or Near Data Processing (NDP) [8]. These works, however, can
be signi#cantly improved. While accelerators like FlexMiner [12]
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Challenges Proposed Optimizations

Wasted DRAM bandwidth
due to symmerty breaking

Load Elision Unit
Breaks symmerty in hardware

Unnecessary reads when
mining sparse patterns

Compiler optimizations to
improve algorithmic efficiency

Unexploited in-DRAM
data parallelism

Graph remapping and
set operation reordering

*This also includes multiple near-data PEs. 0 2 4 6 8 10 12 14 16
Speedup (x)

Performance Improvement

12.7x

7.7x

3.5x*

1.0x (Baseline NDMiner)

Figure 1: NDMiner optimizations and corresponding perfor-
mance improvements inspired by the challenges of acceler-
ating GPM workloads. Optimizations are cumulative as the
bars move down.

employ application-speci#c control and data paths, the general-
purpose nature of their memory subsystems su"ers from unneces-
sary data movement. On the other hand, SISA [8] optimizes GPM
software by using a set-centric ISA and improved intersection al-
gorithm. SISA, however, maps GPM computation to generic NDP
architectures, e.g., Ambit [46], without specialization. Therefore,
GPM performance can be further improved by employing domain-
speci#c techniques to design NDP architectures. To best design a
domain-speci#c NDP solution, it is important to #rst understand
the unique characteristics of GPM workloads.

To this end, we conduct a systematic characterization of GPM
workloads to understand their sources of ine%ciencies. This leads
to four unique takeaways. First, because of the irregular graph
data layout in memory, GPM workloads read data from di"erent
DRAM banks to compute set operations. Second, the symmetry
breaking optimization used in modern GPM workloads discards
most vertices fetched from memory in each iteration, resulting
in cache pollution and wasted DRAM bandwidth. Third, sparse
pattern mining algorithms perform several redundant reads and
computations, leading to low algorithmic e%ciency. Fourth, the size-
limited memory controller queue does not allow GPM workloads
to fully utilize internal DRAM data parallelism.

In this paper, we present NDMiner—an NDP architecture to
accelerate GPM workloads. In addition to tapping the abundant
in-memory data bandwidth, the goal of this design is to exploit
the presented domain-speci#c insights for optimization. NDMiner
proposes architectural innovations to a general-purpose system
with low-cost compute units within a DIMM-based DRAM and CPU
to e"ectively execute costly set operations in GPM. To support NDP
operations, we also present a hardware-software interface that (a)
extends the host ISA to include NDP instructions, (b) transforms
GPM source code to use these NDP instructions, and (c) extends
the memory controller design to orchestrate in-DRAM compute.

We further optimize NDMiner using domain-specialization as
shown in Fig. 1. First, NDMiner integrates a new load elision unit
in hardware to alleviate the DRAM bandwidth wastage due to sym-
metry breaking. This unit terminates unnecessary loads by breaking
symmetry in hardware. Second, NDMiner employs compiler opti-
mizations to improve the algorithmic e%ciency of sparse pattern
mining algorithms. This avoids redundant data loads and compute
operations by !attening the loop nest into composite set operations
and hoisting loop invariant computations out of the loops. We also

present how to map these computations to NDP hardware. Third,
NDMiner reorders set operations at runtime to exploit internal
data parallelism in DRAM. To make this reordering possible at
low-cost, we #rst propose a novel graph data remapping scheme
in DRAM. Based on this remapping, we design a new vertex ID–
based reordering hardware that examines a large window (e.g.,
1024 entries) of set operations and reorders them to insert requests
into a size-limited memory controller. The goal of this reordering
is to exploit bank, rank, and channel-level parallelism in DRAM.

We rigorously evaluate NDMiner using seven GPM algorithms
that mine cliques, user-de#ned subgraphs, and motifs on #ve real-
world graphs. The input patterns contain a mix of both sparse and
dense patterns. We #rst evaluate the e"ectiveness of various de-
sign optimizations by comparing NDMiner con#gurations with a
baseline NDP architecture that integrates one set operation unit
per channel. As shown in Fig. 1, proposed optimizations signi#-
cantly improve the performance of this baseline design by 12.7×
and reduces energy consumption by 5.1×, on average (more re-
sults in §8). We also compare NDMiner with the state-of-the-art
GPM software (i.e., GraphPi [48] and Pangolin [10]) and hardware
(i.e., FlexMiner [12]). We show that, on average, NDMiner signi#-
cantly outperforms software and hardware baselines by 6.4× and
2.5×. Post-synthesis estimation of proposed circuits shows that
NDMiner achieves these improvements at a negligible area cost.

In summary, we make the following novel contributions.
• A detailed analysis of GPM workloads uncovering new op-
portunities for performance optimization.

• Load elision unit: a novel design that breaks symmetry in
hardware to avoid unnecessary loads.

• Compiler optimizations: a collection of software techniques
and corresponding hardware mapping to reduce redundant
loads and computations in sparse GPM.

• Graph remapping and set operation reordering: novel tech-
niques to reorder computation in GPM to exploit internal
data parallelism in DRAM.

• NDMiner: an end-to-end system that combines aforemen-
tioned optimizations that signi#cantly improves the perfor-
mance of the state-of-the-art GPM hardware accelerator by
2.5×, on average, at negligible silicon cost.

2 BACKGROUND
This section brie!y discusses the background on GPM and NDP.

2.1 Graph Pattern Mining (GPM)
GPM problem #nds all unique subgraphs (also known as embed-
dings) in an input graph that are isomorphic to a given input pattern.
A pattern is isomorphic to a subgraph if there exists a one-to-one
mapping of all the vertices and edges between the pattern and a sub-
graph. Permuting vertices and edges of a given subgraph generates
equivalent subgraphs, also called automorphic embeddings.

GPM algorithm. It uses a search tree to enumerate embeddings
in an input graph ! matching a user-de#ned pattern " . From all
single-vertex subgraphs, the tree visits one node/edge at a time
to expand the embedding in each level. The isomorphism test is
performed after all the embeddings reach a desired tree depth (i.e.,
size of the embedding), where the number of vertices in expanded
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Algorithm 1 Pseudocode for Triangle Counting (TC)
1: procedure!"#_$%(!, " ) ⊲ G: graph, P: pattern (triangle in this case)
2: &'(_)*+,-./0 = 0;
3: for' ∈ 1 do ⊲ V: Vertex set of G, {' }: single-vertex embedding
4: 2! = ! .3')_&/+.ℎ53*0 (') ; ⊲ Neighborhood expansion
5: for 6 ∈ 2! do ⊲ {', 6 }: two-vertex embedding
6: if 6 ≥ ' then ⊲ Neighborhood #ltration for symmetry breaking
7: break;
8: 2" = ! .3')_&/+.ℎ53*0 (6) ; ⊲ Neighborhood expansion
9: 2!" = Intersection(2! , 2" ) ; ⊲ Set intersection
10: for 7 ∈ 2!" do ⊲ {', 6,7 }: three-vertex embedding
11: if 7 ≥ 6 then ⊲ Intersection #ltration for symmetry breaking
12: break;
13: &'(_)*+,&.-/0++;
14: return &'(_)*+,&.-/0 ;
15:
16: procedure Intersection(8/)9, 8/):) ⊲ Set intersection procedure
17: +&)/*0/;)+3&_*/0'-) = [];
18: while + < 8/)9.0+</ () and = < 8/):.0+</ () do
19: if 8/)9 [+ ] < 8/): [ = ] then ⊲ Data-dependent control !ow
20: +++;
21: else if 8/)9 [+ ] > 8/): [ = ] then ⊲ Data-dependent control !ow
22: =++;
23: else ⊲ 8/)9 [+ ] = 8/): [ = ]
24: +&)/*0/;)+3&_*/0'-) .+&0/*) (8/)9 [+ ]) ;
25: +++; =++;
26: return +&)/*0/;)+3&_*/0'-) ;

subgraphs matches the number of vertices in " . Following the termi-
nology in Peregrine [22], GPM algorithms can be broadly classi#ed
in two categories: (a) pattern-oblivious, and (b) pattern-aware. Pere-
grine concludes that pattern-aware GPM algorithms outperform
their pattern-oblivious counterparts by eliminating redundant com-
putations. Therefore, we use pattern-aware algorithms.

Algorithm 1 shows the pseudo-code of triangle counting. Start-
ing from single-vertex embeddings shown in line 3, the algorithm
expands them to two-vertex embeddings (line 5) by #nding their
outgoing neighbors (line 4). The graph is typically stored in a Com-
pressed Sparse Row (CSR) format in memory. A node’s neighbor list
is found by #rst indexing into the o"set list and then into the edge
list. These embeddings are further expanded by #nding common
neighbors amongst its vertices. The intersection (line 9) of vertex
neighborhood sets is employed to #nd common neighbors. With
this expansion, embeddings isomorphic to a desired pattern (trian-
gle) are found. Lines 16–26 present the pseudocode for performing
the intersection operation. Similar to state-of-the-art graph frame-
works [6], we assume that neighbors of any node stored in the edge
list are sorted by their vertex IDs. This allows for completion of
intersection in linear time. Notably, the pattern-aware GPM algo-
rithms only #nd embeddings isomorphic to " . In other words, the
isomorphism test is encoded into the algorithms, precluding the
necessity for explicit isomorphism tests after search tree expansion.

GPM algorithm optimizations. Pattern-speci#c GPM algo-
rithms enable several performance optimizations. We brie!y dis-
cuss (a) optimized schedule, and (b) symmetry breaking restric-
tions optimizations used in this paper, and refer the reader to prior
works [9, 10, 22, 23, 30, 31, 48] for other optimizations. The schedule
of a GPM algorithm determines the order at which each vertex
of a pattern is searched. When searching for patterns, restrictions
are applied to vertex IDs to avoid redundant computation. This is
also known as symmetry breaking/search tree pruning as it avoids
expanding unnecessary tree branches that cannot lead to " .

GraphPi [48] shows that there is a large design space to #nd the
optimal schedule and restrictions that can a"ect performance by

up to three order of magnitude. This is because the schedule and
restrictions de#ne the size and pruning level of the search tree that
lead to signi#cant performance di"erences. Lines 6 and 11 show
the instances of the !ltration operation applied to triangle counting
for search tree pruning. Because a triangle is a symmetric pattern,
the order at which the vertices are searched makes no di"erence,
leading to only one schedule. However, large asymmetric patterns
can bene#t signi#cantly from schedule optimizations. This paper
adopts optimal schedule and restrictions from GraphPi.

2.2 Near Data Processing
Near Data Processing (NDP)1 improves the performance of mem-
ory bound workloads by reducing the amount of costly o"-chip
data transfers and exposing high internal memory bandwidth to
compute units. The early e"orts in this direction date back to the
’90s [17, 19, 36, 38, 39] that integrate logic units in DRAM. More
recent NDP architectures include computing in DRAM [2, 7, 15, 25,
27, 61, 62] and emerging memory technologies [13, 29, 47, 50, 52].

NDP proposals can be broadly classi#ed into three categories
based on the proximity of compute units from data. This classi#ca-
tion is crucial to determining the design choices while designing
novel NDP architectures. Approaches similar to MAGIC [52] pro-
cess data within a memory mat/subarray without reading them out.
Such proposals enjoy high internal data bandwidth if the operands
are aligned in two memory rows/columns. Other approaches pro-
cess data at local/global row bu"er (e.g., a recent industrial pro-
posal from Samsung [27]). While these proposals do not require
the operands to be aligned within memory rows, they can be best
utilized when the operands are present in the same bank. Although
it is possible to move data internally within the memory from one
bank to another using RowClone [45], frequent data movement can
limit the bene#t of near data processing. Lastly, other proposals
place computation within the bu"er chip or logic layers of the mem-
ory (e.g., RecNMP [25] for DIMM, Teserract [2] for HMC). These
approaches can avail data from di"erent banks, however, their band-
width is limited by the data acquisition bandwidth at the bu"er
chip or the TSVs in 3D DRAM. In sum, where to place compute
units within memory depends on the workload characteristics.

3 FINDING OPTIMIZATION OPPORTUNITIES
FOR GPM

This section presents unique GPM workload characteristics to mo-
tivate NDMiner design. We divide these #ndings into well-known
GPM characteristics and new #ndings based on our pro#ling results.

3.1 Well-Known GPM Characteristics
Prior optimization works [8, 12, 43, 60] #nd several unique charac-
teristics of GPM workloads. We summarize them below.

1Without losing generality, we refer to computing in/near memory approaches to Near
Data Processing (NDP).
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Takeaway 1. Set intersection and di"erence operations
dominate the execution times of GPM workloads.
Takeaway 2. GPM workloads use simple arithmetic com-
pute instructions (e.g., shape count increments) that do not
contribute to stall cycles.
Takeaway 3. The irregular memory accesses and their de-
pendent control !ow operations are the major sources of
bottlenecks in GPM workloads.
Takeaway 4. GPM algorithms mostly use read-only data
structures o"ering the opportunity for massive parallelism
without needing synchronization.

3.2 Novel GPM Characteristics
In addition to validating well-known characteristics of GPM work-
loads, this work #nds the following novel characteristics that we
employ for NDMiner hardware design.

Distribution of input sets in memory. To better understand
the workload behavior of GPM, we examine the memory locations
of set operation inputs used in computing di"erence and intersec-
tion. Fig. 2 shows this distribution classi#ed into four categories: (a)
same bank, (b) di"erent banks in the same bank group, (c) di"erent
bank groups on the same rank, and (d) di"erent ranks. The #gure
shows that a majority of the time, the set operands are present in
di"erent banks. Because these workloads perform a large number
of set operations that choose inputs interleaved between di"erent
banks/ranks based on vertex IDs, there is less than 5% di"erence in
their operand distributions. This result o"ers insight into where to
best place NDP compute logic to optimize GPM workloads.

Takeaway 5. GPM workloads fetch data from di"erent
DRAM banks to compute set operations.
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Figure 2: Distribution of locations of set operation inputs
showing that GPM workloads mostly fetch operands from
di!erent banks.

Dense Patterns Sparse Patterns Mixed Patterns
P1 P2 P3 P4 P5 P6 P7

wiki-vote 2.4% 1.2% 0.7% 37.8% 5.9% 26.1% 47.8%
pokec 1.3% 1.0% 0.9% 14.6% 1.5% 25.5% 36.5%

patents 4.0% 3.0% 2.6% 13.8% 6.4% 26.4% 42.7%
livejournal 2.5% 5.4% 6.4% 45.4% 7.1% 26.1% 39.9%

Table 1: Percentage of vertices utilized in the next search lev-
els out of all fetched vertices because of symmetry breaking.
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Figure 3: Examples of redundant load and computation in
sparse pattern mining algorithms (i.e., subgraph mining for
diamonds and four cycles).

Adverse e!ect of symmetry breaking. As presented in §2.1,
advanced GPM algorithms use symmetry breaking to avoid redun-
dant computation. For triangle counting, this is re!ected in lines 6
and 11 of Algorithm 1. In e"ect, only a fraction of the computed
neighborhood or set operation results (lines 4 and 9) are used in the
next phase of computation, which we call the !lter operations. To
understand the e"ect of #lter operations, we calculate the fraction
of vertices used in the current GPM iteration out of all the vertices
fetched in the previous iteration to compute neighborhoods/set
operations. Table 1 shows that 66.5% of the vertices fetched in a
previous iteration are discarded in the current iteration. Sparse
patterns are de#ned as graph patterns where most nodes are not
connected to all other nodes. Conversely, fully connected patterns
(e.g., cliques) are called dense patterns. Intuitively, dense input
patterns utilize a smaller fraction of vertices compared to sparse
patterns. This is because dense pattern mining algorithms employ
more constraints than their sparse counterparts because of their
dense connectivity structures. While this improves the e%ciency
of GPM algorithms by avoiding redundant computation, it pollutes
the CPU caches and squanders useful DRAM bandwidth.

Takeaway 6. Symmetry breaking discards most vertices
fetched from memory in each iteration, leading to cache
pollution and wasted DRAM bandwidth.

Redundant reads and computations for mining sparse pat-
terns. Fig. 3 shows the pseudocode for mining two sparse patterns,
i.e., diamond and four cycle. The #gure shows that, for diamondmin-
ing in lines 7–9, vertices #2 and #3 are found by iterating over the
same candidate sets, i.e., $'0'1. The same trend exists for vertices
#1 and #2 in four cycle mining algorithm (lines 3–6). Furthermore,
line 7 of four cycle mining algorithm shows that neighborhood
computation $'1 is invariant to #2. These properties of sparse
GPM lead to redundant reads and computation. While we use two
example shapes to demonstrate this concept, this redundancy is
common across a wide range of sparse GPM algorithms.

Takeaway 7. Sparse pattern mining algorithms involve
redundant reads and computations.

Set Operation reordering opportunity. While most prior
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Figure 4: Speedup of GPM workloads for di!erent memory
controller reorder window sizes. Results are normalized to
32 window (memory controller read queue) size.

GPM works typically process vertices in an input graph in the
order of their vertex IDs, we design an experiment to #nd if there is
an opportunity to gain performance by reordering the GPM mem-
ory accesses. First, we reorder an input graph in software by using
three graph reordering techniques, i.e., DegreeSort, HubCluster,
and HubSort based on a prior work [4]. This, however, does not
a"ect the performance of GPM workloads. Second, we reordered
the set operations computed in hardware by arti#cially increasing
the memory controller read queue size. Fig. 4 shows the e"ect of
using larger memory controller reordering window sizes on GPM
performance, normalized to a realistic size of 32. The #gure shows
that a larger reordering window improves the workload perfor-
mance by up to 1.6×. This is because a smaller reordering window
is congested by the requests to the same bank, reducing reordering
and data-parallelism opportunity. Larger windows, on the other
hand, #nd requests to better exploit data-parallelism by sending
concurrent requests to multiple banks, ranks, and channels. Notably,
this result does not contradict Takeaway 5 because Fig. 2 shows
operand distribution for a single set operation, whereas Fig. 4 is an
e"ect of operand distribution of multiple set operations.

Takeaway 8.GPMworkloads do not fully exploit abundant
data-parallelism in DRAM because of size-limited memory
controller queues.

3.3 Why NDP for GPM?
As discussed in §2.2, NDP alleviates the performance and energy
overheads of costly o"-chip data transfers between the CPU and
DRAM. This can be used to alleviate the wasteful data transfer
in GPM algorithms because of symmetry breaking (Takeaway 6).
NDP has the potential to reduce cache thrashing and energy wasted
on o"-chip data transfer. Additionally, NDP exposes high internal
memory bandwidth that can be exploited by GPM algorithms as
they o"er ample parallelism (Takeaway 4).

In-DRAM compute parallelism can be best utilized by simple
compute units that can be integrated within the memory in a cost-
e"ective manner. GPM algorithms mostly use adder and compara-
tor logic to perform most of their computations (Takeaway 2). The
simplicity of these operations allows their cost-e%cient integra-
tion within the memory. Resolving load-dependent control !ow
operations at NDP precludes the need for using expensive branch
resolution mechanisms on the CPU. Moreover, irregular accesses
to graph data structures resulting in high memory latency and/or

bandwidth [33, 54] can be better serviced near memory at a low
latency and high available bandwidth, addressing the two main
bottlenecks in GPM workloads (Takeaway 3). In summary, NDP is
an attractive candidate for accelerating GPM workloads.

3.4 How To Best Design NDP For GPM?
The next task is to #ndwhere to place the compute unit withinmem-
ory? As discussed in §2.2, the best place depends on the workload
characteristics. As set intersection/di"erence operations dominate
the execution time of GPM workloads (Takeaway 1), we o$oad
them to NDP units. Furthermore, Takeaway 5 shows that GPM
workloads mostly fetch data from di"erent banks. Therefore, plac-
ing compute units inside the bank would incur signi#cant in-DRAM
data transfer. Hence, we make a design decision to place the com-
pute units at the bu"er chip of DIMMs in NDMiner. While we use
DIMM in this paper, similar design principles can also be applied
to the logic layer of HMC/HBM.

4 HARDWARE-SOFTWARE INTERFACE
This section discusses the hardware-software interface of NDMiner
to support NDP operations for GPM acceleration.

4.1 Supported NDP Operations
Based on Takeaway 1, NDMiner o$oads set intersection and di"er-
ence operations to the NDP units. Additionally, the primary goal of
NDP design is to alleviate the cost of data movement in GPM work-
loads. As presented in Takeaway 6, symmetry breaking results in
wasteful data movement. By using NDP, it is possible to identify and
terminate loads #ltered by breaking symmetry in hardware. This
helps improving the overall e%ciency of the program by eliding
useless loads that prevents cache pollution. Therefore, NDMiner
also o$oads load elision operations to memory. In total, NDMiner
supports #ve NDP operations: (a) complete set intersection, (b)
complete set di"erence, (c) #ltered set intersection, (d) #ltered set
di"erence, (e) load #ltered set.

4.2 ISA Extensions
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Figure 5: Host ISA instructions to support NDP.

To enable software to communicate NDP operations to memory
through the host CPU, NDMiner introduces three instructions in
the ISA as shown in Fig. 5. To support symmetry breaking in hard-
ware (more details in §6.1), these instructions support #ltering of
input sets. A threshold vertex ID is speci#ed (i.e., u_th) that is de-
termined at runtime by the CPU and communicated to the NDP
units. If load elision is not applied, the values of u_th is speci#ed
as –1. The memory address ranges of input sets are indicated by
the base address and length of sets. Similar to recent academic NDP
proposals [2, 25, 61] and an industrial product [27], we assume that
the data allocated for NDP uses physically contiguous memory
blocks. Contiguous mapping ensures that NDP instructions only
have to translate one address, and the rest of the addresses can
be obtained using the address range, even if the addresses rarely
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Figure 6: Code transformations to utilize NDP instructions.

cross the OS page boundaries. This, however, is not a fundamental
limitation of NDMiner as it is also compatible with the current OS
page mapping scheme, which would rarely require more than one
address translations per NDP instruction when set inputs span mul-
tiple pages. Furthermore, while ISA extensions simplify the design
parameters and programming model, computation o$oading to
NDP can be alternatively achieved by using load/store instructions
to memory-mapped registers.

4.3 Programming Model
To utilize aforementioned ISA instructions, an NDMiner compiler
transforms the source code of GPM workloads. First, the compiler
analyzes the source code to extract the instructions amenable to
NDP acceleration. These instructions include set operation compu-
tations, neighborhood loads, and symmetry breaking constraints.
These instances are then replaced with NDP instructions. Fig. 6
shows an example of source code transformations, where lines in
the green and blue boxes in the original source code are replaced
with #ltered load operations. In this workload, the intersection op-
eration is not modi#ed as it receives #ltered neighborhoods as input
(line 7 in Fig. 6(b)). For workloads where neighborhoods are not #l-
tered beforehand, filtered_intersect instruction can #lter sets
before computing the intersection. These code transformations are
translated into the primitive ISA instructions (§4.2) by the compiler
back-end. At runtime, CPU executes these instructions by forward-
ing them to the memory controller, bypassing the cache hierarchy.
Because NDMiner only processes read-only data (Takeaway 4),
bypassing the cache hierarchy does not a"ect the correctness of
the program as all the cached data is always in clean state.

5 NDMINER HARDWARE ARCHITECTURE
Fig. 7 shows an overview of the NDMiner hardware design. Upon
receiving an NDP instruction, the NDMiner memory controller
front-end converts it into multiple composite loads and set oper-
ations for o$oading to DRAM. This section goes over the details
of NDMiner hardware design that includes the design of the mem-
ory controller, near-memory compute units, and the DRAM access
protocol. NDMiner targets a minimally invasive design, where we
aim to utilize the existing hardware resources as much as possible.
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Figure 7: Hardware design overview of NDMiner.

5.1 NDMiner Memory Controller Front-end
Design

Fig. 7(a) shows the NDMiner memory controller design. We intro-
duce a front-end logic unit called the request generator that converts
NDP instructions into DRAM requests. This unit accepts all three in-
structions discussed in §4.2 that perform di"erent operations. Next,
we take an example of #ltered intersection to describe this hard-
ware in detail. The incoming NDPInst speci#es base addresses of
two sets as 0x100 and 0x400, and lengths of 40 and 30, respectively.
Each element in a set is 4B long; there are 16 elements in a cache
line. The instruction also indicates a threshold (u_th) of 10, i.e., the
intersection result must have element values less than 10. With this
information, the request generator unit #rst aligns the addresses
to cache line boundaries, and marks the range of byte o"sets to
read from each cache line. This unit also creates read requests with
a unique opcode (i.e., iRD) indicating intersection operations. The
#gure shows two opcodes: iRD and iRD_b. The latter one marks
the beginning of a cache line for a set. The generated request also
contains byte o"sets and u_th as shown in Fig. 7(b). These requests
are then enqueued into the memory controller queue.

5.2 NDMiner Memory-side Hardware Design
Fig. 7(c,d) show the set operation unit located at the bu"er chip
of DRAM based on Takeaway 5. It reads two sets from DRAM
banks, and computes intersection or di"erence. As shown in 7(d),
the near-data Processing Engines (nPEs) employ bu"ers to tem-
porarily store the cache line of one set while the other set is being
read from DRAM. After the #rst cache lines of both sets are read,
simple comparator logic starts computing intersection/di"erence
result. Each nPE employs the set operation logic similar to lines 16–
26 in Algorithm 1. Sorted neighborhood sets (§2.1) preclude the
necessity for all-to-all comparisons for set operations, and simplify
the hardware design of nPEs. For each operation, the nPE is blocked
until its completion. We name this design choice NDMiner-Base,
where NDMiner employs one nPE per DIMM. While fetching two
sets from di"erent banks, NDMiner-Base can exploit as much as
2× compute bandwidth compared to moving data o"-chip. Because
GPM uses read-only data structures, lack of stores prevents memory
consistency and coherency (between NDP and CPU caches) issues.
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5.3 NDMiner Command Scheduling
This unit dequeues requests from the memory controller and issues
commands to memory. In addition to issuing regular DRAM re-
quests, the NDMiner command scheduler also issues NDP requests
using unique opcodes. To support NDP at a minimal hardware
overhead, NDMiner communicates compute operations in terms
of DRAM commands, as opposed to a prior work [25] that issues
composite operations.

All of the NDMiner operations are performed in conjunction
with memory reads. For example, an intersection operation #rst
reads operands from memory. Therefore, NDMiner issues compute
commands following row activate and prior to row precharge. To
issue commands for requests generated in Fig. 7(b), #rst, an ACT
command opens a DRAM row. Then, an iRD_b command blocks
an nPE for intersection and reads the #rst cache line to the set op-
eration unit. On the address and data buses, the memory controller
sends row/column addresses along with metadata for computation
(i.e., byte o"sets and vertex threshold) in a time-multiplexed fashion.
This obviates the need to add extra buses to support NDP. While
discussed designs enable computation o$oading to NDP, other
non-GPM workloads can still use traditional request queues and
command scheduling logic to access main memory.

6 DESIGN OPTIMIZATIONS
To further improve the performance of NDMiner, this section
presents novel optimization techniques.

6.1 NDMiner-LoadElision: Eliding Unnecessary
Loads

Based on Takeaway 6, symmetry breaking results in wasted DRAM
bandwidth. To alleviate this e"ect, we propose Load Elision Unit
(LEU) that breaks symmetry in hardware. Fig. 7(c,e) show near-
memory compute logic for eliding loads. This unit compares data
values read from DRAMwith u_th and raises a signal when further
loads need to be terminated. It employs a set of comparators as
shown in Fig. 7(e). If a neighbor value read is higher than u_th,
it triggers load elision. Because this unit directly uses cache line
values read from DRAM, it is placed at the column decoder output.
With 16 banks per rank and 2 ranks in a DIMM, the load elision
unit can exploit the compute bandwidth as high as 2×16 = 32× on
a single DIMM compared to moving data o"-chip. We name this
design choice as NDMiner-LoadElision. While NDP operations
do not transfer data o"-chip, we use the data bus response to in-
dicate the termination of reads when the load elision is triggered.
The memory sends a pre-encoded response (e.g., ff) back to the
memory controller indicating a load elision event. This response
enables the memory controller to #nd the pending load requests
for termination.

6.2 NDMiner-Overlap: O!loading Concurrent
Instructions

With one nPE per DIMM, the near-memory set operation units
can only exploit up to 2× compute bandwidth compared to pro-
cessing data o"-chip. While this is favorable, there is still 16× data
bandwidth left unexploited. Moreover, a simple nPE design incurs
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Figure 8: Proposed compiler optimizations and correspond-
ing computation mapping to hardware to improve the algo-
rithmic e"ciency of sparse GPM. Consecutive loops iterating
over same sets are #attened to perform one set read and a
composite computation (shift and record in this example).

low integration cost within the DRAM. To match the available
data bandwidth, NDMiner integrates 16 nPEs per DIMM as shown
in Fig. 7(d). We name this design NDMiner-Overlap, as multiple
nPEs can overlap set operations. This includes (a) concurrently
reading operands from multiple banks to exploit bank-level paral-
lelism, and (b) concurrent set computation. While this is not a novel
optimization, separating this design choice from NDMiner-Base
helps us understand the potential of GPM workloads to exploit
in-DRAM data parallelism.

6.3 NDMiner-Compiler: Optimizing
Algorithmic E"ciency

Based on Takeaway 7, mining sparse patterns involve redundant
load and computation operations. For example, executing lines 7
and 8 in Fig. 8 would read $'0'1 several times to the NDP units
redundantly loading the same data. To improve the algorithmic
e%ciency of these workloads, we propose the following compiler-
based optimizations. First, the compiler identi#es the existence of
redundant reads by examining the candidate sets used in consecu-
tive loops. As shown in Fig. 8(a), two loops in lines 7 and 8 iterate
over the same candidate set $'0'1. Furthermore, line 9 imposes a
symmetry breaking constraint between #2 and #3.

Upon this identi#cation, we propose to#atten the loop nest and
convert it into one set read and a composite computation. For ex-
ample, loop nest !attening in Fig. 8(a) is converted into a staggered
access of$'0'1 as shown in Fig. 8(b). Symmetry breaking constraint
is the reason for this type of access pattern because #2 cannot be
greater than #3. We further map this computation in hardware to
nPEs, where the same candidate set is replicated in two bu"ers, and
{#2,#3} pairs can be found by using a shift-and-record operation.
While this is useful for pattern listing algorithms, pattern counting
algorithms can directly compute the number of patterns by using
simple accumulation equation as shown in Fig. 8(b). In addition to
loop nest !attening, our compiler pass also hoists loop invariant
computations outside the loop. This includes, for example, moving
$'1 computation in line 7 in Fig. 3 before line 5 as neighborhood
of #1 is independent of the value of #2. Applying compiler opti-
mizations signi#cantly improves algorithmic e%ciency of sparse
pattern mining; we name this design choice NDMiner-Compiler.

152



ISCA ’22, June 18–22, 2022, New York City, NY Nishil Talati, Haojie Ye, Yichen Yang, Leul Belayneh, Kuan-Yu Chen, David Blaauw, Trevor Mudge, and Ronald Dreslinski

	�����

����� ��.+���+
��+���+��/
��������.+���+���+����+	
��+
�/
��������.+���+	���+		/
��������.+���+���+�/

���	����.+	/
���
����.+���+���+
/�
��������.+����+	�/
��������.+��/

���������������� ����!


�

�

�

��

�

	�����


�

�

��

��

��

�

�

�


�

��

��

��

��


�

�

�

��

	����� 	�����

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

	�

�
�

��

�
�


�

����� ���!���������� ��������������

�#)��+���+�
�#)��+���+�
�����+���+�
�����+���+�
�#)��+���+�
�#)��+	��+�
�����+
��+


��+��
��+��
��+��
��+��

��# ��
��# ��
��# ��
��# ��

����	�!������
��� $�
��" ���� 

������*�*�
�(�-������

�'�&*�#)�
��# ��$#�!��)(

,��#�����((�#��
�����'�#)�'$,(�
'�$'��'�#��

!�"�)�������*(��$�
&*�*��(�-�

����� ���!����� "�#������!������ �� ���

�#)��+���+�
�#)��+���+�
�����+���+�
�����+���+�
�#)��+���+�
�#)��+	��+�
�����+
��+


+���+�
+���+�
+���+�
+���+�
+���+�
+	��+�
+
��+


��
��

��
��
��

��

��

���
���
���
���
��

	��

�	

��+��
��+��
��+
�
��+
�

��# ��
��# ��
��# �

��# �	

������*�*�
�(�-������

��$'��'�$%�'�)�$#(��'$"���!�'��'�,�#�$,�
)$�$%)�"�-����# �!�+�!�%�'�!!�!�("


�������

�����������������
����	
����������	���

��������

��������

Figure 9: (a) Example graph’s node neighborhoods, (b) base-
line memory controller with a size-limited queue that leads
to frequent bank con#icts when accessing di!erent rows, (c)
proposed neighborhood remapping scheme using a deter-
ministic interleaving of neighborhoods across banks, and
(d) vertex ID-based set operation reordering to exploit bank-
level parallelism in DRAM.

6.4 NDMiner-Reorder: Reordering Set
Operations

Based on Takeaway 8, it is possible to improve the performance
of GPM workloads by reordering set operations to exploit paral-
lelism in DRAM. To further understand the reason behind this
performance di"erence, consider an example where Fig. 9(a) shows
neighborhoods of selected number of nodes in a hypothetical graph.
Fig. 9(b) shows that a traditional memory controller falls short in
identifying operation reordering opportunity because of its size-
limited queues. This can result in frequent bank con!icts if row
IDs of queued requests are di"erent. One straightforward way to
improve the performance is by increasing the size of the mem-
ory controller read queue and let the memory controller reorder
a larger number of read requests. This, however, is not a practical
design as it will signi#cantly increase the latency of memory con-
troller reordering logic, potentially hurting performance of other
applications. Any other technique that uses addresses to reorder
set operations would incur a similarly large overhead. Therefore,
we propose to raise the level of abstraction and reorder set
operations based on vertex IDs at low cost.

The intuition behind our proposal is to encode the vertex ID
in the bank address to #nd a node’s neighborhood. This allows us
to compute the bank address of each set operation at a low-cost,
obviating the necessity to decode an entire address. This can further
be used to reorder operations from a large window size to maximize
bank-level parallelism. Fig. 9(c,d) explain our design with an exam-
ple. We propose to remap each node’s neighborhood to di"erent
banks based on computing a simple hash function of a vertex ID.
While this paper uses a modulo operation to map each vertex ID to
a bank, this is not a fundamental limitation, and this operation can
be replaced by a more sophisticated hash function, if necessary. The
row and column addresses are then encoded to have a contiguous
neighborhood mappings of two vertices without overwriting each
others’ data. A physical address from DRAM row, column, bank,
bank group, rank, and channel coordinates is calculated based on a

DRAM Speci$cation
DDR4-3200, 4Gb ×8, 4 Channels × 1 DIMM × 2 Ranks

32-entry RD/WR queue, FR-FCFS, Skylake address mapping [41]
DRAM Timing Parameters

tRCD=22, tCL=22, tRP=22, tBL=4. tCCD_S=4, tCCD_L=10,
tRRD_S=4, tRRD_L=8, tFAW=34, tRC=78

DRAM Energy Parameters

IDD and VDD parameters obtained from [44]
nPE, LEUs, and Reordering Unit Parameters

16 nPEs and 32 LEUs per channel @1.6GHz,
1024-entry vertex ID-based reordering unit on CPU

Table 2: NDMiner system parameters.

prior work [41]. Fig. 9(c) shows the resultant mapping of nodes v0-
v7’s neighborhoods. Notably, the graph is remapped only once as a
pre-processing step, and it is agnostic to any speci#c pattern being
mined. In practice, we #nd that the remapping cost is at least an
order of magnitude smaller than workload execution, which can be
amortized over multiple runs of GPM algorithms. Because remap-
ping is a pre-processing step, it does not cause TLB shootdown
during workload execution.

At runtime, this mapping information is used to intelligently
reorder and selectively schedule set operations to maximize data
parallelism in DRAM. Fig. 9(d) shows the functionality of reordering
hardware located on the CPU, which takes an operation sequence
as an input and computes bank addresses of neighborhoods used in
each set operation. This is computed by simply applying a modulo
function to vertex IDs. In hardware, modulo operation translates to
simply selecting a few low signi#cant bits, which can be executed
in parallel e%ciently. Based on the bank IDs, set operations are
reordered to have distinct bank IDs in the consecutive operations
in the reordered sequence. Based on this reordering, a subset of
these operations are o$oaded to the memory controller based
on the empty slots in the queue. Because the proposed vertex-
based reordering scheme enables bank address identi#cation at an
extremely low cost, it is possible to reorder operations from a much
larger window size compared to a size-limited memory controller
queue. As presented in Fig. 4, this reordering has a potential to
result in a signi#cant performance improvement. We name this
design NDMiner-Reorder.

7 EVALUATION METHODOLOGY
7.1 Baseline CPU Hardware Platform
For the software baselines, we use an AMD EPYC 7742 processor
with 64 physical cores (128 SMT threads). The aggregate Last Level
Cache (LLC) size is 256MB. The main memory in the system is a
4-channel DDR4-3200 with a 512GB capacity. A prior work [12]
shows that enabling hyperthreading for GPM workloads slows
down performance scaling due to cache contention. Therefore, we
use 64-thread implementations of our software baselines.

7.2 Simulation Infrastructure
We model the cycle-accurate NDMiner performance using Ramula-
tor [26]. Ramulator is a DRAM simulator cross-validated against
real DRAM devices, and extensively used by prior works [25, 59] to
estimate the performance of NDP systems over real CPU baselines.
We faithfully model NDP units and their latencies in Ramulator
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Figure 10: Input graph patterns used for evaluation.

Graph #Vtx #Edge Size Avg Description
(MB) Degree

wiki-vote (wi) 7.1k 103.7k 0.5 14.6 Voting network
pokec (po) 1.6M 30.6M 129.3 19.1 Social network

patents (pa) 3.7M 16.5M 91.8 4.4 Citation network
livejournal (lj) 4.0M 34.7M 162.8 8.7 Social network

orkut (or) 3.1M 117.8M 470.5 38.1 Social network

Table 3: Real-world graph datasets used for evaluation.

based on detailed RTL models. We also validate 1) the timing model
of di"erent input set sizes resulting in unique read vs. computation
times, and 2) the scheduling decisions in presence of NDP con-
straints. The con#guration of modeled memory system is shown
in Table 2. We generate a trace of NDP instructions to feed into
Ramulator and model the NDMiner hardware modi#cations pre-
sented above. As neighborhood set load, intersection, and di"erence
operations take a majority of workload execution time, we model
this computation in Ramulator and compare it with other base-
lines. Notably, in addition to this computation, GPM algorithms
perform other simple computations including shape count incre-
ments. These operations are left to be performed e%ciently using
a multi-threaded host CPU. To estimate the latency, energy con-
sumption, and area overhead of NDP logic, we model NDMiner
using System Verilog HDL and synthesize using a commercial 28nm
technology library using the Synopsys Design Compiler. For vector-
based power estimation, we use Synopsys PrimeTime. While the
nPEs can be clocked at a higher frequency in a logic process, we
conservatively clock them at a lower frequency as they use slower
transistors of the DRAM process.

7.3 Algorithms and Datasets
Algorithms. We mine seven patterns P1–P7 of varying sizes and
connectivity as shown in Fig. 10. The #rst six patterns are the same
as what a prior work FlexMiner [12] used. In addition, we also use
4-motif counting (P7) for comprehensive evaluation. Among these
patterns, the cliques (P1–P3) are dense, fully connected patterns,
and P4–P5 are sparse patterns. Motif counting counts all possible
patterns with a speci#ed number of vertices (i.e., two patterns for
3-MC and six patterns for 4-MC) that includes both dense and
sparse patterns. While we choose these #ve patterns for evaluation,
NDMiner is agnostic to any speci#c pattern, and it canworkwell for
any arbitrary user-de#ned pattern. As detailed in prior works [8, 12],
the simulation times for mining large patterns is quite high (e.g.,
days to weeks); hence we mine patterns of up to #ve vertices.

Num nPEs
per channel

Load
Elision

Loop Nest
Flattening

Op
Reorder

NDMiner-Base 1 ! ! !
NDMiner-LoadElision 1 " ! !
NDMiner-Overlap 16 " ! !
NDMiner-Compiler 16 " " !
NDMiner-Reorder 16 " " "

Table 4: NDMiner con$gurations.

Datasets.We use #ve real-world graph datasets for evaluation
as shown in Table 3. These datasets are diverse in terms of their
sizes from small (wiki-vote) to large (orkut), and connectivity (i.e.,
average degrees). Notably, the amount of simulation time grows
exponentially with the graph size. Hence, we use similar sized
datasets as prior works [12, 60]. We set a simulation timeout of 120
hours (#ve days) and do not include the results for workloads that do
not #nish execution in this time. This mostly includes mining large
number of patterns (P7) on large datasets with slower baselines.

7.4 NDMiner Con$gurations
To present the bene#t of proposed optimization techniques, we
compare NDMiner con#gurations listed in Table 4.

7.5 State-of-the-art Baselines
We also rigorously compare NDMiner with the following software
and hardware baselines. We run all software baselines on server-
grade CPU (§7.1) for 10 times and use an average execution time to
reduce noise in measurements.
GAPBS+GraphPi (software) extracts algorithms fromGraphPi [48]
including optimized schedules and symmetry breaking constraints
and implements them onto GAPBS [6] data structures using a BFS-
based search tree traversal. This baseline is validated against vanilla
GraphPi using output shape counts. The purpose of this baseline is
to evaluate GraphPi algorithms on optimized GAPBS graph data
structures without framework overheads.
GraphPi (software) uses vanilla open-source GraphPi [48].
Pangolin (software) is a collection of open-source benchmarks [11]
based on the implementations of state-of-the-art GPM frameworks
including Pangolin [10] and Sandslash [9].
FlexMiner (hardware) is based on a GPM hardware accelera-
tor [12]. To obtain FlexMiner execution time, we run the CPU
baseline code open-sourced by authors in GraphMinerBench [11]
on an Intel i9 machine (same as used in their paper), and multiply
speedup factors reported in the paper for commonly evaluated al-
gorithms and datasets.
SISA and IntersectX (hardware). We qualitatively compare ND-
Miner with these baselines [8, 43] as their open-source implemen-
tations are not available.

8 EVALUATION RESULTS
8.1 Performance Analysis
Comparison of di!erent NDMiner con$gurations. We #rst
compare the performance of various NDMiner baselines (§7.4) to
estimate the e"ectiveness of proposed design optimizations. Fig. 11
shows the performance of NDMiner con#gurations normalized
to NDMiner-Base. NDMiner-LoadElision outperforms NDMiner-
Base by 2.1×, on average by breaking symmetry in hardware and
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Figure 11: Performance comparison ofNDMiner con$gurations showing the e!ectiveness of proposed optimizations.Workloads
that do not simulate in 120 hours are excluded that mostly include P7 mining. All proposed optimizations together improves
the performance of NDMiner-Base by 12.7×, on average.

avoiding unnecessary loads.NDMiner-Overlap further outperforms
NDMiner-Base by 3.5×, on average, showing that adding extra
nPEs marginally improve performance. This result also shows that
merely adding 16×more NDP compute resources does not automat-
ically o"er signi#cant performance, especially for sparse patterns.
To best tap the potential of NDP, we need further optimizations.

Fig. 11 further shows that NDMiner-Compiler signi#cantly im-
proves the performance of sparse GPM algorithms (i.e., P4–P7),
resulting in an average improvement of 7.7×. Note that this op-
timization is not applicable to dense patterns P1–P3. The bene#t
of this optimization is attributed to the improved algorithmic ef-
#ciency, where NDMiner-Compiler avoids unnecessary load and
compute operations. NDMiner-Reorder further improves the per-
formance of GPM workloads by 12.7×, on average, compared to
NDMiner-Base. This con#guration outperforms all other baselines
by introducing set operation reordering. This reordering #lls up
the size-limited memory controller queue by requests that can be
serviced by di"erent banks, ranks, and channels concurrently to
optimize internal DRAM data parallelism.

NDMiner versus state-of-the-art baselines. Fig. 12 compares
the performance of NDMiner with prior software and hardware
optimizations for GPM. This comparison is conducted with our best-
performing con#guration, i.e., NDMiner-Reorder. NDMiner signif-
icantly outperforms three strong software baseline, i.e., GAPBS +
GraphPi [6, 48], vanilla GraphPi [48], and Pangolin [10] by 7.4×,
6.4×, and 10.9×, on average. Our detailed investigation reveals that
NDMiner uses the same traversal order and symmetry breaking
constraints as other baselines. Therefore, these signi#cant bene#ts
are attributed to (a) reducing the o"-chip data transfer using NDP,
(b) hardware-based load elision with the knowledge of symmetry
breaking constraints, (c) optimizing algorithmic e%ciency of sparse
patterns, and (d) exploiting high in-DRAM compute bandwidth by
appropriately reordering set operation (and not because of better
algorithms from GraphPi).

Fig. 12 also shows that NDMiner outperforms FlexMiner [12] on
commonly evaluated algorithm-dataset pairs by 2.5×, on average.
While FlexMiner improves GPM performance over CPU by domain-
specialization, it uses a traditional memory architecture with on-
chip caches and o"-chip DRAM. Our pro#ling, however, shows
that GPM workloads exhibit wasteful behavior on a traditional
memory hierarchy, and can be signi#cantly optimized by using
NDP. NDMiner outperforms FlexMiner by o$oading computation
to NDP units, improving the algorithmic e%ciency of sparse pattern

Dense
Patterns

Sparse
Patterns

Mixed
Patterns

P1 P2 P3 P4 P5 P6 P7
Loads 4.1× 5.4× 4.9× 2.8× 1.6× 7.9× 12.7×

Comparisons 4.6× 5.0× 4.3× 1.0× 1.6× 4.6× 1.5×

Table 5: Reduction in loads and element-wise comparisons in
set operations due to load elision and compiler optimizations.
Results averaged over di!erent datasets.

mining, and reordering set operations to exploit abundant in-DRAM
data parallelism.

We qualitatively compare NDMiner with SISA [8] and Inter-
sectX [43] because of their lack of available open-source imple-
mentations. While SISA e%ciently maps GPM algorithms to set
operations, it employs general-purpose NDP hardware (e.g., Am-
bit [46]) to o$oad computation. NDMiner, on the other hand, em-
ploys domain-specialized NDP hardware design, circumvents un-
necessary reads and computations, and reorders set operations to
acquire additional performance from NDP. IntersectX optimizes
GPM workloads on a CPU using a stream instruction set and its
microarchitectural support. This, however, fetches data from o"-
chip DRAM that su"ers from wasted DRAM bandwidth. Similar to
FlexMiner, the performance of IntersectX can further be improved
by NDMiner’s domain-specialized NDP design.

Reduction in loads and computation. To better understand
the performance bene#ts of NDMiner, Table 5 shows the reduction
in the number of load and element-wise comparisons for computing
set operations. NDMiner avoids unnecessary loads and element-
wise comparisons by (a) hardware-based load elision (§6.1), and (b)
software-based compiler optimizations using loop nest !attening
and instruction hoisting (§6.3). Dense workloads only bene#t from
load elision that signi#cantly improves their algorithmic e%ciency.
This is because dense patterns use a unique symmetry breaking
constraint for each set operation, where load elision is e"ective.
Sparse patterns, on the other hand, often compute a set operation
once and reuse its result multiple times. Because each such us-
age might have a unique constraint, this sometimes precludes the
employment of load elision because the entire set needs to be com-
puted once. P4 (diamond) is one such pattern where intersection
result is used several times with di"erent constraints. This pattern,
however, still bene#ts from our loop nest !attening technique and
reduces the number of loads. Motif counting (P6-P7) algorithms
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Figure 13: Energy consumption of NDMiner con$gurations
normalized to NDMiner-Base on a representative patents
dataset. P7 is excluded as its baseline simulation times out.

mine several patterns, o"ering better opportunity for both load
elision and compiler optimizations to be e"ective.

8.2 Energy Analysis
Fig. 13 compares the energy of di"erent NDMiner con#gurations,
normalized toNDMiner-Base, using a representative patents dataset.
Energy of mining 4-motif (P7) is not reported as its simulation for
NDMiner-Base times out. The #gure shows that proposed opti-
mizations improve the energy consumption of NDMiner-Base by
1.8×, 2.8×, 3.9×, and 4.7×, on average. This signi#cant energy reduc-
tion is attributed to (a) improved memory tra%c and algorithmic
e%ciency by load elision and compiler optimizations, and (b) re-
duction in static energy by speeding up the program execution by
using multiple nPEs per channel and reordering set operations to
exploit internal DRAM data parallelism.

8.3 Sensitivity Analysis
Fig. 14 shows the performance sensitivity of NDMiner compared to
(a) di"erent set operation reordering window sizes and (b) number
of nPEs per channel. The top #gure shows that increasing the win-
dow size from 1 to 4096 monotonically increases the performance
by 1.6×, on average. Interestingly, there is a marginal performance
increase from 1024 to 4096. The silicon and power costs, on the
other hand, would increase signi#cantly by increasing a window
size by 4×. Therefore, NDMiner design employs a window size of
1024 that best trades o" area and power costs with performance.

Fig. 14 (bottom) shows that the performance of NDMiner im-
proves by 4.2× on average with an increase in the number of nPEs
from 1 to 16. This improved performance shows the opportunity
to overlap large portions of compute operations by availing ample
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Figure 14: Performance sensitivity of NDMiner for di!er-
ent set operation reordering window sizes (top) and number
of nPEs per channel (bottom) on a representative patents
dataset.

near-memory Load Elision Operaration
PE (nPE) Unit (LEU) Reorder Unit

Location DRAM DRAM CPU
Area (((2) 0.01237 0.00096 0.4147
Power ((> ) 18.45 0.36 32.78

Table 6: Area and power estimates of NDMiner circuits.

in-DRAM compute bandwidth. This trend, however, slowly satu-
rates beyond 8 nPEs, at which point, the workload gradually shifts
from being compute bounded to memory bounded. Although using
16 nPEs marginally improves performance, the area and power
overhead of integrating nPEs are minimal (discussed in §8.4), which
informs our choice of using 16 nPEs per channel.

8.4 Overhead Analysis
Table 6 shows the post-synthesis area and power overheads of
NDMiner hardware. While the table shows overheads of individual
circuits, NDMiner design integrates 16 nPEs and 32 LEUs in a
DRAM DIMM, and one set operation reordering unit on the CPU.
The area and power of NDMiner is dominated by the reordering
unit as it employs two 1024-entry bu"ers (one to store incoming
NDP instructions and the other to store reordered instructions). The
cost of these hardware units, however, is negligible compared to
the performance bene#t they provide. Compared to a 100%%2 [32]
area of the DRAM bu"er chip, NDMiner circuits add a minimal
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Symm.
Break. NDP Load

Elision
Loop Nest
Flattening

Op
Reorder

GraphZero [30] " ! ! ! !
GraphPi [48] " ! ! ! !
Gramer [60] ! ! ! ! !

FlexMiner [12] " ! ! ! !
SISA [8] ! " ! ! !

IntersectX [43] " ! ! ! !
NDMiner " " " " "

Table 7: Comparison of NDMiner with related works.

area overhead of 0.23%. On the !ip side, NDMiner signi#cantly
improves GPM performance by 7.4×, on average.

9 RELATEDWORK
Table 7 provides a brief comparison of the most related works with
NDMiner. A more detailed comparison follows.

GPM software systems. Numerous software frameworks ef-
#ciently utilize GPM algorithms on CPUs and GPUs. Early GPM
systems [56] rely on enumerating all possible embeddings, and then
ruling out redundant embeddings using isomorphism tests. Recent
works [10, 22, 23, 30, 31, 48] avoid the expensive #lter operations
and prune out redundant embeddings during the search tree ex-
pansion. Other works strive to reduce the memory consumption of
intermediate embeddings either by relying on SSD [58] or leverag-
ing algorithmic techniques [16]. In addition to optimized software
implementations, this paper shows that GPM performance can be
further improved using hardware-based techniques.

NDP architectures. To alleviate the cost of data transfer over
bandwidth-limited and energy-hungry CPU-memory bus, several
NDP architectures are proposed. Of these works, OMEGA [1] and
PHI [35] augment the CPU memory with low-cost compute units
for graph processing. Other works [2, 7, 15, 61, 62] o$oad graph
computations to the logic layer of HMC. These proposals, how-
ever, are suitable for graph processing and cannot be directly ap-
plied for GPM acceleration because of its unique workload char-
acteristics. For GPM, SISA [8] proposes to o$oad computation
on existing PIM architectures by proposing set-centric ISA and
fast set intersection algorithm. NDMiner improves SISA using
domain-speci#c optimizations (hardware load elision, compiler
optimizations, and set operation reordering). Outside the context
of graph computation, several other NDP architectures are pro-
posed [13, 25, 27, 29, 40, 46, 47, 51–53].

Domain-speci$c accelerators. ExTensor [21] employs fast
intersection circuits for tensor algebra that cannot be used for
GPM out-of-the-box as it does not support key operations like pat-
tern enumeration. Numerous graph processing accelerators aim
at improving the irregular memory accesses via memory system
optimizations [3, 5, 20, 33, 34, 37, 49, 54, 59]. As detailed in [60],
graph processing and GPM workloads have distinct memory ac-
cess patterns. Therefore, the e"ectiveness of graph processing ac-
celerators might be limited when applied to GPM. Few recent
works [12, 24, 43, 60] design specialized architectures for GPM.
Out of these, FlexMiner [12] improves the performance and gen-
erality of prior accelerators [24, 60] by proposing a pattern-aware
GPM accelerator. NDMiner outperforms FlexMiner by employing

a domain-speci#c NDP architecture that includes novels optimiza-
tions like loop nest !attening and set operation reordering. Inter-
sectX [43] optimizes GPM execution on a CPU by extending the
ISA and architecture support. This approach, however, su"ers from
high on-chip storage requirement and unnecessary o"-chip data
transfers from DRAM. NDMiner o$oads compute to low-cost NDP
units augmented with domain-speci#c optimizations.

10 CONCLUSION
Irregular memory and complex data-dependent control !ow instruc-
tions used in set operations dominate the execution time of GPM
workloads. This paper presented NDMiner—a domain-specialized
NDP architecture to accelerate GPM. NDMiner o$oaded the costly
set computations to NDP. NDMiner further improved performance
by uncovering and applying domain-speci#c optimizations. ND-
Miner integrated a near-data load elision unit that broke symme-
try in hardware and terminated unnecessary loads. NDMiner em-
ployed compiler optimizations and hardware mapping techniques
that improved the algorithmic e%ciency of sparse GPM workloads.
NDMiner proposed a graph remapping scheme and set operation
reordering hardware to optimize the bank, rank, and channel-level
parallelism in DRAM. Using dense, sparse, and mixed pattern min-
ing algorithms, we showed thatNDMiner signi#cantly outperforms
the state-of-the-art software (GraphPi) and hardware (FlexMiner)
baselines by 6.4× and 2.5×, on average, at a negligible cost.
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