
986 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 57, NO. 4, APRIL 2022

Versa: A 36-Core Systolic Multiprocessor
With Dynamically Reconfigurable

Interconnect and Memory
Sung Kim , Graduate Student Member, IEEE, Morteza Fayazi , Graduate Student Member, IEEE,

Alhad Daftardar , Graduate Student Member, IEEE, Kuan-Yu Chen , Graduate Student Member, IEEE,
Jielun Tan, Subhankar Pal , Member, IEEE, Tutu Ajayi , Graduate Student Member, IEEE,

Yan Xiong, Graduate Student Member, IEEE, Trevor Mudge, Life Fellow, IEEE,
Chaitali Chakrabarti , Fellow, IEEE, David Blaauw , Fellow, IEEE,

Ronald Dreslinski, Senior Member, IEEE, and Hun-Seok Kim , Member, IEEE

Abstract— We present Versa, an energy-efficient 36-core
systolic multiprocessor with dynamically reconfigurable inter-
connects and memory. Versa leverages reconfigurable functional
units and systolic-enhanced ARM cores to adapt for different
algorithm characteristics, providing optimized bandwidth, access
latency, and data reuse. Hardware support for crucial thread-
synchronization operations enables a tree-based algorithm with
6.5× improvement in synchronization latency. Measured on a
diverse set of compute kernels, Versa’s design features culminate
in median energy-efficiency improvements of 37.2× and 11.6×
over mobile CPU and GPU baselines, respectively.

Index Terms— Accelerators, data movement, data reuse,
energy efficiency, interconnect, multicore architecture, on-chip
memory, programmability, reconfiguration, systolic arrays.

I. INTRODUCTION

KERNELS with diverse computation and data transfer are
ubiquitous in emerging applications but are challenging

to support in general-purpose processors. For instance, sparsity
techniques [1], [2] continue to gain adoption for machine
learning but rely on complex, irregular data structures.
Similarly, irregular algorithms that operate on index structures
(such as trees and adjacency formats) are ubiquitous in graph
analytics [3], [4] and genomics pipelines [5], [6]. Nevertheless,
existing programmable designs lack first-class support for the
types of workloads above and fail to exploit their properties.

Multi-core CPUs are the gold standard in programmability
but incur significant overhead for features, such as speculative
out-of-order (OoO) execution and hardware-managed cache

Manuscript received August 16, 2021; revised October 25, 2021; accepted
December 23, 2021. Date of publication January 31, 2022; date of current ver-
sion March 28, 2022. This article was approved by Associate Editor Borivoje
Nikolić. This work was supported in part by the U.S. Government and in
part by the Defense Advanced Research Projects Agency (DARPA) under
Grant FA8650-18-2-7864. (Corresponding author: Sung Kim.)

Sung Kim, Morteza Fayazi, Alhad Daftardar, Kuan-Yu Chen,
Subhankar Pal, Tutu Ajayi, Trevor Mudge, David Blaauw, Ronald Dreslinski,
and Hun-Seok Kim are with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
(e-mail: sungmk@umich.edu).

Jielun Tan is with Qualcomm, San Diego, CA 92121 USA.
Yan Xiong and Chaitali Chakrabarti are with the School of Electri-

cal, Computer and Energy Engineering, Arizona State University, Tempe,
AZ 85287 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSSC.2022.3140241.

Digital Object Identifier 10.1109/JSSC.2022.3140241

coherence. These features are crucial for fully general soft-
ware and single-thread workloads but have limited utility in
acceleration contexts. On the other hand, GPUs rely entirely
on SIMD compute that amortizes control-related overheads.
SIMD excels on computations with predictable dense data,
and GPU programmers benefit from an SIMT programming
model that lends the illusion of scalar execution. However,
due to thread divergence, the underlying SIMD units are prone
to underutilization and degraded performance on irregular
workloads [7]. Field-programmable gate arrays (FPGAs) are
highly configurable but incur non-trivial hardware overheads in
exchange for gate-level reconfigurability. In addition, FPGAs
exhibit long reconfiguration times at microsecond scales [8].

This work describes Versa [9] (Fig. 1): a general-purpose
accelerator that exploits microarchitectural flexibility to sup-
port diverse algorithms. In contrast to existing designs that
incorporate fixed compute, interconnect, and on-chip memory,
Versa provides optimized modes for each of the previous ones
that are reconfigurable at nanosecond scales. This enables
kernel implementations and hardware that are co-optimized for
per-algorithm characteristics and dynamic application needs.

Versa incorporates the following specific contributions:
1) a tiled accelerator architecture that combines lightweight

scalar cores with reconfiguration techniques to achieve
energy-efficiency and performance improvements up to
105× and 71.6×, respectively;

2) reconfigurable functional units—namely, crossbar inter-
connects and on-chip memories—that exploit mode-
specific properties for optimized bandwidth and latency;

3) enhancements to industry-grade ARM cores that enable
general-purpose, programmable systolic computation;

4) hardware support for fundamental thread-
synchronization operations that reduce synchronization
latency by 6.5×.

Prior designs most similar to Versa include the raw proces-
sor [10], Manticore [11], and the ET-SoC-1 from Esperanto
Technologies [12] (the latter two developed concurrently with
this work). Raw incorporates packet-switched routers that
are instruction-addressable for stream-based dataflow, similar
to Versa’s instruction-level systolic computation. However,
Versa’s systolic mechanism is comparatively lightweight
(e.g., without packet routers), does not require per-packet

0018-9200 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 28,2023 at 19:00:27 UTC from IEEE Xplore. Restrictions apply.

KIM et al.: VERSA: 36-CORE SYSTOLIC MULTIPROCESSOR 987

Fig. 1. Versa exploits reconfiguration of on-chip memory and compute to provide algorithm-optimized hardware characteristics.

initialization or link setup, and is physically constructed to
mimic an application-specific integrated circuit (ASIC) design.
Manticore incorporates hardware for DMA operations into
core registers. This enables removal of explicit load/store
instructions similar to Versa but still incurs DMA setup
overhead and does not facilitate cross-thread spatial data
reuse. ET-SoC-1 is a flexible accelerator targeted for machine
learning that (like Versa) incorporates lightweight, general-
purpose cores. To the best of our knowledge, ET-SoC-1
is the first industry design to incorporate memory that is
reconfigurable as cache or scratchpad. We speculate that the
ET-SoC-1’s reconfigurable memory confers benefits similar to
the Versa design; however, Esperanto has not disclosed details
or performance metrics related to reconfigurability. A broader
discussion of FPGA-based systems, reconfigurable ASICs, and
additional manycore processors is provided in Section VI.

The remaining sections are organized as follows. Section II
introduces the Versa architecture. Section III presents the
reconfigurable functional units, systolic enhancements, and
accelerated thread synchronization. Section IV details the
prototype chip and experiment methodology, and Section V
presents the measured results.

II. VERSA: A RECONFIGURABLE PROCESSOR DESIGN

This section discusses high-level design choices and intro-
duces the Versa architecture.

A. Key Objectives and Design Choices
An accelerator architecture that addresses the limitations

from Section I should cover the following sub-criteria:
1) programmability using productive, high-level languages;
2) tolerance to irregular compute and data-access patterns

(i.e., no thread divergence);
3) maximal support for contrasting (potentially unknown)

workloads.
This work addresses the above with a combination of

existing techniques and novel contributions:
1) ARM-based cores, coupled with a robust ecosystem of

toolchain and compiler infrastructure;
2) multi-threaded execution backed by scalar core clusters,

intrinsically tolerant to divergence;
3) reconfiguration and lightweight pipeline augmenta-

tions to support distinct, workload-optimizing hardware
modes.

While not listed above, the premise of energy efficiency
and performance dictates additional design traits. For instance,
while the possible scopes and granularities of hardware recon-
figuration are virtually unbounded, reconfiguration that is finer

Fig. 2. Composition of a Versa compute tile.

grained generally incurs greater overhead. This is the case
with FPGA designs, as discussed in Section I. Thus, Versa
incorporates reconfigurability that is limited to a few specific
functional units, which are strategically positioned in the
design hierarchy to maximize return on investment. These
aspects are discussed in more detail next.

B. Compute Tiles

The majority of Versa’s energy efficiency, performance
uplift, and research novelty are attributed to features in its
compute tiles (Fig. 2). A tile contains eight ARM Cortex-M4F
“worker” cores that are responsible for the bulk of algorithmic
computation. Workers are single-issue cores equipped with
an IEEE 754-compliant single-precision (i.e., FP32) scalar
floating-point unit (FPU). The inclusion of the FPU extends
the base ARMv7-M ISA with DSP-oriented floating-point
instructions and adds 32 additional operands (s0–s31) to the
M4F register set. Bare-metal ARM binaries are loaded into
a 16-kB instruction memory that resides in each M4F core.
A tile also includes a Cortex-M4F “manager” core to handle
supervisory tasks, including reconfiguration.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 28,2023 at 19:00:27 UTC from IEEE Xplore. Restrictions apply.

988 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 57, NO. 4, APRIL 2022

Fig. 3. Overview of the Versa prototype and memory hierarchy.

Versa workers have reduced functional coupling to the man-
ager, unlike prior processors that explicitly partition manage-
ment and computation. For instance, “synergistic processing
elements” (SPEs) in the cell processor [13] could not directly
access memory, instead of requiring manager-coordinated
DMA transfer between memory and SPE scratchpads. In con-
trast, Versa workers can access system memory without man-
ager intervention, significantly reducing software complexity.

Each tile contains reconfigurable resources to support mul-
tiple hardware modes—namely, the reconfigurable on-chip
memory (ROCM), reconfigurable crossbar (RXB), and
register-to-register (R2R) links. The ROCM and RXB recon-
figure in a pair and compose to provide a multi-modal L1
memory with optimized characteristics; 32 kB of L1 memory
is partitioned into eight slices (4 kB each), where the func-
tionality of each slice is determined by RXB and ROCM sub-
modes. Although it is possible to add reconfigurability in other
levels of the memory hierarchy, early simulation experiments
suggest diminishing returns. This is largely due to the intensity
of data transfer at the L1 level, and the Cortex-M4F’s relative
sensitivity to load/store latency.1 In addition to the ROCM and
RXB, R2R links (illustrated by green arrows) augment the
M4F processors to enable systolic computations in arbitrary
2-D spatial groupings. Further detail on the ROCM, RXB,
and R2R-related enhancements are provided in Section III.

Large data structures that require cross-mode persistence
are placed in a dedicated tile-level scratchpad memory
(T-SPM). Notably, the T-SPM and a global-level scratchpad
(G-SPM) external to the tiles facilitate accelerated thread-
synchronization operations, which is discussed further in
Section III-D. A small point-to-point message buffer between
the manager and each worker facilitates the low-latency
distribution of small runtime variables (e.g., parameters for
load balancing).

1The M4F cores are augmented with a simple form of software-controlled
prefetching to facilitate memory latency hiding. This prefetch mechanism
leverages “store inversion,” where cores may prefetch a cache line by storing
its address to a special memory section. Effectively leveraging this mechanism
involves compiler integration, which we leave for future work.

TABLE I

COMPOSITION OF LOGICAL MEMORY MODES

C. Memory Hierarchy and Tile-External Support

The four compute tiles in the Versa prototype are supported
by two additional levels of cache (Fig. 3). Overall, L1–L3
have capacities that form an “hourglass” or inverted shape,
typical for processors with high core counts. In addition, cache
coherence and invalidation are explicitly software-managed;
this mechanism significantly reduces hardware overhead and
is also the mechanism used in current GPU products.

In terms of cache policies, Versa utilizes both read-allocate
write-through and read-allocate write-back caches. This is due
to relative advantages between cache policies that depend on
the level of temporal locality. For instance, a write-through
policy prevents the problem of “false sharing” [14], while
write-back typically incurs less spurious traffic under high
temporal locality.

The L2 is a 16-kB fixed-function shared cache (S.Cache;
implemented with four 4-kB slices) that utilizes read-allocate
write-through. Slices are statically cache line-interleaved.2

In contrast to a small L2 write-back cache that would retain
“victim” lines evicted from the L1 [15], the write-through L2
effectively serves as a staging area for data shared across tiles.
For instance, while cache lines never experience write-back
eviction to the L2, updates to cross-tile shared data still update
valid cache lines in the L2, obviating the need for L3 access.

The last level of the cache hierarchy contains a 1-kB
“L2.5” cache and 512-kB L3 cache. As discussed above, write-
through stores necessarily propagate through the hierarchy.
However, it is desirable to minimize the number of SRAM
accesses in L3. Thus, in contrast to L2, L2.5 is a fully
associative write-back cache that supports sub-block valid
tracking [14]. Due to the small size of L2.5, only 256 bits
are required for word-granularity sub-block valid state.

The last notable component outside the tiles is an 8-kB
G-SPM that is accessible by managers. Similar to the T-SPM,
the G-SPM facilitates the low-latency transfer of data related
to control and supervisory tasks, in particular for the thread-
synchronization optimizations discussed in Section III-D.

III. SUPPORT FOR ALGORITHM-DRIVEN ADAPTATION

Versa supports five composite modes (Table I) that can
be dynamically configured at runtime, in addition to systolic
R2R. The ROCM implements functionality that governs the
memory type, namely, for ROCM-cache, ROCM-scratchpad,
and ROCM-queue. The RXB implements functionality for the
memory scope, namely, RXB-private, RXB-shared, and RXB-
queue—a variation of the private scope that allows a pair of

2The interleaving function is s = index mod4, where s is the slice number
and index is the cache line index bit-selected from an incoming address.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 28,2023 at 19:00:27 UTC from IEEE Xplore. Restrictions apply.

KIM et al.: VERSA: 36-CORE SYSTOLIC MULTIPROCESSOR 989

Fig. 4. RXB and overview of sub-modes. Diagrams in private and queue
illustrate a sub-section of the crosspoint matrix.

cores to access the same slice simultaneously. The microar-
chitecture of the RXB and ROCM and functionality of their
sub-modes is described in the following.

A. Reconfigurable Crossbar

The RXB [Fig. 4 (top left)] contains eight bidirectional
ports, equal to the number of worker core and ROCM slice
pairs. Each port is implemented with a pair of arbiters, one
per upstream and downstream direction. Arbiters operate on a
per-direction basis—rather than per-signal basis—to amortize
crossbar overhead (e.g., muxes and arbitration logic). The
pair of arbiters is reconfigurable to one of three RXB sub-
modes (Fig. 4): 1) RXB-shared; 2) RXB-private; or 3) RXB-
queue (access from a pair of cores). These sub-modes function
as follows.

1) RXB-Shared: The crossbar provides all-to-all “winner-
take-all” connectivity between workers and ROCM
slices, with least recently granted (LRG) arbitration [16].

2) RXB-Private: The arbiter crosspoints are statically fixed
in both directions with “winner-take-all,” locking con-
nections vertically between worker and ROCM pairs.

3) RXB-Queue: Upstream arbiters use “winner-take-all”
as in RXB-private, whereas downstream arbiters are
statically “split” between a pair of cores.

In RXB-shared, the ROCM slices appear as a single shared
memory that is accessible by all workers in the tile. This
is often beneficial for workloads with data structures that
are accessed (and reused) across multiple cores. In addition,
the 8× increase in capacity provided by RXB-shared reduces
spills and re-fetches from subsequent memory levels for larger
data footprints. In RXB-private, the locking of crosspoints
between worker and ROCM slices not only eliminates bank
contention but also obviates arbitration. This results in up

Fig. 5. Sub-mode logic and SRAM components in the ROCM.

Fig. 6. Comparison of banking schemes (wide versus sub-banked):
(a) data utilization per access and (b) design costs.

to 10.6× improvement in bandwidth and latency relative
to shared mode (i.e., contention elimination + arbitration
skipping), with a lower bound of 1.33× improvement due
to arbitration skipping alone. RXB-queue supports common
streaming DSP and filtering kernels. In contrast to the “winner-
take-all” pattern used in RXB-private and RXB-shared,
RXB-queue resolves structural contention by sub-partitioning
ownership of signals inside an RXB port. This “port-splitting”
enables simultaneous reader–writer access to ROCM slices and
effectively doubles bandwidth over the same port. Notably,
FIFO semantics in queue mode enables full reuse of exist-
ing crossbar signals, without signal duplication or widening
of buses.

B. Reconfigurable On-Chip Memory

Similar to the RXB, the L1-ROCM (Fig. 5) contains logic
to support multiple sub-modes as follows.

1) ROCM-Cache: A four-way set-associative read-allocate
write-through cache. Coherence is software-managed.

2) ROCM-Scratchpad: An explicitly managed scratchpad
memory. Main-memory accesses bypass L1 and are
forwarded directly to L2.

3) ROCM-Queue: An explicitly managed FIFO queue
between core pairs. Main-memory accesses are for-
warded to L2 (as with ROCM-scratchpad).

The cache sub-mode logic is primarily composed of cache
tags, support for non-blocking cache requests (i.e., multiple
outstanding requests), hit/miss detection, and coalescing logic.
Coalescing refers to the case when an existing (in-flight)
request with a cache line match is merged with an incoming

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 28,2023 at 19:00:27 UTC from IEEE Xplore. Restrictions apply.

990 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 57, NO. 4, APRIL 2022

Fig. 7. Conventional instruction sequence: obligatatory memory access
overheads are interleaved with computation.

Fig. 8. Example computation with R2R: (a) instruction sequence, (b) logical
(pipeline) view, and (c) physical view of read/write conventions. R2R-writes
bypass the local register file (RF), while R2R-reads utilize local registers.
Cardinal directions are inverted for writes to maintain spatial symmetry.

request such that dispatch of a new L2 request is unnecessary
(saving both bandwidth and request slots).

Logic to support ROCM-scratchpad and ROCM-queue is
minimal. Aside from interface logic to forward requests that
have addresses pointing to main memory, an ROCM slice
configured as scratchpad is functionally equivalent to a simple
SRAM. With a 4-kB physical capacity (1024 32-bit words),
additional state for FIFO operation in ROCM-queue consists
of two 10-bit read/write pointers.

SRAM is reused across modes, with interface overhead
limited to combinational logic that maps logical addresses
to physical sub-banks [Fig. 5 (right)]. The choice of 32-bit
sub-banks is driven by the native load/store width of the
cores (Fig. 6). While a single 128-bit bank amortizes SRAM
periphery more effectively, 75% of the physical SRAM read
width would be unutilized for 32-bit scalar accesses [Fig. 6(a)].
Thus, sub-banking reduces common-case access energy by
3.4× in exchange for 33% more area [Fig. 6(b)].

C. Systolic Execution

Systolic arrays have been recently applied in ASIC
designs [17]–[20] but lack a general-purpose, programmable
counterpart. While systolic arrays leverage registers for data
movement, inter-core data transfer in load/store architectures
necessitates cache or main-memory access. This reliance
on explicit load/store instructions for data transfer has
two impacts.

Fig. 9. R2R microarchitectural implementation: (a) integration with the ARM
Cortex-M4F pipeline and (b) interception of operands in the R2R Shim and
2-bit link-state control.

1) Performance Costs (Fig. 7): Explicit load/store instruc-
tions consume pipeline cycles, stalling pipeline ALUs
even if they are physically available for use.

2) Energy Costs: Load/store instructions entail underlying
operations that are significantly more dissipative than
register access, e.g., SRAM access and cache traversal.

Versa performs systolic array computation with R2R tunnel-
ing. R2R directly connects adjacent cores to enable program-
mable systolic computation and enhanced spatial data reuse.
Compared to existing multi-threaded programming models,
R2R confers the following benefits:

1) implicit data movement that increases utilization of
pipeline ALUs, up to the physical limit;

2) inter-core data transfer that is R2R only, eliminating the
energy cost of cache and SRAM access.

Fig. 8(a) shows an example R2R instruction sequence across
three cores. In place of explicit loads and stores, data move-
ment with R2R is implicitly controlled by the inclusion of
spatial registers as source or destination operands. This enables
fine-grained, multistep systolic computations [Fig. 8(b)] with
energy and performance benefits similar to an ASIC equiv-
alent. Fig. 8(c) shows the physical view of data movement
between spatial registers. We note that the semantics of R2R
requires a convention for the physical location of a shared
spatial register; in Versa, the write destination always resides in
the remote core. For example, “write to south” and “read from
north” both physically refer to the reader’s “north” register.

R2R integrates seamlessly in the Cortex-M4F pipeline with
minimal overhead. If enabled at runtime (i.e., in software),
the FPU registers s0–s3 are aliased to scalar data links
in the <W, E, N, S> directions, respectively [Fig. 9(a)].

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 28,2023 at 19:00:27 UTC from IEEE Xplore. Restrictions apply.

KIM et al.: VERSA: 36-CORE SYSTOLIC MULTIPROCESSOR 991

Fig. 10. Accelerated thread-synchronization barriers. (a) Distributed scratchpads decentralize atomic updates to barrier data. (b) Serialization is reduced by
partitioning into parallel sections. (c) Comparison with alternative barrier implementations.

Link state (i.e., data valid tracking) requires 2 bits per
bidirectional link. When an instruction writes to an R2R
register, data from register write-back—normally directed
to the local RF—are instead intercepted by the “R2R
Shim” [Fig. 9(b)] and forwarded to an adjacent core. An R2R-
write updates the link state and allows a matching R2R-read
to proceed at the neighbor. In contrast, R2R-reads proceed
if the link state is valid but utilize the local RF. Symmetry
in read/write logic across cores minimizes timing impact and
prevents the creation of new critical paths. Finally, flow control
that prevents stale reads and destructive writes is implemented
by tie-in with existing pipeline stall mechanisms. While this
work augments the FPU RF to demonstrate the R2R concept
with floating point workloads, the integer pipeline may be
similarly extended (if desired) with no loss of generality.

D. Hierarchical Thread Primitives

Thread-synchronization barriers are fundamental operations
that are notorious performance bottlenecks in parallel pro-
grams [21], [22]. For instance, thread barriers may consume up
to 60% of execution time in complex parallel workloads [23].
Because barriers constitute a non-trivial fraction of paral-
lelization overhead, application developers go to significant
lengths to both minimize their usage and develop low-level
optimizations. Prior efforts include entirely new algorithm
implementations [24], [25], in addition to a significant body
of work on underlying synchronization-related primitives [26].
Nevertheless, thread barriers can be minimized but typically
not eliminated entirely.

Thread synchronization entails serialized, atomic updates to
shared variables that track whether threads can safely enter or
exit a region of parallel execution. In conventional CPUs, each
atomic update can require hundreds to thousands of cycles
(i.e., microseconds), largely due to deep coherent caches that
centralize barrier data. In addition, barrier operations have poor
scalability in manycore designs and, in the worst case, exhibit
O(N) scaling with respect to core count.

Versa abolishes cache altogether and instead utilizes scratch-
pads distributed at the tile (T-SPM) and global (G-SPM)
levels for lock and barrier operations. In addition to controlled
latency and full support for Cortex-M exclusive access exten-
sions, the T-SPM and G-SPM enable decentralized updates in
a tree-based strategy [Fig. 10(a)]. The hierarchical (tree-based)
strategy partitions atomic updates across tiles into sections that
run in parallel [Fig. 10(b)], improving scalability from O(W T)

to O(W + T), where W and T are the number of workers per
tile and number of tiles, respectively. Although we focus on
thread barriers for this work, the flexibility of the T/G-SPMs
facilitates the full range of thread-synchronization primitives
built on atomic memory access (e.g., semaphores and multi-
threaded data structures).

The tree-based scratchpad barrier is evaluated [Fig. 10(c)]
against two baselines: a centralized scratchpad barrier that is
measured with Versa in RTL simulation and an off-the-shelf
barrier implementation from the popular pthreads library,
measured on a quadcore ARM A57 CPU. The centralized
scratchpad-based approach alone achieves a 1.7× speedup
compared to the cache-based barrier from pthreads on
the CPU. Adding the tree-based strategy yields an additional
3.8× speedup—or 6.5× total—despite a 9× higher thread
count. Thus, Versa accelerates barrier operations such that
thread synchronization contributes marginally to paralleliza-
tion overheads.

E. Reconfiguration Control

Typical reconfigurable systems (e.g., FPGAs) have combi-
natorially large configurations that necessitate large bitstreams
and significant on-chip storage. In contrast, the finite set
of Versa modes is governed by a single memory-mapped
register (MMR) in each tile, accessible by the manager core.
4-bits control RXB and ROCM sub-modes (2 bits each). Thus,
memory mode transitions involve a simple MMR write and
complete in two cycles. Versa software libraries currently sup-
port (optional) memory reconfiguration by managers during
thread synchronization, which guarantees that reconfigurable
resources are not accessed during the two-cycle reconfigura-
tion window. In contrast, the enable/disable for systolic R2R
is tied to 1 bit in an MMR local to each worker core, and
R2R registers are guarded from automatic compiler usage in
regions of code where R2R is enabled (i.e., correctness for
R2R is compiler-enforced).

IV. PROTOTYPE CHIP AND EVALUATION METHODOLOGY

The following describes the test chip and experiment design.

A. Chip Implementation

Versa is fabricated in a 28-nm CMOS process and occupies
12-mm2 die area (Fig. 11). The design is implemented hierar-
chically with tiles and L3 as hard partitions. L3 also includes
logic for DRAM timing emulation, which is disabled for this

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 28,2023 at 19:00:27 UTC from IEEE Xplore. Restrictions apply.

992 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 57, NO. 4, APRIL 2022

Fig. 11. Left: die photograph. Right: summary characteristics.

Fig. 12. Setups for chip testing. Left: Linux single-board-computer debug
host, primarily for bringup and data collection. Right: FPGA interface for
emulated MPSoC integration.

TABLE II

HARDWARE BASELINES

work and left for future evaluation with Versa’s prefetching
features. A single unstructured clock tree is sufficient to meet
the 2-ns Tclk target, with 520-ps mean insertion delay and
70-ps mean global skew (3.5% of Tclk). At the nominal
voltage (1.0 V), the system operates at 510 MHz, cor-
responding to 811.2 mW and 11.9-GFLOPS power and
performance, respectively.

The test chip incorporates parallel boundary scan interfaces
for test and debug, in addition to a VITA 57.1 FMC interface.
Automated infrastructure for data collection is developed in
python and C++ and runs on a Linux single-board com-
puter [Fig. 12 (left)]. The FMC interface [Fig. 12 (right)]
enables emulated integration with an FPGA MPSoC device,
in particular with hard application-class host cores.

B. Baselines and Test Methodology

Versa is evaluated against two energy-efficient hardware
baselines. The baselines (Table II)—a quad-core ARM A57
CPU and 256-core Maxwell Gen.2 GPU (both integrated
in NVIDIA’s Tegra X1 SoC)—are mobile-class processors
fabricated in a comparable 20-nm CMOS process. All mea-
surements are performed with uncapped power states and
averaged across the latter half of 1000 iterations with the
first half discarded for cache warmup. GPU measurements
utilize custom timers implemented in PTX assembly to
obtain nanosecond-resolution timings free of host-side over-
heads. CPU measurements use nanosecond-resolution timers
from std::chrono.

Power dissipation for the Versa chip is measured from a
benchtop power supply, while the CPU and GPU measure-
ments leverage on-board I2C-addressable current monitors on

Fig. 13. Evaluation kernels from MachSuite: kernels are selected to capture
a range of characteristics.

the Jetson TX1 platform. All major portions of the test chip
(core logic, test and debug circuitry, and SRAM) are included
in measurements and recorded as a lump number from a
single supply. Digital I/O and a tuneable clock generator reside
on separate voltage domains and are excluded but contribute
marginally to power dissipation. The current monitors on
the TX1 enable independent measurement of CPU and GPU
power, but to the best of our knowledge do not compensate
for dc–dc converter losses or DRAM power.3

Five kernels from MachSuite [27] are selected based on
the mix of instruction types, capturing representative diver-
sity (Fig. 13). Stencil2D (2-D convolution) and GeMM (matrix
mult.) exhibit regular data access to dense data, while KMP
(string search) and SpMV (sparse matrix–vector mult.) have
data-dependent variation in access patterns. Mergesort is
a branch and synchronization-heavy comparison-based sort.
We select 2 Versa modes per kernel based on analysis of the
MachSuite reference kernels and modulate data sizes up to
512 kB. The CPU is evaluated with the reference kernels,
while the GPU kernels use hand-optimized CUDA. CUDA
kernels were developed with an effort-level of 2–4 weeks
per kernel, guided by nvprof profiling and analysis with
hardware performance counters. Best effort optimizations were
utilized wherever possible, including memory coalescing, data
tiling, scratchpad (“CUDA shared mem.”) usage, divergence
optimization, and sweeps of thread-block and grid sizes.
Kernels for all platforms use FP32 as the primary workload
datatype, which is predominant in ML research, sparse HPC,
graph analytics, and genomics. We note that an evaluation
with integer datatypes is largely redundant since benefits from
memory reconfiguration are orthogonal, and the performance
of the Cortex-M4F FPU pipeline is a lower bound relative to
integer performance [28].

V. MEASURED RESULTS AND ANALYSIS

Section V-A presents the measured results for MachSuite
test kernels at nominal voltage, followed by voltage-scaling
measurements.

We note that because hardware reconfiguration time is
marginal, the measured results for kernel sequences (with
reconfiguration interleaved) are virtually identical to the sum
of runtimes for kernels executed in isolation. This property
also holds for multi-modal kernels that are decomposed into
distinct phases.

3The TX1 uses two Samsung 16-Gbit LPDDR4 chips (part no.
K4F6E3S4HM) soldered on-board. According to manufacturer datasheets, the
two DRAM chips dissipate between 150 and 400 mW. This would translate
to less than 10% of either CPU or GPU power.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 28,2023 at 19:00:27 UTC from IEEE Xplore. Restrictions apply.

KIM et al.: VERSA: 36-CORE SYSTOLIC MULTIPROCESSOR 993

Fig. 14. Energy-efficiency improvement over CPU and GPU baselines:
(a) trends across dataset footprints and (b) summary boxplots. Boxplots are
labeled on min, median, and max values.

A. Nominal Energy Efficiency and Performance

The benefit of Versa reconfiguration is illustrated by trends
in energy-efficiency across dataset footprints4 [Fig. 14(a)] and
median overall improvements [Fig. 14(b)]. We find that the
best mode varies not only across the test suite but also within
individual kernels. Energy-efficiency improvements between
Versa modes extend up to 3.17×, with 1.53× disparity on
average (Table III). This is a key result that indicates the
lack of any mode that could serve as a static replacement for
reconfigurability. For instance, Stencil2D with Versa private
cache (P.Cache) yields 1.37× higher GFLOPS/W relative to
private SPM+R2R at small data sizes, but the advantage
between modes is inverted at larger sizes. This result is due
to the use of R2R to share and reuse overlapped input patches
across cores and cache pressure as dataset footprint increases.
Overall, Versa achieves 42.2×/2.2× median improvement over
the CPU/GPU for Stencil2D.

For KMP, P.Cache consistently outperforms private SPM
(P.SPM) despite Q−1 reuses of the query per search iteration,
where Q is the query length. Since scratchpads require explicit
buffering, the number of loads/stores per iteration is nearly
doubled relative to cache mode. Given a short query string
(tests use Q = 4), reuse is low and SPM buffering domi-
nates. This results in 2.62× disparity between modes, with
19.6×/22.3× improvement over the CPU/GPU with P.SPM.

4Dataset footprint is the size in bytes for a kernel’s input and output
arguments.

TABLE III

EFFICIENCY AND PERFORMANCE IMPROVEMENT FROM DYNAMIC
RECONFIGURATION BETWEEN MODES. STARS INDICATE

WHETHER THE MODE ADVANTAGE IS
CONSISTENT (!) OR MIXED (")

TABLE IV

MEDIAN IMPROVEMENTS ACROSS ALL KERNELS

GeMM utilizes data tiling in S.Cache and shared scratchpad
modes (S.SPMs) and has a reuse/buffering tradeoff similar to
KMP. However, the benefit of quadratic data reuses outweighs
scratchpad buffering cost, resulting in 1.73× median mode
advantage for S.SPM and 64.5×/2.1× improvement over
the CPU/GPU.

On Mergesort, Versa attains 2.33× and 71.6× speedups
over the CPU and GPU, respectively, translating to
14.4× and 105× energy-efficiency improvements. GPU pro-
filing indicates bottlenecks in parallel synchronization and
branch-heavy comparison operations. Results from Mergesort
suggest that Versa’s independent scalar cores and tree-based
scratchpad barriers are highly effective in practice.

For SpMV, the Versa kernels allocate one or more sparse
dot product operations per worker core, implying that accesses
between cores are non-overlapping. However, since MachSuite
provides matrices in the CSR format, sparse values are packed
contiguously in memory such that multiple sparse rows fre-
quently reside in the same cache lines. This produces implicit
cache prefetching of sparse matrix values and column pointers
into the S.Cache. Synergistic prefetching does not occur in
P.Cache, resulting in a mode advantage for S.Cache up to 1.9×
and 33.5×/11.8× improvement against the CPU/GPU.

Across all kernels, energy-efficiency improvements extend
up to 64.5×/105× against the CPU/GPU, with median
improvements of 37.2× and 11.6× overall [Table IV (left)].

In terms of performance, Versa consistently outperforms the
CPU, but results are mixed against the GPU [Table IV (right)].
The 5.86× median improvement in performance is obtained
relative to the CPU; we estimate that hardware parallelism
accounts for roughly half of the disparity, with the other
half attributed to reconfiguration benefits. GPU performance
ratios range from 0.15× to 71.6× on GeMM and MergeSort,
respectively. While GPUs are known to excel on linear-algebra
computations (which are prevalent in graphics applications),
the difference in core counts is a plausible explanation for

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 28,2023 at 19:00:27 UTC from IEEE Xplore. Restrictions apply.

994 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 57, NO. 4, APRIL 2022

Fig. 15. Chip characteristics under voltage scaling. Left: system fre-
quency and power. Middle: energy per cycle. Right: performance–efficiency
Pareto curve.

the performance shortfall. For instance, multiplying Versa’s
performance by a factor of 8 to normalize core count results
in performance improvements of 1.28× and 1.2× for Sten-
cil2D and GeMM, respectively. However, it is unlikely that
Versa’s power dissipation would scale linearly, in addition
to production-related overheads and design margins that the
Versa prototype lacks. Nevertheless, these observations are
promising and suggest that Versa is comparable on dense
kernels and within the margin of error created by differences
in implementation methodology.

B. Voltage-Scaled Characteristics

We conclude the measurement results with chip character-
istics under voltage scaling, examined on a non-terminating
11-tap FIR filter. This gives a reasonable measure of
“peak-practical” performance and efficiency since the FIR
kernel is compute-oriented but retains a realistic number of
memory accesses. At the far ends of the 0.55–1.0-V operating
range, the chip dissipates 7.9 mW (at 31 MHz) and 811 mW
(at 510 MHz) [Fig. 15 (left)]. Energy per cycle [Fig. 15
(middle)] varies from 543 to 1588 pJ/cycle. The minimum
energy point (MEP) is observed at 0.6 V, resulting in 2.47×
improvement over the nominal voltage. Thus, Pareto-optimal
operation [Fig 15 (right)] corresponds to 11.9-GFLOPS perfor-
mance at 1.0 V or 36.4-GFLOPS/W energy efficiency at 0.6 V.

VI. RELATED WORK

In addition to the designs discussed in Section I, this work
can be compared to recent FPGA systems, reconfigurable
ASICs, and general-purpose processors with programmable
interconnect. We also summarize relevant work on application
phase-based dynamic reconfiguration and optimization.

Whatmough et al. [29] and Schiavone et al. [30] integrated
embedded FPGAs and fixed-function accelerators in het-
erogeneous SoCs; kernels are accelerated by offloading to
different subsystems. In contrast, Versa is a standalone
accelerator architecture that reconfigures to support different
algorithm needs.

The ASICs from [31]–[33] leverage programmable intercon-
nect or packet routers in targeted applications. For instance,
the systolic array in [31] uses reconfigurable routers to support
both dense and sparse linear-algebra operations, the ASIC
from [33] reconfigures between phases of a single sparse
matrix-multiplication algorithm, and Smets et al. [32] used
programmable routers to support multiple image process-
ing kernels. The ASICs above employ reconfigurability to
broaden the capabilities of a fixed-function design. In contrast,
Versa is the first to demonstrate how reconfigurability—in

a general-purpose processor—can enhance programmability
and performance.

The designs presented in [10], [11], and [34]–[36] are fab-
ricated multi-core processors capable of spatial data transfer
that resembles systolic array dataflow. Versa also leverages
programmable interconnect, but for the purpose of reconfigura-
tion in conjunction with ROCM memory modes. Furthermore,
systolic dataflow in Versa is not emulated but instead employs
direct R2R links, with performance and energy–efficiency
characteristics closer to those of an ASIC design.

Versa can be compared to recent coarse-grained recon-
figurable array (CGRA) designs with dataflow execution
[37]–[42]. Dataflow machines [41] depart from von Neu-
mann (program counter-based) execution and instead traverse
dataflow graphs explicitly. Data values and associated data
tags flow through distributed on-chip memories and compute
resources according to graph dependencies (“firing rules”).
In comparison, Versa retains PC-based execution and recon-
figures at higher levels of abstraction but follows dataflow-like
firing rules for systolic R2R. In this sense, Versa is closer to a
“hybrid dataflow machine” or “pseudo-systolic processor” [43]
that incorporates von Neumann systolic processing elements.

Phase-based optimization [44] for adaptive hardware is
a well-established research area, with prior work that
spans the hardware stack [45]–[51]. Effler et al. [45] and
Maas et al. [46] examined program features and learning-
based approaches to optimize main-memory allocation in
real server workloads. Huang et al. [47] optimized the last-
level cache capacity in an off-the-shelf Xeon processor
using L1 and L2 cache performance counters to build a
phase-based heuristic controller. The works [48]–[51] are
architectural (cycle-level simulation) studies that optimize
on-chip memory types, cache sizes, and pipeline resources.
For instance, Pal et al. [49] and Feng et al. [51] leveraged
explicit workload phases and varying data sparsity to reconfig-
ure on-chip resources according to power–performance trade-
offs. Similarly, Dubach et al. [48] and Pal et al. [50] adapted
microarchitectural parameters but used learning-based models
to detect and exploit implicit workload phases. While we
leave an in-depth study of phase-based optimizations on Versa
for future work, our hardware is designed to be compati-
ble with both explicit and implicit phase-based methods, as
described above.

VII. CONCLUSION

This article introduces Versa, a flexible multi-core accel-
erator that optimizes for diversity in computation and data-
access patterns. The premise is that given dynamic compute
and data-access characteristics, any static hardware design
will exhibit suboptimal energy efficiency and performance.
Versa addresses this issue through fast, nanosecond-scale
reconfiguration between distinct hardware modes. Recon-
figurable functional units exploit mode-dependent operating
guarantees (such as privatized data) to optimize microarchi-
tectural characteristics. In addition, Versa’s scalar cores are
augmented to support a new class of programmable, R2R
systolic array computation. To minimize and prevent perfor-
mance bottlenecks on synchronization-heavy workloads, Versa
employs distributed scratchpads that facilitate a tree-based

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 28,2023 at 19:00:27 UTC from IEEE Xplore. Restrictions apply.

KIM et al.: VERSA: 36-CORE SYSTOLIC MULTIPROCESSOR 995

TABLE V

SIMT/SPMD-STYLE THREAD IDENTIFICATION

TABLE VI

THREAD-SYNCHRONIZATION PRIMITIVES

TABLE VII

MEMORY BARRIERS AND INVALIDATION CONTROL

TABLE VIII

HEAP-STYLE MEMORY ALLOCATION

thread-synchronization algorithm. The techniques above are
demonstrated in a 28-nm prototype chip that incorporates
industry-grade IP cores and system components. Against
comparable CPU and GPU baselines, the prototype achieves
37.2× and 11.6× median improvements in energy effi-
ciency, respectively, on a set of diverse kernels. Overall, this
work indicates that compute and memory reconfiguration are
highly effective and may be broadly applicable to future
accelerator designs.

APPENDIX A
PROGRAMMER-VISIBLE APIS

The following lists a subset of frequently utilized
Versa C++ library functions and preprocessor macros.
Trivial preprocessor macros defining chip parameters
(e.g., CORES_PER_TILE) are omitted. See Tables V–XI.

TABLE IX

WORKER–MANAGER MESSAGE BUFFER

TABLE X

RECONFIGURATION CONTROL

TABLE XI

R2R INTRINSICS (PREPROC. DIRECTIVES)

ACKNOWLEDGMENT

The authors would like to thank Arm Ltd. for IP and design
support and the reviewers for thoughtful improvements to the
manuscript. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and con-
clusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of Air
Force Research Laboratory (AFRL) and Defense Advanced
Research Projects Agency (DARPA) or the U.S. Government.

REFERENCES

[1] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” in Proc. ICLR, 2015, pp. 1–14.

[2] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” in Proc. ICLR, 2017, pp. 1–13.

[3] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
citation ranking: Bringing order to the web,” Stanford InfoLab,
Stanford, CA, USA, Tech. Rep. 1999-66, 1999. [Online]. Available:
http://ilpubs.stanford.edu:8090/cgi/export/422/BibTeX/ilprints-eprint-
422.bib

[4] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” in Proc. IEEE 12th Int. Conf. Data Mining,
Dec. 2012, pp. 181–213.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 28,2023 at 19:00:27 UTC from IEEE Xplore. Restrictions apply.

996 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 57, NO. 4, APRIL 2022

[5] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with
Bowtie 2,” Nature Methods, vol. 9, no. 4, pp. 357–359, 2012.

[6] H. Li and N. Homer, “A survey of sequence alignment algorithms
for next-generation sequencing,” Briefings Bioinf., vol. 11, no. 5,
pp. 473–483, Sep. 2010.

[7] P. Xiang, Y. Yang, and H. Zhou, “Warp-level divergence in GPUs:
Characterization, impact, and mitigation,” in Proc. IEEE 20th Int. Symp.
High Perform. Comput. Archit. (HPCA), Feb. 2014, pp. 284–295.

[8] D. Koch, Partial Reconfiguration on FPGAs: Architectures, Tools and
Applications. Cham, Switzerland: Springer, 2012.

[9] S. Kim et al., “Versa: A dataflow-centric multiprocessor with 36 sys-
tolic ARM cortex-M4F cores and a reconfigurable crossbar-memory
hierarchy in 28nm,” in Proc. Symp. VLSI Circuits, Jun. 2021,
pp. 1–2.

[10] M. Taylor et al., “The raw processor: A composeable 32-bit fabric for
embedded and general purpose computing,” in Proc. HotChips, 2001,
pp. 1–4.

[11] F. Zaruba, F. Schuiki, and L. Benini, “Manticore: A 4096-core RISC-
V chiplet architecture for ultraefficient floating-point computing,” IEEE
Micro, vol. 41, no. 2, pp. 36–42, Mar. 2021.

[12] D. Ditzel et al., “Accelerating ML recommendation with over a thousand
RISC-V/tensor processors on Esperanto’s ET-SoC-1 chip,” in Proc. IEEE
Hot Chips 33 Symp. (HCS), Aug. 2021, pp. 1–23.

[13] J. Kahle, “The cell processor architecture,” in Proc. 38th Annu.
IEEE/ACM Int. Symp. Microarchitecture (MICRO), Nov. 2005,
p. 3.

[14] I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and
T. M. Aamodt, “Cache coherence for GPU architectures,” in Proc. IEEE
19th Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2013,
pp. 578–590.

[15] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,”
in Proc. 17th Annu. Int. Symp. Comput. Archit., May 1990,
pp. 364–373.

[16] S. Satpathy et al., “A 4.5Tb/s 3.4Tb/s/W 64×64 switch fabric with self-
updating least-recently-granted priority and quality-of-service arbitration
in 45nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2012,
pp. 478–480.

[17] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[18] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. ISCA, 2017, pp. 1–12.

[19] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,”
IEEE J. Emerging Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 292–308,
Jun. 2019.

[20] H. Genc et al., “Gemmini: Enabling systematic deep-learning archi-
tecture evaluation via full-stack integration,” in Proc. 58th ACM/IEEE
Design Autom. Conf. (DAC), Dec. 2021, pp. 1–6.

[21] M. Roth, M. J. Best, C. Mustard, and A. Fedorova, “Deconstruct-
ing the overhead in parallel applications,” in Proc. IISWC, 2012,
pp. 59–68.

[22] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance
evaluation of Intel®transactional synchronization extensions for high-
performance computing,” in Proc. SC, 2013, pp. 1–11.

[23] S. Xiao and W.-C. Feng, “Inter-block GPU communication via fast
barrier synchronization,” in Proc. IEEE Int. Symp. Parallel Distrib.
Process. (IPDPS), Apr. 2010, pp. 1–12.

[24] H. Yun, H.-F. Yu, C.-J. Hsieh, S. V. N. Vishwanathan, and I. Dhillon,
“NOMAD: Non-locking, stOchastic multi-machine algorithm for asyn-
chronous and decentralized matrix completion,” 2013, arXiv:1312.0193.

[25] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel sto-
chastic gradient for nonconvex optimization,” in Proc. NeurIPS, 2015,
pp. 2737–2745.

[26] M. L. Scott, “Shared-memory synchronization,” in Synthesis Lectures
on Computer Architecture, vol. 8, no. 2. San Rafael, CA, USA; Morgan
& Claypool Publishers, 2013.

[27] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, “MachSuite:
Benchmarks for accelerator design and customized architectures,” in
Proc. IEEE Int. Symp. Workload Characterization (IISWC), Oct. 2014,
pp. 110–119.

[28] Arm Cortex-M4 Processor Technical Reference Manual, Arm Ltd.,
Cambridge, U.K., 2020.

[29] P. N. Whatmough et al., “A 16nm 25 mm2 SoC with a 54.5x
flexibility-efficiency range from dual-core arm cortex-A53 to eFPGA and
cache-coherent accelerators,” in Proc. Symp. VLSI Circuits, Jun. 2019,
pp. C34–C35.

[30] P. D. Schiavone et al., “Arnold: An eFPGA-augmented RISC-V SoC for
flexible and low-power IoT end nodes,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 29, no. 4, pp. 677–690, Apr. 2021.

[31] M. Anders et al., “2.9TOPS/W reconfigurable dense/sparse matrix-
multiply accelerator with unified INT8/INTI6/FP16 datapath in 14NM
tri-gate CMOS,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2018,
pp. 39–40.

[32] S. Smets, T. Goedeme, A. Mittal, and M. Verhelst, “2.2 A 978GOPS/W
flexible streaming processor for real-time image processing applications
in 22nm FDSOI,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2019,
pp. 44–46.

[33] D.-H. Park et al., “A 7.3 M output non-Zeros/J, 11.7 M output
non-Zeros/GB reconfigurable sparse matrix-matrix multiplication accel-
erator,” IEEE J. Solid-State Circuits, vol. 55, no. 4, pp. 933–944,
Apr. 2020.

[34] A. M. Jones and M. Butts, “TeraOPS hardware: A new massively-
parallel MIMD computing fabric IC,” in Proc. IEEE Hot Chips 18 Symp.
(HCS), Aug. 2006, pp. 1–15.

[35] B. Bohnenstiehl et al., “KiloCore: A 32-nm 1000-processor computa-
tional array,” IEEE J. Solid-State Circuits, vol. 52, no. 4, pp. 891–902,
Apr. 2017.

[36] J. P. Cerqueira, T. J. Repetti, Y. Pu, S. Priyadarshi, M. A. Kim,
and M. Seok, “Catena: A near-threshold, sub-0.4-mW, 16-core pro-
grammable spatial array accelerator for the ultralow-power mobile and
embedded Internet of Things,” IEEE J. Solid-State Circuits, vol. 55,
no. 8, pp. 2270–2284, Aug. 2020.

[37] K. Sankaralingam et al., “Exploiting ILP, TLP, and DLP with the
polymorphous TRIPS architecture,” in Proc. 30th Annu. Int. Symp.
Comput. Archit. (ISCA), 2003, pp. 422–433.

[38] K. Sankaralingam et al., “Distributed microarchitectural protocols in the
TRIPS prototype processor,” in Proc. 39th Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), Dec. 2006, pp. 480–491.

[39] S. Swanson et al., “The WaveScalar architecture,” ACM Trans. Comput.
Syst., vol. 25, no. 2, pp. 1–54, May 2007.

[40] V. Govindaraju et al., “DySER: Unifying functionality and parallelism
specialization for energy-efficient computing,” IEEE Micro, vol. 32,
no. 5, pp. 38–51, Sep. 2012.

[41] F. Yazdanpanah, C. Alvarez-Martinez, D. Jimenez-Gonzalez, and
Y. Etsion, “Hybrid dataflow/von-Neumann architectures,” IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 6, pp. 1489–1509,
Jun. 2014.

[42] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam,
“Stream-dataflow acceleration,” ACM SIGARCH Comput. Archit. News,
vol. 45, no. 2, pp. 416–429, Sep. 2017.

[43] K. T. Johnson, A. R. Hurson, and B. Shirazi, “General-purpose systolic
arrays,” IEEE Comput., vol. 26, no. 11, pp. 20–31, Nov. 1993.

[44] K. Criswell and T. Adegbija, “A survey of phase classification techniques
for characterizing variable application behavior,” IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 1, pp. 224–236, Jan. 2020.

[45] T. C. Effler et al., “Evaluating the effectiveness of program data features
for guiding memory management,” in Proc. Int. Symp. Memory Syst.,
Sep. 2019, pp. 383–395.

[46] M. Maas, D. G. Andersen, M. Isard, M. M. Javanmard, K. S. McKinley,
and C. Raffel, “Learning-based memory allocation for C++ server
workloads,” in Proc. 25th Int. Conf. Architectural Support Program.
Lang. Operating Syst., Mar. 2020, pp. 541–556.

[47] Z. Huang, J. A. Joao, A. Rico, A. D. Hilton, and B. C. Lee, “DynaSprint:
Microarchitectural sprints with dynamic utility and thermal manage-
ment,” in Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchitecture,
Oct. 2019, pp. 426–439.

[48] C. Dubach, T. M. Jones, and E. V. Bonilla, “Dynamic microarchitectural
adaptation using machine learning,” ACM Trans. Archit. Code Optim.,
vol. 10, no. 4, pp. 1–28, 2013.

[49] S. Pal et al., “Transmuter: Bridging the efficiency gap using memory
and dataflow reconfiguration,” in Proc. ACM Int. Conf. Parallel Archit.
Compilation Techn., Sep. 2020, pp. 175–190.

[50] S. Pal, A. Amarnath, S. Feng, M. O’Boyle, R. Dreslinski, and
C. Dubach, “SparseAdapt: Runtime control for sparse linear algebra on
a reconfigurable accelerator,” in Proc. MICRO 54th Annu. IEEE/ACM
Int. Symp. Microarchitecture, Oct. 2021, pp. 1005–1021.

[51] S. Feng et al., “CoSPARSE: A software and hardware reconfigurable
SpMV framework for graph analytics,” in Proc. 58th ACM/IEEE Design
Autom. Conf. (DAC), Dec. 2021, pp. 949–954.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 28,2023 at 19:00:27 UTC from IEEE Xplore. Restrictions apply.

KIM et al.: VERSA: 36-CORE SYSTOLIC MULTIPROCESSOR 997

Sung Kim (Graduate Student Member, IEEE)
received the B.S. and M.S. degrees in electrical engi-
neering from the University of Washington, Seattle,
WA, USA, in 2015 and 2018, respectively. He is
currently pursuing the Ph.D. degree in electrical
engineering and computer science with the Univer-
sity of Michigan, Ann Arbor, MI, USA.

His research interests include computer architec-
ture, hardware–software co-design, and accelerator
programmability.

Morteza Fayazi (Graduate Student Member, IEEE)
received the B.Sc. degree in electrical engineering
from the Sharif University of Technology, Tehran,
Iran, in 2017, and the M.S. degree in electrical engi-
neering and computer science from the University of
Michigan, Ann Arbor, MI, USA, in 2020, where he
is currently pursuing the Ph.D. degree.

His research interests include EDA, machine
learning, software development, and computer
architecture.

Alhad Daftardar (Graduate Student Member,
IEEE) received the B.S. degree in electrical engi-
neering from the Georgia Institute of Technology,
Atlanta, GA, USA, in 2020. He is currently pur-
suing the Ph.D. degree in electrical and computer
engineering with the University of Michigan, Ann
Arbor, MI, USA.

His research interests are in energy-efficient cir-
cuits and architectures for machine learning, signal
processing, and communications.

Kuan-Yu Chen (Graduate Student Member, IEEE)
received the B.S. degree in electrical engineering
from National Taiwan University, Taipei, Taiwan,
in 2018. He is currently pursuing the Ph.D. degree
with the University of Michigan, Ann Arbor, MI,
USA.

His current research interests include digital circuit
design, accelerators, and computer architecture.

Jielun Tan received the B.S.E. and M.S. degrees
in electrical engineering from the University of
Michigan, Ann Arbor, MI, USA, in 2017 and 2019,
respectively.

He is currently a hardware engineer at Qualcomm,
San Diego, CA, USA. His research interests include
hardware development for RISC-V, massively paral-
lel systems, and emerging technologies.

Subhankar Pal (Member, IEEE) received the B.E.
degree in electrical and electronics engineering from
the Birla Institute of Technology and Science at
Pilani (BITS-Pilani), Pilani, India, in 2014, and the
M.S. and Ph.D. degrees from the University of
Michigan, Ann Arbor, MI, USA, in 2018 and 2021,
respectively.

He was previously with NVIDIA, Bengaluru,
India, where he worked on pre-silicon verification
and bring-up on multiple generations of GPUs.
He currently works at IBM Research, Yorktown
Heights, NY, USA.

Tutu Ajayi (Graduate Student Member, IEEE)
received the B.S. degree in electrical engineering
from Texas A&M University, College Station, TX,
USA, in 2008, and the M.S. and Ph.D. degrees
in electrical and computer engineering from the
University of Michigan, Ann Arbor, MI, USA, in
2017 and 2020, respectively.

He is currently a Post-Doctoral Research Fellow
with the University of Michigan. His research
interests include computer architecture, field-
programmable gate array (FPGA) platforms, and
VLSI EDA.

Yan Xiong (Graduate Student Member, IEEE)
received the M.S. degree in optoelectronic informa-
tion science and engineering from the Huazhong
University of Science and Technology, Wuhan,
China, in 2017, and the M.S. degree in electrical
engineering from Arizona State University, Tempe,
AZ, USA, in 2018, where he is currently pursuing
the Ph.D. degree in electrical engineering.

His research interests span the areas of speech
processing, low power systems, and energy-efficient
deep learning algorithms.

Trevor Mudge (Life Fellow, IEEE) received the
Ph.D. in computer science from the University
of Illinois at Urbana–Champaign, Champaign, IL,
USA, in 1977.

He is currently the Bredt Family Professor of com-
puter science and engineering with the University of
Michigan, Ann Arbor, MI, USA. He has authored
numerous articles on computer architecture, pro-
gramming languages, VLSI, and computer vision.
He has chaired more than 56 related theses.

Dr. Mudge received the ACM/IEEE CS Eckert-
Mauchly Award in 2014 and the UIUC Distinguished Alumni Award.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 28,2023 at 19:00:27 UTC from IEEE Xplore. Restrictions apply.

998 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 57, NO. 4, APRIL 2022

Chaitali Chakrabarti (Fellow, IEEE) received the
B.Tech. degree in electronics and electrical commu-
nication engineering from IIT Kharagpur, Kharag-
pur, India, in 1984, and the M.S. and Ph.D. degrees
in electrical engineering from the University of
Maryland at College Park, College Park, MD, USA,
in 1986 and 1990, respectively.

She is currently a Professor with the School
of Electrical Computer and Energy Engineering,
Arizona State University, Tempe, AZ, USA. Her
interests include VLSI signal processing and com-

munication systems, low-power embedded systems, and portable medical
imaging.

David Blaauw (Fellow, IEEE) received the B.S.
degree in physics and computer science from Duke
University, Durham, NC, USA, in 1986, and the
Ph.D. degree in computer science from the Univer-
sity of Illinois at Urbana–Champaign, Champaign,
IL, USA, in 1991.

Until 2001, he worked at Motorola Inc., Austin,
TX, USA, where he was the Manager of the High
Performance Design Technology Group. Since 2001,
he has been on the faculty of the University of
Michigan, Ann Arbor, MI, USA, where he is cur-

rently the Kensall D. Wise Collegiate Professor of electrical engineering and
computer science. He is also the Director of the Michigan Integrated Circuits
Lab (MICL). His previous research interests include ultralow-power wireless
sensors and low-power analog circuit techniques for millimeter systems.
His group also introduced so-called near-threshold computing, which has
since become a common concept in semiconductor design. Most recently,
he has pursued research in cognitive computing using analog in-memory
neural networks and genomics for precision health. He has published over
600 articles and holds 65 patents.

Dr. Blaauw was a member of the IEEE International Solid-State Circuits
Conference (ISSCC) Analog Program Subcommittee and the General Chair
of the ACM/IEEE International Symposium on Low Power Electronics and
Design (ISLPED). He was awarded MIT Technology Review’s “one of the
year’s most significant innovations.” He received numerous best paper awards,
the Motorola Innovation Award, and the 2016 SIA-SRC Faculty Award for
“lifetime research contributions” to the U.S. semiconductor industry.

Ronald Dreslinski (Senior Member, IEEE) received
the B.S.E., M.S.E., and Ph.D. degrees from the Uni-
versity of Michigan, Ann Arbor, MI, USA, in 2001,
2003, and 2011, respectively.

He is currently an Associate Professor of com-
puter science and engineering at the University of
Michigan. His work focuses on hardware and circuit
designs for a post-Moore’s Law world.

Dr. Dreslinski received the 2015 IEEE Young
Computer Architect Award.

Hun-Seok Kim (Member, IEEE) received the B.S.
degree in electrical engineering from Seoul National
University, Seoul, South Korea, in 2001, and the
Ph.D. degree in electrical engineering from the
University of California at Los Angeles (UCLA),
Los Angeles, CA, USA, in 2010.

He is currently an Assistant Professor with
the University of Michigan, Ann Arbor, MI,
USA. His research focuses on system analysis,
novel algorithms, and VLSI architectures for low-
power/high-performance wireless communications,

signal processing, computer vision, and machine learning systems.
Dr. Kim was a recipient of the DARPA Young Faculty Award in 2018 and

the NSF CAREER Award in 2019. He is also an Associate Editor of
IEEE TRANSACTIONS ON MOBILE COMPUTING, IEEE TRANSACTIONS
ON GREEN COMMUNICATIONS AND NETWORKING, and the IEEE SOLID-
STATE CIRCUITS LETTERS.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 28,2023 at 19:00:27 UTC from IEEE Xplore. Restrictions apply.

