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ABSTRACT

A graph is a ubiquitous data structure that models entities and their interactions through the collec-
tions of nodes and edges. It is widely employed in several important application domains ranging
from social media, navigation tools, search engines, physics simulations, and biology. Despite
its prevalence, the performance of graph algorithms on commercial platforms is limited. This is
mainly due to the irregular memory accesses and convoluted control flow instructions used in graph
algorithms while accessing large volumes of graph data (with billions of nodes/edges). Therefore,
there is a pressing need for optimizing the performance of graph workloads.

In this thesis, I present a systematic optimization study of a variety of graph workloads run-
ning on both static and dynamic graphs. At a high level, I first analyze the unique challenges and
execution bottlenecks of the state-of-the-art graph software frameworks running on commercial
hardware platforms. I then use the insights obtained from this analysis to propose design optimiza-
tions catered to the unique workload characteristics of a diversity of graph workloads.

Specifically, first, I propose Prodigy—a hardware-software co-design solution to improve the
performance of traditional graph processing algorithms (e.g., PageRank and SSSP) on multi-core
CPUs. Second, I present an in-depth study of random walk–based graph learning algorithms on
temporal graphs (a type of dynamic graph). Specifically, this study delivers high-performance,
open-source CPU and GPU implementations of important graph learning applications, conducts
a detailed performance analysis, and makes recommendations for future optimizations. Third, I
showcase NDMiner—a domain-specialized Near Data Processing (NDP) architecture that signif-
icantly improves the performance of Graph Pattern Mining (GPM) workloads. Last, I present
Mint—a novel hardware accelerator architecture and an accompanying programming model for
efficiently mining motifs in temporal graphs.
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CHAPTER 1

Introduction

1.1 Prevalence of Graph-based Applications

A graph data structure effectively models the interactions between entities through nodes and edges.

As an intuitive example, user interactions on social media networks today are represented in terms

of graphs, where users represent nodes, and user interactions represent edges. Twitter models

connections, tweets/retweets, likes, comments, and messages in the form of graph, where users

are nodes and their interactions are edges [161]. In addition to social media networks, graphs

are used to model road networks [140], communication networks [120, 136, 138], and citation

networks [76,137]. Beyond Computer Science, graphs model protein and drug interactions [53,247]

computational chemistry [63], and high-energy physics [49].

A variety of graph algorithms extract useful information out of graph data structures. This in-

cludes finding possible connections between nodes, identifying important graph nodes, establishing

distance between a pair of nodes, detecting community of nodes, and mining uniquely shaped

subgraphs. These graph algorithms enable a wide range of applications. For example, search engines

such as Google heavily rely on analyzing the interactions between web pages through a webgraph to

recommend user query results [187]. Social media companies such as Twitter analyze interactions

between online content and users to offer improved recommendations [127, 169]. Navigation tools,

for instance Google Maps, examine road networks to recommend shortest path from a source

location to a destination [81]. Moreover, graph algorithms are used in several other real-world
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applications such as bioinformatics [47], cyber-security [69, 203], spam detection [134], monitoring

electrical power grids [125], and machine learning [31, 214, 259]. In sum, graph-based applications

are prevalent.

1.2 Motivation

Due to their prevalence, speeding up graph workloads results in a significant positive impact in

improving the quality of day-to-day services. However, an efficient execution of graph workloads

face two major challenges on modern hardware platforms: (a) convoluted algorithmic traversal over

graph data structures, and (b) large volumes of today’s real-world graph datasets.

Because real-world graphs are sparse in nature (i.e., no interactions exist between most pair

of nodes), sparse representations are often used to store graphs in memory to conserve space by

storing only non-zero values. Compressed Sparse Row (CSR) is one such space-efficient technique

for representing in-memory graph data sets. It uses two arrays to store a graph: an edge list that

stores the non-zero elements of the graph’s adjacency matrix in a one-dimensional array, and an

offset list that contains the base index/pointer of the edge list elements for each vertex. While CSR

representation saves space, it comes at a cost of more complicated traversal algorithms, where

edge list can only be accessed after reading data from the offset list. Therefore, graph algorithms

frequently use data-dependent irregular memory accesses.

Furthermore, graph algorithms often use memory access-dependent control flow instructions. For

example, the Breadth-First Search (BFS) graph algorithm uses a per-vertex flag to indicate whether

a node is previously visited or not. This translates into a data-dependent branch instruction.

Because the outcomes of these branch instructions depend on the data stored in memory that

change with the progression of the algorithm, these branch instructions are extremely challenging

to correctly predict by the modern branch predictors.

To make things worse, modern graph datasets have billions to trillions of nodes/edges. The sheer

volume of graph datasets does not allow the graph information to be stored on capacity-limited
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Figure 1.1: Contributions presented in this dissertation.

CPU/GPU caches, leading to frequent main memory/DRAM accesses. DRAM accesses are costly

from both performance and energy perspectives [197].

To summarize, the large volumes of real-world graph data coupled with convoluted memory and

control flow behavior of graph algorithms render optimization techniques (e.g., on-chip caching and

prefetching) on traditional hardware platforms ineffective. This is because commercial hardware

platforms are designed to optimize dense computations with regular memory accesses. As a

result, the performance of large-scale graph workloads is severely limited on commercial hardware

platforms [11, 24, 252]. Therefore, there is an urgent need for optimizing the performance of graph

workloads that can benefit a wide range of applications discussed above.

1.3 Dissertation Contributions and Organization

The goal of this dissertation is to address the performance limitations of commercial hardware

platforms, and propose hardware-software co-designed solutions to enable high-performance graph

workload execution. Figure 1.1 shows the contributions of this dissertation. At a high level, these

contributions span a variety of graph algorithms, i.e., traditional graph processing (e.g., PageRank

and SSSP), Graph Neural Networks (GNN, e.g., link prediction and node classification), Graph

Pattern Mining (GPM, e.g., triangle counting), and temporal motif mining (e.g., cycle detection),
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running on both static and temporal graph datasets. More specifically, the individual contributions

of each of these works are detailed below.

• Prodigy (Chapter 3). Irregular workloads (including traditional graph workloads) are

typically bottlenecked by the memory system. These workloads often use sparse data repre-

sentations, e.g., compressed sparse row/column (CSR/CSC), to conserve space at the cost of

complicated, irregular traversals. Such traversals access large volumes of data and offer little

locality for caches and conventional prefetchers to exploit.

This work presents a low-cost hardware-software co-design solution for intelligent prefetching

to improve the memory latency of several important irregular workloads. Prodigy targets

irregular workloads including traditional graph analytics, sparse linear algebra, and fluid

mechanics that exhibit two specific types of data-dependent memory access patterns. Prodigy

adopts a “best of both worlds” approach by using static program information from software,

and dynamic run-time information from hardware. The core of the system is the Data

Indirection Graph (DIG)—a proposed compact representation used to express program

semantics such as the layout and memory access patterns of key data structures. The DIG

representation is agnostic to a particular data structure format and is demonstrated to work

with several sparse formats including CSR and CSC. Program semantics are automatically

captured with a compiler pass, encoded as a DIG, and inserted into the application binary.

The DIG is then used to program a low-cost hardware prefetcher to fetch data according to an

irregular algorithm’s data structure traversal pattern. We equip the prefetcher with a flexible

prefetching algorithm that maintains timeliness by dynamically adapting its prefetch distance

to an application’s execution pace.

We evaluate the performance, energy consumption, and transistor cost of Prodigy using

a variety of algorithms from the GAP, HPCG, and NAS benchmark suites. We compare

the performance of Prodigy against a non-prefetching baseline as well as state-of-the-art

prefetchers. We show that by using just 0.8KB of storage, Prodigy outperforms a non-

prefetching baseline by 2.6× and saves energy by 1.6×, on average. Prodigy also outperforms
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modern data prefetchers by 1.5–2.3×.

• Analyzing temporal graph learning (Chapter 4). Machine learning on graph data has

gained significant interest because of its applicability to various domains ranging from

product recommendations to drug discovery. While there is a rapid growth in the algorithmic

community, the computer architecture community has so far focused on a subset of graph

learning algorithms including Graph Convolution Network (GCN), and a few others. In this

work, we study another, more scalable, graph learning algorithm based on random walks,

which operates on dynamic input graphs and has attracted less attention in the architecture

community compared to GCN. We propose high-performance CPU and GPU implementations

of two important graph learning tasks, that cover a broad class of applications, using random

walks on continuous-time dynamic graphs: link prediction and node classification. We show

that the resulting workload exhibits distinct characteristics, measured in terms of irregularity,

core and memory utilization, and cache hit rates, compared to graph traversals, deep learning,

and GCN. We further conduct an in-depth performance analysis focused on both algorithm and

hardware to guide future software optimization and architecture exploration. The algorithm-

focused study presents a rich trade-off space between algorithmic performance and runtime

complexity to identify optimization opportunities. We find an optimal hyperparameter setting

that strikes balance in this trade-off space. Using this setting, we also perform a detailed

microarchitectural characterization to analyze hardware behavior of these applications and

uncover execution bottlenecks, which include high cache misses and dependency-related stalls.

The outcome of our study includes recommendations for further performance optimization,

and open-source implementations for future investigation.

• NDMiner (Chapter 5). Graph Pattern Mining (GPM) algorithms mine structural patterns in

graphs. The performance of GPM workloads is bottlenecked by control flow and memory

stalls. This is because of data-dependent branches used in set intersection and difference

operations that dominate the execution time.
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This work first conducts a systematic GPM workload analysis and uncovers four new ob-

servations to inform the optimization effort. First, GPM workloads mostly fetch inputs of

costly set operations from different memory banks. Second, to avoid redundant computation,

modern GPM workloads employ symmetry breaking that discards several data reads, resulting

in cache pollution and wasted DRAM bandwidth. Third, sparse pattern mining algorithms

perform redundant memory reads and computations. Fourth, GPM workloads do not fully

utilize the in-DRAM data parallelism.

Based on these observations, this work presents NDMiner, a Near Data Processing (NDP)

architecture that improves the performance of GPM workloads. To reduce in-memory data

transfer of fetching data from different memory banks, NDMiner integrates compute units

to offload set operations in the buffer chip of DRAM. To alleviate the wasted memory

bandwidth caused by symmetry breaking, NDMiner integrates a load elision unit in hardware

that detects the satisfiability of symmetry breaking constraints and terminates unnecessary

loads. To optimize the performance of sparse pattern mining, NDMiner employs compiler

optimizations and maps reduced reads and composite computation to NDP hardware that

improves algorithmic efficiency of sparse GPM. Finally, NDMiner proposes a new graph

remapping scheme in memory and a hardware-based set operation reordering technique

to best optimize bank, rank, and channel-level parallelism in DRAM. To orchestrate NDP

computation, this work presents design modifications at the host ISA, compiler, and memory

controller. We compare the performance of NDMiner with state-of-the-art software and

hardware baselines using a mix of dense and sparse GPM algorithms. Our evaluation shows

that NDMiner significantly outperforms software and hardware baselines by 6.4× and 2.5×,

on average, while incurring a negligible area overhead on CPU and DRAM.

• Mint (Chapter 6). A variety of complex systems, including social and communication

networks, financial markets, biology, and neuroscience are modeled using temporal graphs

that contain a set of nodes and directed timestamped edges. Temporal motifs in temporal

graphs are generalized from subgraph patterns in static graphs in that they also account for
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edge ordering and time duration, in addition to the graph structure. Mining temporal motifs

is a fundamental problem used in several application domains. However, existing software

frameworks offer sub-optimal performance due to high algorithmic complexity and irregular

memory accesses of temporal motif mining.

This work presents Mint—a novel accelerator architecture and a programming model for

mining temporal motifs efficiently. We first divide this workload into three fundamental

tasks: search, book-keeping, and backtracking. Based on this, we propose a task–centric

programming model that enables decoupled, asynchronous execution. This model unlocks

massive opportunities for parallelism, and allows storing task context information on-chip.

To best utilize the proposed programming model, we design a domain-specific hardware

accelerator using its data path and memory subsystem design to cater to the unique workload

characteristics of temporal motif mining. To further improve performance, we propose a

novel optimization called search index memoization that significantly reduces memory traffic.

We comprehensively compare the performance of Mint with state-of-the-art temporal motif

mining software frameworks (both approximate and exact) running on both CPU and GPU,

and show 9×–2576× benefit in performance.

1.4 Impact Statement

The current and future impact of this dissertation work is summarized below.

• Prodigy. This work opened new doors in defining novel hardware-software interfaces that

has and will inspire significant additional follow-up works across the community. This work

showed how to enable system-wide optimization effort based on a customized hardware-

software contract such as Data Indirection Graph (DIG) representation that can be widely

adopted in several academic and industrial products. Prodigy was recognized as the best

paper at a top architecture conference – the 27th IEEE International Symposium on High-

Performance Computer Architecture (HPCA 2021).
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• Benchmarking of temporal graph learning. This work is a result of a unique collaboration

between computer architecture, software design, and data mining research groups. While

Graph Convolutional Network (GCN)–type algorithms are well-studied and optimized in the

hardware community, this work introduces a more scalable graph learning algorithm to the

architecture community, i.e., random walks. This work presents both high-performance open-

source implementations of key graph learning tasks on both CPU and GPU, and conducts

a detailed performance analysis study for finding further optimization opportunities. The

open-sourced tool-chain is currently used, and continue to be used, in the community to learn

further optimizations (e.g., sparsification of graph neural networks).

• NDMiner. While most prior works either focused fully on designing a custom hardware

accelerator architectures or generic near-data processing systems to accelerate the workload of

graph pattern mining, NDMiner showed how to combine the unique benefits of both near-data

processing and domain specialization. Specifically, NDMiner finds new unique insights about

the workload characteristics of graph pattern mining, and employs these findings to further

optimize the near-data processing architecture. This architecture aims an extremely low-cost

area overhead to the commercial DRAM DIMMs. This design philosophy can be adopted

widely in the community to optimize various types of workloads.

• Mint. This is the first work that characterizes bottlenecks and optimizes the execution of

temporal motif mining. Mint is a three-part design that introduces a new programming model,

a hardware accelerator architecture, and a domain-specific optimization. Mint divides the

workload in terms of tasks, and proposes a task-centric asynchronous programming model

to enable massive opportunities of parallelism and improved hardware utilization. To best

utilize this programming model, a Mint presents a versatile accelerator architecture to mine

any arbitrary temporal motif, and search index memoization optimization to significantly

reduce the memory traffic.
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CHAPTER 2

Background: Graph Data Structures and Algorithms

Graphs represent various types of relationships. For example, a professional network graph like

LinkedIn represents different professionals as nodes and their interactions (e.g., collaboration

between a pair of individuals) as edges. There are various types of representing graphs. From a

temporal standpoint, a graph can be either static or dynamic. Dynamic graphs capture time-evolving

relationships among its vertices by adding, deleting, or changing their nodes and edges. These

dynamic graphs can be made static by rendering two nodes connected if any interaction took place

between a pair of nodes. In this chapter, I discuss both static and dynamic graph datasets, their

in-memory representations, and unique graph traversal algorithms.

2.1 Static Graph

Static graphs can be represented in terms of an adjacency matrix, where each dimension of this

matrix is equal to the number of vertices in a graph. A non-zero value at row i and column j would

represent an edge between nodes i and j. This non-zero value can either be an identity (in the case

of unweighted graph) or a weight value for weighted graphs. Conversely, a value of zero at row k

and l means an absence of edge between nodes k and l. Because most nodes in real-world graphs

are not connected with most other nodes, a typical adjacency matrix of a graph is extremely sparse

in nature. In other words, most values of this matrix store zeros, leading to storage inefficiency.

Compressed sparse row (CSR) is a space-efficient technique for representing a sparse matrix,

and it is commonly used to represent in-memory graph data sets. It uses two arrays to store a graph:

9
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(b) Data structures and algorithmic traversal 
pattern for a toy graph example

workQueue.enqueue(source)
while workQueue not empty:
  #pragma omp parallel
  for all u : workQueue()
    for w : offsetList(u) to offsetList(u+1)  
      for all v : edgeList(w)
        if !v.visited()
          compare_and_swap
               (v.visited(), 0, 1)
          workQueue.enqueue(v)
        endif
      endfor
    endfor
  endfor
endwhile 

(a) Parallel implementation of 
BFS algorithm

workQueue.enqueue(source)
while workQueue not empty:
  #pragma omp parallel
  for all u : workQueue()
    for w : offsetList(u) to offsetList(u+1)  
      for all v : edgeList(w)
        if !v.visited()
          compare_and_swap
               (v.visited(), 0, 1)
          workQueue.enqueue(v)
        endif
      endfor
    endfor
  endfor
endwhile 

(a) Parallel implementation of 
BFS algorithm

Figure 2.1: BFS algorithm: (a) pseudo-code for a parallel implementation of BFS, and (b) a toy
example of BFS traversal on a graph stored in a compressed sparse row (CSR) format.

an edge list that stores the non-zero elements of the graph’s adjacency matrix in a one-dimensional

array, and an offset list that contains the base index/pointer of the edge list elements for each vertex.

For example, consider a graph and its CSR structure as shown in Fig. 2.1(b).

2.2 Temporal Graph

A temporal graph is a type of dynamic graph that represents network interaction in terms of

timestamped edges between a pair of nodes. A temporal edge is defined to be a timestamped

directed edge between an ordered pair of nodes. A temporal graph is then defined as a collection

of temporal edges. Formally, a temporal graph G is a collection of tuples G = {(ui, vi, ti)}mi=1,

where ui and vi are source and destination nodes of the edge (ui, vi), and ti ∈ R+ is a timestamp of

the edge. I assume that the timestamps of the edges in the temporal graph G are unique1. Strictly

speaking, G is a multi-digraph as (a) the edges are directed, (b) there might be many edges between

a pair of nodes, each one with a different timestamp.

Depending on the traversal algorithm, a temporal graph can be stored in many different ways

1This assumption comes without loss of generality [156, 192].
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in memory. This includes extending the CSR structure to store timestamped edge list in place of

edge list or storing a chronologically ordered edge list and additional index array to this edge list

indicating incoming/outgoing edge IDs from each node. More details on the exact representation

are accompanied with the algorithmic/implementation details of specific problems.

2.3 Traditional Graph Processing Algorithms

In this section, I use Breadth-First Search (BFS) as a representative traditional graph processing

algorithm and discuss its data structures and algorithmic traversal in detail. In addition to BFS,

traditional graph processing algorithms include PageRank, Single-Source Shortest Path (SSSP),

Betweenness Centrality (BC), Connected Components (CC), etc. Typically, BFS graph traversal

uses CSR format to conserve space by storing non-zero values. BFS traverses all vertices at the

current depth (i.e., distance from the source vertex) before moving onto the next depth. BFS is a

fundamental algorithm, and is the basis of other graph algorithms (e.g., BC and SSSP). In addition

to the offset and edge lists, BFS also uses two software arrays called the work queue and the visited

list. The work queue2 stores a set of vertices to be processed in the future. The visited list keeps

track of already processed vertices to avoid processing them again.

Fig. 2.1(a) describes the traversal pattern of the BFS algorithm. I assume that offset list and edge

list data structures are populated in memory. In addition, memory is allocated for work queue and

visited list. As a first step, the source vertex (source) is pushed onto the work queue. Then, the

algorithm chooses a vertex from the work queue and scans its neighbors (by indexing into offset list

and edge list). If any of the scanned neighbors has not already been visited, then it is marked visited

and is added to the work queue. A graphical representation of this traversal is shown in Fig. 2.1(b).

2An alternate implementation of work queue uses dual buffering with two frontier data structures (current and next);
my work focuses on a sliding queue based work queue structure that is conceptually same as frontiers.
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Algorithm 1 Pseudocode for Triangle Counting (TC)
1: procedure GPM TC(G, P ) ▷ G: graph, P: pattern (triangle in this case)
2: num trialges = 0;
3: for u ∈ V do ▷ V: Vertex set of G, {u}: single-vertex embedding
4: Nu = G.out neighbors(u); ▷ Neighborhood expansion
5: for v ∈ Nu do ▷ {u, v}: two-vertex embedding
6: if v ≥ u then ▷ Neighborhood filtration for symmetry breaking
7: break;
8: Nv = G.out neighbors(v); ▷ Neighborhood expansion
9: Nuv = INTERSECTION(Nu, Nv); ▷ Set intersection
10: for w ∈ Nuv do ▷ {u, v, w}: three-vertex embedding
11: if w ≥ v then ▷ Intersection filtration for symmetry breaking
12: break;
13: num triangles++;
14: return num triangles;
15:
16: procedure INTERSECTION(SetA, SetB) ▷ Set intersection procedure
17: intersection result = [];
18: while i < SetA.size() and j < SetB.size() do
19: if SetA[i] < SetB[j] then ▷ Data-dependent control flow
20: i++;
21: else if SetA[i] > SetB[j] then ▷ Data-dependent control flow
22: j++;
23: else ▷ SetA[i] = SetB[j]
24: intersection result.insert(SetA[i]);
25: i++; j++;
26: return intersection result;

2.4 Graph Pattern Mining (GPM) Algorithms

The problem of GPM finds all unique subgraphs (also known as embeddings) in an input static graph

that are isomorphic to a given input pattern. A pattern is isomorphic to a subgraph if there exists a

one-to-one mapping of all the vertices and edges between the pattern and a subgraph. Permuting

vertices and edges of a given subgraph generates equivalent subgraphs, also called automorphic

embeddings.

GPM algorithm. It uses a search tree to enumerate embeddings in an input graph G matching a

user-defined pattern P . From all single-vertex subgraphs, the tree visits one node/edge at a time to

expand the embedding in each level. The isomorphism test is performed after all the embeddings

reach a desired tree depth (i.e., size of the embedding), where the number of vertices in expanded

subgraphs matches the number of vertices in P . Following the terminology in Peregrine [104],

GPM algorithms can be broadly classified in two categories: (a) pattern-oblivious, and (b) pattern-

aware. Peregrine concludes that pattern-aware GPM algorithms outperform their pattern-oblivious

counterparts by eliminating redundant computations. Therefore, I use pattern-aware algorithms.
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Algorithm 1 shows the pseudo-code of triangle counting. Starting from single-vertex embeddings

shown in line 3, the algorithm expands them to two-vertex embeddings (line 5) by finding their

outgoing neighbors (line 4). These embeddings are further expanded by finding common neighbors

amongst its vertices. The intersection (line 9) of vertex neighborhood sets is employed to find

common neighbors. With this expansion, embeddings isomorphic to a desired pattern (triangle) are

found. Notably, the pattern-aware GPM algorithms only find embeddings isomorphic to P . In other

words, the isomorphism test is encoded into the algorithms, precluding the necessity for explicit

isomorphism tests after search tree expansion.

GPM algorithm optimizations. Pattern-specific GPM algorithms enable several performance

optimizations. I briefly discuss (a) optimal schedule, and (b) symmetry breaking restrictions

optimizations used in this work, and refer the reader to prior works [41, 42, 104, 105, 159, 160, 232]

for other optimizations. The schedule of a GPM algorithm determines the order at which each

vertex of a pattern is searched. While searching for patterns, restrictions are applied to vertex IDs to

avoid redundant computation. This is also known as symmetry breaking/search tree pruning as it

avoids expanding unnecessary tree branches that cannot lead to P .

GraphPi [232] shows that there is a large design space to find the optimal schedule and restrictions

that can affect performance by up to three order of magnitude. This is because of the schedule and

restrictions define the size and pruning level of the search tree that lead to significant performance

differences in large-scale graphs. Lines 6 and 11 show instances of filteration operation applied to

triangle counting for search tree pruning. Because a triangle is a symmetric pattern, the order at

which the vertices are searched makes no difference, leading to only one schedule. However, large

asymmetric patterns can benefit significantly from schedule optimizations. My work adopts optimal

schedule and restrictions from GraphPi.
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2.5 Temporal Random Walk Algorithm and Graph Representa-

tion Learning

In this section, I discuss a set of algorithms that perform link prediction and node classification based

on temporal random walk on the graph. Specifically, the workload first generates the temporally-

valid walks to characterize the structure of the subgraph centering around each node, and then

leverages word2vec to encode it into the low-dimensional Euclidean space as the node embeddings

(§2.5.1). Then, depending on specific downstream tasks, the workload feeds the derived node

embeddings into the neural network architectures, and trains the model to minimize the training

loss (§2.5.2). Finally, training is performed. The notations used in this section are defined in §4.2.

2.5.1 Temporal Random Walk based Representation

2.5.1.1 Temporal Random Walk

I follow an earlier algorithmic work, CTDNE [179], to deploy the workload. Specifically, for

a node v in graph G, our workload leverages a set of temporally-valid walks originating from

v as the characteristic features to derive the embeddings. As mentioned in Definition 4.2.2, the

temporally-valid walks reflect the reachability of nodes following the graph structure over time,

which further reflects how a node v dynamically interacts with its neighbors in the graph.

I leverage temporal random walk to collect the neighborhood information for each node v ∈ G.

In typical temporal random walks, the nodes along the walks are chosen randomly without a specific

destination as long as the associated timestamps are increasing. The transitional probability p(v|u)

is denoted as p(v|u) = 1
|Nu| , where Nu denotes the set of nodes that are reachable from u following

the connected edges. Thus, as long as Nu for u ∈ V is computed efficiently, the temporal walks

can be collected efficiently. I detail the implementation of Nu in §4.4.1. As an example shown in

Fig. 2.2, the random walker currently reaches node v following the edge with timestamp 1. The

next node it reaches would be either node x or y with equal probability 0.5.
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Figure 2.2: Illustration of temporal neighborhood and positive/negative edges. At timestamp 1, the
random walker reaches node v, then the set of nodes {x, y} forms the temporal neighbors of node v.

While a typical transitional probability marks an efficient way to gather temporal walks, it fails

to incorporate the temporal continuity. Again, in the example shown in Fig. 2.2, an edge from node

v to x appears immediately after the edge from the source node u to v. Compared to node y that

appears later in time, node x is more correlated with v.

In order to capture this notion of temporal continuity in the graph dynamics, I follow Jin et

al. [107] to model the transition probability using the softmax function:

Pr[v|u] = exp (−τ(u, v)/r)∑
i∈Nu

exp (−τ(u, i)/r)
, (2.1)

where τ(u, v) denotes the timestamp associated with the edge u, v in the graph, and r is the

normalization term that denotes the total range of timespan.

With the transitional probability, our workload performs |W| walks with lengths L per node, and

collect them as the features to describe each individual node in the graph Wu = {v1, v2, · · · , vL}.

Next, I describe the derivation of node embeddings based on these walks.

2.5.1.2 Node Embedding

Given the set of temporal walks as features per node, our workload then leverages the skip-gram

model [85, 179] to learn the node embeddings, where the objective function is

max
f

logPr(Wu|f(u)), (2.2)
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where f(u) denotes the embedding for node u to optimize. To solve Equation (2.2), I assume

conditional independence between nodes in Wu, generating a relaxed objective

Pr(Wu|f(u)) =
∏

v∈Wu

Pr(v|f(u)), (2.3)

where Pr denotes the softmax function (Eq. (2.1)). As the output, our workload generates the

embedding function f = G → Rd for each node u ∈ G. For our implementation I leverage the

word2vec [167] framework.

2.5.2 Downstream Tasks

Given the d-dimensional embedding vector per node, our workload leverages the feed forward

neural network architecture (FNN) to perform two representative downstream tasks: link prediction

and (multi-class) node classification. The parameters of FNN are updated in the training set Str and

tested on the testing set Ste. The optimizers used for both tasks are Stochastic Gradient Descent

(SGD).

Depending on the tasks, the specific network architecture and loss function adopted in our

workload is given as follows.

Link Prediction. The goal of link prediction is to correctly predict the existence of edges that occur

later in time based on the initial graph temporal connectivity. Our workload casts link prediction as

a classification task, so that the trained FNN can distinguish edges in temporal graph G (positive

edges) from the non-existing ones (negative edges). An example is shown in Fig. 2.2(b), where the

goal is to predict the recent edge e(v,y) in the toy graph. Our workload randomly samples two early

edges as the positive samples with the same number of negative edges to train the neural network.

In the testing stage, the same amount of negative samples are generated as well. The embedding

for edge e(u,v) is derived by concatenating the embedding of the source and destination nodes, i.e.,

f(e(u,v)) = [f(u), f(v)] following [35].

In this task, I deploy the 2-layer FNN, where the output layer generates the probability of
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classification. I use a binary cross-entropy loss function in the training stage L = −
∑2

k=1 pk log qk,

where pk is the binary target ({0, 1}) and qk is the output probability of the neural net, i.e., q =

FNNLP(f(e+, f(e−))).

Node Classification. Multi-class classification is another widely studied task, where the goal

is to classify the multi-class labels of nodes in the graph. In our workload, I cast the multi-

class classification task by feeding the node-wise embeddings as well as their labels to a 3-layer

neural network. The output layer has |C| neurons, each of which indicates the probability of the

input node belonging to the class c ∈ C. The loss function used is negative log likelihood loss

L = − log(qc), where qc is the output probability of a node belonging to the ground-truth class c,

i.e., q = FNNNC(f(u), l(u))), where l(u) denotes the label for node u.

2.6 Temporal Motif Mining Algorithm

This section details the problem definition, and data structures and the state-of-the-art algorithm

used for temporal motif mining.

2.6.1 Problem Definition

A δ-temporal motif 3 is defined as a sequence of l edges, M = {(ui, vi, ti)}li=1, that are time-ordered

and occur within a δ duration, i.e., t1 < t2 < . . . < tl and tl − t1 ≤ δ. The problem of temporal

motif mining is to mine occurrences of the δ-temporal motif M within a larger temporal graph G.

In simple words, a δ-temporal motif is an occurrence of the sequence of edges in the graph G such

that the first and last edges of this sequence occur at most δ time apart. It differs from the task of

static motif mining in two ways: (1) in static motif mining, we are not interested in the sequence in

which the motif’s edges occur within G; (2) static motifs do not impose any constraints on the edge

properties. Temporal motif mining may be interpreted as identifying subgraph isomorphisms with

sequential and δ–constraints over edges.

3I sometimes refer to δ-temporal motif simply as temporal motif for brevity.
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Figure 2.3: Example of δ−temporal motif mining task. Depicted in (a) is the input graph, and (b) is
the δ−temporal motif. (c) presents a valid candidate for δ−temporal motif in the input graph, (d, e)
are invalid motifs due to violation of δ−constraint and edge ordering, respectively.

As a simple example, consider mining of a three-cycle δ-temporal motif in an input temporal

graph as shown in Fig. 2.3. Fig. 2.3(c) shows a valid motif because the edges between nodes 0, 1,

and 2 in this motif follow edge ordering and occur within δ = 25. On the other hand, Fig. 2.3(d,e)

show invalid motifs either due to the δ-constraint violation or an incorrect edge order. In a static

setting, however, all three motifs are valid as it does not account for edge ordering and timestamps.

2.6.2 Algorithmic Behavior

This section introduces the temporal motif mining algorithm proposed by Mackey et al. [156].

Data structures. The primary data structure used in this algorithm is a temporal edge list, stored

in an array of structures. Each member of this array contains source and destination node IDs and

a timestamp. Temporal edges in this array are sorted based on their timestamps. Additionally,

the graph structure is stored in a compressed format to simplify retrieving incoming and outgoing

edges from each node. This structure stores indices of temporal edges in the temporal edge list

(instead of storing the temporal edges [251]). In addition to the graph structure, this algorithm

stores key book-keeping information. This includes mappings between motif and graph nodes

(m2gMap[], g2mMap[]). A stack (eStack) of mined edge indices is used for Depth-First Search

(DFS) traversal.

Algorithm. Mackey et al. [156] present a pattern-agnostic temporal motif mining algorithm that

uses search tree exploration. Each node of the search tree matches an edge in a motif to an edge
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Algorithm 2 Generic temporal motif mining algorithm [156]
1: procedure TEMPORALMOTIFMINING(G, M, δ)
2: Input: temporal graph (VG, EG), motif (VM , EM ), time limit δ.
3: Output: temporal motifs
4: // Initialize data structures: edge mapping, counters
5: Initialize: m2gMap[u] = −1 ∀u ∈ VM ; g2mMap[u] = −1 ∀u ∈ VG

6: eCount[u] = 0 ∀u ∈ VG, eStack = [], eM = −1, eG = −1, t′ ←∞
7: while true do ▷ Loop until all motifs found
8: eG = FINDNEXTMATCHINGEDGE() ▷ Search: find a graph edge to match
9: if eG is valid then
10: UPDATEDATASTRUCTURES() ▷ Book-keeping: update data struct
11: eG + = 1
12: while eG > |EG| or time(eG) > t′ do ▷ Backtrack: void previous mapping
13: if eStack is not empty then
14: eG = eStack.pop() + 1
15: if eStack is empty then t′ ←∞
16: eCount[uG]− = 1, eCount[vG]− = 1 ▷ Reduce mapped edge cnt
17: if eCount[uG] == 0 then ▷ No edges of uG mapped
18: uM ← g2hMap[uG]
19: g2hMap[uG] = −1, h2gMap[uM ] = −1 ▷ Free uG, uM

20: if eCount[vG] == 0 then ▷ No edges of vG mapped
21: vM ← g2hMap[vG]
22: g2hMap[vG] = −1, h2gMap[vM ] = −1 ▷ Free vG, vM

23: else
24: return results
25:
26: procedure FINDNEXTMATCHINGEDGE( ) ▷ Find a new mapping
27: (uM , vM ) = EM [eM ]
28: (uG, vG) = m2gMap[uM ],m2gMap[vM ]
29: // Gather candidate edges to match with the next motif edge
30: if uG ≥ 0 and vG ≥ 0 then ▷ Both uG, vG mapped to motif nodes
31: S ← {e ∈ Nout(uG)/Nin(vG) : te > time(eG)} ▷ Irregular access + filter
32: else if uG > 0 then ▷ Only uG mapped to a motif node
33: S ← {e ∈ Nout(uG) : te > time(eG)} ▷ Irregular access + filter
34: else if vG > 0 then ▷ Only vG mapped to a motif node
35: S ← {e ∈ Nin(vG) : te > time(eG)} ▷ Irregular access + filter
36: else ▷ Both uG, vG not mapped
37: S ← {e ∈ EG : te > time(eG)} ▷ Search space is an entire edge list
38: // Return the first valid candidate edge that satisfies temporal constraints
39: for each edge e in S do
40: if e is not mapped and time(e) < t′ then
41: return e
42:
43: procedure UPDATEDATASTRUCTURES( ) ▷ Add a new mapping
44: if eM == |EM | − 1 then ▷ Entire motif found
45: Create a motif H from edges in eStack; add H to results.
46: else ▷ Partial motif found
47: (uG, vG)← EG[eG], (uM , vM )← EM [eM ]
48: m2gMap[uM ] = uG, m2gMap[vM ] = vG ▷ Map motif node to graph node
49: g2mMap[uG] = uM , g2mMap[vG] = vM ▷ Map graph node to motif node
50: eCount[uG]+ = 1, eCount[vG]+ = 1 ▷ Increment mapped edge cnt
51: if eStack is empty then ▷ eG is the first matched edge
52: t′ ← time(eG) + δ ▷ Upper bound on the motif’s end time
53: eStack.push(eG); eM + = 1

in the graph. Starting from the first edge (root node of the search tree), the algorithm iterates over

edges of the temporal motif in a chronological order to find one match at a time, following a DFS

tree traversal. Upon matching each edge, book-keeping information is updated.

Algorithm 2 presents this in detail. The outer while loop iterates over edges in an input motif. For
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each edge in a motif, the FINDNEXTMATCHINGEDGE() function tries to match a corresponding

edge in a graph. By Nout(u) and Nin(u), I denote the list of outgoing and incoming edges of a

node u, respectively. If a valid match is found, book-keeping structures are updated. Otherwise,

a backtracking procedure voids previous matches using a stack following a DFS traversal order,

and this process is repeated until all motifs are found. This algorithm performs most of its work in

finding an edge to map. As shown in the algorithm, this procedure also takes into account whether

or not either source and/or destination node of the motif edge have been mapped, and edge orderings

to reduce the search space.
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CHAPTER 3

Improving The Memory Latency of Data-Indirect

Irregular Workloads

This is a collaborative work with K. May, A. Behroozi, Y. Yang, K. Kaszyk, C. Vasiladiotis, T.

Verma, L. Li, B. Nguyen, J. Sun, J. Magnus Morton, A. Ahmadi, T. Austin, M. O’Boyle, S. Mahlke,

T. Mudge, R. Dreslinski.

Sparse irregular algorithms are widely deployed in several application domains including social

networks [169, 187], online navigation systems [81], machine learning [89], and genomics [14, 67].

Despite their prevalence, current hardware-software implementations on the CPUs offer sub-optimal

performance that can be further improved. This is due to the irregular nature of their memory

access patterns over large data sets, which are too big to fit in the on-chip caches, leading to several

costly DRAM accesses. Therefore, traditional techniques to improve memory latency—out-of-order

processing, on-chip caching, and spatial/address-correlating data prefetching [20,109,116,171,271],

are inadequate.

There is a class of prefetchers [17, 48, 54, 66, 98, 112, 216, 279] which focuses on linked data

structure traversals using pointers. In graph algorithms, for example, these prefetchers fall short

for two reasons. First, graph algorithms often use compressed data structures with indices instead

of pointers. Second, graph traversals access a series of elements in a data structure within a range

determined by another data structure. These prefetchers are not designed to accommodate such

complex indirection patterns.

Recently, several prefetching solutions have been proposed targeting irregular workloads.
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Figure 3.1: Overview of our design and contributions. Prodigy software efficiently communicates
key data structures and algorithmic traversal patterns, encoded in the proposed compact representa-
tion called the Data Indirection Graph (DIG), to the hardware for informed prefetching.

Hardware prefetchers rely on capturing memory access patterns using explicit programmer sup-

port [10, 11], learning techniques [198], and intelligent hardware structures [282]. Limitations

of these approaches include their limited applicability to a subset of data structures and indirect

memory access patterns [11, 24, 282] or high complexity and hardware cost to support generaliza-

tion [10, 198]. While software prefetching [12] can exploit static semantic view of algorithms, it

lacks dynamic run-time information and struggles to maintain prefetch timeliness.

In this work, we propose a hardware-software co-design for improving the memory latency of

several important irregular workloads exhibiting arbitrary combinations of two specific memory

access patterns. The goals of this design are threefold: (a) automatically prefetch all the key data

structures expressing irregular memory accesses, (b) exploit dynamic run-time information for

prefetch timeliness, and (c) realize a low-cost hardware prefetching mechanism. To this end, we

propose a compact representation called the Data Indirection Graph (DIG) to communicate

workload attributes from software to the hardware. The DIG representation efficiently encodes the

program semantics, i.e., the layout and access patterns of key data structures, in a weighted directed

graph structure. Fig. 3.1 presents the overview of our proposal. The relevant program semantics are

extracted through a compile-time analysis, and this information is then encoded in terms of the DIG

representation and inserted in the application binary. During run-time, the DIG is used to program

the hardware prefetcher making it cognizant of the indirect memory access patterns of the workload

so it can cater its prefetches accordingly.

22



Prodigy is a pattern-specific solution that targets two types of data-dependent indirect memory ac-

cesses, which we call single-valued indirection and ranged indirection. Single-valued indirection

uses data from one data structure to index into another data structure; it is commonly used to find

vertex properties in graph algorithms. Ranged indirection uses two values from one data structure

as base and bounds to index into a series of elements in another data structure; this technique

is commonly used to find neighbors of a vertex in graph algorithms. Based on this observation,

we propose a compact DIG representation that abstracts this information in terms of a weighted

directed graph (unrelated to the input graph data set). The nodes of the DIG represent the memory

layout information of the data structures, i.e., address bounds and data sizes of arrays. Weighted

edges represent the type of indirection between data structures. We present a compiler pass to

automatically extract this information and instrument the binary with API calls to generate the DIG

at a negligible cost. Our results show that the DIG is agnostic to any particular data representation;

it works well for various sparse data formats including compressed sparse row/column (CSR/CSC).

We design a low-cost hardware prefetcher that can be programmed using the DIG representa-

tion communicated from software. We store the DIG in prefetcher-local memory to make informed

prefetching choices. The prefetcher reacts to demand accesses and prefetch fills1 to the L1D cache

and issues non-binding prefetches (i.e., prefetched data placed in the L1D cache) based on an

irregular algorithm’s memory traversal pattern. To track the progress of the prefetch sequences and

enable non-blocking prefetching, we introduce the PreFetch status Handling Register (PFHR) file.

Additionally, we present an adaptive prefetching algorithm that selectively drops prefetch sequences

when the core catches up to the prefetcher. We name our system ProDIGy as it uses software

analysis coupled with hardware prefetcher using the program’s DIG representation.

We evaluate the benefits of Prodigy in terms of performance, energy consumption, and hardware

overhead. For evaluation, we use five graph algorithms from the GAP benchmark suite [26] with

five real-world large-scale data sets from [57, 139], two sparse linear algebra algorithms from the

HPCG benchmark suite [61], and two computational fluid dynamics algorithms from the NAS

1We define a prefetch fill as the cache line brought into the cache as a response to a prefetch request.
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Figure 3.2: Reduction in memory stalls and speedup of different approaches normalized to a non-
prefetching baseline for the PageRank algorithm on the livejournal data set.

parallel benchmark suite [19]. We compare our design with a non-prefetching baseline, GHB-based

global/delta correlation (G/DC) data prefetcher, and state-of-the-art prefetchers, i.e., IMP [282],

Ainsworth and Jones’ [10, 11], DROPLET [24], and software prefetching [13].

Fig. 3.2 presents a highlight of performance benefits of Prodigy on the PageRank algorithm

running on the livejournal data set [139]. Compared to a non-prefetching baseline, Prodigy

reduces the DRAM stalls by 8.2× resulting in a significant end-to-end speedup of 2.9× compared

to the marginal speedups observed using a traditional G-DC prefetcher that cannot predict irregular

memory access patterns and DROPLET [24] which only prefetches a subset of data structures. §3.5

presents further comparisons with [10–12, 282]. Across a complete set of 29 workloads, we show a

significant average speedup of 2.6× and energy savings of 1.6× compared to a non-prefetching

baseline. Using our evaluation framework, we further show that Prodigy outperforms IMP [282],

Ainsworth and Jones’ prefetcher [11], and DROPLET [24] by 2.3×, 1.5×, and 1.6×, respectively.

The compact DIG representation allows Prodigy to achieve high speedups at a mere 0.8KB of

hardware storage overhead. In comparison, by simply scaling the non-prefetching baseline to use

more cores to maximize the memory bandwidth and achieve similar throughout would require 5×

more cores.

Prodigy is a specialized approach for critical memory latency-bound applications. When a

processor is not running these applications, Prodigy will be turned off. In the age of dark silicon [70],

state-of-the-art hardware frequently employs specialized accelerators for key applications. With
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Figure 3.3: Normalized execution time of irregular workloads, without prefetching, broken down
into: no-stall, and stalls due to DRAM, cache, branch mispredictions, data dependencies, and others.
The goal of this work is to reduce the DRAM stalls (dark blue portion of the bar).

Prodigy’s low-cost design (0.8KB storage requirement), it is a modest price to pay for the efficiency

it provides.

In summary, we make the following contributions:

• A compact representation of data traversal patterns, called a DIG (Data Indirection Graph),

for irregular workloads with any combination of two specific data-dependent memory access

patterns.

• A novel programming model and associated compiler pass that analyzes the program, extracts

key data structures and algorithmic traversal patterns, and generates instrumented code to

create the DIG representation.

• A low-cost hardware prefetching design that uses this representation to prefetch data based

on an irregular algorithm’s memory traversal pattern in a timely manner.

• A resulting hardware-software co-designed system with an average speedup of 1.7× compared

to the state-of-the-art prefetchers; average speedup and energy savings of 2.6× and 1.6×

compared to a non-prefetching baseline at a negligible storage requirement of 0.8KB.
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Figure 3.4: Proposed Data Indirection Graph (DIG) representation—(a) example representation
for BFS, (b) data structure memory layout and algorithmic traversal information captured by a
DIG node and a weighted DIG edge respectively; two unique data-dependent indirection patterns
supported by Prodigy—(c) single-valued indirection, and (d) ranged indirection.

3.1 Motivation

Based on the background present in §2.1 and §2.3, we observe two major bottlenecks in this

algorithm: (a) data-dependent loads to the offset, edge, and visited lists and (b) a load-dependent

branch instruction. Data-dependent reads for large-scale graphs are costly latency-wise because of

their massive data footprint and random memory access patterns. Due to lack of locality, data for

most of these loads are not found in caches. Moreover, control-flow instructions incur high penalty

for two reasons. First, their data-dependent nature makes it challenging for branch predictors to

predict the correct branch outcomes. Second, as reported by Srinivasan and Lebeck [242], in the

case of an incorrectly predicted branch, much unnecessary work is performed while waiting for

the load operation to return its data and correct the mispredicted branch. To better understand this

bottleneck, Fig. 3.3 shows the breakdown of execution times for various irregular workloads running

on an eight-core machine with three levels of cache hierarchy using the methodology shown in §3.4.

The figure clearly shows that these applications are stalled on DRAM for more than 50% of the

time and have non-negligible branch misprediction stalls.
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3.2 Proposed Programming Model

Prodigy’s novel programming model captures an algorithm’s semantic behavior, including its

data structure layout and memory access patterns, in a compact graph representation which is

communicated to the hardware. We present two techniques to construct this representation within

the program—(a) manual code insertion by the programmer, and (b) automatic code generation

using compiler analysis.

3.2.1 Data Indirection Graph (DIG): A Compact Representation of Program

Semantics

We make the key observation that two specific data-dependent indirect memory access patterns

are used in a wide range of irregular workloads. Taking this as a foundation, we can construct

combinations of these patterns that span sets of irregular memory accesses for different algorithms.

With this insight, we propose a graph representation, which we call a Data Indirection Graph

(DIG), to capture the relationship between data structures for irregular algorithms. In a DIG, each

node represents a data structure (e.g., the visited list in BFS), and each directed weighted edge

represents a data-dependent access. Fig. 3.4 shows an example DIG representation for the BFS

algorithm. Nodes of the DIG, which store data structure information, have the following fields:

node id—a unique identifier to reference the data structure, and an address identifier—a method

for identifying which part of the address space belongs to the data structure represented by the

node. For example, the address identifier for an array are: base addr—base address of the array,

capacity—number of data elements in the array, and data size—data size of each element

of the array in bytes.

Edges of the DIG, which store the algorithmic traversal pattern between data structures have

the following fields: src base addr—base address of the source data structure from which

data are read to index into the destination data structure, dest base addr—base address of

the data structure that is indexed into, and edge type—data-dependent indirect access pattern
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from source node to destination node. As stated before, Prodigy supports two types of indirection

patterns that are abstracted using edge weights of w0 and w1. Fig. 3.4(c,d) show these two types of

data-dependent indirection functions supported by our representation, i.e., single-valued indirection

(e.g., indirection between edge list and visited list for BFS) and ranged indirection (e.g., indirection

between offset list and edge list in BFS). Additionally, we define a special edge called a trigger edge

(w2 in Fig. 3.4(a)), which is a self-edge to the data structure triggering prefetches. Trigger edge

contains node base addr—data structure base address, and edge type—details of prefetch

sequence initialization (more details in §3.3). A trigger edge represents the control flow specifying

the prefetch sequence to initialize.

3.2.2 Construction and Communication of the DIG

This section discusses how to generate the DIG representation from software and communicate it

to hardware. We first describe how a programmer can achieve this by manually inserting simple

annotations to the application source code using our API calls. To reduce the burden on the

programmer, we further propose a compiler analysis and code generation technique to automatically

analyze the application source code, construct the DIG representation, and instrument the application

binary using the proposed API calls.

3.2.2.1 Using Programmer Annotations

Assuming that the programmer is cognizant of the key data structures and traversal algorithms

used in the application, they can add simple API calls in the application source code to construct

the DIG representation. Fig. 3.5 presents these modifications for BFS, where three unique API

calls are used to annotate the DIG. registerNode()—register a node of the DIG. This call

writes a node’s information into the prefetcher memory; the arguments to this call are the base

address of this data structure, total number of elements, size of data elements, and the node ID.

registerTravEdge()—register an edge of the DIG. This call writes edge information into the

prefetcher memory; the arguments to this call are the addresses of the source and destination nodes,
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int BFS(FILE* inputGraph, vtxID source)
{
  Graph g = readGraph(inputGraph);
  queue<vtxID> workQueue(g.numNodes()); 
  vtxID** offsetList = (vtxID**) malloc(g.numNodes()+1);
  vtxID*  edgeList   = (vtxID*)  malloc(g.numEdges());
  vtxID*  visited    = (vtxID*)  malloc(g.numNodes());
  populateDataStructures(g, offsetList, edgeList, visited);
  registerNode(&workQueue,  g.numNodes(),   4,  0);
  registerNode(offsetList,  g.numNodes()+1, 4,  1);
  registerNode(edgeList,    g.numEdges(),   4,  2);
  registerNode(visited,     g.numNodes(),   4,  3);
  registerTravEdge(&workQueue, offsetList,  w0);
  registerTravEdge(offsetList, edgeList,    w1);
  registerTravEdge(edgeList,   visited,     w0);
  registerTrigEdge(&workQueue, w2);
  workQueue.enqueue(source);
  […]

1:
2:
3:
4: 
5:
6:
7:
8: 
9: 
10: 
11:
12:
13:
14: 
15:
16:
17:
18:

Figure 3.5: Annotated BFS source code to construct the DIG.

and the type of indirection (i.e., w0/w1 as shown in Fig. 3.4). registerTrigEdge()—register

a trigger edge of the DIG. This call writes the base address of the trigger data structure into the

prefetcher registers. The second argument (w2) holds information about the type of prefetch to be

initiated (more details in §3.3.3).

3.2.2.2 Using Compiler Analysis

Identifying indirections in non-trivial programs (e.g., [26]) can be complicated for the programmer,

often requiring in-depth application knowledge. Our compiler alleviates this manual work by auto-

matically identifying these indirections and transforms the program by annotating it with prefetcher

API calls. Our compiler analyzes the application source code once for annotation with a negligible

cost compared to the graph reordering approaches [21, 267] that incur significant cost of profiling

and re-organizing the input data set. Node and edge identification avoids complex interprocedural

analysis by performing the resolution of their relationships during execution. Prefetching is only

triggered for indirections whose edges consist of these resolved and registered nodes, as seen

in Fig. 3.7(d). This section describes the operation of our LLVM-based compiler analyses and

transformations.

First, our compiler analysis extracts information required for node registration from allocations.

Apart from conventional defaults (i.e., malloc), the user can specify custom allocators. The
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Compiler 
analysis

Code 
generation

define void @kernel(i64* %0, i64* %1, i64* %2) {
  %10 = call i32 @registerTrigEdge(i64* %0, i32 5)
  %11 = call i32 @registerTravEdge(i64* %0, i64* %1, i32 1)
  [...]
  ; loop
  %16 = getelementptr inbounds i64, i64* %0, i64 %.01
  %17 = load i64, i64* %16, align 4
  %19 = getelementptr inbounds i64, i64* %1, i64 %17
  %20 = load i64, i64* %19, align 4
  [...]
}

define void @main() {
  %3 = call i8* @malloc(i64 4000)
  %4 = call i32 @registerNode(i64* %3, i32 1000, i32 4, i32 0)
  %7 = call i8* @malloc(i64 4000)
  %8 = call i32 @registerNode(i64* %7, i32 1000, i32 4, i32 1)
  [...]
  call void @kernel(i64* %3, i64* %7, i64* %10)
}

1:
2:
3:
4: 
5:
6:
7:
8: 
9: 

10: 
11:
12:
13:
14: 
15:
16:
17:
18:
19:
20:

define void @kernel(i64* %0, i64* %1, i64* %2) {
  %10 = call i32 @registerTrigEdge(i64* %0, i32 5)
  %11 = call i32 @registerTravEdge(i64* %0, i64* %1, i32 1)
  [...]
  ; loop
  %16 = getelementptr inbounds i64, i64* %0, i64 %.01
  %17 = load i64, i64* %16, align 4
  %19 = getelementptr inbounds i64, i64* %1, i64 %17
  %20 = load i64, i64* %19, align 4
  [...]
}

define void @main() {
  %3 = call i8* @malloc(i64 4000)
  %4 = call i32 @registerNode(i64* %3, i32 1000, i32 4, i32 0)
  %7 = call i8* @malloc(i64 4000)
  %8 = call i32 @registerNode(i64* %7, i32 1000, i32 4, i32 1)
  [...]
  call void @kernel(i64* %3, i64* %7, i64* %10)
}

1:
2:
3:
4: 
5:
6:
7:
8: 
9: 

10: 
11:
12:
13:
14: 
15:
16:
17:
18:
19:
20:

void main()
{
  int * a = malloc(size);
  int * b = malloc(size);
  [...]  
  kernel(a, b, dst);
}

1:
2:
3:
4: 
5:
6:
7:

void main()
{
  int * a = malloc(size);
  int * b = malloc(size);
  [...]  
  kernel(a, b, dst);
}

1:
2:
3:
4: 
5:
6:
7:

void kernel(int* a, 
int* b, int* dst)

{
  for(int i = 0; i < size; ++i)
    *(dst+i) = b[a[i]];
}

1:

2:
3:
4: 
5:

void kernel(int* a, 
int* b, int* dst)

{
  for(int i = 0; i < size; ++i)
    *(dst+i) = b[a[i]];
}

1:

2:
3:
4: 
5:

(b)(a)

(c)

Figure 3.6: An example C program (a) and (b), translated into LLVM IR (c) and instrumented with
our API calls to register DIG nodes and edges.

pseudocode for this procedure is presented in Fig. 3.7(a). Fig. 3.6(c) shows two node registrations,

each using information from the immediately preceding malloc calls. Next, by tracking the use of

these nodes, it extracts edge information and detects their associated indirection patterns. Fig. 3.6(b)

contains a single-valued indirection in the form of a load to b[a[i]] (line 4), which corresponds

to the LLVM IR in lines 6-9 of Fig. 3.6(c). As the base addresses of these two arrays form the edge

between the nodes, our pass extracts them and uses them in the registerEdge() function along

with the final argument that specifies the type of edge being registered—in this case, a single-valued

indirection. Our code generation pass places the edge registration calls as soon as all the required

arguments have been defined. In Fig. 3.6, the pointers to the arrays are passed into the kernel as

arguments, allowing edges to be registered at the start of the function (lines 2-3). Ranged indirection

can be identified similarly. For a ranged indirection from array a to b as shown in Fig. 3.4(d), we

detect the array accesses (i.e., a[i] and a[i+1]) that control loop bounds for accessing/indexing

into another array b. The pseudocode for identifying single-valued and ranged indirections is

presented in Fig. 3.7(b,c), respectively.

30



for func in module:
for inst in func:

if isInstanceOf(inst, AllocCall):
alloc = AllocCall(inst)
alloc_info = {alloc.total_size, alloc_num_elements, 

alloc.base_ptr}
emit(<registerNode(alloc_info)>)

(a)

# identify address calculations
for func in module:

for inst in func:
if isInstanceOf(inst, AddrCalc):

source_addresses.append(ins.addr)

# find edge
for source_addr in source_addresses:

loads = getLoadsUsing(source_addr)
for ld in loads:
dependent_addr_instr = getAddrCalcsUsing(ld)
for target_inst in dependent_addr_instr:

if isUsedInLoad(target_inst.addr):
emit(<registerTravEdge(source_addr,                     

target_inst.addr)>)
(b)

# identify address calculations
# same as in single-valued indirection above

# find edge
for source_addr in source_addresses:

addr_calc2 = findAddrCalcWithSameBasePtr(source_addr)
if areUsedInBoundsCheck(source_addr, addr_calc2.addr):

target_inst = findLoadUsingAddr(source_addr)
emit(<registerTravEdge(source_addr, 

target_inst.addr)>)
(c)

def registerNode(base_ptr, num_elems, elem_size, node_id):
# note: the node_table is depicted in Figure 2.9a
node_table.insert({base_ptr, base_ptr + num_elems * 

elem_size, node_id})

def registerTravEdge(src_ptr, target_addr, edge_type):
# note: the edge_table is depicted in Figure 2.9c
src_base_addr = scan_node_table(src_addr_
target_base_addr = scan_node_table(target_addr)
if src_base_addr and target_base_addr:

edge_table.insert({src_base_addr, target_base_addr, 
edge_type})

def registerTrigEdge(addr, edge_type):
node_base_addr = scan_node_table(addr)
if node_base_addr:

edge_table.insert({node_base_addr, node_base_addr, 
edge_type})

(d)

1.
2.
3.
4.
5.

6.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.

1.
2.
3.
4.
5.
6.
7.
8.
9.

1.
2.
3.

4.
5.
6.
7.
8.
9.

10.

11.
12.
13.
14.
15.

Figure 3.7: Pseudocode of Prodigy’s compiler analyses for (a) node identification, (b) single-valued
indirection, (c) ranged indirection, and (d) runtime.

At the final stage, our analysis picks trigger edges using the set of traversal edges identified

previously. If a node from that set does not have an incoming edge, then it has a trigger edge (i.e., a
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(a)

(c)
0x00010
0x001A0
0x00334

Src Node Addr
0x001A0
0x00334
0x00B04

Dest Node Addr
0
1
0

Edge Type(b)
0
1
2

Edge Index

Node ID Base Address Data Size Trigger
0 0x00010 4 true
1 0x001A0 4 false
2 0x00334 4 false
3 0x00B04 4 false

Bound Address
0x0019C
0x00330
0x00B00
0x00C90

Node ID
Prefetch 

Trigger Addr
2 0x00020
0 0x00108
1 0x00080
2 0x00188

Outstanding 
Prefetch Addr
0x00468
0x00108
0x00200
0x00A00

Offset 
Bitmap

01010000
01000000
00001000
01111100

Free

false
true
false
false

(d)

Figure 3.8: Memory structures used in Prodigy—(a) node table, (b) edge index table, and (c) edge
table for storing the DIG representation, (d) prefetch status handling register (PFHR) file tracking
progress for live prefetch sequences and issuing non-blocking prefetches.

self-edge to the trigger node). For example, the address calculations in lines 6 and 8 in Fig. 3.6(c)

form a traversal edge. However, because the node with address generation in line 6 does not have

any incoming edges, it is designated as a trigger edge, with its registration inserted in line 2.

The code generated by our compiler pass and the programmer annotations use the same API,

presented in Fig. 3.7(d), and can complement each other, thus improving the overall accuracy of our

compiler. For example, the programmer can choose to manually annotate the relevant nodes, and

rely on the compiler to identify edges.

3.2.2.3 Application Hardware Interface

A small SRAM-based memory unit is used on the hardware prefetcher that is memory mapped to

hold the DIG. Once software generates the DIG using API calls presented above, these calls are

translated into a set of store operations by a run-time library.
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3.3 Proposed Hardware Design

3.3.1 Memory Requirements for a DIG

Fig. 3.8(a-c) show three prefetcher-local memory structures to store a DIG representation. As

described in §3.2, the node table and the edge table store properties of DIG nodes and edges,

respectively. The base address, number of elements, and data size of each node specified by

software are converted into base and bound addresses by the runtime library, and then stored into

the node table. Because the DIG captures program semantics from the source code, these tables

store virtual addresses. Additionally, we use an edge index table to find outgoing edges from a

DIG node, which mimics the software offset list in hardware. To perform prefetching, Prodigy state

machine uses these structures to extract program’s data structures and traversal information.

3.3.2 The Prefetch Status Handling Registers

A typical prefetch sequence for graph workloads can span four or more data structures. While the

prefetcher is waiting to receive multiple outstanding data requests, it is important to track which

responses belong to which issued requests. In addition, prefetch opportunities may be lost if the

prefetcher is blocking, i.e., waiting for a whole prefetch sequence to complete before accepting a

new one. To address these challenges, we introduce a hardware structure called PreFetch status

Handling Register (PFHR) file for Prodigy, which addresses both of these issues at once. While

PFHRs are analogous to the Miss Status Handling Registers (MSHRs) in non-blocking caches,

PFHRs have a unique design because they also have to track the status of long prefetch sequences

in addition to making their host hardware structure non-blocking.

Fig. 3.8(d) shows the hardware structure for PFHR file, where each row has the following

entries. Free indicates if a PFHR is free or occupied. Node ID denotes the DIG node ID of an

outstanding prefetch request. Prefetch trigger address stores the virtual address from

which the prefetch sequence is initiated. This is used to drop the prefetch sequence if the demand

sequence advances close to the prefetch sequence. Outstanding prefetch addresses
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Node0 Node1 Node(N-1)

Node0
D
[i]

Node0
P
[i+j]

Node0
P
[i+k]

Prefetch bounds
[j,k]

Prefetch depth (N)

Indirection type

Figure 3.9: Prefetching algorithm initiates prefetch sequences between prefetch bounds j and k and
advances a prefetch sequence using software-defined indirection types. The superscripts denote a
demand (D) or a prefetch (P) access.

stores the cache line-aligned physical addresses of outstanding prefetch requests. Upon a prefetch

fill, Prodigy performs a CAM look-up in this column to find the PFHR that is keeping track of that

request. Offset bitmap stores a bitmap of outstanding prefetch byte-addresses in a cache line

whose address is indicated in the previous entry.

3.3.3 Prefetching Algorithm

The prefetching algorithm has two phases: (a) prefetch sequence initialization and (b) prefetch

sequence advance.

3.3.3.1 Prefetch Sequence Initialization Algorithm

This algorithm dictates actions to perform upon a prefetch trigger event. A prefetch trigger event

occurs when Prodigy observes a demand load request to a data structure with a trigger edge. To

dynamically adapt to changing machine states (e.g., cache contents), Prodigy initializes multiple

prefetch sequences at once and selectively drops some prefetch sequences.

The role of a trigger edge is to indicate the parameters to initialize prefetch sequence(s), which

include the prefetch bounds and prefetch direction as shown in Fig. 3.9. The prefetch bounds

represent a look-ahead distance for prefetching (i.e., j) and the number of prefetch sequences to

initialize (i.e., k − j + 1). Additionally, the data structure traversal direction can also be defined,

i.e., ascending or descending order of their memory addresses. Intuitively, when the prefetch depth,
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i.e., number of nodes on the DIG’s critical path, is high, the time to traverse an entire path is long.

Hence, a small look-ahead distance is effective to balance data processing and data fetch times.

Similarly, for a short critical path, a large look-ahead distance is effective. This simple intuition

is incorporated in a heuristic to determine the prefetch look-ahead distance, where the distance

decreases with an increase in the prefetch depth of up to three. For algorithms traversing through

four or more data structures, a look-ahead distance of one is used. In practice, we found there was

little performance variation when the look-ahead distance is up to 4× smaller/greater than the ideal

value.

Moreover, to adapt to dynamic data processing speed of the core, Prodigy uses a feedback from

load requests to selectively drop prefetch sequences. As shown in Fig. 3.8(d), we store a trigger

address in each PFHR entry to record the starting address of the prefetch sequence. When the

core demands the trigger address of a live prefetch sequence, we drop the sequence because the

prefetcher can only partially hide the memory latency. Instead, we choose to hide the full latency

of future load operations by prefetching ahead. This way, dropping of prefetch sequence(s) helps

Prodigy to always run ahead of the core, and multiple prefetch sequence initialization ensures the

liveliness of some prefetch sequence(s) even if few others are terminated.

3.3.3.2 Prefetch Sequence Advance Algorithm

Upon servicing a prefetch, Prodigy reads its data to issue further prefetch requests using two types

of indirection functions, i.e., single-valued indirection and ranged indirection (see §3.2.1).

Single-valued indirection is an indirection type that connects two arrays, where the source array

stores indices/pointers to index into the destination array as shown in Fig. 3.4(c). This traversal

function is common in irregular algorithms (e.g., graph algorithms use vertex identifier to index into

data storage (e.g., visited list for BFS and vertex scores for PageRank)). Notably, pointers are a

special class of this indirection type, where the address of the destination can be found by using the

pointer itself. With node information stored in the DIG, the prefetcher can interpret the address as

an index (or a pointer) and indexes into the next array as done in software using the base address

35



and data size of the next DIG node.

Ranged indirection is an indirection type in which an array stores pairs of base and bound

indices (or pointers) pointing to a section of another array which is accessed together as shown in

Fig. 3.4(d). Fundamentally, this access pattern summarizes a streaming access through a portion

of memory specified by this pair. For example, in CSR/CSC representations, ranged indirection is

used in graph algorithms to find neighbors of a vertex using offset list and edge list.

3.3.4 Hardware Flow of Prodigy
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Figure 3.10: Prodigy operation: (a) prefetch sequence initialization, and (b) prefetch sequence
advance.

Fig. 3.10 shows the operation of Prodigy and its interaction with the rest of the system. The

figure shows that the graph data structures are populated in memory for the BFS algorithm on an

example graph same as Fig. 2.1. For simplicity, we assume that a cache line size is a single data

block and caches are not yet populated. Once the prefetcher is programmed, it snoops on load

requests from the core to the L1D and waits for a demand request within the address ranges of the

data structure with the trigger edge. Similar to the prefetching algorithm, Prodigy state machine has
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two phases for issuing prefetches: prefetch sequence initialization and advance.

Fig. 3.10(a) shows Prodigy’s operation in the first phase. Upon observing a load request 1 that

falls in the trigger data structure (i.e., workQueue), a prefetch sequence is initialized. Based on

the prefetch-lookahead distance of (let us assume) 2 communicated via a trigger edge as described

in §3.3.3, Prodigy computes memory address 0x108 (i.e., 0x100+2×4) to prefetch. Lastly, this

address is translated to a physical address using the TLB and issued for prefetching 2 . A new

PFHR is allocated for tracking this prefetch request.

Fig. 3.10(b) shows the second prefetching phase, where demand and prefetch requests are

serviced with their data resident in the cache. Upon receiving the demand request, the core traverses

through other data structures 3 ld 0x124 (0x11c+2×4; using index of 2 and data size of 4).

Note that further load requests do not trigger prefetch sequences until another access to workQueue.

Upon prefetch fills, Prodigy finds the PFHR entry keeping track of this request using a CAM

look-up. Once identified, a source DIG node corresponding to this prefetch fill, its outgoing edges,

and data indirection type are found by indexing into the edge and edge index tables. Using the

single-valued indirection w0 and prefetched data, next prefetch address of 0x12C is computed.

Lastly, a prefetch request is sent 4 by translating its address using the TLB and a new PFHR is

allocated; this process repeats until a leaf DIG node is encountered. A new PFHR is only allocated

for prefetch addresses belonging to non-leaf DIG nodes.

3.3.5 Prodigy in a Parallel Execution Setting

In a multi-core execution, a private instance of Prodigy is present on each core. Prodigy snoops

on the L1D cache to trigger prefetch sequences. Prodigy supports trigger data structures that

are contiguously partitioned across multiple threads in the virtual address space. Thus, Prodigy

supports both statically-scheduled (OpenMP-static) and dynamically-scheduled or work stealing-

based compilers (OpenMP-dynamic, CILK [73]). With this contiguous partitioning, Prodigy mostly

prefetches the correct data for each core; this prevents any significant increase in NoC-coherence

traffic. The only exception is present at the data structure boundaries, which are rarely accessed.
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Timeliness in presence of synchronization is maintained by selectively dropping prefetch sequences

based on each core’s execution pace.

3.3.6 OS Integration

Prodigy works best when the number of user threads does not exceed the core count. This allows

the use of thread affinity to ensure only one user context is needed in the prefetcher. In the event

that a thread which uses Prodigy is preempted by the kernel, the prefetching is paused upon thread

descheduling. The data in Prodigy’s prefetcher-local memory structures remains untouched. This

cached data can be used to resume prefetching when the thread is rescheduled. In the rare event that

another user thread is scheduled that requires the prefetcher, the context needs to be saved/restored

from the prefetcher data structures.

3.3.7 Prefetch Throttling Mechanism

While Prodigy focuses on designing a novel prefetching mechanism, we do not implement a prefetch

throttling mechanism because it is out of the scope of this work. We envision Prodigy to be used

alongside a prefetch throttling mechanism similar to [241] that can identify and prevent prefetch-

induced cache pollution to further improve performance. We leave studying the best throttling

techniques as future work.

3.4 Methodology

This section describes the simulation infrastructure, algorithms and data sets, and state-of-the-art

prefetching systems.

3.4.1 Simulation Infrastructure

We use Sniper [36]—a Pin [154] based x86 multi-core simulator with an interval core simulation

model. Sniper has been validated against several Intel micro-architectures [15, 36, 37]. We use
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Table 3.1: Baseline system configuration.

Component Modeled Parameters
Core 8-OoO cores, 4-wide issue, 128-entry ROB, load/store queue

size = 48/32 entries, 2.66GHz frequency
Cache Hierarchy Three-level inclusive hierarchy, write-back caches, MESI

coherence protocol, 64B cache line, LRU replacement
L1 I/D Cache 32KB/core private, 4-way set-associative, data/tag access

latency = 2/1 cycles
L2 Cache 256KB/core private, 8-way set-associative, data/tag access

latency = 4/1 cycles
L3 Cache 2MB/core slice shared, 16-way set-associative, data/tag access

latency = 27/8 cycles
Main Memory DDR3 DRAM, access latency = 120 cycles, memory

controller queuing latency modeled

CACTI [175] to obtain cache access times for different cache capacities. We use the McPAT [146]

model built into Sniper to model energy consumption. We implement our compiler analysis

techniques using LLVM passes [130]. We evaluate our approach by modeling a parallel shared

memory system with 8 cores as described in Table 3.1. We run our workloads end-to-end and

report the performance numbers by ignoring initialization cost, i.e., reading a graph from a file and

populating data structures. We use the region-of-interest (ROI) utility from Sniper to only profile

the core algorithm.

3.4.2 Irregular Workloads

We use unmodified versions of the following workloads and run through our compiler pass for

analysis.

Algorithms. We use five graph algorithms from the GAP benchmark suite (GAPBS) [26] for

evaluation—Betweenness Centrality (bc), Breadth-First Search (bfs)2, Connected Components

(cc), PageRank (pr), and Single-Source Shortest Path (sssp). We also use Sparse Matrix-Vector

multiplication (spmv) and Symmetric Gauss-Seidel smoother (symgs) from the HPCG benchmark

suite [61] as representative sparse linear algebra applications. Additionally, we use Conjugate

Gradient (cg) and Integer Sort (is) from the NAS parallel benchmark suite [19] as representative

computational fluid dynamics applications. We choose these algorithms as they exhibit single-valued
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Figure 3.11: Design space exploration on the PFHR file size. Performance of each configuration is
normalized to 4 entries.

and/or ranged indirections.

Table 3.2: Real-world graph data sets used for evaluation.

Graph Number of Number of Size × LLC
vertices edges (in MB) capacity

pokec (po) 1.6M 30.6M 132.0 16.5
livejournal (lj) 4.8M 69.0M 300.0 37.5

orkut (or) 3.1M 117.2M 485.2 60.6
sk-2005 (sk) 50.6M 1930.3M 7749.6 968.7

webbase-2001 (wb) 118.1M 1019.9M 4791.6 598.9

Data sets. As inputs to the graph algorithms, we use real-world graph data sets from SNAP [139]

and UF’s sparse matrix collection [57] as shown in Table 3.2. We selected these data sets as they

represent real-world graph data and offer diversity in total size as well as number of vertices and

edges. The primary reasons for avoiding the use of the graph generators kron and urand from

GAPBS are (a) they are synthetic data sets, and (b) they are severely bound by synchronization

overheads when evaluated on our simulation infrastructure. Unless shown individually, results

for each graph algorithm is averaged over all data sets. For non-graph algorithms, we use input

generators from benchmark suites; data set sizes for the linear algebra and fluid dynamics kernels

are 2M×2M, and 33M (for is) and 75k (for cg), respectively.
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addresses.

3.5 Results

3.5.1 Design Space Exploration

We perform design space exploration on Prodigy to understand the trade-off between performance

and hardware complexity. Fig. 3.11 shows the effect of PFHR file size on the overall performance

normalized to a baseline of 4 registers. The figure illustrates two key findings. First, there is up to

30% performance difference between the performance-optimal configuration and the baseline PFHR

file size. The performance difference is attributed to structural hazards in the PFHR file—while

issuing a prefetch, if the entire PFHR file is busy, the prefetch is dropped. We choose the size

of PFHR file to be 16 for our design since it offers a reasonable trade-off between performance

and storage area requirement. Second, increasing the number of PFHRs beyond 8 for cc hurts its

performance since the benefits of timely prefetches are overshadowed by untimely prefetches that

pollute the cache system. Dynamically adapting prefetch aggressiveness according to the usefulness

of prefetched cache lines might help improve the performance of such workloads.

3.5.2 Prefetching Potential

To estimate the potential prefetch coverage of Prodigy, Fig. 3.12 evaluates the fraction of LLC

misses, for a non-prefetching baseline, that Prodigy can prefetch. We evaluate this using DIG-

annotated application binaries, disabling the prefetcher, and classifying LLC miss addresses based

2For a fair comparison with prior work, we only use a top-down implementation of the bfs algorithm.Prodigy can
also adapt to direction-optimizing BFS by re-configuring the DIG during run-time.
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Figure 3.13: CPI stack comparison and speedup achieved by Prodigy against a non-prefetching
baseline. Left bar: CPI stack of baseline; right bar: CPI stack of Prodigy normalized to baseline.
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on whether they are within or outside the data structure address bounds annotated by the DIG.

The figure shows that, on average, 96.4% of LLC misses can be prefetched. In other words, ideal

prefetching and caching resources would convert an average of 96.4% of DRAM accesses into

cache hits, which sets the upper bound for our evaluation.

3.5.3 Effect on Performance

Prodigy vs. no-prefetching: Fig. 3.13 shows the CPI stacks and speedups of Prodigy across all

the workloads normalized to a non-prefetching baseline. For each workload, the first and second

bars correspond to the CPIs of baseline and Prodigy, respectively. The figure shows the breakdown

of execution time in terms of no-stalls and stalls because of DRAM and cache accesses, branch

mispredictions, dependent instructions, and others. Prodigy achieves a significant average speedup

of 2.6× compared to a non-prefetching baseline.

We see that Prodigy gains most of its performance by decreasing the DRAM stalls by an average

of 80.3%. Notably, the DRAM stall portion of the baseline non-graph workloads is 88.4% of the

overall CPI, leading to substantial savings and speedups. Assuming that software communicates the

correct workload semantics to the prefetcher, it mostly fetches useful data. The primary inefficiency

stems from issuing untimely prefetches. We address this challenge by prefetching for the next few

work queue items and dropping prefetch sequences after detecting that the core has caught up. This
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heuristic allows us to avoid cache pollution by modulating the number of requested cache blocks

while also freeing PFHRs for more useful work if their prefetch sequences would only partially hide

the memory latency. Note that the pr implementation uses both CSC and CSR graph data structures

that achieves a similar speedup as other algorithms that only use CSR format. Furthermore, as a

result of reduction in DRAM stalls, Prodigy slightly increases the cache stall portion of the CPI

stack. This is due to converting DRAM accesses into cache hits that increases the aggregate time

spent on cache accesses.

Additionally, mostly for graph workloads, Prodigy reduces the branch segment of the CPI stack

by 65.3% on average as a side effect of reducing DRAM stalls. This is especially evident in bfs,

pr, and sssp due to the prevalence of load data dependent branches. For example, in bfs, a

vertex is only added onto the work queue after loading its visited list entry and verifying that it has

not been traversed yet. This finding is consistent with prior work [242].

Prefetch Usefulness: Fig. 3.14 classifies the usefulness of prefetched data into four categories—

demanded and resident in the L1/L2/L3 cache and evicted from the cache hierarchy without being

demanded. The figure shows that data brought in by 32.9–85.8% of prefetch requests is demanded

before it is evicted, which shows the accuracy of our prefetcher. On average, our prefetcher achieves
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an accuracy of 62.7%. Furthermore, most of these cache hits are found in the L1D cache, which

incurs the lowest latency of the load operations. Note that since Prodigy benefits from static analysis

information provided by software, the fraction of evicted data can further be reduced by using an

intelligent caching policy (e.g., stream buffers or scratchpads [3]) since eviction is a consequence of

imperfect timeliness. Fig. 3.15 shows the percentage of prefetchable LLC misses (blue portion of

the bar in Fig. 3.12) that Prodigy converts into cache hits. On average, Prodigy converts 85.1% of

prefetchable LLC misses to cache hits.

Significance of ranged indirection: For graph algorithms, ranged indirection is responsible for

prefetching 35.4–75.9% (55.3% on average) of all data (not shown because of space limitation). The

fraction of data prefetched using ranged indirection depends both on the position of indirection types

in a prefetch sequence and the amount of data available to prefetch. For example, a major source

of single-valued indirection in bfs is at a prefetch depth of four. At this depth, secondary effects,

like squashing of prefetch sequences and PFHR unavailability, limit prefetching opportunities.

Prior work [54, 216, 282] only prefetch single-valued indirection and fail to capture a significant

prefetching opportunity.

Prodigy vs. hardware prefetchers: Next we compare the performance of Prodigy with the

state-of-the-art hardware prefetchers including GHB-based G/DC data prefetcher [177], Ainsworth

and Jones’ prefetcher [11], DROPLET [24], and IMP [282]. Notably, the benefits of different
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prefetching solutions are highly sensitive to architectural parameters, graph traversal algorithm

and design of their data structures, and input data sets. Hence, we present a comparison using the

parameters from our simulation framework as well as a comparison with the best reported results

on commonly evaluated algorithms from each prior work.

Prodigy outperforms the baseline and a GHB-based G/DC data prefetcher [177] (not shown

because of space limitations) by 2.6× on average. GHB-based G/DC is known to predict inaccurate

prefetch addresses for irregular memory accesses due to the lack of spatial locality, polluting the

cache. Therefore, when Prodigy is enabled by software, other traditional prefetchers (e.g., GHB,

stride, stream) are disabled.

Fig. 3.16 shows the performance comparison of various prefetchers using our simulation frame-

work. Prodigy outperforms Ainsworth and Jones’ prefetcher3 [10, 11] by 1.5×. We have verified

with the authors [9] that our implementation and results are correct. The difference compared to [11]

can be attributed to inaccurate prefetch timeliness. On average, 62.7% of Prodigy’s prefetches are

demanded by the core versus only 44.6% for [11]. Also, unlike Prodigy, initiating one prefetch

sequence in [11] sometimes only partially hides the memory latency if the core catches up with the

prefetcher. Furthermore, Prodigy is more flexible in that it can adapt with different combinations

of data structures and indirection patterns, whereas Ainsworth and Jones’ graph prefetcher aims

to prefetch for BFS-like access patterns. While an extension of [11] is presented in [10], it incurs

significant area overhead of 32KB of storage vs. 0.8KB for Prodigy.

Compared to DROPLET [24], Prodigy achieves a 1.6× speedup on average for two reasons.

First, DROPLET only prefetches a subset of data structures, i.e., edge list and visited list-like

arrays exhibiting single-valued indirection, compared to Prodigy, which prefetches other graph data

structures as well. Second, we notice that DROPLET MPP misses several prefetching opportunities

because it can only trigger further prefetches from prefetch requests serviced from DRAM, while

much of the prefetched data are present in the cache hierarchy.

Prodigy achieves an average speedup of 2.3× compared to IMP4 [282], because IMP can only

3We used open-sourced artifacts of for the evaluation of [11], and verified the presented results with the authors [9].
4We used the artifacts provided by the authors for evaluating IMP.
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Table 3.3: Average speedup comparison over no prefetching.∗

Common algorithms Prior work Prodigy
bc,bfs,bc,pr Ainsworth & Jones [11] 2.4× 2.8×

bc,bfs,bc,pr,sssp DROPLET [24] 1.9× 2.9×
bfs,pr,spmv,symgs IMP [282] 1.8× 4.6×
*Best-performing input data sets used as reported in prior work.

detect streaming accesses to data structures that perform A[B[i]] type prefetching and it only

supports up to two levels of indirection. Extending both DROPLET and IMP to prefetch additional

data structures would require significant effort because they do not support ranged indirection and

DROPLET design is specific to a subset of graph data structures.

While Prodigy shows a significant speedup over prior work on our simulation environment, we

could not reproduce similar results reported in the prior publications despite obtaining evaluation

artifacts from the authors. We believe that this discrepancy is attributed to the difference in

simulation environment, architecture parameters, and benchmark implementations. To offer better

justice to prior work, we also compare Prodigy with the best reported speedups of hardware

prefetchers from their original publications. Table 3.3 shows a comparison of best reported speedups

over a non-prefetching baseline for optimal algorithm-data set combination for both Prodigy and

prior work. The comparison shows that even compared to the best-reported speedups, Prodigy still

outperforms the state-of-the-art hardware prefetchers.

Prodigy vs. software prefetching: We compare the performance of Prodigy with a software

prefetching technique [13] for indirect memory accesses. To make our evaluation consistent

with [13], we evaluated the performance of software prefetching on an Intel Broadwell microarchi-

tecture and validated our results with authors of [8]. Our findings show that for pr, performing a

pure software-based prefetching [13] achieves an average speedup of 7.6% compared to an average

speedup of 2× for our approach (not shown due to space limitation). This is because Prodigy bene-

fits from both static analysis information from software and dynamic run-time information from

hardware to perform efficient prefetching. We do not report the results on other graph algorithms

since we noticed that the compiler pass of [13] is not able to detect dynamically allocated array
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Figure 3.17: Speedup of Prodigy compared to a non-prefetching baseline on reordered graph data
sets using HubSort [21].
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Figure 3.18: Normalized energy comparison of a non-prefetching baseline (first bar) and Prodigy
(second bar). Lower is better.

sizes, and conservatively avoids placing prefetch instructions to prevent faults [8].

Graph reordering: We also evaluate the performance benefits of Prodigy on reordered graphs

using HubSort [21]. Fig. 3.17 presents the speedup of Prodigy compared to a non-prefetching

baseline (both using graph reordering) for graph algorithms. The figure shows even after benefiting

from added locality because of graph reordering, irregular memory accesses can still limit the

performance, and Prodigy can further improve this performance by 2.3× on average.

3.5.4 Effect on Energy

Fig. 3.18 shows the breakdown of energy consumption for Prodigy normalized to the baseline.

Prodigy reduces energy consumption across all categories with an average reduction of 1.6×. We

primarily attribute the energy reduction to the static energy savings of the core, cache, and DRAM

due to the reduced workload execution time. Accelerating long-latency memory operations also
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saves energy by reducing the number of instructions executed and memory accesses performed

before recovering from mispredicted branches [242].

3.5.5 Overhead Analysis

Prodigy’s hardware consists of a finite-state machine, whose area is dominated by the storage

structures discussed in §3.3.1. These structures include DIG tables (i.e., node table, edge table, and

edge index table) and PFHRs. Although Prodigy reads data values for prefetching, this is done by

snooping on the data response buses, rather than adding or sharing ports on the cache. This limits

the performance impact and area overhead. Prodigy might increase the D-TLB contention, however,

this is a known issue for prefetchers operating in the virtual address space.

We estimate the area overhead in terms of storage area requirements assuming 48-bit physical

and 64-bit virtual address spaces. We calculate that the largest DIG used by our workloads has

11 nodes and 11 edges for bc. For a plausible extension to store larger DIGs, we conservatively

assume 16-entry DIG tables. Moreover, based on Fig. 3.11, we use 16 PFHRs for our design. Using

these parameters, we estimate the storage requirements of DIG tables and PFHRs to be 0.53KB

and 0.26KB, respectively, totaling to just 0.8KB. Assuming this storage area to be dominant, we

project our prefetcher to have a negligible area overhead of 0.004% compared to an entire CPU

chip. Compared to Prodigy, other work has area overheads of 1.4× [282], 2× [11], 9.7× [24], and

40× [10].

In terms of the software overhead, adding one-time prefetch API calls slightly increases the size

of program binaries. Because these calls are executed only once, they translate into a negligible

dynamic instruction count increase. To add these API calls, our compiler analysis performs a linear

scan of a program’s static instructions. The average compilation time added to our benchmarks is

less than one second.
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3.5.6 Discussion on Scalability

Because of the irregular memory access patterns of evaluated workloads, cores are mostly stalled to

receive responses from the memory system. Based on the baseline memory bandwidth utilization

results and a bandwidth limit of 100GB/s, increasing the number of cores to around 40 will fully

saturate the memory bandwidth, at which point, the benefits from prefetching will be limited. Our

evaluation shows a more cost-effective design point where an 8-core system used with Prodigy

can saturate the memory bandwidth while consuming 5× less transistor area and less static energy

compared to a 40-core system without prefetching.

3.5.7 Limitations of Prodigy

A subset of irregular algorithms exhibiting single-valued/ranged indirection patterns also incorporate

additional run-time information to issue load operations. For example, triangle counting algorithm

in GAPBS [26] intelligently avoids redundant computation by examining only neighbors with higher

vertex IDs than the source vertex (i.e., branch-dependent loads). While Prodigy supports prefetching

for indirect memory accesses, it does not account for this additional control-flow information for

prefetching. Similar trends might be observed for ordered graph algorithms [59, 290] because

node priority is not accounted for prefetching. In such cases, Prodigy might prefetch inaccurate

vertices, and we envision using a mechanism that disables the prefetcher when it detects cache

thrashing [241]. Additionally, the storage cost of hardware structures (i.e., DIG tables and PFHR

file) was chosen to fit the needs of the workloads evaluated in this work. It is possible that other

workloads with more DIG nodes/edges would require greater storage and PFHR resources. We

leave the study of incorporating additional prefetching information and larger workload analysis for

future work.

49



3.6 Related Work

There is a rich body of work alleviating the memory access bottleneck for various workloads,

especially through prefetching. This work employs a unique synergy of both hardware and software

optimizations through the novel DIG representation. We divide the related work in different

categories and discuss how our work is different.

Decouple access execute (DAE) architectures [30, 82, 108, 157, 237, 238, 257] use decoupled

memory access and execute streams to reduce memory latency and communicate between them

using architectural queues. While we use a separate prefetching unit for accelerating memory

accesses, we still use a single thread with coupled access and execute streams with no additional

requirement of queues for communication.

Helper threads [46, 51, 52, 153, 289] propose using a separate thread to speculatively prefetch

data to reduce memory latency of the main thread. Run-ahead execution [62, 176] and some

other architectures [75, 296] utilize additional or unused hardware resources to prefetch useful

data for the main thread. Helper threads dedicate extra physical cores to perform prefetching that

reduces compute throughput. Unlike Prodigy, runahead execution has to re-execute instructions

after long-latency load-instructions.

More recently, several graph algorithm-based hardware prefetchers [10, 11, 24] have been

proposed that assume graph data structure knowledge at hardware and prefetch for accesses falling

in these data structures. Accelerating irregular workloads using hardware prefetchers [74, 121, 122,

129, 181, 198, 271, 282] has been long studied that cover other types of data structures and memory

access patterns containing linked lists, binary trees, hash joins in application domains such as

geometric and scientific computations, high-performance computing, and databases. Furthermore,

several temporal prefetchers [103, 268, 270, 271] and non-temporal prefetchers [20, 28, 116, 117,

164, 231, 239] are also investigated for these workloads. These approaches however, when applied

in the graph processing context, can either prefetch for a subset of data structures or incur high

complexity and cost for generality. Given our compact DIG representation, our approach benefits

covering all the data structures having data-dependent indirect accesses at a negligible hardware
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cost.

A class of prefetchers [17, 48, 54, 66, 98, 112, 216, 279] focuses on linked data structure

traversals using pointers. They have limited applicability for graph algorithms, mainly because of

the prevalence of ranged indirection as shown in the §3.5.3. Prodigy on the other hand, can cover

all types of indirection present in graph algorithms.

Software prefetching [13, 34, 114, 150, 171, 261] is another technique to reduce the memory

latency of both regular and irregular workloads where data structures are known at compile-time.

However, software prefetching could significantly increase the size of the application binary and

workloads with dynamically initialized and sized data structures are difficult to prefetch purely

in software. Additionally, direct memory access (DMA) engines are used to move data around

without explicit CPU instructions. Prodigy that reacts to hardware events is orthogonal to a DMA

engine, which is primarily software controlled and used for peripheral devices.

Several domain-specific architectures [3,7,87,172–174,186,236,240,278,286,288] have been

proposed for accelerating graph processing applications. These architectures are orthogonal to our

software-aided hardware prefetching work for CPUs; they either work as stand-alone accelerators,

as near/in-memory processing engines, or as scheduling/intelligent caching aid to the processor

core. Many of these architectures use some form of hardware prefetching support, and our low-cost

prefetcher can be integrated within these architectures to further enhance their performance.

Prefetch throttling mechanisms [64, 65, 100, 102, 117, 132, 182, 206, 226, 227, 241, 269] use

dynamic information such as prefetch coverage/accuracy, cache pollution, and/or bandwidth utiliza-

tion to monitor the aggressiveness of prefetches. These mechanisms can be applied to our approach

to reduce prefetch-induced cache pollution.

3.7 Chapter Conclusion

This work presented Prodigy, a hardware-software co-design approach to improve the memory

latency of data-indirect irregular workloads. We proposed a compact representation, called the
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Data Indirection Graph (DIG), that efficiently abstracts an irregular algorithm’s data structure

layout and traversal patterns. This representation is constructed using static compiler analysis

and code generation techniques, and communicated to the hardware. A programmable hardware

prefetcher uses this information to cater its prefetches to irregular algorithms’ memory access

patterns. This approach benefits from (a) static program analysis from software to capture the

irregular nature of memory accesses, and (b) dynamic run-time information from hardware to make

adaptive prefetching decisions. We showed that our system is versatile and works for different sparse

data representations. We evaluated the benefits of our system using a variety of irregular algorithms

on real-world large-scale data sets and showed a 2.6× average performance improvement, 1.6×

energy savings, and a negligible storage cost of 0.8KB.
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CHAPTER 4

Understanding The Random Walk-Based Temporal

Graph Learning

This is a collaborative work with D. Jin, H. Ye, A. Brahmakshatriya, S. Amarasinghe, T. Mudge, D.

Koutra, R. Dreslinski.

A graph1 is a ubiquitous data structure that models entities and their interactions through the

collections of nodes and edges. It is widely employed in many domains ranging from social

media [18] to bioinformatics [106, 158]. More recently, the process of learning representation of

graph structured data, i.e., graph representation learning, has gained significant popularity in the

algorithmic community [88, 119, 179, 200, 262]. This is due to its superiority on multiple machine

learning tasks in domains ranging from social science [170, 281], computer vision [151], physics,

chemistry, and biology [49, 63, 213, 244]. Following this algorithmic evolution, several works in

the architecture community have analyzed its workload characteristics [23, 275, 295], and built

domain-specific hardware [77, 143, 276] for acceleration.

The scope of these works, however, has so far been limited to (a) static input graphs [96], and

(b) a subset of graph learning algorithms including Graph Convolution Network (GCN) [119], and

a few others [88, 273]. Nonetheless, most real-word graphs are dynamic in nature, i.e., naturally

evolving over time by adding, deleting, or changing their nodes and edges. Modeling these

dynamic graphs as static would inevitably incur information loss and performance deterioration

of downstream predictive tasks. Moreover, while GCN has shown state-of-the-art algorithmic
1In this work, we use the term “graph” and “network” interchangeably.
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Figure 4.1: A high-level overview of our modeled pipeline that takes a temporal graph as an input
and learns the network dynamics to encode each node into a low-dimension embedding space by
using temporal random walk and word2vec. These embeddings are then fed into a downstream
machine learning task such as link prediction or node classification.

performance on various prediction tasks [96], it mostly works on static graphs and cannot model

the graph dynamics such as the sequential interactions between nodes and temporal dependency

between graph snapshots. Besides, high computation and memory complexity of GCN makes it

difficult to scale to large-scale graphs [96].

In this work, we investigate the behavior of a fundamentally new class of graph learning

algorithms for temporal graphs based on random walks, namely, temporal random walk [179].

Temporal graphs are a category of dynamically evolving networks with timestamp information

associated with each network interaction (i.e., temporal edge). Informally, a temporal walk is defined

as a sequence of temporally-valid edges {(u, v1, t1), (v1, v2, t2), · · · , (vi−1, vi, ti)}, where ti−1 ≤ ti.

As an example, for the temporal graph shown in Fig. 4.1, the walk {u, v, x} is temporally-valid

as it naturally indicates how the node u interacts with its neighbors with respect to time, while

{u, v, w} is invalid. Temporal random walk is an important algorithm that underlies a wide range of

applications on graphs such as information cascading [141], user behavior modeling [107]. It is

also the foundation of many follow-up research in the field of machine learning and representation

learning [193, 218, 258]. However, temporal random walk has gained relatively less popularity in

the architecture community so far. Additionally, this conceptually straightforward algorithm could

effectively model the temporally-valid node interactions while being more scalable [200] to handle

large-scale graphs. Furthermore, we show that a workload resulting from temporal random walks

exhibits distinct characteristics compared to traditional graph processing and GCN algorithms (see
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§4.3.2).

Fig. 4.1 shows an overview of a canonical pipeline based on a prior algorithmic work [179]. We

model high-performance implementations of two variants of this pipeline for both the CPU and

GPU-based computing. The front-end of the pipeline employs temporally-valid random walks and

word2vec, a technique from Natural Language Processing (NLP), to map nodes into a low-dimension

embedding space. This process translates the similarity between nodes in the original network into

closeness in the embedding space. Then, these node embeddings are fed into downstream machine

learning tasks. Specifically, this part models the two most widely-known graph learning tasks, used

in several applications, as follows.

• Link prediction. This task predicts the presence/absence of an edge between a given pair of

nodes. A concrete application of this task is product recommendation from the online sales

websites such as Amazon.

• Node classification. This task assigns labels to nodes. Its concrete application is identifying

the professional role of a user in social networks such as LinkedIn.

Based on this pipeline, we perform detailed two-step performance characterization: (a) algorithm-

focused, and (b) hardware-focused. This reveals a rich design space and performance acceleration

opportunities as listed below.

(a) Accuracy-complexity trade-off. While high prediction accuracy is desirable, it does not always

come with high cost. We use three hyperparameters to show this: (a) number of random walks per

node, (b) random walk length, and (c) embedding space dimensionality. While increasing these

values monotonically increases workload memory consumption and execution time, their benefit in

accuracy are limited. While prior works [85, 179, 200] often over-provision these values, we find

optimal parameters balancing accuracy and complexity.

(b.1) Instruction diversity. By analyzing dynamic instruction types of individual kernels, we find

the dominance of both memory and compute instructions, indicating the necessity to optimize both

types of operations. This is particularly interesting for temporal random walk that executes more
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compute operations than traditional graph processing.

(b.2) Thread scalability. Despite irregularity, individual workload kernels can scale well using

work stealing.

(b.3) Time Breakdown and CPU versus GPU. Classifier training dominates the execution time

of end-to-end workload; accelerating training will yield high workload speedup. A cross-platform

workload comparison reveals that the GPU outperforms CPU at large graph sizes.

(b.4) Execution Bottlenecks. GPU workload characterization reveals that individual kernels exhibit

diversity of bottlenecks including cache misses, and compute and memory dependency.

Using these insights, we discuss strategies to optimize this workload for future exploration using:

algorithm, ML framework, GEMM library, compiler, and hardware.

This is the first work introducing the random walk-based learning pipeline on dynamic graphs

for computer architecture research. In summary, we make the following contributions:

• High-performance CPU and GPU implementations of random walk-based temporal graph

learning tasks.

• A detailed algorithic workload characterization presenting a rich accuracy-complexity trade-

off space.

• An in-depth hardware-focused performance characterization uncovering future optimization

opportunities.

• Open-source benchmark implementations and datasets for the benefit of the broader research

community at

https://github.com/talnish/iiswc21_rwalk.
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4.1 Related Work

4.1.1 Graph Representation Learning

Recently, graph representation learning or node embedding has attracted massive research attention

from both academia and industry due to its success in downstream tasks like link prediction and

node classification. Inspired by the notion of word proximity from NLP, early research in graph

learning focused mainly on leveraging the node proximity in a graph, such as DeepWalk [200]

and node2vec [85]. These works either leverage first or second-order node proximity [254], or

higher-order (> 2) [35] to construct the global node representations. Additionally, there are works

based on graph structural properties. For example, struc2vec [213] defines similarity in terms

of degree sequences in node-centric subgraphs, and role2vec [6] inductively learns structural

similarity by introducing attributed random walk atop relational operators. Furthermore, other

works attempt to incorporate external node features with the graph structures [88, 119, 262]. For

instance, Graph Neural Network (GNN) [220, 297] and its variants propose to aggregate node

features in its dependent contexts with arbitrary depth via propagation/diffusion. Representative

works include GCN [119], GraphSAGE [88], and GAT [262].

4.1.2 Temporal Network Modeling

Temporal network modeling has been widely studied in dynamic network analysis [4, 92]. Most

existing works in the field of machine learning and representation learning empirically process the

temporal graph as a sequence of snapshots [83,144,218]. While the sequential order of the snapshots

models the evolution of temporal dynamics, each individual snapshot is static and analyzed without

the temporal information. Streaming graph models can be seen as an extreme case of the snapshot

model, where the most recent snapshot is a dynamically changing graph in real time [5, 131].

Another direction that is orthogonal to snapshot-based methods is based on sequential interactions

between node pairs in the graph. In this work, we follow an earlier algorithmic work CTDNE [179],

which proposes the notion of temporal walks and leverages it to learn embeddings directly from the
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stream of timestamped edges at the finest temporal granularity. Other works [126, 300] propose to

model the sequential interaction as the point-process to predict the occurrence of link over time.

4.1.3 Software Frameworks

Several software frameworks have been proposed to understand performance implications of

different graph learning algorithms [72, 155, 266, 285, 298]. However, these frameworks mostly

model GCN algorithm and a few others [119]. This work, on the other hand, models random

walk-based graph learning. Additionally, there has been tremendous efforts for developing high-

performance implementations for traditional bulk-synchronous graph applications on shared memory

systems [1, 78, 84, 93, 199, 223, 233, 234, 245, 246, 263, 287, 292]. These frameworks implement

abstractions for programming graph applications as a library of high-level primitives or a new

programming language and compilers [188, 291, 293]. They also combine optimizations with

different iteration orders, data structures, direction-optimization [291] etc. to improve performance

across different graph inputs and applications.

4.1.4 Hardware Proposals

Several prior works accelerate similar algorithms using novel hardware designs. In the context

of our work, similar algorithms include graph traversals, traditional deep learning, and graph

neural networks. A subset of prior works focus on optimizing graph algorithms on the CPU using

techniques such as hardware prefetching [11, 24, 252]. Other works optimize graph algorithms on

GPUs [94, 115, 221]. Additionally, several accelerators have also been proposed to accelerate graph

traversals [87, 186, 208, 277]. Both traditional deep learning and graph neural networks have been

extensively optimized using hardware accelerators [44,77,110,143,148,276,284]. However, random

walk based graph learning is not well studied in the context of hardware accelerators. In §4.3.2, we

show that random walk-based graph learning exhibits significantly different nature in terms of its

characteristics compared to aforementioned well-studies application domains, motivating the need

for our study.
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Symbol Definition
G(V , E) a directed temporal network with |V| nodes and |E| edges
Gt(Vt, Et) a snapshot of the temporal network G at time t with |Vt|

nodes and |Et| temporal edges
A, At adjacency matrix for graph G and Gt, respectively
wu,v a temporal walk reaching out from u to v
f arbitrary base embedding method
d dimensionality of the embedding
Z |V| × d embedding matrix

Table 4.1: Summary of notation.

4.2 Preliminaries

This section provides the definitions of notions used in this work. The related symbols are listed in

Table 4.1.

Definition 4.2.1 (Temporal Graph) A temporal graph G consists of a set of nodes V and a set of

temporal edges E ⊆ V × V × R+, where t ∈ R+ represents the timestamp of an edge (u, v, t) ∈ E .

At a high level, a collection of temporal edges {(u, v, t)} forms a time-evolving network structure.

For example, the time-evolving email exchange network is constituted by individual contacts from

user u to v at time t. Comparing with static networks, the edge timestamps endorse in-depth analysis

of the network dynamics over time. A fundamental data structure defined in temporal networks is a

set of temporal walks, i.e., a sequence of walks with respect to time [107, 179].

Definition 4.2.2 (Temporal Walk) A temporal walk w from u to v in the network G(V , E) is

defined as a sequence of connected edges wu,v = {(u, u1, t1), (u1, u2, t2), · · · (uk, v, tk)} where

ti < ti+1 for i = 1, 2, · · · , k.

A temporal walk indicates the reachability from the source to destination node in a time-increasing

order, which encapsulates detailed information about network dynamics as well as node characteris-

tics. In the email exchange network example, temporal walks denote the paths of a user reaching

out to another. These walks reflect how people get to know each other and further expand their

social networks over time. In this process, detailed user activities such as reply, forward, etc. are

critical to user profiling and behavioral analysis.
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In order to mathematically characterize such node properties in the graph, the notion of graph

representation learning has been proposed and widely applied in practice. The high-level idea is to

map the nodes from the graph space to a low-dimensional distance space (e.g., 128-d Euclidean

space) such that the computational complexity is reduced while the similarity between nodes is

preserved. As a result, the low-dimensional representation can be applied to various machine

learning tasks such as link prediction, clustering, and node classification. The formal definition of

graph representation learning is given as follows.

Definition 4.2.3 (Graph Representation Learning) Given a graph G(V , E), graph representa-

tion learning aims to learn a function f : G(V , E) → Rd that maps nodes from the graph to a

low-dimensional space such that d ≪ |V| and d ≪ |E| while preserving the notion of similarity

between nodes.

Depending on specific approaches, the notion of similarity can be defined as the proximity

between nodes. Intuitively, a node is more similar to its 1-hop neighbors than its 2-hop neighbors

and other distant nodes. Thus, nodes that share common neighbors are embedded closely. On the

other hand, node similarity can be measured through the functionality or structural role of a node

in terms of its connection to its neighbors. For example, the centers of two star-like subgraphs are

structurally similar to each other because they both are at the center and thus behave like “hubs”

that bridge other nodes. In this work, we address the first type of node similarity in graphs through

temporal proximity.

4.3 Motivation

Following the background discussion in §2.5, we briefly show how this workload is different from

other standard benchmarks (specifically GCN) to motivate our study.
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Figure 4.2: Hardware metric comparison of purely graph traversal (BFS), deep learning inference
(VGG), graph convolution network inference (GCN), and modelled pipeline: RW-P1 (random walk),
RW-P2 (word2vec), RW-P3 (training), and RW-P4 (testing) The figure showcases unique behavior
of modeled application compared to other well-studied benchmarks.

4.3.1 GCN versus Random Walk-based Graph Learning

In comparison with GCN that performs spectral convolutional operation over a node’s neighbors up

to a pre-defined number of hops, temporally-valid random walk captures the sequential interactions

with respect to time. As a basic way to explore the spatial property on temporal graphs, the presented

algorithm exploits global graph property that is beyond the local node-centric subgraphs. Therefore,

it is more powerful in predictive tasks such as link prediction. Furthermore, the presented algorithm

works on feature-less graphs and uses a single-integer vertex-identifier as a feature, whereas GCN

requires vertex-wise long feature vectors. Interestingly, there is connection between GCN and

random walk, for example, [145] shows that random walk can be used to supplement GCN to

improve performance on static graphs. However, the difference in these patterns result in different

workload characterization and performance optimization strategies on temporal graphs.

4.3.2 Why Study this Workload?

Fig. 4.2 compares the hardware characteristics of a traditional graph traversal (BFS), deep learning

inference (VGG), graph convolution network inference (GCN), and different workload phases of

random walk based graph learning application (RW-P[1:4]) on a GPU. The figure shows GPU

core utilization (SM Util), L2 cache hit rate, DRAM bandwidth utilization, load imbalance, and a
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measure of irregularity (ratio of number of replayed to issued instructions) [33] normalized to BFS.

The datasets used for these tasks are the following: BFS—a synthetic graph using graphgen utility

from Rodinia [38] with 16M nodes and 117M edges, VGG—ImageNet [58], GCN—Reddit [88],

and this work—a synthetic Erdős-Renyi graph with 10M nodes and 200M edges.

The figure clearly shows that random walk based graph learning pipeline yields unique charac-

teristics compared to other applications, which warrants its further investigation. Specifically, the

amount of irregularity (measured using a ratio of the number of replayed to issued GPU instructions)

is high, which can be because of long-latency load instructions and/or load/branch divergence.

These characteristics further results in low SM and DRAM bandwidth utilization.

4.4 Benchmark Implementation

This section presents implementation details of modeled graph learning applications for both CPU

and GPU. At a high-level, this follows the flow presented in Fig. 4.1. We first present the temporal

random walk algorithm and a modified version of word2vec that outperforms its open-source

counterparts. Then, we briefly discuss the data preparation and classifier steps.

4.4.1 Temporal Random Walk

This is the first step of modeled pipeline that takes a temporal graph G as an input, and outputs

temporally-valid random walks starting from each node in the graph. We build this kernel by

extending a high-performance graph processing framework — the GAP benchmark suite (GAPBS)

[26]. We use the weighted graph structure WGraph for storing a temporal network, which stores

graph edges as an array of structures (i.e., destination and weight). The weight field is re-purposed

to store timestamps with appropriate changes in the data type. Furthermore, we add support to

preserve multiple edges between the same source and destination vertices. This is important to

preserve multiple temporally-distant interactions between the same set of nodes.

This algorithm is shown in Algorithm 3. Its time complexity is O(KN |V|M), where K is the
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Algorithm 3 Pseudocode for temporal random walk
1: Input: Graph G in CSR format, temporal walk length N, Number of walks per vertex K
2: Output: Temporal walk output matrix of dimensions |G.V| × K × N, W
3: W ← new matrix [|G.V|][K ][N ]
4: for w : 0→ K do
5: par for v : 0→ |G.V| do
6: currVertex ← v
7: currTime ← 0
8: for i : 0→ N do
9: if G.neighbors(currVertex) == 0 then
10: break
11: currVertex , currTime ← G.sampleLatent(currVertex , currTime)
12: W [v ][w ][i ]← currVertex

13: end par for

number of random walks per node, N is the length of each random walk, |V| is the total number of

vertices in the graph, and M is the max degree of all the vertices in the graph. The factor of M comes

from the call to the G.sampleLatent function (line 11) that iterates through all the neighbors of

the vertex and compares each edge against the timestamp. With any value of currVertex, this

would have to process edges equal to the maximum degree in the graph. There are three nested

loops: 1) the outer loop to iterate over the walk number per node when performing multiple random

walks per node (line 4); 2) the middle loop to iterate over all the vertices in the graph (line 5); and

3) the inner loop to iterate over an individual step of a walk (line 8). In our implementation, we

parallelize the middle loop that iterates over all vertices, based on an empirical finding that it offers

optimal performance compared to alternative settings.

4.4.2 Word2vec

This algorithm takes a series of temporally-valid random walks as an input and outputs node embed-

dings. For the CPU, we adopt an open-source implementation [166]. However, we find that the

available GPU implementations [180,235] have sub-optimal performance when applied to the graph

learning problem. This is because of their parallelism model. These implementations parallelize

word embedding updates within each sentence, and processes different sentences sequentially.

While this might be optimal in NLP with long sentences, it leads to poor parallelism in the graph

learning context. This is because, as shown in Fig. 4.3, the random walk lengths (i.e., the number of

walks that complete for a given length given the timestamp constraints) are centered around 1 to 5.
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Figure 4.3: The power-law distribution of temporal random walk lengths on wiki-talk dataset (in
linear and log scales). Most walks are of short lengths, and the frequency of longer walk length
decreases exponentially. Other datasets also show similar patterns.
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Figure 4.4: Sensitivity of word2vec phase speedup and end-to-end link prediction accuracy for
different batched sentence sizes on a GPU using wiki-talk dataset. Compared to a baseline open-
source implementation [180, 235], our batch implementation gains 124.2× speedup without a loss
in accuracy at a batch size of 16k sentences.

As the walk length is analogous to sentence length, the word2vec input constitutes a large number

of short sentences. This causes the GPU resources to be under-utilized and launches a large number

of GPU kernels, one launch for each sentence.

To improve this implementation, we propose the following optimizations. First, we batch

multiple sentences together, and process sentences within a batch in parallel. This adds a new

possibility to read from a stale word embedding model, potentially reducing accuracy, as we process

multiple word embedding updates concurrently. However, because the model update is a sparse

operation [200], concurrently updating word embedding model does not result in an accuracy loss.
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Figure 4.5: Speedup of the word2vec phase on a GPU for different optimizations. Compared
to baseline, batched sentences (Batched), no cache line padding (No-pad), memory operation
coalescing (Coalesce), and parallel reduction (Par-red) result in an end-to-end speedup of 220.5×
on wiki-talk dataset.

On the flip side, this technique greatly improves the GPU core utilization. Empirically, Fig. 4.4

shows that the batch size of 16k achieves a 124.2× speedup over no batching without accuracy loss.

The speedup is attributed to (a) improved GPU core utilization, (b) CPU-GPU data transfer cost

amortization over long computation, and (c) reduced kernel launch overhead.

Second, a prior implementation [180] uses cache line padding to address false sharing at the

private L1 caches. This heavily under-utilizes cache lines as our embedding space dimension

is small (i.e., 8 as shown in §4.6.1). To optimize cache line utilization, we remove the cache

line padding (No-pad) and add support to bypass the L1 cache. Third, we assign multiple GPU

threads to process each embedding dimension in a coalesced manner (Coalesced), and use parallel

reduction for accumulation (Par-red). With a small embedding dimension, we also eliminate all

the syncthreads(), and rely on the in-warp synchronization. Fig. 4.5 shows the benefit of

each of these optimizations, leading up to an end-to-end speedup of 220.5× on the wiki-talk dataset

without accuracy loss.

4.4.3 Data Preparation

Inputs to this step include the node embeddings from word2vec, and a temporal edge list/a labeled

node list for link prediction/node classification. This step outputs datasets for training (Str),
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Figure 4.6: Data preparation step for link prediction.

validation (Svd), and testing (Ste).

Fig. 4.6 shows the data preparation algorithm for link prediction. First, the input edges are sorted

by their timestamps ( 1 ) and then 20% of the edges are chosen for testing from the end of this list.

The intuition behind sorting the edges is to train the classifier on the past edges and test it on the

future edges. Excluding the testing edges, 60% and 20% of the total edges are randomly sampled for

training and validation ( 2 ), respectively. Because these edges exist in the original input network,

they form positive edge sets with a label 1. Negative sampling ( 3 ) is used to construct negative

edges with a label 0. This is done by altering one/both vertex IDs of positive edges so that the

resulting edge is absent in the input graph. After constructing these sets, edge features are computed

by concatenating node embeddings as described in §2.5.2 ( 4 ). A similar mechanism is employed

for node classification, where labeled dataset precludes the need for negative sampling.

4.4.4 Classifier

Data obtained in the previous stage is fed into the classifier, which goes through training and testing

phases. We use an FNN-based classifier as discussed in §2.5.2.
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4.5 Experimental Methodology

This section details our experimental methodology. Specifically, we talk about our hardware

platforms, software toolchain, and input graph datasets used for evaluation.

4.5.1 Hardware Platforms

We characterize modeled applications on two platforms — CPU and GPU. We use a dual-socket

server with two AMD EPYCTM 7742 CPUs with 128 physical cores (256 SMT threads). The aggre-

gate Last Level Cache (LLC) size is 2×256MB. The size of main memory is 512GB. Additionally,

we use a discrete NVIDIA GPU with Ampere architecture.

4.5.2 Software Toolchain

We model our applications in C++ and compile them using the g++ v7.5 compiler with -O3

optimization level for the CPU. We compile CUDA programs using nvcc v11.2 with -O3

and -arch=sm 80 flags. For hardware profiling, we use manual instrumentation and MICA

Pintool [95] for the CPU, and NVIDIA Nsight Compute [183] for the GPU. We use dynamically

scheduled OpenMP threads for CPU parallelism. The downstream ML task is implemented using

the PyTorch-C++ API [207].

Task Dataset Name #Nodes #Temporal Edges Description
Link prediction ia-email [50, 215] 87,274 1,148,072 Enron email network from

Jan. 1998 until Feb. 2004
Link prediction wiki-talk [135, 139, 192] 1,140,149 7,833,140 User editing network of

Wikipedia Talk pages
Link prediction stackoverflow [139, 192] 6,024,271 63,497,050 Stack exchange interaction

network on Stack Overflow
Node classification dblp5 [272] 6,606 42,815 Co-author network from

DBLP from 5 research areas
Node classification dblp3 [272] 4,257 23,540 Co-author network from DBLP

from 3 research areas
Node classification brain [205, 272] 5,000 1,955,488 Connectivity network of

tidy cubes of brain tissues

Table 4.2: Real-world temporal networks used for algorithmic evaluation.
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4.5.3 Input Datasets

We use both real-world and synthetic graphs for evaluation. Because the publicly available real-

world temporal datasets are limited in size, we use them for algorithmic evaluation. Table 4.2 shows

the list of these datasets and their properties. For hardware study, we use large-scale synthetic graph

datasets generated using Python-based networkx library. Specifically, we generate Erdős-Renyi

random graphs, with varying sizes and degrees, with synthetic timestamps.

4.6 Results and Analysis

Presented analysis is divided into two parts: (a) algorithm-focused study, and (b) hardware-focused

study. The former presents the trade-off between prediction accuracy and runtime performance.

The latter focuses on understanding the workload characteristics to find performance optimization

opportunities.

4.6.1 Algorithmic Analysis

We study the effect of three important algorithmic parameters: number of random walks per node,

walk length, and embedding space dimension. As shown in §4.4.1, runtime complexity of the

random walk algorithm is proportional to the number of random walks per node and walk length.

Additionally, the runtime complexities of word2vec and classifier training/testing are dependent

on the embedding space dimension as it decides the feature vector length. Therefore, increasing

these parameter values will increase the execution times of different kernels. Fig. 4.7(a) empirically

confirms this finding by showing the increase in random walk execution time when increasing

in the number of walks per node for the stackoverflow dataset. A similar trend is observed for

random walk length and embedding space dimension. In general, we find that the performance

on link prediction tasks is better than node classification. This is because that temporal random

walk exploits global graph property that is beyond the local node-centric subgraphs. As the task of

node classification requires detailed information centric to specific nodes, temporal random walk is

68



1 3 5 7 9 1113151719
Number of Walks per Node

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

N
or

m
al

iz
ed

 E
xe

c 
Ti

m
e

0 2 4 6 8 10 12 14 16 18 20
Number of Walks Per Node

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
ti

on
 A

cc
ur

ac
y

0 2 4 6 8 10 12 14 16 18 20
Random Walk Length

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
ti

on
 A

cc
ur

ac
y

21 23 25 27

Embedding Dimension (d)
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
ti

on
 A

cc
ur

ac
y

ia-email
wiki-talk
stackoverflow
dblp5
dblp3
brain

Figure 4.7: Accuracy-complexity trade-off. (a) Normalized execution time of the random walk
kernel for different number of walks per node, and (b-d) Accuracy of link prediction and node
classification with respect to different parameter values.

not the optimal algorithm for it. Thus, as link prediction requires more global information about

the graph connectivity, the performance is better. Next, we present the parameter sensitivity on

prediction accuracy of downstream tasks.

Number of Random Walks Per Node. As shown in prior works [85, 179, 200], the network is

best sampled by performing multiple random walks from the same node. This is because one walk

can only sample a vertex neighborhood via one of its neighbors. Performing multiple walks from

a node can potentially sample a wider vertex neighborhood, enriching the amount of information

used for downstream learning tasks. Fig. 4.7(b) shows the effect of performing multiple random

walks from a node on the prediction accuracy of link prediction and node classification. The figure

confirms that more walks from the same node increases the prediction accuracy. Interestingly, this

improvement saturates after 8-10 walks. This is because of the power-law nature of real-world

graphs, i.e., most nodes have few neighbors. In a majority of sparsely connected nodes, performing

8-10 walks are enough to cover most neighbors. Beyond this, there is limited value by performing

more walks.

Random Walk Length. Length of the random walks indicates the distance of sampled neighbor

from the source. For example, a random walk of length 5 will sample a 5-hop neighbor from a

source vertex. While multiple random walks per node sample wide neighborhoods, larger random

walk length indicates the sampled neighborhood depth. Intuitively, larger the length of random

walk, deeper the network can be sampled. Fig. 4.7(c) shows an increase in prediction accuracy with

an increase in the random walk length. This trend, however, saturates after a walk length of 4-6,
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which can be described using an earlier finding. Fig. 4.3 shows that the frequency of random walks

decreases with increased walk length. This translates into marginal information gain with large

walk lengths and saturation in prediction accuracy.

Embedding Space Dimension. At a high level, a graph learning task maps each node to an

embedding space, where the dimension of the embedding space defines complexity of interactions

that can be modeled. While prior algorithmic works [85, 179, 200] use a fixed dimension size (d) of

128, we analyze how this affects end-to-end accuracy. Fig. 4.7(d) shows the effect of changing d on

the prediction accuracy. Increasing d from 1 to 8 results in gain in prediction accuracy as higher

dimensions can model more complex network interactions. Interestingly, we find that an embedding

space of dimension 8 is enough to make meaningful network predictions.

To summarize, there exists a rich trade-off space between algorithmic performance and runtime

complexity. While increasing the value of aforementioned hyperparameters will monotonically

increase the execution time of different kernels, their effect on prediction accuracy is limited. Based

on our empirical findings, we find the optimal values of number of random walks per node, random

walk length, and embedding space dimension to be 10, 6, and 8, respectively.

4.6.2 Hardware Analysis

Next, we perform a detailed hardware analysis based on the optimal parameter values found above.

Using real-world and synthetic graph datasets, we study the instruction diversity, scalability, time

breakdown, and execution bottlenecks.

Instruction Diversity. Instruction diversity characterization helps understanding the operation

types present in a workload, which can be used to make design decisions building specialized

hardware. Fig. 4.8 shows the breakdown of dynamic instruction types of individual kernels on a

CPU for the link prediction task on ia-email dataset. This is divided in terms of memory, branch,

compute (both arithmetic and floating point), and others. The others category includes instructions

for stack usage, bitwise shifts, string operations, SIMD, etc.

The figure shows that both compute (36.6% on average) and memory (30.4% on average)

70



rwalk word2vec training testing
Kernel

0
20
40
60
80

100

In
st

ru
ct

io
ns

 (
%

)

Memory
Branch
Compute
Others

Figure 4.8: Dynamic instruction breakdown of different kernels involved in link prediction for
ia-email dataset. The figure shows that all kernels have a high number of both compute and memory
instructions.
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Figure 4.9: CPU thread scaling analysis and its comparison with GPU implementation for temporal
random walk and word2vec kernels on the stackoverflow dataset. The speedups are normalized to a
single-thread implementation. The figure shows reasonable scaling trend.

operations are dominant in all kernels. Word2vec and classifier training/testing phases use neural

network-type computation, hence, this breakdown is not surprising. However, a similar count of

compute and memory instructions for random walk is surprising as graph traversals are known

to have a low memory-to-compute operation ratio. This distribution is attributed to the compute-

intensive operations used in selecting a neighbor to walk as shown in Eq. (2.1). As a takeaway,

system designers should target both compute and memory operations for optimizing all workload

kernels.

Scaling Analysis. Fig. 4.9 shows the thread scaling behavior of temporal random walk and

word2vec kernels for stackoverflow. Additionally, it shows GPU performance normalized to a

serial CPU implementation. Using more than 64 threads does not improve performance further

as the thread creation/logic logic dominates the computation cost. We do not show the scaling
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rwalk word2vec training/epoch testing
|V|,|E| CPU GPU CPU GPU CPU GPU CPU GPU
10k,50k 0.0 1.2 0.3 0.4 0.3 0.7 0.1 0.0

10k,100k 0.0 1.2 0.3 0.3 0.6 0.8 0.4 0.1
10k,200k 0.0 1.2 0.3 0.4 0.8 1.2 0.2 0.2
100k,500k 0.1 1.2 0.7 0.4 2.4 2.3 0.5 0.5
100k,1M 0.1 1.2 0.6 0.4 4.1 3.4 1.2 0.8
100k,2M 0.1 1.1 0.6 0.4 5.1 8.0 2.2 1.6
1M,5M 0.9 1.4 2.7 1.3 13.7 15.5 6.0 4.2

1M,10M 1.2 1.4 3.4 1.4 32.5 28.3 7.8 7.0
1M,20M 1.8 1.4 3.2 1.6 62.2 58.6 20.7 14.7
10M,50M 12.2 4.0 25.4 20.0 147.7 147.1 56.3 44.2

10M,100M 14.2 4.0 27.3 22.1 315.8 303.9 133.0 87.8
10M,200M 18.7 4.2 36.8 27.4 695.2 668.5 233.1 206.9

Table 4.3: Execution times of workload phases in seconds for both CPU and GPU implementations.
Cell colored in green indicates a faster implementation between CPU and GPU.

of classifier training/testing as its Pytorch-based implementation does not offer an explicit thread-

scaling control2.

The figure shows that both kernels show a reasonable thread scaling trend despite irregularity.

For the random walk kernel, the amount of work per thread is dependent on the outgoing degree

and timestamp distribution, which leads to heavy load imbalance in a naı̈ve implementation. To

alleviate this problem, we employ work stealing using dynamically scheduled OpenMP threads.

The GPU performs similar to 32 CPU threads. This is because of the CPU-GPU data transfer time,

and workload irregularity leading to branch divergence and non-coalesced memory accesses. On the

other hand, the GPU implementation of word2vec performs much better than CPU, despite the data

transfer cost and irregularity. This is because of the proposed optimizations discussed in §4.4.2.

Execution Time Breakdown. Using synthetic Erdős-Renyi graphs of varying sizes and degrees,

Table 4.3 shows the execution time breakdown of end-to-end workload. The training and testing

times are reported for link prediction classifier. A similar trend follows for node classification. Note

that Table 4.3 shows per-epoch training time; the actual number of training epochs is dependent on

other hyperparameter values (e.g., batch size, learning rate, and rate decay).

There are two main insights here. First, the training time dominate an end-to-end execution time

of the workload. The motivation of examining end-to-end workload time breakdown is that in a

real-world deployment, the graph evolves over time. With this evolution, an entire pipeline needs

2PyTorch API uses workers for parallel data-loading, which spawns multiple processes replicating the memory
space.

72



rwalk word2vec training testing
Kernel

0

20

40

60

80

100

St
al

ls
 (

%
)

Imm Const $-miss
Compute Dep
Inst $-miss
Memory Dep
Exec Pipe Busy
Mem Barrier
TEX I-$ Queue Busy
Others

Figure 4.10: Characterization of stalls in different kernels on a GPU. There is a diversity of stalls
observed across kernels; most stalls are caused by immediate constant cache (IMC) misses, and
compute and memory dependencies.

to run to account for new nodes/connections. This study shows that optimizing classifier training

would yield maximum benefits in reducing the end-to-end workload time. Second, the execution

times of classifier training/testing increase monotonically with the graph size. To understand this

performance further, we compare the testing time per instruction for modeled pipeline and VGG.

This comparison finds that per-instruction execution time of random walk-based training is 37.4×

slower than VGG. We believe this is because of discrepancy in the matrix sizes. For example, the

largest layer size in VGG is 3136× larger than the largest layer in the studied pipeline limiting

its potential for parallelism. Both applications are modeled using PyTorch, which internally calls

GEMM kernels. While the performance of GEMM kernels are highly optimized for popular network

sizes (e.g., VGG), our study shows that there is a significant room for improvement for other network

sizes.

Cross-platform Performance Comparison. Table 4.3 also compares the CPU and GPU

performance. GPU implementations outperform its CPU counterpart at large graph sizes. This is

not surprising because CPU-GPU data transfer time dominates computation time with small graphs.

With large graph sizes, this time is amortized over longer, more efficient GPU computation, making

it faster than the CPU. Additionally, the workload irregularity hurts GPU performance causing

divergent thread pools and non-coalesced load operations.

Execution Bottlenecks. Finally, we perform a detailed microarchitectural analysis to charac-
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terize stall cycles of different kernels. We perform this analysis on a large synthetic graph with

10M nodes and 200M edges. We use the GPU for this analysis because of its superior performance.

Fig. 4.10 shows the characterization of stalls in terms of (from top to bottom on the legend): 1)

immediate constant cache (IMC) misses, 2) compute dependencies (unresolved register dependen-

cies because of long fixed-latency compute instructions), 3) instruction cache misses, 4) scoreboard

dependencies on L1TEX operation, 5) execution pipe and MIO (memory I/O) instruction queue

busy, 6) memory/CTA (cooperative thread array) barrier, 7) L1TEX instruction queue busy, and 8)

others.

We observe two primary insights. First, each kernel exhibits unique hardware characteristics

and stall cycles. For example, major causes of stalls in the random walk, word2vec, and classifier

training/testing are compute dependencies (i.e., 54.1%), memory dependencies (i.e., 46.2%), and

IMC cache misses (i.e., 23.6/30.6%), respectively. As a result, no one optimization strategy can

significantly speed up all workload phases, and kernel-wise investigation is necessary.

Second, on average, 65.5% of stall cycles across kernels are caused by IMC cache misses, and

memory and compute dependencies. For the random walk kernel, the TEX I-cache queuing delay

and compute dependencies cause the majority of the stall cycles. TEX I-cache stall is caused by

the frequent control flow divergence as a result of the workload imbalance in sampling vertex

neighborhoods. This sampling involves several long fixed-latency compute instructions (see Eq.

(2.1)), causing compute dependencies. The memory dependency stall is relatively low because

a large portion of the work performed for a single vertex exhibits spatial locality. The word2vec

kernel is mostly bounded by a significant portion of memory dependencies. This is because this

kernel fetches and updates the model weights by sliding through a vertex window. The vertex

window being updated is dependent on the random walk result, which contains a random set of

vertex IDs, generating irregular memory accesses. The training and testing phases show a similar

stall distribution, which is attributed to small dimensions of our kernels [184], launching a small

number of warps. This is further corroborated by the SM utilization for training/testing classifier

being less than 10%. Therefore, loading immediate data has low reuse, causing high stall rates.
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4.7 Discussion

This section discusses the employment of this framework to conduct optimization studies and

incorporate new tasks.

4.7.1 Optimization Opportunities

For algorithm designers. In this work, we leverage the forward neural network for learning (§2.5.2)

as a basic model for the workload analysis. It can be easily replaced by more advanced neural

network architectures such as ResNet [90] or DenseNet [97]. Empirically, we observe at least ∼ 2%

accuracy improvement for link prediction using ResNet, and we leave the detailed investigation for

future work.

For PyTorch framework designers. As briefly discussed in §4.6.2, the PyTorch framework uses

multi-processing to employ multiple data loading workers. This significantly increases the memory

consumption of the workload and hurts scalability. Multi-threading support with optimized memory

usage will significantly improve the classifier performance.

For GEMM library designers. As shown in §4.6.2, training time per instruction of the modeled

pipeline is 37.4× slower than VGG. This is owing to the differences in matrix sizes, and low-level

demand-based math library optimization model. Optimizing the GEMM kernel performance for

matrix sizes used in our pipeline can improve the performance of classifier training/testing by

one-to-two orders of magnitude.

For compiler and hardware designers. Based on the execution stall characterization shown

in §4.6.2, compiler optimization techniques such as operator fusion, loop interchange, and data

structure changes can alleviate kernel launch and data transfer overheads. Additionally, compiler-

based blocking, graph partitioning, and tiling [32] can improve memory performance. Furthermore,

employing domain-specific hardware acceleration can significantly optimize this workload. The

word2vec and classifier phases are similar to traditional deep-learning pipelines, hence, mapping

them to an already existing accelerator [110] would be sufficient. However, the random walk kernel
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1. #include </* std header files */>
2. #include <rwalk.h>
3. #include <word2vec.h>
4. #include <data_preproc.h>
5. #include <model.h>
6. #include <classifier.h>
7.
8. int main( args ) {
9. // Call graph reading API
10. compute_rwalk( ... );
11. word2vec( ... );
12. data_preproc( ... ); // Implement data_preproc.h
13. model_train( ... );  // Modify model.h, classifier.h
14. model_test( ... );   // Modify model.h, classifier.h
15. // Memory cleanup
16. return 0;
17. } 

Figure 4.11: Sample source code for incorporating new tasks.

exhibits significantly different characteristics and bottlenecks than traditional graph traversals (i.e.,

presence of complicated compute primitives as shown in Eq. 2.1). This calls for exploring a novel

accelerator design for the random walk kernel. This design must focus on optimizing both the

compute pipeline for long-latency arithmetic and floating point operations, and the memory system

to speed up data-dependent loads for traversing sparse graph data structures (e.g., [252]).

4.7.2 Incorporating New Tasks

While this work presents two important graph learning tasks used in several application domains, our

framework can be easily extended to realize other tasks. For example, if a user wants to implement

link property prediction (i.e., predicting edge labels), Fig. 4.11 shows the modification of main

source file that calls different pipeline stages. A user can re-purpose random walk and word2vec

implementations by simply calling functions shown in lines 11 and 12. As the step of preparing

classifier data is unique to each task, a user has to implement an appropriate data preparation step.

Finally, a classifier containing neural network model, training, and testing loops can be incorporated

by modifying already implemented modules in our framework.
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4.8 Chapter Conclusion

This work presented high-performance implementations of two important graph learning tasks on

continuous-time dynamic networks, optimized individually to run both on the CPU and GPU. We

used a scalable random walk-based algorithm for learning node embeddings of a graph. Based

on these implementations, we conducted an in-depth performance analysis from both algorithmic

and hardware fronts. The algorithm-focused study presented a rich trade-off space between pre-

diction accuracy and runtime complexity. The hardware-focused investigation analyzed different

phases of the application to find their instruction type diversity, thread scalability, execution time

breakdown, and execution bottlenecks. Based on these insights, we made recommendations to

further optimize the workload performance for designers of algorithms, ML frameworks, GEMM

library, compiler, and hardware. The proposed implementations will be open-sourced to the broader

research community to encourage further investigation.
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CHAPTER 5

Accelerating Graph Pattern Mining

This is a collaborative work with H. Ye, Y. Yang, L. Belayneh, K-Y Chen, D. Blaauw, T. Mudge, R.

Dreslinski.

Graph Pattern Mining (GPM) algorithms are used in numerous applications, including bioin-

formatics [47], cyber-security [69, 203], social network analysis [255, 260], and spam detec-

tion [134]. Despite their prevalence, GPM workloads are severely stalled on modern hardware

platforms [29, 40, 280]. A majority of this performance slowdown is attributed to the irregular

memory and complex data-dependent branch instructions used in set intersection and difference

operations that dominate GPM workload execution times.

Prior hardware works have addressed the inefficiencies of GPM workloads either by proposing

domain-specific accelerators [40, 280] or Near Data Processing (NDP) [29]. These works, however,

can be significantly improved. While accelerators like FlexMiner [40] employ application-specific

control and data paths, the general-purpose nature of their memory subsystems suffer from un-

necessary data movement caused by GPM algorithms. On the other hand, SISA [29] optimizes

GPM software by using a set-centric ISA and improved intersection algorithm. SISA, however,

maps GPM computation to generic NDP architectures, e.g., Ambit [225], without specialization.

Therefore, GPM performance can be further improved by employing domain-specific techniques to

design NDP architectures. To best design a domain-specific NDP solution, it is important to first

understand the unique characteristics of GPM workloads.

To this end, we conduct a systematic characterization of GPM workloads to understand their
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Figure 5.1: NDMiner optimizations and corresponding performance improvements inspired by the
challenges of accelerating GPM workloads. Optimizations are cumulative as the bars move down.

sources of inefficiencies. This leads to four unique takeaways. First, because of the irregular graph

data layout in memory, GPM workloads read data from different DRAM banks to compute set

operations. Second, the symmetry breaking optimization used in modern GPM workloads discards

most vertices fetched from memory in each iteration, resulting in cache pollution and wasted

DRAM bandwidth. Third, sparse pattern mining algorithms perform several redundant reads and

computations, leading to low algorithmic efficiency. Fourth, the size-limited memory controller

queue does not allow GPM workloads to fully utilize internal DRAM data parallelism.

In this work, we present NDMiner—an NDP architecture to accelerate GPM workloads. In

addition to tapping the abundant in-memory data bandwidth, the goal of this design is also to exploit

presented domain-specific insights for optimization. NDMiner integrates low-cost compute units

within a DIMM-based DRAM technology to effectively execute costly set operations in GPM. To

support NDP operations, we also present a hardware-software interface that (a) extends the host

ISA to include NDP instructions, (b) transforms GPM source code to use these NDP instructions,

and (c) extends the memory controller design to orchestrate in-DRAM compute.

We further optimize NDMiner using domain-specialization as shown in Fig. 5.1. First, NDMiner

integrates a new load elision unit in hardware to alleviate the DRAM bandwidth wastage due to

symmetry breaking. This unit terminates unnecessary loads by breaking symmetry in hardware.

Second, NDMiner employs compiler optimizations to improve the algorithmic efficiency of sparse

pattern mining algorithms. This avoids redundant data loads and compute operations by fusing
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multiple loops into composite set operations and hoisting loop invariant computations out of the

loops. We also present how to map these computations to NDP hardware. Third, NDMiner reorders

set operations at runtime to exploit internal data parallelism in DRAM. To make this reordering

possible at low-cost, we first propose a novel graph data remapping scheme in DRAM. Based

on this remapping, we design a new vertex ID–based reordering hardware that examines a large

window (e.g., 1024 entries) of set operations and reorders them to insert requests into a size-limited

memory controller. The goal of this reordering is to exploit bank, rank, and channel-level parallelism

in DRAM.

We rigorously evaluate NDMiner using seven GPM algorithms that mine cliques, user-defined

subgraphs, and motifs on five real-world graphs. The input patterns contain a mix of both sparse

and dense patterns. We first evaluate the effectiveness of various design optimizations by comparing

NDMiner configurations with a baseline NDP architecture that integrates one set operation unit per

channel. As shown in Fig. 5.1, proposed optimizations significantly improve the performance of

this baseline design by 12.7× and reduces energy consumption by 5.1×, on average (more results

in §5.7). We also compare NDMiner with the state-of-the-art GPM software (i.e., GraphPi [232]

and Pangolin [42]) and hardware (i.e., FlexMiner [40]). We show that, on average, NDMiner

significantly outperforms software and hardware baselines by 6.4× and 2.5×. Post-synthesis

estimation of proposed circuits shows that NDMiner achieves these improvements at a negligible

area cost.

In summary, we make the following contributions.

• A detailed analysis of GPM workloads uncovering new opportunities for performance opti-

mization.

• Load elision unit: a novel design that breaks symmetry in hardware to avoid unnecessary

loads.

• Compiler optimizations: a collection of software techniques and corresponding hardware

mapping to reduce redundant loads and computations in sparse GPM.

80



• Graph remapping and set operation reordering: novel techniques to reorder computation in

GPM to exploit internal data parallelism in DRAM.

• NDMiner: an end-to-end system that combines aforementioned optimizations that signifi-

cantly improves the performance of the state-of-the-art GPM hardware accelerator by 2.5×,

on average, at negligible silicon cost.

5.1 Near Data Processing Background

Near Data Processing (NDP)1 improves the performance of memory bound workloads by reducing

the amount of costly off-chip data transfers and exposing high internal memory bandwidth to

compute units. The early efforts in this direction date back to the ’90s [68, 80, 185, 194, 195] that

integrate logic units in DRAM. More recent NDP architectures include computing in DRAM [7, 27,

55, 113, 133, 288, 299] and emerging memory technologies [45, 147, 228, 240, 249].

NDP proposals can be broadly classified into three categories based on the proximity of compute

units from data. This classification is crucial to determining design choices while designing novel

NDP architectures. Approaches similar to MAGIC [249] process data within a memory mat/subarray

without reading them out. Such proposals enjoy high internal data bandwidth if the operands are

aligned in two memory rows/columns. Other approaches process data at local/global row buffer

(e.g., a recent industrial proposal from Samsung [133]). While these proposals do not require the

operands to be aligned within memory rows, they can be best utilized when the operands are present

in the same bank. Although it is possible to move data internally within the memory from one

bank to another using RowClone [224], frequent data movement can limit the benefit of near data

processing. Lastly, other proposals place computation within the buffer chip or logic layers of the

memory (e.g., RecNMP [113] for DIMM, Teserract [7] for HMC). These approaches can avail

data from different banks, however, their bandwidth is limited by the data acquisition bandwidth at

the buffer chip or the TSVs in 3D DRAM. In sum, where to place compute units within memory

1Without losing generality, we refer to computing in/near memory approaches to Near Data Processing (NDP).
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depends on the workload characteristics.

5.2 Finding Optimization Opportunities For GPM

This section presents unique GPM workload characteristics to motivate NDMiner design. We divide

these findings into well-known GPM characteristics and new findings based on our profiling results.

5.2.1 Well-Known GPM Characteristics

Prior optimization works [29, 40, 210, 280] find several unique characteristics of GPM workloads.

We list these well-known characteristics below.

Takeaway 1. Set intersection and difference operations dominate the end-to-end execution

times of GPM workloads.

Takeaway 2. GPM workloads use simple arithmetic compute instructions (e.g., shape count

increments) that do not contribute to stall cycles.

Takeaway 3. The irregular memory accesses and their dependent control flow operations

are the major sources of bottlenecks in GPM workloads.

Takeaway 4. GPM algorithms mostly use read-only data structures offering the opportunity

for massive parallelism without needing synchronization.

5.2.2 Novel GPM Characteristics

In addition to validating well-known characteristics of GPM workloads, this work finds the following

novel characteristics that we employ for NDMiner hardware design.

Distribution of input sets in memory. To better understand the workload behavior of GPM, we

examine the memory locations of set operation inputs used in computing difference and intersection.

Fig. 5.2 shows this distribution classified into four categories: (a) same bank, (b) different banks in

the same bank group, (c) different bank groups on the same rank, and (d) different ranks. The figure
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Figure 5.2: Distribution of locations of set operation inputs showing that GPM workloads mostly
fetch operands from different banks.

Dense Patterns Sparse Patterns Mixed Patterns
P1 P2 P3 P4 P5 P6 P7

wiki-vote 2.4% 1.2% 0.7% 37.8% 5.9% 26.1% 47.8%
pokec 1.3% 1.0% 0.9% 14.6% 1.5% 25.5% 36.5%

patents 4.0% 3.0% 2.6% 13.8% 6.4% 26.4% 42.7%
livejournal 2.5% 5.4% 6.4% 45.4% 7.1% 26.1% 39.9%

Table 5.1: Percentage of vertices utilized in the next search levels out of all fetched vertices because
of symmetry breaking.

shows that a majority of the time, the set operands are present in different banks. This result offers

insight into where to best place NDP compute logic to optimize GPM workloads.

Takeaway 5. GPM workloads fetch data from different DRAM banks to compute set

intersection and difference operations.

Adverse effect of symmetry breaking. As presented in §2.4, advanced GPM algorithms use

symmetry breaking to avoid redundant computation. For triangle counting, this is reflected in lines

6 and 11 of Algorithm 1. In effect, only a fraction of the computed neighborhood or intersection

results (lines 4 and 9) are used in the next phase of computation, which we call the filter operations.

To understand the effect of filter operations, we calculate the fraction of vertices used in the current

GPM iteration out of all the vertices fetched in the previous iteration to compute neighborhoods/set

operations. Table 5.1 shows that 66.5% of the vertices are discarded. Intuitively, dense input

patterns utilize a smaller fraction of vertices compared to sparse patterns. This is because dense

pattern finding algorithms employ more constraints than their sparse counterparts because of their

connectivity structure. While this improves the efficiency of GPM algorithms by avoiding redundant
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for u0 in V:
Nu0 = G.out_neigh(u0)
for u1 in Nu0:

if u1 >= u0: break
Nu1 = G.out_neigh(u1)
Nu0u1 = Intersection(Nu0, Nu1)
for u2 in Nu0u1:

for u3 in Nu0u1:
if u3 >= u2: break
num_diamonds++
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for u0 in V:
Nu0 = G.out_neigh(u0)
for u1 in Nu0:

if u1 >= u0: break
for u2 in Nu0:

if u2 >= u1: break
Nu1 = G.out_neigh(u1)
Nu2 = G.out_neigh(u2)
Nu1u2 = Intersection(Nu1, Nu2)
for u3 in Nu1u2:

if u3 >= u0: break
num_fourcycle++
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Subgraph Listing – Diamond Subgraph Listing – Four Cycle
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set reads

Redundant
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Figure 5.3: Examples of redundant load and computation in sparse pattern mining algorithms (i.e.,
subgraph mining for diamonds and four cycles).

computation, it pollutes the CPU caches and squanders useful DRAM bandwidth.

Takeaway 6. Symmetry breaking discards most vertices fetched from memory in each

iteration, leading to cache pollution and wasted DRAM bandwidth.

Redundant reads and computations for mining sparse patterns. Sparse patterns are defined

as graph patterns where most nodes are not connected to all other nodes. Conversely, fully connected

patterns (e.g., cliques) are called dense patterns. Fig. 5.3 shows pseudo-code for mining two sparse

patterns, i.e., diamond and four cycle. The figure shows that, for diamond mining in lines 7–9,

vertices u2 and u3 are found by iterating over the same candidate sets, i.e., Nu0u1. The same trend

exists for vertices u1 and u2 in four cycle mining algorithm (lines 3–6). Furthermore, line 7 of

four cycle mining algorithm shows that neighborhood computation Nu1 is invariant to u2. These

properties of sparse GPM lead to redundant reads and computation. While we use two example

shapes to demonstrate this concept, this redundancy is common across a wide range of sparse GPM

algorithms.

Takeaway 7. Sparse pattern mining algorithms involve redundant reads and computations.

Set Operation reordering opportunity. While most prior GPM works typically process vertices

in an input graph in the order of their IDs, we design an experiment to find if there is an opportunity

to gain performance by reordering the memory accesses in an input graph. First, we reorder an
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Figure 5.4: Speedup of GPM workloads for different memory controller reorder window sizes.
Results are normalized to 32 window size.

input graph in software by using three graph reordering techniques, i.e., DegreeSort, HubCluster,

and HubSort based on a prior work [21]. This, however, does not affect the performance of GPM

workloads. Second, we reordered the set operations computed in hardware by artificially increasing

the memory controller read queue size. Fig. 5.4 shows the effect of using larger memory controller

reordering window sizes normalized to a realistic size of 32 on GPM performance. The figure shows

that a larger reordering window improves the workload performance by up to 1.6×. This is because

a smaller reordering window is congested by the requests to the same bank, reducing reordering

and data-parallelism opportunity. Larger windows, on the other hand, find requests to better exploit

data-parallelism by sending concurrent requests to multiple banks, ranks, and channels.

Takeaway 8. GPM workloads do not fully exploit abundant data-parallelism in DRAM

because of size-limited memory controller queues.

5.2.3 Why NDP for GPM?

As discussed in §5.1, NDP alleviates the performance and energy overheads of costly off-chip

data transfers between the CPU and DRAM. This can be used to alleviate the wasteful data

transfer in GPM algorithms because of symmetry breaking (Takeaway 6). NDP has the potential to

reduce cache thrashing and energy wasted on off-chip data transfer. Additionally, NDP exposes

high internal memory bandwidth that can be exploited by GPM algorithms as they offer ample

parallelism (Takeaway 4).

In-DRAM compute parallelism can be best utilized by simple compute units that can be integrated
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within the memory in a cost-effective manner. GPM algorithms mostly use adder and comparator

logic to perform most of their computations (Takeaway 2). The simplicity of these operations

allows their cost-efficient integration within memory. Resolving load-dependent control flow

operations at NDP precludes the need for using expensive branch resolution mechanisms on the

CPU. Moreover, irregular accesses to graph data structures resulting in high memory latency and/or

bandwidth [172, 252] can be better serviced near memory at a low latency and high available

bandwidth, addressing the two main bottlenecks in GPM workloads (Takeaway 3). In summary,

NDP is an attractive candidate for accelerating GPM workloads.

5.2.4 How To Best Design NDP For GPM?

The next task is to find where should we to compute unit within the memory? As discussed in §5.1,

the best place depends on the workload characteristics. As set intersection/difference operations

dominate the execution time of GPM workloads (Takeaway 1), we offload them to NDP units.

Furthermore, Takeaway 5 shows that GPM workloads mostly fetch data from different banks.

Placing compute units inside the bank would incur significant in-DRAM data transfer. Therefore,

we make a design decision to place the compute units at the buffer chip of DIMMs in NDMiner.

While we use DIMM in this work, similar design principles can also be applied to the logic layer of

HMC/HBM.

5.3 Hardware-Software Interface

This section discusses the hardware-software interface of NDMiner to support NDP operations for

GPM acceleration.

5.3.1 Supported NDP Operations

Based on Takeaway 1, NDMiner offloads set intersection and difference operations to the NDP units.

Additionally, the primary goal of NDP design is to alleviate the cost of data movement in GPM
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workloads. As presented in Takeaway 6, symmetry breaking results in wasteful data movement. By

using NDP, it is possible to identify and terminate loads filtered by breaking symmetry in hardware.

This helps improving the overall efficiency of the program by eliding useless loads that prevents

cache pollution. Therefore, NDMiner also offloads load elision operations to memory. In total,

NDMiner supports five NDP operations: (a) complete set intersection, (b) complete set difference,

(c) filtered set intersection, (d) filtered set difference, (e) load filtered set.

5.3.2 ISA Extensions
filtered_intersect   addr0, len0, addr1, len1, u_th // u_th=-1 if no filter
filtered_difference  addr0, len0, addr1, len1, u_th // u_th=-1 if no filter 

filtered_load  addr0, len0, u_th // u_th=-1 if no filter 

Figure 5.5: Host ISA instructions to support NDP.

To enable software to communicate NDP operations to memory through the host CPU, NDMiner

introduces three instructions in the ISA as shown in Fig. 5.5. To support symmetry breaking in

hardware (more details in §5.5.1), these instructions support filtering of input sets. A threshold

vertex ID is specified (i.e., u th) that is determined at runtime by the CPU and communicated to

the NDP units. If load elision is not applied, the values of u th is specified as -1. The memory

address ranges of input sets are indicated by the base address and length of sets. Similar to recent

academic NDP proposals [7, 113, 288] and an industrial product [133], we assume that the data

allocated for NDP uses physically contiguous memory blocks. Contiguous mapping ensures that

NDP instructions only have to translate one address, and the rest of the addresses can be obtained

using the address range, even if the addresses rarely cross the OS page boundaries. This, however, is

not a fundamental limitation of NDMiner as it is also compatible with the current OS page mapping

scheme, which would rarely require more than one address translations for an NDP instruction

when input sets in that instruction span multiple pages.
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num_triangles = 0

for u in V:
Nu = G.out_neigh(u)
for v in Nu:

if v >= u:
break

Nv = G.out_neigh(v)
Nuv = Intersection(Nu, Nv)
for w in Nuv:

if w >= v:
break

num_triangles++

num_triangles = 0

for u in V:
Nuf = G.filtered_out_neigh(u, u)
for v in Nuf:    

Nvf = G.filtered_out_neigh(v, v)    
Nuvf = Intersection(Nuf, Nvf)
for w in Nuvf :

num_triangles++
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(a) Vanilla triangle counting code (b) NDMiner triangle counting code   

Figure 5.6: Code transformations to make use of NDP instructions.

5.3.3 Programming Model

To utilize aforementioned ISA instructions, an NDMiner compiler transforms the source code of

GPM workloads. First, the compiler analyzes the source code to extract the instances amenable to

NDP acceleration. These instances include set operation computations, neighborhood loads, and

symmetry breaking constraints. These instances are then replaced with NDP instructions. Fig. 5.6

shows an example of source code transformations, where lines in the green and blue boxes in the

original source code are replaced with filtered load operations. In this workload, the intersection

operation is not modified as it receives filtered neighborhoods as input (line 7 in Fig. 5.6(b)). For

workloads where neighborhoods are not filtered beforehand, filtered intersect instruction

can filter sets before computing the intersection. These code transformations are translated into the

primitive ISA instructions (§5.3.2) by the compiler back-end. When the host CPU decodes these

instructions, they are directly forwarded to the memory controller, bypassing the cache hierarchy.

Because NDMiner only processes read-only data (Takeaway 4), bypassing the cache hierarchy does

not affect the correctness of the program as all the cached data is in the clean state.

5.4 NDMiner Hardware Architecture

Fig. 5.7 shows an overview of the NDMiner hardware design. Upon receiving an NDP instruction,

the NDMiner memory controller front-end converts it into multiple composite loads and set oper-
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Figure 5.7: Hardware design overview of NDMiner.

ations for offloading to DRAM. This section goes over the details of NDMiner hardware design

that includes the design of the memory controller, near-memory compute units, and the DRAM

access protocol. NDMiner targets a minimally invasive design, where we aim to utilize the existing

hardware resources as much as possible.

5.4.1 NDMiner Memory Controller Front-end Design

Fig. 5.7(a) shows the NDMiner memory controller design. We introduce a front-end logic unit

called the request generator that converts NDP instructions into DRAM requests. This unit accepts

all three instructions discussed in §5.3.2 that perform different operations. Next, we take an example

of filtered intersection to describe this hardware in detail. The incoming NDPInst specifies base

addresses of two sets as 0x100 and 0x400, and lengths of 40 and 30, respectively. Each element

in a set is 4B long; there are 16 elements in a cache line. The instruction also indicates a threshold

(u th) of 10, i.e., the intersection result must have elements less than 10. With this information, the

request generator unit first aligns the addresses to cache line boundaries, and marks the range of byte

offsets to read from each cache line. This unit also creates read requests with a unique opcode (i.e.,

iRD) indicating intersection operations. The figure shows two opcodes: iRD and iRD b. The latter

one marks the beginning of a cache line for a set. The generated request also contains byte offsets
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and u th as shown in Fig. 5.7(b). These requests are then enqueued into the memory controller.

5.4.2 NDMiner Memory-side Hardware Design

Fig. 5.7(c,d) show the set operation unit located at the buffer chip of DRAM based on Takeaway 5.

It reads two sets from DRAM banks, and computes intersection or difference. As shown in 5.7(d),

the near-data Processing Engines (nPEs) employ buffers to temporarily store the cache line of one

set while the other set is being read from DRAM. After the first cache lines of both sets are read,

simple comparator logic starts computing intersection/difference result. For each operation, the

nPE is blocked until its completion. We name this design choice NDMiner-Base, where NDMiner

employs one nPE per DIMM. While fetching two sets from different banks, NDMiner-Base can

exploit as much as 2× compute bandwidth compared to moving data off-chip.

5.4.3 NDMiner Command Scheduling

This unit dequeues requests from the memory controller and issues commands to memory. In

addition to issuing regular DRAM requests, the NDMiner command scheduler also issues NDP

requests using unique opcodes. To support NDP at a minimal hardware overhead, NDMiner

communicates compute operations in terms of DRAM commands, as opposed to a prior work [113]

that issues composite operations.

All of the NDMiner operations are performed in conjunction with memory reads. For example,

an intersection operation first reads operands from memory. Therefore, NDMiner issues compute

commands following row activate and prior to row precharge. To issue commands for requests

generated in Fig. 5.7(b), first, an ACT command opens a DRAM row. Then, an iRD b command

blocks an nPE for intersection and reads the first cache line to the set operation unit. On the

address and data buses, the memory controller sends row/column addresses along with metadata for

computation (i.e., byte offsets and vertex threshold) in a time-multiplexed fashion. This obviates

the need to add extra buses to support NDP.
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5.5 Design Optimizations

To further improve the performance of NDMiner, this section presents novel optimization techniques.

5.5.1 NDMiner-LoadElision: Eliding Unnecessary Loads

Based on Takeaway 6, symmetry breaking results in wasted DRAM bandwidth. To alleviate this

effect, we propose load elision unit (LEU) that breaks symmetry in hardware. Fig. 5.7(c,e)

show near-memory compute logic for eliding loads. This unit compares data values read from

DRAM with u th and raises a signal when further loads need to be terminated. It employs a set

of comparators as shown in Fig. 5.7(e). If a neighbor value read is higher than u th, it triggers

load elision. Because this unit directly uses cache line values read from DRAM, it is placed at the

column decoder output. With 16 banks per rank and 2 ranks in a DIMM, the load elision unit can

exploit the compute bandwidth as high as 2×16 = 32× on a single DIMM compared to moving data

off-chip. We name this design choice as NDMiner-LoadElision. While NDP operations do not

transfer data off-chip, we use the data bus response to indicate the termination of reads when the

load elision is triggered. The memory sends a pre-encoded response (e.g., ff) back to the memory

controller indicating a load elision event. This response enables the memory controller to find the

pending load requests and terminate them.

5.5.2 NDMiner-Overlap: Offloading Concurrent Instructions

With one nPE per DIMM, the near-memory set operation units can only exploit up to 2× compute

bandwidth compared to processing data off-chip. While this is favorable, there is still 16× data

bandwidth left unexploited. Moreover, a simple nPE design incurs low integration cost within

the DRAM. To match the available data bandwidth, NDMiner integrates 16 nPEs per DIMM as

shown in Fig. 5.7(d). We name this design NDMiner-Overlap, as multiple nPEs can overlap

set operations. This includes (a) concurrently reading operands from multiple banks to exploit

bank-level parallelism, and (b) concurrent set computation. While this is not a novel optimization,
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for u0 in V:
Nu0 = G.out_neigh(u0)
for u1 in Nu0:
if u1 >= u0: break
Nu1 = G.out_neigh(u1)
Nu0u1 = Intersection(Nu0, Nu1)
for u2 in Nu0u1:
for u3 in Nu0u1:
if u3 >= u2: break
num_diamonds++
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Figure 5.8: Proposed compiler optimizations and corresponding computation mapping to hardware
to improve the algorithmic efficiency of sparse GPM. Consecutive loops iterating over same sets are
fused to perform one set read and a composite computation (shift and record in this example).

separating this design choice from NDMiner-Base helps us understand the potential of GPM

workloads to exploit in-DRAM data parallelism.

5.5.3 NDMiner-Compiler: Optimizing Algorithmic Efficiency

Based on Takeaway 7, mining sparse patterns involve redundant load and computation operations.

For example, executing lines 7 and 8 in Fig. 5.8 would read Nu0u1 several times to the NDP units

redundantly loading the same data. To improve the algorithmic efficiency of these workloads, we

propose the following compiler-based optimizations. First, the compiler identifies the existence of

redundant reads by examining the candidate sets used in consecutive loops. As shown in Fig. 5.8(a),

two loops in lines 7 and 8 iterate over the same candidate set Nu0u1. Furthermore, line 9 imposes a

symmetry breaking constraint between u2 and u3.

Upon this identification, we propose to fuse these two loops and convert it into one set read and

a composite computation. For example, loop fusion in Fig. 5.8(a) is converted into a staggered

access of Nu0u1 as shown in Fig. 5.8(b). Symmetry breaking constraint is the reason for this type of

access pattern because u2 cannot be greater than u3. We further map this computation in hardware

to nPEs, where the same candidate set is replicated in two buffers, and {u2, u3} pairs can be found

by using a shift-and-record operation. While this is useful for pattern listing algorithms, pattern

counting algorithms can directly compute the number of patterns by using simple accumulation

equation as shown in Fig. 5.8(b). In addition to loop fusion, our compiler pass also hoists loop

invariant computations outside the loop. This includes, for example, moving Nu1 computation in
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line 7 in Fig. 5.3 before line 5 as neighborhood of u1 is independent of the value of u2. Applying

compiler optimizations significantly improves algorithmic efficiency of sparse pattern mining; we

name this design choice NDMiner-Compiler.

5.5.4 NDMiner-Reorder: Reordering Set Operations

Based on Takeaway 8, it is possible to improve the performance of GPM workloads by reordering

set operations to exploit parallelism in DRAM. To further understand the reason behind this

performance difference, consider an example, where Fig. 5.9(a) shows neighborhoods of selected

number of nodes in a hypothetical graph. Fig. 5.9(b) shows that a traditional memory controller

falls short in identifying operation reordering opportunity because of its size-limited queues. This

can result in frequent bank conflicts if row IDs of queued requests are different. One straightforward

way to improve performance is by increasing the size of the memory controller read queue and let

the memory controller reorder a larger number of read requests. This, however, is not a practical

design as it will significantly increase the latency of memory controller reordering logic, potentially

hurting performance of other applications. Any other technique that uses addresses to reorder set

operations would incur a similarly large overhead. Therefore, we propose to raise the level of

abstraction and reorder set operations based on vertex IDs at low cost.

The intuition behind our proposal is to encode the vertex ID in the bank address to find a node’s

neighborhood. This allows us to compute the bank address of each set operation at a low-cost,

obviating the necessity to decode an entire address. This can further be used to reorder operations

from a large window size to maximize bank-level parallelism. Fig. 5.9(c,d) explain our design

with an example. We propose to remap each node’s neighborhood to different banks based on

computing a simple hash function of a vertex ID. While this work uses a modulo operation to map

each vertex ID to a bank, this is not a fundamental limitation, and this operation can be replaced by

a more sophisticated hash function, if necessary. The row and column addresses are then encoded

to have a contiguous neighborhood mappings of two vertices without overwriting each others’ data.

A physical address from DRAM row, column, bank, bank group, rank, and channel coordinates is
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N(v1) : {v0, v5, v11, v23, v30}
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N(v3) : {v0, v5, v9}

N(v4) : {v2}
N(v5) : {v0, v1, v3} 
N(v6) : {v15, v20}
N(v7) : {v11}
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Figure 5.9: (a) Example graph’s node neighborhoods, (b) baseline memory controller with a size-
limited queue that leads to frequent bank conflicts when accessing different rows, (c) proposed
neighborhood remapping scheme using a deterministic interleaving of neighborhoods across banks,
and (d) vertex ID-based set operation reordering to exploit bank-level parallelism in DRAM.

calculated based on a prior work [201]. Fig. 5.9(c) shows the resultant mapping of nodes v0-v7’s

neighborhoods.

At runtime, this mapping information is used to intelligently reorder and selectively schedule

set operations to maximize data parallelism in DRAM. Fig. 5.9(d) shows the function of reordering

hardware, which takes an operation sequence as an input from the CPU and computes bank addresses

of neighborhoods used in each set operation. This is computed by simply applying a modulo function

to vertex IDs. In hardware, modulo operation translates to simply selecting a few low significant

bits, which can be executed in parallel efficiently. Based on the bank IDs, set operations are

reordered to have distinct bank IDs in the consecutive operations in the reordered sequence. Based

on this reordering, a subset of this operations are offloaded to the memory controller based on the

empty slot in the queues. Because the proposed vertex-based reordering scheme enables address

identification at an extremely low cost, it is possible to select operations from a much larger window

size compared to a size-limited memory controller queue. As presented in Fig. 5.4, this results in

significant performance improvement. We name this design NDMiner-Reorder.
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DRAM Specification
DDR4-3200, 4Gb ×8, 4 Channels × 1 DIMM × 2 Ranks, 32-entry RD/WR queue, FR-FCFS, Skylake address mapping [202]

DRAM Timing Parameters
tRCD=22, tCL=22, tRP=22, tBL=4. tCCD S=4, tCCD L=10, tRRD S=4, tRRD L=8, tFAW=34, tRC=78

DRAM Energy Parameters
IDD0=52mA, IDD1=69mA, IDD2N=37mA, IDD3N=52mA, IDD4R=168mA, IDD4W=150mA, VDD=1.2V, VPP=2.5V [165]

nPE, LEUs, and Reordering Unit Parameters
16 nPEs and 32 LEUs per channel @ 2GHz on DRAM buffer chip, 1024-entry vertex ID-based reordering unit on CPU

Table 5.2: DRAM Parameters and Configurations.

5.6 Evaluation Methodology

5.6.1 Baseline CPU Hardware Platform

For the software baselines, we use an AMD EPYC 7742 processor with 64 physical cores (128

SMT threads). The aggregate Last Level Cache (LLC) size is 256MB. The main memory in the

system is 4-channel DDR4-3200 with a 512GB capacity. A prior work [40] shows that enabling

hyperthreading for GPM workloads slows down performance scaling due to cache contention.

Therefore, we use 64-thread implementations of our software baselines.

5.6.2 Simulation Infrastructure

We model the cycle-accurate NDMiner performance using Ramulator [118]. The configuration of

modeled memory system is shown in Table 5.2. We generate a trace of NDP instructions to feed

into Ramulator and model the NDMiner hardware modifications presented above. As neighborhood

set load, intersection, and difference operations take a majority of workload execution time, we

model this computation in Ramulator and compare it with other baselines. Notably, in addition

to this computation, GPM algorithms perform other simple computations including shape count

increments. These operations are left to be performed efficiently using a multi-threaded host CPU.

To estimate the latency, energy consumption, and area overhead of NDP logic, we model NDMiner

using Verilog HDL and synthesize using a commercial 28nm technology node on the Synopsys

Design Compiler. For vector-based power estimation, we use Synopsys PrimeTime. While it is

possible to clock the nPEs at a higher frequency in a logic process, we conservatively clock them at

a lower frequency as they use slower transistors in DRAM technology.
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P1: Triangle Counting P2: 4-Clique Mining P3: 5-Clique Mining P4: Diamond P5: Four Cycle

Mining SubgraphsMining Cliques

P6: 3-Motif Mining P7: 4-Motif Mining

Mining Motifs

Figure 5.10: Input graph patterns used for evaluation.
Graph #Vertices #Edges Avg degree Description

wiki-vote (wi) 7.1k 103.7k 14.6 Voting network
pokec (po) 1.6M 30.6M 19.1 Social network

patents (pa) 3.7M 16.5M 4.4 Citation network
livejournal (lj) 4.0M 34.7M 8.7 Social network

orkut (or) 3.1M 117.8M 38.1 Social network

Table 5.3: Real-world graph data sets used for evaluation.

5.6.3 Algorithms and Datasets

Algorithms. We mine seven patterns P1–P7 of varying sizes and connectivity as shown in Fig. 5.10.

The first six patterns are the same as what a prior work FlexMiner [40] used. In addition, we also use

4-motif counting (P7) for comprehensive evaluation. Among these patterns, the cliques (P1–P3) are

dense, fully connected patterns, and P4–P5 are sparse patterns. Motif counting counts all possible

patterns with a specified number of vertices (i.e., two patterns for 3-MC and six patterns for 4-MC)

that includes both dense and sparse patterns. While we choose these five patterns for evaluation,

NDMiner is agnostic to any specific pattern, and it can work well for any arbitrary user-defined

pattern. As detailed in prior works [29, 40], the simulation times for mining large patterns is quite

high (e.g., days to weeks); hence we mine patterns of up to five vertices.

Datasets. We use five real-world graph datasets for evaluation as shown in Table 5.3. These

datasets are diverse in terms of their sizes from small (wiki-vote) to large (orkut), and connectivity

(i.e., average degrees). Notably, the amount of simulation time grows exponentially with the graph

size. Hence, we use similar sized datasets as prior works [40, 280]. We set a simulation timeout of

120 hours (five days) and do not include the results for workloads that do not finish execution in

this time. This mostly includes mining large number of patterns (P7) on large datasets with slower
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Num nPEs
per channel

Load
Elision

Loop
Fusion

Op
Reorder

NDMiner-Base 1 ✗ ✗ ✗
NDMiner-LoadElision 1 ✓ ✗ ✗
NDMiner-Overlap 16 ✓ ✗ ✗
NDMiner-Compiler 16 ✓ ✓ ✗
NDMiner-Reorder 16 ✓ ✓ ✓

Table 5.4: NDMiner configurations.

baselines.

5.6.4 NDMiner Configurations

To present the benefit of proposed optimization techniques, we compare NDMiner configurations

listed in Table 5.4.

5.6.5 State-of-the-art Baselines

We also rigorously compare NDMiner with the following software and hardware baselines.

GAPBS+GraphPi (software) extracts algorithms from GraphPi [232] including optimized vertex

traversal schedules and symmetry breaking constraints and implements them onto GAPBS [26] data

structures. The purpose of this baseline is to evaluate GraphPi algorithms on optimized GAPBS

graph data structures without framework-related overheads.

GraphPi (software) uses vanilla open-source GraphPi [232].

Pangolin (software) is a collection of open-source benchmarks [43] based on the implementations

of state-of-the-art GPM frameworks including Pangolin [42] and Sandslash [41].

FlexMiner (hardware) is based on a GPM hardware accelerator [40]. To obtain FlexMiner

execution time, we run the CPU baseline code open-sourced by authors in GraphMinerBench [43]

on an Intel i9 machine (same as used in their work), and multiply speedup factors reported in the

work for commonly evaluated algorithms and datasets.

SISA and IntersectX (hardware). We qualitatively compare NDMiner with these baselines [29,

210] as their open-source implementations are not available.
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Figure 5.11: Performance comparison of NDMiner configurations showing the effectiveness of
proposed optimizations. Workloads that do not simulate in 120 hours are excluded that mostly
includes P7 mining. All proposed optimizations together improves the performance of NDMiner-
Base by 12.7×, on average.

5.7 Evaluation Results

5.7.1 Performance Analysis

Comparison of different NDMiner configurations. We first compare the performance of

various NDMiner baselines (§5.6.4) to estimate the effectiveness of proposed design optimiza-

tions. Fig. 5.11 shows the performance of NDMiner configurations normalized to NDMiner-Base.

NDMiner-LoadElision outperforms NDMiner-Base by 2.1×, on average by breaking symmetry in

hardware and avoiding unnecessary loads. NDMiner-Overlap further outperforms NDMiner-Base

by 3.5×, on average, showing that adding extra nPEs marginally improve performance. This result

also shows that merely adding 16× more NDP compute resources does not automatically offer

significant performance, especially for sparse patterns. To best tap the potential of NDP, we need

further optimizations.

Fig. 5.11 further shows that NDMiner-Compiler significantly improves the performance of sparse

GPM algorithms (i.e., P4–P7), resulting in an average improvement of 7.7×. Note that this

optimization is not applicable to dense patterns P1–P3. This benefit of this optimization is attributed

to the improved algorithmic efficiency, where NDMiner-Compiler avoids unnecessary load and

compute operations. NDMiner-Reorder further improves the performance of GPM workloads by

12.7×, on average, compared to NDMiner-Base. This configuration outperforms all other baselines

by introducing set operation reordering. This reordering fills up the size-limited memory controller

queue by requests that can be serviced by different banks, ranks, and channels concurrently to
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Figure 5.12: Performance comparison of state-of-the-art software and hardware baselines with
NDMiner showing significant performance improvements. FlexMiner [40] is only compared against
commonly evaluated datasets (others marked with “x” on x-axis). Workloads that time out are
excluded.

optimize internal DRAM data parallelism.

NDMiner versus state-of-the-art baselines. Fig. 5.12 compares the performance of NDMiner

with prior software and hardware optimizations for GPM. This comparison is conducted with our

best-performing configuration, i.e., NDMiner-Overlap. NDMiner significantly outperforms three

strong software baseline, i.e., GAPBS+GraphPi [26, 232], vanilla GraphPi [232], and Pangolin [42]

by 7.4×, 6.4×, and 10.9×, on average. Our detailed investigation reveals that NDMiner uses

the same traversal order and symmetry breaking constraints as other baselines. Therefore, these

significant benefits are attributed to (a) reducing the off-chip data transfer using NDP, (b) hardware-

based load elision with the knowledge of symmetry breaking constraints, (c) optimizing algorithmic

efficiency of sparse patterns, and (d) exploiting high in-DRAM compute bandwidth by appropriately

reordering set operation (and not because of better algorithms from GraphPi).

Fig. 5.12 also shows that NDMiner outperforms FlexMiner [40] on commonly evaluated

algorithm-dataset pairs by 2.5×, on average. While FlexMiner improves GPM performance over

CPU by domain-specialization, it uses a traditional memory architecture with on-chip caches and

off-chip DRAM. Our profiling, however, shows that GPM workloads exhibit wasteful behavior on a

traditional memory hierarchy, and can be significantly optimized by using NDP. NDMiner outper-

forms FlexMiner by offloading computation to NDP units, improving the algorithmic efficiency of

sparse pattern mining, and reordering set operations to exploit abundant in-DRAM data parallelism.

We qualitatively compare NDMiner with SISA [29] and IntersectX [210] because of their lack

of available open-source implementations. While SISA efficiently maps GPM algorithms to set
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Dense
Patterns

Sparse
Patterns

Mixed
Patterns

P1 P2 P3 P4 P5 P6 P7
Loads 4.1× 5.4× 4.9× 2.8× 1.6× 7.9× 12.7×

Comparisons 4.6× 5.0× 4.3× 1.0× 1.6× 4.6× 1.5×

Table 5.5: Reduction in loads and element-wise comparisons in set operations due to load elision
and compiler optimizations. Results averaged over different datasets.

operations, it employs general-purpose NDP hardware (e.g., Ambit [225]) to offload computation.

NDMiner, on the other hand, employs domain-specialized NDP hardware design, circumvents

unnecessary reads and computations, and reorders set operations to acquire additional performance

from NDP. IntersectX optimizes GPM workloads on a CPU using a stream instruction set and its

microarchitectural support. This, however, fetches data from off-chip DRAM that suffers from

wasted DRAM bandwidth. Similar to FlexMiner, the performance of IntersectX can further be

improved by NDMiner’s domain-specialized NDP design.

Load and Computation Reduction. To better understand the performance benefits of NDMiner,

Table 5.5 shows the reduction in the number of load and element-wise comparisons for computing

set operations. NDMiner avoids unnecessary loads and element-wise comparisons by (a) hardware-

based load elision (§5.5.1), and (b) software-based compiler optimizations using loop fusion and

instruction hoisting (§5.5.3). Dense workloads only benefit from load elision that significantly

improves their algorithmic efficiency. This is because dense patterns use a unique symmetry

breaking constraint for each set operation, where load elision is effective. Sparse patterns, on

the other hand, often compute a set operation once and reuse its result multiple times. Because

each such usage might have a unique constraint, this sometimes precludes the employment of

load elision because the entire set needs to be computed once. P4 (diamond) is one such pattern

where intersection result is used several times with different constraints. This pattern, however, still

benefits from our loop fusion technique and reduces the number of loads. Motif counting (P6-P7)

algorithms mine several patterns, offering better opportunity for both load elision and compiler

optimizations to be effective.

100



P1 P2 P3 P4 P5 P6 GM
Workload

0.0
2.0
4.0
6.0
8.0

10.0
12.0

En
er

gy
 R

ed
uc

ti
on

 (
x)

NDMiner-Base
NDMiner-LoadElision

NDMiner-Overlap
NDMiner-Compiler

NDMiner-Reorder

Figure 5.13: Energy consumption of NDMiner configurations normalized to NDMiner-Base on a
representative patents dataset. P7 is excluded as its baseline simulation times out.

5.7.2 Energy Analysis

Fig. 5.13 compares the energy of different NDMiner configurations, normalized to NDMiner-Base,

using a representative patents dataset. Energy of mining 4-motif (P7) is not reported as its simulation

for NDMiner-Base times out. The figure shows that proposed optimizations improve the energy

consumption of NDMiner-Base by 1.9×, 2.9×, 4.1×, and 5.1×, on average. This significant energy

reduction is attributed to (a) improved memory traffic and algorithmic efficiency by load elision and

compiler optimizations, and (b) reduction in static energy by speeding up the program execution

by using multiple nPEs per channel and reordering set operations to exploit internal DRAM data

parallelism.

5.7.3 Sensitivity Analysis

Fig. 5.14 shows the performance sensitivity of NDMiner compared to (a) different set operation

reordering window sizes and (b) number of nPEs per channel. The top figure shows that increasing

the window size from 1 to 4096 monotonically increases the performance by 1.6×, on average.

Interestingly, there is a marginal performance increase from 1024 to 4096. The silicon and power

costs, on the other hand, would increase significantly by increasing a window size by 4×. Therefore,

NDMiner design employs a window size of 1024 that best trades off area and power costs with

performance.

Fig. 5.14 (bottom) shows that the performance of NDMiner improves by 4.2× on average with an

increase in the number of nPEs from 1 to 16. This improved performance shows the opportunity to
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Figure 5.14: Performance sensitivity of NDMiner for different set operation reordering window
sizes (top) and number of nPEs per channel (bottom) on a representative patents dataset.

near-memory Load Elision Operaration
PE (nPE) Unit (LEU) Reorder Unit

Location DRAM DRAM CPU
Area (mm2) 0.01237 0.00096 0.4147
Power (mW ) 18.45 0.36 32.78

Table 5.6: Area and power estimates of NDMiner circuits.

overlap large portions of compute operations by availing the ample in-DRAM compute bandwidth.

This trend, however, slowly saturates beyond 8 nPEs, at which point, the workload gradually shifts

from being compute bounded to memory bounded. Although using 16 nPEs marginally improves

performance, the area and power overhead of integrating nPEs are minimal (discussed in §5.7.4),

which informs our choice of using 16 nPEs per channel.

5.7.4 Overhead Analysis

Table 5.6 shows the post-synthesis area and power overheads of NDMiner circuits. While the

table shows overheads of individual circuits, NDMiner design integrates 16 nPEs and 32 LEUs

in a DRAM DIMM, and one set operation reordering unit on the CPU. The area and power of

NDMiner is dominated by the reordering unit as it employs two 1024-entry buffers (one to store

incoming NDP instructions and the other to store reordered instructions). The cost of these hardware

units, however, is negligible compared to the performance benefit they provide. Compared to a
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100mm2 [162] area of the DRAM buffer chip, NDMiner circuits add a minimal area overhead of

0.23%. On the flip side, NDMiner significantly improves GPM performance by 7.4×, on average.

5.8 Related Work

Table 5.7 provides a brief comparison of the most related works with NDMiner. A more detailed

comparison follows.

GPM software systems. Numerous software frameworks efficiently utilize GPM algorithms on

CPUs and GPUs. Early GPM systems [42, 256] rely on enumerating all possible embeddings, and

then ruling out redundant embeddings using isomorphism tests. Recent works [104, 105, 159, 160,

232] avoid the expensive filter operations and prune out redundant embeddings during the search

tree expansion. Other works strive to reduce the memory consumption of intermediate embeddings

either by relying on SSD [265] or leveraging algorithmic techniques [60]. In addition to optimized

software implementations, this work shows that GPM performance can be further improved using

hardware-based techniques.

NDP architectures. To alleviate the cost of data transfer over bandwidth-limited and energy-

hungry CPU-memory bus, several NDP architectures are proposed. Of these works, OMEGA [3]

and PHI [174] augment the CPU memory with low-cost compute units for graph processing. Other

works [7, 27, 55, 288, 299] offload graph computations to the logic layer of HMC. These proposals,

however, are suitable for graph processing and cannot be directly applied for GPM acceleration

because of its unique workload characteristics. Outside the context of graph processing, several other

NDP architectures are proposed [45, 113, 133, 147, 196, 225, 228, 248–250]. For GPM, SISA [29]

proposes to offload computation on existing PIM architectures by proposing set-centric ISA and fast

set intersection algorithm. NDMiner improves SISA using domain-specific optimizations (hardware

load elision, compiler optimizations, and set operation reordering).

Domain-specific accelerators. ExTensor [91] employs fast intersection circuits for tensor

algebra that cannot be used for GPM out-of-the-box as it doesn’t support key operations like
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Symm.
Break. NDP Load

Elision
Loop

Fusion
Op

Reorder
GraphZero [159] ✓ ✗ ✗ ✗ ✗

GraphPi [232] ✓ ✗ ✗ ✗ ✗
Gramer [280] ✗ ✗ ✗ ✗ ✗

FlexMiner [40] ✓ ✗ ✗ ✗ ✗
SISA [29] ✗ ✓ ✗ ✗ ✗

IntersectX [210] ✓ ✗ ✗ ✗ ✗

NDMiner ✓ ✓ ✓ ✓ ✓

Table 5.7: Comparison of NDMiner with related works.

pattern enumeration. Numerous graph processing accelerators aim at improving the irregular

memory accesses via memory system optimizations [11, 24, 87, 172, 173, 186, 236, 252, 278]. As

detailed in [280], graph processing and GPM workloads have distinct memory access patterns.

Therefore, the effectiveness of graph processing accelerators might be limited when applied to

GPM. Few recent works [40, 111, 210, 280] design specialized architectures for GPM. Out of

these, FlexMiner [40] improves the performance and generality of prior accelerators [111, 280]

by proposing a pattern-aware GPM accelerator. NDMiner outperforms FlexMiner by employing

a domain-specific NDP architecture that includes novels optimizations like loop fusion and set

operation reordering. IntersectX [210] optimizes GPM execution on a CPU by extending the ISA

and architecture support. This approach, however, suffers from high on-chip storage requirement

and unnecessary off-chip data transfers from DRAM. NDMiner offloads compute to low-cost NDP

units augmented with domain-specific optimizations.

5.9 Chapter Conclusion

Irregular memory and complex data-dependent control flow instructions used in set operations

dominate the execution time of GPM workloads. This work presented NDMiner—a domain-

specialized NDP architecture to accelerate GPM. NDMiner offloaded the costly set computations

to NDP. NDMiner further improved performance by uncovering and applying domain-specific

optimizations. NDMiner integrated a near-data load elision unit that broke symmetry in hardware and

terminated unnecessary loads. NDMiner employed compiler optimization and hardware mapping

techniques that improved the algorithmic efficiency of sparse GPM workloads. NDMiner proposed
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a graph remapping scheme and set operation reordering hardware to optimize the bank, rank, and

channel-level parallelism in DRAM. Using dense, sparse, and mixed pattern mining algorithms,

we showed that NDMiner significantly outperforms the state-of-the-art software (GraphPi) and

hardware (FlexMiner) baselines by 6.4× and 2.5×, on average, at a negligible cost.
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CHAPTER 6

Accelerating Temporal Motif Mining

This is a collaborative work with H. Ye, S. Vedula, K-Y Chen, Y. Chen, D. Liu, Y. Yuan D. Blaauw,

A. Bronstein, T. Mudge, and R. Dreslinski.

Graphs (or networks) provide a general and useful abstraction for modeling complex phenomena,

e.g., social and communication networks in computational social science, protein-protein interaction

networks in biology, and transaction networks in finance [22, 142]. Small subgraph patterns,

referred to as motifs, play a crucial role in understanding the structure and function of complex

systems encoded as a graph [16, 178, 230]. Mining motifs is one of the central problems in network

science [168].

Most real world phenomena are not static. Static graphs aggregate the interactions that occur over

networks by omitting the temporal information. While analyzing static graphs is useful, doing so

completely disregards the dynamics occurring over the graph. For example, in the case of an email

exchange network, a static graph renders two users “connected” irrespective of the number of emails

exchanged between them. This leads to severe information loss. Temporal graphs, on the other

hand, retain this information by maintaining a list of all interactions and their respective timestamps.

Therefore, temporal graphs capture richer information compared to static networks [123, 190].

Temporal motifs are one of the fundamental building blocks of temporal networks, analogous

to how static motifs are for static networks. Temporal motifs have been shown to be useful

in user behavior characterization on social and communication networks [123, 124, 128, 192],

predicting peptide binding in structural biology [163], characterizing the structure and function
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of biological networks in bioinformatics [99], monitoring energy disaggregation on electrical

grids [229], detecting fraud in financial transaction networks [86], and detecting insider threats

in an organization’s network [79, 156]. Furthermore, local motif counts have been shown to

resolve symmetries and improve expressive power of graph neural networks [31]. Similarly, local

temporal motif counts can be used as a subroutine for calculating node features in temporal graph

learning [214].

Despite such wide utility of temporal motif mining, existing software frameworks offer sub-

optimal CPU performance. This is because of the high computational complexity and irregular

memory accesses of this workload. Temporal motif mining adds a time dimension to an already

computationally and memory intensive static graph mining problem [29, 39, 40, 56, 211, 253, 280].

Furthermore, accesses to the graph structure and temporal edges incur irregular memory accesses

that negatively impact the memory system’s performance. While several acceleration techniques

have been designed to speed up static graph processing [3,11,24,87,172–174,186,208,222,236,240,

252, 278], streaming graph processing [25, 209], and static graph mining [29, 39, 40, 211, 253, 280],

no prior work targets temporal motif mining. Moreover, temporal motif mining exhibits unique

workload characteristics compared to previously studied graph problems as it processes temporal

properties along with structural constraints (the main focus of prior works).

In this work, we present Mint—a novel hardware accelerator architecture and accompanying

programming model for efficiently mining temporal motifs. To best address the challenges of

efficiently executing this irregular algorithm, the design goals of Mint are three-fold: (1) realize a

high degree of parallelism, (2) achieve high hardware utilization, and (3) improve memory system

performance. To this end, we propose a task–centric programming model that enables asynchronous

execution. The task is defined as a basic unit of computation for mining temporal motifs, e.g.,

searching for a new edge to match. The asynchronous nature of this model unlocks a high degree of

parallelism. Additionally, decoupled execution allows better hardware utilization.

Mint further proposes a new hardware accelerator to best utilize the proposed programming

model. The hardware architecture is motif-agnostic, and can be programmed to mine any arbitrary
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motif. The key features of the proposed hardware design include a hardware 1) task queue that

dispatches tasks to compute units, 2) on-chip context memory that stores the key task context

information to identify and advance the progress of an in-flight task, and 3) unique distribution of

work to different compute units that perform on-chip context updates and off-chip graph traversal to

find a new edge mapping. To further enhance the performance of this architecture, we make a key

observation that the amount of node neighborhood data used by the algorithm reduces with respect

to time. Based on this observation, we propose a novel optimization of memoizing the search index

that significantly reduces the memory traffic of Mint.

We comprehensively evaluate the performance of Mint using detailed RTL models of proposed

hardware and a C++ based cycle-accurate simulator. We compare the performance of Mint with

state-of-the-art software frameworks running on a high-end server-grade CPU and a GPU. Mint

outperforms the CPU implementations of Mackey et al. [156] and Paranjape et al. [192] by 363.1×

and 2575.9× respectively, a GPU version of Mackey et al. by 9.2×, and PRESTO [219] by

16.2×, on average. Similar to Mackey et al. [156] and Paranjape et al. [192], Mint runs an exact

mining algorithm, whereas PRESTO is an approximate mining algorithm. Using 28 nm commercial

technology library, we implement Mint to find that it consumes just 28.3 mm2 silicon area and

5.1 W.

Mint is the first work that designs a domain-specific accelerator for mining temporal motifs.

The key contributions of this work are as follows:

• Task-centric programming model that allows for massive parallelism opportunities.

• Hardware accelerator architecture that uses its data path and memory design to cater to the

unique properties of temporal motif mining.

• Search index memoization optimization that significantly reduces memory traffic.

• Mint—the first end-to-end system design for accelerating temporal motif mining that signifi-

cantly outperforms existing software baselines running on a CPU by one–to–three orders of

magnitude.
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6.1 Background

6.1.1 Real-world Applications

Temporal graphs capture a rich set of information compared to static graphs by storing dynamic

interactions in addition to the graph structure. Mining temporal motifs has shown to be effective

across several application domains including social and communication networks [123,124,128,192],

structural biology [163], bioinformatics [99], and finance [86].

In [124], the authors use temporal motifs as a tool to understand and quantify how information

flows over a social network. Crucially, they demonstrate that it cannot be captured using its static

counterparts. In financial transaction networks, certain types of temporal motifs can reveal artificial

attempts to create high transaction volumes – an indication of potential financial fraud [86]. Features

built with temporal motif distributions are shown to outperform their static counterparts in machine-

learning based network classification [259]. In [156], authors show how temporal motif mining can

be used to detect insider threats in an organization. In summary, temporal motifs are one of the most

fundamental properties (e.g., degree and centrality) computed over temporal graphs. As temporal

graphs become ubiquitous, it becomes increasingly important to mine temporal motifs efficiently.

6.1.2 Algorithmic Prior Work

Several algorithms have been proposed to mine motifs in temporal graphs. These algorithms can be

broadly classified into two categories: (a) exact algorithms [125, 156, 192], and (b) approximate

algorithms [152, 219, 264]. While exact algorithms aim to mine the precise temporal motifs in

an entire input graph, approximate algorithms sample a subset of an input graph to estimate the

number of matches in the entire graph. By limiting the amount of work, approximate algorithms

achieve better scalability by reducing both computational and memory complexities. However, they

suffer from inaccuracies in motif counts as they do not enumerate all motifs. In many scenarios,

exact algorithms are still desired. For example, (1) in financial transaction networks, identification

of cycles, a specific class of temporal motifs, indicates potentially fraudulent activity [86]; (2) in

109



organization networks, certain temporal motifs can characterize insider threats [79,156]. In such

high-risk scenarios, it is crucial to employ exact mining algorithms to enumerate all instances of

the desired motifs, instead of approximate mining. Furthermore, approximate algorithms use exact

algorithms as subroutines to process a subset of nodes/edges [152,219]. Therefore, Mint focuses on

speeding up exact temporal motif mining; it is also directly applicable to accelerate approximate

mining algorithms.

Exact algorithms can be further divided into two sub-categories: (1) pattern-specific algo-

rithms [125, 192], and (2) generic pattern-agnostic algorithms [156, 192]. While pattern-specific

algorithms achieve better efficiency by using computation catered to a specific temporal motif,

their applicability is limited. Furthermore, unlike static graph mining (e.g., GraphPi [232], Au-

toMine [160], GraphZero [159]), no automatic framework exists for temporal motif mining that

can discover optimized algorithmic schedules for arbitrary motifs. This requires designing hand-

optimized algorithms for every new motif, which is error-prone and requires non-trivial programmer

effort. Pattern-agnostic exact algorithms, on the other hand, can be used to mine any arbitrary tem-

poral motifs. In this work, we focus on optimizing a state-of-the-art pattern-agnostic exact temporal

motif mining algorithm proposed by Mackey et al. [156] that outperforms prior algorithmic works.

6.2 Why Design A New Accelerator?

This section argues the need of designing a new accelerator for accelerating the temporal motif

mining problem.

6.2.1 Essence of Optimizing This Workload

Wide applicability. Static graphs do not capture rich dynamics that occur over networks [123]. Tem-

poral networks are ubiquitous in domains ranging from communications, biological sciences, and

finance. Temporal motifs are fundamental building blocks that constitute a temporal network [123].

Therefore, counting and mining temporal motifs is one of the primary tasks in temporal network
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Figure 6.1: Performance scaling of M1 mining on different datasets (left), and CPU stall distribution
(right) for mining M1 on a representative wiki-talk dataset.

analysis [92]. As we discussed in §6.1.1, temporal motif mining is widely applicable across several

critical application domains. These include user characterization in social and communication net-

works [123, 124, 128, 192], understanding and explaining biological phenomena [163], monitoring

electrical power grids [125], and machine learning on temporal graphs [31, 214, 259]. With the

explosion of online content and digital footprint generated by social networks, temporal graphs are

getting larger and richer by the day. Therefore, designing optimization techniques for such widely

applicable primitive operations is highly desirable.

Algorithmic complexity. Let |EG| and |EM | denote the number of edges in the graph and the

motif, respectively, and k denote the expected number of edges occurring in G within the duration δ.

The worst-case algorithmic complexity of Algorithm 2 is O
(
|EG| · k|EM |−1

)
: it scales linearly with

|EG|, polynomially with k, and exponentially with |EM |. Intuitively, (i) increasing the temporal

limit δ of a motif increases the width (i.e., the number of nodes to visit in EG for each edge in

EM ) of the DFS search tree; and (ii) increasing motif size |EM | increases the depth of the DFS

search tree. Therefore, the resulting complexity increases. For example, mining a 5-edge motif

with temporal limit δ of 1 hour on the stackoverflow dataset implies |EG| = 32M, |EM | = 5, and

kavg ≈ 1500, leading to unreasonably high complexity.
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6.2.2 Workload Characterization and Optimization Opportunities

To understand the limitations of running existing temporal motif mining software on a commercial

CPU, Fig. 6.1 shows its performance scaling and stall distribution. The figure shows the runtime

of mining M1 on different datasets, normalized to a single–thread performance. The figure shows

that the performance scaling saturates beyond 8–32 threads. For small datasets, the performance

degrades by adding more threads as threading overhead dominates the execution time.

To better understand this trend, Fig. 6.1 (right) shows the stall distribution for mining M1 on

a representative wiki-talk dataset, based on the CPI stack methodology [71]. For this experiment,

we use a 32-thread configuration with three levels of cache hierarchy, 2 MB LLC slice/core. This

distribution shows that the CPU spends 72.5% and 22.7% of the execution time stalled on DRAM

and branch mispredictions. The DRAM stall is due to two reasons: irregular memory accesses to

access graph structure and neighborhood filter operations that waste memory bandwidth (shown

in lines 31, 33, 35 in Algorithm 2). Furthermore, data-dependent control flow instructions in

lines 30–36 and lines 13–20 cause frequent branch mispredictions. This calls for developing new

acceleration techniques that can alleviate the memory and control-flow bottlenecks of this workload.

6.2.3 Unique Workload Characteristics

At an algorithmic level, most prior works optimizing graph algorithms [3, 7, 11, 29, 39, 40, 56,

87, 172, 186, 208, 211, 240, 253, 278, 280] work on static graphs, whereas temporal motif mining

operates on a temporal graph that adds a time dimension to the problem. While streaming graph

processing accelerators [25, 209] also operate on dynamic graphs, they mostly optimize traditional

graph computations (e.g., PageRank). The reason is that streaming graphs measure properties of

the accumulated static graph over time; this is different from temporal graph analysis (our setting),

where the goal is to analyze temporal properties of a graph [217]. The edges of a temporal graph

carry time information; therefore, the edges are ordered. In fact, this notion of order is central

to temporal graph analysis. In streaming graphs, on the other hand, although the edges arrive at

different points in time, they are treated as “updates” performed to the underlying accumulated static

112



0 2

1 3

0 2

1 3

5,40 10

20

25

30

0 2

1 3

(a) Graph Processing (b) Static Graph Mining (c) Temporal Motif Mining

for u in active_vtx[]:
for v in Neigh(u):

graph_f(…)

0 2

1 2 0 2 3 0 1 3 1 3

frontier

offsets

edges

for u in Graph:
Nu = Neigh(u)
for v in Neigh(u):

Nv = Neigh(v)
Intersect(Nu,Nv)

1 2 0 2 3 0 1 3 1 3

1 2 0 2 3∩
1 2 ∩ 0 1 3

offset

edges

intersect
0 1 2 3vtx property

while( … ):
succ = search(…)
if succ: bookk(…)
else: backtrack(…)

temporal edges u,v,t

0 5search find(0,     )

0 5 1 4 2 3edge indx 

bookk

backtrack

map(0:A,1:B)

unmap(0:A)
... ...

Figure 6.2: Unique workload characteristics in terms of data structures and algorithms employed in
(a) graph processing, (b) static graph mining, and (c) temporal motif mining.

graph. Here, in stark contrast to temporal graph analysis, the graph properties remain unchanged

even if the order of edges is permuted.

To motivate the necessity of designing a new accelerator for temporal motif mining, this subsec-

tion points out differences between its workload characteristics and other well-studied workloads,

i.e., graph processing and static graph mining. Fig. 6.2 shows the difference between generic

pseudo-code, data structures, and computation patterns used in three algorithm categories. Graph

processing algorithms (e.g., PageRank and SSSP) typically pick a vertex from an active list, access

its neighbors using offset and edge lists, and updates vertex properties as shown in Fig. 6.2(a).

This incurs irregular data-dependent access into the offset, edge, and property lists. Graph mining

algorithms, on the other hand, typically iterate over all vertices, find vertex neighborhoods, and

compute set operations (e.g., intersection) to mine subgraphs. The unique feature of this algorithm

is the set operation computation, not present in graph processing algorithms. This has motivated the

designs of novel architectures [29, 39, 40, 56, 211, 253, 280] for accelerating static graph mining.

As discussed in §2.6.2, temporal motif counting uses temporal edge list, instead of a static

edge list. The key difference between these data structures is that the edges in a temporal edge

list are sorted by their timestamps. Therefore, unlike the edge list used in static algorithms,
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outgoing/incoming edges from the same node are not stored contiguously for temporal motif mining.

Due to this design, the edge list for temporal algorithm stores edge indices instead of neighbor

IDs. Furthermore, mining temporal motifs performs search, book-keeping, and back-tracking

(Algorithm 2), where it spends a majority of execution time fetching neighborhood and searching

for the first edge with a timestamp larger than the previously matched edge (lines 31, 33, 35 in

Algorithm 2). Unlike static subgraph mining, temporal motif mining does not employ set operations

as primitive computational blocks. Moreover, the amount of work performed by static/temporal

motif algorithm is roughly proportional to the number of matched motifs, because each match

requires a full expansion of the search tree. As shown by prior work [156], the ratio of number of

matched static to temporal motifs vary by orders of magnitude. Depending on the input graph and

motif, this ratio can be significantly higher or lower than 1. Therefore, the amount of work in static

and temporal motif mining algorithms can be vastly different. Due to the unique layout of data

structures and computation patterns in temporal motif mining that lead to significantly different

amounts of algorithmic work, it cannot be readily accelerated using prior techniques, which calls

for designing a new accelerator for this problem.

6.3 Task–Centric Programming Model

Motivated by the workload characteristics of temporal motif mining (§6.2.2), this section presents

a novel task–centric programming model. The goals of this model are two-fold: (a) enable

asynchronous execution to unlock massive parallelism and improve hardware utilization, and (b)

reduce off-chip memory traffic.

6.3.1 Task: A Unit of Computation

A task is referred to as a single unit of computation used in temporal motif mining. Algorithm 2

performs three unique types of computations: 1) search: find the next edge to map, 2) book-

keeping: update key metadata information when a valid edge is found, and 3) backtrack: void the
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last mapped edge in metadata structures if no valid match is found. To capture this algorithmic

behavior, we propose to represent these three functions as tasks.

Temporal motifs are mined using search tree expansion. Tasks that initiate the mining of a motif

(that we call root tasks) are generated by matching the first motif edge with different temporal graph

edges in chronological order. To expand the search trees further, subsequent tasks are generated by

their parent tasks based on the outcome computation. For example, a search task would generate

either a book-keeping or a backtracking task based on whether a matching edge is found or not.

Fig. 6.3(a) shows the parent-child relationship between different task types. This allows a natural,

incremental flow of task information from parents to children. A task terminates upon its completion.

Upon termination, a child task is spawned if additional work is needed to traverse the search tree.

The task generation stops once the whole search tree has been explored, and a new root task is

generated.
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6.3.2 Task Context

Each parent task communicates its progress to its child tasks to continue the mining process. We

propose to capture this information in terms of a task context. A task context includes (a) task

type, (b) last matched motif edge index (eM ), (c) last matched input edge index (eG), (d) a mapping

of graph nodes to motif nodes (g2mMap[]) and vice versa (h2gMap[]), (e) a stack of mapped

temporal edge indices (eStack), and (f) initial timestamp (firstEdgeT ime). A context stores

minimal information required to traverse the search tree. Therefore, a task context enables execution

decoupling between the parent and child tasks.

Memory requirement. The memory requirement of a task context is low. The task type, edge

IDs, and temporal information are all integers, and can be stored with O(1) memory complexity.

The node maps and the edge stack, on the other hand, grow linearly with the number of edges

in input temporal motifs (i.e., memory complexity O(|EM |). As shown by prior algorithmic

works [125, 152, 156, 192, 219, 264], a practical temporal motif size in real-world applications is

up to eight edges. Using this conservative estimation, the memory requirement of a task context is

178 B. This negligible memory requirement allows several task contexts to be stored on-chip and

accessed at low latency in an accelerator.

6.3.3 A Walk–Through Example

Fig. 6.3(b-d) demonstrate a walk-through example of the proposed programming model. Fig. 6.3(b)

shows an example input graph, temporal motif, and their temporal edge lists. Fig. 6.3(c) shows the

expanded search trees to mine the input motif. Note that each node of these trees maps one edge in

the graph to a motif edge.

Fig. 6.3(d) expands the left-most search tree to explain how the programming model works. As

discussed in §6.3.1, the root task automatically maps edges in the graph to the first motif edge in

chronological order. Therefore, the first task performs book-keeping to map eM = a to eG = 0. As

shown in the simplified task context, graph nodes 0 and 1 are mapped to motif nodes A and B using

g2hNodes[] and h2gNodes[]. The matched graph edge eG = 0 is pushed to the stack. Additionally,
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class TaskContextType {

public:
// define helper functions

private:
bool _busy = false;
TaskType _type;
int _eG = -1, _eM = -1;
MapType _h2gMap, _g2hMap;
StackType _eStack;
int _firstEdgeTime = -1;

};

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

int TemporalMotifMining(…) {
int num_matches = 0;
TaskQuqueType t_queue;

while(true) {  // parallelize search trees
if(t_queue.empty() && eG==n_graph_edges())

break;
TaskType task = t_queue.dequeue();
task.process(&num_matches); // SR, BK, BT
t_queue.enqueue(task.child_task()); 

// SR->BK/BT, BK/BT->SR
} 
return num_matches;

}

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

(a) Task context class (b) Task-centric temporal motif mining

Figure 6.4: Task–centric temporal motif mining.

eG, eM , and firstEdgeT ime are also updated (not shown due to limited space).

This book-keeping task spawns a search task that finds the next edge to map to eM = b. Using

the graph structure and temporal information, this step finds eG = 1 and spawns a book-keeping

task to update the task context. This book-keeping task extends the context by mapping graph nodes

2 to motif node C as well as pushing eG = 1 to the stack. This process continues until either a full

motif is mined or if the search task cannot find any edge to map. Fig. 6.3(c) shows that there is

no dependency between traversing different search trees, which results in traversing the different

search trees in parallel asynchronously. Furthermore, in the proposed programming model, a task

context is the only information necessary to advance the search. This naturally allows asynchronous,

parallel task execution. In sum, the proposed programming model with the right hardware design

can achieve high throughput.

6.3.4 Code Transformation

Fig. 6.4 shows the conversion of temporal motif mining code from an edge-centric to task–centric

programming model. To achieve this, a programmer has to define the TaskContextType class

(Fig. 6.4(a)). This includes memory allocation for context information, and helper functions to

update the context. Additionally, the programmer needs to convert the main procedure used in the

core algorithm. Lines 6.4–12 in Fig. 6.4(b) show these changes. The main data structure is the

task queue. Because search trees can be traversed in parallel, several worker threads can dequeue
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pending tasks from, and enqueue new tasks back to the queue for several tree expansions. The

task.process() function executes one of three tasks: search, book-keeping, and backtracking.

If a leaf node of the search tree successfully finds a match, num matches is incremented. As

presented in §6.3.3, traversing different search trees are independent of each other. Because this is

a generic algorithm that can be used to mine any arbitrary temporal motif in any input temporal

graph, the programmer effort modifying this code can be easily amortized over several executions.

6.4 Accelerator Architecture

To best utilize the proposed programming model, this section proposes a novel hardware accelerator

architecture.

6.4.1 Design Overview

Fig. 6.5 shows the hardware accelerator design of Mint. It contains four memory structures, i.e.,

task queue, target motif, context memory, and on-chip caches, and two computation blocks, i.e.,

context manager and search unit. The task queue is a hardware FIFO queue that queues root tasks

(§6.3.1). This root task is offloaded directly to the context manager with a book-keeping task to
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initialize the search tree expansion. The target motif, programmed by the host CPU, stores the motif

being mined, making Mint a generic and motif-agnostic temporal motif mining hardware design.

The context memory stores metadata information to keep track of task progress. This memory is

updated by the context manager during the book-keeping/backtracking phase. The search unit, on

the other hand, reads from this context memory to mine a graph edge. Finally, the on-chip caches

are used to cache the graph structure and temporal edge list data to reduce the memory latency of

the search unit. The on-chip context manager only updates the contexts of in-flight tasks, and does

not communicate with DRAM.

As detailed in §6.3, a task can have three types: search, book-keeping, and backtracking. The

context manager executes book-keeping and backtrack tasks. The search unit, on the other hand,

is solely responsible for the search task. The search unit is further divided into blocks: the (1)

dispatcher, and (2) search engine. The dispatcher reads an updated context, and dispatches work

to the search engine. The search engine, in turn, consumes this task, and mines a graph edge to

match a temporal motif edge. Upon completion of a search task, the search engine offloads either a

book-keeping or backtracking task to the context manager for updating the task context, depending

on the success or failure of the search.

The context manager only performs on-chip accesses to update context memory. These accesses

take a single cycle. On the other hand, the search engine fetches data from DRAM, which takes

multiple cycles. While some part of this latency is reduced by on-chip caches, multiple search units

are necessary to exploit memory-level parallelism. Therefore, Mint employs several search engines

that work on independent search tasks in parallel. To match the throughput of search engines,

several context managers and memory instances are also used. While it is possible to use a fully

asynchronous programming model, where any compute engine can pick up any pending task from

the queue, this requires costly on-chip crossbars and routing logic, and a multi-ported task queue to

enable an architecture with a large number of compute units. To simplify this microarchitectural

design and routing logic, Mint’s context manager, context memory, dispatcher, and search engine

work in tandem to traverse a search tree. While this architecture also allows an asynchronous
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task execution model, limiting the location of task offload greatly simplifies the design parameters

and saves silicon area/power by avoiding costly routing logic. This, however, does not sacrifice

performance because each context memory instance is busy when the assigned search engine mines

an edge. This claim is further verified by the high bandwidth utilization of Mint (§6.7), showing that

a fully flexible all–to–all connection between context managers and search engines is unnecessary.

6.4.2 Hardware Component Design Details

Target motif memory. This is a small register file that holds the target motif. For each temporal

motif edge, it stores the source and destination IDs, and one delta time for an entire motif. Because

the motif only has an edge ordering, a simple register file design is sufficient, where it is possible to

use the chronological edge number eM as an index. Prior works mine motifs with up to eight edges.

Therefore, Mint supports temporal motifs of up to eight edges.

Task queue. The task queue is used to store and offload root book-keeping tasks. Fig. 6.5(b)

shows the fields in each entry. Each queue entry stores a root task packet that contains a book-

keeping task with additional information about mapping the first motif edge Medge with different

graph edges Gedge in chronological order as shown in §6.3.1. Therefore, each task queue entry

stores the graph edge index eG. Using eG, Mint compute units can obtain source/destination graph

nodes and edge timestamps from DRAM. Task queue initiates a search tree traversal by offloading a

book-keeping task to the context manager. After this, a context manager works with a search unit to

expand the rest of the search tree without communicating back to the queue.

Context memory. Fig.6.5(c) shows the context memory design, where each instance stores task

context information. This includes a set of registers, a stack, and a Content Addressable Memory

(CAM). Context registers store the task status (i.e., busy or available), indices of the last mapped

edge (eM and eG), and the timestamp of the last mapped graph edge. The stack eStack stores

indices of previously mapped edges. The stack is used by the context manager for backtracking.

The CAM memory stores the node mapping information, which mimics g2mMap[] and h2gMap[]

in hardware. The design decision of using a CAM is to quickly search which motif node is mapped
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to which graph node, and vice versa. Additionally, the CAM also stores the number of times a graph

node is mapped (eCount in Algorithm 2).

On-chip cache. This is a standard multi-bank, multi-port set associative SRAM cache that

reduces the latency of search by caching the graph structure and temporal information.

Context manager. The context manager updates the context memory while performing book-

keeping or backtracking. As shown in Fig. 6.5(d), it accepts task packets either from the queue

(only the root task) or the search engine (SE) ( 1 ), and updates specific parts of context memory

based on the task type ( 2 ). For book-keeping, the manager expands a context for a newly matched

edge that includes pushing an edge index to eStack, expanding the node mapping CAM, and

incrementing their connection counts. It also updates eG, eM , and time registers to reflect the state

of the most recent search. For backtracking, a context manager pops an entry from the stack, voids

node mappings, and updates edge index and time registers to invalidate the last edge mapping.

Search unit dispatcher. After the context memory is updated, the dispatcher reads this context

and offloads a search task to the search engine. As shown in Fig. 6.5(e), the dispatcher first reads an

updated motif edge index (eM ), and reads edge information from the target motif ( 2 - 3 ). Using

this information, the dispatcher reads context memory ( 4 - 5 ) and finds the timestamp of the

last mapped graph edge, and node IDs in the graph that are mapped to source and/or destination

node IDs of the temporal edge that the search engine will mine next. Using this information, the

dispatcher offloads a search task packet to a search engine ( 6 ).

Search engine. A search engine performs a two-phase search in an attempt to match a motif

edge to a graph edge. The first phase finds a set of graph edge indices that might map to a motif

edge, and the second phase finds an exact edge. Search phase 1 (Fig. 6.5(f)) accepts a search task

from the dispatcher ( 1 ) that contains source/destination IDs of the motif edge being mined and

previously mapped graph node IDs (if any). Using these graph node IDs, the search engine fetches

its outgoing/incoming edge indices ( 2 - 3 ) (similar to lines 30–37 in Algorithm 2). Additionally,

it filters edge indices to find all edges with timestamps after the last mapped graph edge. This is

simply done by finding a subset of neighbor edge indices greater than eG read from the context
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memory. In contrast to software that employs binary search, Mint employs linear search as it is

possible to efficiently perform this operation in hardware by streaming edge index cache lines using

a series of comparators in parallel. These filtered edge indices are then processed in the second

search phase ( 4 ).

Fig. 6.5(g) shows the second search phase that finds an exact edge to map. Using filtered edge

indices from phase 1 ( 1 ), this phase first fetches temporal edges from memory ( 2 – 3 ). These

edges are examined for both structural and temporal constraints by reading the context information

( 4 ) to find the first valid edge that matches a motif edge. Resolving structural constraints includes

ensuring that either the new graph nodes are not mapped earlier, or mapped to the same nodes

in the motif that we are trying to match. Resolving temporal constraints includes checking edge

timestamps against max edge time for the motif being mined, to verify the delta-time requirement.

If either of these constraints are violated, a graph edge is discarded and the search engine examines

the next graph edge. Based on whether a valid edge is found or not ( 5 ), the search engine offloads

either a book-keeping or a backtracking task back to the context manager ( 6 ).

Crossbar. In this architecture, there is only one crossbar that resides between the task queue and

all context managers. Because this is a one–to–all connection, there is no arbitration needed that

further reduces area and power. Each search engine only serves its paired context memory because

a context memory will not generate a new search task until the search engine returns the result

of the previous search tree expansion. Therefore all connections within a set of context memory,

search engine, dispatcher, and context manager are local, eliminating the need for convoluted NoCs

or crossbars.

6.5 Design Optimizations

This section discusses a novel design optimization to reduce the memory requirement of phase 1

search. Additionally, we briefly discuss two standard optimizations that we tried that did not result

in fruitful performance improvement.
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Figure 6.6: Reduction in the neighborhood data utilization for two sampled nodes while mining M1
on wiki-talk and stackoverflow. The x-axis represents the progress of an algorithm.

6.5.1 Search Index Memoization

The goal of this optimization is to reduce the memory traffic in search phase 1 by fetching mostly

useful data. As detailed in §6.4.2, the first phase of search fetches outgoing/incoming neighbors

of a node, and filters them based on the current eG. Lines 31, 33, 35 shows this filter operation in

Algorithm 2. To better understand the behavior of this operation, Fig. 6.6 shows the utilization of

neighborhood data with respect to time. Intuitively, due to chronological order of mining edges,

as the algorithm progresses, the resulting filtered edges have higher timestamps. Because node

neighborhoods store edge indices in increasing time fashion, the neighborhood utilization decreases

with respect to time. Notably, this is not a problem in the software implementation [156] as it

employs binary search. This results in wasted DRAM bandwidth and on-chip cache resources.

To prevent futile data fetches, we propose a novel optimization to memoize the search result. For

each node, we memoize the resulting index of the last search. Because search is performed in a

chronological order, it is guaranteed that the edges discarded in any search operation will never be

used in its subsequent search operations. We use two data structures for memoizing the previous

search result for incoming and outgoing neighborhoods. Because the amount of memoization

memory grows linearly with the number of graph nodes, Mint stores these data structures in DRAM.

Fig. 6.7 presents this optimization with an example. Suppose that an outgoing neighborhood of

node 3 is accessed to expand the blue tree nodes (eG = 15, 18). The outgoing neighborhood of node
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current eG = 18 and erootG = 13, and (c) reduced search operation computation while expanding the
blue node in three m due to memoization.

3 contains 12 edges with indices 0− 47 (shown in pink array). The first time that the search tree

labeled n accesses outgoing neighbors of node 3, it fetches the entire neighborhood and searches

for data elements greater than eG = 18. The proposed optimization remembers the index of the

first edge that occurs after the eG = 13 of the root node (last edge idx(3) = 6). The next time that

search tree m accesses outgoing neighbors of node 3, it only fetches all neighbors after index 6.

This results in saving 5 unnecessary data fetches, and overall reduction in memory traffic.

The reason behind using an eG of the root node for memoization is that all edges searched in

any tree is guaranteed to have higher timestamps compared to the root nodes’ edges from previous

trees. However, as we expand search trees, there is no relation between the edge timestamps of

non-root nodes in different trees. For example, Fig. 6.7 shows that outgoing neighborhood of node

3 is accessed by eG = 18 in the earlier tree and eG = 15 in the latter tree. Therefore, memoizing the

index of edges greater than eG = 18 for search tree n would result in incorrect result as it would

miss an edge index 17 while expanding the search tree m.
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Figure 6.8: Temporal motifs used for evaluation.

6.5.2 What Didn’t Work?

In addition to this novel optimization, we try two other standard optimizations employed by prior

graph accelerators: (a) task coalescing, and (b) prefetching. These optimizations, however, did not

yield reasonable performance improvements. First, task coalescing attempts to reduce the amount of

memory traffic by coalescing phase 1 search tasks that access the same node neighborhoods. While

in theory it reduces the number of memory accesses, its performance is very close to a non-task

coalescing baseline because the cache lines only need to access DRAM once, and subsequent

tasks can access this data from cache. Second, we attempted neighborhood prefetching for phase 1

and phase 2 of search. However, a detailed microarchitectural analysis of Mint shows that search

engines are waiting for DRAM accesses for more than 98% of time and utilize more than 60% of

peak DRAM bandwidth. Adding prefetching hurts performance because of high bandwidth demand

and cache pollution. Therefore, Mint does not implement these optimizations.

6.6 Evaluation Methodology

6.6.1 Algorithms and Datasets

Algorithms. As discussed in §6.1.2, we use a generic, exact temporal motif mining algorithm for

our study. Similar to prior works [156,192], we mine four unique motifs (M1-M4) from three to five

nodes in size (Fig. 6.8) with δ=1 hour. Due to long simulation times and limited space, we limit our

evaluation to these motifs. However, Mint is a generic accelerator, and can be used out-of-the-box

to mine any motif.
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Graph #Vertices #Temporal Size Time span
Edges (MB) (days)

email-eu (em) 986 332.3k 7.6 808
mathoverflow (mo) 24.8k 506.5k 12.0 2350

ask-ubuntu (ub) 159.3k 964.4k 24.5 2613
superuser (su) 194.1k 1.4M 36.0 2773
wiki-talk (wt) 1.1M 7.8M 196.7 2320

stackoverflow (so) 2.6M 36.2M 1493.0 2774

Table 6.1: Temporal graph data sets used for evaluation.

Datasets. Similar to prior works [156, 192], we use six real-world temporal graph datasets

for evaluation as shown in Table 6.1 selected from SNAP [139]. These datasets are diverse in

terms of their sizes from small (email-eu) to large (stackoverflow), and connectivity. email-eu is

an email-exchange network between users at a large European research institute. mathoverflow,

ask-ubuntu, superuser, and stackoverflow are interaction networks between users on Math Overflow,

Ask Ubuntu, Super User, and Stack Overflow, in terms of comments, questions, and answers.

wiki-talk is a user-editing network of pages on Wikipedia.

6.6.2 Baseline Hardware Platforms

To run the software baselines, we use a dual-socket server with two AMD EPYC 7742 processors,

each with 64 physical cores (128 SMT threads). The aggregate Last Level Cache (LLC) size on

each CPU is 256MB. The main memory in the system is 8-channel DDR4-3200 with a 1.5TB

capacity. As shown in §6.2.2, the performance of temporal motif mining does not scale linearly

with the number of threads. For each workload, we sweep the number of threads from 1 to 256,

and choose the best-performing configuration for comparison. In addition to the CPU baseline, we

compare the performance of Mint with an NVIDIA GeForce RTX 2080 Ti GPU.

6.6.3 Simulation Infrastructure

Table 6.2 shows the system configuration of Mint. It employs one task queue, and 512 context

managers, search engines and context memory instances as detailed in §6.4.1. We use a 64-bank 64

KB on-chip SRAM cache (4 MB total), and 8-channel DDR4-3200 DRAM (same as CPU baseline).

To accurately estimate the performance of Mint, we implement a detailed two-phase simulation
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Component Modeled Parameters
Context Manager 512× context manager instances that updates context memory

Search Unit 512× dispatchers, 512× two-phase search engines
Task Queue 1× queue, 16-entry, 4 B memory per entry,

1 cycle task dequeue latency
Context Memory 512× context instances, each instance has metadata registers,

edge stack, and node connectivity CAM, 2 cycle access latency
On-chip Cache 64× cache banks of 64 KB SRAM cache (4 MB total),

4-way set associative, 2 cache ports per bank, 64 B block size,
32 MSHR per bank, 2 cycle access latency

DRAM 8-channel DDR4-3200, 204.8 GB/s peak bandwidth

Table 6.2: Mint system configuration.

methodology. First, we model all hardware components (except caches) using System Verilog

HDL. We synthesize this design using a commercial 28 nm technology library using the Synopsys

Design Compiler. We use Synopsys PrimeTime for vector-based power estimation. Using detailed

post-synthesis RTL simulations, we extract the critical path delay of our circuits and set Mint clock

frequency at 1.6 GHz. Additionally, we collect the power and area numbers using RTL. We use

CACTI [175] to estimate the performance/power/area of SRAM–based caches.

Second, to estimate end-to-end performance, we implement a cycle-accurate C++ simulator. This

simulator faithfully models all system components, their RTL–based latencies, and their interactions.

Several microarchitectural events are modeled in detail, including task queue dequeue, and stalls

due to cache port contention, structural hazards at search engine, Miss Status Handling Registers

(MSHRs) of cache, and memory controller. To model DRAM, we use Ramulator [118]. We verify

simulator functionality by matching its compute and memory traces with an instrumented software

baseline ensuring no events are missed.

6.6.4 State-of-the-art Baselines

Mackey et al. [156] CPU. This is a state-of-the-art generic temporal motif mining algorithm

uses a DFS-based search tree traversal. We convert their code into a task–centric multi-threaded

implementation (similar to proposed programming model) using work stealing OpenMP threads.

Mackey et al. [156] CPU w/ Memoization. This baseline implements our proposed search

index memoization optimization in software on a Mackey et al. CPU baseline. Memoized indices

are stored in a dedicated array in main memory. Because the indices are memoized based on the eG
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of a root node (§6.5.1), two search operations are triggered—one to find the memoization index,

and the other to find eG of the current node. All search operations use binary search.

Paranjape et al. [192]. This is an exact mining algorithm that first mines static subgraphs, and

then resolves temporal constraints using a dynamic programming problem.

PRESTO [219]. PRESTO proposes a scalable edge sampling technique for approximate mining.

It uses Mackey et al. [156]’s algorithm to mine motifs on a subset of edges.

Mackey et al. [156] GPU. This is a CUDA implementation of a state-of-the-art generic temporal

motif mining algorithm running on an NVIDIA GPU. This baseline uses an in-house implementation

as no open-source implementation of Mackey et al.’s algorithm exists.

Static graph mining accelerator FlexMiner [40]. Although FlexMiner does not support

temporal motif mining, we divide this workload into two phases similar to a baseline algorithm

presented in Paranjape et al. [192]: (1) mine static subgraphs by ignoring temporal information, and

(2) use results of the first phase to mine temporal motifs by resolving temporal constraints. We use

a state-of-the-art graph mining framework GraphPi [232] to find the performance of phase 1 on a

CPU baseline (§6.6.2). To find FlexMiner performance, we reduce the GraphPi execution time by

the highest speedup reported in FlexMiner (i.e., 40×). We compare this FlexMiner performance to

Mint by conservatively ignoring the execution time of phase 2, which provides a performance upper

bound for this baseline.

6.7 Results

6.7.1 Performance Analysis

Benefit of search index memoization. To find the performance benefit of search index memoiza-

tion, Fig. 6.9 compares the performance of Mint with and without applying this optimization with

Mackey et al. [156]. This figure shows that, on average, the proposed optimization improves the

performance of Mint from 91.6× to 363.1×. On average, the proposed optimization improves the

performance of Mint by 4×. The reason behind this performance improvement is the reduction in

128



M1  M2  M3  M4
email-eu

M1  M2  M3  M4
mathoverflow

M1  M2  M3  M4
ask-ubuntu

M1  M2  M3  M4
superuser

M1  M2  M3  M4
wiki-talk

M1  M2  M3  M4
stackoverflow

Geomean

Workload

0

200

400

600

800

Sp
ee

du
p 

(x
) 

vs
M

ac
ke

y 
et

 a
l.

91
.6

36
3.

1

w/o search index memoization w/ search index memoization

0

10

20

30

40

Sp
ee

du
p 

(x
) 

vs
no

 o
pt

im
iz

at
io

n

406.7

4.0

speedup due to search index memoization optimization

Figure 6.9: Performance improvement of Mint compared to Mackey et al. [156] and average
memory bandwidth utilization, with and without the search index memoization optimization.
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memory traffic. Our evaluation shows that this optimization reduces the memory traffic by 2.8×, on

average (up to 30.6× for mining M2 on stackoverflow).

This effect is more prominent for large datasets (wiki-talk and stackoverflow) because they access

large neighborhood sets, and filter operations lead to severe under-utilization of memory resources

(Fig. 6.6). Our further investigation shows that the sizes of the largest 10% of vertex neighborhoods,

which benefit the most from search index memoization, in wiki-talk dataset are 14.9×–38.6× larger

than the four smaller datasets, on average. Similarly, the largest 10% of vertex neighborhoods

in stackoverflow are 2.6×–6.7× larger than the four smaller datasets, on average. Therefore,

search index memoization is the most effective in large datasets that significantly reduces futile

neighborhood fetches, improving overall performance. Large vertex neighborhoods in wiki-talk and

stackoverflow datasets further underscore the value of this optimization.

Comparison with state-of-the-art CPU baselines. Fig. 6.10 compares the performance of

Mint with four state-of-the-art software frameworks running on CPU. Mint outperforms Mackey et

al. [156] by 363.1×, on average. Note that both baseline and Mint use a task–centric programming
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model. The high performance improvement of Mint over Mackey et al. is attributed to (a) converting

task context updates to on-chip accesses, (b) domain-specific architecture design that efficiently

executes the algorithm, and (d) search index memoization that significantly reduces memory

traffic. The second bar (light blue color) shows the performance improvement of Mint over a

software baseline that implements the search index memoization optimization. While search index

memoization reduces the amount of work in the search phase, it comes at the cost of performing

and additional search in software. As shown in Fig. 6.10, most of the performance benefit of

proposed optimization in software is offset by the overhead of an additional search. The figure

shows that Mint outperforms a CPU baseline that implements search index memoization by 305.9×,

on average.

Mint also outperforms Paranjape et al. [192] by 2575.9×, on average. As shown in prior

work [156], Paranjape et al. suffers redundant computation when the number of static subgraphs

are higher than temporal motifs as it mines static subgraphs before resolving temporal constraints.

Additionally, Mint benefits from an optimized programming model and domain-specific hardware

design. The open-source implementation [191] of Paranjape et al. does not support M3 and M4;

we limit our comparison to M1 and M2. PRESTO [219] is an approximate algorithm that samples

temporal edges and runs exact mining algorithm as Mackey et al. on these edges. The goal of

PRESTO is to achieve better scalability by mining motifs on a subset of edges. Fig. 6.10 shows

that Mint, despite using an exact algorithm, outperforms PRESTO by 16.2×, on average. Because

PRESTO is an approximate algorithm, its resulting motif counts are mostly within 10% error of the

actual value, whereas Mint mines all motifs. Because PRESTO also employs the same algorithm

for mining motifs on a subset of edges, Mint can also accelerate PRESTO. This results shows the

value of hardware acceleration that can achieve both better quality results (by running an exact

algorithm) and superior performance by designing its data path and memory subsystem to cater to

an application’s unique workload characteristics.

Comparison with a GPU baseline. Fig. 6.10 shows that Mint significantly outperforms a

GPU implementation of Mackey et al. [156] algorithm by 9.2×, on average. As discussed in
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Figure 6.11: Performance of a static mining accelerator FlexMiner [40] and Mint compared to
Mackey et al. The secondary y-axis shows the ratio between static to temporal motif counts. Results
averaged over all datasets.

§6.2.2, the temporal motif mining workload is bound by irregular memory accesses and control-flow

instructions. While GPU improves the performance of this workload over a CPU baseline by

offering massive parallelism and exploiting higher memory bandwidth, the GPU performance is

limited due to the highly irregular nature of this workload leading to frequent thread divergence and

non-coalesced memory accesses. Mint, on the other hand, further improves the performance of this

workload by optimizing its data path to address unique workload characteristics of temporal motif

mining. Furthermore, the peak memory bandwidth of a GPU is more than 3× the peak bandwidth

of Mint. Due to high memory bandwidth utilization of this workload (§6.7.2), Mint can offer even

higher speedup than reported compared to a GPU in an iso-bandwidth comparison. Moreover, Mint

operates at 50× lower power (§6.7.3) than GPU that uses 250 W.

Comparison with a static graph mining accelerator. We further compare the performance of

Mint with a static mining accelerator FlexMiner [40]. Fig. 6.11 shows that even by ignoring the

temporal constraint resolution process, Mint achieves an order of magnitude better performance, on

average, compared to FlexMiner. The figure further shows that the number of mined static graphs

are significantly higher than the temporal motifs, which results in much more work for the static

mining accelerator to perform. Temporal motif mining effectively prunes invalid subgraphs that

do not meet temporal constraints, leading to significantly less work. This result underscores the

value of designing a temporal motif mining accelerator despite the availability of static mining
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Figure 6.12: Sensitivity of performance (normalized to 1 processing engine 1 MB cache), bandwidth,
and cache hit rate for mining M1 on a representative wiki-talk dataset.

accelerators [29, 39, 40, 56, 211, 253, 280].

6.7.2 Sensitivity Analysis

To demonstrate the performance sensitivity of Mint, and the benefit of employing different hardware

components, Fig. 6.12 shows how the performance, average memory bandwidth utilization, and

cache hit rate changes for varying number of processing engines/PEs (a PE constitutes a context

manager, a context memory instance, a dispatcher, and a search engine) and cache sizes for a

representative workload of M1 mining on wiki-talk. The performance is normalized to a baseline

configuration of 1 PE and 1 MB cache. The performance of Mint scales with the increase in compute

resources and cache size. Specifically, by increasing the number of PEs by 1024× and cache size

by 4×, the performance scales by 75.7×.

Adding compute resources enables exploiting more parallelism, and a larger cache size reduces

the memory latency of the search phase. Scaling compute and memory resources also scales
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Figure 6.13: Layout of one processing engine (PE) and area/power measurements of an entire Mint
design.

the memory bandwidth utilization. With fewer PEs, the workload is bound by the availability

of compute resources that cannot saturate memory bandwidth. Adding compute resources shifts

the workload from being compute bound to memory bound. Our evaluation shows that with 256

PEs, the workload slowly starts shifting from being compute to memory bound. With more PEs,

Mint hardware expands multiple search trees in parallel, reducing the cache hit rate from 83.4% to

60%. However, increased memory and compute parallelism still improves overall performance of

the workload. Additionally, with high concurrency, the workload starts experiencing cache port

contention that constitutes 0.5% stall cycles for 1024 PEs, 4 MB cache.

6.7.3 Area and Power Analysis

Fig. 6.13 shows the layout of one PE, and the area and power consumption measurements of a

full Mint design based on post-synthesis results on a 28 nm technology node. The power results

includes both leakage and dynamic power consumption. The dynamic power is averaged over all

workloads. The table shows that Mint consumes an overall area of 28.3 mm2 and 5.1 W power. A

majority of area and power is consumed in on-chip SRAM caches that reduce the memory latency

of search engines. As shown in Fig. 6.12, caches significantly improve the performance of Mint,

therefore, their high share of area and power is justified. The cache consumes approximately equal

amounts of power in dynamic and leakage energies. This is because of the multi-banked cache
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design, where all banks consume leakage power, whereas only one bank consumes dynamic power

for each cache access. This multi-banked design, however, is desirable to reduce the performance

hit due to cache contention.

6.8 Related Work

Mint is the first work that designs a novel accelerator architecture for mining temporal motifs.

Below, we compare Mint with the closest related works.

Software frameworks for static graph mining. Several software frameworks implement

efficient graph mining algorithms on CPUs and GPUs. Early works [256] enumerate all possible

subgraphs and then rule out invalid embeddings using isomorphism tests. Recent works [42, 104,

105,159,160,232] avoid the expensive isomorphism tests and prune out redundant subgraphs. Other

works reduce the memory consumption of intermediate subgraphs either by relying on SSD [265]

or leveraging algorithmic techniques [60]. Approximate algorithms [101, 204, 212] aim to achieve

better scalability on large graphs by mining subgraphs on a subset of edges. These frameworks,

however, work for mining subgraphs in static graph inputs, and do not support temporal motif

mining.

Software frameworks for temporal motif mining. As discussed in §6.1.2, several software

frameworks have been designed to optimize temporal motif mining. Among these, a few works [125,

156, 192] propose exact algorithms, while others [152, 219, 264] achieve better scalability by

sampling and mining only a subset of edges. Mint further optimizes performance of these software

frameworks by proposing a hardware accelerator. As shown in §6.7, Mint significantly outperforms

state-of-the-art software baselines by 16–2576×.

Hardware acceleration for graph processing. Numerous acceleration techniques have been

proposed to speed up graph processing on CPUs [11,24,174,252], GPUs [222], and using dedicated

accelerators [2, 3, 25, 87, 172, 173, 186, 208, 209, 236, 240, 278]. These works mostly focus on

optimizing the irregular memory accesses of graph processing workloads. As discussed in §6.2.3,
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the memory access and computation patterns of temporal motif mining are unique (e.g., search phase

is not present in traditional graph workloads). Furthermore, a few prior accelerators [2, 208, 209]

employ asynchronous execution models. While these design philosophies seem similar to Mint on

the surface, the domain-specific nature of accelerators result in fundamental design differences. For

example, Mint uniquely employs (a) no task insertion back into the task queue, (b) unique workload

division between compute units, (c) domain-specialized context memory design, and (d) lack of

prefetching and task coalescing (§6.5.2) commonly employed in prior accelerators. Therefore, prior

optimization techniques cannot be directly applied to accelerate temporal motif mining.

Hardware acceleration for static graph mining. Recent works propose hardware acceleration

techniques for static graph mining, by either building domain-specific architectures [39, 40, 111,

211, 280] or by offloading the workload to near-data processing architectures [29, 56, 253]. While

temporal motif mining is analogous to static subgraph mining, as shown in §6.2.3, their computation

patterns are distinct. While acceleration techniques for static subgraph mining focus on optimizing

set operations, temporal motif mining does not employ any set computation. Furthermore, Fig. 6.11

shows that using static mining accelerators to speed up temporal motif mining results in significantly

more work and sub-optimal performance. Therefore, prior static graph mining accelerators cannot

be directly used to support the intricate computation and memory access patterns of temporal motif

mining.

Hardware acceleration for matrix operations. Matrix operations (both dense and sparse) have

been heavily optimized using domain-specific accelerators [89, 189, 243, 294], GPUs [274, 283],

FPGAs [149], and TPU [110]. While these techniques optimize matrix operations, as discussed

in §2.6.2, temporal motif mining algorithms do not involve any matrix operations. In contrast, the

studied workload employs unique operations on temporal graph data (e.g., filtering temporal edge

list, discovering new graph edges based on previously matched edges, and search backtracking) that

cannot be expressed in terms of matrix operations efficiently. Therefore, prior matrix acceleration

techniques cannot optimize the workload of temporal motif mining.
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6.9 Chapter Conclusion

This work presented Mint—a novel programming model and hardware accelerator for mining

temporal motifs. The programming model divided the workload execution down in terms of three

fundamental tasks and proposed a task–centric asynchronous execution model that unlocked massive

opportunities for parallelism. We then proposed a domain-specific architecture that optimized

its data path and memory subsystem design to best accelerate temporal motif mining using the

proposed programming model. The hardware accelerator is motif and dataset-agnostic, and can be

programmed to wwmine any arbitrary temporal motif. To further improve performance, we proposed

search index memoization that significantly reduced memory traffic. Our evaluation demonstrated

that Mint significantly outperformed state-of-the-art software frameworks by 16–2576× by using

28.3 mm2 area.
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CHAPTER 7

Conclusion And Future Work

A graph is a fundamental data structure that effectively models entities and their interactions using

nodes and edges. Graphs are used to model several networks including social media, cybersecurity,

communication, citations, computational chemistry, high-energy physics, bio-informatics, and

several more. Algorithms to analyze real-world graphs extract useful information from graph data,

and enable many real-world applications. Speeding up these algorithms leads to significant impact

on many application domains, such as, improving the quality of data analytics applications, product

recommendations, and web services.

This dissertation presented a systematic hardware-software co-designed optimization study of

a breadth of graph workloads. From an algorithmic perspective, I showcased traditional graph

processing (e.g., PageRank and SSSP), random walk based graph learning (e.g., link prediction and

node classification), graph pattern mining (e.g., triangle counting), and temporal motif mining (e.g.,

cycle detection) algorithms and their unique properties. From a graph dataset point of view, I studied

both static and dynamic (specifically, temporal) graphs. On the software design front, I proposed

novel compiler analysis techniques and programming models. From a performance analysis and

hardware optimization standpoint, I showcased the designs of CPU and GPU micro-architectures,

near-data processing system, and domain-specific hardware accelerator architecture.

More specifically, first, I presented Prodigy that improved the performance of traditional graph

processing and other similar data-indirect irregular workloads. The key proposal of Prodigy was

the Data Indirection Graph (DIG) that effectively captured an algorithm’s data structure layout and
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traversal pattern. The DIG was automatically constructed in software using compiler technology,

and used in hardware for informed prefetching. Prodigy leads to more than 2.5× performance

improvement of several important memory-bound workloads. Second, I presented high-performance

CPU and GPU implementations of two important graph learning tasks on temporal graphs. My

implementation used a scalable random walk-based algorithm to learn node embeddings. I presented

an in-depth performance analysis of the graph learning tasks to find their execution bottlenecks, and

proposed several optimization opportunities based on the performance analysis insights.

Third, I analyzed the performance of graph pattern mining workloads to find that costly set

operations dominated their execution time. To accelerate this workload, I presented NDMiner—a

near data processing architecture. In addition to reducing the CPU-memory data movement, ND-

Miner also incorporated several domain-specific optimizations to further improve the application

performance. Compared to a state-of-the-art hardware accelerator, NDMiner improved the perfor-

mance of graph pattern mining workloads by 2.5×. Fourth, I presented Mint—a novel programming

model and hardware accelerator architecture for efficiently mining motifs (subgraphs) in temporal

graphs. The proposed programming model enabled an asynchronous task execution and unlocked

massive opportunities for parallelism. I then presented Mint hardware accelerator that incorporated

a data path and memory subsystem to cater to the unique workload characteristics of temporal motif

mining. Mint offers several orders of magnitude performance improvement over the state-of-the-art

software running on commercial hardware platforms.

While this dissertation takes a major step forward in optimizing a variety of graph workloads, it

certainly is not the end. Below, I detail several future research directions that I plan to work on next

as a part of my long-term vision to improve graph workload performance.

Extending Prodigy’s prefetching capabilities. Chapter 3 presented Prodigy, a hardware-

software co-design technique to improve the performance of key data-indirect irregular workloads.

More specifically, Prodigy can prefetch for two specific types of indirect memory access patterns

defined as single-valued indirection and ranged indirection. While these types of indirect memory

access patterns are prevalent across traditional graph processing, sparse matrix computation, and
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scientific computing domains, there are a few other types of data-indirect memory accesses that

Prodigy does not support. These include accesses for linked lists, various type of tree structures,

and hash joins. As a direct extension to Prodigy, I will work on designing a generic system that can

prefetch for workloads exhibiting a variety of data-indirect memory access patterns.

Optimizing streaming graph processing. In this dissertation, I presented two workload

optimization studies on static graph datasets (Chapter 3 and Chapter 5), and a benchmarking and

optimization study on temporal (a type of dynamic) graph datasets (Chapter 4 and Chapter 6).

In addition to temporal graphs, there other ways of representing dynamic graphs. For example,

streaming graphs accommodate updates to an underlying graph structures at different points in time

by adding/removing nodes and edges. There are two phases involved in streaming graph processing,

i.e., graph update and graph query execution. As the names suggest, the graph update phase updates

a graph structure by accounting for a batch of newly added/removed nodes/edges. Query execution,

on the other hand, performs a graph query accounting for the latest graph mutations. In my future

study, I will conduct a systematic optimization of streaming graph processing that includes both

graph update and query execution.

Rethinking optimizations for distributed graph processing. This dissertation mainly focused

on in-memory graphs, i.e., graphs that fit within the main memory capacity of today’s servers.

While today’s server memory can scale up to a Tera Byte (TB) in size, the sizes and complexities

of real-world graphs are also steadily rising. Furthermore, several graphs store node and/or edge

features to enrich the network information. These features contain several floating point numbers,

creating a large-scale feature matrix. Therefore, such large-scale graph structures may require 100s

of TBs to Petabyte (PB) in capacity that does not fit on one machine. As these large-scale datasets

become available, I will work on optimizing a distributed model for graph processing, where the

graph is partitioned across multiple compute nodes.

Enabling generic graph acceleration. While my work showed how to individually optimize

different types of graph workloads, another key design challenge is to design a system for generic

graph workload acceleration. I envision a system with several multi-core CPUs, GPUs, near-data
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compute fabrics, and hardware accelerators that run in tandem to accelerate various types of graph

workloads. To enable this heterogeneous compute environment, I will work on integrating various

optimization techniques together, orchestrating unique computation types onto different hardware

platforms, and managing the memory system issues.
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