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"An ounce of prevention is 
worth a pound of cure." 
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1. INTRODUCTION

In an attempt to formalize the design process for large digital 
systems, many researchers have suggested the use of computer hardware design 
languages (CHDLs)''. However, using a CHDL does not necessarily facilitate 
the design process. An ill conceived language can encumber the design 

process and fail to guide it away from design errors. Such a CHDL then 

becomes useful only as a documentation aid. It is our belief that most 
CHDLs fall into this category, and it is interesting to note that one of 

the most popular CHDLs, called ISP [Bel 71], started out as such.
The two purposes of this thesis are:
1. To develop a CHDL with sufficient scope to describe 

multiprocessing systems.
2. To specify the CHDL so that syntactically correct programs 

describe systems which have deadlock-free control 
structures (CSs).

The control problem associated with multiprocessing systems is, in 

general, quite complex, and the opportunities for creating a CS which can 

hang-up are great. Specifying the CHDL so that this pitfall can be avoided 
by staying within the bounds of the syntax, gives the user a true design 
tool which is more than just an aid for documenting the principles of 
operation of a system.

The two aims stated above are to some extent opposing. The first 
requires that the CHDL have many constructs, and the second that it have 
few (if the view is taken that restricting the language also restricts its 
ability to describe undesired objects). However, any compromise reached

"Two comprehensive guides to literature on this topic are [Fig 73] and 
[Bar 75]. A recent collection of papers can also be found in [Pro 75],
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is bound to be unsatisfactory from some viewpoint, and in our case a very 
similar situation exists to the one highlighted by Knuth in [Knu 74], con­
cerning goto-less structured programming. He points out that although 

goto-less structured programming retains completeness while enhancing the 
potential for error-free programming, some algorithms can only be realized 

in a clumsy way. By analogy, although our CHDL is in some sense complete 
and aids error-free design, some control algorithms can only be realized 
in a clumsy way.

1.1 The System Model Presumed by the CHDL

In multiprocessing where there are often several independent processes 

active simultaneously that must be coordinated and synchronized without 

being unnecessarily bound together, the most natural model for a CS is an 
asynchronous one. This is the one we have used.

The CHDL is capable of being used to design digital systems which 
conform to the following model: the system partitions into a hierarchically
organized CS and a data structure (DS). Actions in the DS are assumed to 
be representable as register-transfers. The coordination of these actions 

is accomplished by the CS. The register transfers themselves are initiated 

by request (R) signals, which issue from the CS and travel over bidirectional 
signal paths called links to the DS. Upon their completion acknowledge (A) 
signals are transmitted back along the links to the CS. To enable the CS 
to test bit values in the DS,a second type of link, called a conditional 
link, is needed. These links carry three signals; a test (T) signal that 
goes from the CS to the bit to be tested, and two result signals (1̂  and 

Iq), one of which is transmitted back along the link to the CS, depending 
on whether the bit was 1 or 0. The system model is shown in Figure 1.1.
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Figure 1.1. The System Model.
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The CHDL translates to a collection of asynchronous CS modules inter­
connected by links to form a network which constitutes the CS of the target 
system. There are ten different types of CS modules, any number of which 
can be used to form the network.

The register-transfers controlled by these networks are also described 
by the CHDL. They have the form

D <- S
where D is the name of a destination register, and S is an APL expression 
whose arguments are taken to be registers in the DS. From the standpoint of 
the CS these expressions can be regarded as functional blocks of combi­

national logic. Figure 1.2 illustrates a register-transfer in more detail.
The actual structure and design of the functional block is not specified by 
the CHDL. That is assumed to be taken care of off-line, possibly by another 
program which forms part of a CAD set-up. Such programs are discussed by 
Friedman in [Fri 67] and [Fri 69],

To describe the operation of systems conforming to this model it is 
convenient to use the undefined term "process". This is meant to be some 

activity in the target system that is initiated with a request signal and 
terminates with an acknowledge signal. The operation of any system specified 
by the CHDL can then be regarded as a process which decomposes into other less 
complex processes. These in turn decompose until finally the operation of the 
system can be viewed as a collection of atomic processes - the register- 
transfers that are coordinated by the CS. This hierarchical structuring of 
processes corresponds to the hierarchical organization of the CS. Communi­
cations over links between hierarchical levels in the CS correspond to the 
initiation and termination of processes. We shall see later that the dif­
ferent levels of control are a natural consequence of the block structured
nature of the CHDL.
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1.2 The Plan of the Thesis
This thesis is arranged as follows.
Chapter 2 introduces the ten CS modules and defines their behaviors 

using Petri net graphs. It also gives rules for interconnecting these 
graphs so that the behavior of networks of CS modules can be deduced.

Chapter 3 presents the syntax of the CHDL as a set of production 
rules, together with some terminology to enable later discussion about 

objects in the syntax.

Chapter 4 gives an interpretation of the CHDL in terms of process 
behavior, and a procedure for translating programs in the CHDL into net­

works of CS modules. These two things are related using the Petri net 
graphs of Chapter 2.

Chapter 5 illustrates the use of the CHDL by presenting the design 

of a small system. The system is a processor which executes register-to- 
register instructions. These operate on a DS of four registers and two 

multi-purpose function units. The CS is implemented as a forwarding 
algorithm to achieve instruction execution look-ahead. Such an example 

has many of the control requirements of a typical multiprocessor system. 
Thus it illustrates well the capabilities of the CHDL.

Chapter 6 discusses the scope of the CHDL. Due to the acknowledged 
scope of APL to characterize the functional aspects of the DS, the scope 
of the CHDL is examined from a CS viewpoint. An indication of its 
completeness is made, and it is concluded that the first purpose of this 
thesis has been met.

Chapter 7 introduces some additional syntactic requirements. Then 
it is proved, using a method for characterizing the behavior of networks 
of CHDL blocks, that syntactically correct CHDL programs (i.e. ones that
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satisfy the syntax of Chapter 3 plus the additional syntactic requirements) 
describe systems which have deadlock-free CSs. Computational complexity 

arguments show that checking the syntax (excluding the APL expressions of 
the register-transfers) is very simple. Thus, freedom from deadlock can 
be achieved without complicating the syntax of a CHDL or limiting its 

scope (this last point from Chapter 6). It is concluded that the second 

purpose of this thesis has been met, without resorting to a complex syntax.
Chapter 8 discusses two approaches to the implementation of the CHDL 

programs in hardware. The first, based on the asynchronous model of 
Chapter 1, discusses constructing the CS modules from logic gates and then 
constructing the functional blocks of the DS with additional logic to 
generate acknowledge signals. The second discusses a very natural 

synchronous realization, which employs a finite state machine for the CS 
(realizable as a PLA and a set of flip-flops) and a bus structured DS.

This approach is shown to overcome the drawbacks associated with requiring 
parts of the DS to generate acknowledge signals, while retaining many of 
the advantages of an asynchronous CS.

Chapter 9 mentions other applications of some of the ideas mentioned 
in this thesis and compares our approach to CHDLs with others.

Finally in Chapter 10 some concluding remarks and suggestions for

further research are made.
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2. BEHAVIORAL DESCRIPTIONS OF THE CS MODULES

In this chapter the behaviors of the CS modules are defined. (The 

actual implementation of these behaviors is not discussed until Chapter 5.) 

The behavior for each module is defined by means of a Petri net (PN) graph 
[Pet 66] [Hoi 68], and rules are given for interconnecting these behavior 
graphs so that the behavior of networks of interconnected CS modules can 
be deduced.

2.1 The Petri Net Graph

The following definition of a PN is similar to that found in [Hei 76]. 
A PN is a four-tuple <P, T, A, Mq> where

P is a non-empty set of distinctly labelled places

ÎPl>*..,Pn}
T is a non-empty set of distinctly labelled transitions

{tj • • • 51 ]i mJ
A is a relation, A c (PXT)U(TxP)
Mq is the initial marking.

A marking, M, for a PN is a function M: P->Z, where Z is the set of

non-negative integers. M(p) is referred to as the token load of the place
p or as the number of tokens on p.

PNs are conveniently represented as directed graphs. Places and
transitions are the nodes of the graph and the directed arcs show the
relation A. The graph is bipartite since each arc connects a place (or
transition) to a transition (or place). Tokens are represented as dots in
the place nodes. If p, is a place and t . is a transition and if <p.,t.>l J i J
belongs to A, then p^ is an input place of t̂  and t is an output tran­
sition of p^. Similarily, if <t,.,p/> belongs to A, t̂  is an input tran­

sition of p^ and p^ is an output place of t^.
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Figure 2.1 shows an example of a PN. For this example, the 
relation A is:

A = i<Pi^ti> ’<P4^t1> ><P2’t2>5<p5’1:2>J<p3’1:3>

<tl,p2>,<t2,p3>,<t3,p4>,<t3,pl>,<t3,p5> ^
The marking shown has value 1 for places p^, p^ and p^ and value 0 for
places p^ and p^.

So far we have defined the static properties of PNs. Next we define 
the dynamic properties of PNs. It is the dynamic quality of PNs that make 
them ideal models for asynchronous processes.

A transition in a PN is enabled if each of its input places contains 
a token. An enabled transition can fire, which transforms the marking of 

the net by removing one token from each input place of the transition and 

adding one token to each output place of the transition. Clearly, a 
sequence of transition firings, a firing sequence, causes a sequence of 
marking transformations.

The following procedure which characterizes the dynamic quality of 
a PN is called simulation.

1. Compute the set of enabled transitions (U).
2. Choose one transition t,^U.
3. Fire t.

4. Go to 1.
Consider the example of Figure 2.1. If the markings are represented 

as vectors of length 5, then the marking shown is (1,0,0,1,1) where the order 
from left to right is p^, p^, p^> p^. Simulating this simple example
generates a single cyclic firing sequence:

tl t2 fc3
( 1 , 0 , 0 , 1 , 1) -» (0 , 1 , 0 , 0 , 1) -* (0 , 0 , 1 , 00) -* (1 , 0 , 0 , 1 , 1)
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FP - 5 4 6 7

Figure 2.1. An Example PN.
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tThe notation M M 1 is meant to indicate that firing transition t trans­
forms the marking M into M'. This notation can be extended to sequences 
of transitions, leading to the following definitions:

TT 0"A marking FL is reachable from if ^ a sequence a € T* 3 FL FL
H►The forward marking class M of a marking M is the set of markings reach­

able from M.
, (J

M = Im ' C7 € T* and M M' i
—►A transition (place) is dead for the marking M if V M' € M, the transition 

(place) is disabled (does not contain a token).

A PN = <P, T, A, M > is safe if M(p) < 1  V p €  p
and V M ̂  Mo

A PN is live if V M€ M no transition (place) is dead ---- o
These last two definitions will be used later (in section 7) to 

define a deadlock-free CS.
Figure 2.2 shows how we will use PNs to model processes in digital 

systems. Processes are associated with places, and their occurrence with 
tokens in those places. In the example of Figure 2.2 the onset of process 
P is indicated by the firing of transition R. This causes a token to be 

deposited in p. The presence of a token in p indicates the occurrence 
of process P. The termination of P is indicated by the firing of A, and 
the resulting removal of the token from p.

The labels R and A for the transitions which demark the process P 
were intentionally chosen to correspond to the request and acknowledge 
signals used on the links postulated in the system model of section 1.
Now it can be seen how PNs can be used to model the behavior of digital 
processes controlled by links: the transmission of a request signal from
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Process P is 
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is Occurring

F P - 5 4 6 8

Figure 2.2. A PN Model of a Process.
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the controlling process down the controlling link corresponds to the firing 

of the transition R, and when the process (P) controlled by the link is 
completed, the transmission of the acknowledge signal up the link corre­
sponds to the firing of transition A. (The link is viewed as an output 

link by the controlling process, and an input link by process P.)

Since a single link may control a complete subsystem, the occurrence 
of a process, such as P in our example, may be interpreted as the initiation, 
running and termination of a subsystem, which itself may be composed of a 
collection of other processes. If the PN which defined the behavior of 

this collection of processes, or subsystem, were substituted for P, a 
new PN would result representing a more detailed account of the system 
behavior.

We are now in a position to define the behaviors for the ten CS 

modules.

2.2 The Source Module

The source (So) module is shown in Figure 2.3. On the left is a 
diagrammatic representation. It has one output link, which is shown as 
an input acknowledge (A) signal line and an output request (R) signal 

line. On the right is a more concise diagrammatic representation of the 

module. This time the link is represented by a single directed arc, 
directed in the direction in which the request signal travels. (This last 
convention will be used throughout the remainder of this discussion.) In 
the center is the PN graph of the So module with its initial marking. By 

simulating this PN the behavior of the module can be deduced. The occurrence 
of a request signal on the request signal line is indicated by firing 
transition R, and the occurrence of an acknowledge signal line is indicated 

by firing transition A. (In later sections subscripts are used to denote
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the link to which the signal belongs.) From the PN it can be seen that 
the module transmits a request signal initially, and then retransmits a 

request signal whenever an acknowledge signal is received. It thus acts 
as a source of requests.

2.3 The Sink Module

The sink (Si) module is shown in Figure 2.4. In operation it 
complements the So module. Whenever it receives a request signal it 
transmits an acknowledge signal. It thus acts as a sink for requests. 
Notice its PN is identical to that for the So module. However, in the 
So module the request is an output signal and the acknowledge an input 

signal. In the Si module the converse is true.

2.4 The Wye Module

The wye (W) module is shown in Figure 2.5. By simulating the PN 
it can be seen that when a request is received on link 1 (R^), requests 

are transmitted on links 2 (R2) and 3 (R̂ ) both. When an acknowledge 
signal is received on both links 2 (Â ) and 3 (Â ) (in any order) an 
acknowledge is transmitted on link 1 (A-̂ ). Thus a W module may be used 
by a process to simultaneously initiate two other processes. Only when 
both of these processes are completed (i.e. when the module has received 

acknowledge signals on links 2 and 3) is the controlling process notified 
by the transmittal of an acknowledge along link 1.

2.5 The Sequence Module
The sequence (S) module is shown in Figure 2.6. By simulating the 

PN it can be seen that when a request is received on link 1 a request is 
transmitted on link 2. When an acknowledge is received on link 2 a 
request is transmitted on link 3. Finally an acknowledge on link 3 causes
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Figure 2.3. The Source Module.

JL
Si

F P - 5 4 6 9

Figure 2.4. The Sink Module.
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an acknowledge to be transmitted on link 1. Thus the S module may be used 
by a process to initiate two processes one after the other. The controlling 
process requests on link 1 whereupon the process controlled by link 2 is 
performed. On its completion the process controlled by link 3 is performed, 
and an acknowledge is returned to the controlling process.

The temporal sequencing between the processes controlled by links 2 

and 3 is indicated in the diagrammatic representation of the module at the 
top right of Figure 2.6. Link 2 is shown with a circle at its base, indi­
cating that the process that it controls precedes in time that controlled 
by link 3. These two links are called the primary and secondary output links 
of the S module.

2.6 The Trigger Module

The trigger (T) module is shown in Figure 2.7. By simulating the PN 
it can be seen that its behavior is similar to that of the S module, except 
that control is returned to the controlling process as soon as the process 
controlled by link 2 is completed. Hence the controlling process and the 

process controlled by link 3 can overlap in time (they can both have tokens 
in their respective places). However, the controlling process can never get 
more than one occurrence ahead of process 3 (we shall adopt the convention 
of labelling processes the same as the links associated with them, unless 
otherwise indicated), as process 2 cannot be reinitiated until process 3 is 
completed.

Thus the T module implements the basic control mechanism for an 
assembly-line station platform (called a trigger [And 67]), in a chain of 

processes that process data in a pipeline, or assembly-line fashion.
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2.7 The Junction Module

The junction (J) module is shown in Figure 2.8. Its operation can be 
viewed as the dual of the W module. It may be used by two controlling 

processes to initiate a third process. The controlling processes request 

over links 1 and 2. The third process is controlled by link 3, and is not 
initiated until both the controlling processes have requested it. The 

module thus performs an act of synchronization between two concurrent 
processes, before initiating a third. When the controlled process is 
completed it broadcasts an acknowledge to both the controlling processes.

2.8 The Shared Resource Module

The shared resource (SR) module is shown in Figure 2.9. It can be 
thought of as a module for allowing two processes to share some other 
process (their common resource).

If a request is received on link 1 then process 3 is initiated. When 
this is completed an acknowledge is received on link 3 and an acknowledge 
is transmitted along link 1. Similarily if the request is received on 
link 2. Thus either of the controlling processes can gain control of 

process 3. If requests on link 1 and 2 overlap (i.e. requests occur on 

links 1 and 2 without an intervening acknowledge on link 3) they are still 
handled in the order in which they arrive. If they occur simultaneously 
they are handled in arbitrary order.

2.9 The Mutual Exclusion Module
The mutual exclusion (ME) module is shown in Figure 2.10. Controlling 

process 1 can gain control of process 3, and controlling process 2 can gain 
control of process 4. The module imposes mutual exclusion on these two 

otherwise unrelated transfers of control. In other words, if process 1 has
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control of process 3, 2 cannot gain control of 4 until 1 releases 3. If 
both processes 1 and 2 simultaneously seek control of processes 3 and 4 
respectively, then one pair is preferred and it is chosen arbitrarily.

The ME module allows two processes (1 and 2) to share common parts of 
the DS (controlled by processes 3 and 4 respectively) while maintaining the 
determinism of those processes.

Both the ME module and the SR module exhibit mutual exclusion between 
two processes. This behavior is achieved by the place S (see Figure 2.9 and 

Figure 2.10) which is analogous to a binary semaphore initially set to 1.

2.10 The Decode Module

The decode (D) module is shown in Figure 2.11. A controlling process 
requests on link 1. This request is transmitted on link 3 or 2 depending 
on whether the external boolean variable x is 1 or 0. The acknowledge is 
returned in the usual manner. Thus the D module may be used as a branch 
point in a CS. The branch is controlled by the bit x.

In the diagrammatic representation of the D module at the top left of 

Figure 2.11 the link used to test x is shown as a conditional link. A signal 

is transmitted on line T to test the bit and is returned on either 1̂  or 1̂  

depending on whether x is 1 or 0. The testing occurs every time the module 

receives a request on link 1. The more concise diagrammatic representation 
of the module in the top right of Figure 2.11 distinguishes the link through 
which control flows if x is 0 by the circle at its base. The module is 
labelled D(x) to identify its function (decode) and the name of its argument 
(x in this case).

The signals of the conditional link are not explicitly modelled as 

transitions in the PN graph. Instead the test and its result are modelled 
by a free-choice node, place f (see [Pat 72] for further explanation of the
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term free-choice). A token in f can fire either or but not both.

This allows for both possible mutually exclusive outcomes of the test.

2.11 The Iterate Module
The iterate (I) module is shown in Figure 2.12. A controlling process 

requests on link I. If the value of the external boolean variable x is 0 an 

acknowledge is transmitted back along link 1. If x is 1 the process con­
trolled by link 2 is initiated by transmitting a request on link 2. When 

process 2 is completed an acknowledge is received on link 2, and if x is 

still 1 a request is retransmitted on link 2 reinitiating process 2. This 
reinitiation continues as long as x is 1. If an acknowledge is received on 
link 2 when x is 0, process 2 is no longer reinitiated. Instead an acknow­

ledge is transmitted on link 1 back to the controlling process. This module 
may be used in a CS when a process is required to be reinitiated as long 

as some external bit is 1.
The link used to test x is a conditional one, similar to the one 

used by the D module. It is also modelled by a free-choice node (place f). 
Similar to the D module, the more concise diagrammatic representation of 

the module shown at the top right of Figure 2.12 is labelled I(x) to identify 
its function (iterate) and the name of its argument (x in this case).

2.12 The Behavior of Networks of CS Modules
We are now ready to present an algorithm, which allows us to construct 

the PN graph representing the behavior of networks of CS modules, from the 
PNs of the individual nodules given in the last ten subsections.

Two cases must be taken into account by the algorithm. In the first, 

an output link of one network of modules is connected to an input link of
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another network of modules, to form a larger single network. In the second, 

an output link of a network is connected to an input link of that same net­

work, to produce a slightly different network.

In both cases, the construction algorithm can be described informally 
as follows (see Figure 2.13; PN^ may be the same as PN^):

1. Discard p and q together with their input and output arcs.

2. Combine Rn and R0 into a new transition, X , such that the1 Z K.
input arcs to X are those that were inputs to R and the K. I
output arcs are those that were outputs of R^.

3. Combine and into a new transition, X , such that the

input arcs to X^ are those that were inputs to A^ and the 
output arcs are those that were outputs of A^.

More formally:

Construction 2.1:

Case 1 (PN1 + PN2)
Let PN, = <P, , T , A, , M ’> 1 I l i o

PN2 " <P2S T2’ A2’ Mo >PN2 <P25 T2 ’ A2 ’ Mo'

And let the result of the joining be

PN = <P,T,A,M >
Then

P = U P2 - {p,q}

1 - T1 U T2 U XA} ' tRl’ Al’ V  V  
A = A l U A2 - {<p,A1>, <R1, p> , <q, R2>, <A2, q>}

if R-. , R are renamed X and A, , A0 are renamed X . I Z K. 1 Z A
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Figure 2.13. Joining Two Networks.
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Case 2 (P^ = PN2):

t* = f -l - ip>q]
T = T1 u [V  XA} - [Rl, Al) r2, a23

and R2 are both in T^, as are and A^ .

A = A 1 -{<P, Al>, <Rl5 p>, <q, R2>, <A2, q>]
if R , R are renamed X and A,, A„ are renamed X i 2 R 1 2 A

M (p) = o
M 1 V p 4- qo n
0 else

The X transitions are called internal transitions, since they do not 
correspond to a signal entering or leaving the network of modules. With 

respect to the external behavior of a network of modules, the firing of 

this type of transition can be ignored. (Although the transition itself 
may be necessary, for coordination purposes, to ensure that the correct 
sequences of signals are modelled.) Hence the following two sequences of 
transitions associated with PN graphs for networks of modules are regarded 
as equivalent, from a behavioral point of view:

This leads to the two simplifications shown in Figure 2.14. Applying 
either of these simplifications to a PN does not alter the behavior that it 

models. The one at the top of the figure is straightforward: the place p
and its input and output arcs are removed, then transitions \ ' and X u are 
consolidated into a new transition X. The input places to X are those which 
went to X ' and the output places of X are those which were fed by X This 
simplification can be applied only when the only elements of A in which p 
occurs are ^ X 1 and ^pjk'b*. The simplification at the bottom of the 
figure is a little more complicated, and can be expressed in a more formal

A X r R_ 5 6 7



31

Xi Yi Xi PiQi Yi

Figure 2.14. Two Simplifications.
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way as:
Remove from A

< V  p R ’ <pi> x>

Replace with

**!• PiiR' <pi V  YR

**«• P»> > <Pm’ ^
qR ’ < v  YR

< \ , q <q , Y - hi n n

<X , P-, q >, <p, q , Y > 1 i n  rl n n

<X , p q >, <p q , Y >  m m l  rm 1 1

<X , p q >, <p q , Y > m m n m n n
Remove [x] from T.

Remove {p^,...jp^,q^,...,q } from P and replace with 

tpl V  Plq2’-” ’PmqJ -
If Mo(p.) = 1 => Mo(piq1)J...>Mo(piqn) = 1.

If Mo (q.) = 1 =» Mo(p1qi).)>,,M (p q±) = 1.

(Simplification 1 is just a particular case of Simplification 2.)

Both simplifications will be used in future sections to facilitate 
arguments concerning the behavioral equivalence of networks of CS modules.

At this point it should be implicitly clear that our view of 
behavior is one that equates the behavior of a network of CS modules with 
the sequence of signals into and out of the network. This view has been 
explored in depth in [Pet 73], where the properties of sequences modelled 
by PNs are studied.

Figures 2.15 and 2.16 illustrate Construction 2.1. Figure 2.15 shows 

case 1 and Figure 2.16 case 2. In Figure 2.15 two PNs representing W 
modules are joined to form a three-output W module. At the top of the 
figure the unsimplified result of the construction algorithm is shown,
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Figure 2.15. Construction 2.1 (case 1).
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and at the bottom the simplified result (apply Simplification 2 with m=l, 

n=2 to then with ra=2, n=l to k ). Fi-Sure 2.16 the output link
3 of a network consisting of a W module, a T module and a J module is 
joined to the input link 4. At the top of the figure the PN for the net­
work, before the links are joined, is shown. At the bottom of the figure 

the PN for the networks, after the links are joined, is shown. The behavior 

obtained by simulating this PN is equivalent to that obtained from simu­

lating the PN that defines the behavior of the S module (see Figure 2.6). 
This leads to two observations. One, of incidental interest, that we can 
construct an S module from a W, a T and a J module. The other, and more 

important, that the PNs used to define the behaviors of networks of modules 
need not have equivalent graphs to represent the same behavior. In other 
words there is no unique PN graph associated with a particular behavior. 
(However, there is a unique behavior associated with each network of 

modules.) This deficiency could be rectified by following the ideas pre­

sented in [Jum 73]. Jump calls the PN graphs that are used in this dis­
cussion "signal graphs". He presents an algorithm for deriving another 
PN graph, called the "behavior graph", from a signal graph, which is unique 
for a particular behavior. Although Jump confines his discussion to line 

and safe marked graphs (a subset of the class of live and safe PNs), his 
ideas could readily be extended to the class of all live and safe PNs.
Since our discussion will not go into very complicated arguments concerning 
behavioral equivalence, this development, together with the additional 
formalism, is unjustified.

One final point concerns liveness and safeness. Construction 2.1 
case 1 will always result in a live and safe PN, if both component PNs 

were live and safe to begin with. However, Construction 2.1 case 2 can
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result in a PN which is not live and safe even though the original PN was 

live and safe to begin with (consider a J module with its output and one of 

its inputs connected).

2.13 Comments on the Modules
The modules presented here are now new. In embryonic form, many of 

them can be found in [Mul 63], All of them can be found in [Den 70], with 
the exception of the SR module. (Even this can be formed from the A module 

and the U module presented therein.) The SR module can be found in [Pet 74]. 
Further literature discussing the properties of some subset or another of 
the modules also includes [Alt 69], [Alt 70], [Bru 71] and [Pat 72], Other 

sets of CS modules exist [Bel 72], [Cla 67] and [Kel 74]. Our set was 

chosen because its members have a natural correspondence with the CHDL.



37

3. THE SYNTAX OF THE CHDL

Programs in the CHDL define digital systems by describing networks of 
the CS modules presented in the previous chapter and the register-transfers 

they control. Before going on to show how programs in the CHDL relate to 
networks of these CS modules, we shall use this chapter to present the 
syntax of the CHDL together with some terms that will be useful in later 
discussions when referring to objects in the syntax.

Figure 3.1 gives the syntax of the CHDL in BNF (Backus-Naur form). 
Non-terminal symbols are written as sequences of upper case letters.
Terminal symbols are underlined sequences of upper and lower case letters, 
and special characters (brackets, commas, etc.). The terminals are listed 
in Table 3.1 together with their subsequent representation, if it differs 
from that shown in Figure 3.1. The following symbols also appear in 
Figure 3.1.

:: - I C 3
They are meta-symbols belonging to the BNF formalism, and not symbols of the 
CHDL. The first two should be familiar, and the curly brackets denote 
possible repetition of the enclosed symbols one or more times. In general

{A} = A|AA|AAA|...
By examining the productions it can be seen that a program (represented by 
non-terminal PROGRAM) is a list of blocks (BLOCK) terminated by End. The 
blocks are blocks of statements (STAT, see production 10), and each is 
headed by an identifier (ID). This is an alphanumeric string unique to the 
block'c.

*Not all these stipulations are specified by the syntax of Figure 3.1 alone. 
These additional syntactic requirements are discussed in Chapter 7.



PROGRAM :: = [BLOCK] Dl End
BLOCK :: = Dl ID BLOCKBODY
BLOCKBODY :: = PROG | DPROC | MPROC | TPROC | WPROC

PROC : = [STAT FIELD3]
DPROG :: = Dl Decode (DREG) as DLIST
MPROC :: = Dl Mutex [(LABEL, LABEL)] [STAT]

TPROC :: = Dl Trigger STAT STAT

WPROC :: = Dl While (DREG) do PROC
DLIST :: = Dl None *  FIELD2 | [d 1 BITS => FIELD2] | 

[Dl BITS =* FIELD2] Dl None =* FIELD2

STAT :: = FIELDl FIELD2
FIELDl :: = Dl LABEL )
F IE LD2 :: = ID|lD [LABEL]|REG-TRF|Null|Wait (DREG)
FIELD3 :: = # | (ORDER-INFO)

ORDER-INFO :: = LABEl |LABEL, ORDER-INFO
LABEL :: = [Digit]

ID :: = [Letter|Digit]
REG-TRF :: = ID DREG
BITS :: = t o i l )

DREG :: = APL expression with IDs as variables.

Figure 3.1. The CHDL Syntax.



39

There are five types of blocks (see production 3 Figure 3.1): the
process block (PROC), the decode process block (DPROC), the mutual exclusion 

process block (MPROC), the trigger process block (TPROC), and the while 
process block (WPROC). These are distinguished from each other by the 
terminal symbol appearing after the block ID (see productions 4 through 8 
Figure 3.1).

A PROC block is composed of a list of statements each having three 
fields (FIELD1 through FIELD3). In the first field there is a numeric label 

(LABEL), unique within the block to that statement.* In the second field 
there is either the ID of another block, a register-transfer process 

descriptor (REG-TRF), a null process descriptor (Null) or a waiting process 

descriptor (Wait (DREG)). If an ID occurs that is the ID of an MPROC block, 
it is followed by a numeric label in square brackets. This label must also 
correspond to a label in the MPROC block of statements referred to.* The 
third field is optional, and it can contain an n-tuple (any n^O), which 

should only contain labels from FIELDl of other statements in the block.*
A DPROC block is distinguished by the terminal symbol Decode 

following the block ID. (they are separated by a carriage return and line 

feed). After this comes (DREG), the decode argument, and another terminal 

symbol as. The remainder of the block is a list (DLIST, production 9) of 
statements whose first part is either the terminal symbol None or a string 
of bits, and whose second part is the same as the FIELD2 of a PROC block.
The two parts are separated by the terminal symbol =>.

An MPROC block is distinguished by the terminal symbol Mutex 
following the block ID. After this symbol comes a list of pairs, called

See previous footnote.
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Terminals Representation if different 
from that in Figure 3.1

M
End

Decode

(
)
as
Mutex

Trigger
While
do

None

Carriage return, line feed 
(non-printing)

[

]
Null
Wait

# Empty string

Digit 0 I1 I2 UI 4 I5 I6 I7 I8 I9
Letter A | * | Z

0
l

Table 3.1. The Terminal Symbols.
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the mutual exclusion condition. These pairs have labels from FIELDl of 
subsequent statements in the block as their elements.'' The remainder of 

the block is a list of statements similar to those in PROC blocks except 
FIELD3 is not present.

A TPROC block is distinguished by the terminal symbol Trigger 
following the block ID. After this symbol come two statements similar to 

those in MPROC blocks.

A WPROC block is distinguished by the terminal symbol While following 
the block ID. After this symbol comes (DREG), called the while argument, 
and another terminal symbol do. The remainder of the block is similar to 

a PROC block.
The statements used in the blocks (see productions 9 through 12) are 

classified as register-transfer types if FIELD2 is a register-transfer 

process descriptor (REG-TRF), process-call type if FIELD2 is a process-call 
descriptor (IDjlD [LABEL]), null types if FIELD2 is the null process 
descriptor Null, and wait types if FIELD2 is the wait process descriptor 
Wait (DREG) (the (DREG) in this case is the wait argument).

The non-terminal DREG, which occurs in productions 5, 8, 12, and 17, 
represent an APL [Hil 73] expression with IDs as variables. As we saw in 
the system model of Chapter 1, these IDs represent registers in the DS. The 

result of this expression is a vector of bit values. In the case of pro­
ductions 5 and 17 this vector can be of any length. In the case of productions 
8 and 12 it should be only a single bit.

The format of descriptions in the CHDL is controlled by the appearance 
of the delimiter D_1 (carriage return, line feed) in the syntax. Spaces may 
be included between terminal symbols to aid the readability of the CHDL text.

*See previous footnote.
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4. INTERPRETING AND TRANSLATING PROGRAMS IN THE CHDL

In this chapter we will present, informally, an interpretation of the 

CHDL in terms of process behavior, and a procedure for translating programs 

in the CHDL into networks of CS modules. These two things are related to 
the following way. The translation procedure associates a program in the 
CHDL with a unique network of CS modules. Since each network has an unam­
biguous behavior (see Chapter 2), so does each program. This behavior is 
our interpretation of the CHDL. Furthermore, this behavior ultimately 

describes a collection of register-transfer processes (see Chapters 1 and 2), 

whose functional nature is characterized by the APL expressions in the 
register-transfer statements of the program. Thus programs in the CHDL 

unambiguously define digital systems conforming to the system model of 
Chapter 1.

From the discussion in Chapter 2 it should be clear that, in many 
cases, a particular behavior may be realized by several different networks 
of CS modules. Since in our translation procedure we require that each 
program have a unique modular realization, a choice must be made in 

specifying the translation procedure. Some choices may result in more 
efficient realizations than others. This question has been discussed to 
some extent in [Mud 75] and [Mud 77]. In this discussion we will not 
consider it.

4.1 The Process Block
Figure 4.1 shows an example PROC block. The CHDL description is shown 

at the top left. The behavior defined by this block can be‘obtained by 

simulating the PN at the top right. This process (called PBLOCK in the 
CHDL) decomposes into four subordinate processes corresponding to the four
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PBLOCK
1) Rl-*-R2
2) MBLOCK [l]
3) AC-*—AC + R1 (1,2)
4) DBLOCK (2) PBLOCK

O

Figure 4.1. An Example Process Block.
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statements. The order in which they are to occur is given by the adjacency 
structure formed from the statement labels and FIELD3 of each statement.
This order information can be interpreted as follows. Upon initiating the 
process PBLOCK, the subordinate processes corresponding to statements 1 and 

2 are initiated. When 2 is completed the process corresponding to statement 

4 is initiated. When both 1 and 2 are completed, the process corresponding 
to statement 3 is initiated. The process named PBLOCK is completed when 
both 3 and 4 are completed. The adjacency structure of PROC blocks can be 
viewed as a partial ordering of processes in which the underlying binary 
relation is "precedes in time". These partial orderings each have a uni­

versal lower bound (in our example this is the process that controls PBLOCK). 
The Hasse diagram for the adjacency structure of PBLOCK is shown at the bottom 

left of Figure 4.1 (we adopt the convention of drawing Hasse diagrams with 
their lower bound uppermost). The four subordinate processes are as follows: 
Statement 1 defines a register-transfer: move the contents of register R2

into register Rl. Statement 2 defines a process-call, MBLOCK [1], State­
ment 3 defines a register-transfer: move the sum of the contents of registers
AC and Rl into AC. Statement 4 defines a process-call, DBLOCK.

A register-transfer has already been discussed in the system model of 

Chapter 1. A process-call is similar to the subroutine construct found in 
many programming languages. It is a point where the transfer of control to, 
and the return of control from, another process is made. The behavior of 

this process is defined by a block whose ID matches the ID used in the 
process-call. Thus process-call type statements induce a hierarchical 
ordering on the block structure of a CHDL program. This is a partial ordering 
that characterizes the control relationship among the blocks. Each block in 
the program is the controlling process for those blocks that are its immediate
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successors in the ordering. Thus in our example, PBLOGK is the controlling 

process for MBLOCK [1] and DBLOCK. In general, PROC blocks define, by way 

of their adjacency structures, the temporal relationship among a set of 
subordinate processes.

The module realization of a PROC block can be derived directly from its 
Hasse diagram. Each node corresponds to a sub-network of J, S and W modules
arranged as follows. The input links to the network are the inputs to a tree

of (m-1) J modules. Their output is connected to the input link of an S module. 

The secondary output link of this S module is connected to the input of a tree 
of (n-1) W modules. The outputs of the W tree are the output links of the 

sub-network. The value of m is equal to the number of immediate predecessors
of the node, and the value of n is equal to the number of the immediate
successors of the node. If two nodes are joined by an arc in the Hasse 
diagram, an output link of the sub-network corresponding to the "higher" 
node is connected to an input link of the sub-network corresponding to the 

"lower" node. In this way the module realization of a PROC block can be 
systematically constructed. However, two special cases arise in this pro­

cedure. Firstly, at least one node has no successor. The sub-networks 
associated with such nodes are just composed of a tree of (m-1) J modules. 

Secondly, one node (the universal lower bound) has no predecessor. The sub­
network associated with it is a tree of (n-1) W modules.

The important points to notice about the structure of networks formed 
by this procedure are that they only have a single input link (which is 
connected to their controlling process, as we shall see in 4.6), that no 
intra network connections involve the primary output links of S modules, 
and that each statement (except the Null statement) has a unique output link
associated with it. (These links control the processes defined by the
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block's statements.) For statements whose associated Hasse diagram nodes 
have successors, the output links are the primary output links of S modules.

For statements whose associated Hasse diagram nodes have no successors, 
these links may be the output links of W modules, J modules, or the secondary 
output links of S modules. The Null statement is a special case. It repre­
sents the null or empty process. Consequently, it is realized by an Si 

module. Thus any link associated with a Null statement connects directly to 
an Si module.

The bottom right of Figure 4.1 shows the module realization of the 
example PROC block obtained by using the above procedure. By using the PNs 
of Chapter 2, which define the behavior of the individual modules, together 

with Construction 2.1 and Simplifications 1 and 2, the reader may verify that 
the associated PN of this realization is the same as that at the top right 
of the figure.

4.2 The Decode Process Block

Figure 4.2 shows an example DPROC block. The CHDL description is shown at 
the top left. The behavior defined by this block can be obtained by simulating 
the PN in the center of the figure.* This process (called DBLOCK in the CHDL) 

performs branching based on the value of the two-bit variable X (the decode 
argument). If X =00 then control is passed to a process defined by the 
process-call ABC. If X=ll then control is passed to a process defined by 
the register-transfer. All other values of X (signified by the terminal 
symbol None) result in the null process. In general, DPROC blocks define 
a multiple way branch process. (There is an obvious analogy with the case 
statement found in many high level programming languages.)

*In this figure and future ones we shall leave internal transitions unlabelled, 
unless they are explicitly mentioned in the text.
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DBLOCK

Figure 4.2. An Example Decode Process Block.
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The module realization of a DPROC block is simply a tree of D modules.

If n is the number of bits in the decode argument, the tree has height n.

If those bits are b, , b_,...,b , then b. is examined by the conditional1 2 n l
links of all D modules at level i in the tree. Thus each D module at level 

i has b_̂  as its argument. Those output links corresponding to the decode 

argument None (i.e. those links in the tree corresponding to none of the 
explicitly listed values that the argument may take) must access their 
common process through a tree of SR modules. In our example, this common 

process is the null process, and the tree is just a single SR module.

Strictly speaking, this SR module is an interblock connection, rather than 

an intra-block connection as shown in Figure 4.2. (See Figure 4.7, section 

4.6.)
The bottom of Figure 4.2 shows the module realization of the example 

DPROC block. Using the methods of Chapter 2 the reader may verify that the 
associated PN of this realization has the same behavior as the PN at the 
center of the figure. (Note, however, that the PNs are not the same.)

4.3 The Mutual Exclusion Process Block
Figure 4.3 shows an example MPROC block. The CHDL description is 

shown at the top. The behavior defined by this block can be obtained by 

simulating the PN in the center of the figure. This process (called MBLOCK 
in the CHDL) performs mutual exclusion between certain pairs of three 
processes that each requires to gain control of a different one of the sub­
ordinate processes defined by the block's three statements. These 
controlling processes are not shown explicitly in the example, but each 
would contain a process-call type statement whose FIELD2 (see production 12, 

Figure 3.1) was of the form MBLOCK[i], The value of i corresponds to the 

label of the statement defining the subordinate process required by the
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MBLOCK
Mutex (1,2) (1,3)

Figure 4.3. An Example Mutual Exclusion Process Block.
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MBLOCK
Mutex (1,2)(1,3)(2,3) 
1} AC~*~ PC
2) AC-«-MD
3) PC-^PC + l

2 1 2

AC-»-PC PC-«-PC + l

Incorrect Correct

FP-5483

Figure 4.4. Correct and Incorrect Realization of a Mutual Exclusion 
Process Block.
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controlling process. The nature of the mutual exclusion is defined by the 
mutual exclusion condition (see Chapter 3) following the Mutex symbol.

Each pair indicates two subordinate processes, which are to be 

mutually exclusive in time. Thus in the example, statements 1 and 2 define 

mutually exclusive processes, as do statements 1 and 3. In general, MPROC 
blocks define a collection of subordinate processes which are separately 
controlled, and which would normally be defined within other blocks were 
it not for the mutual exclusion requirements.

In the example of Figure 4.3 the three statements define register- 
transfers. The restriction on their concurrency imposed by the mutual 

exclusion condition ensures that register AC Is not being used as the 

destination of two distinct register-transfers simultaneously, and further, 
that the register PC is not being modified at the same time as it is being 
used as the source of a register-transfer.

The realization of any MPROC block can be derived directly from the 
list of pairs in its mutual exclusion condition. Each one corresponds to 

an ME module. The rules for their interconnection should be clear from 
the example in the figure. If the ME modules are regarded as nodes in a 
directed graph, no realization should contain a circuit. The correct and 

incorrect way to realize a block in which the potential for this occurs is 
shown in Figure 4.4. (The block shown here is similar to that in Figure 
4.3, except that it has a stronger mutual exclusion condition.) Each 
statement corresponds to a unique output link and its associated controlling 

process gains control of the process it defines, through a unique input 
link. Thus the module realization of a MPROC block has as many input links 
as output links. (All other block types have only a single input link.)
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The bottom of Figure 4.3 shows the module realization of the example 

MPROC block. Once again the reader may verify that the associated PN of 
this realization is the same as that in the center of the figure.

4.4 The Trigger Process Block

Figure 4.5 shows an example TPROC block. The CHDL description is 
shown at the top. The behavior defined by this block can be obtained by 

simulating the PN shown in the center of the figure. This is the PN for a 
T module (see Chapter 2, section 2.6). Thus the module realization for this 
example, as for all TPROCs, is a T module.

The process defined by the CHDL (called TBLOCK) decomposes into two 
subordinate processes corresponding to the two statements. They both 

define process-calls, MBL0CK[2] and XYZ. The order in which these sub­
ordinate processes are to occur is given by their lexical order of occurrence. 
Thus MBL0CK[2] precedes XYZ. However, the ability of T modules to control 
overlapping processes means that the process defined by XYZ may be simul­
taneously active with the process that controls TBLOCK. In general, TPROC 

blocks are used to define such overlapping or assembly-line processes.

4.5 The While Process Block

Figure 4.6 shows an example WPROC block. The CHDL description is 
shown at the top left. The behavior defined by this block can be obtained 
by simulating the PN at the right. This process (called WBLOCK in the 
CHDL) is reiterated as long as the while argument is 1. The interpretation 
and module realization of WPROC blocks is the same as for PROC blocks except 

for the conditional reiteration. In our example the reiterated part of the 
process decomposes into three processes. The Hasse diagram corresponding 
to the order of occurrence of these is shown at the left. The module
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TBLOCK
Trigger
1) MBIOCK [2]
2) XYZ

r
© TB LOCK

X

0  o
v v

Ó

0  O

MBLOCK[2]

2L

Ò XYZ

V V

Figure 4.5. An Example Trigger Process Block.
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Figure 4.6. An Example While Process Block.
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realization of WPROC blocks realizes the conditional reiteration by having 
an I module at the head of each realization. The argument of the I module 
corresponds to the 1 bit variable appearing as the while argument.

The module realization of the example WPROC block is shown at the 

bottom right of Figure 4.6. Once again the reader may verify that the 

associated PN of this realization is the same as that at the top of the 
figure.

There is a degenerate form of the WPROC block, and this is the Wait 
statement. It is realized by connecting an iterate module followed by an 
Si module to the link associated with the Wait statement. If the 1 bit 

variable appearing in the wait argument is z, then it may be interpreted as 
follows: the control process waits at this point as long as z remains 1.

4.6 The Inter Block Connections

Figure 4.7 shows the inter block connections that arise from the five 

example blocks discussed in the previous sections of this chapter. These 
are induced by the process-call type statements in the five blocks. Except 

for MPROC blocks, all block realizations have exactly one input link. If the 

ID of a process-call statement in some block, A, matched the ID of another 
block, B, then the link corresponding to the statement in A is connected to 

the input link of B. If in the whole system of blocks there are n process- 
call statements with matching IDs, this connection must be done through a tree 
of (n-1) SR modules. In our example, two SR modules are necessary. One is 

required, because the process DBLOCK is shared by two other processes (PBLOCK 

and WBLOCK). The other is required, because the null process is used twice 
by DBLOCK. The case for MPROC blocks is slightly different, since MPROC 
block realizations have as many input links as statements. The process-call 
statements which correspond to the process defined by an MPROC block are of
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Figure 4.7. Inter Block Connections.
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the form ID[i], where ID matches the MPROC block’s ID and i matches a 

statement label in the block. In such cases the connection is made to 
the input link which corresponds to the statement in the MPROC block 
having label i. As before, if in the whole system of blocks there are n 
process-call statements with matching ID[i]s, this connection must be 
done through a tree of (n-1) SR modules. The input links of those blocks 
having no predecessors are capped with So modules.

4.7 Comments on the Blocks
The blocks give a convenient way to formulate the design of a system 

as a hierarchy of less complicated subsystems. Due to the parallelism that 

the blocks can define, this hierarchical organization can also be viewed 
as a series of nested partial orderings of processes.

We note also (and we shall see in Chapter 7) that it is partly because 
the syntax places branch points and mutual exclusion points in special 
blocks, that CHDL programs only describe CSs that are deadlock-free.

Finally, we note that, because the syntax places T modules in special 
blocks, CHDL programs show clearly the point at which the CS partitions 
into overlapping segments. T modules could be placed anywhere S modules 

are in CHDL defined CSs, without losing freedom from deadlock. However, 
the operation of such structures would not, in general, be easy to visualize.
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5. AN EXAMPLE DESIGN USING THE CHDL

In this chapter the use of the CHDL is illustrated by presenting the 

design of a small system.
The system is a processor which executes register-to-register in­

structions. These operate on a DS of four registers and two multi-purpose 
function units. The CS is implemented as a forwarding algorithm to achieve 

instruction execution look-ahead.

5.1 The Forwarding Algorithm
Before discussing the CHDL program that describes the design, some­

thing should be said about the forwarding algorithm used in the design.
It is based on one first presented by Tomasulo [Tom 67], and is aimed at 

the efficient exploitation of multiple function units. Basic to the tech­

nique is a register tagging scheme which permits simultaneous execution of 
independent instructions while preserving the essential precedences inherent 
in the instruction stream.

The DS is shown in Figure 5.1. In reality it evolved as the CHDL 
program was being written. However, for didactic purposes it is con­

venient to present the completed DS.
The instruction register is shown as IR in Figure 5.1, and the format 

is two-address register-to-register. The registers (shown as R1 through 
R4) are specified by fields A and B in IR, and the dyadic operation per­
formed on the data in those registers is determined by the value of the 
field OC in IR. The instruction is interpreted as follows:

RA «- C (RA) (oc) C (RB) A= 1, . . . ,4
B = 1, .. . ,4
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DB
F P - 5588

Figure 5.1. The DS of the Example Design.
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The operation is performed on one of the multi-purpose function units. 

The function units are shown as FUl and FU2, and they perform a variety of 
(unspecified for this example) dyadic operations. The instruction register 

IR receives new instructions from the memory data register MD. The MD is 
the I/O port for the memory M.

The instruction execution breaks down into more basic steps. The 
contents of the register specified by A is moved over data bus DB to either 
register Dl or D2, depending on whether FUl or FU2 has been selected to per­

form the operation. Next, the contents of the register specified by B is 

moved over DB to either register SI or S2 (again depending on which function 
unit has been selected). The function unit performs the operation taking the 

contents of registers Dl and Si (if it is FUl), or D2 and S2 (if it is FU2) 

as its operands. It deposits the result into register Fl (if it is FUl), 
or F2 (if it is FU2). This result is then moved over DB to the register 

specified by A. This basic instruction execution process can undergo some 

modification as we shall see.
Instructions are issued to IR whenever there are available function 

units to execute them. However, the registers specified by fields A and B 

may be being used by previously issued but uncompleted instructions. This 

is resolved by the forwarding algorithm. As part of this algorithm, tag 
registers TRl through TR4, TDl, TS1, TD2 and TS2, each two bits long, are 
associated with registers R1 through R4, Dl, SI, D2 and S2 respectively.
In decoding each instruction the DS checks the tag registers of both of the 

specified registers. If they are both 00 the execution of the instruction 
can proceed, and the tag register of the register specified by A is set to 

01 (if FUl is to perform the operation specified by the instruction), or 
10 (if FU2 is to perform the operation). The non-zero value in the tag
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register indicates that the contents of the associated register are in the 

process of being changed by an instruction execution, and it also indicates 

from which function unit the new contents are to come. If, when decoding an 

instruction, either of the tag registers does not contain 00, it indicates 

to the CS that the associated register(s*) will be used to receive the 
result of an instruction which was issued earlier, and which is still in 
the process of being executed. Hence,the current instruction execution must 
wait for the result of the earlier instruction execution. The issuing and 
execution of further instructions could be delayed at this point until the 

required result is in. However, the forwarding algorithm avoids this potential 

inefficiency by sending the non-zero tag(s*) over bus TB to the appropriate 
function unit, in lieu of the result, to reserve that unit for when the 

result is in. Next the tag register of the register specified by A is set 
to 01 (if FUl is to perform the operation specified by the instruction), or 

10 (if FU2 is to perform the operation). (Note that this may involve over­
writing non-zero data in the tag register.) The next instruction can now be 
issued.

If the A field of an instruction called for the contents of R1 as an 
operand, and the instruction's operation was to be performed by FUl, and 

further that the tag register associated with Rl, namely TRl, was non-zero, 
then the contents of TRl would be moved over TB to TDl, and TRl would be set 
to 01. Also, if the register called for by field B of the instruction was in 

use, the contents of its tag register would be moved to TS1. (TD2 and TS2 
would be the tag destinations, if FU2 was the function unit to be used.)

*Since this example has only two function units whose operations are not 
pipelined (implying that their input registers are not allowed to be changed 
until their operations are complete and their results have been output), 
these cases do not occur.
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A summary of the interpretations placed on the tag data is given below in 

Table 5.1.

from FU1 
from FU2

FU1
FU2

Table 5.1. Tag Data.

In its execution of the dyadic operation specified by OC, function 
unit i first checks to see if V/ (TDi, TSi) = 0. If it does, it interprets 

this to mean that both operands are present in Di and Si. It can then 

proceed with the operation. If the above condition is not true (i.e. the 
function unit has received non-zero tag data instead of operand data), the 
unit waits until it is. When it completes its operation and places the 
result in Fi, it broadcasts this result to all registers whose tag registers 
contain data agreeing with the two bit code associated with that function 
unit (see Table 5.1). In many cases, therefore, results are "forwarded" 
straight to the D or S registers of the function units, rather than going

See previous footnote.
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via any of the registers R1 through R4. When a broadcast result reaches a 
register, the associated tag register is reset to 00. In the case of 
function units waiting on operands this is the go-ahead to start operation.

This algorithm has the property of preserving essential precedences 
in the instruction stream, while allowing independent instructions to be 
executed in an order which is dictated only by the availability of a function 

unit. When the dyadic operations can take a long time compared to the 
register-to-register movements, this makes for efficient utilization of 

the multiple function units.
Figure 5.2 illustrates the algorithm in operation on a stream of four 

instructions. This is for the DS of Figure 5.1. The contents of the 
registers and their tags are shown at key times in the execution process.

5.2 The CHDL Program for the Example Design
Figure 5.3 shows the CHDL program for the example design. Notice that 

we have used two "lexical" indices i and j. These take values from the sets 

{1,2,3,4] and {d ,s} respectively. Thus in Figure 5.3(b) we have used RAi to 
stand for the four blocks RAI, RA2, RA3 and RA4. Furthermore, within each 
block i is replaced with the appropriate value 1,2,3, or 4. Similarly in 
Figure 5.3(e) we have used DECTjl to stand for the two blocks DECTDl and 
DECTS1.

Figure 5.4 shows the block dependencies. If one block in the program 
calls another,* this relationship is represented in Figure 5.4 by a downward 
sloping line from the calling block to the one called. Precedence between 
blocks called from the same block is not represented, neither is the block

^Borrowing a term used in software to describe an analogous situation, we 
say that block A calls B if A has a process-call statement whose ID matches 
B's ID.
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i----- 1 Instruction decode, possible wait, and tag/operand
distribution.

i i Function unit performing operation and then 
broadcasting result.

V /////À  Function unit waiting for arguments.

h

1. R1— R1*R4 h
>- Time

FU1

Figure 5.2. Illustration of the Forwarding Algorithm.
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TF1

MAIN
While (ON) do

1) FETCH
2) EXEC (1)

FETCH
1) MD «- M
2) IR «- MD (1)
3) PC «- INC (1)

EXEC
1) Wait (ACTlA ACT2)
2) TST (1)

TST
Decode (ACTl,ACT2) as
00 => TF1
01 => TF1
10 => TF2
11 => ERROR

TF2
Trigger

1) PREDCDl
2) DCD&EXl

Trigger
1) PREDCD2
2) DCD&EX2

Figure 5.3(a). The Example Design.
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PREDCD1 PREDCD2
1) ACTl <- 1 1) ACT2 «- 1
2) FU <-01 2) FU <-10
3) OC1 <- 0C 3) 0C2 <- OC
4) DBUS [1] (2) 4) DBUS [1] (2)
5) DBUS [2] (4) 5) DBUS [2] (4)

DBUS
Mutex (1,3) (1,4) (2,3) (2,4) 13.41

1) DECA
2) DECB
3) BCAST1
4) BCAST2

DECA DECB
Decode (A) as Decode (B) as
00 =* RA1 00 => RBI
01 => RA2 01 =* RB2
10 =* RA3 10 =* RB3
11 => RA4 11 => RB4

RAi RBi
Decode (TRi) as Decode (TRi) as

00 => MVAi 00 => MVBi
None => BSYAi None => BSYBi

Figure 5.3(b). The Example Design.
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MVAi
1) TRi «- FU
2) CHKAi

CHKAi
Decode (FU) as_. 

01 =* Di «- Ri 
10 => D2 Ri 

None => ERROR

BSYAi
1) CHKBAi
2) TRi «- FU (1)

CHKBAi
Decode (FU) as 

01 => TDl <- TRi 
10 => TD2 <- TRi 

None => ERROR

MVBi
Decode (FU) as_ 

01 => SI Ri 
10 => S2 <- Ri 

None => ERROR

BSYBi
Decode (FU) as 

01 => TSl <- TRi 
10 => TS2 4-  TRi 

None ^ ERROR

Figure 5.3(c). The Example Design
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DCD&EX1
1) Wait (V/(TDl,TS1))
2) FI «- Di @  SI (1)
3) DBUS [3] (2)

DCD&EX2
1) Wait (V/(TD2,TS2))
2) F2 «- D2 (0C2) S2 (1)
3) DBUS [4] (2)

BCAST1
1) DEC1TR1
2) DEC1TR2
3) DEC1TR3
4) DEC1TR4
5) DECTD2
6) DECTS2
7) ACT1 0 (1,2,3,4,5,6)

BCAST2
1) DEC2TR1
2) DEC2TR2
3) DEC2TR3
4) DEC2TR4
5) DECTDl
6) DECTS1
7) ACT2 <- 0 (1,2,3,4,5,6)

Figure 5.3(d). The Example Design.
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DEClTRi
Decode (TRi) as 
01 => RiFl 

None => Null

RiFl
1) Ri <- FI
2) TRi 4- 00

DEC2TRÌ
Decode (TRi) a_s 

10 => RiF2 
None => Null

RiF2
1) Ri 4- F2
2) TRi 4- 00

DECTj1
Decode (Til) as 

10 => j 1F2 
None =* Null

DECTj2
Decode (Ti2) as 

01 => j2Fl 
None => Null

j 1F2
1) jl F2
2) Tj 1 4- 00

j2Fl
1) j2 4- FI
2) Tj2 4- 00

Figure 5.3(e). The Example Design.
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Figure 5.4. The Block Dependencies
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type (i.e. PROC, DPROC, MPROC, etc.). The shorthand of using the lexical 

indices of Figure 5.3 has been dropped, and each block ID has been written 
out in full.

5.2.1 The MAIN Block

This is the highest block in the hierarchical structure of blocks 
(see Figure 5.4). It therefore represents the most simple description of 
the target system. It partitions the system, which we have called MAIN, 

into two subsystems, specified by blocks FETCH and EXEC. FETCH is run first, 
and upon its completion EXEC is run. This sequence is reinitiated as long 
as the ON flag is set. As may be guessed, the names are mnemonic; FETCH 
describes a process that fetches an instruction from memory and EXEC 
describes a process that executes it.

5.2.2 The FETCH Block

This decomposes into three register-transfers. These move the contents 
of the memory location (M) pointed to by the program counter (PC) (the 
contents of the memory location is assumed to be an instruction) into the 
memory data register (MD), and then into the instruction register (IR). 

Concurrently with this last register-transfer the contents of PC are incre­

mented. (INC is a functional block whose output is its input plus one.)

5.2.3 The EXEC Block

The flags ACTl and ACT2 are used to indicate to the CS the avail­
ability of FUl and FU2, respectively. If FUl is busy ACTl is set, similarly 
for FU2 and ACT2. Thus the process described by block EXEC waits until at 
least one of the function units is available before proceeding with the 
execution of the instruction in IR.
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5.2.4 The TST Block

This block is called by block EXEC. It describes a process that 

assigns the execution of the instruction in IR to either block TFl, if 
FUl is available (i.e. ACT1=0), or else to block TF2. The choice is based 
on the two bit value (ACT1, ACT2).

The occurrence of (ACTl, ACT2) =11 at this point in the operation 
of the system is clearly an error. This is dealt with by block ERROR, 
whose details we have not specified.

5.2.5 The Blocks TFl and TF2

These two blocks describe similar but mutually exclusive (as a 

consequence of the decode process TST) processes. TFi (i=1,2) comprises 
process PREDCDi followed by process DCD&EX1. PREDCDi describes the move­
ment of data and/or tags specified by fields A and B of the instruction in 
IR, from any of the registers Rl, R2, R3 or R4 to function unit i. DCD&EXi 
describes the execution, by function unit i, of the operation specified by 
the instruction, and the subsequent broadcasting of the result to the 
registers and function units.

Since TFl and TF2 are TPROCs, both DCD&EXl and DCD&EX2 can overlap 
with the FETCH process and the first part of the EXEC process up to but not 
including PREDCDI and PREDCD2, respectively. Assuming the function units 
are initially not busy this allows the following type of occurrence: the
system can fetch an instruction, issue it to a function unit, fetch a second 
instruction, issue it to the other function unit, then finally fetch a third 
instruction. At this point, the possibility of a wait (based on the avail­

ability of a function unit) at the beginning of process EXEC determines 
when this third instruction gets issued to a function unit. Thus the system
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keeps two instructions executing concurrently, one in each function unit, 

and a third ready for issue in IR. The details of this will become clearer 

as we continue with comments on the program of Figure 5.3.

5.2.6 The Blocks PREDCDl and PREDCD2
These preliminary decode processes set up some status registers to 

assist in tag manipulation and function unit operation. They also call 

other blocks to perform data and/or tag movement. Specifically, in PREDCDi, 
flag ACTi is set (indicating that FUi is to be busy). Register FU is set 
to 01 (for i = l), or 10 (for i = 2). This register is used to indicate which 
function unit is to perform the instruction's operation, and as a source for 
tag data. The operation code (in field OC of IR) is sent to the operation 

register of the function unit (0C1 or 0C2). Finally, two decode processes 
are initiated to determine from which registers the instruction’s operands 

are to come. These decode processes, DECA and DECB, are called sequentially 
and they are called through a mutual exclusion process, DBUS.

5.2.7 The Block DBUS
This mutual exclusion process ensures that the movement of data 

and/or tags from the registers to the function unit, the broadcasting of 

results from function unit 1, and the broadcasting of results from function 

unit 2 do not interfere with one another as a result of using a common 
resource, DB. (BCASTl and BCAST2 are the blocks that handle the broadcasting 
They are discussed later on.)

Notice that PREDCDl and PREDCD2 are mutually exclusive in time (since 
TF1 and TF2 are). Thus DBUS and, hence,DECA and DECB can be shared by them 
without conflict. Also, since the decode processes, DECA and DECB, are 
called sequentially (see the order information of statements 4 and 5 in
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PREDCDl and PREDCD2) they do not interfer with one another even though some 

register-transfers that they ultimately invoke share DB. Thus it is not 
necessary to include the pair (1,2) in the mutual exclusion condition of 
DBUS.

5.2.8 The Blocks DECA and DECB

The blocks DECA and DECB decode the operand fields A and B respect­
ively, to find out which of the registers, Rl, R2, R3 and/or R4, are to be 

used by the instruction in IR. Based on the result of these decode pro­
cesses, control is passed to other processes to handle the movement of data 
and/or tags between the registers and the function units.

For example, in DECA, if A =01, control passes to block RA2. This 
moves the contents of R2 (using MVA2) or its tag (using BSYA2) to the 
designated function unit.

Similarly, for example in DECB, if B = 00, control passes to block 

RBI. This moves the contents of Rl (using MVB1) or its tag (using BSYBl) 
to the designated function unit.

5.2.9 The Blocks RAi and RBi
The blocks RA1,...,RA4, RBI,..., and RB4, describe decode processes. 

Block RAi (i = l,...,4) calls blocks MVAi if tag register TRi = 00 (i.e. if 
register Ri is not being modified by an instruction execution). Otherwise 
(i.e. Ri is being modified) it calls block BSYAi. Similarly RBi calls 
MVBi or BSYBi. An A as the penultimate character in a block identifier 
indicates that the block describes one of the processes that handles register 

or tag data specified by operand field A. Similar comments apply for B as 
the penultimate character in a block identifier.
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5.2.10 The Blocks MVAi and CHKAi

The block MVAI (i=l,...,4) moves the contents of FU into TRi. This 
indicates that the contents of Ri are to be sent to FUx ( x  = C(FU)- q̂), and 
that its new contents will come from FUx. Concurrently with this, MVAi calls 

CHKAi. This block checks the value x to determine which function unit is 
to receive the contents of Ri. It then transfers these data with the 
register-transfer Dx<-Ri.

5.2.11 The Blocks BSYAi and CHKBAi
Control passes to block BSYAi (i = l,...,4) in the event that Ri is 

busy (i.e. is waiting on a result from one of the function units). This 
block moves the contents of tag TRi to the function unit in lieu of the 
contents of Ri. Next it updates TRi to indicate from which function unit 
Ri will receive its new value.

Moving the contents of TRi is actually done by CHKBAi. This block 
first checks the contents of FU to determine which function unit is to 
receive the contents of TRi.

5.2.12 The Blocks MVBi and BSYBi
The block MVBi (i = l,...,4) is similar to block MVAi. However, it 

pertains to operand field B rather than A. A register specified by 
operand field B of an instruction is used only as a source of data. There­
fore its associated tag register is not changed. This accounts for the 
difference between MVBi and MVAi.

The block BSYBi (i = l,...,4) is similar to block BSYAi. Its dif­

ference is also a result of it pertaining to operand field B.
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5 . 2 . 1 3  The Blocks DCD&EX1 and DCD&EX2

The blocks DCD&EX1 and DCD&EX2 describe the processes that control 

the operation of FUl and FU2, respectively. DCD&EX1 waits until both the 

tag registers (TDl and TS1) are set to 00 before performing the dyadic 
operation, specified by the code in 0C1, on the contents of the input 

registers (Dl and SI). The result is placed in register Fl. This is then 
broadcast, conditionally, to registers Rl, R2, R3 and R4 as well as to the 

input registers D2 and S2 of FU2. This broadcast is described by block 
BCASTl and is called by DCD&EX1 through the mutual exclusion process DBUS 
(see section 5.2.7). The process described by DCD&EX2 is similar.

5.2.14 The Blocks BCASTl and BCAST2

The block BCASTl describes a broadcast-like process which moves 
the contents of Fl to any of the registers Rl, R2, R3, R4, D2 or S2, whose 
associated tag registers are set to 01. (These tag registers are TR1, TR2,
TR3, TR4, TD2 and TS2, respectively.) Upon the completion of the broad­
cast the flag ACTl is set to 0 to indicate to the CS that FUl is free to be 
reused. The process described by BCAST2 is similar.

5.2.15 The Remaining Blocks

The remaining blocks are DECTRi, RiFl, DEC2TRi, RiF2 (i=l,...,4) and 
DECTjl, jlF2, DECTj2, j2Fl (j=D,S) (see Figure 5.3(e)). These blocks des­
cribe processes that perform the register-transfers required by blocks 
BCASTl and BCAST2. Appropriate tag registers are decoded to see which 
register-transfers are to be performed.

For example, if BCASTl is active, DEClTRl is called (among other blocks), 
and it decodes tag TR1 to determine whether Fl is to be sent to Rl. If TR1 = 01 
this register-transfer is to be carried out. This is done by the process
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described in block RlFl. RlFl also resets the contents of TRl to 

indicate that register R1 is no longer being modified by an instruction 
execution.

5.3 Comments on the Example Design
This example design illustrates the capability of the CHDL to 

describe various types of concurrency, as well as mutual exclusion. These 

are essential ingredients for any formalism that seeks to characterize 
multiprocessing systems.

Also note, firstly, that the END symbol was omitted in Figure 5.3. 
Strictly speaking, the blocks should have been arranged linearly with End 

as the last symbol in the last block. Secondly, that the "lexical" index 
used as a shorthand could be included in the CHDL's syntax and interpreted 
in a way analogous to open subroutines or macros found in programming 

languages. And finally, that the CHDL could be improved by including the 
facility for declaring data types (busses, registers, subfields of 
registers, etc.). The last improvement was made by Smith in [Smi 77], which 
describes a simulator for a subset of the CHDL.
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6. THE SCOPE OF THE CHDL

APL, or some variant, has been adopted by many proponents of CHDLs as 

a formalism to describe the functional aspects of register-transfer logic. 

(See for example [Fal 64], [Fri 67], [Hil 73], [Aze 75] and [Fra 75].)
Taking this consensus as an acknowledgement of API's capability to char­
acterize adequately the functional aspects of the DSs of digital systems, 

we shall only examine the scope of the CHDL with respect to the design of 

CSs.
One very common model for CSs is the flowchart. This is evident from 

the large number of digital systems that are controlled by microprograms.
The Structure Theorem [Mil 72] shows that any flowchart can be represented 
as an expansion of the following constructs:

1. f then g
2. _if p then f else g

3. while p do f
where f and g are flowcharts with one input and one output, and, then, if, 
else, while, do are logical connectives. If the term "flowchart" is inter­
preted as "process" (in our sense), the following consequences arise: f

and g can be interpreted as processes described by blocks in the CHDL. This 
follows since such processes are controlled by a single link, and,hence, can 
be thought of as having one input and one output (the request and acknowledge 
signals of the link). Furthermore, the above three constructs are then seen 
to occur in the CHDL: 3 exists explicitly - the WPROC block, 2 exists in a
more general form - the DPROC block, and 1 also exists in a more general 
form - the order information. Hence, the scope of the CHDL encompasses that
of the flowchart model.
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In addition to this logical sufficiency the CHDL has considerable 

scope for parallelism, facilitating the design of high performance systems. 
Firstly, simple unrestricted parallelism can be described. This qualifi­
cation refers to the fact that the order information allows parallelism to 

be described without unnecessarily binding processes together, as is often 
the case with restricted methods of representing parallelism, such as the 
use of next or and operators [Bel 71] [Wir 66]. (These two particular 
operators restrict a language to series/parallel structured processes.) 
Secondly, overlap or assembly-line type of parallelism can be described using 
TPROC blocks. Finally, mutual exclusion can be described using MPROC blocks. 

This allows resolution of some simple resource conflicts that arise as a result 
of parallelism. (Other resource conflicts, such as shared blocks and shared 
register-transfers, are handled by SR modules.)

The above discussion suggests that the first of the two purposes of 
this thesis stated in the Introduction (to develop a CHDL with sufficient 

scope to describe multiprocessing systems) has been satisfied. Nevertheless, 

it should be pointed out that more comprehensive models exist. Typical of 
these is the PN which can describe CSs that are outside the scope of the CHDL. 

However, much of the additional scope these afford is of questionable use, 
and it is our opinion that the considerable complexity of any PN that models 
an entire CS can confuse rather than aid the design process. (Bear in mind 
that our use of PNs is to define behaviors, and then later to prove assertions 
about those behaviors. We do not use them as a design aid.)
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7. PROOF THAT SYNTACTICALLY CORRECT CHDL PROGRAMS DESCRIBE 
SYSTEMS WHICH HAVE DEADLOCK-FREE CSS

This chapter introduces some additional syntactic requirements. Then 
it is proved, using a method for characterizing the behavior of networks of 

CHDL blocks, that syntactically correct CHDL programs describe systems which 
have deadlock-free CSs. Computational complexity arguments show that 
checking the syntax (excluding the APL expressions of the register-transfers) 
is very simple. It Is concluded that the second purpose of this thesis has 

been met (to specify the CHDL so that syntactically correct programs des­
cribe systems which have deadlock-free CSs), without resorting to a complex 
syntax.

7.1 The Additional Syntax

There are some additional syntactic requirements, not easily expressed 
by a context-free grammar, that CHDL programs must satisfy. Consequently 
they were not represented in the syntax of Figure 3.1 but are instead listed 
below. In the remainder of this discussion the phrase "syntactically correct" 
(SC) should be interpreted to mean "satisfying the syntax of Figure 3.1 and the 
additional syntax (AS) below".

AS1. The inter-block connections invoked by the process-call statements 
must form a partial ordering.

AS2. Every block ID in a process-call statement must have a unique 
corresponding block.

AS3. The adjacency structure of every PROC and WPROC block must form 
a partial ordering with a universal lower bound.

AS4. Each statement label must be unique within its block.
ASS. In every DPROC block the bit string in the BITS field of every

statement must have the same length.
oAS6. If there are less than 2 (̂  = number of bits in the BITS field)

statements in the DLIST of any DPROC, one of them must have None 
in the BITS field.
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AS7. Every statement label in an MPROC block must occur in at
least one of the pairs of the mutual exclusion condition.

AS8. Every number in the pairs of the mutual exclusion condition 
of an MPROC must occur as a statement label.

Notice that these additional syntactic requirements cover those

stipulations about the syntax of the CHDL, noted as footnotes in Chapter 3,
that were not covered by the contex-free grammar of Figure 3.1.

7.2 The Proof

To prove that SC CHDL programs describe systems which have deadlock- 
free CSs, freedom from deadlock is defined in terms of process behavior 
(i.e. in terms of PNs), and then all SC CHDL programs are shown to satisfy 
this definition.

In Chapter 4 we saw how to derive a PN that defines the behavior of 

a process described by a CHDL block. This was derived from the block's 
underlying network of CS modules by using the PNs of the ten CS modules, 

Construction 2.1, and the simplifications of Chapter 2. In the proof of 
this section we shall be concerned with whole CHDL programs, i.e. networks 
of CHDL blocks. In order to define the behavior of networks of blocks we 
could also join the PNs of the blocks together using Construction 2.1. 
However, it is convenient to take a slightly different approach.

Consider a block in a network of blocks. Its behavior in such an 
environment is defined by simulating its PN, B, according to the procedure 
(modified from that in Section 2.1) below (see Figure 7.1):

PI
1. 9 <- T
2. Choose tt, a non-empty subset of tt̂..
3. M(p) <- 1 V p € tt
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4. Compute the set of enabled transitions in Ô (U)•

5. Choose one transition t, € U.

6. If t € t  then 6 ® - it}.
7. Fire t.
8. If M(p) = 1 for any p £ - TT then halt.
9. If 6 fl T = 0 then M(p. ) M(p. ) 0 go to 1.

where ;
T = {t ̂ ,’’S d

4 H II Îp^)••■•>Pk}
TT = f*P_. » • -- - ’ V, }11 Lm
T = it , . ,. .»t }

1 m

the set of transitions in B. 
the set of input places, 

a non-empty subset of tr
those transitions that are output transitions of 
the places in tt. See Figure 7.1.

To understand Pi two definitions are necessary. Firstly, the input 
places" of a block's PN are those corresponding to the controlling processes, 

or input links. Secondly, the output places* are those corresponding to 
process-call statements, or output links. The simulation defined by Pi 
can then be thought of in the following way: A non-empty subset, tt, of the
input places of B is marked with a token (this represents the action of the 
environment on the block), the remaining input places are assumed to be 
empty. B is simulated until all the places in tt empty and then refill with 
a token. These tokens are then removed. A new tt is selected at random

*These terms are not to be confused with input and output places of transitions. 
(See Section 2.1.) It is required, if p is an input/output place with x and 
y as its input and output transition, respectively, that:
1. x is the only input transition of p.
2. y is the only output transition of p.
3. p is the only input place of y.
4. p is the only output place of x.
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Figure 7.1

B

F P -5 6 1 9

A CHDL Block’s PN.
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(it may be the same as before), these places are marked and the procedure 
repeats.

The random markings of the input places model the transfer of 
control from the block's environment to the block. When the block's PN 

has been simulated and those input places refill, removal of their tokens 

corresponds to the return of control to the environment. We assume that the 
initial marking of B does not place tokens in any of the input or output 
places. Thus under Pi, simulation halts if the condition in statement 8 
is true, because we require, in order to keep our PN interpretation con­
sistent with the behavior we are trying to model, that input places can only 
be refilled if they receive a token in the immediately preceding marking 

phase of the simulation (statement 3).
The output places of B are shown as q^,...,q^ in Figure 7.1. Tokens 

in these correspond to processes occurring in B 's environment that are 
controlled by B.

Two comments are pertinent regarding the above PN model of the inter­
action of a CHDL program's block with its environment. Firstly, the concepts 

of liveness and safeness, defined in Section 2.1, still apply to a PN simu­
lating under PI. Secondly, the behavior of a block's environment may be 
such that only some of the rr's can occur. To reflect this, the choice in 

statement 2 of PI can be limited to a subset of the set of all sets of input 
places. We shall call this subset the environmental constraint (EC).

Freedom from deadlock can now be defined: A CHDL program describes
a system whose CS is deadlock-free, if the PNs for all of the blocks of the 
program, together with their initial markings, are each live and safe (LS) 
when simulated under PI with their respective ECs.
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This definition is in accordance with an intuitive idea of freedom 

from deadlock, because Pi never halts, and no places or transitions ever 
become excluded from the action of PI, if the PNs are LS. Hence, the 
processes defined by such PNs never reach a point from which they cannot 
proceed.

Theorem 1: For every SC PROC block 3 a PN* with a single input place, x, an

initial marking, Mq = (0,...,0), and an EC = {{x}}, that is LS 
under PI.

Proof: For every SC PROC block 3 a PN that is a strongly connected

marked graph (in a marked graph every place has exactly one 
input transition and one output transition) that defines its 
behavior (see Section 4.1). A member of this class of PNs is 

LS if every circuit in its PN graph has exactly one place con­
taining a token (see [Com 71] for more on marcked graphs).

Since EC={[x}}, the marked graph that defines the behavior 
of any PROC block receives a token in x each time PI executes 
its statement 2 (the choice for tt is limited to {x}). The input 
place, x, is in every circuit of the marked graph; therefore, 
the sufficient condition for LS, mentioned above, is satisfied. 

Theorem 2 : For every SC DPROC block 3 a PN with a single input place, x,

an initial marking, M =(0,...,0), and EC = [[x}}, that is LS 
under Pi.

Proof: For every SC DPROC 3 a PN that is a strongly
connected state machine graph(in a state machine graph 
every transition has exactly one input place

*It was noted in section 2.12 that there is, in general, no unique PN graph 
associated with a particular behavior. Since we are primarily concerned 
with the behavior, not its defining PN, it is sufficient to consider any 
one of the set of PNs associated with that behavior.
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Theorem 3 :

Proof : 

Theorem 4 :

Proof : 

Theorem 3 :

and one output place) that defines its behavior (see Section 
4.2). A member of this class of PNs is LS if exactly one 

place contains a token (see [Hei 76] for more on state machine 
graphs)„

Since EC={{x}}, the state machine graph that defines the 
behavior of any DPROC block receives a token in x each time 
Pi executes its statement 2 (the choice for tt is limited to 
{x}). Hence, the condition for LS, mentioned above, is 
satisfied.

The PN for an ME module with two input places, x and y, an 

initial marking, Mq = (0,...,1,...,0) (the one initial token 

is in place S of the ME module's PN - see Figure 2.10), and 
an EC = {[xj, £y}] or {[x,y}} or {{x}, £y}, [x,y}3, is LS 
under PI.
Obvious from Figure 2.10«

The PN for an SR module with two input places, x and y, 
an initial marking, Mq = (o,...,1,...,0) (the one initial token 

is in place S of the SR module's PN - see Figure 2.9), and an 
EC = {{x}, {y}} or [{x,y}] or {{x], {y3, [x,y]}, is LS under Pi. 
Obvious from Figure 2.9.
The PN for a T module with a single input place, x, an initial 

M = (0,...,1,...,0) (the one initial token is in place S of 

the T module's PN - see Figure 2.7), and an EC= {{x}}, is 
LS under PI.

Proof: Obvious from Figure 2.7.
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Theorem 6

Proof: 

Theorem 7

Proof:

: The PN for an I module with a single input place, x, an
initial marking, Mq = (0,...,0), and an EC = {{x}}, is LS 
under Pi.

Obvious from Figure 2.12.

: SC CHDL programs describe systems which have deadlock-free
CSs.

SC CHDL programs are acyclic networks of some combination of 
PROC blocks, DPROC blocks, MPROC blocks, TPROC blocks, and 
WPROC blocks. These can be viewed, for the purpose of this 
proof, as networks made up from PROC blocks, DPROC blocks, 
blocks containing single ME modules (MPROC blocks can be 

thought of as networks of blocks containing single ME modules- 
the translation procedure of Section 4.3 ensures that these 

sub-networks are acyclic), blocks containing single SR modules 
(the trees of SR modules used when blocks are shared can also 
be thought of as networks of blocks containing single modules), 

TPROC blocks (these contain a single T module), and blocks 
containing single I modules (WPROCs can be thought of as two 
blocks networks: a block with a single I module followed by 
a PROC block). The highest level blocks in such networks are 
blocks containing single So modules (see Section 4.6).

Theorems 1 through 6 demonstrate that the behavior of net­
works made up from PROC blocks, DPROC blocks, and blocks con­
taining single ME, SR, T, or I modules satisfies our definition 
of deadlock-free (assuming they are started in the correct 
initial state), if the respective ECs (expressed in the state­
ment of each theorem) of the PNs defining the behaviors of the 
blocks are also satisfied.
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The ECs of the blocks in Theorems 1 through 6 are satisfied 

if such blocks are called by blocks whose associated PNs are 
LS. This condition ensures that the output places associated 
with the calling blocks behave in a way that is consistent 
with the apparent environment that Pi creates for a block 
simulating under it.

The highest level blocks contain single So modules. Their 

PNs (one is shown together with the appropriate initial marking 
in Figure 2.3) are LS*. Therefore, since any network des­
cribed by an SC CHDL is acyclic, it follows in a finite number 
of steps that all the ECs of the blocks of such networks are 
satisfied. Hence, our definition of deadlock-free is satisfied, 

and SC CHDL programs describe systems which have deadlock-free 
CSs.

Note that throughout the discussion on deadlock it was implicitly 
assumed that the register-transfer processes were never sources of deadlock, 
i.e. they took a finite, if unbounded, time to complete. In the next section 
we shall discuss the "cost", in complexity terms, of specifying the CHDL so 
that SC programs in it have deadlock-free CSs.

7.3 The Complexity of Checking the Syntax of a CHDL Program
Computational complexity analyses are concerned with the "amount of 

work” done by algorithms. For the purpose of this and remaining discussions, 
this is measured in terms of the number of operations which must be performed.

*The PNs for So modules have no input places so it is sufficient to con­
sider them as simulating under the original procedure of Section 2.1.
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7.3.1 Checking a CHDL Program Against the Syntax of Chapter 3
The first step in this check of a CHDL program is to take the string 

of characters representing the design and to partition it into a sequence of 
tokens, where a token is a string of characters that forms a single logical 
unit.

The syntax given by the productions of Figure 3.1 can be simplified if 
the following logical units are tokenized: IDs, LABELS, DREGs, and BITS.
The resulting simplified grammar is shown in Table 7.1. Notice that the 

tokenized entities are now represented by a single generic terminal symbol.

Strings of symbols produced by this grammar can be checked for correct­
ness by the finite automaton whose control state diagram is shown in 
Figure 7.2. (This implies the tokenized CHDL is a regular language, 
although it is not characterized by a regular grammar, as can be seen from 

the simplified grammar of Table 7.1.) The control states are shown as 

circles, with the start and finish states labelled S and F respectively. A 
string is accepted as correct if starting in state S there exists a path to 
F such that the arc labels taken in the order in which they occur in the 

path agree with the string. Otherwise the string is considered to have a 
syntax error.

For any input string no input symbol is examined by the above parsing 
procedure more than once; hence any input string is parsed in a number of 
operations linearly proportional to the length of the input string. Thus 

an algorithm for checking any CHDL program for correctness need not have a 
complexity of greater than 0 (n), where n is the number of statements in the 
program.

It might be argued that any such algorithm also has to tokenize the 
logical units mentioned earlier, and that this could increase the degree
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Figure 7.2. The Finite Automaton that Checks the 
CHDL for Correctness.
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PGM
B
C
P
D
M
T
W
A
S
I
X

[ B }b$
baC
P I D I M I T I W 
{ bl)SI } 
bd(x)eA
bmi (1,1) H  bl)S Î 
btbl)Sbl)S
bw(x)fP 
bg=>S I [ 
a a [1] 
# (X)
1 1,X

bk^s]
I a<~x

{ bk^S }bg=>S 
n I v(x)

Non-Terminals Equivalent In Figure 3.1
PGM PROGRAM

B BLOCK
C BLOCKBODY
P PROC
D DPROC
M MPROC
T TPROC
W WPROC
s FIELD2
I FIELD3
A DLIST
X ORDER-INFO

Terminals
b Dl
$ End
a tokenized IDs
1 tokenized LABELS
d Decode
X tokenized DREGs
e as
m Mutex
t Trigger
w While
f do
g None
k tokenized BITS
n Null
V Wait

Table 7.1. The Simplified Grammar
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BLOCK ID
Set of BLOCK IDs 
that occur as 
process-call 
statements in the 
block at left

B- c1 1
B„ c2 2
* •

• •

• •

B Cu u

Given u blocks with IDs B,*...,B1 u
Let C. CB, where B = [Bl5...,B ]1 1 uJ t
Let C = [C1 U...U Cu] a multiset (i.e. a set with some

repeated elements)
Let |CI = v 

If C  ̂= {Bi ,...,B^ } the following is 
1 k inter-block parti

true for the 
partial ordering:

<B. ,B. > ... < B., B. > .1 1-, l i ,1 k

Table 7.2. Inter-block List
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of complexity of the algorithm. As long as there is a fixed upper bound on 

the number of characters in a logical unit, this is not the case. Tokeni- 

zing a particular string of characters would not be a function of n, but of 
the fixed bound.

One other point that should be noted is that no account is taken of 
the fact that DREGs are APL expressions. They are tokenized as single 

symbols. In other words, our checker does not check their APL syntax.
(This would require a separate checker of a more complex type than a finite 

automaton.) What we are doing is factoring out that aspect of the syntax 
check associated with the CS and ignoring that associated with the DS.

This is compatible with the design approach outlined in the Introduction, 
where, from the viewpoint of the CHDL, APL expressions which represent 
functional blocks in the DS are regarded simply as mnemonics for identifying 
those blocks.

7.3.2 Checking for AS1 and AS2
We require that the inter-block partial ordering invoked by the 

process-call statements is a true partial ordering (i.e. no circuits are 

present in the corresponding Hasse diagram, or, to put it another way, no 
blocks eventually call themselves). Also, we require that every block ID 

that occurs in a process-call statement has a corresponding block in the 
CHDL program. This assures us that the processes represented by process- 
call statements are defined.

The validity of the inter-block partial ordering can be checked using 
the topological sort algorithm in [Knu 69]. A topological sort takes a 
partially ordered set (in our case a set of CHDL blocks) and sorts the set 
into a total ordering such that if B.<B. (B. and B. are blocks and "<"
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is the binary relation "calls” that invokes the partial ordering) is true 

for the original partial ordering, it remains true for the total ordering. 
If the sort fails, the set is not partially ordered. In particular its 

associated Hasse diagram contains at least one circuit. The input to the 

algorithm is the set of all pairs <B^,By>, such that B^^B^. is true for 

the partial ordering. In our case this information can be input to the 
algorithm as a list of the form shown in Table 7.2. Using the notation 
of Table 7.2, it can be shown that the complexity of the topological sort 

algorithm (see [Knu 69] for details) is 0(u)-t-0(v). Notice that u equals 
the number of elements to be sorted (the block IDs, B^), and v equals the 
number of pairs <B^, B^> defining the partial ordering. This algorithm 
can be made to abort prematurely if its input is not a true partial 
ordering. Thus, checking the validity of the inter-block partial ordering 
can also be achieved by an algorithm of complexity 0(u)+0(v), once the 

input list has been compiled from the CHDL program. The algorithmic 
complexity of compiling such a list is 0(n) (n is again the number of 
statements in the program): a simple statement-by-statement scan of the 
program is sufficient. Therefore the overall algorithmic complexity to 
check for the validity of the inter-block partial ordering is 0(u)+
0 (v) + 0 (n) .

The requirement that every block ID that occurs in a process-call 
statement must have a corresponding block in the CHDL program can be 
checked for by an algorithm which confirms that C ^ B (see Table 7.2 for 

notation). This can be done by entering the B^s into a table, then 
searching for each of the elements in C. The algorithmic complexity of 
this operation is also 0(u)+0(v) (see [Knu 73]).
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Both the topological sort and the set inclusion algorithms require 

suitable hashing methods with the block IDs to achieve the algorithmic 
complexity measures stated above.

This subsection can be summarized by noting that the algorithmic 
complexity of checking for AS1 and AS2 of a GHDL program is 0(u)+ 0(v)
+ 0(n).

7.3.3 Checking for AS3 and AS4

We require that the adjacency structure of every PROC and WPROC 
block be a true partial ordering with a universal lower bound. Also, we 
require that each number used as a statement label is unique within its 
block.

These requirements can also be checked using a topological sort on 
each PROC and WPROC block. The input to the sort is the adjacency 
structure of the block. This corresponds to the role of the list in 

Table 7.2: the statement labels correspond to the block IDs, and the order 

information in FIELD3 of the statements corresponds to the set C^. Note, 
however, that these sets are sets of immediate successors in the inter­

block partial ordering, whereas the order information represents sets of 

immediate predecessors in the intra-block partial ordering. This implies 
only minor changes to the topological sort algorithm referenced in the 
previous subsection. Checking for the occurrence of at least one empty 
F1ELD3 (this assures us of a universal lower bound; see Chapter 4) and 
unique labels in every PROC and WPROC block can be done with a simple state­
ment by statement scan. Hence, adopting the arguments of the previous sub­
section, we get the algorithmic complexity of checking the adjacency

structures of a CHDL program as
a

2 tO(p.) + 0(q )} .
i=l
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Here p. is the number of statements in the i-th PROC or WPROC block, q 1 1
is the total number of labels in the FIELD3s of those statements and a 
is the number of PROC and WPROC blocks in the program. Notice, as before, 
that p_̂ equals the number of elements (the statement labels) to be sorted, 
and q^ equals the number of ordered pairs of labels defining the intra­
block partial ordering.

7.3.4 Checking for AS5 and AS6

We also require that in each DPROC block the bit strings in the BITS
fields of every statement are the same length (X), and that, if there are

i<2 statements, one of them begins with None. (We assume the APL expres­
sion of the decode argument evaluates to a vector of length j£.) These 
requirements can be checked by a statement-by-statement scan. This leads 

to a checking algorithm of complexity 0(d), where d is the total number 
of statements in all the DPROC blocks of the program.

7.3.5 Checking for AS7 and AS8

Finally, we require that the mutual exclusion condition in each 
MPROC block satisfies the following: Every statement label in the block
must occur in one of the pairs of the mutual exclusion condition, and 
every number in a pair of the mutual exclusion condition of an MPROC must 
occur as a statement label. These requirements can be checked by an 
algorithm of complexity

E 0 ( m Z),
j=l J

where nu is the number of statements in the j-th MPROC block, and (3 the 
number of MPROC blocks in the program
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7.3.6 The Overall Complexity

The results of the five previous subsections can now be combined:
For any CHDL program: n >  u, n > v and n > d.

Also in the worst case for the adjacency structure of a PROC or 
WPROC block:

°(qi) - OCpj2) (See Figure 7.3)
a

But n > S p .
i=l 1

2 a 2Therefore n > 2 p.
i=l 1

2 ^ 2Similarly n > 2 m.
j = l J

Hence, the overall complexity is given by:
0(nS) 1 < s < 2

In most practical cases s ~ 1*

7.4 Concluding Comments

From the result in Section 7.2 it can be seen that the second purpose 
of this thesis (viz. to specify the CHDL so that SC programs describe 

systems which have deadlock-free CSs) has been met. From the results of 
Section 7.3 it can further be seen that it has been met without resorting 
to a complex syntax for the CHDL or limiting its scope (this last point 
from Chapter 6).

Freedom from deadlock, coupled with a simple syntax, is achieved 
by specifying the CHDL so that: different types of processes are separated
into different blocks; a process can only be controlled through a single 

port (except a mutual exclusion process), variously seen as a link, out­
put and input place pair of interacting PNs, or a process-call statement
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Figure 7.3. A Worst Case Adjacency Structure.
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and block ID pair; and the process interaction structure is acyclic. The 

special case of a mutual exclusion process is specified so that it repre­

sents just a small departure from the above scheme. It can be regarded 
as a set of processes that are each controlled through single ports where 
the flow of control through neighboring ports in the set can be mutually 

regulated by the setting and resetting of semaphores.
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8. HARDWARE IMPLEMENTATION OF THE CHDL PROGRAMS

Until now little has been said about the logic gate level of imple­

mentation of the CS modules, of the functional blocks used in the register- 
transfers of the DS, and, hence, of the CHDL programs. In this chapter two 
approaches to the hardware implementation of the CHDL programs are dis­

cussed. The first discusses implementing them directly according to the 
asynchronous model of Chapter 1. The CS modules of Chapter 2 are con­
structed from logic gates, and the functional blocks of the DS are designed 

with additional logic to generate acknowledge signals. The second discusses 
implementing them in a pseudo-asynchronous fashion. This is, strictly 
speaking, a synchronous realization as a clock is used, but it retains many 
of the characteristics and advantages of the asynchronous model of Chapter 1.

8.1 Asynchronous Implementation
The most obvious method for implementing a program in the CHDL, at 

the logic gate level, is to design the CS modules as asyncyronous machines, 
then interconnect them to form the CS that results from applying the trans­

lation procedure of Chapter 4. The APL expressions that define the functional 
blocks of the DS can be realized as combinational logic with additional logic 
to generate acknowledge signals.

Designing each of the ten modules need only be done once, but first 
a signalling convention to define the request (R) and acknowledge (A) signals 
must be chosen.

There are three seemingly natural conventions (see Figure 8.1).
1) Pulse signalling: R and A can be pulses (see top of figure).

2) Simple signalling: R and A can be transitions from 0 to 1 and 1 to 0
(see center of figure)
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Figure 8.1. Some Signalling Conventions.
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3) Reset signalling: R and A can be transitions from 0 to 1 which must

be reset to 0 (see bottom of figure).
Most of the modules have already been designed by Peterson using 

reset signalling [Pet 74] and by Patil using simple signalling [Pat 72]. 
Figure 8.2 shows eight of the ten modules implemented for simple signalling. 
The C-element is a one state sequential machine which can be realized by 
four (two and three input) NAND gates. (See [Mul 63] and [Mil 65] for a 
further discussion of the C-element and speed independent logic, a logic 
design methodology that uses simple signalling.) The operation of the 

modules in Figure 8.2 can be understood from their behaviors in Chapter 2, 
the simple signalling convention shown in Figure 8.1 and the operation 

equation of the C-element shown at the bottom of Figure 8.2. (The C- 
element retains its previous state as long as its two inputs do not agree 

with each other, but tends towards the state of the inputs whenever they 
are both the same.) The implementations shown in Figure 8.2 are (except 
for the I module) all to be found in [Pat 72]. We have included them to 

give an idea of the complexity of a system's CS at the gate level. The 
gate level complexity of the modules when implemented for reset signalling 

is of a similar order [Pet 74]. Nobody has designed any of these CS modules 
for pulse signalling to our knowledge, although they could be designed 
using the techniques of [Kel 74]. For various practical reasons pulse 
signalling is not a very good design choice (in particular, maintenance of 
pulse integrity makes mono-stables necessary - it has been remarked that 
the quality of a design is inversely proportional to the number of mono­
stables it uses). The design philosophy for implementing modules with 
simple signalling is discussed in [Den 71], and general design methods for



103

Muller C-Element
Operation Equation
N+l_ N / v
i - z (x + y) + xy

FP - 5574

Figure 8.2. Modules using Simple Signalling.
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asynchronous modules are discussed in [Alt 69] and [Kel 74], as was also 
noted in Section 2.13. Keller in [Kel 74] also discusses the problem of 

multiple signal changes that can occur at the inputs to some of the modules. 
In our case this point is relevant to the design of the ME and SR modules 

(not shown in Figure 8.2), where it is possible that both input links have 

request signals occurring on them simultaneously, each of which requires 
a different response. This implies a form of arbitration (the J module 

can experience simultaneous input changes, but no arbitration is needed in 
its case). Keller presents an arbitration module called the arbitrating 
test-and-set (ATS) module that can be used to design the ME module.

Figure 8.3 shows the ATS module and a state diagram describing its behavior. 
The ME module can then be implemented for simple signalling as shown in 

Figure 8.4. The SR module can be implemented directly from the ME as 
shown in Figure 8.5. Implementing the ATS module is not straightforward, 
and details can be found in [Kel 74]. In particular, the possibility of 

multiple input changes (the occurrence of T and R simultaneously in state i) 
can cause any implementation to get into a metastable state. This 
phenomenon is further discussed in [Cat 66] and [Cha 73].

Constructing the CS of a system as a network of modules creates a 

structure which is not readily modified. In many systems the capability 

to modify the CS, or the more powerful capability of emulation, is required. 
In such cases the CS can be implemented directly from its PN behavior graph 
as a programmable logic array [Jum 74] or as a diode array [Pat 75]. The 
PN graph can be obtained by first applying the translation procedure of 
Chapter 4 to the CHDL program to get the network of modules that form the 

CS, then using the Construction 2.1 and the simplifications of Chapter 2 to 
construct the CS's PN from each module's PN. Unfortunately both the diode
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Figure 8.5. The SR Module (Simple Signalling).
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array and the programmable array are very inefficient realizations. The 
diode array uses a flip-flop plus additional logic for each place and each 

transition in the PN, over and above the diodes. The programmable logic 
array uses a flip-flop, a C-element plus additional logic in each pro­
grammable cell of the array, many of which are programmed just to pass 
signals between their boundaries without modifying them. Both arrays need 
external arbiters to implement the equivalent of the SR and ME modules 
(reducing somewhat their facility for being modified). The programmable 

array also needs to be able to implement the equivalent of the D and I 
modules. This can be done with some simple (also programmable) logic on 
the inputs and outputs of the array.

As noted at the beginning of this section, the functional blocks 
require additional logic to generate acknowledge signals. To illustrate 
how this can be done two examples are shown in Figures 8.6 and 8.7. In 
both reset signalling is assumed. The first shows a simple register- 

transfer in a bus structured environment, and the second a register- 

transfer which results in addition or subtraction (Z «- X + Y). The operation 
of the first should be clear from the figure - equivalence gates are used 

to detect when the content of the destination register is the same as that 
of the source register. The operation of the second is a little more 

complicated. It is a modification of a carry completion adder (see [Gsc 

75] for details). The outputs of the adder/subtractor that indicate a 
carry (C) or no carry (N) are also used to generate the acknowledge signal. 
Correct operation is assured only if A does not occur before the result of 

the adder/subtractor is latched into the Z register. This need to analyse 
the timing of the functional blocks to assure correct operation can lead



109

Logic for T (transmission gate)
b

g b

T 0
l

high impedance 
a

a
L

"g

Figure 8.6. Acknowledge Signal Generation 1.
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to a complex design procedure (the same considerations apply when designing 
the CS modules, as is pointed out in [Den 71]; however, the CS modules only 
have to be designed once whereas each new GHDL program may have many new 
register-transfers to be designed). The major problem is avoiding delay 

hazards which can cause premature acknowledge signals to occur. A 
systematic method of design which results in designs that are free of 

delay hazards uses a spacer word between each data word.* Unger in [Ung 

69] discusses this design method in detail. Although such a systematic 
approach to DS design is desirable, the loss in throughput rate as a 
result of including spacer words every other word in the data flow brings 
into question the speed-up gained at the register-transfer level by 
operating asynchronously. It should be born in mind that only register- 

transfers whose time of operation are very data dependent (i.e. not simple 
"move contents of register A to register B" type register-transfers) result 
in a faster average time of operation by indicating their own completion 
rather than having the DS assume a worst case bound.

One final note on the asynchronous implementation concerns fault 
tolerance. If the CS modules are implemented for simple signalling, any 
CS constructed from them will automatically halt if a stuck-at fault occurs 
on the wires connecting the NOTs, EORs, C-elements and ATS modules to­
gether. If the CS modules are implemented for a reset signalling using 
the designs given in [Pet 74], any CS constructed from them will halt if 

a stuck-at fault occurs on the wires interconnecting the modules. To make 
the DS fault tolerant many of the usual schemes can be used (see [Sel 68]

*Arrival of a spacer word at the output of a functional block indicates 
that the combinational logic has been flushed of any delayed logic signals 
and,hence, is ready to receive new input data.
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for examples). However, using m-out-of-n codes offers some interesting 

bonuses, as the self-checking checkers that can be devised for such codes 

(see [Smi 77] for more details) can also be used to generate acknowledge 
signals. If a fault causes a non-codeword, or the checker fails, no 

acknowledge signal is returned to the CS resulting in its halting.

8.2 Pseudo-asynchronous Implementation
In the previous section we noted some drawbacks associated with 

asynchronous implementation. These were:
1) The DC can be difficult to design because acknowledge 

signal generation must be implemented. Furthermore, 
solutions to this problem do not lend themselves to 

efficient realization in standard logic families, as these 
are oriented towards synchronous environments.

2) The CS cannot be implemented efficiently in a way that it 
can be readily modified.

3) Simultaneous multiple input changes on ME and SR modules 
can result in non-standard operation of logic elements 

used in their implementation.
These drawbacks can be overcome by using a central clock to regulate 

signal changes within a system, while still retaining the essentially 

asynchronous action described by the CHDL. We use the term pseudo- 
asynchronous (PA) to describe such implementations.

The system model for PA implementation is shown in Figure 8.8. It 
is based on one proposed by Glushkov in [Glu 65] and comprises two 
cooperating finite state machines. One, the CS, is a Mealy machine, and 

the other, the DS, is a Moore machine. The inputs to the CS are shown 
as the vector X,and they represent information about the state of the DS.
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Based on this information and on its own state (given by s^ through ŝ ) 

the CS machine outputs a set of control signals, shown as the vector Y. 
These are gating signals for synchronous register-transfers. No acknow­

ledge signals are generated by the DS logic; instead each register- 
transfer is allocated a fixed number of basic clock cycles. The number 

allocated is based on the worst case time for the register-transfer.

Recalling the list of drawbacks associated with the asynchronous 

implementation, we see that the above PA model overcomes them as follows
1) The DS no longer needs to include acknowledge signal logic 

and can be constructed in an efficient way from available 
logic families with the aid (if necessary) of the many 

automatic design packages aimed at conventional functional 
block implementation.

2) The CS can be made easy to modify by realizing C (see 
Figure 8.8) as a PLA, a ROM, or, if frequent emulation 
is required, a RAM.

3) The multiple input change problem, that can result in non­
standard operation of logic elements does not occur in a 
synchronous environment. However, the problem still occurs 

at the interface between the system and its environment, 
since signals that meet at this boundary are asynchronous 
with respect to one another.

Nevertheless, using a PA implementation has drawbacks of its own. 
These are as follows:

1) Operations at the register-transfer level take a fixed
worst case time period.
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2) The fault tolerance of the asynchronous implementation 

to many stuck-at faults is lost.
3) Consideration must be given to the layout of the logic 

gates, so that clock skewing, due to line delays, does 
not occur. Layout (in particular maximum line length) 
also limits the speed of the clock and hence of the system.

Without going into a general translation technique we shall present 

some examples of how the Mealy machine that implements the CS of a system 

described by a CHDL program can be derived from that program.
The states of the CS(s1 through s^) are held in a set of master- 

slave JK flip-flops (JKFF). Figure 8.9 shows the PA signalling convention. 
In the case of a register-transfer there is no acknowledge - a counter 
is used to measure the time out for the register-transfer, and completion 

of the count serves in lieu of an acknowledge. (The truth table of the 

JKFF is included in Figure 8.9 for convenience.)
A logic circuit useful in understanding the examples that follow 

is the "sequential AND" ($). Its operation is shown in Figure 8.10. Its 
diagrammatic representation is shown at the top, its logic realization 

is shown in the center, and a timing diagram showing its operation under 
the three possible sets of inputs is shown at the bottom. It outputs a 
signal on z after one has occurred on both x and y. (We assume that any 
two consecutive signals on x (y) are separated by one on Y(9).)

Figure 8.11 shows the PA implementation of the CS of a PROC block. 
Each statement is associated with at least one JKFF. The JKFFs are the 
boxes labelled P, 1, 2, 3.1, 3.2 and 4. For clarity the clock lines are 
omitted, the input at the top of each box is assumed to be J, and the
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1) Rl-*-R2
2) MBLOCK [l]
3) AC-^AC  + R2 (1,2)
4) DBLOCK (2)

Figure 8.11. PA Implementation of a PROC Block.
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output at the top of each box is assumed to be Q. A signal (see R,
Figure 8.9) at I starts the machine we have called PBLOCK by gating a 
register-transfer, R1<-R2, initiating another machine called MBLOCK with 

signal MBLOCK^, and setting the JKFFs P, 1 and 2. A set JKFF P indicates 
that machine PBLOCK is active,a set JKFF 1 indicates that the register- 

transfer Rl R2 is active, and a set JKFF 2 indicates that machine MBLOCK 
is active. JKFF 1 is reset after one clock period: this is the time for

operation allocated to the register-transfer. JKFF 2 is reset after the 

inputs to the AND gate J go to logic 1. These are labelled MBLOCK and
lx

are the Q outputs from the JKFFs that would be used to implement the CS 
of MBLOCK. (They stand in the same relation to 2 as the inputs to AND 
gate K stand to P.) The signal MBLOCK^ corresponds to R of Figure 8.9, 
and the outputs of AND gate J correspond to A of Figure 8.9. The 
register-transfer AC<- AC+1 receives a gating signal from the output of 
the $ gate as soon as either the MBLOCK machine is done, or the time 
allocated the register-transfer Rl«-R2 is up, whichever takes longest.
The register-transfer is allocated two clock periods to complete, which 

are counted by JKFFs 3.1 and 3.2. The signal from J also starts 
machine DBLOCK, setting JKFF as it does so. When DBLOCK is done 

JKFF 4 is reset in a similar fashion to JKFF 2. When PBLOCK is done the 
JKFFs 1,2,3,1, 3.2 and 4 are reset. This enables AND gate K which causes 
P to be reset after the next clock pulse. A reset JKFF P indicates 
that PBLOCK is done.

Figure 8.12 shows the PA implementation of the CS of a DPROC block.
Its operation should be clear from the previous discussion. The combinational 
logic with inputs x^ and x^ directs the start signal to the appropriate
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Figure 8.12. PA Implementation of a DPROC Block.
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submachine. Notice that the register-transfer R0«-R1 has been allocated 
two clock periods. In the case of xq=1 JKFF D is set and then reset 

after the following clock pulse - a Null process.

Figure 8.13 shows the PA implementation of the CS of a WPROC block. 
Again, its operation should be clear from the previous discussion. The 

output signal from AND gate L is used to reinitiate the machine if y =1 
is true.

Figure 8.15 shows the PA implementation of the CS of a TPROC block.
The inclusion of the $ gate with its JKFF initially set (see Figure 8.10) 
allows machine XYZ to be active while the process of which TBLOCK 

(represented by JKFF T in the implementation) is a part, may be reinitiated. 
This reinitiation may proceed until just before TBLOCK. It must then 
wait until XYZ is done. Thus the overlap never goes beyond one level.

Figure 8.14 shows the PA implementation of the CS of an MPROC block.
We have arbitrarily given priority to process TWO. This is determined 
by gate M.

In a complete CS, many of the JKFFs are redundant. The only 
essential ones are those associated with $ gates and the register-transfer 
timing. The redundant ones can be eliminated or retained for use in 

system diagnosis. The JKFFs which form the state vector, s^ through ŝ , 
may be regarded as a control status word (CSW) which must be initialized 
to start the machine (usually most of the JKFFs are reset, but those in 

$ gates associated with TPROCs are set). This CSW may also be set to 
intermediate values as part of a diagnostic routine.

It can be seen from this brief sketch of PA implementation that 
many of the characteristics of the asynchronous model are retained,
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Figure 8.13. PA Implementation of a WPROC Block.
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MBLOCK 
Mutex (1,2)
1) ONE
2) TWO

ONEr ONEa TWOa TWOr

Figure 8.15. PA Implementation of a MPROC Block.
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except that time is now defined discretely. The PN graph model of behavior 

still applies, as do the conclusions of Chapters 6 and 7. Hence PA 
implementations are also deadlock-free.

Finally, we make a concluding observation. If our finite state 
machine were designed using a state table, the notion of deadlock would not 

arise. It would be easy enough to ensure that no trap states exist. How­

ever, this method is all but impossible for any but the simplest machine. 

Hence,other representations and methods are required to design the finite 
state machine. With these the notion of deadlock arises. In a sense then, 
deadlock can be viewed as a function of the methods used to design and 
represent the machine.
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9. COMPARISONS TO OTHER CHDLS AND OTHER APPLICATIONS

In this chapter other applications of some of the ideas developed 
in this thesis, as a result of specifying the CHDL, are discussed. Also, 

our approach to CHDLs is compared to others.

9.1 Other Applications
Several people have suggested the use of fork, join and quit operations 

(or their equivalent) for use in high level programming languages to enable 

programmers to write programs in which the potential for multiprocessing 
can be explicitly communicated to the compiler (see [Con 63], [And 65], [Opl 

65] and [Den 66]). The use of fork is analogous to the effect of a W 
module on the flow of control, and the use of join and quit is analogous 

to the effect of a J module on the flow of control.
These operations allow the programmer to specify a control flow which 

can deadlock. By adopting a programming discipline similar to the one we 

have used in the syntax of the CHDL, such situations can be avoided.
Many programmers consider that the use of fork, join and quit in high 

level programming languages obscures the underlying algorithm, that a 
program specifies, by representing the algorithm in a non-sequential fashion 
(see [Wir 66]). To accommodate this criticism and still retain the capa­
bility of multiprocessing, it is necessary to automatically detect segments 
of a program that can be executed concurrently3and have some mechanism at 
the assembly language level, or at the firmware level, for expressing con­
currency. If this mechanism uses operations similar to fork, join and quit, 
we can again impose a discipline on usage to ensure that control flow does
not deadlock. As a footnote to this discussion on programming language
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constructs that facilitate multiprocessing, it is interesting to note that 

the MPROC block of the CHDL is analogous to a simple form of monitor 

(see [Hoa 74]).
Finally, there are two obvious candidates for any design methodology 

that includes something similar to the CHDL. These are the RTMs (Register- 
transfer modules) of the Digital Electronics Corporation (see [Bel 72]), 
and the Macromodules of Washington University (see [Cla 67]). Both of 

these are sets of asynchronous modules which contain elements of both CS 
and DS, that can be interconnected to form custom systems. The types of CS 
that they can produce are similar to those possible with the CS modules of 

Chapter 2. Hence, there is a need for an interconnection discipline, that 
could be imposed by a CHDL, to ensure that control flow does not deadlock. 

In the case of the RTMs, some researchers have suggested a design methodo­
logy that involves designing the target system as an interconnection of 
RTMs, then analyzing the resulting control flow using PNs (see [Hue 75]). 
Such an approach leads, in general, to complex analyses just to confirm 
that the control flow is free of potential deadlock. A further drawback 
also results, in that such analyses do not indicate how to correctly re­

design a system which has been found to have a potential deadlock.

9.2 Comparisons to Other CHDLs
There are currently no CHDLs that are suitable for specifying multi­

processing systems. The major weakness of present CHDLs, in this respect, 
is the very limited nature of the CSs that they can describe. As a case in 
point, consider two of the most popular CHDLs, viz. ISP (see [Bel 71]) and 

AHPL (see [Hil 73]). Both have only very simple CS constructs. To use 
either of them to describe overlapping or mutually exclusive processes 

would be awkward, as all of the coordination would have to be done through
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a system of flags declared in the DS. Furthermore, they can only describe 
simple series/parallel type concurrency. Nevertheless, they could easily 
be improved, from a multiprocessing point of view, by adding a few 
appropriate constructs: semaphores; queues in the control flow; a more 

flexible method of representing concurrency. There is an early example of 
a CHDL which comes closer to being suitable for specifying multiprocessing 
systems, and that is the Computer Compiler (see [Met 66]). This, however, 
can describe systems with potential deadlock in their CS.
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10. CONCLUSION

To recapitulate, the two major purposes of this thesis were:

1. To develop a CHDL with sufficient scope to describe multiprocessing 
systems.

2. To specify the CHDL so that SC programs describe systems which 
have deadlock-free CSs.

A CHDL was developed in Chapters 2, 3, and 4, and it was shown in 

Chapters 6 and 7 that it does, in fact, achieve these purposes. To motivate 
the use of the CHDL it was used to design a small system in Chapter 5. Actual 
gate level implementations, both asynchronous and synchronous, were discussed 
in Chapter 8. Chapter 9 discussed some extensions of the thesis and commented 
on other work.

One general point of note is the hierarchical nature of the CHDL that 

was pointed out throughout this thesis. This follows as a consequence of

the observation made in Chapter 6, viz. that the CHDL satisfies the Structure
Theorem of [Mil 72] and, hence, the Top Down Corollary: programs can be
written or read top down. For the user this means there is a convenient
relationship between the CHDL text (static) and the intended operation of 
the system it describes (dynamic).

In the system model of Figure 1.1 we viewed a digital system as composed 
of a CS and DS. This thesis has been concerned mainly with the CS aspects 
of a CHDL. Further research could be carried out on the DS aspects of a 
CHDL, with special reference to the needs of multiprocessing. As was noted 
in Section 5.3, a formalism for data type definition is needed that is suit­
able for hardware data objects (busses, registers, subfields of registers, 
etc.). Of particular interest would be a method which, aided by the
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formalism for data definition, would facilitate the design of systems with 
deterministic DSs. There are two approaches that may be taken. The first 
is preventative, i.e. specify the CHDL so that it cannot describe non- 

deterministic systems. This is the approach that we have adopted in regard 
to deadlock. The second is curative, i.e. the DS is examined, after the 
design process, for sources of non-determinism. In the opinion of the 

author, prevention is better than cure, but it should not be undertaken to 
the point of limiting the scope of a CHDL until it becomes useless.
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