Limits to Branch Prediction
Trevor Mudge, I-Cheng Chen, and John Coffey

CSE-TR-282-96

January 1996

Computer Science and Engineering Division
Room 3402 EECS Building

THE UNIVERSITY OF MICHIGAN

Department of Electrical Engineering and Computer Science
Ann Arbor, Michigan 48109-2122
USA

Limits to Branch Prediction

Trevor N. Mudge*, I-Cheng K. Chen, and John T. Coffey
Electrical Engineering and Computer Science Department
The University of Michigan
Ann Arbor, Michigan, 48109-2122

Abstract

Branch prediction is an important mechanism in modern microprocessor design. The focus
of research in this area has been on designing new branch prediction schemes. In contrast, very
few studies address the inherent limit of predictability of program themselves. Programs have an
inherent limit of predictability due to the randomness of input data. Knowing the limit helps us
to evaluate how good a prediction scheme is and how much we can expect to improve its accu-
racy.

In this paper we propose two complementary approaches to estimating the limits of predict-
ability: exact analysis of the program and the use of a universal compression/prediction algo-
rithm, prediction by partial matching (PPM), that has been very successful in the field of data and
image compression. We review the algorithmic basis for both some common branch predictors
and PPM and show that two-level branch prediction, the best method currently in use, is a sim-
plified version of PPM. To illustrate exact analysis, we use Quicksort to calibrate the perfor-
mance of various branch predictors. With other programs, too complicated to analyze exactly,
we use PPM, as a measure of inherent predictability.

Our initial results show that PPM can approach the theoretical limit in an analyzable pro-
gram and perform just as well as the best existing branch predictors for SPECInt92. This suggests
that universal compression/prediction algorithms, such as PPM, can be used to estimate the limits
to branch prediction for a particular workload of programs.

Keywords:
branch prediction, limit of branch predictability, prediction by partial matching, text compres-

sion,

January 31, 1996 Limits to Branch Prediction 2

1. Introduction

As the design trends of modern superscalar microprocessors move toward wider issue and
deeper super-pipelines, effective branch prediction becomes essential to exploring the full perfor-
mance of microprocessors. A good branch prediction scheme can increase the performance of a
microprocessor by eliminating the instruction fetch stalls in the pipelines. As a result, various
branch prediction schemes have been proposed and implemented on new microprocessors. While
many researchers focus their attention on designing new branch prediction schemes, very few stud-
ies address the inherent limits of predictability. Programs have an inherent limit of predictability
due to the randomness of input data. This predictability varies from data set to data set; therefore,
results should not be based upon benchmarks with fixed data sets, as they usually have been in the
past. This especially applies when profiling is used to “learn” the best prediction. There is a poten-
tial danger that patterns in a fixed data set may produce catastrophically bad results from the de-
rived predictor. We will illustrate this problem with a simple example from Quicksort.

Knowing the limit of predictability helps us to calibrate how good a prediction scheme is for
a given set of programs. Besides, a limit also indicates how much more we can improve the existing
predictors. Unless we have some idea about what the limit should be, we cannot tell whether 90%
prediction accuracy is good or 75% accuracy is bad for a particular program.

We present two approaches to measuring the limits of branch prediction: exact analysis of the
program and the use of a universal compression/prediction algorithm. For simple programs, such
as sorting programs, the theoretical limit of predictability can be exactly analyzed. For more com-
plicated programs, exact analysis is impractical, so we propose that a universal compression/pre-
diction algorithm be used to measure inherent predictability. Universal compression/prediction
algorithms are well-understood and have been applied with great success in the fields of text and
image compression. More recently, two examples, Lempel-Ziv and prediction by partial matching
(PPM) [Cleary84, Moffat90] have been successfully applied to prefetching data from disk memo-
ries [Vitter91, Curewitz93]. In this paper we used PPM and show that, although designed for text
compression, it performs just as well in this new domain of branch prediction.

This paper is organized into five sections. In section 2 we provide background for the remain-
der of the paper by summarize the operation of the PPM algorithm. We also summarize several
branch prediction methods used in current high-performance computers. We conclude the section
by showing that the best of these, two-level adaptive branch prediction is in fact a simplified ver-
sion of PPM.

In section 3, we consider the prediction of the comparison branches in Quicksort, a relatively
simple problem that can be analyzed exactly. In particular, we develop a theoretical limit for the
predictability of Quicksort and show that PPM can closely approach this limit as its order increases,
while the branch predictors of section 2.2 cannot. Section 4 further shows that PPM can perform
slightly better than the best existing predictors, such as the two-level predictor, on programs from
the SPECInt92 benchmark suite. This is significant in that PPM is an off the shelf algorithm that
has not been tuned to provide good performance for the branch prediction problem. It is also con-
sistent with our observation in section 2 that two-level adaptive branch prediction is just a simpli-
fied version of PPM. Finally, we present conclusions and suggestions for further work in section 5.

January 31, 1996 Limits to Branch Prediction 3

From these initial results, we believe that a universal compression/prediction algorithm. like
PPM. can serve as a diagnostic tool to measure the inherent limit of predictability. Branch predictor
designers can therefore use this powerful diagnostic tool to estimate the limit of predictability for
programs. Once this limit is obtained. designers can readily evaluate the performance of their new
prediction schemes.

2. Branch Prediction Algorithms

2.1 Prediction by Partial Matching

In order to compress data effectively, a compression algorithm has to predict future data ac-
curately to build a good probabilistic model for compression [Bell90]. Many compression algo-
rithms form a model of the probability distribution for the next symbol, and then encode the next
symbol with a compressor tuned to that probability distribution. Universal compression/prediction
algorithms make essentially no a priori assumptions about the source, and build the probability
model recursively by adapting to the characteristics of previously examined symbols. The problem
of designing efficient and general universal compressors/predictors has been extensively exam-
ined. In our experiments we draw on these techniques, adapting them to the new context of branch
prediction.

Prediction by partial matching is a universal compression/prediction algorithm that has been
theoretically proven optimal in data compression and prefetching [Cleary84, Krishnan94,
Moffat90, Vitter91). Indeed, it usually outperforms the Lempel-Ziv algorithm (found in Unix com-
press) due to implementation considerations and faster convergence rate [Curewitz93, Bell90,
Witten94]. The PPM algorithm for text compression consists of a predictor to estimate probabili-
ties for characters and an arithmetic encoder. We only make use of the predictor. We encode the
outcomes of a branch, taken or not taken, as a 1 or a 0. Then the PPM predictor is used to predict
the value of the next bit given the prior sequence of bits that have already been observed.

2.1.1 Markov predictors

The bases of the PPM algorithm of order m are a set of (m + 1) Markov predictors. A Markov
predictor of order j predicts the next bit based upon the j immediately preceding bits—it is a simple
Markov chain. The states are the 2/ possible patterns of j bits. The transition probabilities are pro-
portional to the observed frequencies of a 1 or a 0 that occur given that the predictor is in a partic-
ular state (has seen the bit pattern associated with that state). The predictor builds the transition
frequency by recording the number of times a 1 or a 0 occurs in the (j + 1)-th bit that follows the
J-bit pattern. The chain is built at the same time that it is used for prediction and thus parts of the
chain are often incomplete. To predict a branch outcome the predictor simply uses the J immedi-
ately preceding bits (outcomes of branches) to index a state and predicts the next bit to correspond
to the most frequent transition out of that state.

Figure 1 illustrates how a Markov predictor works. Let the input sequence seen so far be
010101101, and the order of Markov predictor be 2. The next bit is predicted based on the two im-
mediately preceding bits, that is, O1. The pattern 01 occurs 3 times in the input sequence. The fre-
quency counts of the bit following 01 are: O follows 01 twice, and 1 follows 01 once. Therefore,
the predictor predicts the next bit to be 0 with a probability of 2/3. The (incomplete) 4-state Markov

January 31, 1996 Limits to Branch Prediction 4

Input sequence: nexy frequency
0101011012 pattern| bit | count
L 00 0 0
1 0
01 0 2
—i 1 1
10 0 0
1 3
11 0 1
) 1 0

next bit/frequency

Figure 1: Example of a Markov predictor of order 2

The Markov chain at left corresponds to the information collected from the input sequence in the
table at right. Note that the chain is incomplete, because of 0 frequency count transitions.

chain is shown at the left of the figure. Note that a 0-th order Markov predictor simply predicts the
next bit based on the relative frequency in the input sequence.

2.1.2 Combining Markov predictors to perform PPM

We noted earlier that the bases of a PPM algorithm of order m are a set of (m + 1) Markov
predictors. The algorithm is illustrated in Figure 2. PPM uses the m immediately preceding bits to
search a pattern in the highest order Markov model, in this case m. If the search succeeds, which
means the pattern appears in the input sequence seen so far (the pattern has a non-zero frequency
count), PPM predicts the next bit using this mth-order Markov predictor as described in the previ-
ous subsection. However, if the pattern is not found, PPM uses the (m — 1) immediately preceding
bits to search the next lower order (m — 1)-th order Markov predictor. Whenever a search misses,
PPM reduces the pattern by one bit and uses it to search in the next lower order Markov predictor.
This process continues until a match is found and the corresponding prediction can be made.

There are a number of variations on how the frequency information in the individual Markov
predictors can be updated as the PPM process proceeds. In our experiments we use update exclu-
sion. This means that we only update the frequency counters for the predictor that makes the pre-
diction and the predictors with higher order. Lower order predictors are not updated.

January 31, 1996 Limits to Branch Prediction 5

Input sequence: predicts with:
011101 1. 101 ? iffound

L J ——® m-th order Markov predictor
last m bits

if not found l

if found .
| | —— (m - 1)-th order Markov predictor

last m -1 bits

- if not found

°0 o o
[] []

J if found
last 1 bit ———» 1-st order Markov predictor

if not found

p 0-th order Markov predictor

Figure 2: Prediction flowchart of a PPM predictor of order m

2.2 Hardware Branch Predictors

Most of today’s high performance microprocessors support some form of branch prediction
[MReport95]. In the next two subsections we will describe some simple methods that are widely
used and one advanced method, two-level adaptive prediction, that so far has only been used on
the Intel Pentium-Pro (formerly the P6).

2.2.1 Simple 1- and 2-bit Predictors

A 1-bit branch prediction scheme simply records for each branch the most recent outcome.
The next time the branch is encountered during instruction execution its outcome is predicted to be
in the same direction as before. This strategy says that branches tend to repeat themselves. In the
case of loops for example this is usually the case: the branch controlling the iterations of a loop
branches backwards for as many times as the loop is repeated. However, as has been frequently
observed, this scheme results in two mispredictions when the loop condition eventually fails
[Smith81].

A simple improvement that avoids this problem is to use a 2-bit saturating up-down counter.
It records for each branch a count of the recent outcomes of the branch. The counter increments

January 31, 1996 Limits to Branch Prediction 6

GAg PAg Ist letter G: global Ist level)
P: per-address 'SUIEVC
- = | ‘P
L e 2nd letter A: adaptive
I
Cro—% 3rd letter g: global (2nd level)
p: per-address
GAp PAp
/ g g Ist level (-
k-bit shift register
11 \’ g amm . E (branch history register)
E 113 —bg 2nd level g
| N— J | .] [—] [}
1st level 2nd level 1st level 2nd level 2k 2-bit counters
(pattern history table)

Figure 3: Four schemes for two-level predictors

its count by one when a branch is taken and decrements its count when the branch is not taken. The
saturating property means that further increments (decrements) have no effect when the counter
reaches its maximum(minimum) value—the counter saturates. Predictions are made based on the
value of the counter selected. Typically, the predictor predicts taken when the value of the counter
is a 0 or 1 and not taken when the value is -1 or -2. Work by Lee et al. and recently by Nair has
shown this to be the best of the possible 2-bit schemes [Lee84, Nair95].

The 1- and 2-bit schemes as outlined above are examples of per address schemes because a
separate 1- or 2- bit counter is associated with each branch in the program.

2.2.2 Two-level adaptive branch predictors

Two-level adaptive predictors are among the best predictors currently in use [Yeh92, Yeh93].
In the first level, one or more shift registers (branch history registers) are used to record past branch
outcomes as a string of 1s and 0s. The branch outcome patterns recorded in the first level are then
used to index into a table of counters at the second level (the pattern history table) that determines
the prediction. The best performance has been observed when the second level consists of a set of
2-bit saturating up-down counter.

In this paper we consider the four schemes shown in Figure 3. We refer to them using the tax-
onomy proposed by Yeh and Patt. Different schemes are described by three letters. The first letter
indicates, in the first level, whether the past branch outcomes are collected globally from all
branches (G), or on a per address basis from each branch (P). The second letter indicates whether

January 31, 1996 Limits to Branch Prediction 7

twg-level predictor Markov predictor
with m bit history of order m

01 IIIO 1 lO...l()]I?

last m bits

First level

search for corresponding

! (same for both predictors)
data structure "

2 bit counter

E:[:] frequency counter for 1's
Second level 00
{ti
POS1LiVe 51 <21 taken frequency counter for 0's
10 -1
Decision based on: positive or negative count max(0’s frequency, 1's frequency)

Figure 4: A two-level branch predictor vs. a Markov predictor

it is adaptive (A) (e.g., a counter of some kind). The third letter indicates whether the counters (or
constant values if the algorithm is not adaptive) in the second level are indexed by all shift registers
globally (g), or indexed by one per-address shift register (p). The four schemes shown in Figure 3
are: global branch history register with global pattern history table (GAg), global branch history
register with per-address pattern history tables (GAp), per-address branch history register with glo-
bal pattern history table (PAg), and per-address branch history register with per-address pattern
history tables (PAp).

2.3 Two-level adaptive branch predictors as Markov predictors

From the above discussion on two-level adaptive branch predictors in section 2.2.2 and the
one on Markov predictors in 2.1.1 it can be seen that there are strong similarities. Though different
schemes of two-level branch predictors exist, they differ just in what subsets of branch outcomes
are used to index and update the counters, and there exists a corresponding Markov predictor for
each scheme. We can, without loss of generality, take a global history register and a global pattern
history table scheme (GAg) to illustrate the similarity.

Figure 4 shows the similarity between a two-level and a Markov predictor. Both predictors
behave exactly the same in the first level. They both use the last m bits of branch outcome to search
the corresponding data structure. In the second level, the Markov predictor uses frequency counter

January 31, 1996 Limits to Branch Prediction 8

for cach outcome, while two-level predictor uses a saturating up-down 2-bit counter. Whenever a
branch is taken/not taken, the 2-bit counter increments/decrements. The decision for a two-level
predicior depends on whether the value falls in the positive half or the negative half. Similarly. a
Markov predictor simply predicts the next bit to be the most frequent outcome. The saturating
counter is an approximation to this that can be realized in hardware efficiently.

The complete PPM predictor can be viewed as a set of two-level predictors, having not one
size of branch history register (m) but a set that spans m down to 0 (a simple two-bit counter—
equivalent to a per-address predictor with zero history length). To implementing this in hardware
would require a doubling of the hardware, straining the limits of practicality. The extra hardware
required for predictors of order (m-1) to 0 (PPM predictor) is roughly the same as that of a single
predictor of order m (two-level predictor).

3. [Exact Analysis of Predictability

The predictability of branches in some programs can be analyzed exactly, providing a prov-
able limit to branch predictability. The analysis follows the approach common found in the con-
crete analysis of algorithms with the conditional branches being the object of interest. We have
chosen Quicksort algorithm [Sedgewick92] to illustrate this point.

3.1 Description of Quicksort

Quicksortis a divide-and-conquer algorithm. It selects an element from the array being sorted
as pivot. Then the array is partitioned into left and ri ght subarrays such that all elements in the left
subarray are less than or equal to the pivot and all elements in the right subarray are greater than
or equal to the pivot. Quicksort recursively partitions each subarray until the entire array is sorted.
Different variations of Quicksort exist, and we have chosen one described in [Sedgewick92]. This
implementation, shown in Figure 1, first picks the right end element to be the pivot. It also keeps
two scan pointers that initially point to the left end element and the next-to-rightmost element re-
spectively. The left pointer scans to the right until an element greater than the pivot is found. Sim-
ilarly, the right pointer scans to the left until an element less than the pivot is found. Then the two
elements that stopped the pointers are swapped. When two scan pointers cross, the pivot and the
element pointed by the left pointer are swapped. Now the pivot is in its final sorted position and it
partitions the original array into right and left subarrays. The same process repeats with the right
and left subarrays recursively.

Here we only consider the two branches that compare elements pointed to by pointers with
the pivot value (the two while-statements printed in bold face in Figure 5). These two branches
form the kernel of the algorithm and are hard to predict: their outcomes depend heavily on the dis-
tribution of the input data set. The other branches in the program are essentially 100% predictable

if enough past branch outcomes and computation time are provided.

3.2 Predictability of branches in Quicksort

We assume that the 7 numbers to be sorted are distinct, and that each possible initial ordering
is equally likely.

Tt oot

Lo oL 3 ot v

January 31, 1996 Limits to Branch Prediction 9

/** function to swap two elements **/
void swap(itemType array(], int i, int j)
{

itemType t = arraylil;

array(i] = arraylij]:

array(j] = t;

void quicksort(itemType array({], int left, int right)

{
int left_pointer, right_pointer; itemType pivot;

if(right > left)

{
/**assign the right end element as pivot**/

pivot = arrayl(right];

/**set the initial positions of two pointers**/
left_pointer = left - 1; right_pointer = right;

/**infinite loop to partition the array**/
for(;;:)

/**left_pointer scans for element greater or equal to pivot**/
while ((arrayl[++left_pointer]<pivot)&&(left_pointer<sright));

/**right_pointer scans for element less or equal to pivot**/
while ((array[--right_pointer]>pivot)&&(right_pointer>=0));

/**stop if two pointers cross**/
if (left_pointer > right_pointer) break;

swap (array, left_pointer, right_pointer);
}
swap (array, left_pointer, right);
quicksort (array, left, left_pointer-1);
quicksort(array, left_pointer+1l, right):;

Figure 5: A Quicksort program and its two comparison branches

It is well known that each subarray of each iteration is in random order, i.e., each possible
ordering is equally likely [Sedgewick92]. The expected predictability for a subarray varies accord-
ing to the number of elements. It has also been shown that the overall performance of Quicksort
coincides, for large enough arrays, with the performance in one iteration of the algorithm on a suf-
ficiently large array.

At any branch, our prediction of whether the program will branch or not depends on whether
the new element being examined is more likely to be greater than or less than the pivot. Suppose
we have compared j elements to the current pivot, of which i have been greater. Since we have as-
sumed that all orderings are equally likely a priori, the conditional probability that the next element
is greater than the pivot is simply (i+1)/(j+2) as the following conditional probability argument

January 31, 1996 Limits to Branch Prediction 10

shows: Compare the new element to the j numbers examined so far plus the pivot. It can be greater
than from 0 to j+1 of these numbers, with each possibility being equally likely. Of these J+2 pos-
sibilities, i+ 1 mean the new element is greater than the pivot.

So the optimal prediction algorithm maintains a running count of the proportion of elements
examined so far that are greater than the pivot, and compares this quantity to 1/2 to decide which
way to predict the next branch. Equivalently, if a majority of the elements so far have been greater
than the pivot, we predict that the new element will also be greater, and vice versa. (We guess ran-
domly in the case of a tie.)

This scheme is optimal, and its prediction success rate must approach 75% from below as n
becomes large. For we need only estimate whether the pivot is above or below the median, and we
can do this with arbitrarily high accuracy from the first ./n computations for J/n large enough. The
predictions made while this estimate is being formed make up a negligible fraction (1/./n) of the
total number of predictions. Thus the scheme’s performance approaches that of the situation where
the rank of the pivot is known a priori. If we let p = (rank of pivot)/n, then we have p uniformly
distributed over (0,1) as n becomes large, and our success rate is max(p, 1-p). Since the pivot is
equally likely to have any rank, our expected success rate is [(-p)dp+ j" pdp = 0.75.

72

As an aside, note that if we were attempting to compress the branch history of the Quicksort
program, we would feed each symbol into an arithmetic coder that encoded according to the best
estimate of the probability of the next symbol, and compress to H(p) bits per decision, where
H(p) = plog.(1/p) + (1~ p)log,(1/ (1 - p)) is the binary entropy function. Over the whole
Quicksort program (involving many pivots) we would compress to j:H (p) dp bits per decision al-
most surely. The integral is 1/ (2/n2) . However, we know that the program trace can be com-
pressed to log, (n!) =nlogn bits, and no further, since each of the n! orderings is equally likely
a priori. Thus we conclude that Quicksort has almost certainly (2In2)nlog.n decisions on aver-
age. This matches the well-known estimate of the performance of Quicksort [Sedgewick92].

Quicksort also provides a simple example of the potential dangers of extrapolating prediction
performance from one program run. Suppose the program we run consists of one iteration of the
Quicksort algorithm (so that one pivot is chosen). Ten million numbers are to be sorted, and the
right end element (the pivot) is higher than nine million of these. Experimentation would demon-
strate that an optimal predictor would be to predict branch back always in the loop for
left_pointer, as shown in Figure 5, and do not branch back always in the loop for
right_pointer. This would achieve the limit of 90% accuracy for this choice of pivot. However,
there are two major problems. First, this figure gives a very misleading impression of the overall
program predictability, since no algorithm can do better than 75% on the average. What has hap-
pened is that a pattern particular to this input data has been picked up by the predictor. Secondly,
note that the predictor thus developed will perform very poorly on average, achieving only 50%
accuracy (and would achieve arbitrarily close to 0% if a sufficient low pivot is chosen), and in par-
ticular the predictor developed is very poor compared to the optimal one. These problems exist
even though the raw data set used is large (ten million operations).

4. Predicting branches in Quicksort

In this section we compare PPM to a one-bit saturating counter, a two-bit saturating counter,

Sterans

January 31, 1996 Limits to Branch Prediction 1

76

74
----=--- asymptotic

72
70 /

)
Q
]
§ 66 predictor
2 64 /
N & PPM
62 +
60 4 ——8®——Dbest two-level
58 + 1 ——O0——one-bit
10k 200k 3000k counter

size of input data (random
numbers sorted)

Figure 6: Comparison of prediction accuracy for Quicksort

This graph compares the prediction accuracy of different predictors for Quicksort. Note that we
only consider the two comparison branches illustrated in Figure 1. The dashed line indicates the
75% asymptotic limit.

and a two-level adaptive branch predictor. Again, we only consider the two comparison branches
in Quicksort, as shown in Figure 5. The results are shown in Figure 6: PPM shows the best perfor-
mance, followed by the two-bit counter (which also happens to be the best of the two-level predic-
tors in this example), and finally the one-bit counter. Note that PPM can most closely approach the
optimal predictor. Here the optimal predictor described in section 3.2 is designed specifically for
Quicksort and would approach the 75% asymptotic limit if the given data sets are truly random and
uniformly distributed.

For the two-level predictor, we examine all four of the schemes shown in Figure 3: a global
history register with global pattern history table (GAg), global history register with per-address
pattern history table (GAp), per-address history register with global pattern history table (PAg),
and per-address history register with per-address pattern history table (PAp). We also use 2-bit sat-
urating up-down counters for the pattern history table as suggested in [Yeh92]. The best results
were obtained with a PAp scheme. It is plotted in Figure 6 as the line of closed circular bullets,

In practice only GAg or PAg schemes are implemented in hardware. GAp and PAp can quick-
ly become unwieldy. In particular, a PAp scheme is usually too large to be practical but in the case
of Quicksort where only two branches are under consideration, it is reasonable to consider for the
purposes of a simulation. PPM still improves on the PAp scheme even though it is the most com-

January 31, 1996

—_— Limits to Branch Prediction 12
of branches Compress €spresso egntott sc xlisp
static count 90 1300 154 600 333
dynamic count | 11,399 364 73,516,892 | 179,498,636 | 38,153,945 152,923,286

Table 1: Static ang dynamic branch counts in our SPECInt92 programs

e ———

plex of the prediction schemes, that has the potential to capture the most information.

S. Limits of Predictability of the SPECInt92 benchmark suite

In this section, we compare the empirical results of two-level and PPM predictors on pro-
grams from the SPECInt9)

integer benchmark suite. The SPECInt92 programs are not easily ana-
lyzed and therefore make idea] candidates for our study to see if a universal predictor like PPM can
be used as a tool for ch

aracterizing the limits to predictability of programs.

We used ATOM [Eustace95}, a code instrumentation interface from Digital Equipment
Corporation, to conduct oyr experiments. The benchmarks are first instrumented with ATOM, then
executed on a DEC 21064-pased workstation running the OSF/1 operating system. The bench-
marks used for the comparjsop are programs from the SPEC CPU Integer Benchmark Suite, Re-
lease 2/1992 (see Table 1). The branches are predicted on the fly as the execution of the program

proceeds. Their agreement with the actual branch outcomes is recorded to determine the prediction
success rate.

5.1 Single global branch stream and single global predictor scheme (GAg)

We start our comparisons of different predictors with the simplest scheme: using a global

branch stream consisting of outcomes from all the branches and one global predictor, a set of 2-bit
unters. PPM predictors of various orders are compared with equivalent two-level predictors hav-

i;gb;llezsame length of globa history register and a global pattern table. The results are shown in
able 2.

5.2 Multiple per-address branch streams and single global predictor scheme

(PAg)

We next compare the PAg two-level predictor scheme and PPM. PAg means that the inputs
are divided into per-.address branch outcome streams, then they are fed into one global predictor.
The advantage of this, and othey per-address schemes, scheme is that aliasing that may arise by
mixing stream from different branch histories are reduced. However, cold starts become a more
significant problem, because there may not be enough branch outcomes in the first level to train

the predictor (a set of 2-bjy counters) adequately. The cold start problem gets worse as the number

Stdaataksatswod

it

Cove 30 s tond

January 31, 1996 Limits to Branch Prediction 13

GAg two-level predictor

history . Weighted

length compress | espresso egntott sC xlisp Average average
9 87.17 94,90 98.55 95.32 88.32 92.852 93.970
15 89.43 96.39 98.65 96.96 96.17 95.522 97.082
20 89.98 96.65 98.69 97.35 96.87 95.907 97.417

Global-PPM
order of . Weighted
PPM compress | espresso eqatott sc xlisp Average average

9 87.47 94.84 98.55 95.17 88.62 92.930 ;1.056
15 89.69 9643 98.65 96.84 96.27 95.577 97.118
20 90.23 96.74 98.69 97.28 96.83 95.952 97.418

Table 2: Prediction accuracy of GAg style two-level predictor and PPM
The weighted average is weighted by the number of branches executed in the six benchmarks.

of distinct branches increases, since there are more individua_l branch outcome streams that need to
be exercised.

The results are shown in Table 3. PPM performs better than the corresponding two-level pre-
dictor of the same length of history. The improvement comes from a better mechanism for dealing
cold starts in which a set of Markov predictors rather than just the largest one are employed, as PAg
does. If PPM can not find a complete match of the branch history, it reduces the length of the pat-
tern and search in the lower model. On the other hand, two-level predictors filled the history reg-
isters with default values initially, which can lead them to index to the wrong counters. The
accuracy decreases because not only is the wrong counter selected for prediction, but it is also in-
correctly trained. The situation gets worse in the real hardware implementation. Only finite records
of distinct branches can be maintained due to limited buffer size, consequently, the history will be
flushed from time to time. This causes further cold start effects. PPM solves the cold start problem
more gracefully than two-level predictors.

The universal algorithm, PPM, was originally designed for compressing English text and has
not been applied to the field of branch prediction before. However, from the results in Figure 6,
Table 2, and Table 3, we see that PPM can perform as well as, or even better on the average than,
the two-level predictor that was designed specifically for branch prediction. The difference is most
pronounced in the case of Quicksort where there is variance in the input data set. With regard to
variance in the input data set, SPECInt92 is less satisfactory because it has a fixed input and thus

January 31, 1996 Limits to Branch Prediction 14

PAg two-level predictor

t;;tg:hy compress | espresso eqntott sC xlisp Average V‘:’:g :;zced
9 87.91 - 95.34 98.38 97.33 94.60 94.711 96.272
15 88.41 95.88 98.46 98.09 96.60 95.690 97.474
20 88.03 96.31 9847 98.53 98.71 96.010 97.946

Per-address-PPM

or:;;;:f compress | espresso eqntott sC xlisp Average VZSE:;"
9 88.29 95.51 98.39 97.38 94.77 94.868 96.360
15 88.76 96.02 98.46 98.11 97.72 95.814 97.542
20 88.60 96.40 98.48 98.56 98.80 96.170 98.010

Table 3: Prediction accuracy of PAg style of two-level predictor and PPM

Different orders of PPM are compared with equivalent two-level predictors of corresponding his-
tory length. PPM performs better than the corresponding two-level predictor in all comparisons,
since the cold-start effect in the PAg scheme gets worse as the number of distinct branches
increases.

no variance. For calibrating prediction algorithms, a set of inputs would be more desirable
[Sechrest95].

6. Conclusions and further work

In this paper, we assert that there is a fundamental limit to branch predictability, due to the
randomness of the input data. Knowing or estimating this limit before attempting to design branch
predictors is valuable. If there is a large gap between the performance of simple predictors and the
limit, we can be assured that better performance can be obtained with more complex predictors.
Conversely, when simple branch predictors achieve results very close to the estimated limit, we
know that further effort to develop ever more complicated predictors will probably be futile.

We have applied two approaches to measure the inherent limits of branch prediction. For sim-
ple programs, such as Quicksort, we analyze asymptotic predictability exactly. In dealing with
more complicated programs, we use well-understood universal compression/prediction algo-

January 31, 1996 Limits to Branch Prediction 15

rithms. such as PPM. as a measure of inherent predictability. Despite the fact that PPM was orngi-
nally designed with text compression in mind, it is a universal algorithm, and can be expected to
perform well asymptotically for almost any source. Our results indicate that it performs very well
in practice in this new field, branch prediction. We have shown that, in the Quicksort program.
PPM can increasingly approach the theoretical limit, while many other existing simple predictors
cannot. Additionally, the simulation results on the SPECInt92 benchmark suite have further con-
firmed that PPM can perform as well as the best known predictors, such as two-level adaptive
branch predictors. This is significant in that it establishes the usefulness of PPM as a universal pre-
dictor.

We have used PPM to establish an estimate of the ultimate limit of predictability. We do not
claim that any number thus derived is provably an absolute limit. However, although it is possible
that a simple, implementable predictor will substantially outperform a complex universal algo-
rithm, this seems a remote possibility at best. Thus a universal algorithm, such as PPM, can serve
as a diagnostic tool to measure the inherent limit of predictability. Branch predictor designers
would therefore benefit by applying such universal algorithms to estimate the inherent limit of pre-
dictability and the performance of their new prediction schemes.

Finally, we have proposed PPM purely as a measure of predictability. Its complexity, which
is roughly twice that of a two-level predictor using same history, suggests that it is not suitable for
realization in hardware. Nevertheless, it may suggest some improvements to existing predictors.

January 31, 1996

Limits to Branch Prediction 16

References
[Bel190]

[Cleary84)

[Curewitz93]

[Eustace95])

[Krishnan94]

[Lee84)

[Moffat90]

[MReport95]
[Nair95]

[Sechrest95]

(Sedgewick92]
[Smith81]

[Vitter91]

[Witten94)

[Yeh92]

[Yeh93]

Bell, T.C., Cleary. J.G. and Witten LH. Text Compression. Englewood Clifts. NJ: Prentice-Hall,
1990,

Cleary, J.G. and Witten, LH. Data compression using adaptive coding and partial string match-
ing. IEEE Transactions on Communications, Vol. 32, No. 4. 396-402, April 1984,

Curewitz K. M., Krishnan, P. and Vitter, J.S. Practical prefetching via data compression. Pro-
ceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Wash-
ington, D. C., 257-266, May 1993.

Eustace, A. and Srivastava, A. ATOM: A flexible interface for building high performance pro-
gram analysis tools. Proceedings of the Winter 1995 USENIX Technical Conference on UNIX
and Advanced Computing Systems, 303-314, January 1995,

Krishnan, P. and Vitter, J.S. Optimal prediction for prefetching in the worst case. Proceedings
of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, January 1994,

Lee, J.KF. and Smith, A.J. Branch prediction strategies and branch target buffer design. IEEE
Computer, Vol. 21, No. 7, 6-22, January 1984.

Moffat, A. Implementing the PPM data compression scheme. [EEE Transactions on Communi-
cations, Vol. 38, No. 11, 1917-1921, November 1990.

Microprocessor Report, Sebastopol, CA: MicroDesign Resources, March 1995,

Nair, R. Optimal 2-bit branch predictors. IEEE Transactions on Computers, Vol. 44, No. 5,
698-702, May 1995

Sechrest, S., Lee, C. and Mudge, T. The role of adaptivity in two-level adaptive branch predic-
tion. Proceedings of the 26th Annual International Symposium on Microarchitecture, Ann Ar-
bor, December 1995.

Sedgewick, R. Algorithms in C++. Reading, Massachusetts: Addison-Wesley, 1992.

Smith, J.E. A study of branch prediction strategies. Proceedings of the 8th International Sym-
posium on Computer Architecture, Minneapolis, 135-148, May 1981,

Vitter, J.S. and Krishnan, P. Optimal prefetching via data compression. Proceedings of the 32nd
Anmial IEEE Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 121-
130, October 1991.

Witten I.H., Moffat, A. and Bell T.C. Managing Gigabytes. New York, NY: Van Nostrand Re-
inhold, 1994,

Yeh, T-Y. and Patt, Y. Alternative implementation of Two-Level Adaptive Branch Prediction.
Proceedings of the 19th International Symposium on Computer Architecture, Gold Coast, Aus-
tralia, 124-134, May 1992.

Yeh, T-Y. and Patt, Y. A comparison of dynamic branch predictors that use two levels of branch
history. Proceedings of the 20th International Symposium on Computer Architecture, San Di-
€go, 257-266, May 1993,

