Software TLB Management in OSF/1 and Mach 3.0
by

Richard Uhlig, David Nagle, Trevor Mudge and Stuart Sechrest
CSE-TR-156-93

Computer Science and Engineering Division
Room 3402 EECS Building

THE UNIVERSITY OF MICHIGAN

Department of Electrical Engineering and Computer Science
Ann Arbor, Michigan 48109-2122
USA

Software TLB Management in
OSF/1 and Mach 3.0

Richard Uhlig, David Nagle, Trevor Mudge, Stuart Sechrest
Dept. of EECS, University of Michigan, Ann Arbor

Full Paper — Submitted to
3rd USENIX Mach Symposium

December 4, 1992

1.0 Abstract

Many new computer architectures provide reduced hard-
ware support for virtual memory in the form of basic
translation buffer (TLB) hardware, software traps for TLB
miss handling, and a small set of instructions for probing
and changing TLB state. This means that operating system
writers are responsible for choosing page table structure
and the policies governing the placement and replacement
of page table entries in the TLB. If done carelessly, soft-
ware TLB management can impose considerable penalties
which are exacerbated by the structure of newer genera-
tion operating systems such as OSF/1 and Mach 3.0.

This work explores the current TLB management policies
of OSF/1 and Mach 3.0-based systems and explains some
of the reasons for their lower performance when compared
against more traditional, monolithic-kernel designs such
as Ultrix. We present a collection of improved TLB man-
agement techniques and measure their effectiveness with
OSF/1 and Mach 3.0. Although our experiments are per-
formed on a MIPS R2000-based machine, our techniques
have been designed to exploit features of the newer MIPS
R4000 TLB.

2.0 Introduction

Microkernel operating systems such as Mach 3.0 offer
many advantages [Accetta et al. 1986], but have always
suffered performance problems [Guillemont et al. 1992;

Anderson et al. 1991]. In their 1991 ASPLOS paper,
Anderson et. al suggested that a major reason for these
performance problems is a divergence of operating system
and computer architecture trends. They arrived at this con-
clusion by estimating the cost measuring the frequency of
various primitive operating system functions such as con-
text switching, system call invocation and translation
buffer (TL.B) miss handling. Figure 1 reproduces some of
Anderson’s results which compare the performance of the
monolithic-kernel Mach 2.5 against the microkernel-based
Mach 3.0. With the exception of instruction emulation,
kernel TLB (KTLB) miss handling is by far the most fre-
quently invoked operating system primitive considered in
Anderson’s study.! Note that although address space and
thread context switches increase most dramatically in the
Mach 3.0 system, their frequency is small when compared
against KTLB misses.

The R3000-based'DECstation 5000 used in Anderson’s
study is representative of a recent class of machines that
require TLB misses to be serviced by OS software [Kane
et al. 1992]. Other processor architectures with software-
managed TLBs include the HP-PA and the DEC Alpha
[Hewlett-Packard 1990; Digital 1992]. Such machines
require operating system writers to choose both page table
structure and the policies governing placement and
replacement of page table entries (PTEs) in the TLB.
Although the costs of software TLB management can be

L KTLB misses typically represent only about 5% to 10% of all
TLB miss types. When all TLB miss types are taken into
account, they outnumber even the emulated instructions.

This work was supported by the Defense Advanced Research Projects Agency under DARPA/ARO Contract Number DAAL03-90-C-
0028, by National Science Foundation Grant No. CDA-9121888 and by a National Science Foundation Graduate Fellowship.

1of 13

Analysis Tools and Method

Operating Time Address Space Thread Context System Emulated KTLB Other
System (seconds) Switches Switches Calls Instructions Misses Exceptions
Mach 2.5 307.2 10,740 18,225 90,605 2,650,879 439,067 173,937
Mach 3.0 4165 215,811 248,274 278,771 5,233,938 3,857,602 390,385
Ratio 1.4:1 209:1 13.6: 1 3.1:1 2.0:1 88:1 22:1

Table 1 Application Reliance on Operating System Primitives

These data are derived from Table 7 of [Anderson et al. 1991]. The counts are the sum of OS primitive invocations caused
by running a workload consisting of spellcheck, latex, andrew (local and remote), linking a vmunix kernel and parthenon
(1 and 10 threads). The time is the total required to run all of these programs once on an R3000-based DECstation 5000.
The ratios show the increase in time (or counts) for the Mach 3.0 system when compared against Mach 2.5. Their Mach
3.0 system (which is similar to our Mach 3.0 + AFS system described in Table 2) supports UNIX and AFS functionality in

two separate user-level servers.

substantial, there has been little investigation into this new
OS responsibility.

In this work we examine the software TLB management
problem in depth, considering all types of TLB misses. To
perform this work, we extend the range of systems studied
by Anderson et al. to include Ultrix, OSF/1 and two ver-
sions of Mach 3.0 (one with an AFS client cache manager
and one without). We also construct workloads that emu-
late the activity of a system with many user-level servers
and relate poor TLB performance to high degrees of sys-
tem decomposition. To mitigate this cost, we propose and
measure the effectiveness of various improved TLB man-
agement policies. Our experiments are performed on an
R2000-based DECstation 3100, but our results extend to
the newer MIPS R4000 processor [Kane et al. 1992].

This paper is organized as follows. Section 3.0 describes
the tools, machines and operating systems used in our
analysis. Section 4.0 is a case study of the current TLB
management techniques used by Ultrix, OSF/1 and Mach
3.0 on a DECstation 3100. In Section 5.0 we suggest
improvements to TLB management in the baseline sys-
tems and then measure their effectiveness. Section 6.0
summarizes the work.

3.0 Analysis Tools and Method

The performance of low-level operating system primitives
is heavily dependent upon hardware parameters such as
instruction and data cache size, TLB size and main mem-
ory bandwidth. To take these effects into account, we use a
combination of hardware- and software-based analysis
tools to perform our analysis of TLB management costs.

3.1 System Monitoring with Monster

The Monster monitoring system (see Figure 1) was devel-
oped to enable analyses of the interaction between operat-
ing systems and computer architectures. Monster consists
of a DECstation 3100 whose motherboard has been modi-
fied so that a logic analyzer can be attached to the CPU
pins. In this study, we use Monster to obtain accurate mea-
surements of TLB miss handling costs. Monster’s other
capabilities are described more completely in a University
of Michigan technical report [Nagle et al. 1992].

The logic analyzer component of Monster contains a pro-
grammable hardware state machine and a 128K-entry
trace buffer. The state machine includes pattern recogni-
tion hardware that can sense the processor’s address, data
and control signals on every clock cycle. This state
machine can-be programmed to trigger on certain patterns
appearing at the CPU bus and then dump these signals and
a timestamp (with 1ns resolution) into the trace buffer.

Timing software code paths also requires an instrumented
OS kemel. For example, to measure the time spent in the
software TLB miss handlers, the entry and exit points of
the handlers are annotated with distinctive nop marker
instructions. The logic analyzer’s state machine is pro-
grammed to detect the marker instructions which are
stored to the logic analyzer’s buffer along with a times-
tamp while the system runs some workload of interest.
When the workload completes, the trace buffer is post-
processed to obtain a histogram of time spent in the differ-
ent invocations of the TLB miss handlers.

This technique for timing code paths yields far more accu-
rate timings for single invocations of a code path than can

Software TLB Management in OSF/1 and Mach 3.0

20f 13

Analysis Tools and Method

DECstation 3100
Motherboard

Logic Analyzer Pod

Figure 1 The Monster Monitoring System

Monster is a hardware monitoring system consisting of a Tektronix DAS 9200 Logic Analyzer and a DECstation
3100 running three operating systems: Ultrix, OSF/1 and Mach 3.0. The DECstation motherboard has been modi-
fied to provide access to the CPU pins, which lie between the processor and the cache. This allows the logic ana-
lyzer to monitor virtually all system activity. To enable the logic analyzer to trigger on certain operating systems
events, such as the servicing of a TLB miss, each operating system has been instrumented with special marker NOP
instructions that indicate the entry and exit points of various routines.

Operating System Description Benchmark Description

Ultrix Version 3.1 of Ultrix, as shipped by Digital gee The GNU cc compiler benchmark taken
Equipment Corporation. from the SPEC Benchmark Suite [SPEC

OSF/1 Version 1.0 from the Open Software Founda- 1991},
tion (derived from Mach 2.5.) io Creates an 8 Megabyte file.

Mach 3.0 Carnagie Mellon University's microkerne! ver- Ousterhout John Ousterhout’s benchmark suite from
sion mk77 and UNIX server version uk38. [Ousterhout 1989].

Mach 3.0 + AFS Same as Mach 3.0, but with an AFS cache spell The UNIX spell utility applied to a 13K
manager running as a separate task outside of ward latex document.

the UNIX server.

Table 2 Operating Systems Used in This Study

Table 3 Benchmarks Used in This Study

be obtained by using a system clock with much coarser
resolution or, as is often done, by executing a code frag-
ment in a loop N times and then dividing the total time
spent by N [Clapp et al. 1986].

3.2 Method

All experiments were performed on an R2000-based DEC-
station 3100 (16.7MHz) running three different base oper-
ating systems (see Table 2): Ultrix, OSF/1 and Mach 3.0.

Each of these systems includes a standard Berkeley fast
file system [McKusick et al. 1984]. An additional Mach
3.0-based system was created by adding the Andrew File
System (AFS) cache manager [Satyanarayanan 1990],
running as a separate server task.? To obtain measure-
ments, all of the operating systems were instrumented with
counters and markers as outlined in the previous section.

2 The current version of the UNIX server from CMU includes
AFS functionality. For our experiments, we have (partially)
moved this AFS code into a separate task.

Software TLB Management in OSF/1 and Mach 3.0

3of 13

ARSI

Case Study

User Kernel
Data Data
Page Page
_..»
Level 1 User PTE
L1 Each PTE maps one, 4K page of
user text or data. Level 1 Kernel PTE
Each PTE maps one, 4K page of
[Level 2 PTE kernel text or data.
L2 Each level 2 PTE maps one, 1,024
entry user page table page
- Virtual Address Space
L3 Level 3 PTE Physical Address Space
Each level 3 PTE maps 1 page of
either level 2 PTEs or level 1 kernel
PTEs.

Figure 2 Page Table Structure in OSF/1 and Mach 3.0

The Mach page tables form a 3-level structure with the first two levels residing in virtual (mapped) space. The top
of the page table structure holds the user pages which are mapped by level 1 user PTEs. These level 1 user PTEs are
stored in the L1 page table with each task having its own set of L1 page tables.

Mapping the L1 page tables are the level 2 PTEs. They are stored in the L2 page tables which hold both level 2
PTEs and level 1 kernel PTEs. In turn, the L2 pages are mapped by the level 3 PTEs stored in the L3 page table. At
boot time, the L3 page table is fixed in unmapped physical memory. This serves as an anchor to the page table hier-
archy because references to the L3 page table do not go through the TLB.

The MIPS R2000 architecture has a fixed 4 Kilobyte page size. Further, each PTE requires 4 bytes of storage.
Therefore, a single L1 page table page can map 1,024 level 1 user PTEs, or approximately 4 Megabytes of virtual
address space. Likewise, the 1.2 page tables can directly map either 4 Megabytes of kernel data or indirectly map 4

Gigabytes of L1 user data.

Throughout the paper we use four benchmarks (see
Table 3). The same binaries were used on all operating
systems. To improve accuracy, each measurement cited in
this paper is the average of three trials.

4.0 Case Study

In this section we describe the Ultrix, OSF/1 and Mach 3.0
page table structures and the hardware support for address
translation provided by the R2000/R3000 and the newer
R4000 microprocessors. We analyze the current TLB man-

agement policies for the different operating systems on an
R2000-based DECstation 3100 and then present our mea-
surements of TLB miss handling costs in these systems.

4.1 Page Tables and Translation Hardware

OSF/1 and Mach 3.0 on the DECstation both implement a
linear? page table structure (see Figure 2). These page
tables are used to store the mapping of pages from a large

3 Rather than an inverted pages table [Wilkes et al. 1992].

Software TLB Management in OSF/1 and Mach 3.0

40f 13

Case Study

R2000 and
TLB Miss Type Ultrix OSF/1 Mach 3.0 R3000 TLB
Level 1 User 20 20 20
Level 1 Kernel 294 294 294 R4000 TLB
Level 2 407 407 407
........ 56 Slot .
Level 3 282 2? Upper Upper Partition
Other 405 40 Partition
) Flexible Partition
Table 4 Costs for Different TLB Miss Types Point with 48 Slots
This table shows the number of machine cycles (at 60 Total \
ns/cycle) required to service different types of TLB 8 Slot P Y e TTTrr
misses. To determine these costs, Monster was used to Low_er Lower Partition
collect a 128K-entry histogram of timings for each Partition
type of miss. The histogram was then pruned by 25%

to remove outliers caused by intervening interrupts,
and the median value for each type of miss was found.
We separate TLB miss types into the five categories
described below. Note that Ultrix doesn’t have level 3
PTE misses because it implements a 2-level page table.

Level1 User TLB miss on alevel 1 user PTE.
Level 1 Kernel TLB miss on a level 1 kernel PTE.

Level 2 TLB miss on level 2 PTE. This can
only occur after a miss on level 1
user PTE.

TLB miss on a level 3 PTE. Can
occur after either a level 2 PTE miss
or a level 1 kernel PTE miss.

Level 3

Other All other exceptional conditions
involving the TLB, including
accesses to invalid pages (page
faults) and page protection viola-
tions.

virtual address space to a more limited, physical address
space. Each task has its own L1 page table, which is main-
tained by machine-independent pmap code [Rashid et al.
1988]. Because the user page tables can amount to several
megabytes, they are themselves paged. This is supported
through L2 (or kernel) page tables, which also map other
kemel data. Because kernel data is relatively large and
sparse, the L2 page tables are also mapped. This gives rise
to a 3-level page table hierarchy and a variety of different
page table entry (PTE) types.

The R2000 processor contains a 64-slot, fully-associative
TLB, which is used to cache recently-used PTEs. When
the R2000 translates a virtual address to a physical
address, the relevant PTE must be held by the TLB. If it is
absent, the hardware invokes a trap to a software TLB
miss handling routine that finds and inserts the missing
PTE into the TLB by using various TLLB control instruc-

Figure 3 The MIPS TLBs

The MIPS R2000 and R3000 microprocessors both
bave an on-chip, 64-entry, fully-associative TLB that
supports fixed lower and upper partitions of 8 and 56
slots, respectively. R2000/R3000 PTEs map 4 Kbyte
pages.

The R4000 TLB is also on-chip and fully associative,
but it has 48 slots which can hold pairs of consecutive
PTEs. The partition between upper and lower slots is
not fixed and can be set under software control. R4000
PTEs map pages that can vary from 4 Kbytes to 16
Mbytes in size.

tions. The R2000 supports two different types of TLB miss
vectors. A special vector is used to trap on missing transla-
tions for level 1 user pages. This special vector is justified
by the fact that level 1 user PTE misses are assumed to be
the most frequent of all PTE types [DeMoney et al. 1986].
All other TLB miss types (such as those caused by refer-
ences to kernel pages, invalid pages or write-protected
pages) are vectored to a generic exception vector. This
broad collection of misses is the same as the KTLB misses
described in Anderson’s study {Anderson et al. 1991].

For the purposes of this study, we refine the definition of
TLB miss types (see Table 4) to correspond to the page
table structure implemented by OSF/1 and Mach 3.0, In
addition to level 1 user TLB misses, we define four subcat-
egories of KTLB misses (level 1 kernel, level 2, level 3
and other). Table 4 also shows our measurements of the
time required to handle the different types of TLB misses.
The wide differential in costs is primarily due to the two

4 In addition to these TLB related traps, the generic vector is
shared among all other interrupts, exceptions and traps such as
clock and device interrupts, arithmetic exceptions and system
calls.

Software TLB Management in OSF/1 and Mach 3.0

50of 13

Case Study

different miss vectors and the way that the OS uses them.
Level 1 user PTEs can be retrieved within 20 cycles
because they can be serviced by a highly-tuned handler
inserted at the special vector. However, all other miss
types require from about 300 to over 400 cycles because
they are serviced by a generic handler that is inserted at
the generic exception vector.

The R2000 TLB hardware supports partitioning of the
TLB into two sets of slots. The lower partition is intended
for infrequently referenced PTEs with high retrieval costs,
while the upper partition is intended to hold more fre-
quently used PTEs that can be re-fetched more quickly.
The TLB hardware also supports random replacement of
PTEs in the upper partition through a hardware index reg-
ister that returns random numbers in the range 8 to 63.
This effectively fixes the TLB partition at 8, so that the
lower partition consists of slots 0 through 7, while the
upper partition consists of slots 8 through 63,

The TLB of the MIPS R4000 differs from the
R2000/R3000 TLB design in four significant ways (see
Figure 3) [Kane et al. 1992]. First, the slot partition point
is adjustable because the range of numbers generated by
the random index register can be changed under software
control. Second, level 1 kernel PTE misses are eligible to
be serviced by the same special miss handler that fixes
level 1 user PTE misses. This reduces their retrieval time
by an order of magnitude. Third, page size in the R4000 is
variable from 4 Kbytes to 16 Mbytes. Finally, the R4000
TLB has only 48 slots, but each slot can hold a pair of
PTEs if they are contiguous in the virtual address space. In
this study, we are primarily interested in the first two dif-
ferences.

4.2 The TLB Management Problem

The challenge of TLB management is to minimize overall
TLB miss handling time through the allocation of a fixed
number of TLB slots to the different types of PTEs. As we
shall see, optimal TLB management is dependent upon the
structure of the operating system and its use of virtual
memory. The management problem is also complicated by
the varying costs to retrieve the different PTE types and by
the different patterns with which they are accessed. For
example, level 1 user PTEs are used on every memory ref-
erence by a user task, but level 2 PTEs are only needed
when servicing level 1 PTE misses. Thus, level 2 PTEs are
used less frequently but are much more costly to retrieve if
they are missing from the TLB. Level 3 PTEs are only
used when servicing level 2 or level 1 kemnel PTE misses.

Mach 3.0
PTE Type Uhtrix OSF/1 | Mach3.0 | +AFS

Level 1 User 1,776,190 | 2,111,741 | 2,771,397 | 7,417,212
Level 1 Kernel 2,112 | 541,323 42,615 | 172,649
Level 2 420 1,449 23,448 | 206,257
Level 3 R 56,365 45493 | 135,764
Other 21,291 47,841 54,140 | 77,733
Total 1,825,013 | 2,758,719 | 2,937,093 | 7,855,140

Table 5 TLB Miss Counts in the Base Systerns

These are the total occurrences of TLB misses for each
of the different PTE types. The counts are the total
obtained by running each of the workloads from
Table 3.

So, level 3 PTE use is infrequent unless the level 2 and
level 1 kernel PTE miss rates are high.

The varying retrieval costs and interrelationships between
different PTE types are the basis for TLB management
policies such as determining into which TLB partition a
given PTE type should be placed, and what the replace-
ment policy for evicting PTEs from the TLB should be. In
a more flexible TL.B design, such as in the R4000, an addi-
tional TLB management concern is the setting of the parti-
tion point.

4.3 TLB Management in the Baseline Systems

Each of the systems that we studied use similar TL.B man-
agement policies. All three systems use the 8-slot lower

Mach 3.0
PTE Miss Type Ultrix OSF1 Mach 3.0 +AFS
Level 1 User 2.13 253 3.33 8.90
Level } Kernel 0.48 9.55 0.73 2.96
Level 2 0.01 0.04 0.57 5.04
Level3 | e 0.97 0.80 2.39
Other 0.52 1.16 1.32 1.89
Total 3.14 14.25 6.75 21.18

Table 6 TLB Miss Costs in the Base Systems

This table shows the total cost (in seconds) to service
each of the different TLB miss types. The costs were
obtained by combining the counts from Table 5 with
the code path timings of Table 4.

Software TLB Management in OSF/1 and Mach 3.0

60of 13

Better TLB Management

TLB partition to hold level 2 PTEs and the 56-slot upper
partition to hold all other PTE types. All systems use a
first-in-first-out (FIFO) replacement policy in the lower
partition and random replacement in the upper partition.

Although management policies between the systems are
mostly identical, there are some differences. First, becanse
Ultrix implements a 2-level page table structure, it has no
level 3 PTEs. Second, the version of OSF/1 shipped by
OSF actually doesn’t use the lower partition at all; OSF/1
mixes all PTE types in the same 56 slots of the upper parti-
tion, throwing away 12.5% of the available TL.B resource.
We considered this a code bug and modified the OSF/1
miss handlers to utilize the lower partition according to the
same policies used by Ultrix and Mach 3.0.

We measured TLB performance under these management
policies for each of the four systems. Table 5 shows the
TLB miss counts, while Table 6 shows the cost (in sec-
onds) to service the different types of misses. Although all
of these operating systems use similar TLB management
policies and ran the same workload with identical binaries,
their TLB performance varies widely.

The policies described above work well for Ultrix, which
spends only 3.14 seconds (out of 281 seconds total) han-
dling TLB misses. By separating level 2 PTEs from the
other PTE types, the miss counts for this expensive PTE
type are kept very low. Because of its monolithic-kernel
structure, Ultrix is also able to store all of its program text
and most of its data structures in unmapped space. This is
evident by the low rates of level 1 kernel PTE misses.
Note that Ultrix, with its 2-Ievel page table structure, also
completely avoids the miss handling costs associated with
the level 3 PTEs of the OSF/1 and Mach 3.0-based sys-
tems.

OSF/1 spends a much greater amount of time (14.25 sec-
onds) handling TLB misses. This is primarily due to a high
component of level 1 kernel misses. Although OSF/1 is a
monolithic-style kernel like Ultrix, it maps a greater por-
tion of its data structures because of its dynamic kernel
memory allocator that relies on virtual memory support.

The Mach 3.0-based systems also spend a greater deal of
time handling TLB misses, either about 6 or 20 seconds
depending on whether or not there is an additional user-
level AFS server in the system. The large jump in level 1
user misses is due to the migration of OS services from the
Mach 3.0 microkernel into the user-level UNIX server
where they must be mapped. The Mach 3.0+AFS system
also shows a large jump in level 2 misses due to the addi-

tion of the AFS server. We will explore the relationship
between level 2 misses and the number of user-level OS
servers more completely in subsequent sections.

The data in Table 5 and Table 6 demonstrate a breakdown
of the old, Ultrix-style TLB management policies when
carried over to the OSF/1 and Mach 3.0-based systems. In
the next section, we will explore a collection of TLB man-
agement techniques that are more effective for the OSF/1
and Mach 3.0-based systems.

5.0 Better TLB Management

When we set out to formulate new TLB management tech-
niques, we asked ourselves several questions about the
existing policies and how they might be changed. These
questions are listed below and the answers we arrived at
can be found in the following subsections.

s What should the PTE placement policy be? That is,
into which partition (upper or lower) should the 4 var-
ious PTE types be placed?

e What policies should guide adjustment of the partition
point? What factors change the position of the optimal
partition point?

o Which replacement policies are most effective for the
two different partitions? That is, when a new PTE is
inserted into the TLB, should the PTE that is evicted be
selected by a FIFO or a random policy?

o Whar are the benefits of reducing miss costs for PTE
types other than the most frequently used level 1 user
PTEs?

5.1 PTE Placement and Partitioning

All of the baseline systems place level 2 PTEs into the
lower partition and all other PTEs in the upper partition.
Level 1 user PTEs, which have a low retrieval cost, are
separated from level 2 PTEs because they have a much
higher retrieval cost. However, it is unclear why the base-
line systems mix the costly-to-retrieve level 1 kernel and
level 3 PTEs with level 1 user PTEs. Furthermore, if mix-
ing costly-to-retrieve mappings with level 1 user PTEs is
acceptable, it is unclear if PTE partitioning is required at
all.

To determine the effects of other PTE placement choices,
we modified the miss handlers of the baseline systems to
implement other meaningful policies. The results are
shown in Table 7. Policy A is identical to that imple-
mented by the baseline systems. The importance of some

Software TL.B Management in OSF/1 and Mach 3.0

7 of 13

Better TLB Management

sort of partitioning is shown by Policy D, where all PTEs
are mixed together, and which demonstrates Very poor per-
formance. At first glance, the baseline policy A appears to
be the most desirable. However, note that with policies B
and C, the lower partition was not permitted to grow
beyond 8 slots to accommodate the additional PTE types
allocated to this partition.

To see if the performance of policies B and C would
improve with a larger lower partition, we modified the
baseline miss handlers to vary the partition point from its
fixed location at 8. Although the R2000 TLB only effi-
ciently supports a partition point of 8, it is possible to over-
come this limitation by generating the random
replacement index in software. Although the resulting han-
dlers are slowed down to the extent that this technique
doesn’t make sense for usual system operation, it does
enable us to emulate partition point movement for an
architecture, like the R4000, that better supports this oper-
ation in hardware. Figure 4 shows the effect of changing
the partition point for a Mach 3.0 system that implements
policy B. The graph shows the varying cost of PTE misses
from the upper and lower TLB partitions as the partition
point is changed. The sum of these two competing costs is
plotted as a third curve that shows an optimal region in
which the partition point would best be set.

Figure 5 shows the results for this same experiment per-
formed for PTE placement policies A, B and C. Only the
total curves are shown. The constant line that represents
policy D (no partition) is off the scale of this plot, and is
therefore not shown, Note that each of the policies have

Policy PTE Placement Coat

A Level 2 PTEs in lower partition. 6.46
All other PTEs in upper partition.

B Level 2 and 3 PTEs in lower partition. 9.62
Level 1 user and kernel PTEs in upper partition.

C All PTEs in lower partition, except for level | | 8.06
user PTEs. which are placed in upper partition.

D No partitioning at all. 55.15

Table 7 Alternate PTE Placement Policies

This table shows the affect of alternate PTE placement
policies on TLB management cost. The cost is the total
time spent (in seconds) to handle TLB misses for the
Mach 3.0 system running all of the benchmarks listed
in Table 3. The partition point is fixed at 8 slots for the
lower partition and 56 slot for the upper partition.

Seconds

i |Lower PTEs

18 - —a. UpperPTEs

~L Total

36 40

4 8 12 16 20 24 28 32
Partition Point

Figure 4 Changing the TLB Partition Point

This experiment was performed on the Mach 3.0 sYys-
tem implementing PTE placement policy B (see
Table 7). Each data point represents a complete run of
the benchmark suite with the partition statically fixed
at given point for the duration of the run. The x-axis
(partition point) shows the number of slots allocated
to the lower partition. The upper partition always con-
sists of (64 - partition point) slots.

0 S e e I s e U —
4 8 12 16 20 24 28 32 36 40
Patrtition Point

Figure 5 TLB Partitioning for Different PTE
Placement Policies

This is the same experiment as that of Figure 4, except
with different PTE placement policies (see Table .
Only the total TLB management costs are shown. The
total cost for policy D (no partition) is off the scale of
the plot at 55.15 seconds.

Software TLB Management in OSF/1 and Mach 3.0

8of 13

Better TLB Management

—&— Mach 3.0+AFSserver

i § -—o— Mach 3.0

—=3— OSFA

Partition Point

Figure 6 Optimal TLB Partitioning for Different
Operating Systems

This graph shows the cost to handle level 2 PTE misses
for the three systems using PTE placement policy A.
The partition point is varied as described in Figure 4.

different optimal points, but at these optimal points, the
performance is roughly the same for each system. From
this we can conclude that the most important PTE place-
ment policy is the separation of level 1 user and level 2
PTEs (to avoid the very poor performance of policy D).
However, the differences between the other PTE place-
ment policies A, B and C are negligible, provided that the
partition point is tuned to the optimal region.

Our studies show that the optimal partitioning point is also
dependent upon OS structure. To illustrate this point, we
ran our benchmark suite under the OSF/1, Mach 3.0 and
Mach 3.0+AFS systems and measured the time to service
level 2 PTE misses. The results are shown in Figure 6.
These curves illustrate that as operating system services
are migrated from kernel space (in OSF/1) to user space
(in the Mach 3.0-based systems), the reliance upon level 2
PTEs increases. This is because each user-level task
requires a minimum of 3 level 2 PTEs to cover its text,
data and stack segments. The OSF/1 system requires only
5 TLB slots> for level 2 PTEs in order to avoid TLB
thrashing. However, the Mach 3.0+AFS system requires
6 additional TLB slots to hold level 2 PTEs for its user-
level UNIX and AFS servers, bringing the total to 11.

5 2 PTEs are used to map kernel data structures and 3 additional
PTEs are required for the UNIX process running in an OSF/1
task.

25

8
c
o
(3]
Q
)]
1
Number of Servers (Tasks)
e 1 —— 3
0.5
—_—— 2 — 4
o] v v ' v r '

5 9 13 17 21 25 29 33
Pantition Point

Figure 7 TLB Partitioning under Mufti-server
Operating Systems

This graph shows total TLB management costs for
Mach 3.0 running a workload that emulates a multi-
server system by passing a token among different num-
bers of user-level tasks.

Akey characteristic of microkernel system structuring is
that logically independent services reside in separate user-
level tasks that communicate through message passing.
The degree of service decomposition can be limited for
performance reasons. However, careful software manage-
ment of the TLB can extend the degree to which separate
services can coexist in a system before performance
degrades to an unacceptable level. To illustrate this more
clearly, we constructed a workload that emulates the inter-
action between servers in a multi-server microkernel OS.
In this workload, a collection of user-level tasks mimic the
behavior of communicating OS servers by passing a token
between each other. The number of servers and the num-
ber of pages that each server touches before passing the
token along can be varied. Figure 7 shows the results of
running this multi-server emulator on the Mach 3.0 kernel.
With each additional server, the optimal partitioning point
moves farther to the right. A system that leaves the parti-
tion point fixed at 8 will quickly encounter a performance
bottleneck due to the addition of servers. However, if the
TLB partition point is adjusted to account for the number

Software TLB Management in OSF/1 and Mach 3.0

9of 13

Better TLB Management

Optimal Partition TLB Management Fixed Static Dynamic
Workload Point Cost Workload Partitioning Partitioning | Partitioning
Qusterhout 18 1.27 Ousterhout 3.92 1.27 1.11
spell 25 0.11 spell 0.28 0.11 0.11
gee 14 4.39 gee 4.94 4.39 4.28
io 32 0.43 io 1.30 0.43 0.43

Table 8 Optimal TLB Partitioning for Different
Workloads

These data were obtained by running the same experi-
ment as described in Figure 4 (Mach 3.0 + policy B).
Only the management cost (in seconds) for the optimal
partition point of each benchmark is shown.

Table 8 Differsnt TLB Partitioning Schemes

This table compares the total TLB management costs
(in seconds) when fixing the partition at 8, when set-
ting it to the static optimal point, and when using
dynamic partitioning. The PTE placement policy is B.

of interacting servers in the system, a much greater num-
ber of servers can be accommodated. Nevertheless, note
that as more servers are added, the optimal point still tends
to shift upwards, limiting the number of tightly-coupled
servers that can coexist in the system. This bottleneck is
best dealt with through additional hardware support in the
form of larger TLBs or miss vectors dedicated to level 2
PTE misses.

In addition to OS structure, the optimal TLB partition
point is also dependent upon workload. This is shown in
Table 8 where we determined the optimal partition for
each of the four different programs in our benchmark
suite. Note that the optimal point is often very far away
from the point fixed by the R2000 hardware (at 8).

5.2 Dynamic Partitioning

We have shown that the best place to set the TLB partition
point varies depending upon the PTE placement policy,
operating system structure, and workload. Given knowl-
edge of these factors ahead of time, it is possible to deter-
minc the optimal partition point and then statically fix it
for the duration of some processing run. However,
although an operating system can control PTE placement
policy and have knowledge of its own structure, it can do
little to predict the nature of future workloads that it must
service. Although system administrators might have
knowledge of the sort of workloads that are typically run
at a given installation, parameters that must be tuned man-
ually are often left untouched or are set incorrectly.

To address these problems, we have designed and imple-
mented a simple, adaptive algorithm that dynamically self-
tunes the TLB partition to the optimal point. The algo-
rithm is invoked after some fixed number of TLB misses at

which time it decides to move the partition point either up,
down, or not at all. It is based on a hill-climbing approach
where the objective function is computed from the two
most recent settings of the partition point. At each invoca-
tion, the algorithm tests to see if the most recent partition
change resulted in a significant increase or decrease in
TLB miss handling costs when compared against the pre-
vious setting. If so, the partition point is adjusted as appro-
priate. This algorithm tends to hone-in on- the optimal
partition point and tracks this point as it changes with
ume.

We tested this algorithm on each of the benchmarks in our
suite and compared the resultant miss handling costs

20

Partition Point
o o

[$,]

Time

Figure 8 Dynamic TLB Partitioning during gcc

This graph shows the movement of the TLB partition
with time while running gcc on a system that imple-
ments the dynamic, adaptive partitioning algorithm.

Software TLB Management in OSF/1 and Mach 3.0

10 of 13

Better TLB Management

against runs that fix the partition at 8 and at the static opti-
mal point for the given benchmark. The results are shown
in Table 9. Note that dynamic partitioning yields results
that are at times slightly better than the static optimal. To
explain this effect, we performed another experiment that
records the movement of the TLB partition point during
the run of the gcc benchmark. The results (see Figure 8)
show that the optimal partition point changes with time as
a benchmark moves among its working sets. Because the
dynamic partitioning algorithm tracks the optimal point
with time, it has the potential to give slightly better results
than the static optimal which remains fixed at some “good
average point” for the duration of a run.

The invocation period for the dynamic partitioning algo-
rithm can be set so that its overhead is minimal. It should
be noted, however, that there is an additional cost for
maintaining the TLB miss counts that are required to com-
pute the objective function. Although this cost is negligi-
ble for the already costly level 2 and level 3 PTE misses, it
is more substantial for the highly-tuned level 1 PTE miss
handler.® Hardware support in the form of a register that
counts level 1 misses could help to reduce this cost.

5.3 Replacement Policies

The baseline systems use a FIFO replacement policy for
the lower partition and a random replacement policy for
the upper partition when selecting a PTE to evict from the
TLB after a miss. To explore the effects of using other
replacement policies in these two partitions, we modified
the miss handlers to try other combinations of FIFO or
random replacement in the upper and lower partitions. The
results of this experiment are shown in Figure 9. For these
workloads, differences between the replacement policies
are negligible over the full range of TLB partition points,
indicating that the choice of replacement policy is not very
important,

5.4 Reducing Miss Costs

The design of the R2000 TLB was influenced by previous
research results that showed level 1 user PTE misses to be
by far the most frequent type of TLB miss, occurring
greater than 95% of the time [Clark et al. 1985]. This was
the justification for providing special vectoring support

6 Maintaining a memory-resident counter in the level 1 miss
handler requires a load-increment-store sequence. On the R2000,
this can require anywhere from 4 to 10 cycles, depending on
whether the memory reference hits the data cache. This is a 20%
to 50% increase over the 20-cycle average currently required by
the level 1 miss handler.

Random-Policy A

Random-Policy B

FIFO-Policy A

FIFO-Policy B

4 12 20 28 36
Partition Point

Figure 9 Replacement Policies

This graph shows the performance of different replace-
ment policies (random or FIFO) for the Mach 3.0 sys-
tem implementing PTE placement policies A or B.

Level 1 Level 1

OSFn User Kernel Level 2 Level 3
Counts 2,111,741 | 541,323 1,449 56,365
% of Total Misses 76.55% 19.62% 0.05% 2.04%
Previous Cost Per 20 294 407 286
Miss (cycles)
New Cost Per Miss 20 20 50 100
(cycles)
Previous Total 2.53 9.55 0.04 0.97
Cost (seconds)
New Total 253 0.65 0.00 0.34
Cost (seconds)
Total Time Saved 0.00 8.90 0.04 0.63

Table 10 Reducing PTE Miss Costs for OSF/1

These computations are based on the counts of Table 5
for OSF/1. We estimated the minimal achievable miss
costs for each of the PTE types and recomputed the
resultant total handling times. The category of “other
misses” is too complex (and infrequently occurring) to
Jjustify any attempt at reducing its handling cost, and is
therefore not shown here.

only for this miss type in the R2000 TLB [DeMoney et al.
1986]. Although our measurements for the older-style
Ultrix OS support this assumption (recall Table 5), it

Software TLB Management in OSF/1 and Mach 3.0

11 0f 13

Summary

Level 1 Level 1

Mach 3.0 + AFS User Kernel Level 2 Level 3
Counts 7,417,212 172,649 | 206,257 | 135,764
% of Total Misses 92.60% 2.16% 2.58% 1.70%
Previous Cost Per 20 294 407 286
Miss (cycles)
New Cost Per Miss 20 20 50 100
(cycles)
Previous Total 8.90 2.96 5.04 2.39
Cost (seconds)
New Total 8.90 0.21 0.62 0.81
Cost (seconds)
Total Time Saved 0.00 2175 4.42 1.58

Table 11 Reduced Miss Costs in Mach 3.0 +AFS

These computations are the same as described in the
caption for Table 10, but they apply to the Mach 3.0 +
AFS system.

begins to break down in the newer OSF/1 and Mach 3.0
systems.

We wanted to quantify the benefit of reducing miss han-
dling costs for other PTE types to determine if the addi-
tional hardware or software needed to accomplish this is
justified. Our computations are shown in Table 10 (for the
OSF/1 system) and Table 11 (for the Mach 3.0 + AFS sys-
tem). The OSF/1 system benefits substantially from a
reduced level 1 kernel miss cost due to its heavy use of
mapped kemnel data structures. The Mach 3.0 + AFS sys-
tem benefits mostly from a reduced level 2 miss cost due
to its increased degree of service decomposition. Although
both systems benefit from a reduced level 3 miss cost, the
improvements are slight and probably do not justify the
effort required to reduce the handling time for this miss

type.

Miss costs can be reduced either through better hardware
support or through more careful coding of the software
miss handlers. The R4000 lowers the cost of level 1 kernel
misses by allowing them to be serviced by the special TLB
miss vector. So, we assumed that the R2000 could handle
level 1 kernel misses in the same way the R4000 does and
estimated the cost to be the same as the level 1 user miss
cost (about 20 cycles). For level 2 and level 3 misses, we
believe that a software approach could be used to reduce
these costs to about 50 and 100 cycles, respectively. This
would be implemented by testing for level 2 and level 3
PTE misses at the beginning of the generic exception vec-
tor, before invocation of the code that saves register state

and allocates a kernel stack. Although this state saving
code is required to handle more complex interrupts, excep-
tions and kemnel traps, it is not needed for TLB miss han-
dlers which simply index into the appropriate page table
for a PTE and insert it into the TLB. We are currently
implementing this in the OSF/1 and Mach 3.0-based sys-
tems to test the approach.

6.0 Summary

TLBs that require software management are becoming
more commonplace, implying that operating system writ-
ers are charged with the new duty of writing TLB miss
handlers. This task is complicated by the large number of
management policy choices and the special requirements
of newer generation operating systems like OSF/1 and
Mach 3.0.

Our studies show that the most important management
policies regard the partitioning of TLB slots to separate
level 1 user PTEs from level 2 PTEs. Other policies gov-
eming PTE placement or replacement are mostly irrele-
vant, provided that the partition point is tuned to the
optimal region for the choices selected. The optimal parti-
tion point varies not only with management policy, but
also with operating system structure, workload and time,
We have shown that partition point tuning can be per-
formed automatically through a simple, adaptive algo-
rithm that extends the number of user-level servers that a
microkernel OS can efficiently support.

Reducing the cost of handling individual PTE misses also
proves to be an effective TLB management technique.
Although older operating systems only justify special
treatment of the level 1 user PTE misses, the newer OSF/1
and Mach 3.0 systems also show high levels of level 1 ker-
nel and level 2 PTE misses. Special hardware support or
more careful coding of the miss handlers for these PTE
types is worthwhile.

Although our studies were performed on an R2000-based
machine, our results and techniques extend to the MIPS
R4000 and to other multi-server operating systems such as
Windows NT [Custer 1993].

7.0 Acknowledgments

We thank Mary Thompson for her patience and assistance
as we assembled our OSF/1 and Mach 3.0 systems. We

Software TLB Management in OSF/1 and Mach 3.0

120113

References

also extend thanks to Richard Draves and Brian Bershad
for helping us to interpret our results.

8.0 References

[Accetta et al. 1986] M. Accetta, R. Baron, et al. Mach: A
new kernel foundation for UNIX development, In Summer
1986 USENIX Conference, USENIX, 1986.

[Anderson et al. 1991] TE. Anderson, HM. Levy, BN,
Bershad and E.D. Lazowska. The interaction of architec-
ture and operating system design, In Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, Santa Clara, Califor-
nia, ACM, 108-119, 1991.

[Clapp et al. 1986] RM. Clapp, LJ. Duchesneau, R.A.
Volz, T.N. Mudge, and T. Schultze, “Toward Real-time Per-
forrnance Benchmarks for Ada,” Communications of the
ACM, vol. 29, no. §, Aug. 1986, pp. 760-778

[Clark et al. 1985] D.W. Clark and J.S. Emer. “Perfor-
mance of the VAX-11/780 translation buffer: Simulation
and measurement.” ACM Transactions on Computer Sys-
tems 3 (1): 31-62, 1985.

[Custer 1993] H. Custer. Inside Windows NT. Redmond,
Washington, Microsoft Press, 1993.

[DeMoney et al. 1986] M. DeMoney, J. Moore and J.
Mashey. Operating system support on a RISC, In COMP-
CON, 138-143, 1986.

[Digital 1992} Digital. Alpha Architecture Handbook.
USA, Digital Equipment Corporation, 1992,

[Guillemont et al. 91] M. Guillemont, J. Lipkis, D. Orr, and
Marc Rozier. A second-generation micro-kernel based
UNIX; Lessons in performance and compatibility. In US-
ENIX Winter 1991 Proceedings, Dallas, Texas, USENIX.

[Hewlett-Packard 1990] Hewlett-Packard. PA-RISC 1.1
Architecture and Instruction Set Reference Manual.
Hewlett-Packard, Inc., 1990.

[Kane et al. 1992] G. Kane and J. Heinrich. MIPS RISC Ar-
chitecture. Prentice-Hall, Inc., 1992,

[McKusick et al. 1984] M.K. McKusick, W.N. Joy, S.J.
Leffler and R.S. Fabry. “A fast file system for UNIX.”
ACM Transactions on Computer Systems 2 (3): 181-197,
1984.

[Nagle et al. 1992] D. Nagle, R. Uhlig and T. Mudge. Mon-
ster: A Tool for Analyzing the Interaction Between Oper-
ating Systems and Computer Architectures. The University
of Michigan. 1992,

[Ousterhout 1989] J. Ousterhout. “Why aren't operating
systems getting faster as fast as hardware.” WRL Technical
Note (TN-11): 1989.

[Rashid et al. 1988] R. Rashid, A. Tevanian, et al. “Ma-
chine-Independent Virtual Memory Management for
Paged Uniprocessor and Multiprocessor Architectures.”
IEEFE Transactions on Computers 37 (8): 896-908, 1988.

[Satyanarayanan 1990] M. Satyanarayanan. “Scalable, se-
cure, and highly available distributed file access.” IEEE
Computer 23 (5): 9-21, 1990.

[SPEC 1991] SPEC. The SPEC Benchmark Suite. 1991,
[Wilkes et al. 1992] J. Wilkes and B. Sears. A comparison

of protection lookaside buffers and the PA-RISC protec-
tion architecture. HP Laboratories. 1992,

Software TLB Management in OSF/1 and Mach 3.0

13of 13

