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Abstract

This paper presents a new timing model of pipelines and uses it to determine
the minimum cycle time in terms of stage delays. The model accounts for short-
and long-path delays, the use of both level-sensitive latches and edge-triggered
flip-flops as synchronizing elements, and wave pipelined operation. We give
results for single-phase clocking and for a restricted form of multi-phase clocking,
and show that the region of feasible solutions for the former maybe non-convex.
We also describe a program, pipeT. , which generates these optimal solutions
from pipeline specifications and illustrate its application on some examples.

List of Symbols

t,J :Indices used to identify pipeline stages/synchronizers.
P, r :Indices used to identify clock phases.
Di : Index of clock phase used to control synchronizer i.

a; , A; : Early and late signal arrival times at stage i.

d; , D; : Early and late signal departure times from stage 1.

6;, A; : Minimum and maximum propagation delays from synchronizer i — 1
to synchronizer 1.

C : Concurrency in the pipeline.

€p : Time, in global frame-of-reference, at which clock phase p ends (i.e.
when its latching edge occurs).

Epr  : Phase shift from clock phase p to clock phase r.

£i-1,i : Phase shift from stage i — 1 to stage i.

H; : Hold time of synchronizer i.

k : Number of clock phases.

m : Width (in bits) of the pipeline datapath.

n : Number of pipeline stages.

v : Degree of wave pipelining in stage i.

S; : Setup time of synchronizer 1.

T. : Clock cycle time.

T, : Width of active interval of phase p.

U : Utilization of the pipeline.

op : Name of clock phase whose index is p.

w : Minimum allowable clock pulse width.

1 Introduction

Pipelining is frequently used to speed up the execution of a sequence of computations by
dividing each into n consecutive subcomputations and overlapping their execution. Theo-
retically, this should yield a factor of n performance improvement over the non-pipelined
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case. This maximum is rarely achieved, however, because of dependencies among the op-
erations and overhead due to clocking [1]. Performance can be defined as the sustained
number of operations per unit time, and can be expressed as:

U(n) x 10°

MOPS =
Te(n)

where MOPS stands for millions of operations per second, 0 < U(n) < 1 is the utilization
of the n-stage pipeline, and T.(n) is the clock cycle time, in nanoseconds, at each pipe
stage. Typically, U(n) is a decreasing function of n which is determined empirically through
simulations or benchmarking. T.(n) is also a decreasing function of n, in general, but it also
depends on circuit delays and clocking parameters. Optimal pipeline design seeks to find the
value of n which maximizes MOPS. This is usually done in two steps: 1) Determining U(n)
for a suitable range of n by analyzing the operation inter-dependencies for an appropriate
set of benchmark computations. This is a purely “architectural” analysis which disregards
all implementation details. 2) Determining the minimum T,.(n) for the same range of n.
Generally, this is a synthesis problem which involves examining the logic design of various
pipelines, and finding those which yield the minimum cycle times. This paper addresses
one aspect of the second step, namely, determining the minimum cycle time, T min, for an
n-stage pipeline in terms of circuit delays. The problem has been addressed previously by
a number of authors including {2, 3, 4, 1]. This previous work dealt mostly with simple
clocking paradigms. Furthermore, the analysis was typically based on examination of a
single pipe stage. In contrast, in this paper we propose a timing model of pipelines that
accounts for more complex clocking and for the temporal interactions among the various
pipe stages.

The remainder of this paper is organized as follows. Our pipeline model is developed in
Sec. 2. In Sec. 3 we derive the minimum cycle time for single-phase and a restricted-form of
multi-phase clocking. Sec. 4 describes a program, pipeT, , which produces the corresponding
optimal clock schedules from a specification of pipeline parameters. We use the program
on two pipeline examples to point out some of the (non-obvious) features of the optimal
solutions. Conclusions and suggestions for future work are summarized in Sec. 5.

2 Pipeline Model

Our pipeline model is shown in Fig. 1. Unlike earlier formulations, such as those given
in [2, 3, 4, 1], the pipe stages in our model form a simple closed loop. This is a more
realistic configuration than an open-ended pipeline because it accounts for the the timing
of the source and sink of the data flowing in the pipeline. For example, one or more stages
in such a pipeline can be used to model the “memory” used to supply operands for the
computation, and to receive results from it. Furthermore, the analysis of closed pipelines
can be easily adapted to model open-ended pipelines. In particular, an open-ended pipe
can be transformed into a closed pipe by adding an artificial stage whose timing parameters
reflect the input/output signal timing specifications of the original open pipe.

The pipe stages are numbered consecutively from 0 to (n — 1). The datapath through
the pipeline is assumed to be m bits wide, m > 1. Each pipe stage consists of a bank of
m synchronizing elements (level-sensitive latches or edge-triggered flip-flops) followed by



combinational circuitry. Data flow through the pipeline is regulated by a k-phase clock,
where 1 < k < n. Stage i is characterized by the following parameters:

Di : an integer denoting the clock phase used to control the synchronizer
at the output of stage ¢ (henceforth referred to as synchronizer 7).

Sy : non-negative setup time of synchronizer ¢ relative to latching edge of
phase p;.

H; : non-negative hold time of synchronizer i relative to latching edge of
phase p;.

6; , A; : minimum and maximum propagation delays (0 < §; < A;) from the
input of synchronizer ¢ — 1 to the input of synchronizer i.
Note that this definition of stage delay lumps together the two com-
ponents of signal delay, namely the synchronizer delay and the com-
binational logic delay.

¢P1 ¢Pi-2 ¢Pi-1 ¢Pi ¢pn—1

By.a] B.al [o-80]

stage 1 stage i-1 > stage 0
stage i

Figure 1: n-stage pipeline. Shaded boxes represent the synchronizers
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Figure 2: Clock phase ¢, and its local time zone

We base the steady-state behavior of such pipelines on the general model of synchronous



operation introduced in [5]. The salient features of this model, as they relate to the pipeline,
are summarized below. In addition, we extend the model to allow for wave pipelined [6]
operation, and examine the relationships among concurrency in the pipeline, clocking, and
the degree of wave pipelining.

2.1 Clocking Model

The clocking model is described in terms of a temporal rather than a logical framework
based on the concept of periodic phases which define local time zones related by phase shift
operators. In this model, a k-phase clock is considered to be a collection of k periodic signals
é1, ¢2, -+ , ¢ — referred to as the phases — with a common cycle time T,. Each phase
@, divides the clock cycle into two intervals: an active interval of duration T}, and a passive
interval of duration (T, —Tp). During the active interval of a given phase, the synchronizers
it controls are enabled; during its passive interval, they are disabled. The transitions into
and out of the active interval are called, respectively, the enabling and latching edges of
the phase. We assume, without loss of generality, that all phases are active high; thus, the
enabling and latching edges correspond to the rising and falling transitions of the phase
signal. Associated with the phase is a local time zone, as shown in Fig. 2, such that the
passive interval of the phase starts at t = 0, its enabling edge occurs at ¢t = T, — T}, and its
latching edge occurs at t = T,. The temporal relationships among the k phases (i.e. among
the different time zones) are established by an arbitrary choice of a global time reference.
We introduce e, to denote the time, relative to this global time reference, at which phase
¢p ends (i.e. when its latching edge occurs). Finally, we define a phase shift operator:

- (er — €p), e > €
Epr-—{ (Tc+er"ep)1 e < e (1)

which takes on positive values in the range (0,7.] (see Fig. 3). When subtracted from a
time variable in the current local time zone of ¢,, E,, changes the frame of reference to the
nezt local time zone of ¢,, taking into account a possible cycle boundary crossing.

2.2 Timing Constraints

For timing purposes, it is sufficient to characterize a data signal with respect to one clock
cycle by two, possibly simultaneous, events which demark the interval when the signal is
switching between its old and new values. For the signal arriving at the synchronizer input
of pipeline stage i these two events are defined to occur at ¢ = a; and ¢ = A; in the local
time zone of phase p;. The corresponding events of the data signal departing from the input
of the synchronizer are defined to occur at t = d; and ¢t = D;. It will be convenient to
refer to a; and A; as the early and late arrival times, and to d; and D; as the early and late
departure times. The timing model of the pipeline can now be expressed by the following
constraints and equations [5] fori = 0,.-.,n - 1:

Clock Constraints which express limitations on clock generation and distribution. This
set should at least include the following minimum pulse width constraints:

I, 2 w (2)
Te—Tp 2 w (3)
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Figure 3: Interpretation of the phase shift operator

where w is a specified parameter. In addition, to simplify the design of the clock
generator we may include “regularity” constraints such as:

h1=T=---=T; (4)
It is important to point out that the phase signals are not required to be non-

overlapping.

Latching Constraints which express the conditions necessary for capturing valid data
values at each of the synchronizers. They consist of two sets of requirements which,
together, insure that the data signal at the input of a synchronizer is stable for a
sufficient period of time before and after the occurrence of the latching edge of the
corresponding clock. Mathematically,

H; (5)
T. - 5; (6)

a;

>
A; <

Synchronization Equations which macromodel the temporal behavior of different types
of synchronizing elements. Specifically, for D-type synchronizers, they express the
departure times of the output data signals in terms of the arrival times of the corre-
sponding input data signals as well as those of the enabling and latching clock edges.
Thus, for latches, we obtain:

d; = max(a;,T, - Tp,) (7)
D; = max(A;,T.-T},) (8)
For flip-flops, the macromodel is simpler:
g = T. (9)
D, = T, (10)
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Propagation Equations which model the delay of the combinational stages in the
pipeline, including the propagation through the input synchronizer. They express
the arrival times of data at stage ¢ in terms of the corresponding departure times from
stage (i — 1) mod n, taking into account the change in the frame-of-reference from

phase p;_, to phase p;:!

ai = dicy+6i— &1 (11)
Ai = Dig+Ai~&, (12)

where £;_; ; is the amount of phase shift from stage i — 1 to stage i. In [5], this was
defined to be equal to the phase shift from clock phase p;_; to clock phase p;, i.e.
Ei—1i = E,,_,p;- This definition limited signal propagation to consecutive cycles of
phases p;_; and p;, i.e. signals launched from stage i — 1 in any given cycle of phase
pi-1 had to arrive and be correctly latched at stage ¢ by the immediately following
cycle of phase p;. We extend this definition here to allow for signal propagation
over multiple clock cycles by introducing the parameter »; to indicate the number of
additional clock cycles available for signals to propagate from stage 1 — 1 to stage 1.
Thus,
Eic14 = Ep_yp + il (13)
Note that the addition of an integer number of clock cycles to the clock phase shift
has the effect of changing the frame-of-reference from the current local time zone of
phase p;_; to that of phase p;, (1 + v;) cycles in the future. In particular, for »; = 0
" it reverts to the earlier definition which limits phase shifts to consecutive cycles. It
is also convenient to view these phase shifts as negative delays that effectively reduce
the stage propagation delays.

Piy

Figure 4: Wave Pipelining

2.3 Operation Modes

Allowing for signals to propagate across multiple clock cycles has the potential of reducing
the cycle time below what is possible with single-cycle propagation. However, for such
operation to be feasible the minimum combinational delays must be sufficiently large to
maintain adequate temporal separation between consecutive waves of signals (see Fig. 4).

! Index arithmetic in what follows will always be modulo n. To keep the equations from becoming too
cluttered, the mod operator will be dropped and assumed to be implied.
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Reliance on logic delay, rather than synchronizing elements, to prevent interference between
consecutive data waves has been dubbed wave pipeliningin [6]. This phenomenon will occur
in any pipe stage for which v; > 0. Furthermore, as we show later, it may also occur for
latch-controlled pipes even when v; = 0. In fact, wave pipelining occurs, for some portion
of the clock cycle, in any pipe stage whose delay exceeds the clock cycle time. We will refer
to v; as the degree of wave pipelining, with the understanding that some limited form of
wave pipelining may exist in latch-controlled pipes with v; = 0.

The number of simultaneous operations in an n-stage pipeline need not be equal to n.
Depending on the nature of the clocking scheme, the differences between the minimum and
maximum delays in each stage, and the spread of the maximum delays across all stages,
it may be possible to operate the pipeline so that the number of simultaneous operations
in progress at any given time is less than or greater than n. We capture this notion by
introducing C, the concurrency in the pipeline, which can be easily related to the clock
phase shifts and wave pipelining parameters by:

1 n—-1 n-1
C= T Z Ep;1pi + Z v (14)

€ =0 =0

C can be thought of as the number of virtual pipeline stages, and may also be interpreted
as the number of data wavefronts in the pipeline at any given time. As Fig. 5 shows, a
particular level of concurrency may be achieved by a variety of combinations of clocking
schemes and wave pipelining. For example, a concurrency of 4 in a 4-stage pipeline may be
obtained by a 4-phase clock where each pipe stage is allocated a fraction of the clock cycle
such that 3" E,,_ . = T., and 3_v; = 3. Alternatively, 3" E,,_,p; = 2T, and Y v; = 2.

10~
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Figure 5: Concurrency as a function of clock phase shifts and
degree of wave pipelining for a 4-stage pipeline

We limit our attention in this paper to those clocking schemes which maximize C for
a given level of wave pipelining, namely those for which the sum of the clock phase shifts



around the pipeline stages is equal to n7.. Recalling that each of the individual phase
shifts is at most one clock cycle, this restriction implies that Ep,_,p; = T for each of the n
stages. Clocking schemes for which this restriction applies include single-phase clocks and
the restricted form of multi-phase clocking shown in Fig. 6, which will be referred to as
coincident multi-phase clocking since the latching edges of all k phases coincide in time2.
We further restrict the scope of the investigation by assuming that v; is the same for all
stages. Thus, we let Vi = v,

With these restriction, the concurrency C becomes:

C=(1+v)n (15)
?,
¢,
" l_ 2 i
b
K=1 K>1

Figure 6: Clocks with maximum possible phase shift between phases

2.4 Summary

In the derivations to follow, it will be convenient to view this model as consisting of three
distinct sets of constraints:

* Pulse-Width Constraints expressed by (2) and (3).

* Long-Path ( Late-Signal) Constraints involving the late arrival and departure times
and expressed by the Setup inequalities (6), the propagation equations (12), and the
synchronization equations (10) or (8).

*For general multi-phase clocks, the existence of fractional phase shifts (i-e. phase shifts smaller than a
full cycle) limits the maximum number of clock cycles to {(n-1).
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3 Optimal Cycle Time Calculation
Within the limitations specified above,i.e. E,,_,,, = T. and v; = v, we derive in this section
the minimum cycle time for three different cases:

1. Pipelines controlled by edge-triggered flip-flops.

2. Pipelines controlled by latches and a single-phase clock.

3. Pipelines controlled by latches and a coincident n-phase clock.

In each case the derivation starts by finding expressions for the early and late arrival times
at stage ¢ in terms of the clock variables and circuit delays. These expressions are then com-
bined with the hold and setup requirements to obtain the short- and long-path constraints.

3.1 Flip-Flops

Arrival Times: The early and late arrival times at stage i are obtained by substituting
the flip-flop synchronization equations (9) and (10) into the propagation equations (11) and
(12):

a; =T+ 6;— (1 + )T, = 6 —vT, (16)
and,
Ai=T. +0; -1+ )T, = A; =T, (17)
Long-Path Constraints: Combining (17) with the setup inequality (6) yields:
A+0)T. 2 i+ S; (18)
Short-Path Constraints: Combining (16) with the hold inequality (5) yields:
vT,. < é; - H; (19)

Solution: Examination of (19) and (18) reveals that a solution exists under the following
conditions:

v=0 : 6>H; fori=0,---,n~1
v>1l : min(ai—H‘)>max<éij—‘gi)

[ v - 1+V

and the minimum cycle time is:

A+ S;
Tc,mm'—m‘.a-x( 1+V> (20)

The phase widths T, can be chosen arbitrarily as long as they satisfy the minimum pulse
width constraints (2) and (3):
w < Ty, < Temin — W (21)
Note that T min in (20) is independent of the phase widths because of edge-triggering.
Hence this solution is equally applicable to single- as well as to coincident multi-phase clock-
ing. Since multi-phase clocking offers no particular advantage in this case, the regularity
constraints (4) can be used to obtain a single-phase solution that satisfies (21). In contrast,
when latches are used as synchronizers, single- and multi-phase clocking may yield different
optima. We discuss these cases next.



3.2 Latches—Single-Phase Clock

Arrival Times: The solution in the case of latches is considerably more complicated
because of the coupling between signal arrival and departure times through the latch syn-
chronization equations (7) and (8). Unlike the flip-flop case, obtaining expressions for the
arrival times at stage i requires the substitution of the synchronization and propagation
equations of all pipe stages. Thus, the early arrival time at stage 1 is calculated as follows
(recall that for single-phase clocking p; = 1 and Ty, = T; for all 1):

a = d;_{+ b; — (1 + V)Tc
= max(a;_1,T. - T1) + & — (1 + )T
max(a;-y + 6 — (1 + V)T, 6; = Ty — vT,)
ma.x(d,-_g + 61+ 6 — (2 + 2V)Tc, 6 —-T) — VT,:)
max(max(@a;z3, T — T1) + 6;_1 + 6; — (24 2v)T,,6; - T - vT.)
max(a;.g + 6;_1 + 6; - 2+ 20T, 61+ 6; - Ty — Q+20)T., 86 ~-T) - vT,)

i

i

= max(a; + 6i_n + -+ 6 — (n + nv)T,
bicnp1+ -+ 6 -1~ (n=14+ )T, -,
bi_1+ 6 — T ~ (1 -+ 2l/)Tc, & — Ty - VTC)

which can be expressed more conveniently as:

a¢; = max {a;+ ( i 6_,-) - (n+ )T,

J=i-n
o_gfrsl?f_l) [ ..;' 6]) ~T; - (1 + v+ IV)TC] } (22)
Similarly, the late arrival time at stage 17 is:

A = ma.x{A,-+ ( i A_,‘) ~(n+ n)T,,

j=i-n
0B [(FE.: Aj) -Ty-(+v+ IV)TCJ } (23)

Note that the max functions in these expressions involve n 4+ 1 arguments in which, except
for the first argument, the only variables are the two clock variables T, and Tj.

Long-Path Constraints: Expression (23) implies the following n + 1 inequalities:

A > Ai+ ( > A,‘) - (n+ nv)T, (24)
Jj=i-n
A 2> [(E A,-)—Tl—(l+u+lu)Tc} l=0,---,n-1 (25)
=i
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Eliminating A; from the first inequality, we immediately obtain the following lower bound
on T¢:

T, > (26)

> Z = Z Aj =
n(1+u) Parall n(1+V) = 1+u
which confirms the intuitive fact that the cycle time cannot be less than the average pipeline
stage delay when v = 0. Combining each of the remaining n inequalities with the setup

constraint (6) we eliminate A; to obtain:

jr=t=l

(1+I)(1+U)TC+TIZ(E Aj)+Si I=0,---,mn-1 (27)

While the physical interpretation of each of these inequalities is not as obvious as that of
(26), it is still rather simple: the time available for a signal to propagate down the (I + 1)
pipe stages ending at stage i, and to be correctly latched at stage ¢, is (1 +!)(1 + v) clock
cycles plus the phase width T which represents the “extra” time due to the use of level-
sensitive latches. Since each of these inequalities must be true for all n pipe stages, we
finally obtain:

Q+HDA+v)T.+T1 > max [(Z A) } I=0,---,n-1 (28)

0<i<(n-1) el

Thus the long-path constraints have been reduced to the n + 1 inequalities in (26) and (28)
which together define a convex set in the T, /T; solution space as shown in Fig. 7.

Short-Path Constraints: Proceeding as we did for the late arrival time at stage i, we
obtain the following inequalities that must be satisfied by the early arrival time:

a; > + ( i 6_,-) —(n+ n)T, (29)
j=t-n
a; > [(Z':éj)—Tl—(l+u+lv)Tc] l=0,---,n-1 (30)
J=1-1

The first of these is redundant since it is subsumed by the corresponding max-delay inequal-
ity (24). The remaining n inequalities may now be combined with the hold requirement (5)
to eliminate a; and arrive at the set of short-path constraints:

j=t=]

(I+v+W)T.+T) £ (Z 6_,~)—H,- for at leastone l € {0,---,n — 1} (31)
3

Note that, unlike the corresponding long-path inequalities (27) which must all be satisfied,
the above set of n short-path inequalities is satisfied if at least one of them is satisfied. In
other words, the feasible region defined by the set of n inequalities in (27) is the inter-
section of n separate regions, whereas that defined by the inequalities in (31) is the union

11



T, J

(a) Pulse-Width Constraints (b) Long-Path Constraints (c) Short-Path Constraints
Figure 7: Single-Phase Feasible Regions

of n separate regions. This in turn implies that while the region defined by (27) is guar-
anteed to be convex, that defined by (31) is guaranteed to be non-convex as shown in Fig. 7.

Solution: Denoting the feasible regions corresponding to the pulse-width and long-path
(late-signal) constraints by RP, R and that corresponding to the short-path (early-signal)
constraints of stage i by RF, the overall region of feasibility can be expressed as:

R = RP(\RE(\RE()---(\RE., (32)

Due to the non-convexity of R,-E , R may be non-convex or even disconnected. Examples of
these cases will be illustrated in Sec. 4. In any case, assuming that R # @, at the optimal
solution one or more of the long-path constraints (26) and (28) must be active (satisfied as
an equation). This observation forms the basis for a directed-search algorithm to find the
minimum cycle time. Basically, the search begins by finding the smallest possible cycle time
that satisfies the minimum pulse-width and long-path constraints (R” N RL). This point
corresponds to the intersection of T, — T} = w and one of the n + 1 long-path constraints.
This solution is now examined to see if it satisfies all of the short-path constraints. If it
does, then it is optimal, otherwise we “climb” up the lower periphery of RL until we either
satisfy all the short-path constraints, or we reach the other end of the minimum pulse width
region (Ij = w) without satisfying all the short-path constraints. If the latter obtains, the
problem is infeasible.

A simpler solution procedure results if the short-path constraints are restricted so that
(31) holds for I = 0. This leads to a much simpler requirement

< : . _H.
vI.+T) < 05}151}2_1)(6, H;) (33)

that corresponds to a convex region. When this conservative short-path constraint is com-
bined with the long-path constraints (26) and (28), we obtain the following expression for

12



the minimum cycle time:

_ A maxi [(Ti45) + Si] - ming(6 - H) )
emin = WA T 1" 1+1+1y

Feasibility of this solution is determined by combining (33) with the minimum pulse-width

requirement (2):
vTe < min(é; — Hi) —w (35)

from which we conclude that the above solution is feasible if:
v=0 : min(§;-H)>w

v>1 : (m‘.‘“(‘s‘ ‘VH‘)" “’) > T min

We will refer to (34) as the conservative single-phase solution.

3.3 Latches—Coincident Multi-phase Clocks

Allowing the phase widths to be independently-adjustable at each of the n pipe stages con-
verts the single-phase clock into a coincident n-phase clock. In this case, p; = ¢, and the
clock is specified by n+ 1 variables: T¢,Tp,---,Ty-1. An n-phase clock may lead to a lower
cycle time than a single-phase clock.

Arrival Times: The flexibility to adjust the phase widths independently allows the syn-
chronization equations (7) and (8) to be simplified to d; = D; = T. — T;. This can be
justified as follows:

Suppose that D; > T, — T; for some stage i at the optimal solution. Then
D; = A; > T.-T;. Since changing T; can only directly affect the departure times
Jrom stage 1, it should be obvious that T; can be decreased until D; = A; = T.-T;
without affecting the optimal cycle time. Note also that decreasing T; increases
the margin by which the hold requirement is satisfied at stage i + 1.

Under these conditions, the arrival times at stage i become:
ai=Tc—Ti—1+6i“(1+V)Tc=6i‘Ti—l"’VTc (36)

and,
Ai=T .+ A -1+ v)T. = A; =Ty =T, (37)

In addition, signals must arrive at the latest by the rising edge of the corresponding clock:
Ai<T.-T; (38)
Long-Path Constraints: Combining (37) with the setup requirement (6), yields:

Q4+ )T+ Ty 2 A+ S (39)
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Combining (37) with (38 leads to another constraint:
A+ + T - T; 2 A (40)
Short-Path Constraints: Substituting (36) into the hold rquirement (5) yields:
vI.+T; < é - H; (41)

Solution: The feasible region for coincident n-phase clocking is defined in the (n + 1)-
dimensional space of clock variables by 5n linear inequalities:

¢ 2n long-path inequalities (39) and (40)
o n short-path inequalities (41)
¢ 2n minimum pulse-width inequalities (2) and (3)

These inequalities define a convex space, and the the minimum cycle time can be found by
solving a linear program.

4 Examples and Results

We developed a computer program pipeT, which determines the optimal cycle time for n-
stage pipes. pipeT, reads in the pipeline parameters (number of stages, stage delays, setup
and hold times, and wave pipelining parameters) and produces the optimal clock schedules
and signal waveforms for single-phase, conservative single-phase, and coincident multi-phase
clocking using latches. We are using pipeT. to study the relationship between the optimal
cycle time and the various pipeline parameters. In this section we present two examples to
highlight some of the issues in pipeline synchronization.

The first example is a 4-stage pipeline with a fairly uneven distribution of stage delays.
Figures 8 and 9 show the single-phase feasible region, and the optimal clock schedules and
signal waveforms at the inputs to all stages for two cases: (a) Hy = 2.0, and (b) H; = 2.5.
In both cases, » = 0. A summary of the results is also shown in Table 1. We make the
following observations on these results:

1. The single-phase feasible region in Fig. 8 is non-convex. It consists of the shaded area
in the T,./T plane as well as the line segment AB.

2. The optimal single-phase cycle time is the same as the optimal multi-phase cycle time
(10.0), and is substantially lower than the conservative single-phase optimum (16.0)
and the flip-flop optimum (18.0).

3. The single- and multi-phase solutions exhibit wave pipelining. In particular, during
each clock cycle there are two wave fronts traveling in stage 0 (from ¢t = 2.0to t = 8.0)
and in stage 2 (from t = 2.0 to ¢ = 4.0). This observation is consistent with the earlier
discussion in Sec. 2.3 since the delays of both stages 0 and 2 are greater than the cycle
time. Examination of the signal waveforms suggests another way to determine if a
given stage is wave pipelining: stage i will “contain” 2 or more wave fronts of data in
every clock cycle fromt = D;_; tot = A;; if Di_; > A;, then at most one wave front
can be traveling in stage 1.
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1-Ph’ C 1-Ph* 4-Ph° FF*4
Case | H 1 Tc T] Tc T] Tc TC
(a) | 2.0 10.000 8.000 | 16.000 2.000 || 10.000 | 18.000
(b) | 2.5 16.500 1.500 | 16.500 1.500 || 10.125 | 18.000
! Optimal Single-Phase Solution

2 Conservative Single-Phase Solution

3 Coincident 4-Phase Solution

4 Optimal Flip-Flop Solution

Table 1: Summary of Results for Example 1 (all times in units of nanoseconds)

4. When H, is increased from 2.0 to 2.5, the single-phase feasible region shrinks and
becomes convex (Fig. 9). Now, the single-phase and the conservative single-phase so-
lutions are identical (T min = 16.5), and both are larger than the multi-phase solution
(Temin = 10.125). Note that due to the non-convexity of the single-phase feasible
region, a 0.5ns change in the hold time of stage 1 causes a 6.5ns change in the optimal
cycle time. In contrast, the conservative single-phase and coincident multi-phase op-
tima changed by 0.5ns and 0.125ns, respectively, in response to the same 0.5ns change
in Hy. The flip-flop solution did not change.

The second example is a modification of the first in which the delay of stage 1 has been
increased from 4.0 to 8.0. We study the effect of changing the hold time of stage 2 from
6.0 to 7.5 in 0.5ns increments. The results are shown in Figures 10, 11, 12, and 13, and are
summarized in Table 2. The following additional observations can be made:

1. The single-phase feasible region is non-convex (Fig. 10), and becomes disconnected
when H, is increased to 6.5 and 7.0 (Fig. 11 and Fig. 12). In particular, one of the
disconnected subregions shrinks to a point. When H; is increased further to 7.5, the
feasible region becomes convex (Fig. 13). Further increases in H; reduce the size of
the feasible region, until it vanishes completely and the problem becomes infeasible.

2. The single-phase solution is not unique. In fact, for H; = 6.0 and H, = 6.5, the same
optimal cycle time (11.0) can be achieved with a range of values for T;. This situation
will arise whenever the lower bound constraint on T, given by (26) is active (this lower
bound corresponds to the horizontal line segment).

3. The conservative single-phase solution is now exhibiting wave pipelining. In fact,
only the flip-flip solution is free from wave pipelining (recall that ¥ = 0 in these
experiments).

4. The 0.5ns increase in H from 7.0 to 7.5 (cases ¢ and d) causes a 2.5ns increase in
the single-phase optimum, a 0.5ns increase in the conservative single-phase optimum,
and a one-sizth ns increase in the multi-phase optimum; the flip-flop optimum does
not change. This is consistent with the earlier observation in example 1. The curious
one-sixth ns increase in the multi-phase case is readily explained in terms of the dual
solution of the linear program used to find the optimal cycle time.

15



16.0 16.0 2.0 2.0

40 4.0 2.0

0
1
27120 120 20 20
3/ 80 80 20 20

T}

18 |©
16 -
14 -
12 L Stage 3 —
10 |- A Optimal Single-Phase Solution (Point A)

I O B |

2 4 6 8 T 0,
Single-Phase Feasible Region

(Latches) Stage 0 [
Stage 1 [ E

2

Stage 2 |

Optimal 4-phase Solution Optimal Flip-Flop Solution (Point C)

Figure 8: Example 1, Case (a) — H; = 2.0
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Figure 9: Example 1, Case (b) — H; = 2.5
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Figure 10: Example 2, Case (a) — Hy = 6.0
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Figure 11: Example 2, Case (b) — H; = 6.5
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1-Ph? C 1-Ph* 4-Ph® FF4
Case Hg Tc T1 Tc T1 Tc TC
(a) | 6.0 11.000 [7.0,8.0]|12.000 6.000 {| 11.000 | 18.000
(b) | 6.5 11.000 [7.0,7.5] | 12.500 5.500 || 11.000 | 18.000
(¢) | 7.0 11.000 7.000 13.000 5.000 || 11.000 | 18.000
(d) |7.5( 13.500 4.500 13.500 4.500 jf 11.167 | 18.000
1 Optimal Single-Phase Solution

2 Conservative Single-Phase Solution

3 Coincident 4-Phase Solution

4 Optimal Flip-Flop Solution

Table 2: Summary of Results for Example 2 (all times in units of nanoseconds)

5 Conclusions and Future Work

We have examined the problem of minimizing the cycle time for an n-stage pipeline under a
variety of clocking conditions. One of the more interesting results of this examination is the
fact that the feasible region for single-phase clocking maybe non-convex. We are currently
investigating the practical ramifications of this result. We are also considering the effects of
skew in the clock distribution network on the optimal cycle time, as well as its relationship
to wave pipelining.

In general, minimizing the clock cycle time for a pipeline requires the consideration of
clock generation and distribution, as well as logic and circuit design of the pipe stages. In
this paper, we have assumed that the design of the pipe stage circuitry is fixed (i.e. the
data propagation delays are specified) and that only the clock generator can be controlled
to obtain a desired clock schedule. If the minimum cycle time corresponding to this “fixed”
design is unacceptably high, a re-design (re-synthesis) would be necessary to reduce some or
all of the delays. The results presented in this paper can be used to guide this re-synthesis
step by identifying the most critical delays in the pipeline. We are currently investigating
the integration of these results with a logic synthesis system.
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