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Abstract

The need for accurate characterization of the timing behavior of synchronous dig-
ital systems has become increasingly evident in the past few years. The continuing
drive to design faster digital systems has made the use of CAD tools for timing veri-
fication and optimal clocking essential in most system design methodologies. Timing
models of synchronous digital circuits are based on the premise that the circuits
are logically (functionally) correct, and focus only on capturing their propagation,
latching, and synchronization properties. While, in principle, such timing models
are much simpler than full-fledged logical models, the increasing use of multi-phase
clocking schemes and level-sensitive latching structures has significantly increased
their complexity.

In this paper we introduce a new timing model of synchronous digital circuits
which is: 1) general enough to handle arbitrary multi-phase clocking; 2) complete,
in the sense that it captures signal propagation along short as well as long paths in
the logic; 3) extensible to make it relatively easy to incorporate “complex” latching
structures; and 4) notationally simple to make it amenable to analytic treatment in
some important special cases. We also present two algorithms, based on this model,
for finding the optimal clock schedule, i.e. the clock schedule with the minimum
cycle time. We illustrate the application of these algorithms with an experimental
CAD tool, called minT,, on a small example circuit.
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1 Introduction

This paper introduces a timing model of synchrounous digital circuits and describes its application
to find their optimal (maximum-rate) clocking schedules. The model assumes that the circuits are
logically (functionally) correct, and focuses only on capturing their propagation, latching, and
synchronization properties. It can be viewed as a synthesis of ideas from earlier work in the
field of timing analysis of synchronous systems. On the other hand, it also includes several
key concepts which make it—as will become evident—significantly more versatile than previous
models. In particular, on the issue of level-sensitive latches which has received a great deal of
attention recently [1]-[10], the model offers a general and accurate, yet simple, treatment.
Briefly, the model can be characterized by the following:

o A clear distinction between data and clock signals.

¢ A general treatment of multi-phase clocks which underscores the centrality of the common
clock cycle T, and emphasizes the temporal rather than the logical relations among clock
phases; in particular, the notions of phase-relative time zones and of a phase-shift operator
eliminate much of the notational clutter which has plagued prcvxous efforts in dealing with
“complex” clocking schemes.

e An extensible framework which allows the incorporation of arbitrary synchronizing struc-
tures, i.e. circuit structures where clock and data signals converge and interact, as long as
a timing macromodel of these interactions can be provided; in this paper we present timing
macromodels for D-type latches and flip-flops.

o Completeness, in the sense that the model accounts for signal propagation along the shortest
as well as the longest paths in a circuit.

and, finally,

¢ Simplicity, through careful attention to notation and the use of variable and parameter
symbols which have mnemonic value.

The model presented here extends our earlier model in [11] to handle propagation along short
paths. In fact, aside from some minor changes in notation, the “new” model is a superset of the
earlier one (see Sec. 4). We have implemented the model in two prototype CAD tools:. checkT.
which examines a circuit for adherence to a specified clock schedule, and reports on setup and hold
time violations; and minT, which determines the optimat clock schedule (i.e. the schedule with the
minimum cycle time) that satisfies all the timing constraints for a given circuit. The remainder
of the paper is organized as follows. In Sec. 2 we present a brief review of previous work.
The formulation of the proposed timing model is developed in Sec. 3. In Sec. 4 we introduce
worst-case assumptions about short-path propagation and derive a simpler, albeit more restrictive,
alternative to the general model. Section 5 presents algorithms for computing the minimum cycle
time for both models, and an example circuit illustrating the models and optimization algorithms
is discussed in Sec. 6. We close with some conclusions and suggestions for future work in Sec. 7.

2 Previous Work

The timing analysis of digital logic circuits goes back at least to the work of Kirkpatrick in the
1960’s [12]. Since then, a great deal of effort has been devoted to the subject. However, much of
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this work, including Kirkpatrick’s original paper, was concerned with timing analysis for edge-
triggered logic employing simple clocking methodologies. The timing models for this class of
circuits are fairly simple because edge-trigerring decouples the timing of flip-flop outputs from
the timing of their inputs. In contrast, the timing models for circuits employing level-sensitive
latches are coupled and considerably more complex; studies of latch-controlled circuits during
that period were, therefore, mostly limited to regular circuit topologies, such as pipelines [13].
It has only been during the last ten years, with MOS VLSI emerging as the leading technology
for implementing digital systems, that the timing analysis and design of level-sensitive logic
with sophisticated clocking schemes has become important. In this period several authors have
addressed the question of level-sensitive latches and multi-phase clocking including McWilliams
[14], Agrawal [15], Jouppi [1], Ousterhout [2], Glesner [3], Unger [4], Szymanski [S], Cherry
[6], Wallace [7], Ishiura [8], Weiner [9], and Dagenais [10]. Space does not permit us 1o review
these contributions here; interested readers are referred to [16] for additional details.

3 General System Timing Constraints

Our timing model is based on making a distinction between two types of signals in a synchronous
circuit: clock signals and data signals. Clock signals are used to regulate the flow of data signals
in the circuit to make sure that no data signal changes any sooner or any later than it is supposed
to. This synchronizing action of clock signals is predicated on precisely knowing the value of
a clock signal at all instants during a clock cycle!. The values of data signals, on the other
hand, need not be known precisely; it is sufficient for timing purposes to merely know when a
data signal is stable and when it is changing during a clock cycle. Much of the power of timing
models, over logical models, is due to this data-independence which effectively achieves complete
coverage of all signal propagation paths in a circuit without having to specify test vectors at the
circuit inputs?.

The distinction between data and clocks leads naturally to three categories of timing relations
in a synchronous circuit:

1. Relations among different clock signals, or phases, of a periodic clock.
2. Relations among data and clock signals for various types of synchronizing elements.

3. Relations among different data signals at the inputs and outputs of combinational logic
blocks.

The remainder of this section is devoted to the development of each of these three categories of
timing relations. Collectively, these relations will be referred to as the General System Timing
Constraints (GSTC).

3.1 Clocking Model

We define an arbitrary k-phase clock to be a collection of k periodic signals ¢1 , ¢2., -+ , P
— referred to as phases — with a common cycle time T,.. The phase signals are applied to the

1Some uncertainty in the value of a clock signal is, however, unaviodable because of finite rise and fall times.
20f course, some logically-impossible paths may also be covered necessitating the inclusion of some degree of
data-dependence (1, 2].




control inputs of synchronizing elements, such as latches and flip-flops. Each phase divides the
clock cycle into two intervals: an active interval of duration T}, and a passive interval of duration
(T. — T;). During the active interval of a given phase, the synchronizers it controls are enabled,
during its passive interval, they are disabled. The transitions into and out of the active interval
will be called, respectively, the enabling and latching edges of the phase. We assume, without
loss of generality, that all phases are active high; thus, the enabling and latching edges correspond
to the rising and falling transitions of the phase signal. It is important to point out that the phase
signals are not required to be non-overlapping. In fact, as we will see in Sec. 6, shorter cycle
times can be obtained when the clock phases are allowed to overlap.

Enabling Edge Latching Edge

@

i&—Passive Interval je—Active Interval—3

i | >t
(Tc‘Ti ) Tc

o—

Figure 1: Clock phase ¢; and its local time zone

Associated with each phase is a local time zone, as shown in Fig. 1, such that its passive
interval starts at ¢ = 0, its enabling edge occurs at ¢t = T, — T;, and its latching edge occurs at
t = T,. Mathematically, the domain of the local time zone is defined to be the interval (0, T.] since
the start of the current clock cycle coincides with the end of the previous cycle. The temporal
relationships among the k phases (i.c. among the different time zones) can now be established by
an arbitrary choice of a global time reference. We introduce e; to denote the time, relative to this
global time reference, at which phase ¢; ends (i.e. when its latching edge occurs). We also assume
that the phases are ordered® in this global time reference so that e; < e; < -+ < €1 < €.
The global time reference is now arbitrarily chosen to coincide with the local time zone of ¢x;
thus e = T,.

Finally, we define a phase shift operator:

- (e.f—'ei), i<y
E"—{(Tc+ej-ee), i>] (1)

which takes on positive values in the range [0,7.]. When subtracted from a timing variable in
the current local time zone of ¢;, E;; changes the frame of reference to the next local time zone
of ¢;, taking into account a possible cycle boundary crossing.

3.2 Synchronizer Model

We develop here the timing relations for D-type synchronizers, either latches or flip-flops* with
three terminals each: data input, data output, and clock input. The latches can be either static (for

3This ordering does not imply any restrictions on clocking; it is merely a labeling device for notational convenience.
*The model described here applies to negative edge-triggered flip-flops. Models for positive edge-triggered and
master-slave flips-flops can be defined similarly.



example cross-coupled NAND gates) or dynamic (for example MOS pass transistors). The circuit
is assumed to contain / synchronizers numbered from 1 to I. The ith synchronizer is characterized
by the following five parameters:

e p;: clock phase used to control synchronizer ¢.
e §;: setup time of synchronizer i relative to latching edge of p;.
e H;: hold time of synchronizer : relative to latching edge of p;.

e §;, Ai: minimum and maximum propagation delay of synchronizer i; for latches, propa-
gation is from the data input to the data output; for flip-flops, propagation is from the clock
input to the data output.

For timing purposes, it is sufficient to characterize a data signal over one clock cycle by two,
possibly simultaneous, events which demark the interval when the signal is switching between its
old and new values. For the signal arriving at the data input of synchronizer i these two events
are defined to occur at ¢ = a; and t = A; in the local time zone of phase p;. The cormresponding
events of the data signal departing from the synchronizer are defined to occur at t = d; and
t = D;. It will be convenient to refer to a; and A; as the early and late arrival times, and to d;
and D; as the early and late departure times. The synchronizing action can now be completely
specified in terms of these four event times as follows (see Fig. 2):

e Latch Synchronization:

d; = max(a;,T. - Tp,)

¢ Flip-flop Synchronization:
di=D;=T,

The above equations clearly illustrate the difference between the operation of latches and flip-
flops: for flip-flops, the timing of the departing signal is independent of the timing of the arriving
signal; for latches, the timing of the departing signal is dependent on the timing of the arriving
signal. It is this dependence which causes much of the complexity in dealing with latch-controlled
circuits.

For correct operation, the arriving data signal must satisfy the following hold and setup time
requirements (Fig. 3):

H;
T.-S;

a¢
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(i) Arriving Signal
(ii) Departing Signal (Latches)

(c)

L7 Stable signal (old value)

Stable signal (new value)

B Cianging sigoa!

®)

(iii) Departing Signal (Flip-Flops)
Figure 2: Synchronizing Action of Latches and Flip-Flops
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Figure 3: Hold and setup time constraints




3.3 Combinational Logic Model

The combinational logic in the circuit is assumed to have been decomposed into stages with
clocked inputs and outputs® (see Fig. 4), and is characterized for timing purposes by two ! x [
matrices whose elements are defined as follows:

e §;;: minimum propagation delay from the data output of synchronizer ¢ through a combi-
national logic stage to the data input of synchronizer j; if synchronizers ¢ and j are not
directly connected by combinational logic, then §;; = co.

e A;j: maximum propagation delay from the data output of synchronizer i through a com-
binational logic stage to the data input of synchronizer j; if synchronizers ¢ and j are not
directly connected by combinational logic, then A;; = —o0.

N

combinational logic

Figure 4: Generalized Synchronous Circuit Model

Both matrices § and A can be simultaneously obtained by a breadth-first or a depth-first critical
path algorithm applied to each combinational stage in the circuit[18, Ch. 3].

The temporal model of the combinational logic can now be stated by the following two
equations:
a; = min;(d;+ 8; + 85 — Epp;) L,j=1,---,1
A; = maxj(D;+A; + Aji — Ep,‘p.') i,j=1,---,1
These two equations express the two arrival time events at synchronizer i in terms of the
corresponding departure time events at its fan-in synchronizers j. For example, in Fig. 4,
Ay = ma.x(Dg + Ag + Ag7r — Eq2, D1o+ D10+ A1o,7 — E32). The subtraction of the phase shift
operators E4; and E3; achieves the necessary and unifying change of reference from the local
time zones of phases ¢4 and ¢35 to that of phase ¢,.

SFigure 4 is adapted from [17, Fig. 6.7 p. 335].
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Figure 5: Phase Non-overlap Constraints

34 Summary

The complete set of general system timing constraints, GSTC, is summarized in Table 1. For
ease of reference, the constraints have been organized into five categories, and have been given
mnemonic labels.

GC1. Phase Ordering Constraints:  €;; < ¢; i=2,--.,k
e =T,
GC2. Latching Constraints:
GC2H. Hold Time Constraints: a; > H; i=1,-.-,1
GC2S. Setup Time Constraints:  A4; < T. - S; i=1,---,1

GC3. Synchronization Constraints:
GC3L. Latch Synchronization:

GC3Ld. Early Departure: d; = max(a;, T, — Tp;) i=1,---,1
GC3LD. Late Departure: D; = max(A;, T, — T;) i=1,---,1
GC3F. Flip-Flop Synchronization: ‘
GC3Fd. Early Departure: d;=T. i=1,---,1
GC3FD. Late Departure: D; =T, i=1,---,1
GC4. Combinational Propagation Constraints:
GC4a. Early Arrival: a; = min;(d; + 6; + 6ji — Ep;p;) i,j=1,---,1
GC4A. Late Armival: A; =max;(D; + Aj+ Aji — Eppy) 4,5=1,---,1
GCS5. Bound Constraints: 0<e,T; LT, i=1,---,k
0<a;,Ai,di, D;<T - i=1,..-,1

Table 1: General System Timing Constraints (GSTC)

4 Restricted System Timing Constraints




Constraints GC1-GC5 are complete in the sense that they model propagation along both the
shortest and longest paths, and insure that hold and setup time requirements are satisfied at all
synchronizers. A frequently made simplification is to assume that the minimum propagation delays
in the circuit are zero. This assumption makes it possible to replace the short-path constraints by a
smaller set of phase non-overlap constraints. This can be readily seen for latch-type synchronizers
by substituting §; = §; = 0 and d; = T, — Ty, in constraint GC4a and combining the result with
the hold time inequality, GC2H, to yield:

T. - T, — Epjp; 2 ai > H; (2)

2

This constraint is illustrated in Fig. 5 which clearly shows that the next enabling edge of phase
p; must not occur any sooner than H; after the latching edge of phase p;. In other words, this
constraint insures that the end of the active interval of phase p; is separated from the beginning
of the active interval of phase p; by, at a minimum, the hold time of latch 3.

We can now write the system timing constraints exclusively in terms of the late arrival and
departure variables, without having to worry about short paths. This is facilitated by introducing
one last variable, L;;, defined as the set of synchronizers which are controlled by phase ¢;, and
which also receive one or more data inputs from synchronizers controlled by phase ¢;. Thus, in
Fig. 4, L34 = {9}, Laz = {6,7,11}, and Ly; = @ (the empty set). The complete set of restricted

RCO0. Phase Non-Overlap Constraints:
T, — T; ~ Eij > maXner, (H,) Vii 3 Lij #9
RCI1. Phase Ordering Constraints: e;_; < e; t=2,---,k
Er = Tc
RC2. Latching (Setup) Constraints: A; < T, — S; i=1,-..,1
RC3. Synchronization Constraints:
RC3L. Latch Synchronization: D; = max(A;, T. — Ty,) i=1,.-.,1
RC3F. Flip-Flop Synchronization: D; = T, t=1,.-.,1
RC4. Combinational (Late Arrival) Propagation Constraints:
Ai =max;(Dj+ 8+ Dji = Bpp) 6j=1,---,1
RCS. Bound Constraints: 0<e¢,T:<T. i=1,---,k
OSAi,Dich i'—‘l,"'vl

Table 2: Restricted System Timing Constraints (RSTC)
system timing constraints, RSTC, is summarized in Table 2. The RSTC are basically the same
as the constraints reported in [11]. They differ from these earlier constraints in that they:
o use a different frame of reference for time;
o allow for nonzero hold times;
and,
e use A; instead of D; in the setup requirements.

In addition, because the RSTC are derived as a special case of the GSTC, we can still obtain
from them the values of the early arrival and departure variables. Specifically,

&= T.-T,, i=1,---,1 (latches) (3)
' Tc ’ = 1’ v °’l (ﬂlp'ﬂops)
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and,
a; :min(dj—Epjp‘) ,7=1,.--,1 (4)
J

5 Calculation of Optimal Cycle Time

The minimum clock cycle time can be found by solving either of the following two optimization
problems, depending on which set of system timing constraints is selected:

Program PG: Optimal Cycle Time—GSTC

Minimize T,
Subject to GSTC (Table 1)

Program PR: Optimal Cycle Time—RSTC
' Minimize 7.
Subject to RSTC (Table 2)

These two problems are nonlinear because of the min and max functions in their constraints,
implying that their solutions would be difficult to obtain. Fortunately, the nonlinearities in these
constraints are mild, and their form suggests an associated, and presumably easier-to-solve, linear
version of each of the optimization problems. A major result of our work is to show that it is in
fact possible to obtain the optimal solutions of PG and PR indirectly by first solving a companion
linear program (LP).

We begin by noting that the min and max constraints can be easily relaxed and converted to
sets of linear inequalities. For example, the late departure synchronization constraint, RC3L, for
the :th latch would be replaced by two linear inequalities as follows:

o _ D; > A;

Di = max(A;, Te - Tp) = { D;>T.-T,

Similarly, the early arrival constraint for the ith synchronizer, GC4a, would be replaced by !
linear inequalities:

a; = min(d; +6; + 8ji = Ep;p;) = i < (dj +6; + 60 = Ep,p.)

Tables 3 and 4 show the results of applying these transformations to the general and restricted
system timing constraints shown in Tables 1 and 2. Besides the elimination of the min and max
functions, the generation of these relaxed constraints involves two additional subtleties:

o Constraint XGC3LDd, D; > d;, is introduced as a substitute for the more obvious choice
D; > T, - T,,, which is now implied because of constraint XGC3LdT, d; > T, — T},. The
adopted constraint has the advantage of maintaining the chronological order of the early
and late signal times (i.e. d; < D; and a; < A;).

¢ Redundant bound constraints are eliminated. Thus, only the phase widths 7; and the late
departure times D; are bound from above by T..




GC1. Phase Ordering Constraints: €1 < g t=2,--4,k
€k = Tc
GC2. Latching Constraints:
GC2H. Hold Time Constraints: a; > H; i=1,---,1
GC2S. Setup Time Constraints: A; <T. - S; 1=1,--.,1
GC3. Synchronization Constraints:
XGC3L. Relaxed Latch Synchronization:
XGC3Ld. Early Departure:
XGC3Lda: d; > a; t=1,---,1
XGC3LdT: d; 2T, - T, i=1,.-.,1
XGC3LD. Late Departure:
XGC3LDA: D; > A; t=1,--.,1
XGC3LDd: D; > d; t=1,---,1
GC3F. Flip-Flop Synchronization: .
GC3Fd. Early Departure: d;i=T, t=1,...,1
GC3FD. Late Departure: D; =T, t=1,..-,1
XGC4. Relaxed Combinational Propagation Constraints:
XGC4a. Early Arrival: a; <(dj+6; + 6 — Epp,))  d,j=1,---,1
XGC4A. Late Arrival; A; 2 (D;+ A + Aji—FEpp) t4,7=1,---,1
GCS. Bound Constraints:
GC5L. Lower Bounds: e, ;20 i=1,---,k
a;, Ai, d;, D; >0 i=1,--.,1
GC5U. Upper Bounds: T;:<T. i=1,---,k
D;<T. i=1,--.,1

Table 3: XGSTC—Relaxed Version of the GSTC in Table 1

In what follows we will refer to the relaxed versions of the GSTC and RSTC by XGSTC and
XRSTC. Using the relaxed constraints, we now define the following linear programs:

Program PXG: Optimal Cycle Time—XGSTC

Minimize T,
Subject to  XGSTC (Table 3)

Program PXR: Optimal Cycle Time—XRSTC

Minimize 7.,
Subject to  XRSTC (Table 4)

5.1 Minimum Cycle Time—The RSTC Case

We show in this section that the minimum cycle time found by solving the nonlinear program PR
is the same as that found by solving the linear program PXR. We also present an algorithm for
obtaining the optimal solution of PR by a simple modification of the optimal solution of PXR.
These results are essentially the same as those we reported in [11] for an earier formulation of
the system timing constraints.
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RCO. Phase Non-Overlap Constraints:
T.~T; — Eij > maxper, (H,) Vijd Lij#0

RC1. Phase Ordering Constraints: i1 <€ i=2,---,k
e = Tc
RC2. Latching (Setup) Constraints: A; < T, - 5; i=1,---,1

RC3. Synchronization Constraints:
XRC3L. Relaxed Latch Synchronization:

XGC3LDA: D; > A; t=1,---,1
XGC3LDT: D; > T, — T, i=1,---,1
RC3F. Flip-Flop Synchronization: D; =T, . i=1,---,1

XRC4. Relaxed Combinational (Late Arrival) Propagation Constraints:
Ai>2Dj+A;+Aji—Epp) 4,j=1,--4,1

RCS. Bound Constraints:

RCS5L. Lower Bounds: e, ;20 i=1,---,k
AiaDiZO i:l,...’l
RC5U. Upper Bounds: T: <T. i=1,---,k
D; <T. i=1,--4,1

Table 4;: XRSTC—Relaxed Version of the RSTC in Table 2

Denoting the optimal values of PR and PXR by T\, and T2, the main result of this
section is now simply stated by:

Theorem 5.1 Tc(fn),-n = Tc(ﬁﬁ) .
Proof: The proof is based on showing that program PR is equivalent to program PXR augmented
with extra constraints, and that the optimal value of this augmented linear program is the same

as that of program PXR. For the detailed proof steps see [11, Theorem 3.1]. a

This theorem forms the basis for Alg. 5.1 which finds the optimal solution of PR by first solving
the linear program PXR. Several observations should be made about Alg. 5.1°:

o The algorithm involves an iterative process which updates the values of the arrival and
departure times using the propagation and synchronization constraints of program PR (con-
straints RC3L and RC4 in Table 2). Throughout this iteration, the values of the clock
variables (T; and ¢; for i = 1,---, k) are held fixed at the optimal values found by solving

program PXR in step (1).
e This iteration is guaranteed to terminate because of the following:

1. the update equations in step (3) can only cause the arrival and departure times to
decrease, and,

2. the departure times are bounded from below by (T — T},;)

SWithout loss of generality, we assume for purposes of describing the various algorithms in this paper that the
synchronizers in the circuit are all D-type larches. For circuits containing mixtures of latches and flip-flops, the
algorithms should be amended appropriately.

11




Algorithm 5.1: Find Optimal Solution of Program PR

Comment: m is an iteration counter; g is a convergence flag.

1. Solve PXR. Denote the optimal values found for the late departure times by D? for i =
1,1

2. Setm =0, g = TRUE.
3. Fori,j=1,---,1 evaluate:

AP = max(DF* + A; + Aji ~ Eyp,p,)

D' = max(ATYL T, - Ty,)
4. If AT # AT or D™ £ D™ for any i, set g = FALSE, and increment m.
5. If g == FALSE set g = TRUE and go to (3).

6. Fori,j=1,---,1set:

di =T, — T,
a; = mjin(d,- - EPjPi)

¢ The update formulas in step (3) have the flavor of a mixed Jacobi/Gauss-Seidel iteration.
Other variants are obviously possible. In fact an event-driven update mechanism which only
calculates the arrival and departure times which have changed from the previous iteration
can be easily implemented. With such an enhancement the cost of the iterative steps can
be greatly reduced for large circuits.

o The overall operation of the algorithm can, be viewed as a process of “sliding” each of
the arrival and departure times to the left (towards the time origin) until any “slack” that
may have been introduced by relaxing the corresponding max constraint during step (1)
has been reduced to 0 (i.c. until the max constraint is satisfied.)

5.2 Minimum Cycle Time—The GSTC Case

The procedure of finding the minimum cycle time for the GSTC case is complicated by the
presence of both min and max functions in the constraints. Thus, unlike the RSTC case, an
approach similar to Algorithm 5.1 cannot be guaranteed to yield an optimal solution to program
PG under all circumstances. In fact, as we will shortly see, applying such an approach may
produce a solution that violates one or more hold time constraints. Fortunately, there is also
enough additional information to indicate how this infeasible solution should be modified to
make it both feasible and optimal.
Assume, therefore, that we carry out the following two steps:

1. Solve program PXG.

12




2. Disregarding the hold time constraints, “slide” the solution found in step (1) so that the
synchronization and propagation constraints are satisfied.

Let V1 > 0 denote the amount by which the hold time constraint at synchronizer : is violated at
the end of such a procedure; if the hold time constraint is satisfied, then V¥ = 0. The solution
obtained by this procedure can, then, be interpreted as that of a linear program—call it PXG'—
which is identical to program PXG except that the hold time at each synchronizer is reduced by
the corresponding violation amount. Specifically, the hold time constraints, a; > H,, are replaced
by:

a2 H-VH i=1,...)1 (5)

Furthermore, to account for cases when H; < V,—H , allow the early arrival times, a;, to be
unrestricted in sign. Finally, let r; denote the optimal value of the dual variable[18] corresponding
to the ¢th modified hold time constraint in (5).

With these constructions, it is now possible to obtain the optimal solution of program PG by
applying the sensitivity analysis techniques of linear programming [18, Sec. 4.4, p. 160] to the
solution of program PXG'. In particular, program PG can be “obtained” from program PXG’ by
increasing the hold time at each synchronizer i by V,-H . Denoting the optimal values of programs
PG and PXG by 7' and T* %), we may therefore conclude that: -

c,min min?®

Conjecture 5.2 T\, =TX9 4 s\ ryH

¢,min c,min

This result is stated as a conjecture because we have not yet worked out the detailed proof steps.
It assumes that the solution of program PXG’ remains basic feasible after the right-hand-side
vector is modified.

The detailed algorithmic steps for computing the minimum cycle time in the GSTC case are
given in Alg. 5.2.

6 Example

The timing model introduced in this paper has been implemented in two experimental CAD tools:
checkT, which examines a circuit for adherence to a specified clock schedule, and reports on setup
and hold time violations; and minT, which uses algorithms 5.1 and 5.2 to determine the optimal
clock schedule. We illustrate the model by formulating the system timing constraints, both general
and restricted, for the example circuit shown in Fig. 6, and solving for the minimum cycle time
using the minT, program. The circuit has 8 identical latches—represented by MOS pass transistors
in the circuit diagram—with the timing parameters H; = 0 ns, and S; = é; = A; = 10 ns. The
combinational logic stages between latches are labeled C;; where the indices are the numbers
denoting an input latch ¢ and an output latch j. Each logic stage is also annotated with the path
delay between the respective latches; it is assumed that 6;; = A,;.

The optimal solutions to both problems are shown graphically in Fig. 7. Each solution consists
of a set of signal waveforms over one clock cycle in the global time reference. For clock signals
(phases), these waveforms indicate when the signal is enabled (high) and when it is disabled
(low). For data signals, the waveforms indicate when the signal is stable and when it is changing.
The stable interval for each data signal is further divided into two subintervals to distinguish
between the old and new stable values. We adopt the convention that a stable value becomes old
when it is latched. The solutions in Fig. 7 only list the waveforms of the data signals at latch
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inputs. The waveforms at latch outputs can be easily obtained by using the latch synchronization
constraints’.Several observations can be made about these results:

¢ The optimal cycle time found using the GSTC constraints is 20 ns shorter than that found
using the RSTC constraints, a performance improvement of 12%. This improvement was
possible by partially overlapping the two clock phases.

e The “changing” intervals are wider in the case of the RSTC constraints because of the
worst-case assumption of zero minimum propagation delays.

¢ While not immediately evident from Fig. 7, the dual solutions to the LP provide all the
information necessary to identify the critical delays in the circuit. For this circuit, all delays
in the left loop are critical, i.e., increasing any one of them causes the optimal cycle time
to increase; the delays in the right loop as well as A45 tum out to be non-critical.

¢ For comparison purposes, the minimum cycle time when all latches are replaced with flip-
flops is 300 ns. Thus, the use of latches improves performance in this case by 45%. The
performance gain possible through the use of latches instead of flip-flops is, of course,
circuit-dependent.

7 Conclusions and Future Work

The timing model presented in this paper establishes a framework for the study of the dynamic
behavior of synchronous digital systems. The model requires that a circuit be decomposed into
combinational and sequential parts, a generally difficult task. Furthermore, the dynamic behavior
of the sequential structures must be captured in timing “macromodels” similar to those of the
D-type latches and flip-flops presented in this paper. Both of these steps, decomposition and
macromodeling, require further investigation. Other extensions to the model, for example to
handle clock skew, are relatively straightforward and are currently being incorporated.

In parallel with the model development effort, we are investigating efficient implementations
of algorithms 5.1 and 5.2. We are also looking into the derivation of closed-form design criteria
for special circuit structures such as pipelines and CPU data paths.
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Algorithm 5.2: Find Minimum Cycle Time for Program PG

Comment: m is an iteration counter; g is a convergence flag; t is a temporary time variable

1. Solve PXG. Denote the optimal values found for the early and late departure times by d?
and DY for i = 1, - ..,1. Denote the optimal cycle time by TX%)

c,min "

2. Setm =0, g = TRUE. g

3. Fori,j=1,..-- | evaluate:

(a) Late arrival and departure times:
A:'“H = mJa.x(D;-" +A;+ A4~ Ep,'p.')

D! = max(APL, T, - To,,)
(b) Early arrival and departure times:
t = min(dj + 6; + b5 — Ep,p,)
VH = max(0, H; - t)
a*! = max(t, H;)
47 = max(a]*, T, - Tp,)

4. If ATHY £ AT or DI*Y £ DI or a1 # o or ™! # d7 for any i, set g = FALSE,
and increment m.

3. If g == FALSE set g = TRUE and go to (3).
6. Compute the minimum cycle time from:

!
Timin = Timin + 2wV

=1
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Figure 6: Example Circuit
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(b) Solution obtained using the restricted system timing constraints (RSTC)

Key:
"1 stable signal (old vaiue)

Stable signal (new value)

- L] Changing signal

Figure 7: Timing of Armriving Signals for the Example Circuit
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