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Abstract

As the decrease in processor cycle time continues to outpace the decrease in
memory cycle time, even moderately sized on-chip caches may require several
cycles of access time in the near futlreis means that time is lost, even on a
cache hit, if independent instructions cannot be scheduled after a read from
memory A novel hardware device is proposed that keeps track of the history of
load instructions and predicts theirgeats before they are computed by the
instruction pipelineThis allows the saving of several processor cyclée
storage required to implement such a device is quige Jdut as the latency
required to read from therdi level cache grows, a moderate performance
improvement is seen.



1.0 Introduction

As processor speeds increase to higher and higher levels, the need for a fast memory sys-
tem becomes more pronounced. In the past, a small,ridefiel cache was adequate to
match the memory speed to the processor cycld3jmEhese caches could be accessed

in a single cycle to prevent memory from being a bottleneck, except in the case of a cache
miss. Unfortunatelythe moderately sized on-chip caches of current high-performance
microprocessors have multiple-clock-cycle access tifites MIPS R4000 also has an on-

board 8 KB data cache and three cycles of load lafgBLyif the delay slots of load
instructions on this machine cannot dkedi with instructions that do not depend on the

load, cycles will be wasted as the CPU waits for the memory system, even on a cache hit.

For an instruction cache, this latency can lbectizely hidden through architectural solu-

tions such as a bfefr into which future instructions can be prefetched. Much time has
been invested in researching the various techniques of instruction prefg@&Ehitighly
accurate branch prediction schemes, both static and dynamic, have been developed to
make this processfettive7, 20,12, 16].

A large latency in accessing the data cache presents a nfareltdifroblem Write buf-

ers can eliminate the bottleneck in storing data to the memory $gktémt the loading

of data cannot be fefctively bufered in this way because the results are desired immedi-
ately One method of hiding the memory latency of a load instruction is to pipeline the
cache, thus allowing the issue of a memory instruction every cycle, and properly schedule
the instructions to hide the load latenciBsis method is used in polycyclic vector sched-
uling[19] for the inner loops of scientificode. Its use is explored for more general pro-
grams ifnl4].

Sohi and Hsu describe a hardware method of eliminating some of the memory latency by
constructing an intermediate memory between the processor andsthieviel of the
memory hierarchjl8]. This memory acts as a back-up registier. fData can be moved
between the memory hierarchy and the intermediate memory and between the register fi
and the intermediate memofffhese moves must be explicitly coded into the program
being executed, and so this memory is dubbgor@grammable caché.’

These techniques for hiding the load latency can be considered static methods, because
they depend on the compilsror the programmés ability to properly schedule the code
before it is executed and, unless some lmgftechniques are used, they do not use run-
time information in their decision making processes.

This paper proposes a dynamic technique for hiding the delays caused by a slow primary
cache. It is a small cache memory loosely based on the concept of a brgethuter,
so it will be called doad tamget buffer

A branch taget bufer is a small cache that is accessed by the memory address of-the cur
rent instruction being fetchfl®2]. The bufer contains the addresses of branch instruc-
tions, their predicted tgets, and some kind of state machine that uses past results to
predict which branches will be taken on the next execution. Because tfes isuf
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accessed during the instruction fetch stage, the predicted result of a branch instruction that
lies in the bufler is available after a single cycle of delengtead of being available further

down the pipe when the branch is actually execdteis. allows immediate fetching of the

next instruction in the dynamic instruction stream.

A load taget bufer performs the same function for instructions that read from memory
During the instruction fetch pipeline stage, the address of the instruction that is being
fetched is used to access theBL Each entry of theTB contains an address, which is the
predicted taget of that load instructiorA load command is immediately issued to the
memory system. By the time the results of the load are needed, two or three stages down
the pipe, the results of the speculative load have returned from the memory Jystem.
predicted taget address and the realgetr are compared, and if they match, the load
latency has been successfully hidden.

This system works well for branch get bufers because, except for indirect branches,
branch instructions all have a singlegitr Load instructions can have a singlgeaibut
many of them use a register to allow indexed access to mehmsynecessitates a more
complicated scheme for determining the nexgdaof a loadTo allow better taget pre-
diction, the following information can be added to each entry in the loget tawfer:

* The address of the previous loady&tr

* The *stride” of the load instruction, which is the fdifence between the two previous
targets

* Some status bits to allow better prediction schemes.

The address of the previous loadytgrallows the bdiér to make a realistic prediction for

the next load taet, even when the current guess is incorfEue. stride ld allows the

buffer to make good predictions when the load instruction is used to scan an array in a reg-
ular fashion.The status bits allow extra information to be included in th&hwduch as
putting an ‘inertia” onto the stride to lessen thdeets of anomalous changes in the load
target. This inertial efect is similar to the use of two or more bits in branch prediction in a
branch taget bufer[20,12].

For this scheme to fefctively hide the load latencit must be able to correctly predict a
high percentage of the loaddats.Alternatively, this could be combined with one of the
static methods of solving the problem. Code scheduling will be able to hide slow memory
part of the time, and those loads that cannot teetefely rescheduled will be marked for
storage in the load et bufer.

At least two other papers have proposed methods that issue memory loads early in order to
hide the latencyJ.K. lllife describes aforward looking® architecture that immediately
issues a memory load whenever a potential address is formed instead of waiting for an
actual load instruction to be encountered in the instruction d@gatnpotential address

is created through the normal machine instructions that have a destination.ré&gister
lllife’ s machine, registers are tagg®dhen a value is stored in an address register
potential address is formed, and the machine issues a load to that address.
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Sohi and Davidson describe the Structured Mendmgess architecture, or SMAhis

machine has an address processing unit that can accept a pattern in memory and issue
loads to all addresses in the pattern before the values are actuajly7yiSEdis feature

works well to exploit the natural regularity of memory accesses to structures like vectors
and multidimensional arrays.

2.0 Operation of theLTB

Like a branch tayet bufer, the load taget bufer is accessed at the beginning of the
instruction fetch cycleThe address of the desired entry is obtained by performing some
hashing operation on the address of the instruction being fetched. In its simplest form, this
will involve removing the higher order bits of the address.

Throughout this papethe assumption will be made that thEBLis attached to the MIPS
R2000/R3000 instruction pipelifiel]. This architecture was chosen because of its simple-
ness and generalitpll of the descriptions and results can be generalized without too
much dificulty. Figurel shows this pipeline and how datawils from it to the IB and

the memory system.

The LTB is indexed with the instruction address during the instruction fetch stage of the
pipe. If a valid entry exists in the hef under this address, the faifimmediately issues a

data fetch to the memory system using the predictgettéield of this entryThis data

fetch should be initiated by the end of the instruction fetch cycle. Further down the pipe-
line the actual tayet is generated. In the MIPS pipeline, this takes place at the end of the
Execute stage, two cycles lat€his actual taget is compared to the prediction. If the pre-
diction is incorrect, the predicted load must be squashed and a new one issued, and time is
neither saved nor lost. If the prediction is correct, the number of cycles between the
instruction fetch stage and the stage that generates the agaahtare been saved. In the
case of the MIPS, this is two cycles. So a total of three cycles of latency can be tolerated
without slowing down the pipe with load delay slots.

If the system has been implemented with an instruction prefetéér, e LTB can be
exercised with addresses in the prefetcldoldefore they ever reach the pipeline. Doing

this allows predicted tgets to be sent to the memory system at an even earlier time,
enabling the system to tolerate even more cycles of load latenéyrtunately without

perfect branch prediction, some of the load instructions in the prefettgr might not
actually be executed. Because current branch prediction methods are so accurate, this
paper will assume perfect branch prediction.

While these comparisons are being made, the entry in the laget taufer must be
updatedThe new stride is calculated by a subtraction:

new stride = actual target - previous target

If the inertial prediction scheme is used, thefénuis updated with the new stride only if
the inertia bit is sefThe new prediction is computed as follows:
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new prediction = actual target + new stride
Finally, the pr evi ous t arget field is updated with thect ual t ar get.

This is explained in more detail Bection3.0, where a layout of thediids of an IB can
be found.

If the above computations can be computed in one cycle, ther lsah be updated at the
end of the MEM cycleThis allows a particular entry to be accessed every four cycles.
This is the limit, in the MIPS architecture, of a practical loop. Certain pathological cases
can reduce the loop size (SEablel). The non-pathological loop scans through an array
for the frst non-zero element. Loops of this kind are especially common in the string han-
dling libraries.

The pathological loop can cause a particular load instruction to be executed every two
cycles.This particular sequence of instructions could either be forbidden by the compiler
or could freeze the pipelin@he former solution seems quite practical as it involves no
extra hardware and the loop is so pathological as to be unlikely in real code. In the bench-
marks used in this papdhe tightest loops issued a load every four cy@estions.2

shows that these fouycle loops and other small loops occur quite rarely

TABLE 1. Small Loops

Non-Pathological Small L oop Pathological Small L oop

label: Ib t0,0(a0) label: bne r3,zero,label
nop Id r3,0(r3)
bne t0,zero,label
addi a0,a0,1

This functional description assumes a latency in ttst level data cache of only three
cycles and successfully hides the latency of that cache. If the latency is khegead

target bufer could be accessed using some queue of prefetched instructions maintained by
the processorThis would increase the cache latency that could be hidden, but would
degrade the performance of thefeutby causing it to issue data fetches for load instruc-
tions that would not have been executEhis performance degradation varies inversely
with instruction prefetch accuracy
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FIGURE 1. Data Flow in the L oad Target Buffer
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3.0 Prediction Strategies

As with branch taget bufers, the choice of a prediction strategy has a gréattedn the
accuracy of the bt#r. The more information that the lfef stores, the more likely a eor
rect prediction becomes. Unfortunatextra information makes the tbexf larger and
therefore slowerSome trade-dbetween speed and accuracy must be found.

This paper considers two tifent prediction algorithmd he frst simply uses informa-

tion provided by the previous and the current executions of the load instruction to predict
the next taget. The bufer computes dstride”, which is the diference between these two
tamgets, and adds the stride to the curremjetato get the prediction.
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This algorithm is similar to using a single bit of prediction information in a branghttar
buffer. If there is an anomalous stride, the feufwill predict the wrong tayet twice
instead of once. One misprediction will be caused by the anomaly Atsstond will be
caused by the incorrect stride that is used to make the following guess.

This situation can be tolerated with the addition of‘imertia” bit to the bufler. With the
addition of this bit, the new algorithm requires the actual stride to change in two consecu-
tive accesses for the stridelfl in the bufler to be reset. On therdt stride change, the
inertia bit is set to one, but the strideldi remains the same. On the second stride change,
the inertia bit is reset, and the strideldiis changed to the new stridée efects of this

can be seen ihable2 andTable3.

TABLE 2. Non-Inertial Prediction

Actual LTB Previous

Load Target LTB Prediction | Target LTB Stride Miss
100 - - - miss
104 100 100 0 miss
108 108 104 4

10c 10c 108 4

110 110 10c 4

114 114 110 4

100 118 114 4 miss
104 0f2 100 ffff fff2 miss
108 108 104 4

10c 10c 108 4

110 110 10c 4

114 114 110 4

100 118 114 4 miss
104 0f2 100 ffff fff2 miss
108 108 104 4

As the tables demonstrate, the simple prediction strat®gyms up’ more quicklyAfter
only two misses, hits begin to take place. Unfortunaiélhe loop which contains the
load is re-executed, there are two misses in the logdttaufer. The frst miss is caused
by the resetting of the @et to the beginning of the tgts to which the instruction points.
The second miss occurs because the stride becomes erroneous whee flaenjain the
target takes place.

The inertial strategy takes longer to warm Tywo misses are required for the stride to
change, so three misses are required for thiertaf correctly find the pattern of the load
instruction. But when the loop is re-executed, the resistance to changes in stride decreases
the number of misses to ordthough the miss that occurs when theg#dris reset to its
original value is inevitable, the Hef avoids a second miss by keeping the stride a con-
stant and setting the inertia Bithe fgure shows that the loop must be executed at least
three times for the inertial method to have any benefi
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TABLE 3. Inertial Prediction

Actual LTB Previous LTB

L oad Target LTB Prediction | Target Stride | Inertia | Miss
100 - - - 0 miss
104 100 100 0 0 miss
108 104 104 0 1 miss
10c 10c 108 4 0

110 110 10c 4 0

114 114 110 4 0

100 118 114 4 0 miss
104 104 100 4 1

108 108 104 4 0

10c 10c 108 4 0

110 110 10c 4 0

114 114 110 4 0

100 118 114 4 0 miss
104 104 100 4 1

108 108 104 4 0

4.0 Experiments

4.1 Prediction ratio

The frst interesting statistic is the rate at which loadegabufers of difering sizes and
prediction strategies can correctly predict thgaaaddress of a load. Because no predic-
tion can be made if information for a particular load is not in théehu lager LTB
increases thisprediction ratio’ by decreasing the number of dimensional ¢cisfl Natu-
rally, a better prediction strategy will give better performance.

Figure2 andFigure3 show the prediction ratios for loaddat bufers of varying sizes for
several benchmarks in the SPEC sulteese bukrs are all direct mappedhey were
simulated using a software package called RCM that was writtéiodayConte at the
University of Illinoig4]. This package uses the inclusion property to simulate all cache
sizes and associativities for a given line size in a single pass. Since adeatuéer has

a fixed line size of one entrthis works quite quicklyThis package was modifi to sim-

ulate the contents of the cache in addition to the normal simulation of the address stream.

The figures reveal some important facts. First, the prediction ratio is very good, close to
100 percent, for matrix 500, no matter which strategy is Udasd.result should not cause
great surprise since this benchmark merely performs several elementary operations on two
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large matricesThese matrix operations have very regudend therefore very predictable,

data access patterns. For spice2g6, on the other hand, the best approach is use the inertial
prediction strategy which gets around 61 percent accuNoff, espresso, and doduc

seem to give'typical” results of around 70 to 80 percent.

The figures also show that an inertial strategy performs better than a non-inertial one. For
matrix 500, nraf, and spice, the inertial strategy makes a minimal improverhbatiner

tial strategy gives doduc and espressge &nd ten percent boosts, respectivetys deft

nitely agues for the use of an inertia bit. Experiments were run that set the inertia bit to
one instead of zero at the beginning of the simulafibe. reasoning behind this strategy
was that this would allow the Hef to “warm up’ to the correct stride more quickly
Some of the results got beftand some worse, but none by more than a tenth of a percent.

The “knee” of the graph is around 1K entriésbuffer of this size would have most of the
prediction power of any lger bufer. This is too lage. 1K entries translates into 9K bytes

since each entry requires four bytes for each address that is stored, and about one byte for
the stride and inertid&igure4 shows that increasing the set associativity has littectef

on the prediction ratio for a giverilB size, thus ruling out increasing the set size as a
method of decreasing th@B size.This graph is for espresso, and all of the benchmarks
revealed that the associativity of thEB_has little efect on its performance.

4.2 Small gaps

The second set of experiments involved the concern with the ability to updatefénerbuf

time for the next issue of the load instruction currently being prediCsdde4 gives the
number of times a single load instruction is re-executed in the dynamic instruction stream
after a very small number of cycl@%e distance in the instruction trace between two exe-
cutions of a single static instruction is called tlgap”. In the discussion above, it is
assumed that all of the necessary arithmetic operations can be performed in a single cycle.
This allows the budér to be exercised on a single load instruction every four cyihes.

rate of update is acceptable for all of the benchmarks and, as was speculated above, will
probably serve for all practical programs.

On the other hand, it may not be advisable to dedicate a fast adhitghr could be quite
large and expensive, to the loadgeir bufer. Furthermore, if the instruction pipeline is
long or the B is indexed in an instruction prefetch fauf the actual tayet will be gener
ated more than four cycles after th€B_produces a predictiolhese situations will
decrease the frequency at which a particular loagetan the buer can be updated. If
there is a small gap between two executions of a single load instructioif,Bhady not

be updated with the actual gat of the fist execution when it is called upon to make a
prediction for the second execution.

This causes two problems. First, ifeats the validity of the simulation, which assumes

that the OB can always be updated with the actuajeéabefore it needs to make the next
prediction. Second, in a real system these small gaps need to be handled in some way and
cannot be “assumed” awalhe small gaps could be handled by assuming that the pre-
dicted taget is correct, and updating th€R with that value. If the predicted tgat turns

Hardware Support for Hiding Cache Latency January 13, 1995 9



out to be incorrect, some cleanup would need to be do¢her option would be to stall
the pipeline until the TB can be updated with the actuabet: Both of these degrade per
formance, and the second option has the addéduliy of adding pipeline stalls.

Table4 also gives the number of times gaps of slightlgdarvalues occuAs the mini-
mum gap that can be handled increases, the utility of tHerludcreases, since less and
less load tagets can be put into th&'B and efectively updated. Fortunatelgs the table
reveals, these small gaps occur quite ramtgl so performance will not befefted too

much.

TABLE 4. Small Gaps

Gap Size matrix 500 doduc espresso nr of f spice

1-3 0 0 0 0 0

4 0 16 1883 16 1892

5 0 764 11,254 1193 11,064

6 124,390 1626 97,973 2873 1485

7 2 18 136,825 438,545 11,608

8 874,496 14 466,887 757,498 141,757

9 2509 5027 550,663 366 618,403
10 121,899 646,928 343,503 5263 21,802

1 0 3985 1,558,694 0 936,752
12 126,247 3385 1.029,232 2543 244,860
13 7 7671 881,640 190 2,116,011
14 446 6175 481,074 435,085 1,460,258
15 116 116 297,734 6740 226,626
16 1,126,130 26 709,516 741,696 7,753,396
All Gaps 49,166,626 9,574,879 23,663,246 19,088,025 88,515,490
Gaps<=8 998,888 2438 714,882 1,200,125 167,806
(percent) 2.032% 0.025% 3.021% 6.287% 0.190%
Gaps<= 16 2,376,242 675,751 6,562,878 2,392,008 13,545,914
(percent) 4.833 7.058% 27.73% 12.53% 15.30%
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FIGURE 2. Prediction Ratio with Non-Inertial Algorithm
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FIGURE 3. Prediction Ratio with Inertial Algorithm

1 O £ AR\ VAR AR\ VAR V) V) V) V) VAR VAR
. T N> € N> N> N> N N

0.8 r

0.6 - *

0.4 r

c—omatrix 500
m#—ododuc
&—<espresso
A—ANroff 1
*—kspice

1 1 1

0% 8 32 128 512 2K 8K 32K 128K 512K
LTB Size in entries

Hardware Support for Hiding Cache Latency January 13, 1995 11



FIGURE 4. Prediction ratio vs LTB sizefor espresso for various set associativities.
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4.3 Reducing the Buffer Size

4.3.1 TheProblem

As mentioned irBection4.1, a bufer size of 1K entries may be toodarto get the short
access time that is needed to quickly read and update the data TBth&dme strategy

must be used to reduce the size of thédowfhile still maintaining a high degree of pre-
dictive accuracyOne method might be to increase the set-associativity of the cache. In the
experiments of the previous sections, a direct-mapp&lvias assumed. Unfortunately

the extra hardware required to give a set associative cache can slow down the access time.
Because RCM uses a one-pass algorithm to simulate TiBe it. automatically gives

results for all set-associativitieshese results reveal a small shift in the location of the
knee, and thus a small improvement iFBLsize for the “reasonable” set sizes of 2 and 4
entries.

Another approach is follow the lead of Olukotun and Mudgé.4fand try to find those

load instructions which can be rescheduled so that, if the cache is properly pipelined, their
latencies are partially or completely hidden. Implementation of this approach would
require two changes to th@B system.

First, the compiler would have to be augmented to detect those loads which could have
their latencies completely hidden through instruction rescheddimgse loads would be
marked somehow to indicate that they will not have thegetarstored in theTB. This
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could be done by having two types of load opcodegefalile and non-btdrable. Unfor
tunately this would require a change in the instruction set architecture if it were to be
implemented in an existing machine, thus introducing incompatibilities. SecondBhe L
would have to be modéd so that it ignores load instructions which are marked in this
manner

4.3.2 Simulation

Determining the ééctiveness of this solution requires a more involved simulation. For
different load latency times, t#frent load instructions will have their latencies success-

fully hidden through instruction rescheduling. Furthermore, the penalty incurred by
misses in the TB will dif fer for loads that have their latencies only partially hidden in the

rescheduling phase.

Because of these factors, the prediction ratio is no longer a good measure fefcthe ef
ness of an IB of a particular size. Instead, thdéeet of LTB size on the system CPI will
be determinedlhe “knee” of the graph of CPI versu$SR size determines a good size for
the LTB.

The simulation proceeds in two phases. In tts fihase, the trace is scanned and all load
instructions are examined. If a load instruction to a particular register is followed too
closely by a use of that registénen a multi-cycle fst level cache latency can cause a
pipeline stall.To avoid this, the simulator percolates the load up the instruction stream
until data dependencies prevent further motion. If the load can be moved far enough away
from the use, the stall cycles will have been successfully eliminated through rescheduling.
If not, the simulator records the address of the load instruction for the second phase of the
simulation.This first phase corresponds to a compilation phase in which loads which can-
not be well scheduled are marked by the compiler for insertion intoTdBe @nly load
instructions are moved; the simulation does not try to reschedule the instructions that
cause the dependencies with the load instruction.

In the second phase, the simulator performs the same process of rescheduling load instruc-
tions and trying to hide their latencies through clever instruction scheddlimgnever a

load instruction is found which was marked by thstfphase of the simulation, it is fed

into the OB. If the LTB successfully predicts the ¢gat of that load, the number of cycles

that are saved is recorded.

Several assumptions are made in the rescheduling pHeseare that:

1. Load instructions can be moved through branch instructions.

2. There are no branch delay slots and branch prediction is perfect.

3. All instructions, except perhaps loads, are executed in a single cycle.

4

. The window of instruction motion is 3n instructions, where n is the number of cycles of
latency to the fst level cache.

5. Once an instruction is moved, no other instruction can be moved above it in the instruc-
tion stream.
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The frst assumption is perhaps the most bold. It was made for two reasons. First, the
MIPS is a uniprocessor machine with fairly simple scheduling for structures like loops,
which receive a lot of attention in sciertifmachines. In a compiler for a sciemtifi
machine, techniques such as polycyclic vector scheduling and loop unrolling allow code
motion which efiectively moves instructions through branches. Second, in future
machines, speculative execution of instructions may allow true rescheduling of code
across branch instructions to enable compilation techniques such as trace and superblock
schedulingg].

The second assumption also has two jestiidns. It is desirable to isolate théeefs of

the load instructions without having the factors of branch prediction accuracy and pipeline
depth in the design spadkhis required the elimination of all other variables besides load
latency and IB size. Furthermore, the state of the art in branch prediction allows almost
perfect prediction, as was mentioned in the introduf2i@n Imperfect branch prediction
could decrease performance because the instruction addresses used to intiBxmhg L
never be executed if the resolution of a previous branch instruction squashes them. Extra
predicted tagets could then be sent to the memory systeaditionally, if the LTB is
indexed from an instruction prefetch farf and the pipeline is rdied after a mispredicted
branch without going through that lferf either the IB would not be indexed, decreasing
performance, or an extra data path into thB would have to be built.

In a pipelined RISC machine, having each instruction require a single cycle of execution is
a reasonable assumption. Even though the total latency of an instruction can be long, pipe-
lining allows a result to be produced during every cycle.

Keeping the window of instruction motion to a limited number of instructions is done due

to time consideration3o scan the entire trace for the earliest allowable time of execution

of a load instruction would be impractical for the traces used, which were tens to hundreds
of millions of instructions longA window size of three times the load latency allowed
successful motion of three dependent load instructions, as long as other data dependencies
did not prevent motionThis seemed like a reasonablgufie. No experiments were done

to see the é&bct of changing the window size on the success of code mdétiomore
appropriate forum for that type of discussion would be a paper on the practical aspects of
code rescheduling.

The last assumption is simply a heuristic. Occasionallpad instruction will be moved

and have all of its latency hidden through reschedulihg.simulator then tries to move a
second load instruction. If it is allowed to take the place of teelfiad instruction, the
simulator may decide that it has all of its latency hidden asAvplioblem arises because

the motion of the second load into the place occupied byr8tddad instruction would

have forced the st instruction to movelownwad in the instruction streanthis down-

ward motion may expose some of the latency that was previously hiddarielligently

make this decision would be quite a programming chore, and is beyond the scope of this
paper

In[14], the authors determine how much load latency can be hidden through the introduc-
tion of pipelining in the fist level cache. In doing so, they determine which load instruc-
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tions can be rescheduled to hide this latefidyey do this by examining each load
instruction in turn, and deciding whether data dependencies prevent the code motion
required to achieve this godlhey do not attempt to determine the interactions between
the loads which are moved.

These interactions may be sigo#nt. First, loads may be forced downwards in the
instruction stream, as was described above. If tfesteils not considered, one could pro-

duce optimistic results about the success of code rescheddlsay. if the compiler
decides that a load cannot have its latency hidden through code motion, and then a second
load instruction is moved into a delay slot of thstfinstruction, the ffst instruction will

have one more cycle of its latency hidden. If a simulation does not consider this, it will
give conservative results.

TABLE 5. CPI given by two different simulation methods.

L oad matrix

Latency Method doduc 500 espresso nr of f spice

2 cycles | Golden 1.022 1.0006 1.013 1.020 1.035
Olukotun | 1.023 1.0006 1.020 1.020 1.036

3 cycles | Golden 1.087 1.0025 1.064 1.049 1.106
Olukotun | 1.102 1.0033 1.078 1.051 1.128

5 cycles | Golden 1.264 1.019 1.282 1.123 1.288
Olukotun ] 1.310 1.0143 1.283 1.159 1.340

8 Cycles | Golden 1.624 1.387 1.756 1.308 1.722
Olukotun | 1.745 1.418 1.759 1.387 1.786

Table5 shows that the method of Olukotun et.al. was very close to the simulation tech-
nigue of this papemwhich takes these interactions into account. In the cases where there is
significant diference, Olukotun was slightly conservative. One should note that in
Table5, and all tables in this section, a CPI of one would indicate that each load instruc-
tion had an déctive latency of one cycle.

In summarythe efect of the simulation is to produce an optimal schedule within the pro-
gramming constraints listed aboviée load instructions which have latencies that cannot
be hidden through this scheduling process are placed inT#Benhich tries to give an
early prediction of their tgets, thus hiding their latency in hardware.

4.3.3 Reaults

When examining the results given in this section, one should remember that a CPI of 1.0
indicates that all load latencies were successfully hidden, either through scheduling or the
action of the IIB. Table6 shows the actual CPI that is achieved for each program after
reschedulingA figure for the CPI before rescheduling makes little sense because even the
most rudimentary compiler would try tdl fin some of the delay slots with independent
instructions that immediately follow the load
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The table reveals that when there are only two cycles of latency testhevel cache, an

LTB can, at the most, cause a 0.02 to 0.035 CPI improveRigate5 reveals that this is
indeed the case. For most of the benchmarks, T jrovides around a 1 percent
improvement in CPI. Because matrix 500 has most of its latency hidden through resched-
uling, the OB has almost no &fct on it. Doduc shows increasingly better performance as
the LTB size is increased, but even in this case 1024 entries are required for a meager 0.02
CPI gain in performance.

TABLE 6. Base CPI with rescheduling

load latency | doduc matrix 500 espresso nroff spice
2 1.022 1.0006 1.013 1.020 1.035
3 1.087 1.0025 1.064 1.049 1.106
5 1.264 1.019 1.282 1.123 1.288
8 1.624 1.387 1.756 1.308 1.722

When the cache latency is increased to 3 cycles, the tseokfin B become slightly

more pronounced. Once again., matrix 500 requires nothing but rescheduling to achieve a
CPI very close to 1. Espresso, fiyaind spice see an improvement of 0.015 to 0.045 CPI,
and the curve is quite level as thEBR_size increased his seems to indicates that if an

LTB was included in such a machine, it could be rather small, around 32 entries, and still
get most of the available performance increase. Once again, doduc wants a igg¢her lar
LTB size in order to capture most of its performance poteltidh 1024 entries, almost

all of the 0.087 CPI performance degradation due to load latency is recaptured. Unfortu-
nately this is probably too lge of an IB to be practical.

For a 5 cycle cache latendize LTB becomes more of a practical solutibigure7 shows

that an improvement in CPI of about 8 percent is available forT&with 64 to 128

entries for doduc, nrfand spice. Espresso has a performance improvement of 0.15 to
0.18 CPI in this rangd&.he “knee” of the graph for these programs, except for doduc, is
around this size. Once again, doduc shows only a little sign that the slope is decreasing as
the LTB size increases.

Figure8 shows similarly shaped curves, but the improvementgetadrom 0.10 to 0.50
CPI. It is interesting to note that for 8 cycles of load latenmtrix 500 shows improve-
ment through the use of aifB, but requires only 32TB entries to capture almost all of
this performance gaiffhis probably results from the tight loop structure of the bench-
mark. One the cache latency exceeds the number of cycles in the lodB arieeded,

but it need not be Ige since there is a very high degree of spatial and temporal locality in
a tight loop.
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5.0 Conclusion and Future Work

5.1 Conclusion

When is an IB useful?When the fist level cache latency is only two or three cycles, a
good schedule combined with a pipelined cache should be able to hide most of the load
latency The inclusion of anTB for a 2 to 3 percent CPI decrease is probably not worth it.

When the latency increases to 5 cycles, a moderately siz@dcén give a signifant
boost in performance, around 10 percent for most of the benchar&sen lager boost
is seen when the latency increases to 8 cycles.

It is not clear that all of my assumptions hold when the load latency igjasak®B cycles.
The small gaps discussed $ection4.2 have a minimal étct for smaller latencies, but
when the latency increases to 8 cycles, frinak 6 percent of the gaps smaller than the
latency Because theTB needs to be updated with the correg¢ain the event of a miss,

if a particular OB location is exercised more rapidly than the amount of latency it hides, it
could cause stalls while it updates itself or mispredicts log@tsarFurthermore, as the
LTB is exercised earlier in the pipeline, or even in the instruction prefettdr, baforder

to hide lager latencies, branch prediction has more of tecebn prediction accuracy

Finally, when a machine has such gtalatency to therft level cache, even more aggres-
sive scheduling techniques might be usdtkse techniques could use register renaming

to eliminate dependencies, thus increasing the amount of code motion that is allowed.
Superblock scheduling is one example of such a mghod

The use of a load et bufer seems to have a narrow window of opportuiiibe latency

to the frst level of the memory hierarchy must be long enough to make schedufing dif
cult yet short enough to let a “quickTilike the LTB hide it in many cases. In most
machines, howevesupport for aggresive code rescheduling seems to be a rfemtavef
solution.

5.2 FutureWork

While this research was being performed, an article by Ivan Sklenar appe@aedputer
Architectue Newsthat had some relevance to this wa. This article suggests using
hardware similar to theTB to perform prefetches into the data cache, thus enabling more
sophisticated prefetching strategies than fetching sequential Tinisswould be benefi

cial when a scalar processor accesses a vector data structure with a stride longer than the
cache line lengthAlthough Sklenals paper presents a strateigyloes not give results.

Jean-Loup Baer antlen-Fu Chen have published architectural studies which examine the
use of a table to predict the strides of load instructibnis. information can then be given

to a more intelligent prefetch unithey show that using this method of prefetching can
drastically eliminate compulsory cache misses and cache pollution due to naive prefetch-
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ing methodg1][2]. Fu, Patel, and Janssens at the University of lllinois have done similar
work and achieved promising resuUi.

All of these studies suggest that the stride information be used to prefetch data directly
into the data cache. None of them try to use the cachectailifninating devices called
stream butrs and victim caches which are proposed by Joui It would be interest-

ing to see how a combination of these techniques would interact.
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FIGURE 5. CPI Improvement vs LTB Size (2 cycles of latency)
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FIGURE 6. CPI Improvement vs LTB Size (3 cycles of latency)
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FIGURE 7. CPI Improvement vs LTB Size (5 cycles of latency)
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FIGURE 8. CPI Improvement vs LTB Size (8 cycles of latency)
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