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Abstract

This report discusses the design and implementation of a run-time system for Ada that is
targeted to the NCUBE hypercube multiprocessor. A brief introduction to the hypercube
architecture is given. The scope and structure of the run-time support is presented and its
relationship to the target architecture is discussed. Actual implementation details are also
included along with the prospects for expanding the support to a full distributed Ada run-time
system.
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1 Introduction

It is apparent from statements in the Ada Language Reference Manual (LRM) [LRM83]
that Ada is not only intended for execution on shared memory multiprocessors but also on
distributed processors that do not share memory. Accordingly, the LRM provides explana-
tions of language constructs that consider the distributed program case. Unfortunately, the
semantics are not clear for the distributed case. As a result, there have been several inves-
tigations into the issues and feasibility of distributing Ada. These discussions can be found
in [VMB87], [VMNS8S], [Ard84] and [Cor84). Related discussions of run-time support for
distributed Ada can be found in [WEA84a}, [WEA84b], [FiW86], [Ros87], and [Ard86]. In
addition to the problems that arise at the langunage level when considering distribution, there
are also issues concerning the target architecture. Particular consideration is given to this
aspect of the problem in [VMBS87].

The advent of inexpensive commercial hypercube multiprocessors [HMS86) has created
an interest in targeting a distributed Ada compiler to these machines. This raises several
issues, which will be discussed below. In order to provide some insight into the approach
and feasibility of such a project, a partial run-time system for distributed Ada has been
implemented on an NCUBE/ten, a hypercube multiprocessor configured for our work with
64 processors. The kernel implemented runs together with the existing operating system and
includes support for executing Ada tasks in parallel. The distributed nature of the system
comes from the assumption that the several tasks of an Ada program may reside on several
processors (where the number of processors is equal to or less than the number of tasks).
Support for memory management and I/O is included in the existing operating system.

This paper will provide a brief introduction to the hypercube architecture. Issues con-
ceming this particular target architecture will also be discused. The structure of the system
routines and their interface to user Ada programs will then be presented. Following that, im-
plementation details concerning the target hardware and existing operating system are given.
Finally, consideration is given to the expansion of the run-time system and to the feasibility
of re-targeting an existing Ada compiler to the hypercube machine.

2 The Hypercube Architecture

A hypercube computer consists of several microprocessors interconnected by communication
links. A hypercube computer of dimension n is a multiprocessor with N = 2" processors
arranged at the nodes of a hypercube graph. Each processor is directly connected via com-
munication links to n neighbors. An operating system kernel supports store and forwarding
of messages so that processors that are not neighbors can still send messages to each other
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through intermediate processors. The maximum number of distinct communication links that
must be used to transfer a message between any two processors is n, the dimension of the
hypercube.

In the case of the NCUBE machine, each processor has its own local memory (128 K-
bytes) and the hypercube array is managed by a host computer (an Intel 80286 based system).
The configuration used in our work at the University of Michigan is an NCUBEften with 64
processors. (More processors may be added to a total of 1024.) The processors are Vax-like
32-bit microprocessors with IEEE standard floating point capability. Each processor runs a
copy of an operating system called Vertex that supports the store and forward communications
noted above. The host runs a multi-user Unix-like operating system called Axis. Axis allows
the hypercube array to be partitioned into subcubes that may be allocated to different users.
More details on the NCUBE architecture can be found in [HMS86], while more information
on Vertex can be found in [MBAS6].

Although the host in this system can provide some degree of shared memory, for the
most part, hypercube multiprocessors are distributed memory machines. This proved to be a
source of some difficulty because the block structured nature of Ada permits shared variables,
which translates to possible remote memory accesses. This issue and suggested solutions are
discussed in detail in [VMB87]. References to remotely located variables and subprograms
is beyond the scope of the initial run-time system discussed here. This report is concerned
mainly with issues related to the distribution of tasks over several processors.

3 Overall System Structure

The partial run-time system that was implemented provides support for Ada tasking. More
specifically, support is included for inter-task rendezvous, task delay, task elaboration, ac-
tivation and termination, and task scheduling with time slicing. In all areas, the Ada rules
governing parent-child task relationships are followed. As with the operating system, the
run-time support kemel is replicated on each node in the hypercube that is being used.

Each node can run a collection of tasks. These tasks request service from the run-time
system by making a call that generates an interrupt. The service is performed by the system
and then another task is chosen to run on that node. The run-time system services requests
by altering task states and data structures, and by sending messages. Processing of run-time
system requests is carried out independently of whether any of the affected tasks are local
or remote. This allows the tasks to be distributed across several processors. To support
this, messages can be sent either locally or to other nodes. Incoming messages are read at
scheduling points and placed on a queue along with all local messages. All pending messages
are then processed once at each scheduling point. The basis for our implementation is a
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message based system similar in philosophy to that proposed in [WEA84a]} and [WEA84b].

3.1 Ada Tasking Control

The first major section of the kemel subset is tasking control. This part of the kemel contains
routines for task elaboration and activation, task termination, task delay, and task rendezvous.
Calls to these routines are made via interrupts by user tasks (i.e. Ada program tasks) when
these operations need to be performed.

To provide a framework for the run-time system, we first define fourteen states that a
task may be in. They are:

e Unbom

¢ Running in the declarative region

¢ Running in the body

¢ Running in a critical section

e Waiting to activate

e Delayed

e Waiting for a rendezvous accept message
e Waiting for a rendezvous return message
e Waiting for an entry call

e Waiting for an entry call confirnation message
e Completed

e Terminated

e Waiting to terminate

e Abnormal

Second, we currently define eleven different message types. Seven of these are associated
with the rendezvous mechanism. The eleven types are:

e Simple entry call
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Conditional entry call

Timed entry call
Retumn from rendezvous

Accept entry call
Confim entry call
Abort entry call

o Elaborate child

e Child is active
o Child is completed
e Abort task

The use of the states and niessages is explained in the sections below.

In addition to the task states and messages, there are also several data structures worth
noting. Each task has a task control block that contains its name, parent’s name, program
counter, program status word, stack pointer, stack space, rendezvous information, and pointers
to a state queue, child information, and entry information. A state queue is needed since
some task states are temporary and the previous state must be remembered (e.g. a delayed
task returns to its previous state when the delay expires). The child information is a linked
list of nodes containing child names and their elaborated/active status. Entry information
consists of the number of entries, the names and guards for each, the last entry serviced, and
a message queue for each entry. Messages are also made up of several components depending
on their type. Different fields include source, destination, identifier, and data. More details
concemning the particular data structures are given as they arise in the discussion below.

3.1.1 Task Elaboration and Activation
There are two routines in the system to implement task elaboration and activation. These

routines change the state of the requesting task and police the Ada rules concerning activation
and parent-child task relationships. The elaboration of a task changes its state from unborn

When a task calls the activation routine, its state changes to running in the body, unless it
has children that are still not active. If the latter is true, the task enters a wait to activate state
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and stays that way until an active message is received from all its children. An elaborate
message is sent to all unbom children in this case to begin their elaboration. When the task’s
state changes to running in the body, a message is sent to its parent to enable the parent task
to become active.

3.1.2 Task Completion and Termination

For these kemel operations, two routines are needed. One is for normal termination and the
other is for abnormal termination. When a task is finished with its execution, the routine
for normal termination is called. The requesting task becomes completed and, if all of its
children are in the terminated state, it also becomes terminated. If any of its children are
still active, it stays in the completed state and waits for a message from each child indicating
that the child is terminated. Whenever a task enters the terminated state, it sends a message
to its parent to allow the parent to terminate.

When a task wants another task to abort execution, a routine is called to perform the
abnormal termination. The aborted task stops any rendezvous or delay in progress, enters the
abnormal state and sends an abort message to all of its children. If the task has no children or
its children are already terminated, the task enters the terminated state and sends a message
indicating this to its parent.

3.1.3 Task Delay

There is one routine in the kemel to implement a task delay. The task requesting a delay
passes the delay value to the routine. A linked list of task names and associated expiration
times is kept by the run-time system. The task name-expiration pair is inserted into the list
that is sorted by increasing expiration times. When the timer expires, the count of clock ticks
since node startup is updated. This keeps track of the absolute time. A check is then made to
see if any entries in the linked list need to be processed. The effective delay resolution then is
roughly equal to the time slice value. The same linked list of task names and expiration times
is used to implement time bounds placed on task rendezvous (discussed in next section).

3.14 Task Rendezvous
Three routines are needed to implement task rendezvous. One is needed for the calling task

and two are needed for the accepting task. The calling task executes an entry call and the
accepting task executes an accept statement.
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3.14.1 Entry Call

is a timed entry call. If the flag is false and the time out value is greater than zero, a simple
entry call is implemented. A time node is not created and a simple entry call message is sent.
If the flag is false and the time bound is zero or negative, a conditional entry call results. If
the entry is local, a check is made to see if the queue for that entry is empty and whether
its guard is true. If this is the Case, the entry call message is sent. If the entry is non-local,
a conditional entry call message is sent to the proper node. This call is accepted only if the
queue for the desired entry is empty and its guard is true. The final case is the timed entry
call. Here the entry call message is sent and a time node is inserted into the linked list. If

pending on any of the entries.

Since the accepting task executes the code during the rendezvous, two run-time system
routines are needed to begin and end the task’s critical section. Also, the first kemel routine

Distributed Run-Time Support 6
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The first routine, which begins the accept, is passed the accepting task’s name, the values
for the guards, and a timeout value. If the guard for the timer is true (i.e. the accept is part of
a select with a delay branch), a time node is added to the linked list. A check is then made for
each entry queue that has an open guard to see if an entry call is pending. If any entries are
pending, the first one encountered is accepted. In the case of the timed entry call, an accept
message is sent to the calling task and the accepting task waits for a confirmation message
before executing the critical section. In the simple and conditional cases, the rendezvous
begins immediately with a message being sent to the caller upon completion of the critical
section. The search for a pending entry begins one past the last entry accepted to ensure fair
service to all entries. If no entries are pending, the accepting task enters a wait for entry call
state. In this case, the task will hang until an entry call is made to it or the timeout expires
(if present). A guard value of true is assigned to an else branch of a select statement if it is
present. If no entry calls are pending in this case, a fictitious call to the else is accepted.

The second routine is called after successful completion of a rendezvous by the accepting
task. At this point, the critical section is exited and a return message is sent to the calling task
to allow it to proceed with its execution. This routine is passed the name of the accepting
task and the value of the out parameters of the rendezvous.

In all three routines supporting task rendezvous, certain information must be passed to
the tasks requesting service. Since calls are generated by interrupts and conventional returns
are not used, information is passed back to a task in space reserved in its task control block.
Such information includes a flag to indicate successful rendezvous, index into a select of the
entry accepted, and values for in and out parameters.

3.1.4.3 Rendezvous Message Passing

These three routines for task rendezvous perform the necessary synchronization through
altering task states and sending messages. A timed entry call results in an call message
being sent to the desired entry. When the accepting task is ready to accept that entry (or
if it already is ready) an accept message is sent to the calling task. If the calling task has
not timed out on the call, a confirm message is sent to the entry to start the rendezvous.
When the confirm message is received, the critical section is executed and the rendezvous
is completed. A return message is then sent to the caller so that it may resume execution.
If the calling task times out before receiving an accept message, an abort message is sent
to cancel the rendezvous. Since the calling task may be in a loop and again call the entry
before the abort is received, identifiers are combined with task name for each rendezvous
related message so that they may all be uniquely identified.

In the case of a simple entry call, the number of messages passed is reduced to two.
Since there is no possibility of a time out, once an entry call message is sent, the calling
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task waits for a retum message from the called task. Thus, there are no accept or confinm
messages sent.

The message passing for conditional entry calls is also simplified. For local calls, a check
is made on the desired entry to see if a call to it can be accepted. If so, a simple entry call
to that entry is performed. If the call is to a remote entry, a conditional entry call message
is sent. When it is received, a check is made to see if it can be serviced immediately. If it
can, the call is processed and a reply is sent upon completion of the rendezvous. If it can
not be immediately accepted, a negative reply is sent to the caller.

3.2 Communications and Control

The other major section of the kemel is communications and control. The routines here are
not visible to the user’s tasks. They provide the message sending and receiving operations,
task scheduling, and timing management. This part of the kernel also must handle the target
system interface.

3.2.1 Message Passing

Two routines are support this operation, one for sending messages and one for receiving
them. The message sending routine determines whether the message destination is on a
local or remote node. If the message is local, it is placed on a message queue and will be
processed at the next scheduling point. Non-local messages are sent to the destination node
via the operating system communications support.

The message receiving routine dequeues messages and performs any necessary operations.
A message usually requires a state change for a task, an outbound message to be sent, or some
other update of a task’s data structures. When messages from remote nodes are received,
they are placed on the local message queue for processing along with all other messages.
At each scheduling point, before a new task is selected to run, all pending messages are
processed.

3.2.2 Timing Support

Two routines are needed here to set time nodes in the linked list (mentioned earlier) and
process a timeout condition. These routines include code to update the linked list of expi-
ration times and code to make state changes and send messages. Also necessary here is a
modification to the operating system interrupt handler for a timeout interrupt. The handler
reloads the timer with the time slice value and adds this value to a counter of clock ticks.
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The routine that processes timeout conditions is also called from within the timeout interrupt
handler.

Since tasks yield control of the CPU whenever a call to the run-time or operating system
is made, it is possible that they will not use their entire time slice. In this case, before the
next task is dispatched, the timeout register is read and the number of ticks since the last
time slice was loaded is computed and added to the counter of clock ticks. This updates
the absolute time since node startup. The timeout register is then loaded with the time slice
value for the next task. Whenever a value for the current time is needed (e.g. when adding
a node to the linked list of timeouts), a function is called that multiplies the counter of clock
ticks by a system constant to obtain the absolute time since startup in seconds.

The complexity of the time management strategies is due to the fact that there is only
one timer on each node. This scheme also prevents clock synchronization across nodes
and allows for the time value to drift if interrupts are masked during manipulation of timer
dependent data structures. It would be far more desirable to have a real time clock register
on each node as well as the interval timer currently provided. This would allow an accurate
value for the current time to always be available on all nodes and would also reduce the
overhead in processing interrupts generated by the timeout register.

3.2.3 Task Scheduler

At the high level, the task scheduler makes a call to receive all pending messages and then
picks a task to execute. The scheduling of tasks is round robin among executable tasks. All
task pointers are included in a linked list. Terminated tasks are removed from the list when
they are encountered. The list is traversed until an executable task is found or a complete
cycle is made. If a cycle is made and no task is executable, the message queue is checked
to see if any new messages need to be read. If not, the timer linked list is checked to
see if any timeouts will occur in the future. If the timer list is null and no messages are
pending, deadlock occurs for the single node case. In the multiple node case, there still may
be messages coming from other nodes. When the linked list of task pointers becomes null,
all tasks are terminated and the host program is informed by the scheduler that the node has
completed its execution. When all nodes allocated complete execution, the host program

terminates.
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4 Implementation Details for the NCUBE Machine

4.1 Approach

The code for this run-time system was written in C, a language with a compiler for it on the
NCUBE. A simulation version was first implemented in C on a Vax 11/780. This step was
performed to reduce debug time necessary on the NCUBE, where the debugging tools are
more primitive.

4.1.1 Operating System Interface

In order to run the system in C on the NCUBE, the operating system running on the nodes had
to be modified. Assembly language routines were written to generate run-time system calls.
These calls are implemented via interrupts. The interrupt vector table provides the interrupt
handler’s address and a new program status word. The new program status word in all cases
enables interrupts so that communications between the nodes can continue. This does not
interfere with the operation of the run-time system. Timer interrupts are also allowed, so
that the count of clock ticks can be maintained accurately. Processing of the timer interrupt
includes examining the program counter of the interrupted code to determine if a user task
or the run-time and operating system was interrupted. The next step for the interrupt handler
of the called run-time system routine is to move the parameters from the calling task’s stack
to the run-time system stack area. All registers are then saved in the calling task’s stack
area contained within its own task control block. The stack pointer is changed to point to
the system stack area and the call to the appropriate run-time system routine is made. Upon
its return, a call is made to the task scheduler which also makes a call to receive pending
messages. Upon retumn, the registers of the selected task are reloaded, the stack pointer
changed, and the task given control via a return from interrupt instruction that restores the
program counter and program status word. The same procedure occurs for a timeout interrupt
of a user task, except that maintenance of the time variables and processing of timeouts is
also performed. Direct calls to Vertex from user tasks also result in a context switch and
scheduling of a new task. All tasks picked to run by the scheduler are given a fresh time slice
before being dispatched. This requires updating of the counter of clock ticks as mentioned
earlier.

The run-time system routines are written in C and the operating system (Vertex) is written
in assembly language. Since they are not linked together and Vertex is entered through
interrupts, addresses of run-time system variables and routines must be passed to Vertex. An
initialization interrupt handler is used to load a table of the necessary addresses. This allows
both Vertex and the run-time system to share global data.
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4.1.2 Form of User Program

Currently, Ada programs are hand translated into sequential C code and run-time system
calls. Each task then appears as a separate C routine. The main unit of this program is a
routine that is executed once at startup to perform data structure allocation and initialization.
Task control blocks are allocated from high memory using getbuf in Vertex. (This was done
to keep stack pointers out of the user space, because this condition confuses the C compiler
and generates an error). Other space is allocated from the C routine malloc for task state
queues, child information, and entry data. The program counter, program status word, and
stack pointer are initialized for each task. Finally, this routine generates the initialize system
interrupt to pass important system addresses to Vertex. After the table is initialized, control
is passed to the task that represents the main unit of the Ada program.

4.2 Example of Run-Time System Interface

To demonstrate the relationship between an Ada program and the underlying run-time system,
an example is given in the Appendix. The original user code is given as an Ada program.
Static specification of the location of tasks is done through the use of a SITE pragma as
proposed in [VMNB85]. The resulting sequential code and run-time system calls are given
in C. This is the code that is given to the C compiler and linked with the run-time system.
Each C routine given represents a separate task and both tasks in this example reside on a
unique processor in the network. The two C programs are compiled separately and each is
linked to its own copy of the run-time system (i.e. each node in use has its own copy of the
run-time system as well as Vertex).

S Future Directions

At this point, a partial distributed run-time system for Ada on the NCUBE machine has been
implemented. However, there are still some features that should be part of this run-time
system subset that have yet to be implemented. These features include support for dynamic
task creation and the terminate altemative in a select statement. Implementation of these
features, though, is greatly dependent on the distribution strategies adopted. This issue is
investigated in [VMB87], but must be re-examined in the case of the hypercube architecture.
Then, the above mentioned language features may be incorporated into the run-time system
as well as additional components (e.g. exception handling, remote procedure call, remote
object reference, etc.).

A great advantage of the existing system at this point is the fact that it is coded in a high
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level language (C) and interfaced with the low level operating system (Vertex). There is also
existing support for memory allocation and /O in Vertex. Altogether, this allows the content
of the run-time system to be easily modified and re-compiled. A distributed run-time system
testbed has been established for the NCUBE machine, allowing for further experimentation
to proceed smoothly.

The run-time system can now be extended to include full run-time support for distributed
Ada or even distributed Concurrent C [CGP85]. Since the user tasks are now in the form of
C routines, targeting a Concurrent C compiler to the NCUBE to interface with this run-time
system should be an easier task. However, in either case, the step of extending the run-
time system to be complete requires an examination of the issues involved with each new
component included. An attempt at implementation, though, can uncover the issues involved.
With the testbed established, prototyping of the expanded run-time System can proceed rather
quickly. At any rate, in the case of Ada or Concurrent C, successful completion of a complete
run-time system would allow the re-targeting of a compiler to the NCUBE.
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Appendix

The following example shows how an Ada program with tasking is represented as C code
with run-time system calls.

A Original Ada Program

with TEXT_IO; use TEXT_IO;

procedure MAIN is

-~ This program consists of a tasks and a main program (second task).
-- The main program executes an entry call to the first task and passes
-- it a value. It then executes a timed entry call to the task to read
-- that value. It then checks to confirm that the value it originally
-- passed to the task is the same as the value read from the task.

-~ The main program then delays, aborts the task (since it is in an

-= infinite loop), and completes.

PARM_VAL
READ_VAL

INTEGER := 1;
INTEGER;

task FIRST LINK is
entry DEPOSIT(VAL : in INTEGER);
entry READ (VAL : out INTEGER);

end;

task body FIRST_LINK is
LOCAL_VAL : INTEGER;
begin
loop
accept DEPOSIT (VAL :
LOCAL VAL := VAL;
end;
accept READ(VAL : out INTEGER) do
VAL := LOCAL_VAL;
end;
end loop;
end FIRST LINK;

in INTEGER) do

pragma SITE(O0, MAIN);
pragma SITE(l, FIRST LINK);

begin /* Body of procedure Main */

FIRST LINK.DEPOSIT(PARM VAL); --Entry call to pass value to first task
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select
FIRST_LINK.READ (READ_VAL) ;
if (PARM VAL = READ_VAL) then
PUT_LINE ("Value passed was unchanged.");
else
PUT_LINE("Value passed was changed.");
end if;
or
delay 10.0;
PUT_LINE ("Value couldn’t be read from task within 10 seconds.");
end select;

delay 2.0;
abort FIRST_LINK;

end MAIN;
}

B C Code With Run-Time System Calls

B.1 C Program for Unit MAIN

#include "types_spec.h" /*Include file with type definitions.*/
extern TIME_PNT time root; /*Root of linked list of times.*/
extern BLOCK_PNT ctask; /*Pointer to tcb of current task.*/
extern int msg_count; /*Number of pending messages.*/

extern MSG_PNT msg_store[max msg]; /*Queue of messages.*/

extern int last_msg; /*Last message read in queue.*/

extern int time count; /*Number of clock ticks since startup.*/
extern int t_slice; /*Time slice value.*/

/* The following routines cause interrupts so Vertex can save the state
of the executing task before performing the specified service in the

run-time system. */
extern elaborate _m(); /*Task elaboration routine. */
extern activate m(); /*Task activation routine. */
extern terminate m(); /*Task termination routine. */
extern delay m(); /*Task delay routine. */

extern accept_begin m();/*Routine to begin accept of rendezvous.*/
extern accept_end m(); /*Routine to end critical section of rendezvous.*/

extern entry m(); /*Routine to execute entry call. */

extern abort_m():; /*Task abort routine. */

extern child m(); /*Routine to establish parent-~child relationship.*/
extern init_sys(); /*Routine to initialize system and pass addresses
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to Vertex. */

/* This file contains all code for each user task. Conceptually, this
can be thought of as the code generated by an Ada compiler to be
further input to a C compiler and linked to the run-time system. */

t_0_code() /* Code for procedure Main */
{

char logstr{132]; /* string for NCUBE 1/0 */
PARAMETER_LIST parms_1;

PARAMETER_LIST pams_Z = NULL;

int read val;

int parm val = 1;

parms_1 = malloc(sizeof (PARM));
parms_1l->next value = NULL;

elaborate m(NULL_TASK, NULL_ENTRY); /* the 0 is the name of task 0,

main program has no parent and no entries.*/
activate m(); /* the 0 is the name of task 0 */
parms_l->value = parm val;

/* Entry call from task 0 to entry 1(FIRST_LINK.DEPOSIT),
condition to set timer is FALSE. */
entry m(l, parms_1l, INFINITY, FALSE);

/* Timed entry call from task 0 to entry 2(FIRST_LINK.READ),
condition to set timer is TRUE. */
entry m(2, parms 2, 10.0, TRUE);
if (ctask->accepted) {
read_val = ctask->out_parms->value;
if (parm val == read val) ({
sprintf(logstr, "Value passed was unchanged.\n");
syslog(777,logstr);
}
else {
sprintf(logstr, "Value passed was changed.\n");
syslog(777,logstr);
}
}
else ({
sprintf (logstr,
"Value could not be read from last task within 10 seconds.\n"):;
syslog(777,logstr);
}
delay m(2.0); /* Delay for 2 seconds. */
abort m(1); /* Abort task 1 (FIRST_LINK) */
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terminate_m(); /* Terminate main program. */
} /* End of Ada procedure Main */

t_1_code() /* Last task is null to generate name for highest address in
user task code space. */
{
}
#define NUM_TASKS 1 /* One task on this site. */
static BLOCK_PNT tasks[NUM_TASKS];
main () /* C routine to initialize program running on this node. */
{
int i
CHILD_PNT point;
char logstr(132]:;

/* Loop to initialize task control blocks. The call to mmalloc calls my
assembly routine my malloc. This allocates memory from the message
pbuffer area. This is done to prevent the system routine check stack
from incorrectly signaling a stack overflow. */

for (i = 0; i <= (NUM_TASKS - 1); i++) |

(BLOCK_PNT)mmalloc(sizeof(CONTROL_;LOCK));
0x1£0000;

tasks[i]);

tasks{i]->sp + ({sizeof (CONTROL_BLOCK) - 64);

tasks[i]

tasks[i] ->psw
tasks[i]->sp
tasks[i]->sp

i;

tasks[i]->name

tasks[i}->state_queue = (STATE_PNT)malloc(sizeof(STATE_NODE));
tasks[i]->state_gueue->state = UNBORN;
tasks[i]->state_gueue->next_state = NULL;

tasks[i]->state_queue->caller = NULL_TASK;
tasks[i]->state_queue->acceptor = NULL_TASK;

tasks[i)->dependents = NULL;

tasks[i]->id_generator = 0;

}

/* Set up a linked list of tcb’s. */
for (i = 0; i <= (NUM _TASKS - 1); i++)
tasks[i)->next_block = tasks([(i + 1)];
tasks [ (NUM_TASKS - 1) }->next_block = tasks[0];

/* Initialize parent child relationships through a linked list of dependent
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information. */
tasks [0] ->dependents. = (CHILD_ PNT)malloc(sizeof (CHILD));
tasks [0] ->dependent s->name = 1;
tasks[0]->dependent s->elaborated = FALSE;
tasks [0])->dependents->active = FALSE;
tasks [0] ->dependents->next_child = NULL;

/* Task 0 starts from the init handler and does not have all of its

registers popped from the stack before its initial execution.
Therefore it does not need the extra 60 bytes subtracted from
its stack pointer like the other tasks do. See vertex listing. */

tasks[0]->sp = tasks{0]->sp + 60;
/* Initialize program counter. */
tasks (0] ->pc = t_0_code;

Allow task for main unit to be scheduled by making it runnable */
tasks[0]->state_queue->state = RUN_DCL;

ctask = tasks(0];
last_msg = -1;
msg_count = -1;

Pass routine and ctask addresses to vertex. */

init_sys(&ctask, &time count, &t_slice, entry mon, accept_begin mon,

accept_end mon, delay mon, child_mon, elaborate_mon,
activate_mon, abort_mon, terminate mon, answer timer,
scheduler, t_0 _code, t_1 code);

B.2 C Program for Unit FIRST_LINK

/* This program also contains the external declarations found above

in the program for the unit MAIN. They are omitted here to save
space and avoid duplication. */

t_0_code() /* Code for task FIRST LINK */

{

char logstr{l132];

BOOLEAN local_guards([3];
int i;

Distributed Run-Time Support 18



RSD-TR-10-87

PARAMETER LIST parms_l = NULL;
PARAMETER_LIST parms_2;
ENTRY_PNT entry_data;

int local_val;

/* Allocate and jnitialize space for parameter list and entry data. */
parms_2 = malloc (sizeof (PARM));
parms_2->next_value = NULL;
entry data = (ENTRY_?NT)malloc(sizeof(ENTRY_?ECORD));
entry_ﬁata->last_entry = 0;
entry data->entry_size = 2;
entry_ﬁata->entries = malloc(3 * gsizeof(int) )’
entry_data->guards = malloc(3 * sizeof (int));
entry data->msg_queue = malloc(3 * sizeof (MSG_NODE_PNT)):
for (i =0; i <= 2; i++) |
entry_data->entries[i] = i; /* i is name of entry */
entry_ﬁata->guards[i] = FALSE;
entry_data—>msg_queue[i] = NULL;
}
entry_@ata->entries[0] = 0;
elaborate _m(0, entry_data); /* Elaborate task 1 with parent 0 and entries.*/
activate_m(); /* Activate task 1 */
while (TRUE) { /* loop */
local_guards[O] = FALSE; /* Guard for delay part or else part. */
local_guards(l] = TRUE; /* Want to accept first entry. */
local_guards[Z] = FALSE;
accept_pegin_m(local_guards, 0.0); /* 0 is time out value (not used). */
switch (ctask->index) {
case 1:
local_val = ctask->in_parms->value;
accept_gnd;m(parms_});
break;
default:
sprintf(logstr, "Error, simple accept must hang until entered.\n");
syslog(777,logstr);
break’
}
local_guards[ll = FALSE;
local_guards[2] = TRUE; /* Accept second entry */
accept_begin_m(local_guards, 0.0);
switch(ctask->index) {
case 2:
parms_2->value = local_value;
accept_pnd_p(parms_z);
break;
default:
sprint £ (logstr, "Error, simple accept must hang until entered.\n");
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syslog (777, logstr);
break:;
}
) /* end loop; */
terminate_m();

}

t_1_code() /* See above comment for null routine purpose. */
{
}
#define NUM_TASKS 1 /* One task on this site. */
static BLOCK_PNT tasks [NUM_TASKS];
main ()
{
int i
CHILD_PNT point;
char logstr([132];

/* Loop to initialize task control blocks. The call to mmalloc calls my
assembly routine my malloc. This allocates memory from the message
buffer area. This is done to prevent the system routine check stack
from incorrectly signaling a stack overflow. */

for (i = 0; i <= (NUM_TASKS - 1); i++) |

(BLOCK_PNT)mmalloc(sizeof(CONTROL_BLOCK));
0x1£0000;

tasks(i];

tasks(i]->sp + (sizeof (CONTROL_BLOCK) - 64);

tasks(i]
tasks[i]->psw
tasks([i]->sp
tasks([i]->sp

tasks([i] ->name =i+ 1;

tasks[i)->state_queue = (STATE_PNT)malloc(sizeof(STATE_NODE));
tasks[i] ~>state_gqueue->state = UNBORN;
tasks[i]->state_queue->next_state = NULL;

tasks[i]->state_gueue—>caller = NULL_TASK;

tasks[i] ->state_queue->acceptor = NULL_TASK;

tasks[i]->id_generator = 0;

}
/* Set up a linked list of tcb’s. *x/
for (i = 0; i <= (NUM_TASKS - 1); i++)

tasks[i]->next_plock = tasks[(i + 1)];
tasks [ (NUM_TASKS - 1) ]->next_block = tasks (0]
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/* Initialize parent child relationships through a linked list of dependent
information. */
tasks (0] ->dependents = NULL;

/* Task 0 starts from the init handler and does not have all of its
registers popped from the stack before its initial execution.
Therefore it does not need the extra 60 bytes subtracted from
its stack pointer like the other tasks do. See vertex listing. */

tasks[0)=->s8p = tasks[0]->sp + 60;

/* Initialize program counter. */

tasks[0]->pcC = t_O_code;
ctask = tasks([0];
last_msg = =1;
msg_count = -1;

/* Pass routine and ctask addresses to vertex. */
init_sys(&ctask, &time_count, &t_slice, entry mon, accept_begin_mon,
accept_end_mon, delay_mon, child _mon, elaborate_mon,
activate_mon, abort_mon, terminate_mon, answer_;imer,

scheduler, t_0_code, t_1_code);
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