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Abstract

This paper addresses the feasibility of using Ada for programming Al systems,
and developing an interface between Lisp and Ada. The object-oriented design

methodologies supported by the two languages are also contrasted.
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1. Introduction

Lisp is a list processing language that was introduced by John McCarthy during
the early 1960’s. Unlike Fortran and Algol which are algebraic programming
languages, Lisp is a language designed for symbolic manipulation. It has gained
unprecedented acceptance from the artificial intelligence (AI) community, at

least in the United States, for programming Al applications.

The Ada language has been in existence a short time in comparison to Lisp. It
was developed in the early 1980’s at the initiative of the United States Depart-
ment of Defense for programming real time embedded systems. Ada is based

primarily on Pascal, but incorporates concepts from many different languages.

This paper addresses the feasibility of using Ada for programming Al systems,
and developing an interface between Lisp and Ada. The object-oriented design
methodologies supported by the two languages are also contrasted. We begin
with the history and an overview of Lisp followed by a summary of its major

dialects.
2. History

Lisp has its roots in the Information Processing Language (IPL), which was the
first list processing language and was introduced by Newell, Simon, and Shaw in

1956. The first version of Lisp, Lisp I, provided a unique style of programming
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which emphasized the use of functional composition and recursion over the trad-
itional imperative constructs. By 1965, Lisp I had become Lisp 1.5 and con-
tained constructs not present in the earlier version. The most controversial of
these constructs was the PROG feature, which made it possible to write

ALGOL-like programs in Lisp.

In the early 1970’s, Lisp 1.5 gave birth to two major dialects of Lisp, BBN-LISP
(1974) and Maclisp (1974). BBN_LISP later became Interlisp and is currently
used on the XEROX machines. Maclisp had numerous descendants including
Lisp 1.6, UCILISP, Franz Lisp, and NIL. Stanford University adopted an early
version of Maclisp and called it Lisp 1.6, that later became UCILISP at the
University of California, Irvine and Standard Lisp at the University of Utah.
Franz Lisp was developed at the University of California, Berkeley for VAX-

UNIX and NIL was developed at MIT for VAX-VMS.

In 1981, a committee was formed to standardize the various versions of Lisp.
The goals of the standardization process included portability, commonality, con-
sistency, compatibility, and efficiency [Ste84]. This led to the specification of
Common Lisp, which is primarily a descendant of Maclisp and a subset of Zetal-
isp. Whether Common Lisp achieves its goals remains to be seen since Standard
Lisp and Portable Standard Lisp (PSL) had similar objectives. The introduction
of Common Lisp did slow the evolution of Lisp to a certain extent, but new
dialects are still being proposed as research in the areas multiprocessing and

strong data typing progresses.

3 Ada and Lisp



RSD-TR-9-85

3. Basics of Lisp

The basic data structures in Lisp are lists and atoms. Atoms are fundamental
entities in Lisp while lists may consist of atoms or other lists. A Lisp program
contains a set of function definitions followed by the application of these func-

tions to specific data structures.
Some of the major features of Lisp include McC80]:

1) Computing with symbolic expressions (S-exprs) rather than numbers.
2) Representation of S-exprs by list structure in memory.

3) Use of selector and constructor operations expressed as functions.

4) Use of conditional expressions for branching.

5) Representation of program and data in the form of S-exprs.

An S-expr is either:
1) An atom
A) Numeric
Ex: 5
B) Literal
Ex: ABC55

2) A dotted pair of atoms
Ex: (A . B)

3) A dotted pair of S-exprs
Ex: ((A.B).C)

The dotted notation used in (2) and (3) above can become unreadable when

many elements exist. Hence, list notation is often used to make certain S-exprs
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more readable. However, only dotted pairs that end in NIL may be represented
as lists since NIL is used as a terminator for lists. For example, (A . B) can not
be represented as a list but (A . (B . NIL)) can be represented as a list by writ-
ing (A B). The rules for transforming S-exprs from dot notation to list notation

and vice versa can be found in [McC60].

The various dialects of Lisp are supersets of what some people call "Pure Lisp”

[Glo82]. Pure Lisp consists of [Glo82]:

1) Functions CAR, CDR, and CONS
CAR takes a list as input and returns the first element in the list.

CDR takes a list as input and returns a list containing all of the
elements except the first element of the list.

CONS takes a list and an atom as input and adds the atom to the front
of the list.

2) Predicates EQ and ATOM
EQ returns T only if its arguments are represented by the same memory cells.
ATOM returns T if its argument 13 an atom.

3) Control structures: COND, recursion, function composition, and
functional parameters.

COND allows conditional expressions to be implemented.
Support for recursion and functional parameters allows functions to
call themselves and functions to be passed as parameters.
4) Data structure: S-expressions
5) Label and Lambda constructs.
Lambda allows new functions to be defined by the user, while

Label allows names to be associated with the functions.
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A simple function to append one list, Y, onto another list, X, can be written as
follows:

(defun APPEND (X Y)
(cond ({eq nil X) Y')
(T (cons (car X) (append (cdr X) Y)))

4. Major Dialects of Lisp

Most dialects of Lisp support Pure Lisp as defined in the previous section. They
differ primarily in the environments, data types, scope rules, binding rules, and
data typing rules they provide. Most Lisp systems offer an excellent, integrated
development environment to the programmer. The environment generally con-
sists of an interpreter, debugger, multiple windows, and other features specific
to each manufacturer. Data types traditionally restricted to procedural
languages, such as bitstrings and arrays, are now supported by many dialects of
Lisp. Some dialects use dynamic scope rules while others use lexical scope rules.
Dynamic scope rules ilﬁply the scope of a variable depends on program execu-
tion, whereas with lexical scope rules, the scope of a variable can be determined
at compile time. The binding used may be either shallow or deep depending on
the dialect. If deep binding is used, the nonlocal reference environment of a
procedure instance is the same as the environment in force when the procedure
was created. If shallow binding is used, the nonlocal reference environment of a
procedure instance is the one in force when the procedure is invoked. Conven-
tional languages such as Algol and Pascal use static scope rules combined with

deep binding while many Lisp dialects use dynamic scope with shallow binding.
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Maclisp is one of the few dialects of Lisp which can be used efficiently for
numerical computation. It also supports shallow binding and uses a partitioned
memory. By storing different types of data in different parts of memory,
Maclisp can quickly determine the data type from a data address. Interlisp uses
deep binding and cdr-coding to store lists efficiently in memory [section 55]
Franz Lisp is written primarily in the C language, and is known for its ability to
interface to C, Pascal, and Fortran subprograms. Zetalisp provides constructs
for data abstraction [section 5.4] and also uses cdr-coding for storing lists. Sill is
a dialect of lisp designed primarily for vision applications. It attempts to
increase execution speed by taking advantage of representational information
thru the use of strong data typing. Common Lisp is the most recent of the
dialects. It supports lexical scope rules and various data types including complex

numbers, arrays, and vectors.

Fundamental differences exist between the Lisp dialects described above and the
Lisp language defined by McCarthy [McC60]. Lisp continues to incorporate con-
cepts and constructs commonly found in procedural languages such as Algol-60.
For instance, some dialects of Lisp support iterative constructs such as a ‘Do-
loop’ as well as lexical scope rules. It appears newer dialects of Lisp will con-
tinue to incorporate ideas from procedural languages unless Common Lisp

becomes a standard and no further dialects of Lisp are proposed.
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5. Lisp with Ada

Lisp has traditionally been the language of choice for deveioping Al software.
We describe some features of Lisp which make it suitable for Al applications
[section 5.1] and try to determine whether the Ada language can be used for
such applications [section 5.2]. In section 5.3, possible interfaces between Ada
and Lisp are outlined. Support for a strucf;ured design methodology is often an
important criterion when selecting an implementation language. The support of
an object-oriented design methodology for developing Al software in a dialect of
Lisp, Zetalisp, as well as in Ada is reviewed in section 5.4. Finally in section

5.5, we discuss a crucial aspect of any Al software, storage management.

8. Lisp for Al applications

To understand why Lisp is widely used for Al programs, we will first attempt to
characterize such programs. Al programs tend to have a short development
cycle and rare‘ly involve teams of programmers. Often, the design and implemen-
tation phase occur concurrently. When describing Al programming, phrases
such as ‘“‘programming under uncertainity’ [She83], ‘‘exploratory programming”

[She83], and *‘algorithms in flux" [SMS80] are common.

Lisp is ideal for exploratory programming since Lisp, as specified by McCarthy,
is a typeless language with dynamic scope and dynamic binding. The lack of
explicit typing and static binding allows the programmer to delay design deci-

sions until run time, and in a sense, explore different alternatives easily.
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Al applications, in particular expert systems, require extensive pattern matching
facilities. Pattern matchers can be implemen!;ed efficiently in Lisp since Lisp

was designed specifically for symbolic proceésing.

Massive storage is necessary to explore alternative solutions to a problem. Con-
sequently, most Lisp implementations provide sophisticated storage management

facilities to avoid memory depletion [section 5.5].

The identical representation of program and data allow lisp programs to modify
themselves. This feature may be appropriate for applications involving learning

but is inappropriate from a software engineering point of view.
6.1. Ada for Al applications

Some of the above features, which are good for exploratory programming are
actually detrimental for programming large software systems. For instance,
the lack of strong data typing combined with dynamic scope rules can make it
very difficult to integrate and debug a complex software system. Alternatively,
Ada provides strong data typing, static scope rules and a number of other
features which support structured programming of large software systems.
Thus, if we could use Ada for Al applications, we could use structured pro-

gramming techniques for developing Al software.

Ada can be used for many Al applications and, in addition, allows structured
programming techniques to be used for implementing such programs. There is

at least one dialect of Lisp, Zetalisp, which attempts to support certain
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software engineering concepts such as data abstraction and object-oriented pro-
gramming. However, as we will see in section 5.4, there are differences
between the object-oriented design methodology supported by Zetalisp and

that supported by Ada.

Although Ada does not incorporate certain features of Lisp such as functional
parameters and the identical representation of program and data, Ada can still
be used for a number of Al applications. For example, an expert system can be
viewed as an interpreter for a higher level language defined by the system
designer. We can implement an expert system in Ada simply by writing an
interpreter which maps rules onto Ada data structures. A possible data struec-

ture for list cells in Ada is specified in the next section.

Ada’s ability to efficiently execute numerical computations can be very useful
when writing expert systems involving uncertainty. In such a system, probabil-
ities are associated with rules and extensive calculations may be required to

determine the validity of a deduction.

An Al application implemented in Ada will probably require more lines of code
than its Lisp counterpart, but it will be more readable and require less mainte-
nance. For instance, a system developed by Intellimac, Inc. for translating
English text to French required only three per cent of the total labor hours for
maintenance [Nae85]. The same system implemented in Lisp would probably

have required a larger maintenance phase and a smaller design phase.
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In light of the arguments for both Lisp and Ada for Al applications, perhaps
the best approach is to take advantage of features of both languages at dif-
ferent points in the design cycle. This can be achieved by using Lisp for
developing prototype systems and using Ada for implementing the final system:
the exploratory programming features of Lisp can then be used for developing
prototypes and the structured programming aspects of Ada can be used for the
final implementation. It would also be useful to have an interface between

Ada and Lisp for algorithms which are awkward to express in Ada.

68.2. Possible Interface

An interface between Ada and Lisp can be achieved but it would include cer-
tain disadvantages as well as advantages. The advantages of such an interface
would be:

1) The ability to use Lisp to implement artificial intelligence tech-
niques and to use Ada for time-critical activities.

2) Reduced application development time; we could select which
language to use, either Lisp or Ada, depending on the given
problem.

3) The ability to use current Lisp programs with Ada programs
The disadvantages of such an interface would include:

1) The loss of important features of each language depending on the
interface used. For instance, if we chose a translator as the
interface, we would lose certain features of each language. A
Lisp to Ada translator would lose the following features of Lisp:
typelessness, late binding, and the identical representation of
data and program. If we used an Ada to Lisp translator, we
may lose the strong typing of Ada depending on the complexity
of our translator.

11 Ada and Lisp
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2) Performance degradation.
The interface between Ada and Lisp can be implemented in different ways. We

list four possible methods along with our comments on each method.

To call an Ada subprogram from Lisp:
i) Compile the Ada subprogram with an Ada compiler and either link the resulting
object module with compiled Lisp code or load the object module into the Lisp

interpreter.

The simplest way of implementing this method would be to write a
Lisp interpreter in Ada and compile it with a validated Ada com-
piler. Other Ada programs could then interface with this Lisp
interpreter, provided they were compiled using the same compiler.

An example of a similar system is the Franz Lisp interface with the
C programming language. It is possible to write C programs, com-
pile them using the C compiler, and then load them into the Franz
Lisp interpreter. This is possible because the majority of the inter-
preter is written in C. This provides a clean interface between Lisp
and C, simply by using the C parameter passing conventions. Of
course, there are restrictions about what types of data structures
the C program can use. It is the responsibility of the programmer
to ensure that the C program returns values that can be recognized
by Lisp, such as lists, integers, etc.

ii) Translate Ada source code to Lisp source code and then execute compiled Lisp
code.

This would not be useful for real time embedded systems since Lisp
does not provide primitives for real time control.

To call a Lisp function from an Ada program:

i) Compile the Lisp function using a Lisp compiler and link resulting object
module with Ada object module.

This wouid be a reasonable interface but it would require

Ada and Lisp 12
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significant modifications to the Lisp compiler to match the parame-

ter passing conventions of Ada. Verdix attempted this interface by

modifying the back end of its compiler but was unable to get the

interface to work.

ii) Translate Lisp code to Ada and execute compiled Ada code.

This is the best approach for interfacing Lisp and Ada since it

retains the real time features of Ada and allows the symbolic pro-

cessing features of Lisp to be incorporated into Ada. Furthermore,

it does not require any modifications to either compiler.

Both Intellimae, Inc. and Systems Research Laboratories use this

approach in their Ada/Lisp systems. These systems take a Lisp

function as input and translate it into Ada code. The Ada source

code is then compiled and executed. The exact implementation

that Intellimac and SRL use is unknown to us, but we can think of

at least one possible implementation of such a system which we

will describe at this point.
To construet a Lisp to Ada translator, two major problems have to be
addressed. First, a data structure has to be defined to which we can map Lisp
atoms and lists. Second, the Lisp primitives have to be implemented in Ada

and made visible to the translated function.

Both the data structure and the Lisp primitives could be specified within an

Ada package. ! The data structure could be specified by using a variant record,
where each value of the variant corresponds to a particular data structure in
Lisp. For instance, we would need to support, as a minimum, a representation
for an atom and a list. The Lisp primitives could be handled by including in
the package, the specification and implementation of various Lisp primitives.

Each translated function would have access to the basic data structure and the

! An Ada package is a tool which ailows us to encapsulate design decisions.
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Lisp primitives by including this package within its scope. The specification of
an Ada package containing the data structure and the primitives car, cdr, cons,

eq, and atom is shown on the next page.

Ada and Lisp 14
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with TEXT_IO; use TEXT_IO;
package LISP is

type STYPE is (UNDEF,LIST,INT,SYMBOL,STRING_T );
type LCELL(STAG: STYPE) is private;
type LCELL_ACCESS is access LCELL;

function CAR (ITEM1: LCELL_ACCESS) return
LCELL_ACCESS ;

function CDR (ITEM1: LCELL_ACCESS) return
LCELL_ACCESS ;

function CONS (ITEM1: LCELL_ACCESS; ITEM2: LCELL_ACCESS) return
LCELL_ACCESS ;

function EQ (ITEM1: LCELL_ACCESS; ITEM2: LCELL_ACCESS) return
BOOLEAN ;

function ATOM (ITEM1: LCELL_ACCESS) return

BOOLEAN ;
private -- define private data structure
type LCELL (STAG: STYPE) is record
case STAG is

when UNDEF => NULL;

when LIST => CAR: LCELL_ACCESS;
CDR: LCELL_ACCESS;

when INT => INTVAL: INTEGER;

when SYMBOL => PLIST: LCELL_ACCESS;
VALUE: LCELL_ACCESS;
PNAME: LCELL_ACCESS;
DEF: LCELL_ACCESS;

when STRING_T => TEXT: string(1..256);

end case;
end record;

end LISP;

15 Ada and Lisp
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An example will help to clarify the use of this Lisp to Ada translator.
Let us assume we would like to call the append function of section 3, which
appends one list onto another, from our Ada program.

The append function was written in Lisp as follows:

(defun APPEND (X Y)
(cond ((eq nil X) Y)
(T (cons (car X) (append (cdr X) Y)))))

The translator would accept the above function as input and output the fol-

lowing Ada function:

with TEXT_IO; use TEXT_IO;
with LISP; use LISP;
function APPEND (ITEM1: LCELL_ACCESS; ITEM2:LCELL_ACCESS) return
LCELL_ACCESS is ;
begin
if CAR(ITEM1) = null THEN
return ITEM2;
else
return (CONS(CAR(ITEM1), APPEND{CDR(ITEM1), ITEM2j));
end if;
end APPEND;

We could then call this append function from our Ada program by writing
append(X, Y)

where X and Y are both defined to be of type LCELL defined earlier.

Intellimae, Inc. ran benchmarks with their Lisp to Ada translator to determine
the efficiency of their translator. They concluded the test function they used,

which was highly recursive, ran 200 times slower if it was coded 1n Lisp
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(interpreted) than if it was coded in Ada. If the Lisp function was translated
to Ada using their translator, it ran 29 times slower than the original Ada
implementation. The inefficiency of the translated Lisp function is partially
due to the additional code ( 80KB) necessary to support the Lisp run time sys-
tem. In an embedded system, we might be able to reduce the size of this by

including only the essential parts of the run time system.

6.3. Object-oriented Design with Zetalisp and Ada

The design methodology used in designing a complex software system can have
a major influence on its reliability. It is desirable to use a methodology which
promotes system flexibility and reliability. Conventional design, or top-down
design, consists of decomposing the high level function of the system into sub-
func};iéns, where each subfunction corresponds to a major processing step. The
idea being to embody each major processing step within a module. This leads
to designs that may be structured from a procedural point of view but not
necessarily from the point of view of data. Consequently, data may be
accessed by many different modules, thus making the system highly inflexible.
For instance, if we needed to change the implementation of a particular data
structure, we would have to modify all the modules which accessed this struc-
ture directly. Furthermore, system reliability is reduced since the probability

of one of these modules corrupting the data structure is higher.

A better approach to system design, one which places an emphasis on data

17 Ada and Lisp
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structure design as well as procedural design, is the object-oriented design
methodology. Object-oriented design attempts to embody design decisions in
modules and to restrict this knowledge to as few modules as possible. The cri-
terion used to decompose a program into modules using object-oriented design
is information hiding[Pa72b]. This design methodology can be summarized as

follows [Boo82]:

1) Define the problem
2) Develop an informal strategy
3) Formalize strategy
a) Identify objects and their corresponding operations
b} Define the interfaces
¢) Implement operations
Related to information hiding is the concept of data abstraction, which may be
realized by an abstract daté type. Our purpose for using data abstraction is to
abétract the details éf data objects. Liskov [Lis74] defines an abstract data
type as: |
a class of objects which is completely characterized by the operations
which may be performed on those objects.
An example often used for an abstract data type is a stack. One possible
implementation of a stack is an array of elements with the operations pop and
push defined on objects of type stack. The actual implementation of the stack

could be embodied in a module, while operations pop and push could be speci-
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fied in the module interface. By hiding the representation of the stack within
a module, it is possible to change the implementation of the stack simply by

modifying this module.

The only operations available to users of objects of type stack are those
defined by its interface, namely pop and push. The stronger this interface is
enforced, the more difficult it is for a usef to access information regarding the
implementation of the stack and possibly modifying it. As a result, programs
designed using an object-oriented design philosophy are more reliable and flexi-
ble, provided the object interface is enforced. We will now consider the imkple-

mentation of an abstract data type in both Zetalisp and in Ada.

6.3.1. Zetalisp

An abstract data type is implemented in Zetalisp by defining a convention for
calling functions and by using a language feature called Flavors. The func-
tion calling convention allows operations to be performed on objects by defin-
ing a way of sending messages to objects. A message is sent to an object by
calling the object as a function with the name of the message as the first
parameter and the arguments of the message as the rest of the parameters.
No new construct is added to Lisp for sending messages--only a convention is
defined. However the language feature, Flavors, has been added to define

abstract data types and instantiate objects of a particular data type.

An abstract data type definition for a ship can be defined in Zetalisp as
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follows [Sym84]:
(defflavor ship ((x-position 0.0)
(y-position 0.0)
(x-velocity 5.0)

(y-velocity 7.0)
mass)

0

: gettable-instance-variables

: settable-instance-variables

: initable-instance-variables)
This defines the abstract data type ship, and automatically generates methods
which allow the instance variables of objects of type ship to be accessed, set,
and initialized. A method is a function which handles a specific message to an
object while an instance variable is analogous to a recérd component in Pas-
cal. We can define additional methods by using the defmethod construct. For
example, a method to calculate the direction of a ship would look like:

(defmethod (ship:direction) ()

(atan y-velocity x-velocity))

We could create an instance of type ship simply by typing:
(make-instance 'ship)

We could access the x-position of an object of type ship, say ship5, by using

the following form:
(send ship5 ':set-x-position 15.0)

It is important to note that no attempt is made in Zetalisp to prevent the
user from using other functions to circumvent the object-oriented style of pro-
gramming. If the user does not abide by the rules of object-oriented program-

ming he is said to be “in error’.

Ada and Lisp 20



RSD-TR-9-85

6.3.2. Ada

An abstract data type may be implemented in Ada by using a package. As
stated earlier, an Ada package is a tool which allows us to enforce our
abstractions. For instance, we can implement the ship data type of the previ-

ous section in Ada as follows:

package SHIP_PKG is
type SHIP_REC is limited private;
type SHIP is access SHIP_REC;
procedure GET-X-POSITION (OBJECT: in SHIP; X_POS: out INTEGER);
procedure GET-Y-POSITION (OBJECT: in SHIP; Y_POS: out INTEGER);
procedure GET-X-VELOCITY (OBJECT: in SHIP; X_VEL: out INTEGER);
procedure GET-Y-VELOCITY (OBJECT: in SHIP; Y_VEL: out INTEGER);
procedure GET-MASS (OBJECT: in SHIP; SHIP_MASS: out INTEGER);
procedure SET-X-POSITION (OBJECT: in SHIP; X_POS: in INTEGER);
procedure SET-Y-POSITION (OBJECT: in SHIP; Y_POS: in INTEGER);,
procedure SET-X-VELOCITY (OBJECT: in SHIP; X_VEL: in INTEGER);
procedure SET-Y-VELOCITY (OBJECT: in SHIP; Y_VEL: in INTEGER);
procedure SET-MASS (OBJECT: in SHIP; SHIP_MASS: in INTEGER);

private

type SHIP_REC is record
X_POS: INTEGER;
Y_POS: INTEGER,;
X_VEL: INTEGER;
Y_VEL: INTEGER,;
MASS : INTEGER;

end record;

end SHIP_PKG;

A program can instantiate objects of type ship by including the above pack-
age within its scope and using the ‘new’ operator. A critical difference
between the Ada and Zetalisp implementations of ship is the level of enforce-
ment each provides for our abstraction. By declaring ship to be limited

private, we can restrict the operations a user can perform on objects of type
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ship to be the ones we have defined.? In the Zetalisp version, however, the
user is free to use functions which are not explicitly defined for our abstract
data type. By using functions other than the ones we have explicitly defined,
the user may be able to determine the implementation of an object of type

ship and possibly modify it.

Symbolics, Inc., which uses Zetalisp on its Lisp machines, makes no attempt
to forbid constructs which allow a caller to determine the implementation of a
particular data structure. In fact, Symbolics claims their implementation of
abstract data types aids in the debugging process. However, for programming
large software systems, we feel it is essential to enforce abstractions to reduce

the probability of error.

6.4. Storage Management:

Artificial intelligence applications require a very large physical memory
irrespective of the programming language used. We can reduce the amount of
memory required by choosing an efficient representation of lists in memory and

by reclaiming inaccessible list cells at run time.

Conventional Lisp systems use list cells to store lists in memory. A list cell is a
memory cell with two halves; the left half points to the car of the list while the
right half points to the cdr of the list. This method of storage is inefficient

since both halves of the list cell have to be capable of storing complete

? It may be possible to determine the implementation of the object using UNCHECKED
PROGRAMMING, but the Ada Reference Manual strongly discourages the use of UNCHECKED
PROGRAMMING.
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pointers. An alternative representation of lists, called cdr-coding, is used by
Symbolics and other Lisp machine manufacturers to reduce storage require-
ments. Cdr-coding can achieve as much as a 50% reduction in memory usage
over the conventional method of list representation. It takes advantage of the
linear ordering of memory and allocates a two-bit code for the cdr instead of
storing a full pointer for the cdr. Each list cell thus contains a pointer, p, for
the car of the list and a two-bit code for the cdr of the list. The code is inter-

preted as follows [Bak78]:
00: NORMAL; Car of node is p; Cdr is in next cell.
01: NIL; Car of node is p; Cdr is NIL.
10: NEXT; Car of node is p; Cdr is the next cell.

11: EXTENDED;  Cell extension at p holds the car and ¢dr for this node.

The available memory in a Lisp system is initially linked together to form a
free list. Each time a new list cell is needed, it is taken off the free list. To
prevent the free list from becoming NIL, we need to be able to distinguish
accessible cells from inaccessible cells (garbage cells) so that we may add the
inaccessible cells onto the free list. This process of reclamation is commonly
referred to as garbage collection. In early Lisp systems, garbage collection was
the user's responsibility. However, in the process of deallocating unnecessary

storage, the user sometimes deallocated active storage, making the program
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virtually impossible to debug. To avoid such problems, most Lisp systems

today provide automatic garbage collection.

Two methods often used for garbage collection are the mark/sweep method
and the reference count method. The mark/sweep method works by marking
all cells which are accessible by the program and then adding all unmarked
cells to the free list. The cells can be marked either by using a part of each
word for marking or by using a separate bit map, where each element of the

bit map corresponds to a single memory cell.

In a system using reference counts, each list cell has a reference count associ-
ated with it which represents the number of pointers (references) which point
to that cell. The reference count of a list cell is incremented each time a new
pointer to the c.e11 is created, and decremented when a pointer to the cell is
destroyed. When the reference count of a particular list cell reaches zero, it
becomes inaccessible (i.e. no pointer points to it) and is reclaimed by adding it
to the free list. If a cell is reclaimed, the reference counts of all the cells it
points to are decremented and possibly reclaimed in a recursive manner. A
major disadvantage of reference count systems is that cyclic pointer structures

can not be reclaimed.

Most Ada implementations do not provide a garbage collector as a part of their
run time support but some form of garbage collection will be necessary if Al

applications are to be supported. Garbage collection may either be provided
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by the system or left up to the user. We believe the system should provide
some type of a garbage collector which may be requested via a pragma state-
ment. Since Ada is designed for programming real-time embedded systems, the
garbage collector should provide some upper bound on its execution time and
should use a minimal amount of memory. One possibility is the garbage collec-

tor outlined by Baker [Bak78].

This method of garbage collection divides the list space into two subspaces, one
of which stores list cells at any one time. The garbage collector moves all
accessible cells in one subspace (fromspace) to the other subspace (tospace)
leaving forwarding pointers in the fromspace. After all the accessible cells have

been copied, the two subspaces switch roles.

7. Conclusion:

Ada may not replace Lisp for programming Al applications, but it may be used
for a significant percentage of them. The use of Ada for such applications
would allow structured programming techniques to be applied to Al software.
We believe Lisp is better suited for developing prototype applications than it is
for developing production quality software. As a result, we advocate using Lisp
for prototype systems and Ada for the final implementation. For applications
which can not be easily implemented in Ada, we have outlined possible inter-

faces between Lisp and Ada which may be employed.
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