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ABSTRACT

The Ada Research Group of the Robotics Research Laboratory at The University of
Michigan is currently developing a real-time distributed computing capability based
upon the premises that real-time distributed languages provide the best approach to
real-time distributed computing and, given the focus on the language level, that Ada
offers an excellent candidate language. The first phase of the group's work was on
analysi; of real-time distributed computing. The second, and current, phase is the
development of a pre-translator which translates an Ada program into n Ada programs,
each being targeted for one of a group of processors and each having required communi-
cation support software automatically creatgd and attached by the pre-translator. This
paper describes the pre-translator being developed and a number of issues which have
arisen with regard to the distributed execution of a single Ada program, including
language semantics, objects of distribution and their mutual access, network timing, and

execution environments.
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1. Introduction

“Ada” is the result of a collective effort to design a common language for pro-
gramming large scale and real-time systems.” So states the foreword to the Ada
Language Reference Manual [DoD83]. This statement has often been elaborated to
mean that Ada is intended for large, embedded, real-time systems executing in a coordi-
nated fashion on a number of machines. Yet, to date, while tremendous effort has gone
into the design of the language, the development of compilers for it, and the develop-
ment of the Ada Programming System Environment, relatively little emphasis has been
placed on the distributed and real-time issues. This paper addresses there latter two
issues through the vehicle of distributed language, that is, one in which a single pro-
gram may be executed on a distributed set of processors.

There are, nevertheless, a number of advantages to the use of a real-time distri-
buted language capability, including: '

) Real-time distributed systems are typically large and complex, and, conse-
quently, difficult for a programmer or programming team to mentally encom-
pass. The conceptual advantages associated with viewing the system as one
large, highly-structured, program in one language are enormous.

. Interprocessor communication has been found to be one of most difficult and
time consuming aspects of building complex distributed systems [VMGs4],
[VoM84], [Car84]. If this could be made implicit, the programmer could be
spared a great amount of onerous detail. Fortunately, this is usually possible
because the compiler can *‘see” the entire program at one time.

. Modern software concepts such as data and program abstractions [Sha80], and
compile time error checking intended for the language level can be applied over
the entire system as opposed to just over each of several individual parts with
no checking between them.

° Synchronization and timing is, on the one hand, more straightforward for the
programmer, while, on the other, the tedious details, as in the case of communi-
cation and conversion, are suppressed.

Once the need for a real-time distributed language is accepted, there are three
choices: create a new language, modify an existing language, or, if feasible, use an exist-
ing one. Ada is an excellent candidate for the latter approach for a number of reasons.
The Ada concept was designed to provide modern software tools for programming
large, complex systems, to be highly portable, to provide closely monitored standards,
to have an excellent support environment, and to provide programming mechanisms for
real-time systems. Moreover, it provides mechanisms, e.g. pragmas, which can be
implementation defined and are suitable for managing the distribution of a program in
situations where the distribution is possible, while remaining consistent with the Ada
language definition, even when distribution is not possible.

One approach to the distributed execution of a single Ada program would be to
write an entirely new compiler and run-time system to manage the translation, and it
may eventually be shown that this is the correct approach. However, it is not clear
that enough is yet known about the ramifications arising from distributed execution to
make the large investment necessary for this approach worth while. Instead, our group
is taking a simpler approach. An experimental pre-translator is being developed which
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will translate a single Ada program into a set of inter-communicating Ada source pro-
grams, one for each node of the target network. Each of the Ada source programs
created: (1) realizes part of the original Ada source program {typically this is close to a
copy of a portion of the source); and (2) adds Ada packages to support the harmonious
distributed execution of the resultant Ada programs. Each object Ada program is sub-
sequently compiled by an existing Ada compiler for the processor for which the pro-
gram is targeted, as illustrated in Figure 1.

The development of the pre-translator is intended not only to provide an experi-
mental tool for exploring many aspects of distributed real-time systems, but to expose
language and implementation difficulties as well [VMN84]. Work to date has, indeed,
revealed a number of problems in the distribution of Ada programs across heterogene-
ous processors. This paper discusses the more important part of these problems, organ-
izing them under the headings of Definitional Issues, Object Access, Network Timing,
and Execution Environments. This is followed by an introduction to the strategy being
used to develop the pre-translator. Armitage and Chelini [ArC85] describe somewhat
similar issues but in less detail.

2. Definitional Issues

Understanding the legal behavior of an Ada program which executes in a distri-
buted manner requires extended study of the Language Reference Manual (LRM).
Some issues which seem clear in the uniprocessor case are less so when distributed exe-
cution is considered. This section identifies some of these issues and discusses possible
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interpretations.

2.1. Objects of Distribution

The first question facing anyone who wishes to build a system allowing distri-
buted execution of Ada is “What can be distributed?” The Language Reference
Manual does not give an answer to this. Nor does it say how the distribution is to be
specified.  All that can be said is thai the distributed execution of the program must
be in accordance with the LRM. There are many levels of granularity at which one
could define a set of entities to be distributed.

A rather coarse degree of granularity, which could be convenient from the per-
spective creating machine load units, is the use of packages as the objects of distribu-
tion. Through items declared in their visible part they can provide considerable flexi-
bility in the items made available on remote machines. The distribution of most units
smaller than packages creates a problem in building load units, as it becomes neces-
sary to embed them within a library unit of some kind. For example, if a task or data
item alone is to be distributed how is it to be stored and loaded on the remote
machine? Tasks and data items alone can not be compilation units.

Nevertheless, in our experimental system we opted for a fine degree of granular
ity and allow the distribution of any object that can be created. Any object which
can be allocated, data or execution, is allowed to be distributed.” This choice was
made for two reasons. First, it will allow us to explore the implementation strategies
needed for all kinds of objects. Second, taking what are essentially the smallest mean-
ingful distribution objects permits a study of distributed programming styles which is
uninhibited by restrictive implementation decisions. The flexibility made possible by
these two choices is important because systems that allow distributed execution are
new and techniques for writing distributed programs (as opposed to writing collections
of cooperating programs) have yet to be created. :

2.2. Conditional Entry Calls

Conditional entry calls are a source of possible confusion in the distributed execu-
tion of a program due to network delays in calling across machines and the meaning of
~ the word “immediate” in the semantic description of the call. The LRM states that
“A conditional entry call issues an entry call that is then cancelled if a rendezvous is
not immediately possible.” The possible difficulty is in the word “immediate?. At
least one group [DGC83] has determined that due to network delays, conditional entry
calls should always fail when the call is to a remote machine. However, the LRM also
suggests a different interpretation when it restates the conditions for cancellation of
the call, “The entry call is cancelled if the execution of the called task has not reached
a point where it is ready to accept the call, .., or if there are prior queued entry calls
for this entry”. ’

If one adds the interpretation “when the call reaches the called task” to the
second LRM statement given above, a clear interpretation resuits. This interpretation
is independent of the time required to initiate the rendezvous. It depends only upon
the readiness of the called task. This is appropriate. If a sense of time is required,
timed entry calls should be used.

Real-Time Ada 5
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2.3. Timed Entry Calls

The timed entry call is the one place in the LRM where an upper bound on the
time duration for some action to take place is stated. There are several questions to
be considered with respect to timed entry calls. The LRM says both that the entry
call “.... is cancelled if a rendezvous is not started within a given delay,” and that if
the ‘..rendezvous can be started within the specified duration ..., it is performed ...".
(emphases added). The former implies that execution of the rendezvous must be
started within the delay, while the latter implies only that it be able to be started
within the given delay.

In most distributed situations the problem will be complicated, not only by a
network delay, but also by an uncertainty in the consistency of the sense of time
maintained on two or more processors (see section 4 for a detailed discussion of this
point). Since there is likely to be an uncertainty in the difference in the sense of time
available on two different processors, it may not be possible to make a precise deter-
mination of whether a rendezvous can or cannot be started within a given time inter-
val. However, in many implementations it will be possible to provide bounds on the
diiference in the sense of time between two processors. This will make it possible to
guarantee that if the rendezvous can be started within a calcuiable bound (as meas-
ured on the processor on which the called task resides), the called task can also be
started within the given delay as measured on the processor from which the call was
made. In these cases, there will be an uncertainty interval in which it will not be pos-
sible to determine whether or not the call can be started within the given time delay
as measured on the processor from which the call is made.

An interpretation of timed entry calls for the distributed environment which
would reflect these considerations would be that “if the call can be guaranteed to be
able to start within the given delay it is started, and is cancelled otherwise”. For the
uncertainty interval, during which it might or might not be possible to start the called
task, the timed entry call would be cancelled.

A second issues arises from the statement that timed entry calls with zero or
negative delays are to be treated as conditional entry calls. Under the condition that
the cailed task is ready to accept a call, an inconsistency arises with respect to
whether the rendezvous is completed or cancelled. Due to delays in network transmis-
sion, there will be a set of small delays for which the rendezvous fails, while for delay
values either above or below those in the set the rendezvous would succeed. This
situation is illustrated in Figure 2 below. To be consistent, there should be a single
dividing line, above which the calls succeed (if the called task is ready) and below
which they fail. A more consistent statement would result if the LRM did not contain
the phrase about treating the case with zero or negative delay as conditional entry
calls. Nevertheless, though unfortunate, the LRM does state quite clearly that the
situation is as shown in Figure 2.

The implementation aspects of timed entry calls will be discussed further in con-
junction with network timing in section 4.

3. Object Access

Real-Time Ada 8
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imed entry calls succe timed calls fail | ti calls succee
0
delay time
Figure 2 Time entry call success vs. delay time, assuming called task read to ac-

cept the call.

3.1. Modes of Access

The structure of Ada permits two different modes of access among execution
objects (subprogram units or tasks). One is by passing parameters in subprogram
calls or task entries. The other is by shared variables that exist in the common scope
of the execution objects.

Ada requires that parameters be passed by copy. To avoid possible inefficiencies
parameters that are arrays, records or task types may be passed by reference provided
the effect is by copy. In the case of execution objects on tightly coupled machines!
passing by reference, while keeping the appearance of by copy, can be efficient and
makes sense. However, in the case of loosely coupled machines?, passing by reference
will lead to cross machine communication on each reference to the object passed. It
thus seems natural to pass all parameters by copy. When the execution objects com-
municate over a Local Area Network (LAN), such communications are normally
thought of as messages. This leads us to refer to access by copying parameters as
message passing. :

On the other hand communication between two execution objects through shared
variables can be most naturally implemented with a shared logical memory. In the
case where the shared logical memory is implemented as a shared physical memory
this presents few problems. However, in the case where there is no underlying shared
physical memory the run-time system must create the illusion. This leads us to refer
to communication through shared variables as shared memory communication. If we
return to the case of execution objects communicating over a LAN, but now consider
shared variable access, the potential for inefficient communication becomes clear.

3.2. Addressing '

The assumption that the objects of distribution may be any object that can be
created in the language results in a large set of object access situations which must be
explored. Objects may be created in three distinct ways: by declaration statement, by
the new allocator, and, in the case of blocks, by their occurrence in the instruction
stream. The types of objects which can be created by declaration statements are:

! Machines that share physical memory.

* Machines that do not share physical memory.

fleal-Time Ada 7
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e scalars
® arrays
e records

e subprograms

e tasks

e packages

e access variables

The complications in object referencing crise primarily when one is implementing
shared memory access on loosely coupled machines. The Ada scoping rules make it
convenient, though not necessarily well-advised, to write programs in this manner.
Comparison with the tightly couple case will clarify this point.

3.2.1. Object Access in Tightly Coupled Machines

In the case of tightly coupled machines, shared data object references can be
implemented as in a uniprocessor case. This requires that the underlying hardware
memory protection system allow user processes on multiple machines to access the
same regions of physical memory, but otherwise creates no problems for handling
variables or pointers not already present in the langnage. Access to remote execution
objects requires a signalling mechanism among the processors involved to permit the
receipt of a remote call, but requires no special mechanisms for handling the actual
parameters of the call. The tradeoffs between communication by shared variables or
message passing are the same as for a uniprocessor implementation.

The principal difficulties that accrue to the translation system in the tightly
coupled case lie in the recognition that a reference to a remote execution object has
occurred. This recognition is straightforward if the distribution specification is done
statically. However, if it is to be done dynamically, e.g. by placing a ‘‘site” pragma
immediately preceding a new allocator for a task instantiation, an implicitly declared
and assigned data struciure is required to hold an identifier for the processor on
which the execution object is to be placed. All references to execution objects via
access variables must then reference this implicitly declared variable to determine the
residency of the called object.

3.2.2. Object Access in Loosely Coupled Machines

In a loosely coupled architecture, the situation is considerably more involved,
some of the solutions considerably less efficient and there are significant differences
between shared variable and message passing communication. Each shared variable
reference to a remote data object must be translated into a remote procedure call to
a server of some kind on the processor holding the object. This server must then per-
form the required operation, and, if necessary, return a message containing the value
of the object. On the other hand, if the variables are communicated via message
passing references to them will be to the local copies and communication overhead
will be substantially less.

The question of address representation is also immediately raised. The address
of an object must include the address of the machine of residence. In the case of
static distribution and direct references, this does not necessarily require any change

Real-Time Ada 8
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to the local methods of address representation because the machine of residence can
be identified in the pre-transiator’s symbol table and the pre-translator can place the
code so that only local references are necessary, with messages sent between proces-
sors as needed.

Additional complications arise with either static or dynamic allocation when
access variables are used because the pointer held in an access variable may reference
an object on another processor, and the representation of that access variable might
be different than the representation of access variables on the machine holding the
object. The address of an object may be modeled, though not necessarily imple-
mented, as a record with variant parts; the first component would contain a proces-
sor designation, and the variant part would contain the address of the object on the
processor on which it resides. Note that this generalized view of addresses is required
for pointer variables, though not for direct references, even in the static distribution
case because assignments to access variables can change the machine containing the
object referenced.

The referencing of remote execution objects requires, as in the shared memory
situation, a signalling mechanism to permit the remote machine to receive the call.
In this case, however, the actual parameters of the call must be sent to the remote
processor, presumably via some type of message passing system. As noted above, for
scalar variables the message passing is quite natural, since Ada requires call by copy.
Although in the case of arrays and records, the LRM allows call by reference to be
used under certain conditions, it would seems more appropriate to use call by copy
since otherwise, each reference to the argument will iuvolve the same kind of cross
machine communication that occurs in the use of shared variables. The programmer
always has the option of using access variables if it really is desired to access the
arguments by reference. The problem can be further complicated by the fact that
the actual arguments might not reside on the processor from which the call is made.
In particular, if they should happen to reside on the same processor as the execution
object. being called, then in the case of records and arrays, the use of pointers might
still be the most efficient method of parameter passing.

4. Network Timing

The Language Reference Manual does not absolutely require that an implementa-
tion provide delay timing; it is legal for an implementation to go away and never return
on a delay statement. However, for many applications the language would be signifi-
cantly reduced in utility without this capability. As the principal applications of
interest here are real-time systems, all of the discussion in this section is pertinent to
the situation in which an implementation does provide timing capabilities.

4.1. Network Sense of Time

The package CALENDAR provides functions which return values of type TIME.
The implication is that there is a single sense of TIME throughout at least the execu-
tion of the program, if not between different executions of the program. That is, if
CLOCK is called twice, with an intervening interval of one second, the calculated
difference in the times should be one second. This poses an implementation problem
when multiple processors are ased for the execution of the program. How is a con-
sistent sense of time maintained across the network? There are at least two possibili-
ties, maintain a network time server to which all processors go when they need a value

Real-Time Ada ]
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for time, or maintain separate but synchronized clocks on each processor. Combina-
tions, of course, are also possible. Each has its own set of problems and limitations.

In the case of the network time server, the principal difficulty occurs because of
the time required to access the time server. Two subproblems must be considered, the
propagation delay, and interfering access requests. It might be possible to compensate
for the first by subtracting the response time from the time returned, if the response
time were reliably known. However, the second probiem usually injects an uncertainty
in the response time from the server. For some timer server configurations, however,
it may be possible to bound the uncertainty in the time value returned.

The maintenance of perfectly synchronized local clocks is not possible. The best
that can be done is to choose one as a master an update the others from it periodi-
cally. Between clock update points, there is an uncertainty of the difference between
values of TIME read on different processors. The purpose of updating the clocks is to
bound this uncertainty. One might, for example, try to keep this uncertainty less
than one half of DURATION'SMALL. One experiment in maintaining synchroniza-
tion among system clocks has been reported by Gusella and Zatti [GuZ84]. They
found that to keep a network of VAX computers and SUN workstations synchronized
to within 20 ms required updates once every 173 seconds. Scaling this to 25
microseconds (half of the 50 microsecond DURATION'SMALL recommended in the
LRM) is moderately discouraging. Major improvements might be possible, though, by
using a more stable clock in each of the processors.

4.2, Timed Entry Call Implementation

Most of the Ada constructs which reference time only require a local sense of
time at each processor. For example, a delay statement within a task is simply a local
delay with respect to processor on which the task resides. Similarly, the use of a delay
alternative in a select statement with an accept statement is strictly local. There is
oue Ada construct, however, which if implemented in a nontrivial manner requires
both an upper bound on the time within which a given action must take place (all
other constructs just place lower bounds on time intervals) and a consistent sense of
time among the distributed processors. This construct is the timed entry call.

The trivial implementation of the timed entry call would be to say that there is
no sense of time (across the network) and therefore that the rendezvous never takes
place and the calling unit executes the alternative reference of code. If a nontrivial
implementation is to be accomplished, then the timing of the action to be taken on
the called unit must be determined with respect to the time scale of the calling unit.
Otherwise, the language specification of the LRM cannot be guaranteed.

Consider a timed entry call made at time ¢, with a delay 4, from a processor A
to an entry on processor B. The time ¢, = t, + d is the time by which the called
task must be able to accept the call. Figure 3 illustrates the timing involved for non-
negligible network delays. Two cases are shown. For case 1, the called entry is able
to accept the call at time ¢, - ¢ and the rendezvous is accepted. For case 2, time ¢, is
reached without the entry call being accepted and the timed entry fails. Note that is
both cases processor A cannot know whether or not the cail was accepted until some
time after t,. This requires a liberal interpretation of paragraph 9.6 of the LRM
which states that ‘..the entry cail is canceled when the specified duration is
expired and the optional sequence of statements of the delay alternative is executed”
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(emphasis added). Taking the alternative sequence (if present) at time ¢; + d + ny
on processor A is consistent with the LRM if one takes the view that taking the alter-
native sequence only means making it ready at some time after ¢,. The network
delay, n,, might or might not be known, or even bounded. It might well be different
on the two transmissions. If n;, > d, then the rendezvous must fail.

4.2.1. Network Time Server
With a network time server, the scenario would be as follows:

e The processor containing the calling process will obtain the time from the
network server and include both it and the specified delay in the timed entry
call message sent to the processor holding the called task.

e The processor having the called task will call the network time server to
obtain the time at the time the call is received.

e The processor containing the called task will compute the remaining time
delay with which the called task is requested to start.

e Local management of the timed entry call will proceed as usual.

In this case the network delay used abcve must include the two timer server access
times in addition to the call transmission time.

In order to obtain an expression for the local delay to be used on processor B in
implementing this call, let ¢,' be the value returned from the network timer server
corresponding to time ¢, at which the call was made and ¢, be the value returned
corresponding to ¢,, the time at which the call message is received at processor B.
Then, if the error in the times returned is bounded by dp, then the local delay 4,
satisfies the following inequality:

Processor A
time
call :
sent
Processor B \ :
\__..\/,_—J ;
Ny ty
t 1 :
1Y /
~
t, = time of time entry call d
d = delay in timed entry call
ng = network delay

t,=1t, + d = time by which called task must be able to accept.

Figure 3
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dl=d“(‘¢"t1) ‘
>d+t) -t -2dg

and the right had side of the inequality may bz used to calculate the local delay on
processor B.

4.2.2. Maintain Synchronism Among Local Clocks

An alternative method of providing timing is to maintain synchronism among
the local clocks of the processors. Similar to the situation in the previous section,
there will be an uncertainty interval in the difference between the measured values of
the same instant of time between any pair of processors. For purposes of analysis,
take the time measured on processor A as the reference and let ¢4 , tZ be the values
for time ¢ as measured on A and B respectively. Let [t4 _ 8| < dp. Then the
delay time from ¢, to the upper bound for t, can be bounded as follows.

dy=d - (t2-td)=d + ¢t - 12
>d +tf ~12-dy

The RHS of the inequality can safely be used as a bound on the local delay time from
the receipt of the request until the maximum value of t,. Similarly, there is a
minimum of delay time that can succeed.

d>ﬂd+d8

4.2.3. Rely on the Exported Value of Delay

A third mechanism to manage timed entry calls is to export the time from the
calling unit and use only this and local timing to manage things on the receiving pro-
cessor. This requires knowledge, or at least a bound on the network transmission
times. If | n; | < dg, then the receiving unit could use d - dg as a local bound
on delay until ¢t,. The required existence of the bound dg in the purest sense
unposes limits on the type of network connection. Ethernets, for example, could not
guarantee this bound; on the other hand, they might be acceptable in a practical
aense,

- 4.2.4, Uniprocessor Considerations

~ Considerations such as those described above can be carried out in a uniproces-
_sor situation as well. For example, the delay n; corresponds to the overhead associ-
_ated with implementing the checking and rendezvous. Indeed, these times should be
included in ny in the distributed situation as well. Depending upon the granularity
of delay interval implemented, n; may be significant. This is likely to be the case
fur most processors at the 50 psecond granularity recommended in the LRM and
1+ more likely for the 10 psecond granularity discussed for some implementations.
“triectly speaking, in these cases a timed entry call for small delays should fail even
theugh a conditional entry call should succeed. This conformance is likely to be very
difficult to measure, however.

BHeal Time Ada 12
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6. Execution Environment

Implementations of Ada are to provide several predefined packages as part of the
environment available to the user. These include STANDARD, CALENDAR and
TEXT_IO, and in general, must be available on more than one processor. The ques-
tions which arise are the consistency of data objects contained in or generated by sub-
programs in the package and the need to reference an object in one of these packages
on a different processor, e.g. for [/O. These questions do not necessarily create a prob-
lem, but do require an awareness on the part of the programmer of the semantics asso-
ciated with multiple occurrences of these packages.

In package STANDARD, the values for objects like SYSTEM.MIN_INT or
SYSTEM.MAX_DIGITS may be different for the different occurrences of the package.
Likewise, INTEGER, LONG_INTEGER, SHORT_INTEGER, etc. may have different
meanings. The meanings, however, will be correct for the processor on which the pack-
age resides, and this is exactly what the programmer will need. As a matter of pro-
gramming discipline, the programmer may find it useful to make greater use of some of
the system descriptive objects to help in writing correct programs which can operate in

_ the distributed environment. The distributed translator, however, must be aware of

~ the possible differences in representation and supply the necessary translations. Also, it

_ will be necessary to check values and, when necessary, raise exceptions, during the
- translation process.

- Particularly in the case of I/O, it may be desired to reference an object supplied
by TEXT_1/O from a processor other than the one on which the object resides. By
_ embedding such requests in a block which is placed on the same processor as the refer-

~_enced TEXT_I/O object, one can avoid the need to invent new naming conventions
~ which might cause difficulties with the current definition of Ada.

__ Finally, since a fine degree of granularity is used, tlic implementation must pro-
vule a suitable shell (probably a package) to house distributed objects such as data
items or tasks. '

Experimental Translator Implementation

~ An Ada translator is being implemented which will convert a single Ada program
into a set of inter-communicating Ada source programs, one to run on each node of the
__target network. The individual Ada programs will subsequently be compiled by exist-
__ing Ada compilers, as illustrated in Figure 1. The mapping of objects to network nodes
_ will be indicated by a pragma named SITE(.). When placed immediately before an
_object declaration, a new allocator or the occurrence of a block in the instruction
_siream this pragma will cause the following object to placed on the machine designator
as the parameter to the pragma. Any object created without a SITE pragma
eding it is assigned to the same node as the program unit in which the creation
_pecurs. An alternative mapping scheme would use a distribution language which allows
_ the same mapping information to be specified separately from the program itsell as a
~ sort of postscript {Cor84].

&1, Translator Strategy

: The global strategy for handling cross-machine rcferences is based on the static
construction of one or more special executable objects called agents. Each agent is
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designed to serve one particular executable object of the original program which
makes an off-machine reference. The original executable object is called the master, to
distinguish it from its agents. The agents will typically be of the same type as their
masters. If during execution a master should need to access data or code located on a
remote machine, it will order its agent on that machine to access the data or code for
it. One master task may thus have several agents and in the extreme case, may need
an agent on each of the other machines in the network.

To illustrate the general translation scheme, Figure 4 shows the source program
and the translations of a distributed program for an autonomous vehicle. The exam-
ple system has three interacting tasks: a planner, a vision system, and a drive control .
The tasks are labeled PLANNER, CAMERA, and WHEELS, respectively. In the
source program they are targeted for three different nodes. The translator will pro-
duce the three output programs shown. Note how PLANNER, itself residing on M3,
has indirect access to both CAMERA through AGENT OF PLANNER ON M1, and
~ WHEELS via AGENT OF PLANNER ON M2. For example, if the original
 PLANNER calls a procedure P within CAMERA, PLANNER will be modified so that
_ instead making the reference directly, which is not possible, it will place the parame-
ters of the call in a message which in then sends to its agent residing on M1.

SAMPLE TRANSLATION
SOURCE FoR M1 FOR M2 FOR M3
1~ on M1 P,
AGENT OF AGENT OF
CAMERA CAMERA CAMERA CAMERA
ON M2 ONM3
— on M2 —— M
AGENT OF AGENT OF
WHEELS WHEELS WHEELS WHEELS
ON M1 ON M3
r— on M3 — — e
OF T OF
PLANNER PLANNER PLANNER PLANNER
ON M1 ON M2
- Figure 4 Distribution of source program to separate machine with agents insert-

ed to represent task on remote machines.
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PLANNER's agent will receive the message, decode it, and discover that its master is
attempting to call procedure P and, using the parameters that were included in the
message, the agent will make the procedure call on its master’s behalf. After the call
is done the agent will copy any out parameters into a message which is then sent
back to the master PLANNER. The master copies these parameter values from the
returned message into its local variables and, having completed the call to the remote
procedure P, it continues execution.

The translator can be constructed in two distinct passes. The first pass produces
an agent structure for each processor which is copy of the original program structure.
Each executable object will have an agent on each processor which it (or an object it
_ contains) references. The agents will be of the same type and will be nested in exactly
_ the same manner as their masters, thus preserving the proper scope of objects created
_ within them. This scheme, while generally applicable, can produce unnecessary mes-
- sages among the processors (see further discussion below). The second pass is an
_ optimization pass which removes these unnecessary messages.

More specifically, the first pass involves three basic operations, one on overall
ram structure, one on object declarations or blocks, and one on executable state-
ments. The first operation forms the distributed structure of the output code, maps
he input program into the appropriate parts and creates the necessary agents. [t
wiins by extracting the skeleton of frames of executable objects, where the skeleton

ts of the following parts:

: aa'opening line which marks the beginning of the frame, e.g. ‘“‘declare” for a
~ bloek or “procedure main is” for a procedure,

&kg keyword “begin” which separates the declarative region of the frame from
_ita executable code,

t,he ‘‘end” statement which closes the frame.

ame skeletons, reflect the nesting of the frames of the program. On the one
6 which a frame is mapped, the skeleton encloses master version of the frame.
others, an agent is created from the skeleton by adding an infinite loop which
ach iteration waiting for a command (message) from the master. After receiv-
 message, it executes a case statement which contains one choice for each of the
1sle operations required by the master. The agent uses the command to index into
¢ase statement. ;

An agent is able to respond to any remote request it may receive from its master
¢ 28 both master and agent are in corresponding nesting levels in the program
wre. To ensure that this correspondence exists, each agent will enter and exit its
n of 3 frame in synchronism with its master. To illustrate, suppose that
NER is about to call procedure P, also located on M3. PLANNER's agents will
been executing server loops enclosed in their versions of the task PLANNER
. Just before calling procedure P, PLANNER notifies its agents of the impending
lure call allowing them to switch frames as well. One of the advantages of this
is that any remote objects which have been declared in P will be allocated

The operation on data object declarations is fairly straightforward. An object
only on the node to which it is mapped. There are multiple output streams,
for each machine in the network, and ali streams are in synchrornism with respect
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to the code being emitted. The declaration is simply placed in the skeleton of the
agent for the machine on which the object is to be located.

The situation for remote object creation via allocators is slightly more complex,
as it is both a run-time activity and involves pointers. The allocation expression is
placed in the appropriate agent in a manner similar to the way declarations are han-
dled, and the statement in original program is replaced by a remote procedure call to
the agent, as described below. The pointer variable is placed in a record structure as
described earlier.

Within an execcution object, off-machine subprogram or task entry cails are
replaced by remote subprogram calls to the appropriate agent which makes the call on
behalf of the master and returns whatever results are required. Each reference to an
off-machine data object, e.g. remote shared variables, is replaced by a remote subpro-
gram call to the agent on the machine holding the referenced object, with an appropri-
ate command code and any parameters required encoded into the call. If required,
values are returned as function results, and used as normal in executing the statement
in which the reference occurs.

7. Summary and Conclusions

A number of important issues which occur in the distributed execution of a single
Ada program have been raised, and an experimental implementation of a transiator
which allows distributed execution described. The issues raised include the interpreta-
tion of the LRM in the context of distributed execution (e.g. constructs such as condi-
tional and timed entry calls), the need for a consistent network view of time, and a
number of implementation problems such as remote object access, network time
management, data and address representations, and execution environments.

The experimental translator allows any data or named execution object to be dis-
tributed. It recognizes a pragma type named SITE as specifying the distribution. The
translator takes a single Ada program as input and produces a sct of Ada programs,
one for each processor in the distributed computer network, as output. The general
strategy for the implementation has been developed, and at the time of this writing,
the translator is functional, but only rartially complete, handling only simple distribu-
tion of tasks with no entry parameters.
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