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Abstract

This paper presents a discrete time model of memory interference in multiprocessors. The model,
termed the semi-Markov memory interference model, explicitly describes each processing
element’s behavior by means of a semi-Markov process. The model requires as input the number
of processing elements and the number of memory modules in the multiprocessor, the mean think
time of the processing elements, the first and second moments of the connection time between
processing elements and memories, and the probability mass function characterizing the destina-
tion of processing element’s requests for memories. The model produces as output the memory
bandwidth, processing element utilization, memory module utilization, average queue length at a
memory and average waiting time experienced by a processing element while waiting to access a
memory. Thus, it is possible to analyze the interaction of variable copnection time, think time
and the distribution of the destination of the memory requests on the system performance. This
modeling capability is attained without having to employ a complex Markov chain. Indeed, the
number of states in the semi-Markov process describing a processing element is dependent only on
the probability mass function describing the destination of the memory requests. For instance, in
the simplest and most common case when requests are directed to each memory module equiprob-
ably, a four state semi-Markov process is sufficient regardless of the think and connection time
distributions. The accuracy and capability of the model is illustrated with three examples.

Index terms--Memory interference, multiprocessors, memory bandwidth, performance evaluation,
semi-Markov processes, Markov chains.
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1. Introduction

In a multiprocessor system main memory may consist of a number of memory
modules connected with processing elements through an interconnection network. Pro-

cessing elements may access any memory module. Two types of memory conflict, or

memory interference, can occur 1. Type one conflicts arise when several processing ele-
ments attempt to access an idle memory module simultaneously. In this situation one of
the processing elements is selected, according to a predefined selection strategy, to access
the memory module while the other processing elements wait until the selected process-
ing element is done. Type two conflicts arise when one or more processing elements
attempt to access a busy memory module. In this situation the processing elements wait
until the memory module becomes idle before they attempt again an access. Both types
of conflicts have a negative effect on the overall performance of the multiprocessor sys-
tem by, among other things, reducing the memory bandwidth and increasing the average

queueing time for memory.

This paper introduces a discrete time model based on a widely accepted set of
assumptions that characterize multiprocessor behavior as a stochastic process; see [1}-
[12]. The model describes the behavior of each processing element as a semi-Markov
process. The model, termed the semi-Markov memory interference (SMI) model, can be
used to determine memory interference effects on the multiprocessor system's perfor-
mance. The system of interest, depicted in Figure 1, is a multiprocessor system which
has N processing elements (PE's) and M memory modules (MM's). The processing ele-
ments communicate with the memory modules through what can be regarded as an
NXM crossbar interconnection network. The whole system is synchronized with a sys-
tem clock whose period is referred to as the "system cycle,” or, where context allows,

simply the "cycle.”

11p this paper we will not consider conflicts that may arise in the interconnection network due to connectivity limi-
tations, i.e., a virtual crossbar interconnection is assumed.
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Figure 1. Block diagram of a multiprocessor system.

The literature contains a number of discrete time memory interference models for
such multiprocessor systems. In most of these discrete time models, system operation is
characterized as follows. At the beginning of the system cycle a processing element,
which has no pending request, makes a request to access a memory module with proba-
bility ». The memory module is chosen at random from the set of memory modules with
probability 1/M. If a type one conflict occurs at the memory module, that memory
selects, with equal probability, one of the conflicting processing elements to access it.
The processing elements that are not selected attempt again to access the same memory
in the next system cycle. This retry will generally occur in the presence of new requests
for access. The connection between the processing element and the memory module lasts
for one system cycle; at the end of this cycle the processing element releases the memory

module. Only type one conflicts take place under these assumptions. A processing ele-
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ment will have at most one pending request waiting for an access at any time. The
behavior of the processing elements are considered to be independent and statistically

identical.

The behavior of the multiprocessor system, described above, can be viewed as a sto-
chastic process. Markov chains have been used to describe this process; see (1] and [4].
The drawback of this approach is the unmanageably large state space of the resulting
Markov chains: even for moderately sized systems the state space size is enormous. This
obstacle led to the development of models in which further simplifying assumptions were
adopted; see [2]-[9], [L1]. One of the main themes of these approximate models is the
reduction of the state space while maintaining reasonable agreement with simulation
results. In [9] a classification was proposed in which the approximate models were
categorized according to the approach used in their formulations. These classes are: pro-
babilistic models, typified by the models in [2], [3], [7], [8], [11]; rate-adjusted models,
typified by the model in [5]; queueing system models, typified by the models in [4], [8];

and finally, the steady state flow models, typified by the model in [9].

Some of the approximate models have been extended to cover the case in which
memory requests are not sent equiprobably to every memory module; see [5], 18], [9), [11].
In these extensions the destination of the request originating from a processing element
is chosen according to a probability mass function. Another extension is reported in [4]
and [5]. In these models the description of processing element behavior includes a think
time, i.e., the time elapsed between releasing a connection with a memory module and
requesting the next connection with any memory module. Think times are specified with
a probability mass function. Think times need not be geometrically distributed as is
implicitly assumed in the original system operation assumptions outlined above. The
study in [4] concluded that the memory bandwidth of the multiprocessor system will be

affected primarily by the first moment of the think time but will be relatively insensitive
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to higher moments of the distribution. Such conclusions were deduced after examining
the results of trace driven simulations in which six different distribution functions were
used to characterize the think time. A third extension of system operation is introduced
in [10] and [12] where the connection time between a processing element and a memory
module can last for more than the single system cycle. In [10] it is assumed that the con-
pection will be held for a fixed number of system cycles. This extension was motivated
by cache memory models in which the cache line is a fixed size block. The study in [12]
allowed variable connection times between processing elements and memory modules and
showed the effect of variance in the connection times, an important consideration if
cache coherency checks are to be modeled. In [12] a Markov chain model was used to

describe the behavior of the processing element.

The SMI model consolidates the modeling capabilities of all the above models into
one model. It further extends these capabilities by providing expressions for the average
length of memory request queues and the average waiting time experienced by a process-
ing element attempting to access a memory. Thus, for the first time it is possible to
analyze the interaction of variable connection time, arbitrary think time distribution and
the distribution of the destination of the memory requests on the system performance.
This additional modeling capability is attained without having to employ a complex
Markov chain as in [12]. Indeed, the number of states in the semi-Markov process
describing a processing element is dependent only on the probability mass function
describing the destination of the memory requests. For instance, in the simplest and
most common case when requests are directed to each memory module equiprobably, a
four state semi-Markov process is sufficient regardless of the think and connection time
distributions. Furthermore, the SMI model explicitly describes each processing element’s
interaction with the memory modules and can therefore provide direct information about

processing element behavior.
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In addition to the above discrete time models, continuous time models have been
proposed. These are typified by the models reported in [13] and [14]. In these models
connection times were approximated as exponentially distributed random variables. Pro-
cessing element's think times were also described as exponentially distributed random
variables. The multiprocessor system considered in these models has a different structure
than the one adopted by the discrete time models. The continuous time models con-
sidered the case of a multiple bus interconnection network rather than a crossbar. Such
structures have been studied in the discrete time environment in [15] using simulation
results. Recently [16]-[18] proposed discrete time models to study such structures. Con-
tinuous time models are usually less accurate than discrete time models when discrete
time events are being modeled; see [19] and [20] for discussions. Furthermore, the
approximation of the connection and think times as exponentially distributed random

variables limits application to those systems where the exponential approximation holds.

The paper is organized as follows: Section 2 describes the assumptions that charac-
terize the operation of the multiprocessor system; Section 3 defines the performance
measures that can be obtained from the model; Section 4 develops the SMI model under
the assumptions of Section 3 and illustrates it with two examples; Section 5 generalizes
the assumptions, extends the SMI model accordingly and illustrates it with one example;

Section 6 concludes the paper.
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2. The System Operation Assumptions

A processing element in the multiprocessor system, shown in Figure 1, may be in
any of three states: thinking, when it is working on an internal task with no memory
request outstanding; accessing, when it is connected to a memory module; and waiting,
when it is waiting in the queue of a memory module for that memory to become avail-
able. The memory module can be in any of two states: busy, when a processing element
is connected to it; and idle, when there is no processing element connected to it. The fol-
lowing notation will be used throughout this paper: the i* processing element will be
denoted by PE,; the j* memory module will be denoted by MM, ; a discrete random

variable will be denoted by its name with a = above it, e.g., the discrete random vari-
able Z will be donated by 2; the cumulative distribution function (CDF) of Z will be
denoted by Z(z), i.e., Z(z) = Pr[Z < z]; the probability mass function (pmf) of 5, will
be denoted by z(z), i.e., z(z) = Pr[i = z|; the mean value of Z will be denoted by Z;
and the n* moment of Z will be denoted as Z7.

System operation will be characterized by the following assumptions:
la. The behavior of the PE’s can be modeled as identical stochastic processes.

Ila. The PE’s think for an integer number of system cycles. The thinking period of any

PE is characterized by a discrete independent random variable, T.

Ila. Each PE will submit a memory request after its thinking period; requests originat-
ing from the same processing element are independent of each other. The destina-
tion memory module of the request originated from any PE will be determined by a

discrete independent random variable, D, which is uniformly distributed between 1
and M.

IVa. When the first type of memory conflict occurs, the memory module selects,
equiprobably, one of the conflicting processing elements to gain access. The blocked
processing element(s) wait until the connection is completed and then they resub-
mit their requests to the same memory module.

Va. When the second type of memory conflict occurs, the blocked processing element(s)
wait until the connection is completed and then they resubmit their requests to the
same memory module.
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Vla. The connection time between any processing element, PE, and any memory
module, MM, is characterized by a discrete independent random variable, C.

Empirical evidence reported in [3]-[5], supports the assumptions in the case where
¢ is a deterministic random variable with a value of one. Further work reported in [21]

supports the assumptions in the more general case where C is a discrete random variabie

with arbitrary distribution. The assumptions la through Vla will be referred to as the

uniform case assumptions because of the uniform distribution of D. The model and
examples in Section 4 will consider this case. In Section 5 these assumptions will be

relaxed and a more general case studied. In particular, each PE will have its own distri-
bution for the random variables T and D, and each PE and MM pair will have its own
distribution for the random variable C.

In order to obtain numerical information from the SMI model developed later, the
values of M, N, T, ¢ and C?, must be obtained through measurements or by hypothesis.

These quantities can be regarded as input parameters of the SMI model; knowledge of

the full distributions of T and C is not necessary for solving the SMI model.
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3. Performance Measures

A number of performance measures can be derived from the SMI model. These
measures are: the memory bandwidth, BW; the i processing element utilization, PU,;
the j* memory module utilization, MU, ; the average queue length of the j* memory

¢

module queue, L,; and the average waiting time experienced by the i processing ele-
q i} P g

ment in the j* memory module queue, W, .

e The memory bandwidth, BW, is defined as the average number of busy memory
modules when the multiprocessor system reaches steady state. This is the same as
the average number of accessing processing elements when the multiprocessor sys-

tem reaches steady state. Hence, BW can be expressed as follows:

N
BW = lim | ¥ Pr|PE, is accessing at time t|
=1

t—o0

e The i* processing element utilization, PU,, is the probability that the i** process-

ing element is thinking or accessing a memory module when the multiprocessor sys-

tem reaches steady state. Hence, PU, can be expressed as follows:

PU, = tllr?o Pr|PE, is thinking or accessing at time t]
= 1- tlir:\o Pr|PE, is waiting al time t|
Some of the memory interference models, [10] and [22], which were motivated by
cache studies of multiprocessor systems, define PU, as the probability that the it
processing element is thinking when the multiprocessor system reaches steady state.
In this study, we consider that memory accessing contributes to the progress of the

computation and is therefore counted as useful work. The alternative quantity can

be readily derived from the SMI model if it is required, see Example 1.

e The j* memory module utilization, MU,, is the probability that the i memory

module is busy when the multiprocessor system reaches steady state. This is the
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same as the probability that any processing element is accessing the ;™ memory

module when the multiprocessor system reaches steady state. Hence, MU, can be

expressed as follows:

N
MU, = lim Y, Pr|PE, is accessing MM, at time t]
t—oo oy
The memory bandwidth, BW, can be expressed in terms of the memory utilizations

as follows:

e The average queue length at the j* memory module, L;, can be defined as the

expected number of processing elements waiting to access the ji* memory module.

Hence, L, can be expressed as follows:

N
L, = Y lim Pr[PE, is waiting to access MM, |

=1 t—00

* processing element while waiting

e The average waiting time experienced by the ¢
to access the j* memory module, is denoted by W,

As will be seen the last two measures fall out naturally from the SMI model.

October, 1984



iX

4. The Semi-Markov Memory Interference (SMI) Model

A Markov chain which models a multiprocessor system according to the assump-
tions outlined in Section 2 has an unmanageably large state space, see 1] and [4]. To
simplify this we first adopt a technique presented in (12]. In that work separate identi-
cal Markov chains are used to describe the behavior of each PE, and the coupling
between the N chains appears in the transition probabilities between the states in each
chain. Solving the model requires only one of the chains to be considered which dramat-
ically reduces the solution complexity. Moreover, because the chains are coupled,
independence of PE's does not have to be assumed, resulting in a more realistic model
(assumption Ia does not imply independence). The number of states in the model of [12]

can still grow large, in some cases, because it depends on the number of discrete values

T and C can take on. This can be avoided, resulting in a further simplification, by

replacing the Markov chains by semi-Markov processes. These only have four states for

the uniform case regardless of the distributions for T and C. In addition, the semi-
Markov processes permit computation of the average queue length at each MM and the

average waiting time experienced by a PE.

A detailed discussion of semi-Markov processes can be found in [23]-[25]. Briefly, a
semi-Markov process (SMP) is a stochastic process which can be in any one of K states
L, 2,..., K. Each time it enters state i it remains there for a random amount of time
(the sojourn time) having mean », and then makes a transition into state j with proba-
bility p, . As a special case, a discrete time Markov chain is an SMP with a deterministic
sojourn time of value one. If the SMP has an irreducible embedded Markov chain that
consists of ergodic states, then the limiting probability of being in state i, denoted by P,,

can be expressed as follows:
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P o=
' K
Z”} n, )
=t

where 7, is the limiting probability of state i in the embedded Markov chain. All the
SMP’s that appear in this paper have irreducible embedded Markov chains with ergodic
states, therefore, equation (1) will always be applicable. The rate of leaving state i, A,
is defined as the reciprocal of the average time elapsed between two consecutive depar-

tures from state i. The rate can be obtained using the following equation:

T,
=y
Z”J 7] (2)
=]

Since the average sojourn time in any one of the states of the SMP's that appear in this

P,
X, = ——
1

paper is at least one system cycle, then X\, falls in the range [0,1] and it is possible to

view )\, as the probability of leaving state i at the beginning of a system cycle.

As mentioned above the SMI model uses an SMP to approximate the behavior of a
PE which functions according to the system operation assumptions outlined in Section 2,
i.e., the uniform case assumptions. Therefore, N SMP’s will approximate the behavior of
the multiprocessor system. The states of the SMP denote the different states of any PE,
and they can be partitioned to four disjoint subsets 2. The first subset is the thinking
subset, S* = {0}. The process enters state 0 and remains there for a duration of time
with mean value 5, equivalent to the thinking time of the PE (see Figure 2). A memory
request is modeled by the SMP leaving state 0. The destination state depends on the
state of the requested MM. The second subset is the accessing subset, S* = {1}. The
process enters state 1 and remains there for a duration of time with mean value 7,
equivalent to the connection time between the PE and any MM. From state 1 the pro-
cess returns to state 0, i.e., the PE resumes thinking after it has completed its memory

access. The third subset is the full waiting subset, S/° = {2}. The process enters state

2 For the moment these subsets are singietons. Later generalizations increase their cardinality.
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Figure 2. SMP that describes PE behavior with the uniform case assumptions.

2 when the PE requests an idle MM simultaneously with at least one other request, and
the PE fails to be selected by the module, i.e., a type one conflict occurs and another PE
is selected to have access to the MM. In this case the PE has to wait for the full dura-
tion of the connection time between the MM and the selected PE; this duration has a
mean value of 7,. The original PE will retry to access the same MM when the selected
PE releases the module. If it succeeds, the process enters state 1, otherwise the process
reenters state 2. The fourth subset is the residual waiting subset, S™* = {3}. The pro-
cess enters state 3 when the PE requests a busy MM, i.e., when a type two conflict
occurs. The PE has to wait for the remaining (residual) connection time before retrying
to access the MM; the mean value for the residual time is ns. The process then enter
state 1 if the PE succeeds in accessing the AM, or it enters state 2 if it fails to obtain a
connection. Clearly, the SMP description does not include which module the PE is
accessing or which module the PE is waiting to access. This does not represent an
approximation of the PE's behavior because of the symmetry in the uniform case. In

non-symmetric cases, as will be shown in the next section, the SMP has to represent this
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information. The underlying approximation of the SMI modei is in describing any PE
behavior independently from the other PE's while compensating for the coupling
between the PE's behaviors in the transition probabilities between the states of the SMP

(the coupling results from the PE's sharing the MM's).
In order to derive numerical information from the SMI model, the values of N, M,

the first moment of 2:, and the first two moments of C must be obtained through meas-
urement or, if it is considered satisfactory, by hypothesis. These quantities can be

regarded as the input parameters to the model. These parameters are defined as follows:

>

the number of PE's
the number of MM’s

e
>

the first moment of T

=3
fler

&

the first mament of C

Y o
>

the second moment of C

The average sojourn times, of the different states of the SMP, can be obtained from

the parameters of the model as follows:

Qf G =i
I
[y

I

i

The average sojourn times in the states 0, 1 and 2 arises directly from the definition of
these states. The average sojourn time in state 3 is obtained by using the following

theorem.
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Theorem 1:

Proof:

The average residual accessing time of a busy memory seen by a requesting PE at

CZ_ O -
the beginning of a system cycle, n;, can be expressed as f—.;——%— , where C and

C? are the first and the second moments of the connection time, C, respectively.

The definition of probability mass function of 5, given in Section 2, states that:
c(i) = Pr[C =i

Two events, A, and B, will be used in this proof. They are defined as follows: A,
is the event that a requesting PE will see a residual accessing time of i cycles; B
is the event that a requesting PE will find a busy MM. Therefore, the average
residual accessing time of a busy memory seen by a requesting PE, 7, can be
expressed as follows:

51

ns = Y, i Pr[A,|B]

=es]

Where S is the maximum connection time between a PE and any MM. Since A,
and B are dependent events, Bayes' rule can be used to obtain the following

equation:

Pr[A, N B)

Pr(A,|B] = PrB]

The term Pr[A, () B) is determined as follows:

Pr{A, N B]
St
= Y Pr|the accessing PE submitted, j cycles ago, an accessing request of i+j cycles|
=1
St L S
= Y di+)) = Y dj)
=1 =i+l
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While the term Pr|B] is determined as follows:

Pr|B|
5-1
= E Pr|the accessing PE obtained the connection, j cycles ago, for at least j+1 cycles]
y==1
s1 S s .
=3 ¥ d4) = X (-1)d)
=1 b=yl =i

Therefore, n; can be expressed as follows:

5-1 . 5 ) S b (1_1)
PR DICt) i) d Y, =5 i)
. ==l pel el ==
g o= Y i = % = —3
=Y (1) ) Y (G-1) dJ) 3 1) o))
=1 =1 ==l
-7
= 371 Q.ED. [

It is convenient to introduce three terms that will be used in formulating the
model. These terms are: R, WIN and BUSY. The term R is defined as the probability
that a PE makes a request to access a particular MM at the beginning of a system cycle.
Hence, it is the probability that one of two events occurs at the beginning of a system
cycle. The first event is that the PE will direct a new request to that MM, i.e., the pro-
cessor leaves state 0. And the second event is that the PE will resubmit a previously
blocked request to access that particular MM, i.e., it leaves state 2 or 3. Therefore, R is

expressed as follows:
R=*L ()\0‘{‘)*2‘*‘)\3)
M

The term WIN is the probability that an idle MM selects the PE's request over other
requests (if there are any) at the beginning of a system cycle. The term WIN is derived
by the following argument: the probability that a PE will not request a particular MM is
1 - R; the probability that none of the N PE's request that MM is (1-R)¥; therefore
the probability that a particular MM is requested by at least one of the PE’s is

[1-(1-R)"]; the expected number of PE’s which requested that MM at the beginning
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of a system cycle is N R. Therefore, WIN can be expressed as follows:

1
WIN = —— [1-(1-12]”] {4a)

Finally, the term BUSY is defined as the probability that a PE finds a particular MM
busy at the beginning of a system cycle. Therefore, one of the other (N-1) PE's is
accessing that MM and is not on the point of releasing it. In other words, the requesting
PE experienced a memory conflict of type one. Hence, BUSY is the probability that one
of (N-1) PE’s is accessing a particular MM and the accessing PE is not on the point of

releasing the MM. Thus, BUSY can be expressed as follows:

N-1 N-1 =
BUSY = —= (Pi-)N) = —= (C-1) x (5a)

The last step follows from equation (2).

The transition probabilities between the states of the SMP can be derived as the

following functions of BUSY and WIN:

1 j=0
o — | (1-BUSY) WIN i=1
! (1 - BUSY) (1 - WIN) i=2

BUSY i=3 (6a)
B = (1- BUSY) WIN
B=1-8

The derivation proceeds as follows. When the process, shown in Figure 2, leaves the
thinking state it enters any one of the other states: it enters the accessing state with
probability a, if the MM is idle and the PE’s request is selected; or it enters the full wait-
ing state with probability o, if the MM is idle and the PE’s request fails to be selected;
or it enters the residual waiting state with probability ay if the MM is busy. The process
always enters the thinking state after it leaves the accessing state (ay = 1). The process

leaves the residual waiting state or the full waiting state to enter the accessing state
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with probability g if the requested 4/M is idle and the PE’s request i3 selected; otherwise
it will enter the full waiting state with probability 3. (Although o, and § are equal we

distinguish them in preparation for the general case discussed in the next section.)

The embedded Markov chain can be solved and the r's can be represented as func-
tions of the transition probabilities, i.e., of BUSY and WIN. Then, from equation (2) ),
may be defined as a function of R and WIN. Therefore, using equation (5a) the term

BUSY can be expressed as follows:

(N-1)(C-1) WINR

BUSY = _
1+ (N-1)(C-1) WINR

(7a)

The SMP limiting probabilities can be derived by substituting the limiting probabilities
of the embedded Markov chain (#'s) into equation (1). Therefore, the SMP limiting pro-
babilities can be expressed as functions of R and the transition probabilities as shown

below:

n M B R j=0

P, = 3)2 8

P (et B | mmor j=2 &)
asMny R j=3

It can be seen from the above equations that we have a set of non-linear equations
to be solved. The non-linearity is introduced because the transition probabilities are
defined as functions of the SMP's limiting probabilities; meanwhile, the SMP's limiting
probabilities are defined as functions of the transition probabilities. An iterative algo-
rithm can be used to solve these equations. The algorithm will iterate on the value of R
and then the performance measures of the system can be derived. The algorithm breaks

down as follows:

1. Calculate the average sojourn times of the states using equation {3a).
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Choose an initial value for 4 1 the range 0 < R < 1 (in our experiment R == 0.5

was used).
Calculate the terms WIN and BUSY using equations (4a) and (7a) respectively.
Calculate the transition probabilities using equation {6a).

Calculate new value for R by summing the four equations of equation (8a) to one.

Then R can be expressed as follows:

1
(8)°
B

[n0+(1+a2+ ]n1+a3n3] MB

Repeat steps 3 through 5 until R has the desired accuracy’.

The solution for R may be used to calculate the limiting probabilities of the states

using equation (8a). These can in turn be used to calculate the performance measures of

Section 3, as follows:

BW = NP,

PU = Po+ P,

MU, = 1% P,

L, = 15 (P2+Py)

W, = n %-(l—i—BUSY) + ny BUSY

where 1 < i < N and 1 € j < M. The last equation is the only one that does not follow

directly from the definition of the states of Figure 2. It can be derived by calculating the

expected value of V;’,I in the usual way from the pmf of P;’,J. The pmf of P;’,, can be

expressed as follows:

3 This is a simple fixed-point iteration scheme. Higher order iterations scheme could be used but were found un-

necessary in the experiments discussed in this paper. Four iterations were usually sufficient.
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Pr[ﬁ’u = 0] = o
Pr[";g =kﬂ2] = a?(ﬁ)b‘ﬂ kZ 1
Pr(W, =(ns+kn)] = a(B) 5 E>0

The defivation of the above equations proceeds as follows. The probability that the pro-
cess moves from state 0 to state 1 without waiting is «,. The probability that the process
moves from state O to state 1 and makes k visits to state 2 is a (B)* B, where k > 1.
The probability the process moves from state 0 to state 1 and makes one visit to state 3

and k visits to state 2 is a, ('B)" g, where k > 0. These three cases exhaust all the possi-
ble values for l;,} .

As a final note, it can be shown that, when C = C? = 1.0, the SMI model reduces
to the model of [5]. In other words, the SMI model can be considered to be a generaliza-

tion of the rate adjusted models.

Example 1:

In this example, we will use the SMI model to study a multiprocessor system ‘with
private cache memories. The multiprocessor system is shown in Figure 3. Each PE in the
system consists of a processor and a private cache memory. The MM’s form the shared
memory. The system operation is characterized as follows. At the end of a system cycle a
processor causes a cache fault in its private cache with probability m. The PE which has
a cache fault chooses, with equal probability, one of the MM’s with which to transfer a

line. When the connection is established between the PE and the MM it lasts for a vari-

able number of cycles given by a discrete random variable, C. The variability arises
because cache coherency requires reads to be performed in some transfers and writes
before reads in others. In the case of a memory conflict, of either type, the rejected PE’s
will resubmit their requests to the same MM when that MM becomes idle. This retry will

generally occur in the presence of new requests for access.
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PE,

X-BAR
CONNECTION

MM,

PE,,

Figure 3. The multiprocessor system with private cache memories.

A study, reported in [10], models a similar multiprocessor system in which the ran-

dom variable C is deterministic and cache coherence is ignored. A later study, reported
in [22], develops a morc; realistic model which includes the effects of coherence checks.
However, this model assumes a parallel-pipelined organization of memories rather than
the parallel organization of Figure 3. Nevertheless, as a result of considering cache
coherency the work of [22] demonstrates the need to model the connection time as a

non-deterministic random variable rather than a deterministic random variable, although

it does not develop a model suitable for connection times having a high degree of non-

determinism (i.e., a large coefficient of variation®, C,). Our results below confirm the
g

need to consider non-zero values for C,.

deviati houd e, d - , ) ~
t o, = standard deviation 0/~C = 4 / -—C:E -1 where C and C? are the first and second moments of C
expected value of C (&)

respectively.
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Figure 4. Simulation results for a 32x32 system.

October, 1084



23

~4

20

10

-10

sErrar of Processor Utliization ‘ XErTor of Memary Bandwidth
g
- Cv =00 5
a
Cve1n0
:
- A -
ov - 20
*
. 2 -
0
— ‘.2 —
| | ! | ! | | !
-a
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
m m
(a) )
xError of Queueing Time xError of Queue Length
15
1 F
S |,

© @

Figure 5. Percentage Error of the SMI model.
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In this example, we compare the results of the SMI model and the resuits of the
simple cache model reported in [10] witt. simulations. Furthermore, we demonstrate the
effect of different connection distributions on the results of the SMI model and the sim-

ple cache model.

Figure 4 shows the simulation results for a 32 x 32 system for different connection
distributions (all have C = 4.0). It can be seen that the variation in C, can dramatically
effect BW, PU;, W, and L,. This effect is not captured in the simple cache model
because it uses only the first moment of the connection time. Note that PU, is defined
in accordance with [10], that is to say, as the probability that PE, is thinking when the
multiprocessor system reaches steady state (see Section 3). The PU, measure was less

sensitive to variations in C, for this reason.

Figure 5 shows the percentage difference between the simulation results and the
results obtained from the SMI model. Figure 6 shows the percentage difference between
the simulation results and the results obtained from the simple cache model. For the
most part, it can be seen that the SMI model produces results much closer to simulation.

Example 2: .

So far we have assumed that the time needed to set up the interconnection network
is negligible. In this example we will develop a more realistic model that accounts for the
time to traverse the interconnection network. This traversal time, t,,, has two com-
ponents: first, there is the delay through the arbitration logic, t,; and second, there is
the delay through the interconnection network components, {;. For example, a crossbar
interconnection network can be built with multiplexer chips as described in [26]; in this

case, ¢ty will be the delays through the multiplexer chips.

In this example we will analyze a multiprocessor system which has the same opera-

tion assumptions as the ones outlined in Section 2 plus the following assumption:
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Vila. Every time a PE attempts to access an idle MM it wiil spend ¢, cycles waiting
for its request to traverse the interconnection network. At the end of this
traversal time the PE will establish the connection with the destined MM, or its
request will be rejected due to a type one memory conflict. In the case of a

type two memory conflict the PE’s request does not traverse the network.
yp

A semi-Markov process that describes the PE’s behavior in this case is shown in
Figure 7. This SMP contains an additional state in the S* subset, 0, to represent the
state in which the PE spends ¢t cycles after initiating a request to access an idle MM.

The average sojourn times in the states are now expressed as follows:

n = T
Ny = bt
m = C
' _ (9)
= C + t
c?-C

= 4,

Ns 2(C-1) t

In this case R can be expressed as follows:

R = [x5+x2+x3]

The transition probabilities of the SMP are expressed as follows:

1 J =20
1 - BUSY j=0
a = { WIN J=1
1- WIN j=2
BUSY i=3
8 = (1- BUSY) WIN
B =1-58

The semi-Markov process, shown in Figure 7, can be solved using the same procedure

outlined earlier. The SMP limiting probabilities can then be expressed as follows:
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p

Figure 7. The SMP for the PE’s behavior of Example 2.

nMBR
Bag+ aza;+ ag

aznsMBR

Bagz+ aga; + ay

mMBR
P, = Baz+ azag+ as

(‘3‘2“6"‘50‘3) M 3R

Bag+ azaz+ as

asns M B R
ﬁa5+aza5+a3

The performance measures in this case can be calculated as follows:

j=0
j=0
i=1
j=2
j=3
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BW NP,
PU,"P0+P0+P1
N

MUJ =‘A7P1

N (10)
LJ == ‘A—l [Pg'!‘Ps}

W,) =a5a1n5+{% “(1+BU'SY)]7]2+C¢3173

Figure 8 shows the simulation results for BW, PU,, W, and L, for a 32X 32 system
assuming C = 4.0, ¢, =00 and t,,; = 1.0. The effect of t,,; can be deduced by compar-
ing the simulation results in Figures 4 and 8: BW decreases, L, changes very little, and
W, increases. This is reflected in the SMI model. Equation (9) shows that 7, and 7,
increase as . increase, and m is not effected. Using equations (2), (9) and (10) BW 18

expressed as follows:

" T
-C

— - - CcE-
me T+m C+mC+r = 4ty (gt et
0 1 2 32(0-1) set (M5 + T2 s)

BW = NP, = N

Clearly, BW decreases as fs.t increase. The average queue length, L,, is expressed as foi-

lows:
- ci-C
m, C 4+ 7 = + ¢ o+ T
L _ _[—V_ [P+P.} _ _fy_ 2 32(0_) set(z 3)
T M Gama T4l b ( \
e T+7 .t +7 - by (At M+ T
o 1 2 32(0_1) t \73 2 3

The presence of tg: in both numerator and denominator has a canceling effect so that
changes in L, due to f are small. Finally, an inspection of equation (10) shows W,
increases with n, and ns. Figure 9 shows the percentage error between the simulation

results and the results obtained from the SMI model.
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Figure 8. Simulation results using the traversal time for a 32x32 system.
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Figure 9. Percentage error of the SMI model.
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5. The General Case

The

Ib.

ITb.

[TIb.

IVb.

Vb.

VIb.

In the general case the random variables f, D and C may have any distribution.

multiprocessor operation assumptions now become:
The behavior of the PE’s can be modeled as stochastic processes.

The PE's think for an integer number of system cycles. The thinking period of PE,
is characterized by a discrete independent random variable, T,, where 1 < i < N.

Each PE will submit a memory request after its thinking period; requests originat-
ing from the same processing element are independent of each other. The destina-
tion memory module of the request originated from PE, will be determined by a

discrete independent random variable, D,, where 1 < i < N.

When the first type of memory conflict occurs, the memory module selects,
equiprobably, one of the conflicting processing elements to gain access. The blocked
processing element(s) wait until the connection is completed and then they resub-
mit their requests to the same memory module.

When the second type of memory conflict occurs, the blocked processing element(s)
wait until the connection is completed and then they resubmit their requests to the
same memory module.

¢

The connection time between the i** processing element, PE,, and the ;* memory

module, MM,, is characterized by a discrete independent random variable, C,
where 1< i< Nand1<; <M.

As mentioned earlier, the full distributions of c , and 'F, , where 1 < i < N and

1 < j < M, are not needed. The input parameters of the SMI model are as follows:

the first moment of T,

i
i

i

the first moment of C;

g

c,
C"?,, the second moment of C

e

8, Pr|D, = j]

The SMP, shown in Figure 10, describes the behavior of PE,. The general case

requires N different SMP’s to describe the system behavior (i = 1, - - - ,N). The state

space of each of the SMP’'s can be divided to four disjoint subsets: $* = {0},

§%* = {1, -, M}, S/¥={M+1, - - ,2M} and 5" = {2M+1, - - - ,3M}. It may be seen
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Bim

Figure 10. The SMP that describes PE behavior in the general case.

that this SMP collapses to the uniform case SMP if s, = ‘317 for all i and j. The solu-
tion in the general case follows the lines of earlier cases, therefore only the outline of the
solution will be presented.

The average sojourn times in the states are as follows:
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1—_'-‘ jf S‘t’l
_.u JjeS
N Ryym = ]
Y, w—— OCiru jes”
k=1
i Z—.:x Riyu

7’1] = [?4, (Sb)
N (Pk};.w"xk)—2u) ayk,_m-a,.zu . rw
Y = 2(C - 1) Jes
=S (Pryem - Nijon) treM
gt
I5#14
Where,
Rv = g, Ao + X.}+M + )‘zH—w

The first subscript indicates the PE and the second indicates the state. The terms WIN
and BUSY also require subscripts: the first indicates the PE and the second indicates the

MM. These terms can be expressed as follows:

N
1 .
WIN:] = E ‘E \I’q& (‘ﬂ)}
=
where,
N—l]
-1 N
\I’ljk = II wqh’ (h)
"
hyéy
and,
Ry, if PE, ,PE, and (k-2) other PE’s request MM, in the |* case
wukl(h) = { .
1- R, otherwige
furthermore,
N N _
BUSY,] == E[Pk]-)\b] == E[C‘U“l) Ak) -b
k=1 =1 (5b)
ks k1

The transition probabilities between the states of the SMP can be defined as fol-

lows:
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1 jeSH
a, (1- BUSY, ) WIN, jesse

%= Yo a (1= BUSY, 30) (1= WIN, opr) jesle o)
8, ,om BUSY, ;om jeS'’™

B, = WIN, (1- BUSY,) jeS®

B, = 1-8, jese

The embedded Markov chain can be solved and the n's can be represented as func-
tions of transition probabilities. Then, from equation (2) X;, may be defined as a func-
tion of R and the transition probabilities. Therefore, using equation (5b) the term

BUSY, can be expressed as follows:

N o
BUSY, = %(Ty ~1) 8y Ry (7b)
k7t

Furthermore, the SMP limiting probabilities can be expressed as functions of R and

the transition probabilities as shown below:

M
my 2 ﬂlk Rtk J € S:M
ke
m ﬂlj Rs; ] € Ssat
- 2
= (ﬂ. r—M) Ny B (8d)
P,] ay + 0,y g FreM R, oy je S,f'”
B M Gy oM
ay, 1, .
i d ﬂs 1 § Rl +2M J € SI"B
8, ;oM

To solve the general case an iterative algorithm can be used similar to that pro-
posed for the uniform case. In this case the algorithm iterates on the set of variables R,
where 1 < i < N and 1 € j € M. The performance measures can be derived from the

SMP’s limiting probabilities as follows:
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N M
BW = S Y} P,
=i
PU, =1- % P,

N
MU, = 3}, P,
[ g

Ryl
Il
101=
~
i
+
~
%
=

1 y
W,] == N, M4y v -(1 + BUS)/,] ) -+ m 2M4y B(JSY,)

Example 3:

Consider a multiprocessor system which manages a large data base. The system
consists of two identical PE’s with private cache, two identical logical buffers and an 1/0O
channel used for DMA between the logical buffers and a fixed head disk. The system is
depicted in Figure 11. The two identical PE's, PE, and PE,, will request the first logical
buffer with probability z, and the second logical buffer with probability (1-z). The 1/O
channel, PE,, requests the first logical buffer with probability y, and the second logical

buffer with probability {1-y).

In this example we consider the problem of deciding which is the better of two
mappings from the logical buffers to the physical memory modules. In the first case, the
logical buffers are mapped exactly into the physical memory modules. In the second
case, each logical buffer is divided in half and, each half is placed into a physical

memory module. The two mappings are illustrated in Figure 12. Notice, in the second
case the s, = 0.5 (=1,2,3, j=1,2) since -2£ + -%ﬁ = 0.5, etc. In both cases the con-

nection time between the PE's and the MM'’s is relatively short and equal to the time
needed to transfer a line between the private cache and the MM. Due to the coherency

checks employed by the system, the connection time between the identical PE’s and the

October, 19084



38
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X-BAR
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Figure 11. The multiprocessor system of Example 3.

MM's is variable. The connection time between the I/O channel and the MM'’s is rela-
tively long. This connection time has two components: the rotational delay and the data
transfer time. The rotational delay can be characterized by a random variable which is
uniformly distributed between 0 and the amount of time needed by the disk to make a
full rotation. The data transfer time can be characterized as a deterministic random
variable. The transfer time is the time needed to transfer a fixed block, e.g., a cylinder
or a track, between the disk and the MM. Therefore, the connection time between the

1/O channel and the MM can be characterized as a random variable with low C,.

The SMI model is used to analyze the two cases mentioned above given the follow-

ing operation conditions:
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(a) ®)

Figure 12. The two different mappings of Example 3.

T, = T, = 40

Ty, = 120

Cy = Cpp = 40

Cpn = Cp = 40

C%, = C%; = 26.24

C% = C% = 26.24

Cy = Cg = UNIFORM(14,18)
z = 09
y = 00

Where the distribution UNIFORM{14,18) is a uniform distribution between 14 and 18, i.e.,
data transfers take 14 cycles and the rotational delay takes between 0 and 4 cycles. The
SMP that describes the PE behavior is shown in Figure 13. Notice, in the first case the

behavior of PE, is described by an SMP with 4 states since ay;, = 0.0.
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Figure 13. The SMP that describes PE behavior in Example 3.

Table 1 shows the results obtained from simulations and the SMI model. The SMI
model agrees closely with simulation, and in practice would be used instead because it
requires far less computation. As expected the mapping of case 1 yields better perfor-
mance in most categories. The only exceptions being W, and W . However, the overall

waiting time for PE, is given by:

2
W, = Y o W,
f==l
and a5 6 = 0.1 in case 1. Thus, the overall waiting times for PE, and PE; are also

less in case 1.
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Measure Case # 1 Case # 2
Simulation | %Error | Simulation | %FError

BW 1.39415 -2.28 1.20084 -1.0

PU, 0.8282 -2.75 0.66214 -3.33
PU, 0.83041 -3.01 0.65778 -2.69
PU, 0.98917 0.29 0.93723 2.47
MU, 0.74607 -3.64 0.60502 -1.75
MU, 0.64685 -0.53 0.59582 -0.23
L, 0.21997 -3.51 0.38157 -(.48
L, 0.12223 3.48 0.36931 2.82
Wi 1.25232 -1.59 4.15107 3.56
Wis 5.4318 7.18 3.9695 8.23
W oy 1.21373 1.54 4.15194 3.54
W oo 5.54553 4.98 3.9923 7.68
Wy 0.0 0.0 1.94831 -9.98
W as 0.30873 6.09 1.87394 -6.41

Table 1. Comparisons between the two cases of Example 3.
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8. Conclusion

This paper has presented a discrete time model, the SMI model, of memory
interference for multiprocessor systems. The model characterizes a multiprocessor by
describing the behavior of each PE as an independent semi-Markov process. By viewing
events from the perspective of the PE's, it is possible to model memory interference
effects not explicitly modeled previously, such as queueing time and queue length. In
addition, the effects of the coefficient of variation of the connection time and network
traversal time can also be readily modeled. Their importance was shown in the examples

given.
The complexity of solution for the SMI model was shown to be directly related to

the number of distinct values that the discrete random variable D can take on. For the

uniform case, the SMI model requires only four states (five if traversal time is included)

independent of the number of discrete values that N, M, T and C can have. One insight
that emerged from developing the SMI model was that the simplifying assumption in the
rate-adjusted models, typified by the model in [5], is the decoupling between the PE's

rather than the resubmission policy as suggested in [9].

Three examples were presented to illustrate how the SMI model can be used to
predict the performance of multiprocessor systems. Simulations were included for com-
parison, and, in all cases except queueing time and queue length, the model differed by
less than 8% (the queueing time and queue length differed by less than 18%). The error
in the SMI model can be attributed to the decoupling between the PE’s behaviors.
Because of this decoupling certain events are permissible in the SMI model that cannot
occur in the real system. For example, the event that all PE’s are waiting has a non-zero

probability in the SMI model. In reality, at least one PE would be accessing.
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