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Abstract

This paper develops two discrete time models of the interference that occurs during
memory access in multiprocessor systems. These models, the equivalent rate model and
the Markov chain model, provide for variable connection times between processors and
memories if these times can be characterized by a discrete random variable, X, with a
probability mass function f(i). Neither model requires a complete description of f(i). The
equivalent rate model, which is the simpler, requires only the first moment, while the
Markov chain model requires the first and second moments. The models yield estimates
of the bandwidth, BW, and related measures such as the probability that a memory
request is accepted, P, and processor utilization, U,. A brief summary of earlier discrete
time models is included, and it is shown that one of them is a proper special case of the
Markov chain model. Comparisons with simulations show that both models give good
estimates of BW when the coefficient of variation, C,, of X is small. When C, reaches
2.0 the Markov chain model still shows an error of less than 4% while the equivalent
rate model exhibits a 50% error that, unlike the Markov chain model, continues to
increase with increase in C,. Finally, it is shown that BW drops significantly with
increase in C,, suggesting that processor-memory transfers should use a fixed block size
if memory conflict is to be minimized.

Index terms--Memory Interference, Multiprocessors, Memory Bandwidth, Performance
Evaluation, Markov Chains.
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1. Imtroduction

This paper develops two discrete time models of the memory interference that occurs during
memory access in a multiprocessor system. These models, termed the equivalent rate (ER) model
and the Markov chain (MC) model, are based on a set of assumptions that characterize the
memory access behavior of a multiprocessor system as a stochastic process. Figure 1 illustrates
the type of system dealt with by the models. [t shows a synchronous multiprocessor having N
processors and M memory modules. The processors share the memory modules through an NX M
crosshar interconnection metwork. The whole system is synchronized with a system clock whose
period is referred to as “the system cycle.” Previous discrete time memory interference models
sssume that once a connection is established between a processor and a memory module it i5
maintained for a fixed number of system cycles (usually one). The models developed in this paper
consider the case where the connection may be maintained for a variable number of system
cvcles. In particular, the conpection time is represented by a discrete random variable, X, with a

probability mass function f{i} 1.

This extension allows the modeling of processor-memory t{ransac-
tions that consist of variable length packets. Those cases where the processor-memory conpection
time is a fixed number of system cycles will be referred to as fixed connection time (FCT) sys-

tems, While, those that allow variations in the number of system cycles will be referred to as vari-

able connection time (VCT) systems.

The literature contains a number of memory interference models for FCT systems (see [1]-
[11]}. In these studies system operation is approximated by a stochastic process as follows. At the
beginning of the system cycle a processor selects a memory meodule at random and makes a
request to access that module with probability r {< 1). If more than one request is made to the
same memory module, it will choose one at random; the other processors will retry in the mext
cycle. A processor has at most one pending request waiting for access at any time. The behavior
of the processors are considered to be independent but statistically identical. A processor that

obiains 2 connection to a memory module at the beginning of the system cycle will release that

% In other words, f{i) == Pr|X == d}.
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module at the end of the cycle.

A model for the FCT system described above results in a Markov chain having an
unmanageably large state space, see [1] and [4]. One of the main themes of the work in [1}-[11] is
to develop models which avoid this complexity while maintaining reasonable agreement with
simulation results. This is done by further simplifying the assumptions of the system behavior.
The models develop equations for the memory bandwidth, BW, the probability that a memory
request is accepted, P,, and in some cases processor utilization, U,. In [10] a classification has
been proposed for these models according to the approach used in their formulation. The classes
are probabilistic models, rate-adjusted probabilistic models, queueing system models and steady
state flow models. Since we fnake use of some of these models, and to provide further back-

ground, the classification is summarized briefly below.

The first class—probabilistic models—simplifies the analysis by assuming that a memory
request from a processor will be discarded if it is denied memory access as a result of memory

interference. At the next system cycle a new and unrelated request will be made by the processor

] X-BAR

) CONNECTION )

Proc. |y, L

Figure 1. Block diagram of a multiprocessor system.
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with probability r. Examples are reported in {2], [3], [7]-[9], {11] and [12]. In this class of models

the bandwidth is given by:

BW=M{1«~{1~:’/M}N] (1)

The second class—rate-adjusted probabilistic models—is proposed in [5] and [6]. This class
simplifies the analysis by assuming that a processor which is denied memory access will make a
new request, not necessarily to the same memory module, with probability 1.0 in the next cycle;
this assumption tends to give an upper bound for the memory bandwidth. The bandwidth is

obtained by calculating the adjusted rate, a, from the following two equations using iteration:

_ M [ _f1- N ]
Py = —— |1 (1-a/M) (2a)
And:
o 1 2b
1+ P, [1/r -1} (2b)
The bandwidth is then obtained from:
BW—:-M[I—{I«-a/M]N] {2¢)

Notice the "rate,” r, in equation (1) is replaced by the "adjusted rate,” «. This takes into
account the fact that, in general, more than one request is made before the connection is esta~

blished, le., 0<r<a<1.0.

The third class—queuneing system models—views the memory modules as service stations and
processor requests as customers. In [4] a binomial approximation is used to solve these queueing
systems. The assumption in this class is that arrivals to the queue are binomially distributed.

The resulting bandwidth is given by the following equation:

BW = i’;i 2»{-21,.--;? V{z+oL-1/M)?-8L (32)

Where, L, the approximate mean gueue length is given by:
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L = (3b)

The expression for L is obtained by approximating the length of the queue seen by an arriving
customer to [l - % )L. This linear approximation usually gives good result for highly utilized

system but works poorly for system with low r. An improvement on this approximation is given
in [7] for the case r = 1.0. The improvement relies on a decomposition approximation suggested
in [4].

A fourth class—steady state flow models—is proposed in [10]. The idea behind this proposal
is that the flow of active processors’ requests to the memory modules will equal the flow of satis-
fied requests from the memory modules. An active processor is a processor that does not have a
pending request. The bandwidth obtained from the flow model is given by the following two
equations:

p T (4a)
And :

] PSS o P T P R

The above equations can be solved by iteration. In [10] it is shown that the steady state flow
mode! has a smaller maximum error and a smaller average mean-square error than the other

models over the whole range of r, 1e., 0< r < 1.

In addition to the above discrete time models, continuous time models have been proposed.
These are typified by the models in [13] and [14], in which the the memory-processor connection
time is denoted by an exponentially distributed random variable and the processor interrequest
time is also denoted by an exponentially distributed random variable. Therefore, unlike the

discrete time FCT models, these models can accommodate variable connection times provided the
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times can be approximated by an exponentially distributed random variable®. This is an impor-
tant step in modeling VCT systems. However, continuous time models are usually less accurate
than discrete time models when discrete time events are being modeled [16], [17]. ( The trade-off
being that the continucus time models use the memoryless property of the exponential distribu-
tion to simplify model development.} Furthermore, the restriction of approximating connection

times as exponentially distributed random variables does not allow one to gauge accurately or to

gain insight into the effect of situations where this approximation does not hold.

As stated earlier, this paper develops two discrete time VCT models. The connection time
is modeled as a discrete random variable, X, having a probability mass function f{3). There are no
restrictions on f(i); for example, /(1) need not be a geometric distribution (the discrete time analo-
gue of an exponential distribution). This freedom to specify f (7} is important, because, as we wiil
show, the memory interference behavior is highly dependent on, C,, the coefficient of variation 3
of the random variable X, In particular, it is shown that increasing C, reduces, BW, P, and U, .
Thus, for example, caching schemes that employ variable block size tramsfers will experience

greater memory conflict than schemes employing fixed size blocks, all other things being equal.

The paper is organized as follows: Section 2 will describe the assumptions that characterize
systemn operation; Section 3 will define the performance measures that can be obtam from the
models; Section 4 will develop the two analytic models, i.e., the ER and MC models, which are
used to approximate the performance measures of VCT systems; Section 5 will present the simula-
tion results and compare them to the models’ results; Section 6 will present some concluding

remarks.

2 These models also considered the case, mot conmsidered here, of multiple-bus interconnections rather than a
crossbar, Until recentiy no simple discrete time model existed for this [15].

ki e ~
2o, = standard devistion of X == —{-—-— ~1 where X and X7 are the first and second moments of f{4)
ezpecied value of X {x)y?

respectively.
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2. The System Operation Assumptlions

A processor in the system depicted in Figure 1 can be in any of three states: thinking, when
it has no outstanding request to memory (it might be performing local processing); accessing,
when it is connected to a memory module; and waiting, when it has a pending memory request
waiting to be serviced. The memory module can be in one of two states: busy, when it is being
accessed by a processor, and idle, when it is not being accessed. The following assumptions

further characterize the operation of the system:

I Processors’ requests for memory form independent, statistically identical stochastic
processes.

II. At the beginning of a system cycle a processor in the thinking state or that has just com-
pleted a memory access makes a request to access a memory module with probability r.

III.  If more than one processor issues a request to a particular memory module, that memory
will choose one at random to get the connection. The other processors will retry to the
same memory module in the next cycle.

IV. The requests originating from the same processor are independent of each others. In each
case a memory module will be chosen at random from the M memory modules with equal
probability, i.e., with probability 1/M.

V. The connection time, in units of system cycles, between a processor and 3 memory module
is determined by a discrete random variable X, which has a probability mass function f(i).

Assumptions I through IV are common to all the discrete FCT models mentioned earlier.
Empirical evidence to support their adoption can be found in references [3]-[5] among others.
Assumption V is the key difference between the FCT and VCT models; thus, the models
developed in this paper depend on the extent to which connection times can be approximated by
a random variable, X, having a probability mass function f(i). From assumption V it can be seen

that the FCT case is just special case of the VCT case where X = 1 with probability one.

In order to derive numerical information from the memory interference models developed
later, the values of M, N, r and the first two moments of f(i) must be obtained through measure-
ment or, if it is considered satisfactory, by hypothesis. These quantities can be regarded as the

inputs to the models.
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2. Performance Measures

The performance measures that will be derived from our VCT models are: memory
bandwidth, BW, the probability that a memory request is accepted, P, , and processor utilization,
U, . These quantities can be regarded as the outputs of the models. The memory bandwidth is
defined as the expected number of busy memory modules seen by a random arrival after the sys-
tem reaches its steady state, Equivalently, it can be defined as the expected number of accessing
processors seen by a random arrival after the system reaches its steady state. It can be shown
that the Markov chain which describes the behavior of a system defined by assumptions I through
V is ergodic. This implies that the limiting probability of a state equals the probability that a
random arrival sees the system in that state, see [18] and [19]. Thus, the memory bandwidth can

be expressed as follows:

N
BW = lm }: Pr| processor i is accessing al time § ]

t—+00 J==1

Since the processors are independent and statistically identical (assumption I}, the above equation

can be restated as follows:

BW = N lim Pr| a processor is accessing at time ¢ |
{00

The probability that a memory request is accepted, P, is defined as follows:
P, = Prla proc. obtsins access to 6 memory | the proc. requests that memory]

Finally, processor utilization, U, , can be defined as the fraction of time a processor spends think-
ing or accessing a memory after the system has reached steady state. However, system ergodicity
also implies that the limiting probability of a state equals the fraction of time the system spends

in that state when it has reached steady state. Thus, U, can be expressed as follows:

U, = 1~ }im Pr| o processor is waiting af time ¢ |
ade el
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4. Memory Interference Models

4.1. Equlvalent Rate Model (ER Model)

This model is a modification of an approach first presented in [20] to study the behavior of
multiprocessor systems in which each processor has a private cache'memory. The processor-
memory connections were assumed to be a fixed number of system cycles—the time needed to
transfer one line. An FCT probabilistic mode! {equation (1)) was used to compute BW, and an
equivalent value for r (the equivalent rate) was derived from the fixed number of system cycles
needed to transfer a line and the probability of requesting a line transfer. In our ER model the
foregoing approach is retained; the main differences are, firstly, that the equivalent rate is modi-
fied to take into account the fact that processor-memory transfers take a variable number of sys-
tem cycles and, secondly, that the probabilistic model of equation (1) is replaced by the steady
state flow model of equation (4) because it produces a smaller error. The ER model can be
regarded as a technique for mapping a VCT system into an equivalent FCT model by appropri-

ately defining an equivalent value for r in the FCT model.

The derivation of the equivalent rate, r,,, proceeds as follows. The average connection time
in units of system cycles can be expressed by:

X = }]:if(*)

l 1

i.e., the first moment of the random variable X (S is the maximum connection time}). From
assumption II the thinking time is geometrically distributed. Therefore, if T is the average think-

ing time, it follows that:

T = 1 -r
r
The equivalent rate can now be defined by:
o __x
“ X+ T

This is the fraction of time a processor in a VCT system is accessing memory assuming no

interference. Thus, it can be viewed as the request rate of an equivalent FCT system (the request
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rate is obtained from an interference free trace of processor activity [5]). As will be shown, the
1R model captures the average behavior of VCT systems only if C, is zero. It iniroduces inaccu-
racies in those cases where there is randomness in the connection time, because it does not take
into account the second moment of the connection time. However, it cannot be improved upon if

the only information about f({) is its first moment.

4.2. Markov Chain Model (MC Model)

The Markov chain which models a VCT system according to the assumptions outlined in
Section 2 has an unmanageably large state space, see [1] and [4]. The MC model dramatically
reduces the size of this state space by making a further simplifying assumption. The Markov
chain in the MC model describes the behavior of one processor. Within the framework of the
assumptions this is sufficient to describe the complete system behavior because all processors are
assumed independent and statistically identical (assumption 1). The essence of the simpiifieati;)ﬁ
is similar to that used in the rate adjusted probabilistic models (see [5] and [6]); when a processor
is blocked in an attempt to access a memory module after placing a request, it enters a series of
waiting states for the residual service time of that module. The residual service time {RST) of a
memory module is the time remaining before the currently accessing processor releases the
memory module. The model assumes that the processor waits for the RST before placing a new
and independent request with a probability of 1.0. The request is directed to any memory module
independent of the particular memory it was previously blocked at. This assumption, la, is 2
relaxation of assumption III which requires that resubmission be to the same memory. It simplifies
the Markov chain but usually causes an overestimate of the memory bandwidth of the VCT sys-

tem being modeled.

The Markov chain, shown in Figure 2, defines a processor’s behavior il assumption fia s
used. When a processor is in state i it is accessing a memory module and it needs + more cycles
before releasing the connection. After one cycle in state i the processor always moves to state 1,
indicating it needs -1 more cycles. Thus, there is a single transition from state i{it<i<g S)to

state i-1 with a probability of 1.0. The set of states {i} are accessing states. When a processor is
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Figure 2. The Markov chain for a VCT processor (assumption IMla).

in state O it is in the thinking state and it may be performing local processing. When a processor
is in state i it had a memory request blocked and must wait i cycles before it can resubmit the
request. After one cycle in state i the processor always moves to state i-1, indicating it needs i-1
more cycles. Thus, there is a single transition from state i (1 < i< S)tostate -1 with a proba-
bility of 1.0. The set of states { ;'_} are waiting states. The transition probabilities a;, §,, @; and

B, are defined by the following equations :

1-r 1=0

& = { Pr{a request is made and accepted and needs i cycles| 1<iL< S

B, = Pr| a request is made to a memory that has an RST of i cycles 1<i< S
a

&, = Pr| o request is accepted and needs i cycles] = - 1<i<S
r

B, = Pr| a memory has an RST of i cycles|a request was made to if] = _@_ 1<i<$

r

If the processor is in the thinking state, i.e., state 0, one of three possibilities can occur at
the beginning of the next system cycle: the processor continues in the thinking state with proba-

bility @, (=1-r); the processor accesses a memory module for the next 1 cycles with probability

TC: Mudge & Al-Sadoun March 1984



@, , i.e., the processor enters state i; or the processor is blocked for the next 1 cycles with proba-
bility 8,, i.e., the processor enters state i. The same three possibilities can occur if the processor
is about to end its connection period at the beginning of the next system cycle, i.e., when the pro-
cessor is in state 1. On the other hand, if the processor is at the end of its waiting périod, ie., it is
in state 1, and since assumption Illa requires the resubmission of blocked requests with a probabil-
ity of one, only one of two possibilities can occur at the beginning of the next system cycle: the
processor gains access to 2 memory module for the next ¢ cycles with probability @, i.e., the pro-
cessor enters state i; or the processor is again blocked and must wait for the next i cycles with
probability E, , i.e., the processor enters state i. There is no transition from state 1 to the think-

ing state, i.e., siate 0, because of assumption llla.

The following definition will be useful in the remainder of this section:

R & Prl| a request is made at the beginning of any system cycle]
== Y(Pl"}‘Po) + P’l'
where P, is the limiting probability for state i. One important distinction should be noted: R is
the probability that a processor makes a request at the beginning of any system cycle, while r
{<R) is the probability that a processor makes a request at the beginning of any system cycle

given that the processor is thinking or has just finished accessing (assumption ).

4.2.1. FCT Models as s Special Case of the MC Model

If the MC model is to have validity it should agree closely an FCT model when X is deter-
ministic with probability mass function defined as:
. { 1 if 1=1
i) = 0 otherwise

In this subsection it is shown that an FCT model, the rate-adjusted probabilistic model, is a

proper special case of the MC model.

The Markov chair for the case, where the probability mass function is given above, is shown
in Figure 3. In order to develop expression for the transition probabilities it is first necessary to

develop an expression for, P, , the probability that a request is accepted (see definition in Section

TC: Mudge & Al-Sadoun March 1084
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Figure 3. The Markov chain for an FCT processor (assumption Illa).

3). The development proceeds as follows. The probability that a request is made at the beginning
of a system cycle is given by R, and the probability that this request is directed to a specific
memory is R/M (assumption IV). It follows that the probability that the request is not directed to
the memory is [1 - RIM ), and further, that the probability that no request is directed to the
memory {rom any processor is (1 - R/M) N . Thus, the probability that at least one processor

makes a request for the memory is given by 1 - { 1- R/M) N The expected number of busy
memories is then given by M [1 -~ [ 1-RIM ] N ] However, the expected number of request

made by all of the processors is N R, therefcre the fraction that are accepted, i.e., P,, is given

by:

P, = Whjﬁ [1~(1vR/M]”] (5)

The transition probabilities can now be expressed as follows:

TC: Mudge & Al-Sadoun March 1984
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ao == 1 -7
a, == rP,f{1} = rP,
By = r - a = r{1-P,)

- 431

ay = 1' - a

- B

hh=— =1-P

The limiting probabilities for the states of Figure 3 satisfy the following equations:

Py = aPsg+ oy Py + o, Py

Py = ayPy + o P,

P; = fPo+ /Py + B P;
And:

Pl + Po + PT = ]
These simultaneous equations together with the earlier definition for R yield the following equa-
tion:
1
1+ P, (1/r-1) (6)

Equations {5) and (6) can be solved using iteration. From the definition of BW in Section 3 it can

R =

be shown that:

BW = NP1=AI{1—(1—R/M)”] )

Similarly, it can be shown that:

Uy = 1-P; = 1-(1-P,)R
Equations (5), (6) and (7) are isomorphic to equations {23, b, ¢) with « replaced by R as the
adjusted rate. Thus, the Markov chain shown in Figure 3 is equivalent to the rate-adjusted pro-

babilistic model of [5], and thus the rate-adjusted probabilistic model is a proper special case of

the MC meodel.

Before concluding this subsection, it is worth noting that a Markov chain model, similar to
the MC model of Figure 2, can be developed which assumes that the processor discards the unac-
cepted request altogether and, after waiting for the RST of the memory module, makes a new

request with a probability of r. This assumption, IIIb, is another relaxation of assumption Il that
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also simplifies the model, but is less realistic than Illa. The Markov chain describing the
processor’s behavior under assumption IlIb is shown in Figure 4. Unlike the MC model of Figure
2 there is a transition from state 1 to the thinking state. A solution to the Markov chain of Figure
4 can be found in a similar fashion to that presented later for the MC model. The similarity
between the two models becomes apparent as r — 1. They are identical when r == 1.0. Assump-
tion IIIb is used by the probabilistic models developed in [2], [3], [7]-[9] and [11]. For the case
where the probability mass function is again given by:

. { 1 if i=1
1) = ¢ otherwise

Figure 5 results. Under assumption IIIb the expression for R changes, since resubmission in state

P7 is now made with probability r rather than 1.0. Therefore:

R = r(P1+P0+P'1') = r
And:

Q,

. = z
' !
" &
. o :

0

ﬁs ﬂl )

Figure 4. The Markov chain for a VCT processor (assumption IlIb).

S
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P, = —p%‘? ii«{l—r/M)N]
The branching probabilities for the Markov chain shown in Figure 5 are as follows:
g =1 -r; a=rP, ; f =71 - o
The limiting probabilities are:
Py = a ; Py = a; P} = f

And the memory bandwidth for the system can be expressed as :

BW = NP, = M{l—(l—r/M)N]
This equation agrees with the bandwidth equation of the most simple memory interference

model--the probabilistic models of equation (1).

Figure 5. The Markov chain for an FCT processor (assumption IIIb).

TC: Mudge & Al-Sadoun March 1984
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4.2.2. General MC Model
In this subsection the equations for the general MC model are developed. The following
definitions will be used:

P,, 2 Pr|a request is accepted by an idle memory at the beginning of a system cycle]

- .I_V’l’}_?. [1-(1~R/M)N] (8)

B & Pr| a memory is busy at the end of a system cycle|

= Pr| a processor is still accessing at the end of a system cycle]

S
:-.—._ZP,

1 =2

B, & Priprocessor i requests a memory that is busy

Prlprocessor j is still accessing @ memory at the end of a system cycle]

[
-

(N-1) B

M

;}II_Mz Wi M=
Z|w

It follows from assumption I that B, is independent of ¢, thus we can define:

B A B 1<i<N

The above expression for P,,, is similar in form to P, in the FCT systems ( equation (5) ), and
can be deduced by similar arguements. From the above definitions the following terms can be
developed. These terms are used to derive the transition probabilities of the MC model. They are

presented here by way of explanation:

(1 - Py, )f(5) = Prla memory request is blocked and the proc. which obtains the
memory and blocks the request needs i cycles]

1-B

Py

-5 = Pr|a memory seen by a proc. has an RST of i cycles|the memory is busy

I

Pr{a processor requests a memory that is idle]

The transition probabilities for the Markov chain of Figure 2 can now be expressed as follows:
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Qg = 1 - r
ay =erm(1—Bi)f(i) 1£:i< S
P
8, = r|B' —5= +(1-B")(1- Py, () 1<i< 851
9
Bs = r(1-B')(1-Puy )I(S) )
al
g = — 1<i<§
B = —ﬁ—r'— 1<i<$
The limiting probabilities for the states can be written as follows:
s
P,=[za, LS 1<i<S§
j= r
g 5 R
Py = —e =
° = e | 207
S R
r=|2s) 5 1<i<S
1=
Since the above 25+1 equations must add to one, it follows that:
R = 4
s « s
Yi(e +8 )+ 2 P2 (10)

oz ) 1-(10 P =1

From the definitions of B’ , B and equation {9), B can be expressed as follows:

B= VP = [i (z;l)a,]-’ri

§o==2 1 =1

Substituting in the above equation for o, from equation (9) allows B to be expressed as the fol-

lowing function of R :

(X-1)P,, R
B = N1 = (11)
1+ — (X-1)P,, R

Substituting equations (9) into (11) results in the following equation:

R = 1

[1- 5 76

1- 5 B] [)?+(1/r—1)Pw,,. + NP R é i(-1)

M L2

By defining the second moment of the connection time distribution in the normal way, i,
s
X? = Y i2f(i), the above equation can be written:

[E ]
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1

(N_I)Pwm R (F X) (12)

N-1 -
M 2

[1_ 2 B] [)?+ (1/r ~1)Py,;, +

The equations for P,,, (equation (8)), for B (equation (11)) and the above equation form the MC
model. They can be solved by iteration. In the experiments reported in the next section a fixed-
point iteration on the value of R was used. Solution typically required 4 iterations (with a max-
imum of 8) when an initial value of R == r was used. Higher order iterations schemes could be
used but were found unnecessary within the scope of our work. The value of P, falls out directly
from the above solution method. The value for memory bandwidth, BW, the probability that a
memory request is accepted, P,, and processor utilization, U, , can be calculated from the follow-
ing:

BW = N(P,+B)

P, = P, (1-B")
S
U, =1- Y P:

1]
$ ==

These equations follow from the definitions of Section 3. It can be seen from equation (12) that R

depends, among other things, on the inverse of XZ. Therefore, it follows from the above equa-
tions, that both BW and U, depend on the inverse of XZ. Furthermore, it can also be seen from
equation (12) that R is independent of S. Thus the underlying Markov chain of the MC model

need not be finite.
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5. Simulation Resulta

A simulation, written in SIMSCRIPT I1.5, of VCT systems operating according to the
assumptions given in Section 2 was run for different probability mass functions, f(i), and different
values of r. The results were compared to results calculated from the ER model and the MC
model. The comparisons, which are shown in Figures 6, 7 and 8, were made for three systems
sized 8X 8, 16X 16 and 32X 32 respectively. The figures compare BW. The %Error shown in the

figures was defined as:

Model BW -~ Simulated BW
%Error = Simulated BW X 100

Six different distributions for the connection time were used. All the distributions had the
same expected value, X, but their coefficient of variation, C,, ranged from 0.0 (i.e. fixed connec-
tion time) to 2.0. As can be seen from the figures, both models gave results within 4% of the
simulation for small C,. The MC model remained within this error bound, but the ER model
showed a monotonic increase in error with increase in C, . In the case of C, = 2.0 the error was

as large as 50%. Similar results are obtained if P, or U, are compared.

The poor performance of the ER model, which continues to worsen as C, increases beyond
C, = 2.0, confirms the importance of using the second moment of the connection time distribu-
tion in calculating BW, see equation (12). The error in the MC model is due to assumption Illa
being used in make of assumption III. As noted, the simulation works according to the assump-
tions of Section 2, in particular assumption III. The key difference between assumption IlIa and
III is that in IIIa blocked requests for memory need not be resubmitted to the memory from which
they were previously blocked. This is clearly unrealistic, but our experimental evidence indicates
that the effect on the quantities BW, P, and U, is quite small--less than 4% error in all cases.
Furthermore, as mentioned earlier, the relaxation of assumption III to that of Illa makes possible
a manageable model. Finally, the error is comparable with the empirical evidence reported in ear-
lier work [3]-|5] that led to the assumptions of Section 2 as a phenomenological basis for the

behavior of a large class of multiprocessors of the type shown in Figure 1.
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Figure 6. Comparisons with simulation results for an 8x8 system.
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Figure 9 shows explicitly how BW varies with C, while X is held constant. As can be seen,
by just varying C, from 0 to 2.0 the BW can drop by as much as 40% for high request rates
(r==1). In fact, in the case of 32X 32 system with C, = 2.0 the BW drops to the point where
only 13 of the 32 memory modules are busy even where »r = 1. This agrees with the interpreta-
tion, based on equation {12), that was made at the end of the last section where it was concluded
that BW would decrease if X~ {or C,) increased. The most obvious consequence of BW depend-
ing on C, in this way is that transfers between processors and memories should be restricted to
fixed blocks, or nearly fixed blocks in which variations in size are rare, if maximum BW is to be

achieved.
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é. Conclusion

This paper has developed two discrete time models of the memory interference that occurs
during memory access in a multiprocessor system when that access can have a variable duration.
The first of these models, the ER model, is the simpler model and, according to comparisons with
simulations, provides accurate estimates of the values for P,, BW and Uy, if C, is small. The
second of these, the MC model, is the more complex model but, according to comparisons with
simulations, provides accurate estimates of the values for P,, BW and U,, for a wide range of
C,. The ER model requires the values of M, N, r and X as inputs. The MC model requires, in
addition, the value of XZ. The explicit dependence of the MC model on X~ {(and hence C, ) can be
observed in equation (12). This was confirmed empirically; specifically, it was shown that BW
decreases with increase in C,. The fact that the second moment is an important feature of
memory interference should not be completely unexpected as the behavior of similar systems, €.g.,
networks of queues, also depend on the variance of underlying stochastic processes {in the case of

queues, it is the variances of the inter-arrival time and service time).

There are a number of possibilities for future research including the following two fairly
straightforward ones. The first would study the effect of relaxing assumption IV so that systems
in which each processor has a preferred memory module, or in which a subset of the MEMory
modules are used as common memory {perhaps as mailboxes), can be studied in a manner analo-
gous to earlier FCT studies in [5], [9] and [11]. The second would attempt a synthesis of the tech-
niques presented here with the discrete time models of multiple-bus systems developed in [15].

Analytical comparisons of circuit switched versus packet switched buses would then be possible.

Acknowledgments: The authors gratefully acknowledge comments and suggestions made
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