SEL-TR-165

VLS CROSSBAR DESIGN
VERSION TWO

Scott McFarling
Jerry Turney

Trevor Mudge

February 1982

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
SYSTEMS ENGINERERING LABORATORY
THE UNIVERSITY OF MICHIGAN, ANN ARBOR 48109

Draft copy

1. INTRODUCTION

In the design of single instruction multiple data (SIMD) and multiple
instruction multiple data (MIMD) architectures, a key component is oft times a
fast multiport memory. The "front end” of this memory is generally scme type

of interconnection network.

Various limited interconnection networks have been proposed, however, the
most flexible of these contenders is the crossbar switch in which every input

port has the capability of connecting to every output port.

The major drawback to the use of the crossbar in conventional design has
been the amount of discrete logic needed for its construction. The crossbar,
however, is a highly regular structure and represents a prime candidate for

VLSL

It would be impossible to build a full crossbar switch entirely on one chip.
The pin count would be immense. The best approach is to build a m x n crossbar
in which one bit from each of m processor ports is routed to one of m memory
ports on a single plane (implemented on one chip) and then these bit planes are
"stacked” to form the desired bus width. This approach is illustrated in Fig. 1.
The connecting boxes in Fig. 1 are called crosspoints. Bit plane stacking allows
the user to determine the widths of his address and data bus, and control bus

dependent on his application.

Any type of prioritization of the inputs to the crossbar will cost in terms of
speed. One simple priority scheme is to daisy chain a request strcbe from pro-
cessor input to processor input (See Fig 2.) giving priority te the the processor
physically connected highest on the daisy chain. However, a daisy chain has two
disadvantages. Firsi, a daisy chain as in Fig. 2 has a fixed pricritization. There is
no flexibility in changing priorities. Second, a daisy chain of pass transistors for

m inputs takes up a considerable amount of tume and the crossbar clock would

have to be slowed down to wait for the worst case strobe acknowledge which

would be for the last processor line in the chain.

Assuming that one processor can "lock-out” other processors once it has
the crosspoint connection, actual requests conflicts are rare, only occuring.
when two processors request the same bus during the same clock cycle. One
can take advantage of the infrequency of request conflicts in the following
manner. Allow each processor {unless it is specifically locked out from a line by
a processor which already owns the bus) to grab the line of its choice. This is a
"free for all” policy. (See Fig. 3 for a sketch of our 4 by 16 implementation of
such a crossbar.) This is done in a asynchronous manner. (Of course the action
is synchronized to the clock, but there is no specific time slot in which all pro-
cessors must request a line.) After gaining access to the line, the processor
transmits data as if it owns the line. It, however, monitors the line to see if what
it transmits is what is is sent over the line. If, at anytime, the line fails to agree
with its output, the processor aborts its transmission drops the line and rere-
quests the line. The crossbar does an internal comparison of the processor line
to the connected memory line. The crossbar signals the processor its failure to
own the line through a collision line. This approach will minimize the amount of
hardware needed for prioritization but more importantly the time needed for

prioritization. It is based on the same approach as the Aloha network.

2. FREE FCR ALL CROSSBAR

The following is a discussion of the actual implementation of the "free for

all” crossbar.

Draft copy

2.1. Crossbar pinout

Fig. 4 presents a pinout for the crossbar design. The values m=4 and n=18
have been chosen for the number of processor ports and memory ports respec-
tively, in order to meet the pinout restriction of 40 pins. Each input port from
the processors has 5 pins, 4 of these multiplexed between address and data-
control information. There are 4 processors ports, hence a total of 20 pins are
used for processor ports. There are 16 bidirectional memory output ports. With
power, ground, and clock, 39 pins are needed fer this designed. The extra pin

was used as additional input for the clock. A description of the pins follows:

2.1.1. AO-3 (Addresses 0-3) Inputs when A/D high. The address of one of the 16
memory ports desired by the processor. In order to distinguish this address
from the address that may be passed to memory through the crossbar, (see Fig.
1) this address will be referred to as the "routing” address. This mode is

selected when the A/D line is high.

2.1.2. A/D (Address/Data-control) Input. Multiplexes the routing address into
the chip when high. Latches the routing address and requests the memory port
specified by the routing address when pulled low. By maintaining A/D high the
precessor does not request or lock any memory port. This keeps processors
which are not using the crossbar from locking out access to a memory port by

"sitting’’ on the memory line.

2.1.3. DO (Data out) and DI (Data in) DI is an input and DO is an output. The
data from and to the processor respectively. The DO mode is selected when A/D

1s low and R/W is high. The DI mode is selected when A/D is low and R/W is low.

Draft copy

2.1.4. CLSN (Collision) Output. If a collision occurs between two processors,
whereas if two processors request the same memory port on the same cycle this
line goes low. May be connected to an interrupt line for the processor to allow

both processors to pull back until the next cycle.

2.1.5. R/W (Read/Write) Input. Direction of data flow from processor. Line
high for a read from memeory and low for a write to memory. During a read
whereas when A/D is low, PHI is high and R/W is high it turns the selected
memory ports into inputs into the chip and turns the DI, DO line in an output

when

2.1.6. LCKD (Locked out) Output. Indicates to the processor that the memory
line it has requested has been locked by another processor, and hence the

requested connection has not been made.

2.1.7. M0-15 (Memory ports 0-15) Bidirecticnal. Memory ports used as inputs
to the chip when PHI high, the port has been selected by one or more processors

and the R/W line is high.

2.1.8. PHI Input. PHI in tandem with A/D play the role of the normal two phase
clock PHI1 and PHIR, except that A/D need not be pulled low during the PHI high

cycle.

2.2. Details of operation

The basic path of the crossbar consists of the select, the crosspoint cell and

the memory buffer. These major blocks are detailed below.

2.2.1. Select Logic

Fig. 5 indicates in more detail the assignment of memory pads. The first,

second, and fourth pad from the top are bidirectional pads {with lightening

Draft copy

arrestors incorporated). The top two pads function as outputs only when PHI is
high and when A/D is low. This prevents the pads from beccming outputs when
the processor is not using the crossbar and has maintained its A/D line high. It
also allows the address drivers a chance to float before the cutputs from the

crossbar are active, since PHI and A/D are non-overlavping.

The fourth pad is turned into an output only if the write bar line is high. The
write bar is automatically held low until A/D goes low and PHI goes high. Then
when these conditions are met, it reflects the state of the R/W line. This
prever.ts the state of the R/W pad which doubles as the Al pad from changing
the direction of the DO,DI pad unless an address has been seleclted and the PHI

clock is high.

Fig. 6 displays the timing diagrams of the write cycle. A/D is brought low.
Addresses AD-3 are latched. Output addresses from the selector SAO-3 are forced
high when A/D is high in order to keep the processor from controlling a memory
line when the processor is not using the crossbar as mentioned above. When A/D
goes low these select addresses are sent out to the cell in double rail logic (SAO-
3, SA0-3 bar) to select the crosspoint cell of interest. Data input lines are held
high and the write bar lines are held low until A/D is low and PHI is high to serve
two purposes. One purpose is to speed up the total write operation, since its
timing is critical. Every read from memory through one set of bit planes must
be preceded by a write operation on a separate set of bit planes (See Fig. 1).
Hence the timing of the write is critical. Here we start with the crossbar already
in the write state. The memory ports are also prevented from turning inward
until PHI goes high. The second purpose is to disable the tristate to the DO pad
while either A/D is high or PHI is low. Tig. 8 illustrates the select logic. Note that

PHI high also maintains the addresses once A/D goes low.

Draft copy

Also included in Fig. B is the logic for collision detection. Since the DI lines
are wired OR-ed as seen in Fig. 9 later, the only collision that can be detected is
when Dl is 1, DO is 0, and R/W is low {and, of course, when A/D is low since CLSN
is only sampled when A/D is in the data-control mode). If DI is 0, DO is
guaranteed to be 0 whether there is a collision or not because of the wire ORing,
and in addition the only time one can detect ccllisions 1s during a write since it
makes no sense to compare what is arbitrarily on the DI line with what is being

read on the DO line.

ID bit planes are included in Fig. 1 to prevent the following trouble. If two
processor wrile to the same memeory port, the odds are they will disagree. To
prevent a memory location from being trashed, the ID planes can be check for
Validr ID's. The ID planes also guarantee a collision. For example if 0011 is the ID
of processor 0 and 0110 is the ID of processor 1, a conflict is guaranteed and the
memory can determine a collision has cccurred and prevent a write since the

ORed ID, 0010, corresponds to no legitimate ID.

2.2.2. The Crosspoint Cell

Examine Fig. 9. Assume the lock bar line is high. Then if a processor selects
this crosspoint, the select line goes high and the S bar input to the latch is 0,
while the R bar input is 1. This sets the latch and a connection is made. As long
as the select stays high, the processor has the connection (or correspondingly
as long as the processor keeps its A/D line low, it has a connection). With a con-

nection establish the lock line is pulled low,

Assume the lock line is low before the processor selects this crosspoint.
Then if a processor selects this crosspoint, the latch is not set and the LCKD bar
line is pulled low signaling that the processor has been locked out of the

crosspoint it attempted to select.

Draft copy

Once a connection has beer established, the processor monitors the MEM
line of the crosspoint he has connected, it order to check for collision during a

write mode. During a read, the processor simply reads from the MEM line,

2.2.3. The Memory Buffer Examine Fig. 10. The memory buffer provides input
from the memory port when WMEM bar is high and provides output to the port
when WMEM is low. WMEM is pulled low during PHI low to provide faster writes

and to keep MEMI off the MEM line during PHI low again providing faster writes.

A pullup for the lock line is also provided in the block of logic.

2.3. Tests performed on design

The entire design has been design rule checked and simulated in tsim, esim

and static sim. Everything has worked perfectly.

3. Conclusion In our crossbar design the "free for all” policy in which every
processor is allowed to grab the memory line of its choice providing that it then
monitor its writes in order to determine "collisions” with other processors has
allowed us to design a crossbar switch with minimum logic yet with great flexi-
bility. The capability of software programming prioritization as well as the abil-
ity to perform multiple reads from the same address have "fallen” out of the
design as an apple might of a tree. The design is clean, simple, and easily imple-
mented. We have also, wherever possible, left the design open for double metali-
zation. Most of our poly lines have been given spacing of 3 lambda in order to
easily convert them to a second layer of metal. This possibiiity will give us
speeds necessary for the use of this crossbar as a front end to multiport

memory.

Draft copy

F MAeAMEALD

CROSSBAR BIT PLANES

Fraure

\/T‘/ \'/3‘ N
o
ddn dole condicl

—Q
|l
—<— &

M)LCKD ey
A2, GISN o ‘

= | g x5 pins For processoy /-.DOr{-_g
A, Bw 5|
A DIDO_o o | [& ' FMS for pemer y lines

A/D _—

sower ahd ciock
ot

(0

PINOUT

ﬁﬁm ¥,

PT (pod v . LCkD

o (pad ovi) l—s— A2

Elevistube entli}—<— pii * Bl

PL —<— CLSN
ec | > A2 MEM MEMI WHMEM

Pot—s— Bl % RAy

PO ———> DI
e b—-o A.u"u;E — g/\,vofmfo%)

PO 2= AV/D

PROCESSOR FPORT™ PADS

& MEMORY PoRT PpAD

Fé;me 5

)& A /K
&— rvm—
1 r—"— 575
- ‘F—C——\ o ~ :
Af — So—T T Do——+>or——__J Dro— sag
(&U;;AL (ja A’f‘%) 110
T
[0 — e
— L 7
PT — |
(ducko) ,._g) > 7—3DT
CLsN @
(colliaiom)
PH —— > .
])
o il
p/D D TVDD
Lo <.‘> —~ i‘f < LCKD
(Toehad ool .
Fi (g ure 8
SELECT & COLLISION

LO5:C

S
@
]

STLECT

S SR

=

CROSSPOINT

Eﬂure

CELL LOGIC

T

<
N
- 4
Y -)
1 ‘ MEM
Lesd ')
Locr *

S — 3 WHE !
[t)
ovi 1— o \& ? wo (ke i

‘ L _{%
% ‘%L
- \ ™~ Y_T :
MEME —> o L
{from amamory s

MEM <.
~

(ﬁ@m\;@‘ﬁqj}
wee s Vb

___WW_Q
-
N

|

LOCx

MEMORY <« Lock LNE
LoGic

/://j urée. 10

