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Abstract. With the growing size of real-world datasets running on
CPUs, address translation has become a significant performance bot-
tleneck. To translate virtual addresses into physical addresses, modern
operating systems perform several levels of page table walks (PTWs) in
memory. Translation look-aside buffers (TLBs) are used as caches to keep
recently used translation information. However, as datasets increase in
size, both the TLB miss rate and the overhead of PTWs worsen, caus-
ing severe performance bottlenecks. Using a diverse set of workloads,
we show the PTW overhead consumes an average of 20% application
execution time.
In this paper, we propose CoPTA, a technique to speculate the mem-
ory address translation upon a TLB miss to hide the PTW latency.
Specifically, we show that the operating system has a tendency to map
contiguous virtual memory pages to contiguous physical pages. Using a
real machine, we show that the Linux kernel can automatically defrag-
ment physical memory and create larger chunks for contiguous mapping,
particularly when transparent huge page support is enabled. Based on
this observation, we devise a speculation mechanism that finds nearby
entries present in the TLB upon a miss and predicts the address transla-
tion of the missed address assuming contiguous address allocation. This
allows CoPTA to speculatively execute instructions without waiting for
the PTW to complete. We run the PTW in parallel, compare the specu-
lated and the translated physical addresses, and flush the pipeline upon
a wrong speculation with similar techniques used for handling branch
mispredictions.
We comprehensively evaluate our proposal using benchmarks from three
suites: SPEC CPU 2006 for server-grade applications, GraphBIG for
graph applications, and the NAS benchmark suite for scientific appli-
cations. Using a trace-based simulation, we show an average address
prediction accuracy of 82% across these workloads resulting in a 16%
performance improvement.

Keywords: virtual memory · page table walk · TLB · speculative exe-
cution.
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1 Introduction

Fig. 1: Processor time breakdown for different
benchmarks.

Virtual memory is widely
used in modern computing
systems because it offers an
abstraction for different ap-
plications to own a large, ex-
clusive memory space along
with some security guaran-
tees. Supporting virtual mem-
ory requires a processor to
translate a virtual address to a physical memory address before requesting
the data from the memory hierarchy. The Translation Look-aside Buffer (TLB)
serves as a dedicated cache for storing address translation information. A miss
in the TLB triggers a Page Table Walk (PTW), which incurs several serialized
memory accesses. The core has to wait to receive the translated address before
servicing the memory request, therefore, PTW can cause a serious performance
bottleneck upon frequent TLB misses.

Modern big-data workloads use large volumes of data that can easily stress
the TLB both due to limited TLB size and complex PTW procedure. TLBs
employ a fully-associative structure with limited capacity (e.g., 64-entries for L1
TLBs in modern CPUs) in order to keep a reasonable lookup latency. To illus-
trate this bottleneck, we profiled several graph processing, server, and scientific
workloads from GraphBIG [26] and SPEC CPU2006 [18] and elsewhere on an
x86-based host machine. Fig. 1 shows the fraction of execution time spent on the
PTW, which shows that a significant portion (more than 25% in some bench-
marks) is spent on translating addresses upon TLB misses. Prior endeavors to
mitigate this issue adopt superpages to increase TLB reach [34]. However, this
approach suffers from internal fragmentation, wastes space, and stresses memory
bandwidth.

The goal of this work is to reduce the overhead of PTW by speculating the
physical address upon a TLB miss. To this end, we propose CoPTA, a Con-
tiguous Pattern Speculating TLB Architecture, which speculates the address
translation of a TLB misses using a nearby entry present the TLB. CoPTA ex-
ploits the opportunities that contiguous virtual addresses are likely to be mapped
to contiguous physical addresses. This is supported by characterization exper-
iments performed on workloads running in a real machine running Linux. By
predicting a memory address translation, CoPTA allows the execution to spec-
ulatively proceed while performing the PTW in parallel. The benefit of such a
scheme is that the core can execute dependent instructions without waiting for
the translation. Given most contiguous virtual pages are mapped to contiguous
physical pages, this speculation yields correct translation most of the time. In
the event of miss-speculation, we use a technique similar to what is used for a
branch misprediction to flush the speculatively executed instructions from the
re-order buffer (ROB).
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To evaluate the performance benefits of CoPTA, we use a trace-based simu-
lation methodology. A variety of real-world big-data workloads from graph ana-
lytics, server applications, and scientific computing domains are used to evaluate
CoPTA. We show that using a negligible 0.4KB of storage, CoPTA can achieve
an average address translation prediction accuracy of 82%, which can potentially
result in an average performance by 16%.

2 Background and Motivation

2.1 Virtual Address Translation

Fig. 2: Overview of address
translation.

To achieve process isolation, each process issues
instructions with virtual addresses [25]. This is
an abstraction provided by the operating system
(OS) that can (a) hide physical memory fragmen-
tation, (b) leave the burden of managing the mem-
ory hierarchy to the kernel, and (c) create the illu-
sion of an infinite address space for each process.

The translation of virtual addresses to physical
addresses is enforced by the Memory Management
Unit (MMU) (Fig. 2). Memory is typically split
into 4KB pages, and a page table keeps track of
all the mappings between a virtual page number
(VPN) and a physical page number (PPN). To avoid storing all the translations
in a monolithic large mapping table, MMU usually uses a hierarchical page table.
For example, the x86 architecture uses 4 levels of page tables [3,5]. Even with this
design, the overall size of the page table is too large to fit in any on-chip cache
structure entirely. A PTW for address translation in an x86 system will incur 4
levels of page table lookup, which leads to a significant performance overhead.
To alleviate the PTW latency, a dedicated cache called the translation look-aside
buffer (TLB) is used to cache the recently used translations.

Each time an address translation is requested, the MMU will look up a cor-
responding entry in the TLB for faster access. Thus the TLB plays a very im-
portant role in the performance of address translation [15,24]. Upon a TLB hit,
the matched PPN combined with the offset will be used for the data access. If
the TLB misses a request, it invokes a PTW that looks up the corresponding
PPN in the memory hierarchy, and caches it into the TLB for future references.

Each level of the page table needs to be fetched from the main memory, so
in the worst case, a single PTW can incur 4 times the memory latency before
the MMU can access the physical address. Note that the PTW can be done in
hardware (i.e., there is a dedicated controller to lookup the page tables) or in
software (i.e., an interrupt subroutine is called to service the address translation
lookup). When virtualization is involved, the nested page table lookup can take
up to 24 memory access, increasing the latency to get the final page translation,
which becomes a huge overhead [6, 17].
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2.2 Physical Page Allocation

When a process requests a new page, the OS allocates a physical page to be
mapped to the virtual page, either by allocating an unused page or by evicting
a used page. Linux uses a buddy allocator that operates as follows: when an
application makes a malloc call and asks for multiple pages, the OS will try
to allocate continuous physical page frames whenever possible [2, 29]. In detail,
when the process requests N pages at a time, the OS will look for N contiguous
physical pages in the memory or break larger contiguous chunks to create N
contiguous physical pages. Our experiment shows that the OS tends to map
contiguous physical pages to virtual pages, which opens up an opportunity for
our TLB speculation mechanism.

2.3 Memory Compaction and Transparent Hugepage Support

With applications constantly allocating and freeing pages, memory will be frag-
mented, making it hard to find a large contiguous region. Many OS provide a
memory compaction daemon. Linux, for example, invokes memory compaction
when it is hard to find groups of physically-contiguous pages. The OS will re-
locate the movable pages to the free pages, filling up the holes in memory and
reducing fragmentation, also known as defragmentation.

Linux has a Transparent Hugepage Support (THS) mechanism, that allows
the memory allocator attempting to find a free 2MB block of memory [2]. In the
2MB memory chunk, if the VPNs and PPNs are aligned, the OS will construct a
2MB superpage with 512 consecutive 4KB pages. Memory compaction and THS
provide a better memory mapping that favors CoPTA.

3 Related Work

Previous works mainly focused on reducing the TLB miss rate and reducing page
walk overhead.

Reduce TLB Miss Rate. CoLT [29] exploits and takes advantage of con-
tiguous page allocation by coalescing contiguous page translations into one TLB
entry, and therefore increasing the TLB reach. However, the maximum number
of pages coalesced in CoLT is limited by the size of a cache line. Hybrid TLB
coalescing [28] relaxes this limitation with the help of software. Our work has no
limit to the range that the contiguous pattern can be searched, thus allowing a
more flexible contiguous mapping range, not limited by the size of a cache line.

Superpages [9,34] increase the TLB coverage and therefore reduces miss rate.
Works have shown efforts to exploit support for superpages by using either split
TLB hardware [29] or unified TLB hardware for all page sizes [16]. Other works
also explored ways to accelerate multiprocessor TLB access [8, 11]. CoPTA in-
stead uses speculation and can be applied orthogonally to superpages, CoLT,
and multiprocessors.

Hiding the Page Walk Latency. SpecTLB [6] utilizes a reservation-based
physical memory allocator. When allocating memory, the handler will reserve



CoPTA: Contiguous Pattern Speculating TLB Architecture 5

large chunks if a superpage is appropriate, and any future allocation in the re-
served superpage will be aligned [27, 33]. SpecTLB requires the OS to support
superpage reservation [27, 33], and can only provide speculation if the miss re-
quest is part of the superpage. Our work requires minor changes to the TLB,
and can potentially provide speculations for any virtual page number because
the searching range can be customized.

Prefetched Address Translation [23] modifies the OS to force contiguous page
allocation. Therefore it is faster to locate the page table and faster to prefetch
the translation, reducing the page walk latency.

4 CoPTA: TLB Speculation Architecture

In this section, we detail the proposed CoPTA architecture. We modify the TLB
and load store queue (LSQ) to support the TLB speculation scheme, as shown in
Fig. 3. The modified TLB architecture relaxes the exact matching requirement
of address translation. Instead of searching for a single, exact match of the query
in the TLB by a CAM circuit, CoPTA will return a hit entry upon matching
a predefined number of most significant bits in the tag array. In this way, the
approximate search will find a “close-neighbor” of the virtual address query, even
if the exact match is missing in the TLB. The proposed speculation-supported
LSQ adds a physical address column and 1 additional bit to each entry, totalling
in 0.4KB additional storage for a 48 entry LSQ. The physical address column
is used to indicate the value of the speculative physical address translation that
has not been verified yet. The additional bit is used to indicate whether data in
each LSQ entry is generated by a speculative translation.

(a) (b)
Fig. 3: (a) Speculation supported Load Store Queue (Data for VPN 0x190 may
arrive earlier than the translation response from walker, the data remain specu-
lative in LSQ before translation is resolved, D ready indicates Data is ready to
commit from LSQ). (b) Speculation supported Translation Lookaside Buffer (In-
coming request VPN 0x190 will incur a miss but find the close neighbor (0x180)
in the TLB, a speculative translation response 0x3760=0x3750+(0x190-0x180)
is returned within Hit latency.)

With these modifications, CoPTA can parallelize the data request sent to the
memory hierarchy and the hierarchical PTW process. The processor can then
send data requests without stalling for the translation response to complete. The
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pipeline is illustrated in Fig. 4. When encountering a TLB miss, conventional
architectures will block the data request until the address translation is resolved.
These events happen in the order of A1 → B1 → C1 → C2 → B2 → D1 → D2
→ A2. By contrast, with CoPTA, the augmented L1 TLB is able to predict the
physical address and issue a data request with the predicted physical address,
along with sending the translation request to the page table walker, thus over-
lapping with the time interval during which the page table walker serves the
translation miss. The speculated physical address translation will have a copy
saved in the corresponding LSQ entry, with the marked speculation bit. The
CPU pipeline can speculatively execute based on the predicted physical address.
In Fig. 4, event A1 triggers event B1 with speculative response b2. Then C1→C2
happens in parallel with D1→D2 to hide the PTW latency, and event a2 send the
speculated result to the LSQ. When the translation is resolved from the PTW,
the verification signal is sent to the LSQ (C2→a2). The returned (accurate) phys-
ical address is compared against the prediction (saved in the LSQ) to verify its
correctness. If the result matches the speculation, the speculation bit is cleared
and the PTW latency can be hidden from the execution. If the speculation is
incorrect, the CPU pipeline will be flushed similar to a branch miss-prediction,
and the pipeline will roll back to the state before the request with the accu-
rate physical address being issued. Given a high prediction accuracy, speculative
execution can hide the PTW latency and improve TLB performance.

Fig. 4: Overview of TLB speculation architecture.

Regardless of whether an exact match/miss is obtained, CoPTA executes
the same procedures as the original TLB design. The only difference is when
the translation misses an exact match but hits a neighborhood match. The con-
ventional design will block the data request for this LSQ entry until the trans-
lation is resolved, while the CoPTA will match a close-neighbor in the TLB,
as shown in Fig. 3b. In the close-neighbor match scenario, the TLB returns
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the speculative physical address based on the distance of virtual addresses be-
tween the request and its close-neighbor (in Figure 3b, the close-neighbor of
requesting VPN=0x190 is VPN=0x180, the speculative PPN=0x3750+(0x190-
0x180)=0x3760). The speculative address is returned to LSQ and attached with
a speculation bit to the LSQ.

The data request is sent to the memory hierarchy in parallel with launching
a PTW to fetch the accurate physical address translation. In this situation, the
data may be returned to the corresponding LSQ entry earlier than the accurate
translation and will be marked as a speculative data value, because the verified
translation has not arrived to clear the speculation bit of the entry (Fig. 3a).
The current register states will be check-pointed (e.g. using register renaming)
and the commits beyond this speculation point will be saved in a write buffer to
protect the memory state. When the accurate translation returns to the TLB,
a verification signal will be set and the LSQ will be notified (Fig. 4). If the
speculative translation matches with the accurate translation from the page
walker, the speculation bit is cleared, and the registers and memory states can
be safely committed. If the speculative translation does not match with the
walker, the pipeline is flushed as if there is a misprediction. The speculative
register state and the write buffer are cleared, and the CPU pipeline will restore
to the point before issuing the mispredicted load/store request in the LSQ.

Note that pipeline flushes are relatively rare events. Flushes are only neces-
sary when both the data arrives earlier than the page table walker in a TLB miss
and a misprediction happens because the incorrect data has been retrieved and
used. We discuss the overhead of misprediction in Section 8. When the accurate
translation returns earlier than the outstanding data request, the address veri-
fication happens before the data is used. If the speculative translation matches
the translation result from the page table walker, no further action needs to be
performed. If the speculative translation does not match the accurate result, a
second LSQ request is sent to the memory hierarchy and the previously spec-
ulative data request is discarded. Therefore, the data response of the previous
LSQ request with an incorrect physical address is ignored.

5 Methodology

5.1 Real Machine Memory Allocation Characterization

The proposed CoPTA architecture relies on the contiguity of the system memory
mapping. With a longer contiguous virtual memory address to physical memory
address mapping region, this architecture will achieve higher prediction accuracy
and better performance improvement. To characterize the contiguity of memory
mapping on a real machine, we modified DynamoRio [1, 14] to dump the trace
of the virtual to physical mappings from a real machine and then analyze the
contiguity. The configuration of our modeled real machine is shown in Table 1.

Similar to the prior works [29] that study the effect of memory compaction,
we manually invoke memory compaction in the Linux kernel and characterize
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the memory contiguity. With memory compaction, the system will defragment
the memory and create a larger chunk in the memory to map the following
address allocation requests. By setting the Linux defrag flag, the system trig-
gers the memory compaction for different situations. We also enable and disable
the Linux transparent hugepage support (THS) to investigate how the system
built-in memory defragmentation functions and how supperpage support helps
our proposed architecture. The experimental machine has been running for a
month to mimic typical memory fragmentation as compared to a clean boot.
We study the memory contiguity under different configurations. Due to space
constraints, we present the result of the following configurations: (a) before and
after manually invoking memory compaction, (b) THS disabled, normal mem-
ory compaction (current default setting for Linux), (c) THS enabled, normal
memory compaction, and (d) THS enabled, low memory compaction.

5.2 Simulation Based Speculation Evaluation

Similar to the previous works [5, 6, 8, 10, 29] that evaluate the performance of
CoPTA, we use a trace-based approach. Performing an online prediction eval-
uation with a full-system out-of-order processor simulator is infeasible due to
inordinate simulation time. Also, it is not possible to evaluate the performance
on a real machine because CoPTA needs hardware modifications that cannot
be emulated on the host machine. To collect the translation trace, we apply a
simulation-based approach instead of using real machine traces to avoid interfer-
ence from DynamoRio [1,14]. We run the benchmarks on the gem5 simulator [12]
in full system mode and modify the simulator to collect the virtual to physical
address translation trace. The trace is then fed into a customized TLB simula-
tor. Prior works on TLBs [5, 6, 8, 32] mainly focus on measuring the TLB miss
rate. In addition, we estimate the overall performance improvement by assuming
the number of L1 TLB misses is directly propotional to the time spent on the
PTW, following the methodology used by Basu et al. [7]. We run Linux perf on
a real machine, using hardware counters to collect the average and total num-
ber of cycles spent on PTWs. The performance improvement metric is defined
in Equation 1, which is calculated by multiplying the portion of time spent on
the PTWs (TPTW ) with the TLB predictor hit rate (ACoPTA prediction). This
is an upper-bound estimation of CoPTA because we make several assumptions,
including an optimal misprediction penalty and collecting the translation trace
under the best memory conditions, detailed in Section 8.

Performance Improvement = TPTW ×ACoPTA prediction (1)

Table 1 shows the specification of the real machine and gem5 simulator
setup. Both run a similar Linux kernel on x86 ISA processors to ensure a similar
page assignment strategy. The customized TLB simulator has a 64-entry, fully-
associative L1 TLB and no L2 TLB, adopting the least recently used (LRU)
replacement policy. When the TLB simulator matches multiple close-neighbors
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(based on the higher order bits of the virtual addresses), it selects the first hit
and calculates the result based on its physical address.

5.3 Benchmarks
Table 1: Experiment setup specifications.

Host Machine gem5 Simulator

Processor Intel i7-6700K X86 single-core atomic
Linux Kernel 4.15.0 4.8.13
L1 Cache 32kB 32kB
L2 Cache 256kB 256kB
L3 Cache 2MB No
RAM 16GB 16GB

L1 TLB 64 entries 64 entries
L2 TLB 1536 entries No

Table 2: Summary of the benchmarks evaluated.

Benchmark Source Input

BFS GraphBig [26] SlashDot & Pokec [20]
ConnectedComp GraphBig [26] SlashDot & Pokec [20]

kCore GraphBig [26] SlashDot & Pokec [20]
PageRank GraphBig [26] SlashDot & Pokec [20]

ShortestPath GraphBig [26] SlashDot & Pokec [20]
TriangleCount GraphBig [26] SlashDot & Pokec [20]

astar SPEC [18] ref input
lbm SPEC [18] ref input
mcf SPEC [18] ref input
milc SPEC [18] ref input

IntSort NAS [4] /
ConjGrad NAS [4] /

HJ-8 Hash Join [13] -r 12800000 -s 12800000
RandAcc HPCC [22] 100000000

We study the memory map-
ping contiguity on the graph
workloads from GraphBig [26]
with the SlashDot dataset [20],
and later measure the per-
formance on GraphBig [26],
SPEC CPU2006 benchmark
suite [18], NAS [4], Hash
Join [13] and the HPC Chal-
lenge Benchmark [22]. For
graph workloads, two differ-
ent datasets are used. Slash-
Dot and Pokec are real-
world social network graphs
from SNAP [20]. They have
0.08M nodes, 0.95M edges
and 1.6M nodes, 30M edges,
respectively. For the SPEC
CPU2006 benchmark suite,
the largest inputs are used.
Detailed information about
the benchmarks is listed in Table 2.

6 Memory Allocation Contiguity Characterization

We qualitatively analyze the effect of the Linux buddy allocator, memory com-
paction and THS on the memory contiguity on a real machine. Here we define
the address mapping contiguity as follows: if contiguous virtual pages VP, VP+1,
VP+2 are mapped to contiguous physical pages PP, PP+1, PP+2, the contiguity
is 3. Therefore, a contiguity of 1 means this address mapping is not contiguous
with any other. We use a cumulative density function (CDF) to show the contigu-
ity of the memory allocation for some graph workloads (Fig. 5a to 6c). Note that
the x-axis is in a log scale. A steep line to the right indicates that the memory
mapping is more contiguous, thus benefiting CoPTA more. To illustrate these
we present graph workloads and use the moderately sized SlashDot dataset as
an input.

6.1 Memory Compaction Effect

We first characterize the effect of memory compaction. Fig. 5 shows the mem-
ory contiguity before and after manually invoking memory compaction. Before
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memory compaction (Fig. 5a), some benchmarks reflect a certain level of contigu-
ity. But when manually invoking the memory compaction before launching each
benchmark (Fig. 5b), all the benchmarks show better memory contiguity, as a
result of the Linux buddy allocator. As long as there are unused contiguous mem-
ory spaces in physical memory, the buddy allocator will assign these contiguous
physical addresses to contiguous virtual addresses. Thus, memory compaction
along with the buddy allocator provides the prerequisite for CoPTA.
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Fig. 5: (a) CDF for memory contiguity before memory compaction. (b) CDF for
memory contiguity after memory compaction.

6.2 Effect of Transparent Hugepage Support

Fig. 6 shows the memory contiguity under different Linux kernel configurations.
Here, we first manually invoke memory compaction and launch BFS six times
sequentially. BFS-1 stands for the first run, BFS-2 stands for the second run,
etc. In Fig 6a, the memory contiguity decreases over time, as the memory is not
defragmented by the Linux kernel. When THS is disabled, the system doesn’t
need to reserve larger memory fragments for hugepages, so the Linux kernel com-
paction is not triggered after 6 runs of BFS. A similar situation is observed in
Fig 6c. As we disabled the defrag flag in the kernel, the system does not trigger
memory compaction automatically, thus resulting in decreased memory contigu-
ity. When THS is enabled with the normal defrag flag (Fig 6b), the memory
contiguity decreases for the first five runs and returns to a good condition during
the sixth run. The memory compaction is automatically triggered during that
time, resulting in memory defragmentation.

With auto-triggered memory compaction, the memory mapping contiguity
is bounded within a certain range. When the memory is highly fragmented, the
kernel will trigger memory compaction to defragment the memory mapping. This
bounds the performance benefit from CoPTA. High memory fragmentation will
lead to performance degradation on the CoPTA architecture. To correct this,
the system will thus trigger memory compaction automatically and CoPTA can
continue offering high performance improvements.
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Fig. 6: (a) CDF for memory contiguity with normal defrag, THS disabled. (b)
CDF for memory contiguity with normal defrag, THS enabled. (c) CDF for
memory contiguity disable defrag, THS enabled.

7 CoPTA Performance Evaluation

In this section, we quantitatively evaluate the performance improvements of our
proposed CoPTA architecture and justify it by presenting a reduced TLB miss
rate compared to the baseline.

7.1 CoPTA Prediction Accuracy

Fig. 7 shows the address translation prediction accuracy of CoPTA. The gem5
full-system simulator is set to disable THS and normal defrag to mimic the
default setting in Linux. The benchmarks begin execution in a state of minimal
memory fragmentation after the simulator has booted up. This state is similar
to the memory condition after the memory compaction is triggered in a real
machine. Note that these conditions estimate the upper bound of the perfor-
mance benefits from CoPTA. For the graph workloads, the CoPTA achieves a
higher prediction accuracy with a smaller dataset. The accuracy of a smaller
dataset SlashDot is 80% compared to 55% for a larger dataset Pokec. For other
workloads, the prediction accuracy is higher than irregular graph workloads. The
overall average prediction accuracy is 82%.

Fig. 7: CoPTA prediction accuracy.

7.2 Improvement Over the Baseline

Fig. 8 compares the TLB miss rates of CoPTA with the baseline. With CoPTA,
the average L1 TLB miss rate reduced to 2%, where it is 8% at the baseline. For
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the graph workloads with a larger dataset, the TLB size is insufficient to cover
the whole data range in the baseline, which results in a higher TLB miss rate
of 11%. Other benchmarks like RandAcc incur a higher TLB miss rate of 21%
that is also caused by the irregular data access pattern over a large working set
size. CoPTA predicts address translations well in these cases, reducing the TLB
miss rate by 82% on average.

Fig. 9 compares the percentage of time spent on the PTWs by CoPTA and
the baseline. For the baseline, this is collected on a real machine with hard-
ware counters. For CoPTA, we only scale the fraction of PTW time spent by
the CPU using CoPTA prediction estimations. Graph workloads with a larger
dataset show a higher portion of the execution time spent on the PTWs. The
performance loss due to time spent on PTWs becomes a serious bottleneck for
some workloads (e.g., RandAcc) and can be as high as 40%. Although some of
this 40% can be overlapped with out-of-order execution, the pipeline will quickly
fill the instruction buffer with dependent instructions and stall. By predicting
the address translations, CoPTA is able to reduce an average fraction of the
application execution time spent on the PTW to 4% compared to 20% in the
baseline.

Fig. 8: L1 TLB miss rate for baseline and CoPTA.

Fig. 9: Percentage of time spent on PTWs for baseline and CoPTA.

7.3 Overall Performance Improvement

Fig. 10 shows that CoPTA improves the performance of the baseline by 16% on
average (up to 35%). To evaluate this, we used the performance improvement
rule defined in Equation 1. For graph workloads, even though the address trans-
lation prediction accuracy is relatively low on larger datasets, the percentage of
time spent on PTWs is dominant enough to gain a significant performance boost.
CoPTA improves the performance of irregular workloads with larger data sets
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better than others. With defrag flag enabled in Linux, the system will automat-
ically defragment the memory when the system is too fragmented (Fig. 6b) and
create as large of a contiguous region as possible. This is similar to the optimal
memory condition in our full-system simulation-based experiments.

Fig. 10: Performance improvement estimation with CoPTA.

8 Discussion

Performance Improvement Metric. The performance improvement metric
we defined in Equation 1 is based on several assumptions and limitations. First,
the portion of time spent on the PTWs is directly propotional to the L1 TLB miss
rate. Ideally, executing the PTW in parallel with the following instructions will
remove the PTW portion from the critical path, but this may incur structural
stalls in the pipeline. This effect is difficult to quantitatively analyze. Second,
we ignore the overhead of miss-speculation recovery. Even if miss-speculation
happens, the data should respond earlier than the page table walker, and the
CPU pipeline should be flushed and start over. This may also pollute the cache
with data from miss-speculated addresses. Based on our experiments, pipeline
flushes will rarely occur because of the high prediction accuracy. Furthermore
the cost of flushing the pipeline is as small as branch miss-speculation. For these
reasons, we consider the miss-speculation cost is negligible. Finally, we used the
translation trace collected in the gem5 full-system simulator and use the perf

result from a real machine. Because the benchmark starts execution right after
the system is booted up and there are no other processes running simultaneously,
the memory is not fragmented and the the Linux buddy allocator can assign
the contiguous physical pages to the memory allocation requests, which is the
optimal condition for CoPTA to achieve the best performance.

Software vs. Hardware Page Walker. Different architectures use different
mechanisms for page walkers. With a software page walker, CoPTA will have
limited benefits since the instructions for a PTW will be executed by the core,
preventing the translation results from being actually used. However, the hard-
ware page walker will execute the PTW in the background and let the pipeline
continue executing the proceeding instructions.

Virtualization. PTW takes as many as 4 memory accesses on a host machine.
But with virtualization involved, a CPU will have a nested page table where



14 Y. Yang et al.

the host and guest OS manage their own set of page tables, shown in previous
works [6,17,23,30,31]. In this case, 4 memory accesses will be needed in the host
OS to find the next level hierarchy page table of the guest OS, thus resulting in as
many as 24 memory accesses [17]. If the prediction accuracy can maintain at the
same level, with larger overhead of PTWs in the virtualization environment, we
expect better performance improvement of our proposed CoPTA architecture.
We leave this as future works.

Security Implication. CoPTA adopts the speculation idea for address trans-
lation, similar to branch prediction and speculatively reading data from the store
queue. Attacks such as Spectre [19] and Meltdown [21] can exploit this feature
to steal information from the system by accessing cache when doing speculative
execution. CoPTA does not introduce any new types of security vulnerabilities
in addition to what already exists for speculation.

9 Conclusion

TLB misses introduce a non-trivial overhead as page table walks require several
slow main memory accesses. This can especially be problematic for workloads
with large data footprints and irregular memory accesses with insignificant data
locality (e.g. graph processing workloads). Our experiments show that the over-
head caused by the page table walks can take up to 40% of total execution time.
We also demonstrate that the built-in Linux buddy allocator and defragmen-
tation mechanism tend to map contiguous virtual pages to contiguous physical
pages. Motivated by this observation, we propose the CoPTA architecture that
leverages this mechanism to predict the address translations upon TLB misses
and speculatively execute proceeding instructions while concurrently performing
the page table walk. With a negligible storage requirement of 0.4KB, CoPTA
achieves an average address prediction accurate of 82% while improving end-to-
end performance by 16%.
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