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Abstract

We present a succinct, yet complete, formulation of the timing constraints for latch-
controlled synchronous digital circuits. We show that the constraints are mildly nonlinear.
and prove the equivalence of the nonlinear optimal cycle time calculation problem to an
associated and simpler linear programming (LP) problem. We present an LP-based algo-
rithm which is guaranteed to obtain the optimal cycle time for arbitrary circuits controlled

by a general class of multi-phase overlapped clocks.

'This work was supported in part by NSF Grant MIP-8802771




1 Introduction

The analysis and design of synchronous digital circuits which are controlled by level-sensitive
latches is generally acknowledged to be a difficult problem [1,2,3]. The difficulty is due
mainly to the coupling between the input and output terminals of a latch while the latch is
enabled. This in turn leads to a set of cyclic timing constraints which must be satisfied by
a properly-designed circuit. The analysis problem seeks to determine if these constraints
are indeed satisfied for a given circuit and a given clocking scheme. The design problem,
on the other hand, attempts to find, for a given circuit and clocking scheme, the minimum
clock cycle time which would not violate these constraints. In both cases the cyclic nature
of the constraints frustrates intuitive solution approaches based on simple graph traversal
methods, such as CPM [4], which require the constraint set to be acyclic.

Recently it was suggested [3] that the design problem can be formulated as a linear
program (LP). While this statement is true, it is not at all obvious how one would go
about it. In fact, in [5] it is correctly pointed out that the timing constraints are nonlinear,
implying that an LP formulation is at best an approximation.

This paper has two main goals. The first is to present a succinct, yet complete, for-
mulation of the timing constraints for latch-controlled synchronous digital circuits. The
constraints in this formulation are easily constructed, almost by inspection, for any circuit
topology and clocking scheme, and are clearly seen to be nonlinear, though mildly so. The
second goal of the paper is to formally prove the equivalence of the nonlinear design problem
(i.e. the minimum clock cycle optimization problem with nonlinear timing constraints) to
an associated and simpler LP problem.

Most current methods for the analysis and design of level-sensitive synchronous digital
circuits assume edge-triggering to simplify the analysis and then apply some heuristics to
approximate the level-sensitive constraints. As a consequence, in the analysis case, they
may declare a design to be in violation of timing constraints when in fact it is not, and
in the design case, they may not produce the minimum cycle time. Our modeling of the

level-sensitive constraints is not an approximation and so avoids both of these problems.



This paper is organized as follows. Section 2 reviews previous work in the area. Section
3 presents a formulation of the timing constraints for level-sensitive synchronous digital
circuits. They are seen to be non-linear. Section 4 shows that that the solution of the
apparently nonlinear optimal cycle time design problem can in fact be found by solving an
associated LP problem, and therefore that the entire body of LP theory can be brought to
bear on design and analysis problems. Section 5 illustrates the formulation and solution of
the design problem for two examples. Finally, Sec. 6 contains some concluding remarks and

discussion of future directions.

2 Previous Work

The timing analysis of digital logic circuits goes back at least to the work of Kirkpatrick in
the 1960’s [6]. However, this and much subsequent work was concerned with timing analysis
for edge-triggered logic. It has only been during this decade, with MOS VLSI emerging as
the leading technology for implementing digital systems, that the timing analysis and design
of level-sensitive logic has become important. In this period several authors have addressed
the question of level-sensitive latches including Agrawal [7], Jouppi [1], Ousterhout 2],
Unger [8], Szymanski [9], and Dagenais [5,3]. One of the earliest, Agrawal, attempts to find
the maximum frequency of operation of a logic circuit through a bounded binary search
algorithm. Jouppi proposed an iterative scheme based on the concept of “borrowing.” In
the first iteration, the critical path(s) in the circuit are determined by pretending that the
latches are edge-triggered. This approximation is removed in subsequent iterations. In each
of these iterations an attempt is made to reduce the clock cycle time to a value determined
by the second most critical path. This is accomplished by trading (borrowing) the slack
time in the sub-critical path. In practice, only one borrowing iteration is performed to limit
the computation cost. The TV program incorporates this borrowing algorithm, and has
been effectively applied for the verification of several large commercial chips. Qusterhout
developed Crystal, a MOS timing verification program similar in many respects to TV.

However, Crystal makes no attempt at dealing with clocking issues and confines its attention



to the proper modeling of signal delay through trees of MOS transistors. In fact, Ousterhout
acknowledged the inherent difficulty of dealing with level-sensitive latches. Unger developed
a set of timing constraints for a limited form of 2-phase clocking with level-sensitive latches.
He considered both the short-path (early arrival) as well as the long-path (late arrival)
problems and presented a heuristic procedure for computing the minimum cycle time subject
to these constraints. This, to our knowledge, was the first explicit formulation of the timing
constraints of latch-controlled circuits as a system of linear inequalities. The LEADOUT
program, developed by Szymanski, is an equation-based MOS timing analysis tool which
handles multi-phase clocking and level-sensitive latches. The temporal behavior of latches
is specified by “max” constraints similar to those encountered in CPM graphs. To eliminate
the inevitable cyclic dependencies among these constraints, the circuit is first partitioned
into its strongest-connected components, and constraints are generated for each cycle-free
path within the components. It is not clear, however, how the cyclic dependencies induced
by clock periodicity are removed. A unique feature of LEADOUT is the compilation of the
timing constraints into a fast-executing program which allows repeated analysis of a circuit
with different clocking or device parameters. The most recent effort at addressing this
problem is due to Dagenais. He developed a MOS timing analysis and design tool, TAMIA,
which represents the timing behavior of general multi-phase-clocked latch-controlled circuits
by a set of nonlinear coupled relations. The design problem, which aims at finding the
optlmal clock parameters for a given circuit, is then solved approximately by an iterative

graph-based algorithm.

3 Problem Formulation

We consider synchronous digital circuits controlled by arbitrary k-phase clocks (to be defined
shortly). We assume, see Fig. 1, that the circuits can be decomposed into stages of feedback-
free combinational logic blocks with clocked inputs and outputs?. The clocked elements at

the inputs and outputs of the combinational stages are level-sensitive latches which provide

‘Figure 1 is adapted from Glasser and Dobberpuhl [10] Fig. 6.7 p. 335.



combinational logic

Figure 1: Generalized logic model.

temporary storage of data and act as synchronizers. These latches can be either static
(for example cross-coupled NAND gates) or dynamic (for example MOS pass transistors).
Regardless of the implementation, the functional and timing behavior of these latches is
similar, and the formulation presented here applies to both types.

We place no restrictions on the combinations of clock phases used to control the input
and output latches of a combinational stage other than a requirement that the set of clock
phases controlling each feedback loop in the circuit be non-overlapping; specifically, we

require the logical AND of this set of phases to be identically equal to 0 at all times.

3.1 Clocking Methodology

An arbitrary k-phase clock is defined to be a collection of k periodic signals ¢, , @2, -+ , ¥
— referred to as phases — with the same periodicity. Each phase consists of two intervals:
an active interval during which the latches controlled by the phase are enabled; and a passive
interval when the latches are disabled. Without loss of generality we assume that all clock

phases are active high, i.e., their active intervals occur when the phase signal assumes the
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Figure 2: Clock signal variables.

logic 1 state.

We define the following clock variables (see Fig. 2):
o T.: the clock cycle time, or period.

e s;: the start time, relative to the beginning of the common clock cycle, of the active

interval of ¢;.
e T:: the duration of the active interval of &;.

For brevity, we will identify ¢; with its active interval, and simply refer to s; as the start of
®: and to T; as the duration or width of ¢i. In addition, if ¢; and ®; control an input latch
and an output latch, respectively, of a combinational logic block L, we will simply refer to
@i as an input phase, ¢; as an output phase, and ¢;/¢; as an input/output-phase pair of
L. We also introduce two k x k matrices C and K with elements Ci; and K; defined as

follows:

Ciy = (1)



Ky = 1 if ¢;/¢; is an I/O-phase pair of any logic block @)
(0 otherwise
The A matrix identifies all I/O-phase pairs for a particular circuit. The C matrix is used
to determine if a clock cycle boundary must be crossed when going between an I/0-phase
pair ¢;/¢;.
We can now state the relations among the various clock variables as a set of inequalities

which are collectively referred to as the clock constraints:

C1. Periodicity Constraints:

T, <T. i=1,-,k (3)

$i<T- i=1,-,k (4)
C2. Phase Ordering Constraints:
8i £ Siy1 t1=1,--- k-1 (3)
C3. Phase Non-overlap Constraints:
si 2 8;+ T — CjT: Y(#,7) 3 Kij =1 (6)

C4. Clock Non-negativity Constraints:

T.>20 (7)
20 =1,k (8)
$;i 20 t=1,---,k (9)

These inequalities, except for the non-overlap constraints (3, are intuitively obvious.

Constraints C3 insure that the output phase &; of every I/0-phase pair must end before
the input phase ¢; starts. This in turn guarantees that a set of clock phases controlling a
feedback loop in the circuit are never simultaneously overlapping.

Constraints C1-C4 should be viewed as the minimum set of requirements that must

be satisfied by a k-phase clock. Further requirements, such as minimum phase width and
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Figure 3: Clocks with 2-, 3-, and 4-phases.

minimum phase separation, can be easily added to this minimum set, but will not be treated
here.

Figure 3 shows how these inequalities might be satisfied for commonly used 2-, 3-, and
4-phase clocking schemes. Note in particular that for k = 2, the inequalities insure that the

two phases are non-overlapping as they should be.

3.2 Latch Constraints

As will become evident, the simplicity of the formulation we present stems from a careful
choice of time variables, and naturally leads to a solution by linear programming.

We describe here the timing constraints necessary for the correct operation of D-type




latches. Such latches have three terminals representing data input, data output, and control
(clock) input (see Fig. 1). The circuit is assumed to contain ! latches numbered from 1 to

[. For each of these latches we define the following variables and parameters:
o p;: denotes the clock phase used to control latch ¢ (e.g., latch 3 in Fig. 1 has p3 = 4)

e A;: denotes the arrival time, relative to the beginning of phase p;, of a valid data

signal at the input to latch 1.

o D;: denotes the departure time, that is the earliest time, relative to the beginning of
phase p;, when the signal available at the data input of latch i starts to propagate
through the latch.

e ();: denotes the earliest time, relative to the beginning of phase p;, when the signal
at the data output of latch ¢ starts to propagate through the succeeding stage of

combinational logic.

e Apci: denotes the setup time for latch ¢ required between the data input and the

trailing edge of the control input.

® Apgi: denotes the propagation delay of latch 7 from the data input to the data output

of the latch while the control input is high. It is assumed that Apgi 2 Apci.

e A;;: denotes the propagation delay from an input latch ¢ through a combinational
logic block to an output latch j. If latches ¢ and j are not directly connected by a

combinational block, then A;; = —c.

Notice that both [; and @; will always be non-negative quantities, whereas A; is unre-

stricted in sign.

The constraints governing latch operation fall into two categories: setup constraints and
propagation constraints. The setup constraints guarantee that a latch has sufficient time to

lock (store) the signal at the data input before that signal is allowed to change again. Thus,

Ai+Apci £ Ty, t=1,--+,1 {103




Since A; can be negative, signifying that valid data has arrived before the onset of phase p;,
(10) may sometimes be satisfiable by a clock phase whose width T, is 0! A more realistic

setup constraint is obtained if A; is replaced by D; yielding:

Di+Apci £Tp, i=1,---,1 (11)

In this case, since D; is always non-negative, the constraint places a lower bound on the
width of phase p; equal to the required setup time. We will adopt this more realistic
constraint in our analysis.

Unlike the setup constraints which are local, the propagation constraints are global.
They relate the departure times of signals at different latches in the circuit using the combi-
national propagation delay parameters. Since latch variables are referenced to the beginning
of their corresponding clock phase, it is convenient to define the following phase-shift oper-

ator:

Sij = 8i — (85 + CiTL) (12)

Adding §;; to a time variable moves its referenced point (origin) ahead from s; to 55.
The propagation of signals from the inputs to the outputs of latches is simply described

“by:

Qi=Di+Apgi i=1,---,1 (13)

Now consider a combinational path which starts at latch J and ends at latch i. The
data signal at latch j starts to propagate at time ¢};, and thus reaches latch i at Q; +Aj
all times being referenced to the beginning of phase p;. Therefore, relative to the beginning
of phase p;, the signal arrives at latch i at time Qj+Aji+ Sp,p,. The data signal at latch
becomes valid when all relevant input signals had had sufficient time to propagate through

the combinational circuitry leading to latch i. Thus, the arrival time of a valid signal at

10



latch ¢ becomes:
Ai = maX(Q]+AJ'+‘S‘p]P|) ] = 1?"'31 (14)
7

The propagation constraints through the combinational logic can now be expressed as

follows:

D; = max(0, A;) t=1,---,1 (13)

which express the fact that if a valid signal arrives at latch i before the start of phase p;,
then the departure time of that signal must be delayed to the beginning of phase p;.

By eliminating the ) and A variables using (13) and (14), the latch constraints can
be written exclusively in terms of signal departure times D; along with the various clock
variables, as follows:

L1. Setup Constraints:

Di+Apci <Tp,  t=1,---,1 (16)

L2. Propagation Constraints:

Di = max(0, max(D; + Apg; + Aji + Sp,p,)) 4y =1,---.1 (17)
J

L3. Latch Non-negativity Constraints:

D; >0 1=1,--+,1 (1%8)

Using the notation scheme defined in this section, it is now possible to write down the set
of timing constraints for arbitrary circuits by inspection. It is assumed that the circuit has
been decomposed into clocked combinational stages, and that the various delay parameters
have been calculated. We illustrate this process in the Appendix for the circuit shown in

Fig. 1.

11



4 Optimal Clock Cycle Calculation

The minimum clock cycle time can be calculated by solving the following optimization
problem, denoted by P1:
P1: Optimal Cycle Time

Minimize T.
Subject to  Clock Constraints C1, C2, C3, and C4
Latch Constraints L1, L2, and L3

P1 is a nonlinear optimization problem. The nonlinearity is due to the max functions
in the latch propagation constraints L2. A linear optimization problem is obtained if these
propagation constraints are relazed as follows:

L2R. Relaxed Propagation Constraints:

D; > D; + Apgj +Aji + Sp,pf ,j=1,--+,1 (19)

Thus, we define the following linear program:

P2: Modified Optimal Cycle Time

Minimize T,
Subject to  Clock Constraints C1, C2, C3, and (4
Latch Constraints L1, L2R, and L3

If we denote the optimal value for P1 and P2 by Tfff.l and TCUZL respectively, we can
state the following theorem:
Theorem:
Timin = Toi, (20)
Proof: The critical element of this proof is the observation that the optimal value of a
linear program cannot be improved with the addition of extra constraints [4]. It follows

that, since P2 is a relaxed version of P1, that T(PU > 7P

eomin 2 Lemim- Therefore the theorem is

proved if we can show that P2 can be augmented with constraints such that the following

two stipulations are true:

12



S

G

1. The optimal value of the augmented problem is not greater (worse) than T2

c,min”

2. The constraints of the augmented problem are equivalent to those of P1.

Thus the augmented problem, which we will call P3, has the same optimal solution
(i.e., the same values for all variables) as the original problem P1. Since the only difference

between P1 and P2 are the latch propagation constraints, we need to examine the following

two cases:

1. All D variables in the optimal solution to P2 are at their minimum values. Thus,
the optimal solution to P2 satisfies all the constraints of P1, including the latch

propagation constraints L2. In this case, P2 is equivalent to P1, and their optimal

values are the same.

2. One or more of the D variables is not at its minimum value. Thus the optimal solution
to P2 violates some of the latch propagation constraints L2. To force the solution to

satisfy the L2 constraints we augment the constraints of P2 with equality constraints

as follows:

(a) If A; <0 and D; > 0 for some latch 7, add the following equality constraint:
Di=0 (21)

(b) If A; > 0 and D; > A; for some latch i, add the following equality constraint:
D; = A; (22)

The addition of these equality constraints may in some cases cause the departure
time at some other latch j which previously satisfied constraints L2 to now violate
them. In such cases we add further equality constraints (either (a) or (b), as
appropriate) for all such affected latches, and repeat the procedure as often as
necessary, until the constraints of P3 become equivalent to those of P1. It should
be obvious that the addition of such equality constraints does not increase the

cycle time. Thus the two stipulations stated above are true, and the theorem is

proved. O

13
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This theorem forms the basis for the following algorithm to find the optimal solution of

P1 by Linear Programming:
Algorithm MLP: Optimal Cycle Time Calculation by Modified LP

1. Solve P2.

2. Construct P3 by augmenting P2 with the necessary equality constraints, as described

in the above theorem.

3. Solve P3.

While this algorithm involves the solution of two linear programs, P2 and P3, the
construction as well as the solution of P3 are trivially obtained by “sliding” each of the D;
variables found in the solution to P2 towards the time origin until D; = max(0, 4;). Thus
this algorithm obtains the solution to the original nonlinear optimization problem, P1, by

solving a linear optimization problem, P2, followed by a simple correction.

5 Examples

In this section we illustrate our proposed formulation with two examples. The first, adapted
from [3], is shown in Fig. 4. It is a simple two-stage system connected in a loop and controlled
by a two-phase clock. To facilitate comparison with [3] we assume that all latches have equal
setup and propagation delays of 10 nS. We also assume the same values for the combinational
logic delays, except for block Ly whose delay A4y will be varied to study its effect on the
optimal cycle time. The resulting set of timing constraints are:

o Periodicity Constraints: T;, 5, <T. 1 =1,2

o Phase Ordering Constraints: s; < s

e Phase Non-overlap Constraints: sy > so + T — T, and s3 > 31 + T}

e Latch Setup Constraints: Dy +10<Ty D, +10< T,
Da+10<Ty Dg+10<Ty

14
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e Latch Propagation D; = max(0,Dg+ 10+ Ay; + 89 — 51 — T.)
Constraints: Dy = max(0,D1 + 10 + 20 + 51 — s2)
D3 = max(0,D;+10+20+ 55 — s, — T)
Dy = max(0,D3+ 10 + 60 + 81 — s3)
o Non-negativity Constraints: T, > 0; Tp,, 8p, 20 pi=1,2and D; >0 i=1,---,4

Figures 5 and 6 compare the results obtained by the MLP algorithm with the null

retardation in the initial phase (NRIP) algorithm described in [3]. We make the following

observations on these results.

o Unless additional constraints are placed on the minimum widths and separations of
clock phases, the optimal solution will not be unique. This is illustrated with two such
solutions for the A4y = 80 nS case, see the top of Fig. 5. The apparent uniqueness of
the solution found by the NRIP algorithm is due to its implicit minimum constraints

on phase widths and separations.

o The NRIP algorithm produces an optimal solution for Ay = 60nS. For all other

values of Ayy, the cycle time found by NRIP is suboptimal, see Fig. 6.

o The piece-wise linear dependence of 7. on A4 in the optimal solution has three distinct
segments. For 0 < Ay < 20nS, T, is independent of Ay, and is set by some other
delay in the circuit. When Ag; > 20nS, block Ly becomes critical, and any increase in
Ay causes T to also increase. For 20 < Ay < 100nS, T. increases by one nanosecond
for every two-nanosecond increase in Ay; because the added delay is shared between
the two clock cycles (“borrowed” from é1). For Ay > 100, T, increases in direct
proportion to A4y, since the additional delay can no longer be shared between the
two clock cycles, and slack is inevitably introduced in the cycle with shorter delay.
The rather simple dependence of the optimal cycle time on A4 in this case is due to
the simplicity of the topology of this particular circuit. In fact. one can show that

since the feedback loop consists of two complete clock cycles, the optimal cycle time

is the maximum of the average delay around the loop and the difference between the

15
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delays for each of the cycles making up the loop.

The cycle time calculations using the MLP and NRIP algorithms, for a more complicated

example are shown in Figs. 7 and 8.

The following additional observations can be made:

e Unlike the previous example, the cycle time found by the NRIP algorithm is sig-
nificantly higher (35%) than the optimal cycle time. While this result cannot be
generalized for other circuits, it does point out that the approximate solution found

by NRIP may deviate appreciably from the exact solution, and additional iterations
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might be necessary.

e Because of the coupling of the timing constraints through the feedback loops in the

circuit as well as through the periodic clock signals, the notion of a critical path

is clearly inadequate as a basis for discussing the optimality of the solution, and the

dependence of that solution on the circuit’s delays. Instead of a single critical path the

circuit has several critical combinational delay segments which may be disjoint. The

criticality of these segments, and the subcriticality of others, are directly related to

associated slack variables in the inequality constraints. The techniques of parametric

analysis in linear programming can be usefully applied here to study the effects of

18
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varying the circuit delays on the optimal cycle time.
g

6 Conclusions

We have shown in this paper that the optimal cycle time for circuits controlled by level-
sensitive latches can be determined by solving a linear program. The LP formulation pro-
vides a convenient theoretical foundation for analyzing such circuits and for developing
algorithms which are potentially more efficient than the simplex algorithm. We are cur-
rently investigating just such algorithms, noting the fact that the entries of the constraint
matrix for this problem are exclusively topological (i.e. 0,+1). We also intend to interface
the TV program [1] with an LP solver to study several VLSI chips currently being designed
at the University of Michigan.
Acknowledgements
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A Appendix

To illustrate the notation developed in Sec. 3, we present in this appendix the complete
set of timing constraints for the circuit shown in Fig. 1. The circuit has 11 latches and is

controlled by a 4-phase clock with the following K matrix:

(0001 1]
Cl1 o011
K =

1100

(011 0]

19



| Thus there are 9 I/O-phase pairs; the corresponding phase-shift operators (used in the latch

propagation constraints) are:

Sta= 81— 33
Sta= 81— 54
SQI = 82 — 8y — Tc
S23 = 82 — 83
324 = 82 — 84
S31 = 83— 8y — TC

S32= s3—3,~T,

Sig= s4~3s2~T,

Siz= s4—s3-T.

The timing constraints can now be stated as follows:

o Periodicity Constraints:

L<T:., 3 <T. 1=1,2,3,4

e Phase Ordering Constraints:

§ 81 < 83 <53 < 84
§ ¢ Phase Non-overlap Constraints:
&
~, s12s3+T3-T. s3>28+Th s3> 81+ 11 5142 52+ 1y
51284+ Ty ~T. s3>3834+T5-T, s3> 82+ 14 84 2 83+ T3
S22 84+ Ty~T.
e Latch Setup Constraints:

Di+Apei <Ty i=6,7,11
Di+Apci Ty =39




R b

¢ Latch Propagation Constraints:

Dy = max(0,Ds+ ApQa + Ag2 + S31,Ds + Apos + Asz + S31)

D3 = max(0,Dg + Apgs + Ass + S14)

Dy = max(0,D1+ Apgi + Aus + S13, D2 + Apga + Azg + 513,
D3+ Apga + Azq + Si3)

Ds = max(0, D¢ + Apge + Aes + S23, D7 + Apgr + A7s + Sa3)

De

max(0, Ds + Apgs + Aus + 532, Ds + Apgs + Ase + Saz2)
D7 = max(0,Ds + Apqge + Ag7 + Sa2, D10 + Apgio + Avoz + S32)
Dsg

max(0, D¢ + Apge + Aes + 521, D7+ Apgr + Arg + Sa1)

Do =  max(0, Ds + Apge + Aeo + S24, D7 + Apgr + Arg + So4q)

Dyo = max(0, D1y + Apgu1 + A11,10 + 523)

Du = max(0, Dy + Apge + Ag,11 + Sa2, D1o + Apgio + A1oa1 + S32)

¢ Non-negativity Constraints:

. > 0
T, 20, 8,20 pi=1,2,3,4

Di>0 i=1,---,11
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