
Rethinking Context Management of Data Parallel
Processors in an Era of Irregular Computing

by

Jonathan Beaumont

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science Engineering)

in the University of Michigan
2019

Doctoral Committee:

Professor Trevor Mudge, Chair
Professor David Blaauw
Assistant Professor Ronald Dreslinski Jr.
Professor Scott Mahlke

Jonathan Beaumont
jbbeau@umich.edu

ORCID iD: 0000-0001-5092-9094
©Jonathan Beaumont 2019

ACKNOWLEDGMENTS

First and foremost, I must thank my advisor Trevor Mudge. From my first tentative email

inquiring about research through the completion of this dissertation, he has never wavered

in doing his utmost to assist me in achieving my goals. His guidance, along with that of my

committee members David Blaauw, Ron Dreslinski and Scott Mahlke have been integral to

my success as a researcher, and their patience and positive spirit gave me the motivation to

persevere during frustrating periods.

Mark Brehob was a fantastic mentor to me throughout my undergraduate and graduate

studies. He advised me through the process of applying to grad school, surviving my

first (and second and third) semester teaching, getting involved with research, and finally

navigating the daunting landscape of applying for faculty positions. Drew DeOrio was also

an encouraging and ever helpful resource in my efforts to pursue a role in academia.

My peers in the department were key to my success at Michigan, not just for the collab-

orations which would spawn the bulk of this dissertation, but also for the sense of commu-

nity that made it worth trudging through polar vortices to get my work done. In particular,

I would like to thank Tony Gutierrez, Qi Zheng, and Nilmini Abeyratne for their mentor-

ship during my inauguration into TRONLab. I am grateful for the experiences shared with

my other labmates who have joined and departed over the years: Yajing Chen, Cao Gao,

Byoungchan Oh, Johann Hauswald, and Yiping Kang. Amlan Nayak and Steve Zekany

provided crucial, sanity-maintaining distractions in the form of inter-lab drop-ins.

John Kloosterman was instrumental in getting me involved in GPU research. The con-

tents of chapter 4 are largely a result of my collaborations with Subhankar Pal and Dong-

hyeon Park. Chapter 5 is the product of the guidance and collaboration from my team while

ii

interning at Arm Research: Alex Rico, Jose Joao, Josh Randall, Jesse Beu, Dam Sunwoo,

and Francesco Petrogalli.

Finally, none of what I’ve been able to accomplish would have been possible without

the love and encouragement of my family. My parents, Bruce and Susan, were an endless

supply of support (both financially and emotionally). I’m not sure they appreciated what

a commitment it would be when they agreed to let me use the spare car “while I finished

my degree” at the eve of my two year master’s program six years ago. But if they had any

reservations then or at any other point during my perpetual attempts to stave off adulthood,

they didn’t show it. Chris and Matt gave me the gift of equanimity in a way that only broth-

ers know how. Since beginning my program, I have had the great pleasure of welcoming

my two sisters-in-law, Katie and Maggie, and my precious nibling Ethan into my family.

Their presence and love have meant the world to me, and it shan’t be soon forgotten.

iii

TABLE OF CONTENTS

Acknowledgments . ii

List of Figures . vi

List of Tables . ix

Abstract . x

Chapter

1 Introduction . 1

1.1 Contributions . 3
1.1.1 Improving Co-execution on GPUs 3
1.1.2 Increasing Resource Management Granularity using Reconfig-

urable Architectures . 4
1.1.3 Enabling Context Migration in Heterogeneous SIMD Systems . . 4

2 Background . 5

2.1 GPUs . 5
2.2 Irregular Algorithms . 7

3 Dynamic Thread Block Scheduling . 12

3.1 Introduction . 12
3.2 Background . 13

3.2.1 Multi-Kernel Execution . 13
3.3 Motivation . 14
3.4 Design . 21

3.4.1 Thread Block Preemption . 23
3.5 Methodology . 24
3.6 Evaluation . 25

3.6.1 Cataclysmic Thread Purging . 26
3.6.2 Effectiveness of Predictive Scheduling versus Context Switching . 27
3.6.3 Memory Tracking versus Compute Tracking 29
3.6.4 Overheads . 30

3.7 Related Work . 31
3.8 Conclusion . 31

iv

4 Block Shuffling with Reconfigurable Hardware 33

4.1 Introduction . 33
4.2 Architecture . 34

4.2.1 Processing Elements . 34
4.2.2 Caches . 34
4.2.3 Crossbar . 35
4.2.4 Memory Hierarchy . 35

4.3 Case Study: Sparse Matrix-Matrix Multiplication 36
4.3.1 Outer Product Algorithm . 36
4.3.2 Performance on Traditional Hardware 37
4.3.3 Mapping the Outer Product Algorithm 39
4.3.4 Evaluation . 40

4.4 Block Shuffling . 43
4.4.1 Context-Size Reduction . 43
4.4.2 Block Shuffling Procedure . 47
4.4.3 Methodology . 48
4.4.4 Results . 49

4.5 Related Work . 51

5 Enabling Context Migration in Scalable Vector Cores 53

5.1 Introduction . 53
5.2 Background . 54

5.2.1 SVE . 54
5.2.2 Heterogeneous Systems . 56

5.3 Motivation . 57
5.3.1 Scalability Study . 58

5.4 ISA Extensions . 62
5.5 Conclusion . 65

6 Conclusion . 66

Bibliography . 68

v

LIST OF FIGURES

Figure

1.1 Flynn’s taxonomy of architectures (MISD not shown) 2

2.1 CUDA thread hierarchy [1] . 5
2.2 CUDA hardware hierarchy [1] . 6
2.3 Range of memory-access irregularity and control-flow irregularity on several

irregular workloads as inputs are varied (data source from Burtscher et al [2]) . 7
2.4 Topology-driven implementation of an algorithm, which spawns N threads per

iteration. Each thread checks whether its assigned node is active, and if so
processes it. The “process” method may activate neighboring nodes 8

2.5 Data-driven implementation of an algorithm, which spawns M threads, each
iteratively popping work assignments of a shared worklist and adding new
work items back on . 9

3.1 Distribution of densities of a graph where nodes are sorted by number of con-
nected neighbors. Local density of a given node is the number of connected
neighbors for that node divided by the total number of nodes 14

3.2 How the rate of stalls due to memory throttling, normalized to the sparsest
baseline, (y-axis) varies as a function of input density (x-axis) 15

3.3 How the increase in floating-point unit utilization, normalized to the sparsest
baseline, (y-axis) varies as a function of input density (x-axis) 16

3.4 Increase of transistor account with each successive generation of NVIDIA
GPU compared to the maximum number of threads supported per SM 18

3.5 Sample graph with labels formatted as “Node Index (Number of Neighbors)” . 19
3.6 Relative frequencies of NDR values across 5-node diameter subgraphs in Net-

flix dataset . 19
3.7 Distribution of phase lengths when running the SGD benchmark 20
3.8 Diagram of the proposed system architecture with the SMs, thread block sched-

uler, and the proposed victim queue and thread block resource usage tracker . . 21
3.9 Throughput increases over oracle static classification (blue) and kernel granu-

larity profiling (orange) . 25
3.10 Negative impact of L1 and L2 caching during context swapping 26
3.11 Throughput increases over static classification when employing only preemp-

tion (blue), only predictive scheduling (orange), and both (grey) 27

vi

3.12 Measured correlation of average density processed by two thread blocks with
the same block ID across subsequent kernel invocations, which indicate the
effectiveness of predictive scheduling . 28

3.13 Throughput increases over static classification when only tracking memory
throttle stalls (blue), only tracking FPU utilization (orange), and tracking both
(grey) . 29

3.14 Throughput overhead of preempting threads 30

4.1 Overview of the reconfigurable architecture 34
4.2 Crossbar design [3] . 35
4.3 Outer Product-based Multiplication . 37
4.4 Outer Product Mapping . 38
4.5 Outer product implementation versus MKL implementation on CPU process-

ing uniformly random matrices with 1 million non-zeros 38
4.6 Outer product implementation versus MKL implementation on GPU 39
4.7 Architecture configuration for multiplication phase with global caches, and

point-to-point crossbars . 40
4.8 Architecture configuration for merge phase with private SPMs, and fixed cross-

bar connections, and deactivated cores . 41
4.9 Alternate configuration for enabling point-to-point connections. In this exam-

ple, between GPE0 and GPE15 . 41
4.10 Speedups of architecture over the CPU running Intel MKL and the GPU run-

ning cuSPARSE and CUSP on synthetic workloads 42
4.11 Speedups of architecture on real world workloads 43
4.12 Trace of how much of a thread block’s shared memory space contains valid

data over time . 45
4.13 High level design of the SM Array Table, which keeps track of which entries

in the shared memory are valid, and if they can be found in memory 46
4.14 Reduction of thread block context sizes . 49
4.15 Context reduction on Rodinia benchmarks from register file (blue), reloading

shared memory (red), offloading shared memory (green) 50
4.16 Throughput increases when employing only preemption (blue), only predictive

scheduling (orange), and both (grey), with the throughput gains provided by
block shuffling over traditional preemption annotated (yellow) 51

5.1 Example loop in SVE . 54
5.2 Predication . 55
5.3 Vector load-stores . 55
5.4 Sparse Matrix-Vector Multiplication . 56
5.5 big.LITTLE architecture consisting of different issue widths and vector lengths 56
5.6 Number of processors (in billions) sold according to WSTS 57
5.7 Speedups of running benchmarks on different vector length machines 59
5.8 Number of stalls (in billions) as a result of load misalignments as VL increases 59
5.9 IPC as VL increases . 60
5.10 Speedups of strchr when varying issue width and vector length 60

vii

5.11 Speedups for dense and sparse workloads SSSP 61
5.12 Typical use of PIN VL . 63
5.13 Using PIN VL with legacy code . 64
5.14 Ambiguity which arises during function calls 65

viii

LIST OF TABLES

Table

3.1 Range of Resource Variance across kernels 16
3.2 Average Iteration Metrics per Application . 20
3.3 GPGPU-sim simulation parameters used for evaluation 24

4.1 Simulation parameters of architecture . 42
4.2 CPU and GPU configurations . 42
4.3 GPGPU-sim simulation parameters used for evaluation 48
4.4 Block shuffle latency compared to preemption latency and iteration latency . . 50
4.5 Synthesis results of different sized SM Array Table 51

5.1 Description of workloads . 58
5.2 Baseline core configuration . 58
5.3 Sweep Values . 60

ix

ABSTRACT

Data parallel architectures such as general purpose GPUs and those using SIMD extensions

have become increasingly prevalent in high performance computing due to their power effi-

ciency, high throughput, and relative ease of programming. They offer increased flexibility

and cost efficiency over custom ASICs, and greater performance per Watt over multicore

systems. However, an emerging class of irregular workloads threatens the continued ubiq-

uity of these platforms as general solutions. Indirect memory accesses and conditional

execution result in significantly underutilized hardware resources. The nondeterminis-

tic behavior of these workloads combined with the massive context size associated with

data parallel architectures make it difficult to manage resources and achieve desired perfor-

mance.

This dissertation explores new strategies for scheduling irregular computational tasks.

Specifically, we characterize the performance loss associated with current thread block

scheduling policies in GPU architectures and evaluate possible extensions to enable better

performance. Common patterns exist in irregular workloads which allow the architecture

to dynamically respond to changing execution conditions. We analyze how these strategies

can entail high overhead in many-thread architectures due to their large context sizes and

explore methods to limit this cost. Our solution is able to achieve significant increases in

throughput of up to 17% with minor augmentations to traditional GPU architectures and

full support for legacy software. We show that by extending these solutions to incorporate

more dramatic alterations to the architecture and programming model, we can increase this

improvement to 24%.

We further identify potential correctness issues when generalizing these strategies to

x

heterogeneous multi-core SIMD systems. After presenting data motivating the support

for context switching in these systems, we demonstrate how modifications can guarantee

correctness and propose simple extensions to the ISA which enable the full benefits of these

dynamic solutions.

xi

CHAPTER 1

Introduction

Data parallel machines are effective at executing workloads that apply the same operation
across many pieces of data. This type of workload is highly prevalent in signal process-
ing, graphics, and scientific computing, as they often process large amounts of data which
are largely independent from one another. Data-parallel machines fall under the “single
instruction multiple data” or “SIMD” quadrant of Flynn’s taxonomy (see figure 1.1) and
offer many advantages over “multiple instruction multiple data” or “MIMD” architectures
such as multicore machines when processing highly regular workloads. Because different
streams of computation are all executing the same instructions, hardware resources such
as instruction fetch and decode can be shared among processing elements. This allows
greater power efficiency and scalability over MIMD architectures and, assuming that the
execution behavior of these streams does not diverge, allows for much higher peak theoret-
ical throughput.

Examples of data parallel machines include vector architectures, subword-SIMD ar-
chitectures, and general-purpose graphics processing units. All of these take advantage of
data parallelism by fetching multiple data values for each instruction executed, processing
them in parallel, and writing the results back. Although they have been demonstrated to
show energy savings and throughput improvements over other architectures on applications
exhibiting regular data parallelism (parallelism involving predictable memory and control
patterns), the benefits are reduced on applications with irregular data parallelism. This type
of parallelism, while still allowing multiple instances of an instruction to be executed over
multiple data in parallel, may contain either control flow and memory flow divergence, or
both.

Such irregular parallelism is highly prevalent in graph processing algorithms, which
consist of a diverse range of workloads ranging from the breadth-first search and minimum
spanning tree analysis to stochastic gradient descent in machine learning kernels and are
becoming ever more important in the processing of big data. Control flow and memory
irregularities cause these architectures to make only partial use of their hardware resources,

1

Figure 1.1: Flynn’s taxonomy of architectures (MISD not shown)

and splitting computation over longer periods of time, reducing parallelism. Worse still,
the exact degree of irregularity is often dependent on the structure of data being processed,
which may not be known until runtime and may change dynamically. Several implemen-
tations of irregular algorithms have been ported to SIMD architectures and demonstrate
speedup over MIMD architectures, but it is a more challenging process and provides much
smaller speedups when compared with regular workloads due to underutilized resources.

On GPU architectures, which run a massive number of threads concurrently, co-running
multiple workloads which make use of complementary resources (for example, one work-
load with a high memory bandwidth footprint and low floating-point utilization, and other
which uses little memory bandwidth but high use of the floating-point units) is a common
strategy to combat underutilization. Unfortunately, most strategies for choosing which
workloads to co-run rely on static information which do not account for the dynamic be-
haviors associated with irregular workloads, and the dynamic strategies that do exist make
assumptions regarding the structures of running programs which often do not extend to
general workloads.

Reconfigurable architectures offer another promising solution to the problem of re-
source utilization, as hardware resources can be explicitly reconfigured in response to
changing input patterns. Rather than migrating data between different processing elements

2

each equipped with distinct resources ideal for processing a particular type of workload,
resources can be dynamically reassigned to these elements while keeping data stationary.

Finally, architectures making use of subword-SIMD instructions offer much less through-
put improvement over other data parallel machines, but are a popular approach due to their
significantly simpler programming model. The parallelism of these architectures is much
more rigid, typically having less flexibility in control flow and having fixed sized vector
units for each implementation which may not be ideally suited for all workloads, depend-
ing on the amount of parallelism and regularity within the code. Including different sized
SIMD vector units within a heterogeneous system could provide better flexibility in exe-
cuting a more diverse set of workloads. However, doing so creates challenges as changing
the vector length of these cores mid-execution has undefined behavior and may be difficult
if not impossible to design programs which have the intended results.

1.1 Contributions

This dissertation explores the effects of running irregular workloads on different data par-
allel architectures. We identify challenges associated with each platform, and present our
findings that a greater amount of flexibility with how thread contexts are scheduled, parti-
tioned, and managed throughout their lifetime can help to overcome these obstacles. This
increase in flexibility presents challenges of its own, which we explore in detail.

Chapter 2 presents the background information and concepts that will be used through-
out this dissertation. Chapter 3 explores the challenges of multi-kernel execution on GPUs
when running irregular workloads and how a more sophisticated dynamic scheduling and
context placement policy combined with minimal hardware extensions can greatly improve
co-location of complementary workloads. Chapter 4 extends these ideas by looking at
how enabling reconfigurability in a data parallel architecture can more greatly enhance the
ability to allocate resources to thread contexts more effectively and with less overhead.
Chapter 5 delves into the benefits of including multiple differently-sized vector units in a
single system and enabling context swapping between them as well as how to overcome
the correctness challenges that arise as a result.

1.1.1 Improving Co-execution on GPUs

Irregular workloads can have a wide range of performance characteristics depending on
the specific structure of the data being processed. This makes it challenging to optimally
schedule threads and allocate resources such that they do not interfere with one another.

3

However, by observing common trends in these workloads, we can respond dynamically
to changing conditions by tracking performance metrics over time, and either relocating
threads or updating resource prediction schemes. In chapter 3, we show that improved
scheduling policies can improve throughput of irregular workloads by up to 17% over ex-
isting proposals with trivial storage extensions and full support for legacy code.

1.1.2 Increasing Resource Management Granularity using Reconfig-
urable Architectures

Architecture types with specific parameters are ideally suited for certain subsets of work-
loads. Heterogeneous systems with accelerators can provide greater flexibility at a coarse
level by transferring control flow between cores, but these transfers can introduce long
latencies and be impractical for workloads that display variance at a fine granularity. In
chapter 4, we explore how reconfigurable architectures can manage thread placement and
resource allocation at a much finer granularity for workloads with diverse execution behav-
iors. We introduce block shuffling and show how latencies for context transfers and many-
thread architectures like GPUs can be reduced by 90% and improving overall throughput
by 24%.

1.1.3 Enabling Context Migration in Heterogeneous SIMD Systems

SIMD processors offer parallelism with much less effort from the programmer than GPUs
or other accelerators. However, their speedup potential is significantly reduced, and of-
ten do not generate the desired power and performance metrics desired for applications
with parallelism outside a particular range. In chapter 5, we show how enabling the in-
clusion of multiple SIMD cores with different vector sizes can allow for a finer navigation
of the Power-Performance-Area (PPA) tradeoff landscape for system designers at the cost
of undefined behavior for general applications. We describe how this introduces problems
with guaranteeing correctness in applications and present a simple extension the ISA which
guarantees identical execution for all legacy code while allowing for potential speedups of
future software.

4

CHAPTER 2

Background

2.1 GPUs

NVIDIA’s CUDA GPUs use a single instruction multiple thread (SIMT) programming
model, in which the programmer writes code for a single thread that is replicated hun-
dreds to thousands of times on the hardware to operate on large sets of data in parallel.
The GPU hardware consists of several streaming multiprocessors (SMs), each containing
a large register file to support many threads, a cache-hierarchy including a software man-
aged scratch-pad (also called shared memory), and several multithreaded single instruction,
multiple data (SIMD) pipelines.

Figure 2.1: CUDA thread hierarchy [1]

5

Threads are grouped into thread blocks (TBs) by the programmer, which are guaranteed
to run on the same SM and can cooperate through barrier instructions and a scratchpad
called shared memory. Thread blocks are dispatched to SMs via the global thread block

scheduler (TBS) as a grid when enough resources (namely register file and shared memory
space) are available and are run asynchronously from one another until all threads within
the thread block have completed. A programmer can indicate that independent kernels
can be run concurrently by issuing them on different streams. Kernels issued on the same
stream are guaranteed to be run serially. Figure 2.1 shows the thread hierarchy on CUDA
systems and figure 2.2 shows how threads correspond to hardware.

Figure 2.2: CUDA hardware hierarchy [1]

SMs do not employ branch prediction or out-of-order mechanisms, but instead rely on
swapping between the many available threads on a cycle-by-cycle basis to hide arithmetic
and memory latencies. Thread blocks are transparently divided into smaller bundles of
threads called warps, which are executed in lockstep, simplifying fetch and dispatch logic.
These considerations allow a much greater portion of a GPU’s die area to be dedicated
towards computation compared with scalar cores, and enable their high-energy efficiency
and throughput capabilities [4].

While the SIMT programming model allows for the use of conditional statements
within code which create the appearance of threads being able to run independently of
one another, thread divergence (the occurrence of multiple distinct branch outcomes within

6

a single warp) causes different branches to be executed in series with certain execution
lanes deactivated. This reduces the overall utilization of the SMs and hurts performance.
Similarly, while the programming model allows load and store addresses within a warp
instruction to be arbitrary, the memory system is optimized for memory accesses within a
warp to a single cache lines. Memory operations with irregular patterns are replayed and
serialized across several cycles, again reducing utilization. Programmers must take care
to ensure that control-flow irregularity (CFI) and memory-access irregularity (MAI) are
minimized as much as possible to maximize performance. These values can be quantified
accordingly:

CFI =
divergent branches

executed instructions

MAI =
replayed instructions

issued instructions

2.2 Irregular Algorithms

Data-parallel architectures, such as GPUs and SIMD extensions on general purpose proces-
sors, have been ideal platforms for accelerating algorithms which involve unconditionally
applying repeated operations on logically contiguous data. Matrix-matrix multiplication
is an archetypal application which can achieve over 100× improvement in performance
per Watt on a GPU over serial implementations, as data can be streamed very efficiently
through its hundreds of available processing units with minimal control overhead [5].

Figure 2.3: Range of memory-access irregularity and control-flow irregularity on several
irregular workloads as inputs are varied (data source from Burtscher et al [2])

7

While not to the same degree, a wider class of algorithms referred to as irregular data
parallel algorithms (also called “amorphous data parallel algorithms” or simply “irregular
algorithms”), has been demonstrated to show speedups of 2−10× on parallel architectures
[2]. These algorithms are still data parallel in the sense that operations are applied repeat-
edly across multiple pieces of data, but the control flow and memory access patterns are
less regular and predictable. Many problems which can be represented as graphs, where
operations are propagated through adjacent nodes, are irregular, since the memory layout is
data dependent and may change throughout execution. Figure 2.3 shows how the MAI and
CFI varies significantly over different input types. Example workloads include breadth-first
search, single source shortest path, points-to analysis, Barnes-Hut N-body simulations [6],
and survey propagation [7]. While these irregularities make it difficult to fully utilize hard-
ware, several techniques have been demonstrated to show practical speedups on parallel
architectures [8][9][10].

Figure 2.4: Topology-driven implementation of an algorithm, which spawns N threads per
iteration. Each thread checks whether its assigned node is active, and if so processes it.
The “process” method may activate neighboring nodes

Two common approaches towards designing these algorithms are topology-driven and
data-driven implementations [11]. In both of these styles, the work to be done is represented
by a set of connected nodes. Some subset of these nodes are active, indicating that they
must be processed by applying an algorithm-specific operator on them. After processing
each node, the neighboring nodes may or may not be activated, causing a propagation effect
of iteratively processing active neighbor nodes until a steady state or some exit condition
is reached. For example, in breadth-first search, the operator simply increments a distance

8

variable by one, and all neighboring nodes are always activated.
Topology and data-driven implementations are different in how processing elements

are assigned active nodes to process. In topology-driven implementations (an example is
shown in figure 2.4), threads are generated to process each node regardless of whether there
is useful work to be done at that node. Such implementations are usually simple to design,
but for data sets where the percentage of active nodes at any given time is low, this approach
will be very inefficient, as few threads are performing meaningful work by executing the
“process” method.

Figure 2.5: Data-driven implementation of an algorithm, which spawns M threads, each
iteratively popping work assignments of a shared worklist and adding new work items
back on

To address this, data-driven implementations (see figure 2.5) dispatch a fixed set of
threads which persist throughout the application’s execution and are assigned nodes to
process by a shared worklist maintained in software. Nodes are only added to this worklist
when they are activated, so there are no idle “spin-loops” as there are in the topology-driven
implementation.

Data-driven implementations are more algorithmically efficient as they avoid unnec-
essary work when processing inactive nodes. However, memory contention caused by
accessing a shared worklist with atomic memory operations means such implementations
are rarely used without aggressive software optimizations.

Double-buffering replaces a single worklist with separate push and pull worklists [11].

9

This reduces memory contention since atomic memory operations only need to be used
when writing to a worklist (otherwise separate threads might clobber each other’s additions
when writing at the same time). Reads from the worklist can proceed freely since they
don’t modify it. This has the downside of limiting load balancing within the worklist, as
processing elements that finish their work quickly need to wait for the push worklist to be
swapped with the pull worklist before they can process more nodes.

Work donating can offset this penalty by using an auxiliary “donation worklist” in
shared memory that threads with an excess amount of work can push to, and threads within
the same thread block with less work to do can pull from.

Atomic-reduced updates synchronize several threads before pushing elements onto the
worklist. It then performs a prefix-sum to calculate how many total elements across all
threads will be pushed to the worklist, and does so as a single atomic memory operation,
thus reducing the amount of memory contention.

Distributed worklists using thread-block partitions [11][10] potentially sacrifices par-
allelism when load-balancing is needed but allows scaling to much larger workloads with
low density, which we define as

D =
2|E|

|V |(|V | − 1)

where V is the total number of vertices or nodes, and E is the total number of edges or
adjacencies between the nodes.

The work presented in this dissertation makes use of the LonestarGPU benchmark suite
Version 3.0[2] to study the behavior of irregular algorithms. The benchmark suite has
provided many implementations of several key irregular algorithms, but as the primary
concern how computation will scale with the proliferation of large, sparse data sets, analysis
is limited to data-driven implementations to those which use distributed worklists as part
of their optimizations. Thus, the following benchmarks are used:

Breadth-first search (BFS) counts the minimum number of nodes between a specified
source node and all other nodes. Starting with the source node, neighboring nodes are
activated and updated with the current distance. There is a single kernel invocation which
iterates until the graph is traversed, and the operator is very simple [12].

Delaunay mesh refinement (DMR) is provided with a mesh of nodes and iteratively
modifies edges between them to resolve constraint violations. Because it modifies the
underlying data structure, it is a “morph algorithm” [13], which often invoke extra overhead
since extra synchronization via barrier instructions is needed to prevent partially updated
graphs from being read. It alternates invoking two separate kernels, one to modify the

10

mesh, and the other to check for new violations.
Minimum spanning tree (MST) is another morph algorithm which finds a subset of

the input graph that spans all nodes and has the smallest overall cost. It uses Boruvka’s
algorithm and alternates between two kernels to iteratively find the minimum weight edge
coming from each component and then merge partners across those minimum edges. The
kernels become more computationally intense as the graph is reduced.

Points-to-Analysis (PTA) determines the set of addresses a pointer variable can access
given a set of constraints. The algorithm uses a pipeline of low-latency (<100 µs) kernels
to iteratively propagate constrains to different nodes until a steady state is reached. [14]

Single-Source Shortest Paths (SSSP) calculates the shortest distance from a speci-
fied source node to all other nodes in a weighted graph, in a similar manner to BFS, but
with slightly higher bandwidth needed to read the weights and slightly higher computation
intensity to process them.

Stochastic Gradient Descent (SGD) completes unknown entries in a supplied sparse
matrix. It involves several dot product calculations between vectors and is the most com-
putationally intensive workload considered.

11

CHAPTER 3

Dynamic Thread Block Scheduling

3.1 Introduction

There has been a significant trend in mapping an increased variety of workloads to data
parallel architectures. We have seen numerous enhancements to GPU hardware by vendors
to enable greater flexibility and programability [15][16][17] as well as the emergence of
new architectures for specific domains, such as Google’s Tensor Processing Unit [18] to
accelerate machine learning algorithms. A prevalent challenge is the increasing amount of
control and data irregularities present in many non-trivial algorithms [2], making it difficult
to fully utilize hardware. Multi-kernel execution and virtualization of hardware across mul-
tiple users have been employed on GPUs to mitigate these problems [19], but it is difficult
to scale these solutions in light of nondeterminism introduced by irregular algorithms.
In this work, we will explore specifically how multi-kernel techniques are hampered by ir-
regular data parallelism, and present our design for an extension to thread block scheduling
and placement that will circumvent these challenges. Our contributions are as follows:

• We identify and characterize the variability of resource usage within and across
thread blocks when running irregular algorithms as a function of input density, re-
sulting in distinct phases of computation

• We demonstrate that previous methods of resource allocation, both static and dy-
namic, are insufficient at accounting for this variability and result in interference
between thread blocks

• We propose a solution which adds hardware to track and predict future resource usage
for each thread block. This hardware is used to make more sophisticated decisions for
allocating resources, as well as dynamically detecting phase shifts and reallocating
resources when appropriate

12

• We show that our solution results in a 17% and 13% average increase in throughput
over established static and dynamic scheduling strategies, respectively, while only
increasing total SRAM requirements by less than 0.5%

The remainder of this chapter is organized as follows. Section 3.2 discusses the rele-
vant background of GPUs, irregular algorithms, and multi-kernel workloads. Section 3.3
lays out how irregular algorithms can prevent the ideal placement of work items in a GPU.
Section 3.4 gives a high level description of our design. Section 3.5 elaborates on the pa-
rameters chosen for the design and gives a description of the simulation testbench. Section
3.6 analyses the increase in computational throughput we see in our technique as well as
the overheads incurred, and finally section 3.7 discusses similar work in literature.

3.2 Background

3.2.1 Multi-Kernel Execution

Not all kernels are created equal: some utilize certain resources more than others. A popu-
lar technique to mitigate the challenges of underutilized hardware is to run multiple work-
loads simultaneously, which are expected to make use of complementary resources. For
instance, work on GPUs has shown that applications with distinct register file, shared mem-
ory, functional unit, and memory bandwidth usage can be co-run with minimal interference
from one another, and can improve overall throughput by over 30% [20][19][21]. NVIDIA
has introduced Hyper-Q [22] and Multi-Process Service [23] to allow concurrent execution
of multiple kernels. Cloud providers have begun virtualizing GPU resources to multiple
users in an effort to maximize the number of available kernels that can be run concurrently.
Kernels can be co-run using either spatial multitasking [24] in which different kernels are
run on separate SMs, or by simultaneous multi-kernel (SMK) execution [25] in which dif-
ferent kernels can be run on the same SM. SMK provides better utilization when the thread
blocks being co-run use complementary resources.

Previous techniques classify at the kernel level what resources a thread block is likely to
consume through profiling across several inputs or augment the kernels during compilation
or runtime to enable better flexibility [26]. Others monitor the kernels dynamically to
characterize the resource usage at a coarse-level dynamically [27].

13

3.3 Motivation

While previous works [20][27] have recognized the problem of interference across thread
blocks, none have considered the added difficulty when processing irregularly structured
data and how resource usage of threads changes as a result. This is of paramount impor-
tance when considering the increased prevalence of data sets with non-uniform patterns
[28]. Real world data sets often consist of graphs with clusters of highly-connected nodes
dispersed across many sparsely-connected nodes. For example, figure 3.1 shows the dis-
tribution of different local densities in a graph representing which Netflix movies were
enjoyed by which users [2]. What we see is that while about three quarters of the graph’s
nodes are quite sparsely structured, having connections between .001% and 1% of the other
nodes, the remaining quarter of the nodes have a wide range of densities. This is an exam-
ple of a “power-law” graph, which are becoming ever more prevalent in the era of big-data
computing [29].

Figure 3.1: Distribution of densities of a graph where nodes are sorted by number of con-
nected neighbors. Local density of a given node is the number of connected neighbors for
that node divided by the total number of nodes

Figures 3.2 and 3.3 show two prominent effects this distribution has on the perfor-
mance of algorithms processing such input data sets. Using an NVIDIA Tesla V100 GPU
(the specifications of which are described in section 3.5), we measured how the rate of stalls
resulting from memory throttling (i.e. when the load-store-unit (LSU) is fully saturated and
can’t accept more requests) changes as the density of the data is increased across bench-
marks from the LonestarGPU suite. We summarize the range of this metric in the second
column of table 3.1, i.e. the total reduction of stalls in the densest data set compared to the
sparsest data set. Across all benchmarks, there is a decrease in the rate of these stalls as

14

Figure 3.2: How the rate of stalls due to memory throttling, normalized to the sparsest
baseline, (y-axis) varies as a function of input density (x-axis)

density increases. This is a consequence of higher data-reuse when processing dense data.
As long as the working data set can be fit within the cache, tightly packed clusters of nodes
will result in the compute operator processing the same nodes multiple times in quick suc-
cession, resulting in a higher cache hit rate. Similarly, sparse segments of data will result
in pointer-chasing with little data reuse and the LSU is more likely to be saturated with
long latency cache misses. BFS and SSSP are both memory bound workloads with very
simple compute operators, and accordingly show significant changes (a total of 78% and
93%, respectively) in the rate of stalls as the density and data reuse increases. On the other
extreme, MST and SGD have much more computationally intense operators which hide
the latencies associated with cache misses. The penalties associated with processing highly
sparse data is correspondingly less than workloads with simple compute operators, with a
10% and 25% reduction of stalls in processing the densest data sets, respectively. DMR
and PTA show moderate reductions in stalls when processing dense data (50% and 61%,

15

Figure 3.3: How the increase in floating-point unit utilization, normalized to the sparsest
baseline, (y-axis) varies as a function of input density (x-axis)

respectively).

Application Memory
Throttle
Range

FPU
Utilization

Range
BFS 78% 0%
DMR 50% 19%
MST 10% 31%
PTA 61% 0%
SSSP 93% 24%
SGD 25% 28%

Table 3.1: Range of Resource Variance across kernels

We also measured how the utilization of floating point units (FPUs) are affected by
density in figure 3.3. The third column of table 3.1 summarizes the total increase in FPU

16

utilization in the densest data set processed compared to the sparsest. Both BFS and PTA
do not contain any floating point operations and are thus unaffected. DMR and SSSP
show increased utilization (19% and 24%, respectively), but this is largely a side effect
of the reduction of memory stalls; since less time is spent waiting for memory, a larger
percentage of time is spent processing data and utilization is increased. The amount of
computation needed to process each node is largely unaffected. MST and SGD both have
operators which grow in complexity as the density increases. For example, SGD performs
numerous dot products on segments of the input data. As the number of non-zero elements
within a row increases (i.e. as the density increases), more elements must be multiplied
and summed together for each dot product, increasing the computational intensity of the
operator. Accordingly, MST and SGD both see an increase in FPU utilization (31% and
28%, respectively) that is partially independent of the decrease in memory stalls. This fact
will be significant in identifying benefits of tracking both metrics in tandem.

Because different thread blocks process independent data, there is little guarantee about
how sparsity levels of the data correlate between active thread blocks. If, for example, the
graph summarized in figure 3.1 were being processed, one thread block might be process-
ing a highly dense (for example, 5%) neighborhood, while another thread block processes
one of the several sparser neighborhoods (say 0.1%). Over time, the threads processing
these nodes may migrate to neighborhoods of different density, and correspondingly the
resource usages of the containing thread blocks may also change. Accordingly, an optimal
thread block scheduler should treat individual thread blocks within a given kernel differ-
ently depending on the properties of the data being processed. The importance of resource
allocation has grown over the years and will likely continue to do so as the number of
threads placed on a single SM increases. While earlier, CUDA GPUs limited the num-
ber of allowable threads on a single SM to 768 [30], that number has increased to 1024,
1536, [31], and 2048 in recent architectures [22], which we summarize in figure 3.4. Im-
provements in fabrication technologies allow for more hardware resources to be placed on
an individual SM, increasing the number of threads that are likely to be allocated. As the
number of threads resident on an SM increases, the variance of resource usage has a greater
compounded effect. We make two observations that guide our design decisions for a finer
granularity scheduling and resource allocation policy:

• The density of graphs changes smoothly as the graph is traversed. To illustrate this,
let NDR(n, d) be a function that represents the “Neighbor Deviation Range” of the
subset of a graph centered at node n with a diameter d. This function represents the
difference in number of neighbors between the most highly connected node and the
least connected node in the subgraph. For example, in figure 3.5, NDR(1, 1) = 5,

17

as the most connected node in the subgraph starting at node 1 and extending out-
wards 1 hop has 6 connections, and the least connected nodes all have 1 connection.
Similarly, NDR(2, 1) = 4, and NDR(2, 2) = 6. Figure 3.6 shows the frequency of
NDR(n, 5) values across all values for n in graph shown in figure 3.1. About 86%
of subgraphs spanning 5 nodes have a deviation less than 10 neighbors between the
most and least connected graphs. This graph illustrates how often a particular range
in the number of neighbors at each node

• In both topology-driven and data-driven workloads which use distributed worklists,
thread blocks with a given block index traverse graphs smoothly (that is, nodes ac-
cessed within in a short amount of time are logically near one another in the graph)
even across separate kernel invocations. This is not the case with data-driven im-
plementations which use a single shared worklist, as which particular subset of data
accessed by a given thread block will be completely random across separate kernel
invocations depending on the precise interleaving of other thread block’s access to
the worklist.

Figure 3.4: Increase of transistor account with each successive generation of NVIDIA GPU
compared to the maximum number of threads supported per SM

These observations suggest that we can predict how much of a particular resource a
pending thread block is likely to use in the near future based on how that resource was
used by previous instances of the same thread block (i.e. have the same block index). By
tracking the resource usage via performance counters already present on modern GPUs, we

18

Figure 3.5: Sample graph with labels formatted as “Node Index (Number of Neighbors)”

Figure 3.6: Relative frequencies of NDR values across 5-node diameter subgraphs in Net-
flix dataset

can feed this information to the thread block scheduler and more accurately place thread
blocks on the ideal SM.

However, this is not a general solution. Table 3.2 lists several properties of kernel
iterations in the LonestarGPU benchmarks when processing a fixed-size data set. One of
these is the average execution latency, or how long each kernel instance runs on average
before returning. DMR, MST, PTA, and SGD all invoke kernels several times across its
execution, with the number of iterations depending on the size and structure of data. BFS
and SSSP only invoke their respective kernels once, and as such their latencies make up
most of the application’s run time.

The changing density patterns in the input data result in the emergence of “phases”
where a thread block’s resource usage changes over time. For the purposes of this chapter,
we define a phase shift to have occurred when a given metric of interest (namely, the rate
of memory throttle stalls or utilization of the FPU) averaged across a window of the last

19

Application Grid /
Block
size

Regs per
thread

SMem
per

block (B)

Total
context

size (KB)

Preemption
latency (µs)

Execution
latency

(µs)
BFS 240 / 128 32 0 16 3.0 56,000
DMR 112 / 512 32 0 64 11.8 9,080
MST 640 / 256 34 0 34 6.2 1,030
PTA 80 / 991 28 200 108 20.1 40
SSSP 160 / 256 32 0 32 5.9 23,000,000
SGD 900 / 16 26 68 2 0.3 10

Table 3.2: Average Iteration Metrics per Application

100 µs deviates by more than 5% (choosing a smaller window size for the running average
is unlikely to be of use, since, as we will explain later in this section, there will be no way
to effectively respond to this variances on this time scale). The exact property of these
phases varies widely based on the benchmark as well as size and structure of the input data.
We provide one example of the distribution of how long these phases last when executing
the SGD benchmark in figure 3.7. There is not a clear upper bound on the length of these
phases, but the majority last between 1 and 10 ms, with an average of about 5.4 ms. Across
all benchmarks and several input data sets, the average phase length varies between 0.1 ms
and 100 ms.

Figure 3.7: Distribution of phase lengths when running the SGD benchmark

The key observation is that while half of the benchmarks (SGD, PTA, and to a lesser
extent MST) have average latencies on the order of or significantly less than the typical
phase lengths we observe and can therefore be rescheduled at a fine-granularity at the next
invocation of that thread block, the other half (DMR and to a much larger degree BFS
and SSSP) have average latencies significantly higher than typical phase lengths. Waiting

20

to make allocation decisions at thread-block dispatch may potentially miss several phase
changes entirely. Indeed, since BFS and SSSP only invoke their kernel once, we have no
hope of adjusting the allotted resources based on phase changes at kernel dispatch.

Thus, the second part of an ideal resource allocation strategy is to detect phase changes
in real time, preempt thread blocks which are not ideally placed, and relocate them to a
location that is better suited.

3.4 Design

Figure 3.8: Diagram of the proposed system architecture with the SMs, thread block sched-
uler, and the proposed victim queue and thread block resource usage tracker

We use all of the discussed observations to design a dynamic thread block scheduling
and preempting infrastructure to better approximate an ideal solution. The architecture is
summarized in figure 3.8. In order to account for resource usage variance across thread
blocks, we propose the inclusion of a thread block resource tracker (RUT) which is imple-
mented as an SRAM table in hardware. The RUT is indexed with both the stream ID and
block index and stores an N bit unsigned integer for each utilization metric to be tracked
by the TBS. The reason why the stream ID is used instead of the kernel ID is that appli-
cations frequently use a pipeline of kernels with identical dimensions to process data in
several steps, where each corresponding thread block with the same block index processes

21

the same subset of data and therefore exhibit similar resource usage trends.
In addition to resources such as shared memory and register file usage, the TBS will also

estimate different resource usages through the RUT and use these estimates as additional
constraints when placing thread blocks.

When allocating a thread block, the TBS will:

• access the RUT with the stream ID and block index to receive estimates on key
resources

• find the first SM (using a rotating round robin policy) that has enough register file,
shared memory, and supplemental resources to accommodate the current thread block

• if no SMs meeting that criteria are available, thread block dispatch is stalled until one
becomes available

Periodically, each SM will check the resource usage of of each resident thread block
using preexisting performance counters. If any tracked resource has deviated over a certain
threshold since the previous check, the SM informs the TBS, which then updates the appro-
priate RUT entry. Each entry will also be updated when the given thread block terminates.
Care must be taken to choose the right frequencies and parameters so that the system is not
overrun with traffic from updates.

Whenever the RUT is updated by a still-running thread block, the TBS will reevaluate
the resource usage of the SM. If the estimated resource usage has increased such that the
SM is predicted to be oversubscribed, the SM is instructed to preempt the thread block in
question, the context is swapped to memory (see next subsection for details), and meta-data
for the thread block is pushed onto a victim queue maintained by the TBS, if it is not full.
If the victim queue is full, no thread blocks are preempted until space is made available.

If, upon update of the RUT, the estimated resource usage has decreased, the thread
block searches through the victim queue in last-in-first-out order for a thread block that is
not expected to oversubscribe the SM and context-swaps the thread block into the specified
SM. If no thread blocks in the victim queue meet the criteria, the TBS checks to see if the
next thread block which has not yet started execution will oversubscribe the SM, and issues
if appropriate. The victim queue is searched first and in a LIFO order to take advantage of
locality in the event that the thread block is issued to an SM which shares part of the cache
hierarchy of the previous SM.

22

3.4.1 Thread Block Preemption

Preempting thread blocks on a GPU has been demonstrated as an effective way to ensure
quality of service when running multiple kernels [32][33][34]. Preemption strategies usu-
ally fall into one of three classifications:

• Context switching: Due to the massive number of threads present on SMs, true con-
text switching is generally avoided. It requires storing the register file and shared
memory to a designated location in memory, which greatly increases the latency of
preemption [34].

• Draining [32][34]: Draining allows all currently running thread blocks to complete
until the SM is empty, and then swaps in a new set of thread blocks. As has already
been established, waiting for thread blocks to finish is too costly for long running
kernels such as BFS and SSSP to be a general solution.

• Flushing [34]: Flushing drops the currently running thread blocks and restarts them at
the beginning of their execution on a new SM at a later time. This ensures low latency
swapping, but requires certain properties of the kernel at the point of preemption: it
must not have made any stores to memory that could affect the values of its earlier
loads, and it cannot have executed atomic operations. Otherwise, the thread block
may have different execution when rerun from the beginning. Because many irregular
workloads are morph algorithms (e.g. DMR and MST) which alter the input data
structures as they execute, they may not meet this criteria and flushing cannot be
used.

Context switching is the only general solution and is what we use for our solution. Table
3.2 includes the average total context size for a thread block in each application, which is
calculated as the amount of shared memory per block plus the thread block size multiplied
by the number of registers per thread, multiplied by the register size (32 bits). The table
also includes the average latency added per context switch, which was measured in our
simulation infrastructure (see section 3.5 for details). As is apparent, the latency associated
with preempting thread blocks in each benchmark is still an order of magnitude lower than
the typical phase lengths we observe and can therefore be a reasonable cost to pay if thread
blocks are better co-located and resource interference can be sufficiently reduced.

23

System Configuration
SMs 80 SMs, 5120 Cores, 1.6GHz

Max of 2K threads per SM
Max of 1K threads per TB
Max 64K registers per block
Max 48 KB shared memory per block
128 KB L1

Memory Subsystem 6 MB L2
900 GB/s bandwidth

Thread Scheduling GTO

Table 3.3: GPGPU-sim simulation parameters used for evaluation

3.5 Methodology

We evaluate our design using GPGPU-Sim version 3.2.2[35] whose configuration is de-
scribed in table 3.3, meant to emulate the Tesla V100 we used in previously described
experiments. We modified the simulator to enable multi-kernel execution and preemption
with context switching, and co-ran pairs of applications from the LonestarGPU benchmark
suite Version 3.0 [2]. Because the LonestarGPU benchmarks are predominately memory
bound workloads, we also co-ran the benchmarks with samples from the Parboil benchmark
suite [36] which includes a more diverse set of memory and compute bound workloads. For
all pairs of workloads we measure the change in overall throughput (measured in instruc-
tions committed per cycle) of the LonestarGPU kernels. We compare our solution against
two variants:

• A scheduler which has oracle knowledge of the average resource usage of the kernel
as a whole for use in scheduling thread blocks, but does not track the dynamic behav-
ior of the kernel and does not employ preemption. This provides a fair comparison
to works such as Xu et al [37] which estimate kernels performance characteristics as
a function of their input size.

• A scheduler which tracks the dynamic behavior of kernels as a whole and preempts
when oversubscription is detected, but does not track individual thread blocks. This
provides a fair comparisons to works such as Park et al [27].

For input, we used datasets synthesized using the Graph500 R-MAT generator [38]
using its default parameters of (A=0.57, B=C=0.19) which were used in recent analytic
works on power-law graphs [39][28]. The number of edges is set to 100,000 and the number
of vertices is swept between 5,000 and 80,000.

24

As a heuristic, we have the SMs query the performance counters once every (con-
text size in KB / 1.1) µs, which roughly equates to five times the expected preemption
latency. This information can be communicated via the TBS upon thread block dispatch.
We set the size of each RUT entry to be 3 bits per metric of interest (rate of memory throt-
tle stalls and FPU utilization), and set the total size of the table to be 16KB or about 21K
entries, more than enough to ensure virtually no conflicts between different kernels. Any
deviation detected with this metric over that time period will be communicated back to the
TBS. We set the victim queue to be large enough to hold 1K entries.

3.6 Evaluation

Figure 3.9: Throughput increases over oracle static classification (blue) and kernel granu-
larity profiling (orange)

Figure 3.9 shows the throughput increase of our design over both the oracle static clas-
sification scheme and the kernel-wide monitoring solution described in section 3.5. Each
result is the average increase over all pairings and input datasets involving that benchmark.
Our design, across all benchmarks, achieves an average increase in throughput of 17.1%
compared to the static scheduler and 12.9% compared to the kernel-wide profiler. The mag-
nitude of the throughput increase correlates with the range of metric deviations reported in
figures 3.2 and 3.3, as benchmarks with higher variance pose the greatest hazard for inter-
ference as the data patterns change. In most cases, we achieve a better improvement over

25

the static scheduler than over the profiler. This is because the profiler, although it does
not track individual thread block metrics, can still detect coarse-grained average changes
in the data set across the whole kernel and can preempt the thread blocks in cases where
the variances do not cancel each other out. The kernel profiler does not perform any better
than the static scheduler for either PTA or SGD, as these benchmarks consist of kernels too
short for thread block preemption to be effective. To better understand the efficacy of our
design, we isolated several features.

3.6.1 Cataclysmic Thread Purging

Figure 3.10 shows a possible outcome of context swapping when the system is not cali-
brated properly. In this case, during the process of writing a thread block’s state to memory,
it is cached in the L1 and L2 levels of the memory hierarchy. This results in a generalized
form of cache thrashing, where not just the contents of memory are brought in and out of
the cache in an unstable manner, but also the contexts of the threads themselves.

Figure 3.10: Negative impact of L1 and L2 caching during context swapping

As shown in figure 3.2, many of the kernels have context sizes which are a significant
portion (10% or more) of the L1 cache. When cache entries are allocated as a result of
saving or restoring a thread block’s context, it evicts a significant portion of the cache. In
memory-intense workloads, particularly BFS and SSSP, this has the effect of significantly
increasing pressure on the load-store units and increasing the probability that further thread

26

blocks are preempted as resources are saturated. As more thread blocks are evicted, more
of the cache is displaced and still more pressure is placed on the memory system, resulting
in a chain reaction where a large portion of the resident thread blocks are evicted. We refer
to this phenomena as cataclysmic thread purging. Those benchmarks that do not make as
much use of preemption (e.g. short running kernels such as PTA and SGD) see less effects,
but the overall throughput improvement across benchmarks is reduced to just 2%.

As a result, our design marks context saving and restoring memory operations as “non-
cacheable” to prevent such an event. We explore the possibility of relaxing this constraint
in chapter 4.

3.6.2 Effectiveness of Predictive Scheduling versus Context Switching

Figure 3.11: Throughput increases over static classification when employing only preemp-
tion (blue), only predictive scheduling (orange), and both (grey)

Figure 3.11 shows our design’s performance when employing only the preemption or
predictive scheduling strategies in isolation, and then using both together. BFS and SSSP
achieve all of their throughput increases through preemption, as they only invoke their
primary kernel once and so can’t use the dynamic metrics to schedule future thread blocks
more efficiently. Although the kernel profiling strategy is able to respond to global changes
across the entire kernel, it cannot respond to deviations when individual thread blocks
enter or exit dense regions of data. At the other extreme, PTA and SGD’s kernels are

27

Figure 3.12: Measured correlation of average density processed by two thread blocks with
the same block ID across subsequent kernel invocations, which indicate the effectiveness
of predictive scheduling

too short to use preemption effectively and achieve all of their performance gains through
scheduling enhancements. DMR and MST receive moderate speedups due to preemption,
but are limited by their relatively short execution latencies and are less able to amortize the
overhead of context switches.

To illustrate the effectiveness of predictive scheduling, figure 3.12 shows how well re-
source utilizations correlate across kernel invocations. Predictive scheduling relies on the
assumption that thread blocks with the same block ID will enter similar regions of code,
i.e. we expect these correlations to be high. BFS and SSSP of course have undefined corre-
lations since they do not have multiple kernel invocations. SGD has a very high correlation
of 96%, as it is a topology driven benchmark which is guaranteed to have the same nodes
processed by the same threads each iteration. Small deviations occur as the graph is mor-
phed over time, but slowly relative to the large number of pipelined, low-latency kernel
invocations. DMR and PTA are also topology driven benchmarks, but morph the underly-
ing data structures more rapidly relative to the frequency of kernel invocations, and such
see a smaller but still substantive correlations at 89% and 91%, respectively. MST sees the
lowest correlation at 81% as it is a data driven algorithm and thus see a greater variance in
which thread blocks process which nodes. However, the use of distributed worklists keeps
the correlation relatively high.

28

These correlation values illustrate why certain benchmarks are able to achieve speedups
when using predictive scheduling in figure 3.11. The higher the correlation between of
the input density across kernel invocations, the more accurate the resource predictor will
be. SGD, with its high correlation, receives the most speedup. MST, with the smallest
correlation, receives the least speedup. DMR and PTA receive moderate improvements,
again in alignment with their correlation values.

Most benchmarks receive the vast majority of their speedup from one strategy or the
other and don’t receive much added benefit from using both. MST is the exception, as the
two strategies are often able to “catch” opportunities to better schedule threads missed by
the other. On occasions where a thread is not placed on an optimal SM due to variance from
worklist distribution or otherwise, preemption can still relocate the thread block, albeit with
higher overhead than the other benchmarks.

3.6.3 Memory Tracking versus Compute Tracking

Figure 3.13: Throughput increases over static classification when only tracking memory
throttle stalls (blue), only tracking FPU utilization (orange), and tracking both (grey)

Figure 3.13 shows the performance increase when only tracking memory stalls, FPU
utilization, or both together. For most benchmarks, tracking memory stalls is much more
profitable than tracking FPU utilization, which is expected as these are memory bound
workloads. In particular, BFS and PTA have no floating point code. SGD and MST contain

29

more complicated operators which make variable use of floating point operations depend-
ing on the input data structure and see more benefit from tracking FPU utilization. Although
DMR and SSSP make use of floating point operations and the intensity does vary based on
input structure, this variance is a largely a side effect of changing memory utilization: fewer
memory stalls increases bandwidth, keeping the other functional units more occupied as a
result and vice-versa. Accordingly, these see less benefit to tracking both metrics compared
to other workloads, as tracking one implicitly gives information on the other.

3.6.4 Overheads

Figure 3.14: Throughput overhead of preempting threads

Figure 3.14 shows the throughput overhead of supporting preemption and context mi-
gration. Excluding benchmarks which do not make use of it, we see an average overhead
of 2.7%. This is smaller than the overheads observed by Park et al [34] on the order of 10%
because:

1. The amount of register and shared space allocated by these benchmarks is smaller
than the benchmarks explored in their work

2. Preemptions in their work occur on the order of 10 − 100× more frequently than in
this work due to typical phase lengths

30

By choosing appropriate parameters for our design, we have ensured significant perfor-
mance improvements with small overhead. The increased memory traffic associated with
updating the RUT and context switching across the whole GPU is 13 KB/s and 1 GB/s,
respectively, which accounts for less than 1% overhead on the total available throughput of
the system. The RUT and victim queue together account for 20 KB of extra SRAM shared
across all SMs, which adds under 0.5% the overhead of the L2 cache.

3.7 Related Work

Thread block preemption has been recognized as a powerful solution towards better re-
source management. Tanasic et al [32] suggest hardware extensions to make preemption on
GPUs more efficient. Park et al [34] demonstrate how combining several preemption tech-
niques and dynamically choosing between them can reduce latency and improve throughput
in multiprogrammed workloads.

Many works have explored the problem of resource contention in GPUs and how to
prevent it. Kayiran et al [40] explored how changing the number of thread blocks issued
by compute versus memory intensive workloads reduces resource contention. Pai et al
[26] and Zhong et al [20] investigate alternative static and dynamic methods of modifying
kernel’s execution properties to enable better utilization.

This work followed the lead of many others in exploring more sophisticated schedulers.
Li et al [41] propose a co-design between the thread scheduler and cache allocation scheme
to avoid cache contention without underutilizing other resources. Sethia et al [42] pro-
pose augmentations to the scheduler to prioritize memory requests from irregular, memory
intensive workloads to reduce stalls. Zhao et al [43], Xu et al [37] and Jiao et al [19] in-
vestigate classification of kernels to enable better thread block placement. Park et al [27]
develop a strategy to dynamically monitor a kernel’s execution and preempt thread blocks
when appropriate. Wu et al [44] and Chen et al [45] investigate solutions at the program
and runtime level to enable better thread scheduling and preemption. To our knowledge
we are the first to analyze how thread scheduling is impacted by the issues of irregular al-
gorithms, and the first to develop a solution of tracking resource usage at the thread block
level.

3.8 Conclusion

Processing diverse data patterns in irregular workloads results in significant resource usage
variance across different threads. However, gradual changes prevalent in practical data sets

31

make it possible to respond dynamically to these changes and modify scheduling decisions.
By adding a hardware table to track metrics for each thread block as well as a queue to hold
preempted thread blocks, we can effectively reorganize threads in response to changing
data patterns. By increasing SRAM storage requirements by less than 0.5%, we can gain
17% and 13% improvements of throughput over previously proposed static and dynamic
scheduling strategies, respectively.

32

CHAPTER 4

Block Shuffling with Reconfigurable Hardware

4.1 Introduction

Different workloads map better to different configurations of architectures. We have seen
in previous chapters how programs that exhibit regular parallelism map well to SIMD ar-
chitectures, while programs with irregular parallelism struggle to maintain performance on
the same platform. Out-of-order CPUs excel with serial code or workloads that require
low-latency execution, and custom accelerators can be designed for other, more specific
workloads. Heterogeneous systems containing several of these different architectures are
often used with explicit control transfers between them to handle different execution cases.
However, these control transfers are costly, requiring long latency transmissions over sys-
tem buses which may take on the order of milliseconds to complete. These transfers are
therefore done at a coarse level, and execution phases lasting on shorter scales may not
benefit from such heterogeneity.

An alternative approach is the design of reconfigurable architectures: architectures that,
when triggered either by software or hardware events, can activate, deactivate, or otherwise
repartition resources across compute units, allowing workloads to achieve better perfor-
mance without the need to transfer data between different processors or accelerators. We
have explored such a design which organizes processing elements and memory nodes into
tiles whose connections can be reconfigured via a high-speed crossbar. In this chapter, we
demonstrate how such a design can be used to achieve significant (8×) speedups when ex-
ecuting sparse matrix multiplications, a workload which exhibits both regular and highly
data intensive phases, as well as irregular and memory intensive phases.

We then go on to demonstrate that the same mechanisms within the architecture can
allow for very low latency transfer of threads between compute elements in a process we
call block shuffling. This process improves transfer latency by 98% compared to naı̈ve
strategies. This can be used to augment the strategies described in chapter 3 and create a

33

highly flexible architecture which can respond to any change in execution conditions with
very low latency. We demonstrate a 24% increase in throughput when using block shuffling
over other schedulers on the same architecture.

Section 4.2 lays out the details of the reconfigurable architecture we have considered for
accelerating more complex workloads. In section 4.3, we analyse a case study of mapping
sparse matrix-matrix multiplication to this architecture and how reconfiguring resources to
changes in the workloads’ properties can increase utilization and power efficiency. Finally,
section 4.4 describes how our block shuffling algorithm works in tandem with context
compression techniques to achieve sizable speedups on irregular workloads.

4.2 Architecture

Figure 4.1: Overview of the reconfigurable architecture

The reconfigurable architecture considered in this chapter, shown in figure 4.1, consists
of a series of tiles connected to a memory hierarchy. Each tile consists of a set of General-
Purpose Processing Elements (GPEs), alternatively referred to as simply Processing Ele-
ments (PEs), a tile manager to distribute work (not shown), a set of memory modules that
can be reassigned as caches or scratchpad memories, and a pair of reconfigurable crossbars.

4.2.1 Processing Elements

Each GPE is a simple, in-order core. It receives an instruction stream to execute from the
tile manager. Each contains a integer and floating-point unit, as well as load and store
pipelines. These can be individually power-gated by the tile manager to save power during
low compute phases of computation if they are not expected to be fully utilized.

4.2.2 Caches

Each memory bank can be reconfigured by the tile manager to behave as a cache or a
scratchpad memory (SPM) by deactivating the tag banks, allowing software to explicitly

34

address certain elements. The crossbar connecting the GPEs to the memory banks can be
configured to either allow each GPE to access its own, private memory, or a shared pool
amongst other GPEs in the tile. This allows the architecture to easily switch between a
shared memory architecture and a non-shared one.

4.2.3 Crossbar

Figure 4.2: Crossbar design [3]

The crossbar is modeled after a design proposed by Sewell et al [3] and is shown in fig-
ure 4.2. It contains a programmable controller which allows for arbitrary connections be-
tween input ports and output ports. Common configurations include a simple passthrough
scheme where input i is connected to output i, or broadcast where each input is connected
to every output. The tile manager can reconfigure the controller within 10 cycles.

4.2.4 Memory Hierarchy

The architecture contains two levels of reconfigurable caches. The first level consisting of
isolated partitions within each tile and the second level shared across all tiles. A reconfig-
urable crossbar exists in between the GPEs and first level cache, as well as in between the
first and second level caches. The crossbar in between the caches allows for data sharing
between tiles when necessary without requiring main memory to be accessed. A standard,

35

non-reconfigurable crossbar is placed between the second level cache and off-chip main
memory.

4.3 Case Study: Sparse Matrix-Matrix Multiplication

As a primary demonstration of the benefit of this architecture, we present the performance
of a workload well suited for its reconfigurability: sparse matrix-matrix multiplication
based on outer product summations. Sparse matrix-matrix multiplication is a key algo-
rithm in many data analytic workloads [46] [47] [48] [49]. The proliferation of power-law
graphs in big-data has resulted in typical inputs consisting of small, dense regions and
larger, sparse regions (see chapter 3).

Matrix-matrix multiplication is traditionally implemented as a series of inner products
between rows of the first matrix (A) and columns of the second matrix (B) to generate a
new matrix (C):

ci,j =
∑N−1

k=0 ai,k × bk,j

Such an algorithm consists of regular memory accesses as the matrices are streamed in
an entirely deterministic fashion and exhibit simple control flow and high data reuse. As
such, matrix multiplication based on this model is one of the most characteristic workloads
at which data parallel processors excel.

Unfortunately, this approach has significant disadvantages when operating on sparse
matrices. Because most of a sparse matrix’s elements are zero, compressed formats are used
to only store non-zero values and coordinates to identify the value’s location in the matrix.
Thus, the regular memory accesses and simple compute operators (multiply-accumulate
operations) on the data which map traditional matrix-multiplication so well to architectures
like GPUs are replaced by irregular memory accesses and control flow irregularities. Cur-
rent GPU sparse-matrix libraries achieve less than 1 GFLOPS in throughput when density
drops below 0.1% despite a peak theoretical throughput of over 4 TFLOPS [50].

An alternative approach to sparse matrix-matrix multiplication is an algorithm based on
outer products.

4.3.1 Outer Product Algorithm

In this algorithm, which is illustrated in figure 4.3, partial products (Ci) are generated by
calculating the outer product between the ith column of the first matrix (ai) with the ith row
of the second matrix (bi), and summing all of the partial products together (C).

36

Figure 4.3: Outer Product-based Multiplication

C =
∑N−1

i=0 Ci =
∑N−1

i=0 aibi

We label the process of generating the outer products as the “multiply” phase, and the
process of summing them together as the “merge” phase. The implementation details of the
outer product algorithm on a system with two processing units (P0 and P1) are shown more
explicitly in figure 4.4. Partial products can be represented in either a compressed row (CR)
format or compressed column (CC) format. In the CR format, a linked list is maintained
for every row of the output, with each node of the lists corresponding to a contiguous row
of a partial product generated in the multiply phase. For the CC format, a linked list is
maintained for every column of the output. These lists are generated in the multiply phase
and then sorted and merged together by their indices in the merge phase.

This approach has the theoretical advantage over inner product methods of minimizing
redundant data accesses and eliminating index-matching. During the multiply phase, each
data element is loaded exactly once and multiplication is performed unconditionally on
every element. During the merge phase, assuming there is enough local storage to hold all
the partial product rows for a given output row simultaneously, each piece of data again
only needs to be streamed from main memory once. The merge phase does exhibit less
data-parallelism, as each row being sorted experiences control divergence depending on
the exact layout of the data.

4.3.2 Performance on Traditional Hardware

Despite these theoretical advantages, the outer product algorithm performs poorly on tra-
ditional hardware. Figure 4.5 shows how our implementation running on an Intel Xeon
processor with 6 threads compares against the Intel MKL SpGEMM library.

The runtime of MKL drops significantly as input density and resulting product size
decreases. However, the outer product’s data structures shown in figure 4.4 become less
efficient as density decreases, requiring a larger ratio of bookkeeping pointers to matrix
data and increasing the data bandwidth.

37

Figure 4.4: Outer Product Mapping

Figure 4.5: Outer product implementation versus MKL implementation on CPU processing
uniformly random matrices with 1 million non-zeros

We also compared a CUDA implementation of the outer product algorithm against the
CUSP implementation of SpMM provided by NVIDIA when running on an Tesla K40
GPU. The results are shown in figure 4.6.

The multiply phase, which shows high data-level-parallelism ideally suited for a GPU,
scales well with density. Both phases achieve high L1 hit rates (>80%) and low data depen-
dency stalls (<5%), but the merge phase suffers from a much lower total throughput. This
is a result of numerous conditional branches within the code to handle different relative

38

Figure 4.6: Outer product implementation versus MKL implementation on GPU

column indices as they are read in and sorted. Because there is little correlation between
adjacent threads as they process these branches, many threads within a given warp diverge
and must be executed serially. Thus, while the high degree of parallelism available is attrac-
tive, the SIMD nature of the GPU’s processing elements prevent an overall improvement
of the algorithm over traditional libraries.

4.3.3 Mapping the Outer Product Algorithm

As traditional architectures have been shown to have shortcomings with one or both of the
phases of the algorithm, we instead demonstrate how configuring our custom architecture
for each phase of the algorithm can provide benefit.

Within the multiply phase, each tile is responsible for generating one partial product.
Crossbars connecting the GPEs to the L1 cache are set to broadcast so that individual
GPEs can share the values of a row from the second matrix, and each GPE loads its own
value from a column of the first matrix, as shown in figure 4.4. Partial products are stored
as linked lists, with each row referenced by a pointer from the set Ri. The architectural
configuration is shown in figure 4.7.

For the merge phase, multiple GPEs cooperate to merge all the partial product elements
that contribute to a particular row of the final matrix. To minimize the number of memory
accesses, we merge the lists using the following algorithm (assuming rN rows containing
rN elements each to merge, where r and N represent the density and dimension of the
matrix, respectively):

1. Fetch the head of each row and sort by column index into a linked list (O(r2N2)

39

Figure 4.7: Architecture configuration for multiplication phase with global caches, and
point-to-point crossbars

operations)

2. Store the smallest-indexed element from the list into the final location, loading the
next element from the corresponding row and sorting it into the list (O(rN) opera-
tions)

3. Repeat 2 until all elements of each row have been sorted and shipped to memory
(r2N2 iterations)

The overall complexity is O(r3N3). While less efficient algorithmically then say, a
merge sort, the number of elements stored in local memory is only on the order of rN .

Since each GPE is operating independently with no data sharing, the L1 caches are
reconfigured as private SPMs. Batches of GPEs are disabled to throttle bandwidth and save
power since the latency is bottlenecked by the ability to read in the partial products. The
configuration is shown if figure 4.8.

4.3.4 Evaluation

We simulate the architecture running our outer product implementation using the gem5
simulator [51] with the configurations specified in table 4.1. Work is assigned to the GPEs
using a greedy algorithm. Half the GPEs are disabled for the merge phase. Memory traces
were generated in a C++ implementation and fed into the gem5 simulator.

We compare against Intel MKL (Version 2017 Initial Release) on the CPU and NVIDIA
cuSPARSE (Version 8.0) and CUSP (Version 0.5.1) on the GPU specified in table 4.2. We
input sparse matrices provided by the University of Florida Suite Sparse [52] and Stanford

40

Figure 4.8: Architecture configuration for merge phase with private SPMs, and fixed cross-
bar connections, and deactivated cores

Figure 4.9: Alternate configuration for enabling point-to-point connections. In this exam-
ple, between GPE0 and GPE15

Network Analysis Project [53], as well as synthetic matrices generated by the Graph500
R-MAT data generator [38]. We used the default values (A=0.57, B=C=0.19) to generate
power-law graphs with the number of edges equal to 100,000 and the number of vertices
swept between 5,000 and 80,000, as well as uniformly random matrices with the same
dimensions and average density.

Figure 4.10 compares the performance of the reconfigurable architecture against the
CPU and GPU libraries on the generated matrices. The reconfigurable architecture out-
performs both CPU and GPU implementations, but performs comparatively better for non-
uniformly distributed matrices.

Figure 4.11 shows the speedups of the custom architecture over the CPU and GPU

41

Processing Ele-
ment

1.5 GHz clock speed, 64-entry outstanding requests queue, 1 kB
scratchpad memory
Multiply phase: All 16 PEs per tile active
Merge phase: 8 PEs per tile active, rest disabled

L0 cache/
scratchpad

Multiply phase: 16 kB, 4-way set-associative, 16-ported, shared,
non-coherent cache with 32 MSHRs and 64 B block size per tile
Merge phase: 2 kB, 4-way set-associative, single-ported, private
cache with 8 MSHRs and 64 B block size + 2 kB scratchpad per
active PE-pair

L1 cache 4 kB, 2-way set-associative, 16-ported, shared, non-coherent with
32 MSHRs and 64 B blocks

Crossbar 16×16 & 4×4 non-coherent, swizzle-switch based
Main Memory HBM 2.0 with 16 64-bit pseudo-channels each @ 8000 MB/s

with 80-150 ns average access latency

Table 4.1: Simulation parameters of architecture

CPU 3.6 GHz Intel Xeon E5-1650V4, 6 cores/12 threads 128 GB
RAM, solid state drives

GPU NVIDIA Tesla K40, 2880 CUDA cores @ 745 MHz, 12 GB
GDDR5 at 288 GB/s

Table 4.2: CPU and GPU configurations

Figure 4.10: Speedups of architecture over the CPU running Intel MKL and the GPU
running cuSPARSE and CUSP on synthetic workloads

implementations on real data sets. The reconfigurable architecture outperforms for all the
inputs, with an average speedup of 7.9× over MKL, 13.0× over cuSPARSE and 14.0×
over CUSP.

Running the filter3D and roadNet-CA inputs achieve relatively smaller speedups com-
pared to the other matrices, as these are closer to diagonal matrices for which the competing
libraries are optimized towards and use fewer comparisons while multiplying two regular
matrices. MKL performs poorly on email-Enron, a real-world email dataset with the char-

42

acteristics of a power-law graph [54]. The reconfigurable architecture achieves the highest
speedups over cuSPARSE for matrices that have a more smeared (irregular) distribution of
non-zeros, such as ca-CondMat, cit-Patents, p2p-Gnutella31 and web-Google.

Figure 4.11: Speedups of architecture on real world workloads

4.4 Block Shuffling

In addition to activating and deactivating resources based on the algorithm and input data,
we can also make use of the reconfigurable memory hierarchy to quickly move data to
different locations. This allows us to accelerate preemption and context transfers discussed
in chapter 3 by keeping all data transfers on-chip and reducing buffer space requirements.
We call this new technique block shuffling.

For greater consistency with previous chapters in this section we consider an architec-
ture closer to that of a GPU, using multithreaded SIMT cores rather than SPMD processing
elements within a tile but keep the same reconfigurable memory hierarchy. We will make
use of NVIDIA’s terminology of streaming multiprocessor and thread block scheduler in-
stead of tile and tile manager, respectively. When performing a block shuffle, the first level
crossbars are configured to directly connect the SMs to the L2 cache to prevent interfer-
ence with other threads, corresponding to the configuration shown in figure 4.9. The second
level crossbars connect the L2 cache specified by the TBS for the buffer space.

The crossbars between the L1 and L2 cache are configured such that each SM can store
its context in a specified buffer space determined by the TBS. The context is then read by a
paired SM which will restore the thread block’s state.

4.4.1 Context-Size Reduction

As shown in chapter 3, displacing too many cache entries during context migration can re-
sult in a chain reaction of thread evictions called cataclysmic thread eviction. While avoid-
ing the L1 cache and storing context data directly in the L2 reduces this likelihood of this

43

significantly, we seek to reduce this possibility by reducing the size of the thread block’s
contexts. Throughput machines have not been designed in the past with context swapping
in mind, and there are several opportunities to reduce the massive context sizes previously
discussed including eliminating dead values, compressing common register patterns, and
detecting which scratchpad entries have been written to.

Detecting when registers have “dead” values, that is, values that will never be read
again, is simple to do during compilation. A value is dead in the region of code before an
instruction that writes to that register and after the most recent instruction that has read from
it. To reduce register size, this can be communicated to the runtime by including an extra
bit in the instruction’s encoding for each source register, indicating whether that register’s
value is dead or not after execution. SMs will maintain a bit vector for every active warp,
with each bit indicating whether the corresponding register contains a live value. Upon a
block shuffle, dead values need not be transferred.

Register compression is a technique that has been used in the past to recognize common
value patterns in registers written to and read by warps to compress their size and save space
or energy [55] [56] [57]. A hardware structure called a compressor/decompressor is placed
by the register file to check for five common patterns within a warp:

1. Constant: Every register holds the same value

2. Stride one: Every register holds the value of the previous register plus one

3. Stride four: Every register holds the value of the previous register plus four

4. Stride one - half warp: Same as stride one, but each half warp has its own starting
value

5. Stride four - half warp: Same as stride four, but each half warp has its own starting
value

A compressed register needs to hold potentially two 4-byte values for the half warp
cases, plus 3 bits to indicate which pattern it matches, reducing the storage requirements
by a factor of 15. Every register write will pass through the compressor to see if it matches
one of the patterns, and if so, the compressed data is stored in a compressed register cache

maintained by the SM. An additional bit vector is also maintained for each warp to indicate
whether each register has an entry in the register cache or not.

Although the register file is the dominant source of state on an SM, shared memory still
accounts for up to several hundred KBs in modern systems. To mitigate this overhead, the

44

design will take advantage of two properties of how shared memory is typically managed
by the programmer.

One immediate optimization is based on the observation that not all shared memory lo-
cations will be in use throughout the execution. If a block shuffle occurs near the beginning
of a thread block’s execution, it will likely not have stored much data in shared memory.
For example, figure 4.12 shows when data is written to shared memory over time during an
example thread block’s execution. If a block shuffle occurs before 300,000 cycles in, this
example would not need to transfer any data from shared memory to ensure correctness.

Figure 4.12: Trace of how much of a thread block’s shared memory space contains valid
data over time

We can track what data in the shared memory is valid through use of an auxiliary
hardware table referred to as an SM Array Table. Each entry of the baseline SM Array
Table will contain four fields: a valid bit, the starting index of a contiguous piece of data
in shared memory, the size of the contiguous array, and a thread block ID. After a thread
shuffle is signaled, each entry of the SM Array Table can be read out, and the respective
shared memory entries can be written to memory. The state of the SM Array Table should
be written to memory as well, so that only the necessary entries are read back when the
thread-block is resumed. However, since warps will typically write to adjacent shared
memory addresses to maximize bandwidth, large contiguous chucks of shared memory
should be easily encapsulated in a few entries of the table and not add much overhead.

The second optimization to make is that many kernels use shared memory to store
values directly from memory without modifying them. This is important because if the
memory address a shared memory entry is associated with can be tracked, and it can be
guaranteed that the memory location has not been modified, then the core does not need
to offload its shared data on a thread block swap. Instead, it can simply offload meta-

45

Figure 4.13: High level design of the SM Array Table, which keeps track of which entries
in the shared memory are valid, and if they can be found in memory

data containing the location of data in memory, and those addresses can be read when the
thread block is restarted. This can be implemented by adding four new fields to the SM
Array Table: a single bit identifying whether the entry is associating data with a memory
location, the starting address of the array in memory, the stride between elements of the
array, and a “conversion offset” which makes it easier to determine if a new store to shared
memory “aligns” with a particular array. The conversion offset is defined as the memory
address minus the shared index multiplied by the stride (alternatively, it is the y-intercept
on a graph relating shared memory indexes to memory addresses). The final SM Array
Table design, shown in figure 4.13 operates as follows:

• When a load is issued to memory, a static hint generated at compile time will signal
if the contents of this load will be stored in shared memory. Comparison logic will
check if the addresses in each lane of the warp have a constant, power of 2 stride. If
so, the first lane’s address will be buffered along with the stride.

• If and when the data returned by the load is stored into shared memory, the shared
memory address from the first lane will multiplied with the buffered stride (which
is a simple shift operation, since it is guaranteed to be a power of two), and then
subtracted from the memory address. This result is the “conversion offset” of the
data, and will be compared against entries in the cache.

• On each cycle, the new conversion offset is compared against stored offsets in a
particular entry of the SM Array Table. This process is pipelined, so successive
writes to shared memory can proceed without stalling.

46

• If the conversion offsets, thread block IDs, and strides match, then the values can be
appended / prepended to the array by incrementing the array size, and modifying the
starting addresses, if necessary. If some but not all values match, the “memory array”
bit is cleared.

• Whenever a store is issued, the store address is propagated down the pipeline on the
left of figure 4.13. If the address to any of the entries match, the bit marking the entry
as a memory array is cleared, indicating that the data in shared memory must now be
offloaded to memory on a thread-block swap.

• If an atomic memory operation is ever issued from the thread-block, all entries of the
SM Array Table must clear their ”memory array” bits, since there can no longer be
any guarantee that their memory counterparts haven’t been modified.

• In the event of a block shuffle, the SM Array Table is read one entry at a time. Data
corresponding to non-memory arrays are written to memory as before, but any data
corresponding to memory-arrays need not be touched. Only the meta-data needs to
be exported to memory, so that the values can be re-read when the block is resumed.

4.4.2 Block Shuffling Procedure

When a block shuffle is triggered, the following occurs:

1. TBS signals an individual SM that it should migrate its context to a separate SM with
a particular L2 ID, which is used by the SM to calculate a set of memory addresses
corresponding to that buffer space

2. SM writes all non-storage related context information, such as program counter, stack
pointer, and added microarchitectural state such as register file bit masks to buffer
space

3. SM writes register file contents one by one (by iterating through its RF bitmask) to
buffer space

• If the bits indicate that the register is live and compressed, the value is read
from the compressed register cache

• If the bits indicate that the register is live and uncompressed, the value is read
from the register file as normal

• If the bits indicate the register is dead, no value is read

47

4. SM writes scratchpad memory contents line by line to buffer space

• Starting with line 0 and progressing until the line pointed to by the next entry
in the SM Array Table, the SM reads the line and writes to the buffer space

• If the next line corresponds to an entry in the SM Array Table, the table entry is
transferred instead, and the SM proceeds to the line at the end of the table entry

5. Once all of the context has been transferred, the SM notifies the TBS, which then
signals the receiving SM with the buffer space ID

6. The receiving SM follows the same process, but reading from the buffer space instead
of writing

7. When reading a compressed register value, it is passed through the decompressor
before stored in the RF

8. When reading an SM Array Table entry, the value is either expanded or read from
main memory, accordingly

4.4.3 Methodology

We model block shuffling using the same configuration of GPGPU-Sim from chapter 3 with
added support for a reconfigurable memory hierarchy and auxiliary hardware structures for
block shuffling, such as the SM Array Table, compressor/decompressor, and compressed
register cache. The simulators use the configurations listed in table 4.3.

System Configuration
SMs 80 SMs, 5120 Cores, 1.6GHz

Max of 2K threads per SM
Max of 1K threads per TB
Max 64K registers per block
Max 48 KB shared memory per block
128 KB L1

Memory Subsystem 6 MB L2
900 GB/s bandwidth

Thread Scheduling GTO
Compressor one read / write per cycle
Compressed Register Cache 2 KB per SM
SM Array Table 128 Entries per SM

Table 4.3: GPGPU-sim simulation parameters used for evaluation

48

4.4.4 Results

Figure 4.14: Reduction of thread block context sizes

Figure 4.16 shows the effectiveness of compression techniques on the thread block
contexts. On average, contexts are reduced to 37.0% of their original value, with the new
state size shown in grey. Most of the reduction comes from compressing common values.
Although irregular algorithms tend to operate with pointers that will be random and difficult
to compress, these are usually limited to a few registers only. The remainder of the registers
often share the same value or exhibit the other properties described, and thus can be reduced
significantly. Eliminating dead values provides some benefit but not nearly as much; as
discussed in chapter 3, these kernels tend to use a small number of registers as it is.

Although the benchmarks from the LonestarGPU suite do not make much use of shared
memory, we wanted to evaluate how our shared memory compression scheme performs
to ensure that our design is generalizable to programs that may make use of it. Figure
4.15 shows the context reduction of benchmarks using shared memory from the Rodinia
benchmark suite [58]. On average, the context sizes are reduced by 73% for offload: 55%
from register compression, 8% from tracking valid entries in shared memory, and 10%
from tracking constant arrays in shared memory. The reload context sizes are reduced by
an average of 63%.

Figure 4.4 shows the latency of thread block shuffling compared with the latency of tra-
ditional context swapping, and the latency of executing individual iterations of each kernel.
On average, the latency of thread block shuffling is 90% less than the latency of context
switching. BFS, SSSP, and DMR see moderate improvements of 2-4% as block shuffling
can be performed more frequently than preemption and so some smaller phase changes can
be handled. SGD, PTA, and MST get the most benefit as their execution latencies were too

49

Figure 4.15: Context reduction on Rodinia benchmarks from register file (blue), reloading
shared memory (red), offloading shared memory (green)

Application Preemption
latency (µs)

Block
shuffle

latency (µs)

Execution
latency (µs)

BFS 3.0 0.06 56,000
DMR 11.8 0.25 9,080
MST 6.2 0.13 1,030
PTA 20.1 0.49 40
SSSP 5.9 0.01 23,000,000
SGD 0.3 0.13 10

Table 4.4: Block shuffle latency compared to preemption latency and iteration latency

small to make good use of preemption with out incurring significant overheads of trans-
ferring the full context sizes to main memory and back. By using thread block shuffling,
all kernels can feasibly have their thread blocks migrated in response to shifting resource
usages, allowing for a much finer grained architecture for processing mixed workloads.

The compressor/decompressor and SM Array Table have both been designed in Verilog
and synthesized into a 28 nm technology netlist using Synopsys’ Design Compiler.

50

Figure 4.16: Throughput increases when employing only preemption (blue), only predic-
tive scheduling (orange), and both (grey), with the throughput gains provided by block
shuffling over traditional preemption annotated (yellow)

Number of entries Area (µm2) Power (mW)
16 17902 18.5
32 36236 36
64 72789 74

128 165310 149

Table 4.5: Synthesis results of different sized SM Array Table

4.5 Related Work

Yavits et al [59] codesign a sparse matrix-matrix multiplication algorithm and hardware
based on custom RAM tables. Lin et al [60] used FPGAs to build reconfigurable com-
pute engines in order to accelerate sparse matrix-matrix computation but demonstrate less
scalability for full system throughputs.

Register compression has been used by Gebhart et al [61] [62] [63] via smaller register
caches accessed before the register file. Jeon et al [64] has used dead value analysis to
reduce the size of the register file. Pekhimenko et al [65], Lee et al [66], Stephenson et
al [67] and Kloosterman et al [57] have all identified common register value trends across
warps that were used to compress the size of register files.

These works have all been motivated by reducing power and energy consumption. We
are the first to our knowledge who have looked at using these techniques to quickly repar-

51

tition resources among contexts.

52

CHAPTER 5

Enabling Context Migration in Scalable Vector
Cores

5.1 Introduction

Although less powerful than a GPU, SIMD enabled processors are a popular choice for
high performance computing due to the ease of programming. Rather than writing separate
kernels and explicitly managing memory transfers between host and device, programmers
need only annotate “for” loops with independent loops in source code, and the loop contents
will be parallelized without control or memory transfers. To facilitate a greater spectrum
of workloads, Arm introduced the Scalable Vector Extension (SVE) which allows for im-
plementation specific hardware vector sizes as well as several other enhancements over its
previous Advanced SIMD instruction set. This enables seamless hardware improvements
without requiring code to be recompiled for successive generations with different vector
sizes.

An additional benefit is that heterogeneous systems using different vector lengths can
be used for workloads which exhibit different levels of parallelism over time, such as we
would see with irregular workloads or workloads containing a diverse set of parallelizable
sections. Code sections which are not able to fully utilize a given vector length can be
moved to a core with a smaller vector length to conserve power, while more parallelizable
loops can be run on larger vector cores however the OS sees fit. However, this strategy
poses practical issues, as once vector code has begun execution, correctness cannot be
ensured if the thread is migrated to a core with a smaller vector length. This greatly limits
how heterogeneous architectures can be designed to take advantage of variable parallelism
within designs.

In this chapter, we will demonstrate the value of larger vector lengths across a variety
of regular and irregular workloads and motivate the design of heterogeneous systems with
different vector lengths. We will then describe our solution for the correctness problem

53

with a small set of instructions to the ISA which allows for flexibility in writing new code
as well as assuring correctness for legacy code.

5.2 Background

5.2.1 SVE

Single-Instruction Multiple-Data (SIMD) extensions to processors allow programmers to
take advantage of wide arithmetic functional units when processing smaller units of data by
executing multiple instances of the same instruction simultaneously. For example, Arm’s
Advanced SIMD instruction set (more commonly known as Neon)[68] makes use of 128-
bit functional units. Programmers can make use of Neon instructions to process 2x64-
bit elements, 4x32-bit elements, 8x16-bit elements, or 16x8-bit elements simultaneously.
The program explicitly indicates which of these sizes should be used, and the programmer
therefore has knowledge over how many elements are being executed simultaneously. Neon
is well designed for DSP applications, processing media codecs, et cetera. It only enables
simple control flow and processing of regular contiguous data structures.

Figure 5.1: Example loop in SVE

SVE, on the other hand, does not specify the hardware vector length (VL), instead
allowing sizes between 128 and 2048 bits. Programmers write “vector-length-agnostic”
(VLA) code which specifies the subelement size, but treats the VL as an unknown variable
that is resolved dynamically at runtime. Figure 5.1 shows an example of one of these such
loops. The programmer uses the incw instruction to increment a counter variable (stored
in x2 for this example) by the VL and loops while the counter is below some threshold.
A larger VL will result in fewer iterations and vice-versa, so the programmer is not aware
of how many iterations will occur for a given input, but the code can be written such that
it performs correctly regardless of the hardware’s VL. To handle input sizes that are not
an integer multiple of the VL as well as supporting “if” statements within the code, SVE
provides a set of predicate registers which deactivate lanes from executing their respective

54

instructions when necessary. An example is shown in figure 5.2, where the loop body is
predicated by register p2 which is set by the compeq instruction.

Figure 5.2: Predication

An additional enhancement of SVE is the support for gather-load and scatter-store in-
structions. This is useful for HPC applications, which may use complex data structures
consisting of pointers. Gather-load and scatter-store instruction enable indirect access to
non-contiguous memory arrays within a single instruction. This is shown in figure 5.3,
where the values for idxs are stored in vector register z2, which is used by the subsequent
ld1w load instruction to indirectly access several scattered memory locations.

SVE also adds horizontal reduction instructions so that dependencies between elements
in a vector can be resolved. SVE supports summation, minimum, maximum, and logical
reductions within single instructions. Figure 5.4 shows all of these features in action, where
z3 is filled with non-zero elements of a sparse matrix using gather-loads, and the fadda

reduction instruction sums the product of these values with vector elements to calculate a
partial dot-product, all the while being predicated by register p1 to transparently manage
the number of loop iterations.

Figure 5.3: Vector load-stores

55

Figure 5.4: Sparse Matrix-Vector Multiplication

5.2.2 Heterogeneous Systems

Heterogeneous multi-core systems are those where the individual cores are distinct from
one another, having different performance, power, and area metrics. An example is Arm’s
big.Little architecture [69] which has been implemented to dynamically trading off perfor-
mance and power, primarily in mobile settings and other power-constrained devices. In
this architecture, a larger, faster, and more power-hungry core is paired with a slower, more
power-efficient one. During periods when latency is determined to be non-critical (as de-
termined by the operating system), an application is run on the little core to limit battery
use. During periods when high performance or low latency is needed, the context can be
switched to the big core to meet the computation needs before being migrated back to the
small core. Figure 5.5 shows an example of a big.LITTLE architecture where the “big”
core has twice the issue width and VL of the “LITTLE” core.

Figure 5.5: big.LITTLE architecture consisting of different issue widths and vector lengths

56

5.3 Motivation

There has been a clear increase in the use of SIMD extensions in the use of HPC appli-
cations. Figure 5.6 shows how the number of Arm processors sold has increased over the
past decade according to the World Semiconductor Trade Statistics. Several large scale
systems have been implemented using SIMD extensions. Fujitsu’s Post-K Supercomputer
is intended to be employed using Armv8 cores with SVE enabled, and SenWei, Bull Atos
Technologies, and the European Processor Initiative have all announced supercomputer
designs based on Arm cores with the possibility of included SVE.

Figure 5.6: Number of processors (in billions) sold according to WSTS

There has yet to be systems designed which make explicit use of multiple SVE-enabled
cores with different VLs. There is little public data on how workloads scale with different
VLs to justify this hardware decision. In addition it is not immediately clear how such a
system would operate with guaranteed correctness. Although VLA code can be written to
guarantee that the same results are generate for every valid VL, there is no such guarantee
when the VL is changed part way through execution. Correctness can be trivially guaran-
teed when moving to a larger VL by masking all previously unused lanes, but migration to
a smaller VL means that certain data must be discarded and, worse-yet, information regard-
ing the VL can be leaked via instructions like incw and cause inconsistent behavior after
the context switch.

57

5.3.1 Scalability Study

We first provide evidence for the value of including larger VLs in systems by showing how
performance is improved by increasing the width of the vector pipeline. We ported a subset
of GNU’s glibc string library [70] to make use of SVE instructions. Their descriptions are
given in table 5.1 and have wide use in text parsing.

Workload Description
strchr finds first occurrence of a character in a string
strcmp compares two given strings
strcpy copies a string to a new location
strlen returns length of a given string
strstr searches for a substring within another string

Table 5.1: Description of workloads

These workloads stream through their inputs at regular intervals using direct index-
ing. No scatter-gather operations are used, and lanes are typically only predicated in the
relatively rare case of passing past the end character. As such, these are highly regular
workloads, and give us a glimpse into how programs with predictable structure behave as
the VL is scaled up.

µArch
Parameter

Value

Frequency 2.8 GHz
Memory bus width 512 bits

L1-I 64 KB
L1-D 32 KB

L2 1 MB
Issue Width 4

Decode Depth 6
ROB Entries 128

Table 5.2: Baseline core configuration

To evaluate these trends, we simulated the execution of these programs using an in-
house simulator modeling an ARMv8-A core with enabled SVE, who’s baseline properties
are described in table 5.2. Hardware vector lengths of 128, 256, 512, and 1024 bits were
tested. 1 million invocations of each function were simulated passing in a random subset
of dictionary words. Their speedups, normalized to a 128 bit vector length, are shown in
figure 5.7.

Ideally, we would observe speedups of 1x, 2x, 4x, and 8x, respectively across these
sweeps in correspondence with the increase in vector length. In practice, such speedups
are rarely seen as a result of Ahmdal’s law and sections of non-parallelizable code. In the

58

Figure 5.7: Speedups of running benchmarks on different vector length machines

case of these benchmarks, although the inner bodies of the loops are highly parallel, the
memory system does not scale with the vector length. As a result, vector loads take longer
to complete on average. Figure 5.8 shows how the number of stalls as a result of memory
misalignments (in other words, loads that spill over the memory word boundary and require
subsequent load operations) when running strchr. When the vector length is 128 bits, the
data fetched by a load instruction is always aligned properly and can be moved from the
cache to the pipeline in a single cycle. Assuming data exists in the cache (a reasonable
assumption if using a prefetcher for these data streaming algorithms), the number of in-
structions completed per cycle (IPC) should be near the maximum possible of 4 (since this
is a four-wide machine). However, as the vector length increases, more load instructions
cross cache line boundaries and require extra cycles to bring in the full data. Figure 5.9
shows how the IPC drops as a result of these increased stalls, resulting in the sublinear
speedup we observe.

Figure 5.8: Number of stalls (in billions) as a result of load misalignments as VL increases

59

Figure 5.9: IPC as VL increases

To better quantify the value of larger vectors, we compare this speedup to other microar-
chitectural enhancements. Table 5.3 describes the parameters that we analyzed by modify-
ing the baseline architecture. We measured the speedups when varying the pipeline’s width
and depth and the number of reorder buffer (ROB) entries on the benchmarks. Of these,
only the issue width had any non-negligible performance impact. We show the speedups
of strchr when issue width is varied given a vector length of 128 bits as well as 512 bits, as
compared to the speedup of increasing the vector length in figure 5.10.

µArch
Parameter

Range

Issue Width 1-8
Decode Depth 4-8
ROB Entries 32-256

VL 128-1024

Table 5.3: Sweep Values

Figure 5.10: Speedups of strchr when varying issue width and vector length

We learn several things from these results:

60

• These workloads exhibit significant amounts of parallelism between loop iterations
such that ROB size and pipeline depth, which seek to reduce the number of stalls due
to inter-instruction dependencies, have little effect

• For such workloads, increasing the vector length provides speedups comparable to
increasing the issue width

• Increasing either the issue width or the vector length does not preclude the benefits
of either. The two techniques can be combined.

To evaluate irregular workloads, we ported the SSSP benchmark to SVE. We com-
pared the speedups when processing a dense graph (density=10%) versus a sparse one
(density=0.001%), which are shown in figure 5.11. As explained in chapter 3, irregular
workloads have different execution behavior when processing differently structured data.
In the case of SSSP, the benchmark has a significantly improved cache hit rate when pro-
cessing dense data sets, resulting in greater throughput. We observe the same tendencies
here, with sparse data sets scaling much more poorly with vector length.

Figure 5.11: Speedups for dense and sparse workloads SSSP

The conclusion we draw is that the combination of the specific programs being, run,
the structure of the input data, and the desired power and performance goals significantly
impact the ideal vector length to run a thread on. Including multiple cores in a system offers
the runtime greater flexibility in maximizing performance when processing a diverse set of
workloads.

61

5.4 ISA Extensions

We now present our solution to the correctness problem of changing the VL part way
through execution. It is built on the observation that incorrect results only occur when
the same values are used before and after a context migration. If we can identify regions
of code that are isolated in their usage of vector data, then we can limit migrations to
different sized vector cores to those points in the program that are guaranteed not to use
any previously written vector values. This is difficult to do dynamically in hardware, as it
requires knowledge of the program and algorithm as a whole. However, the programmer
and/or compiler can, if desired, explicitly annotate these regions. We therefore design our
solution around the following goals:

• Allow for identification of migratory regions without significant change to program-
ming model

• Enable nested function calls to vector code

• Ensure correct functionality of legacy code

• Prioritize correctness and simplicity

Requiring support for legacy code implies that we must assume that a thread can’t be mi-
grated unless the runtime is certain there won’t be correctness issues, which is not likely to
include many cases besides the trivial one where no vector code has been executed.

We propose the addition of two instructions as well as an architectural register to the
ISA. These three added features will be used by the runtime to determine if a running thread
is currently pinned to a particular vector length (meaning the thread can only be migrated
to cores with a vector length greater than or equal to the current one), or if the thread is
unpinned and can be migrated anywhere. We describe the ISA additions in detail here:

• PIN LEVEL is the added register. A value of 0 indicates that the current thread is not
pinned to a particular VL and can be migrated anywhere the runtime chooses without
impacting correctness. Any other value indicates that the current thread is pinned to
the current VL and cannot be migrated to cores with smaller VLs.

• PIN VL is an added instruction. It increments PIN LEVEL by 1 and indicates to
the runtime that the thread should be pinned to the current VL. The programmer
must place this instruction before the first vector instruction, or the whole function
(and potentially the entire thread) will be permanently pinned to the current VL (the
reasoning for this is to allow correct execution of legacy code and is described below).

62

• UNPIN VL is the second added instruction. If PIN LEVEL is 0 when this instruction
is executed, it triggers an exception. Otherwise, it decrements PIN LEVEL by 1,
possibly (though not necessarily) indicating to the runtime that it is safe to unpin the
current thread.

In the typical usage, the programmer places the PIN VL instruction before any vector
code, and places UNPIN VL after all the relevant vector data is dead and the programmer
can guarantee that no correctness issues will occur if the thread is migrated to a different
sized core. This situation is shown in figure 5.12. A green segment of code indicates that
the thread can be migrated anywhere, whereas a red segment of code indicates that the
thread must stay on cores that can operate using the current vector length.

Figure 5.12: Typical use of PIN VL

It may seem redundant to include a PIN VL instruction as the runtime could implicitly
pin the thread at the first vector instruction, but it is needed to properly support legacy code.
Figure 5.14 demonstrates how the runtime handles legacy code where vector instructions
are executed before a PIN VL instruction is seen. In this case, the runtime implicitly pins
the thread before the first vector instruction. However, because there is no way for the
runtime to determine dynamically if and when all vector state is dead and will not be used
in the future, it must pessimistically assume that the thread must be tied to the current
VL until it is terminated. Even if later vector code is executed that includes a PIN VL /
UNPIN VL pair, there is no way to determine if vector state generated before that code
segment will be used. Thus, although legacy code not making use of these new instructions
will not be able to benefit from having multiple VLs in a system, we can guarantee that it
will execute correctly, as it will behave as if there is only one available VL.

63

Figure 5.13: Using PIN VL with legacy code

The PIN LEVEL register is needed to handle the case where multiple PIN VL instruc-
tions are executed in sequence, as would occur if vector code calls other vector subroutines,
as shown in figure 5.14. In this case, the thread should not be unpinned after the nested
function calls UNPIN VL, because there is still vector state from the calling function that
is active. UNPIN VL should only take effect if there has been a matching UNPIN VL for
every previous PIN VL. This is the purpose for PIN LEVEL. A positive value in that regis-
ter means there are unmatched PIN VL instructions and the thread should remain pinned.
As UNPIN VL instructions should never be seen before a corresponding PIN VL instruc-
tion, the execution of UNPIN VL while PIN LEVEL has a value of 0 represents undefined
behavior and generates an exception.

There are a few additional challenges that arise as a result of the inclusion of these new
instructions and architectural register. The first is that care must be taken to include the
PIN LEVEL register in any sort of state management. An example where this is necessary
is when executing the Linux functions setjmp [71] or longjmp [72]. These instructions
allow for exceptional control transfer into or out of nested functional calls or coroutines by
saving and later restoring the current context and environment. In any situations like these,
the current PIN LEVEL value must be saved as well.

An additional concern is that on many heterogeneous systems, the OS is allowed to
indefinitely disable cores, usually for power or performance considerations. A plausible
scenario is that the OS moves the system into a power saving mode, disables the “big”
core, and migrates all code to the “LITTLE” core. If a thread is currently pinned to the
larger VL, it will not be able to continue execution. Therefore, it is necessary to augment

64

Figure 5.14: Ambiguity which arises during function calls

OS schedulers on these systems to be aware of this new restriction and prevent starvation.

5.5 Conclusion

In this chapter, we have demonstrated the value of including multiple sized vector cores
within a single system. Different workloads as well as diverse possible inputs to those
workloads have a wide range of benefits when running on smaller or larger vector pipelines.
System designers will have greater flexibility in navigating the complex tradeoffs between
power, performance, and area, if they have the option to migrate threads between different
vectors cores dynamically based on execution behavior. To enable this behavior while en-
suring correctness as the hardware vector length changes during execution, we have shown
how the inclusion of two new instructions and one architectural register can be effective.
These additions to the ISA are simple to use, and allow legacy code to continue functioning
correctly, although the code will not benefit from having access to multiple vector lengths.
These extensions can be combined with strategies discussed in earlier chapters to better
facilitate the migration of large contexts between cores.

65

CHAPTER 6

Conclusion

This dissertation motivates the need to augment data parallel processors to better handle the
dynamic needs associated with more general workloads exhibiting irregular parallelism.
As Moore’s law slows down, more and more complicated tasks will be parallelized in an
attempt to maintain performance expectations, but the memory and control irregularities
manifest in these workloads make scheduling work items and partitioning resources to
those items more challenging. Application-specific integrated circuits may find increased
use for applications of key importance, but to maintain the prevalence of general appli-
cation development and deployment, general purpose architectures like GPUs and SIMD
processors must be augmented. This dissertation has focused on the goal of generalizing
and replacing context management schemes to better accommodate the large number of
threads present in throughput architectures.

Chapter 3 outlined the problem of irregularities in data structures manifesting them-
selves as variances in hardware resource usages, causing interference and slow downs be-
tween threads. However, these shifts happen in a smooth manner and allows the opportu-
nity for the runtime to react dynamically. Augmenting the thread block scheduler to track
performance metrics allows for better allocation heuristics at thread block dispatch, as well
as appropriate times to preempt running thread blocks to better handle changing execu-
tion conditions. This allows for up to a 17% increase in throughput over other scheduling
strategies.

Chapter 4 extended these ideas by considering the inclusion of reconfigurable resources
in throughput architectures. By incorporating programmable crossbars and enabling/dis-
abling different compute and memory units, systems can be better balanced for a variety of
workloads. This also enables a more sophisticated version of preemption and thread block
migration called block shuffling, which can be done entirely on chip with 90% reduced
buffer space and 24% increased throughput.

Finally chapter, 5 showed how extending these ideas to heterogeneous systems with
different sized vector pipelines introduces undefined behavior and limits the flexibility of

66

system designers to account for a greater variety of workload types. We motivated the
need for more general systems by illustrating the difference in available parallelism across
different workloads, and then provided an extension to the ISA which ensures correctness
while allowing for greater scalability of future systems.

67

BIBLIOGRAPHY

[1] Nvidia, “Fermi Architecture Whitepaper,” http://www.nvidia.com/
content/pdf/fermi_white_papers/nvidia_fermi_compute_
architecture_whitepaper.pdf, Accessed: May 2015.

[2] Burtscher, M., Nasre, R., and Pingali, K., “A quantitative study of irregular programs
on GPUs,” Workload Characterization (IISWC), 2012 IEEE International Symposium
on, IEEE, 2012, pp. 141–151.

[3] Sewell, K., Dreslinski, R. G., Manville, T., Satpathy, S., Pinckney, N., Blake, G.,
Cieslak, M., Das, R., Wenisch, T. F., Sylvester, D., et al., “Swizzle-switch networks
for many-core systems,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, Vol. 2, No. 2, 2012, pp. 278–294.

[4] Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S., Kirk, D. B., and Hwu,
W.-m. W., “Optimization principles and application performance evaluation of a mul-
tithreaded GPU using CUDA,” Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and practice of parallel programming, ACM, 2008, pp. 73–82.

[5] Fatahalian, K., Sugerman, J., and Hanrahan, P., “Understanding the efficiency of
GPU algorithms for matrix-matrix multiplication,” Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, ACM, 2004, pp. 133–
137.

[6] Barnes, J. and Hut, P., “A hierarchical O (N log N) force-calculation algorithm,” na-
ture, Vol. 324, No. 6096, 1986, pp. 446.

[7] Braunstein, A., Mézard, M., and Zecchina, R., “Survey propagation: An algorithm for
satisfiability,” Random Structures & Algorithms, Vol. 27, No. 2, 2005, pp. 201–226.

[8] Harish, P. and Narayanan, P., “Accelerating large graph algorithms on the GPU using
CUDA,” International conference on high-performance computing, Springer, 2007,
pp. 197–208.

[9] Méndez-Lojo, M., Nguyen, D., Prountzos, D., Sui, X., Hassaan, M. A., Kulkarni,
M., Burtscher, M., and Pingali, K., “Structure-driven optimizations for amorphous
data-parallel programs,” ACM Sigplan Notices, Vol. 45, ACM, 2010, pp. 3–14.

68

http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf

[10] Kim, J. and Batten, C., “Accelerating irregular algorithms on gpgpus using fine-grain
hardware worklists,” Proceedings of the 47th Annual IEEE/ACM International Sym-
posium on Microarchitecture, IEEE Computer Society, 2014, pp. 75–87.

[11] Nasre, R., Burtscher, M., and Pingali, K., “Data-driven versus topology-driven irreg-
ular computations on gpus,” Parallel & Distributed Processing (IPDPS), 2013 IEEE
27th International Symposium on, IEEE, 2013, pp. 463–474.

[12] Luo, L., Wong, M., and Hwu, W.-m., “An effective GPU implementation of breadth-
first search,” Proceedings of the 47th design automation conference, ACM, 2010, pp.
52–55.

[13] Nasre, R., Burtscher, M., and Pingali, K., “Morph algorithms on GPUs,” ACM SIG-
PLAN Notices, Vol. 48, ACM, 2013, pp. 147–156.

[14] Mendez-Lojo, M., Burtscher, M., and Pingali, K., “A GPU implementation of
inclusion-based points-to analysis,” ACM SIGPLAN Notices, Vol. 47, No. 8, 2012,
pp. 107–116.

[15] Jones, S., “Introduction to dynamic parallelism,” GPU Technology Conference Pre-
sentation S, Vol. 338, 2012, p. 2012.

[16] “Unified Memory for CUDA Beginners,” https://devblogs.nvidia.com/
unified-memory-cuda-beginners/, Accessed: 2018-03-15.

[17] AMD, A., “Accelerated parallel processing: OpenCL programming guide,” URL
http://developer. amd. com/sdks/AMDAPPSDK/documentation, 2011.

[18] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S.,
Bhatia, S., Boden, N., Borchers, A., et al., “In-datacenter performance analysis of a
tensor processing unit,” Proceedings of the 44th Annual International Symposium on
Computer Architecture, ACM, 2017, pp. 1–12.

[19] Jiao, Q., Lu, M., Huynh, H. P., and Mitra, T., “Improving GPGPU energy-efficiency
through concurrent kernel execution and DVFS,” Code Generation and Optimization
(CGO), 2015 IEEE/ACM International Symposium on, IEEE, 2015, pp. 1–11.

[20] Zhong, J. and He, B., “Kernelet: High-throughput GPU kernel executions with dy-
namic slicing and scheduling,” IEEE Transactions on Parallel and Distributed Sys-
tems, Vol. 25, No. 6, 2014, pp. 1522–1532.

[21] Liang, Y., Huynh, H. P., Rupnow, K., Goh, R. S. M., and Chen, D., “Efficient GPU
spatial-temporal multitasking,” IEEE Transactions on Parallel and Distributed Sys-
tems, Vol. 26, No. 3, 2015, pp. 748–760.

[22] Nvidia, “Kepler Architecture Whitepaper,” .www.nvidia.com/content/PDF/
NVIDIAKeplerGK110ArchitectureWhitepaper.pdf, Accessed: July
2019.

69

https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://devblogs.nvidia.com/unified-memory-cuda-beginners/
. www.nvidia.com/content/PDF/NVIDIA Kepler GK110 Architecture Whitepaper.pdf
. www.nvidia.com/content/PDF/NVIDIA Kepler GK110 Architecture Whitepaper.pdf

[23] Nvidia, “Multi-process service,” .http://docs.nvidia.com/deploy/
mps/index.html, Accessed: July 2019.

[24] Adriaens, J. T., Compton, K., Kim, N. S., and Schulte, M. J., “The case for GPGPU
spatial multitasking,” IEEE International Symposium on High-Performance Comp Ar-
chitecture, IEEE, 2012, pp. 1–12.

[25] Wang, Z., Yang, J., Melhem, R., Childers, B., Zhang, Y., and Guo, M., “Simultane-
ous multikernel GPU: Multi-tasking throughput processors via fine-grained sharing,”
2016 IEEE International Symposium on High Performance Computer Architecture
(HPCA), IEEE, 2016, pp. 358–369.

[26] Pai, S., Thazhuthaveetil, M. J., and Govindarajan, R., “Improving GPGPU concur-
rency with elastic kernels,” ACM SIGPLAN Notices, Vol. 48, ACM, 2013, pp. 407–
418.

[27] Park, J. J. K., Park, Y., and Mahlke, S., “Dynamic resource management for efficient
utilization of multitasking GPUs,” ACM SIGOPS Operating Systems Review, Vol. 51,
No. 2, 2017, pp. 527–540.

[28] Sundaram, N., Satish, N., Patwary, M. M. A., Dulloor, S. R., Anderson, M. J., Vad-
lamudi, S. G., Das, D., and Dubey, P., “Graphmat: High performance graph analyt-
ics made productive,” Proceedings of the VLDB Endowment, Vol. 8, No. 11, 2015,
pp. 1214–1225.

[29] Satish, N., Sundaram, N., Patwary, M. M. A., Seo, J., Park, J., Hassaan, M. A., Sen-
gupta, S., Yin, Z., and Dubey, P., “Navigating the maze of graph analytics frameworks
using massive graph datasets,” Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, ACM, 2014, pp. 979–990.

[30] Lindholm, E., Nickolls, J., Oberman, S., and Montrym, J., “NVIDIA Tesla: A unified
graphics and computing architecture,” IEEE micro, Vol. 28, No. 2, 2008, pp. 39–55.

[31] Nvidia, C., “NVIDIAs Next Generation CUDA Compute Architecture: FERMI,”
Comput. Syst, Vol. 26, 2009, pp. 63–72.

[32] Tanasic, I., Gelado, I., Cabezas, J., Ramirez, A., Navarro, N., and Valero, M., “En-
abling preemptive multiprogramming on GPUs,” ACM SIGARCH Computer Archi-
tecture News, Vol. 42, IEEE Press, 2014, pp. 193–204.

[33] Menon, J., De Kruijf, M., and Sankaralingam, K., “iGPU: exception support and spec-
ulative execution on GPUs,” ACM SIGARCH Computer Architecture News, Vol. 40,
IEEE Computer Society, 2012, pp. 72–83.

[34] Park, J. J. K., Park, Y., and Mahlke, S., “Chimera: Collaborative Preemption for Mul-
titasking on a Shared GPU,” Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating Systems, ACM,
2015, pp. 593–606.

70

. http://docs.nvidia.com/deploy/mps /index.html
. http://docs.nvidia.com/deploy/mps /index.html

[35] Bakhoda, A., Yuan, G. L., Fung, W. W., Wong, H., and Aamodt, T. M., “Analyzing
CUDA workloads using a detailed GPU simulator,” Performance Analysis of Systems
and Software, 2009. ISPASS 2009. IEEE International Symposium on, IEEE, 2009,
pp. 163–174.

[36] Stratton, J. A. et al., “Parboil: A Revised Benchmark Suite for Scientific and Com-
mercial Throughput Computing,” Tech. Rep. IMPACT-12-01, University of Illinois at
Urbana-Champaign.

[37] Xu, Q., Jeon, H., Kim, K., Ro, W. W., and Annavaram, M., “Warped-slicer: efficient
intra-SM slicing through dynamic resource partitioning for GPU multiprogramming,”
2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA), IEEE, 2016, pp. 230–242.

[38] Murphy, R. C., Wheeler, K. B., Barrett, B. W., and Ang, J. A., “Introducing the graph
500,” Cray Users Group (CUG), Vol. 19, 2010, pp. 45–74.

[39] Satish, N., Sundaram, N., Patwary, M. M. A., Seo, J., Park, J., Hassaan, M. A., Sen-
gupta, S., Yin, Z., and Dubey, P., “Navigating the maze of graph analytics frameworks
using massive graph datasets,” Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, ACM, 2014, pp. 979–990.

[40] Kayıran, O., Jog, A., Kandemir, M. T., and Das, C. R., “Neither more nor less: opti-
mizing thread-level parallelism for GPGPUs,” Proceedings of the 22nd international
conference on Parallel architectures and compilation techniques, IEEE Press, 2013,
pp. 157–166.

[41] Li, D., Rhu, M., Johnson, D. R., O’Connor, M., Erez, M., Burger, D., Fussell, D. S.,
and Redder, S. W., “Priority-based cache allocation in throughput processors,” 2015
IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA), IEEE, 2015, pp. 89–100.

[42] Sethia, A., Jamshidi, D., and Mahlke, S., “Mascar: Speeding up GPU warps by re-
ducing memory pitstops,” High Performance Computer Architecture (HPCA), 2015
IEEE 21st International Symposium on, Feb 2015, pp. 174–185.

[43] Zhao, X., Wang, Z., and Eeckhout, L., “Classification-Driven Search for Effective
SM Partitioning in Multitasking GPUs,” Proceedings of the 2018 International Con-
ference on Supercomputing, ACM, 2018, pp. 65–75.

[44] Wu, B., Chen, G., Li, D., Shen, X., and Vetter, J., “Enabling and exploiting flexible
task assignment on GPU through SM-centric program transformations,” Proceedings
of the 29th ACM on International Conference on Supercomputing, ACM, 2015, pp.
119–130.

[45] Chen, G., Zhao, Y., Shen, X., and Zhou, H., “EffiSha: A software framework for
enabling effficient preemptive scheduling of GPU,” ACM SIGPLAN Notices, Vol. 52,
ACM, 2017, pp. 3–16.

71

[46] Buluç, A. and Gilbert, J. R., “The Combinatorial BLAS: Design, implementation,
and applications,” The International Journal of High Performance Computing Appli-
cations, Vol. 25, No. 4, 2011, pp. 496–509.

[47] Gilbert, J. R., Reinhardt, S., and Shah, V. B., “A unified framework for numerical
and combinatorial computing,” Computing in Science & Engineering, Vol. 10, No. 2,
2008, pp. 20–25.

[48] Van Dongen, S. M., Graph clustering by flow simulation, Ph.D. thesis, 2000.

[49] Duff, I. S., Heroux, M. A., and Pozo, R., “An overview of the sparse basic linear al-
gebra subprograms: The new standard from the BLAS technical forum,” ACM Trans-
actions on Mathematical Software (TOMS), Vol. 28, No. 2, 2002, pp. 239–267.

[50] Tech, A., “NVIDIA Launches Tesla K40,” http://www.anandtech.com/
show/7521/nvidia-launches-tesla-k40, 2013.

[51] Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A., Hest-
ness, J., Hower, D. R., Krishna, T., Sardashti, S., et al., “The gem5 simulator,” ACM
SIGARCH Computer Architecture News, Vol. 39, No. 2, 2011, pp. 1–7.

[52] Davis, T. A. and Hu, Y., “The University of Florida sparse matrix collection,” ACM
Transactions on Mathematical Software (TOMS), Vol. 38, No. 1, 2011, pp. 1.

[53] Leskovec, J. and Krevl, A., “SNAP Datasets: Stanford Large Network Dataset Col-
lection,” http://snap.stanford.edu/data, June 2014.

[54] Chapanond, A., Krishnamoorthy, M. S., and Yener, B., “Graph Theoretic and Spec-
tral Analysis of Enron Email Data,” Computational & Mathematical Organization
Theory, Vol. 11, No. 3, Oct 2005, pp. 265–281.

[55] Lee, S., Kim, K., Koo, G., Jeon, H., Ro, W. W., and Annavaram, M., “Warped-
compression: enabling power efficient GPUs through register compression,” ACM
SIGARCH Computer Architecture News, Vol. 43, ACM, 2015, pp. 502–514.

[56] Liu, Z., Gilani, S., Annavaram, M., and Kim, N. S., “G-Scalar: Cost-effective gen-
eralized scalar execution architecture for power-efficient GPUs,” 2017 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA), IEEE, 2017,
pp. 601–612.

[57] Kloosterman, J., Beaumont, J., Jamshidi, D. A., Bailey, J., Mudge, T., and Mahlke,
S., “Regless: just-in-time operand staging for GPUs,” Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, ACM, 2017, pp. 151–
164.

[58] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H., and Skadron, K.,
“Rodinia: A Benchmark Suite for Heterogeneous Computing,” Proceedings of the
2009 IEEE International Symposium on Workload Characterization (IISWC), IISWC
’09, IEEE Computer Society, Washington, DC, USA, 2009, pp. 44–54.

72

http://www.anandtech.com/show/7521/nvidia-launches-tesla-k40
http://www.anandtech.com/show/7521/nvidia-launches-tesla-k40
http://snap.stanford.edu/data

[59] Yavits, L. and Ginosar, R., “Sparse Matrix Multiplication on CAM Based Accelera-
tor,” CoRR, Vol. abs/1705.09937, 2017.

[60] Lin, C. Y., Zhang, Z., Wong, N., and So, H. K. H., “Design space exploration for
sparse matrix-matrix multiplication on FPGAs,” 2010 Int’l Conference on Field-
Programmable Technology, Dec 2010, pp. 369–372.

[61] Gebhart, M., Johnson, D. R., Tarjan, D., Keckler, S. W., Dally, W. J., Lindholm,
E., and Skadron, K., “Energy-efficient mechanisms for managing thread context in
throughput processors,” ACM SIGARCH Computer Architecture News, Vol. 39, ACM,
2011, pp. 235–246.

[62] Gebhart, M., Johnson, D. R., Tarjan, D., Keckler, S. W., Dally, W. J., Lindholm, E.,
and Skadron, K., “A hierarchical thread scheduler and register file for energy-efficient
throughput processors,” ACM Transactions on Computer Systems (TOCS), Vol. 30,
No. 2, 2012, pp. 8.

[63] Gebhart, M., Keckler, S. W., and Dally, W. J., “A compile-time managed multi-level
register file hierarchy,” 2011 44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), IEEE, 2011, pp. 465–476.

[64] Jeon, H., Ravi, G. S., Kim, N. S., and Annavaram, M., “GPU register file virtualiza-
tion,” Proceedings of the 48th International Symposium on Microarchitecture, ACM,
2015, pp. 420–432.

[65] Pekhimenko, G., Seshadri, V., Mutlu, O., Gibbons, P. B., Kozuch, M. A., and Mowry,
T. C., “Base-delta-immediate compression: practical data compression for on-chip
caches,” Proceedings of the 21st international conference on Parallel architectures
and compilation techniques, ACM, 2012, pp. 377–388.

[66] Lee, S., Kim, K., Koo, G., Jeon, H., Ro, W. W., and Annavaram, M., “Warped-
compression: enabling power efficient GPUs through register compression,” ACM
SIGARCH Computer Architecture News, Vol. 43, ACM, 2015, pp. 502–514.

[67] Stephenson, M., Sastry Hari, S. K., Lee, Y., Ebrahimi, E., Johnson, D. R., Nellans, D.,
O’Connor, M., and Keckler, S. W., “Flexible software profiling of gpu architectures,”
ACM SIGARCH Computer Architecture News, Vol. 43, ACM, 2015, pp. 185–197.

[68] Grisenthwaite, R., “Armv8 technology preview,” IEEE Conference, 2011.

[69] Greenhalgh, P., “Big. little processing with arm cortex-a15 & cortex-a7,” ARM White
paper, Vol. 17, 2011.

[70] GNU, “GNU String Library,” https://www.gnu.org/software/libc/
manual/html_node/String-and-Array-Utilities.html, Accessed:
July 2019.

[71] Kerrisk, M., “Linux Programmer’s Manual: setjmp,” http://man7.org/linux/man-
pages/man3/setjmp.3.html, Accessed: July 2019.

73

https://www.gnu.org/software/libc/manual/html_node/String-and-Array-Utilities.html
https://www.gnu.org/software/libc/manual/html_node/String-and-Array-Utilities.html

[72] Kerrisk, M., “Linux Programmer’s Manual: longjmp,” http://man7.org/linux/man-
pages/man3/longjmp.3p.html, Accessed: July 2019.

74

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Contributions
	Improving Co-execution on GPUs
	Increasing Resource Management Granularity using Reconfigurable Architectures
	Enabling Context Migration in Heterogeneous SIMD Systems

	Background
	GPUs
	Irregular Algorithms

	Dynamic Thread Block Scheduling
	Introduction
	Background
	Multi-Kernel Execution

	Motivation
	Design
	Thread Block Preemption

	Methodology
	Evaluation
	Cataclysmic Thread Purging
	Effectiveness of Predictive Scheduling versus Context Switching
	Memory Tracking versus Compute Tracking
	Overheads

	Related Work
	Conclusion

	Block Shuffling with Reconfigurable Hardware
	Introduction
	Architecture
	Processing Elements
	Caches
	Crossbar
	Memory Hierarchy

	Case Study: Sparse Matrix-Matrix Multiplication
	Outer Product Algorithm
	Performance on Traditional Hardware
	Mapping the Outer Product Algorithm
	Evaluation

	Block Shuffling
	Context-Size Reduction
	Block Shuffling Procedure
	Methodology
	Results

	Related Work

	Enabling Context Migration in Scalable Vector Cores
	Introduction
	Background
	SVE
	Heterogeneous Systems

	Motivation
	Scalability Study

	ISA Extensions
	Conclusion

	Conclusion
	Bibliography

