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Abstract--In this paper the concept of feature (in)dependent image processing algo-
rithms is defined. A large class of image processing computers characterized by mul-
tiple processor-memory subsystems is efficient when dealing with feature indepen-
dent algorithms but less efficient when dealing with feature dependent algorithms.
Typlcaily such machines are required to perform both types of algorithms. This paper
is a preliminary attempt to provide a framework within which to model feature depen-
dent algorithms, and to, for example, quantify the inefficiency that can occur when
they are executed on the above type of parallel image processors.
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1. Introduction

The economics of modern digital integrated circuit technology no longer restricts
the designers of digital systems to the classical serial interpreter typified by the von
Neumann uniprocessor architecture. This trend away from conventional machines is
particularly well developed in the field of image processing where the large data sets
(64K bytes to 4M bytes per image) and the high processing rates (near term predic-
tions of 1 to 100 billion operations per second have been made in [1]) make special
purpose machines an economic necessity [2]. A number of people have .

proposed/constructed special purpose machines for image processing. These are
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surveyed in [3-5].

An architectural characteristic of most of these special purpose image proces-
sors is a large number of processors working in parallel. Parallel processing is a
natural strategy for dealing with the large data sets and high processing rates
encountered In image processing applicatlons; furthermore, the nature of the data
and the nature of many of the algorithms make parallel processing particularly attrac-
tive. The data is usually a large two dimensional array, and many of the low level
Image processing algorithms can be decomposed into a large number of concurrent
neighborhood operations. Examples include: various filtering algorithms such as
smoothing to reduce high frequency noise and median filtering to reduce salt-and-
pepper noise; edge detection algorithms that use operators such as the Sobel opera-
tor and the Hueckel operator; and varlous coding algorithms such as block truncation

coding and cosine transform coding.

A natural architecture for the above class of image processing algorithms is a
multiprocessor in which equal subimages are assigned to separate processors for
processing. For the purpose of this discussion we will classify such processors as
multiple subimage processors (MSP's). As might be expected, a large number of the
proposed/constructed special purpose image processors can be viewed as MSP's.
Figure 1 shows a block diagram of a generic MSP. Subimage /j is handled by its own
processor-memory subsystem, processing element j (PE;). The PE's can communicate
through some form of interconnection network (ICN). Specific examples of MSP's
include: the proposed PASM architecture [6], which plans to employ multi-path
routing-networks to connect a set of 1024 PE's; CLIP4 [7], a 96 x 96 array of sim-
ple blt-processors, each with a 32 bit RAM and an ICN that connects nearest neigh-
bors in the array; the Distributed Array Processor [8], a 64 x 64 array of processors
with 4K-bit storage per processor and an ICN that connects nearest neighbors in the
array and provides a bus per row and column; the Massively Parallel Processor [9], a

128 x 128 array of processors with 1K-bit storage per processor and an ICN that
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connects nearest neighbors; and the Adaptive Array Processor [10], whose building

block is a single chip 8 x & array with 96 bits of storage per processor.

In general, MSP's are highly efficient at performing neighborhood operations
such as those listed above. These types of operations are an important subclass of
what we will term feature independent image processing algorithms. Feature indepen-
dent algorithms are characterized by equal processing per pixel. In other words,
each pixel receives the same amount of processing regardless of whether or not it is
part of a feature of interest such as a line segment. As well as many neighborhood
operations there are other algorithms such as histogramming and the Fourier
transform which are feature independent. Unlike neighborhood operations these algo-
rithms require significant amounts of data to be moved between processors. The
effectiveness of MSP's at performing them is dependent on the bandwidth of the ICN
shown in Figure 1. A multiprocessor like PASM with a high bandwidth ICN can perform
such algorithms relatively easily [11-13]. Therefore, the concept of a multiprocessor
In which equal subimages are assigned to separate processors for processing is also

a natural way of handling the complete range of feature independent algorithms, pro-

ICN

(Intarconnection
Network)

Figure 1. Generic MSP.
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vided the ICN is appropriate for the types of feature independent algorithms antici-

pated.

Although the above concept is natural for feature dependent algorithms, it
becomes less attractive for feature dependent image processing algorithms. Feature
dependent algorithms are characterized by unequal amounts of processing per pixel.
This might arise when a pixel is part of a feature of interest and because of that
requires separate treatment. A simple example of a feature dependent algorithm is
contour tracing; only edge pixels are involved in the algorithm. In an image process-
ing application the initial sequence of algorithms involves mostly feature independept
algorithms because they are concerned with general image enhancement and poten-
tial feature location. The subsequent sequence of algorithms is much more likely to
Involve feature dependent algorithms because specific features are sought from the

set of potential locations.

Consider processing an N-pixel image on an MSP machine having m PE's. In nor-
mal MSP operation the image is divided into N/ m subimages of equal size, and each
subimage is processed by a single PE. However, in the case of feature dependent
algorithms the image should be divided into subimages of equal interest, i.e., subim-
ages having equal numbers of pixels of interest. If, in the case of feature dependent
algorithms images are divided into subimages of equal size, some PE's will receive
fewer pixels of interest. This uneven distribution of work will result in some PE's
being idle during part of the algorithm. Dividing the image into subimages of equal
interest requires that the distribution of pixels of interest over the image can be cal-
culated. This is not always possible. On the other hand, it may be possible, but the
calculation and the redistribution on the basis of interest may involve more comput&—
tion than that lost through the inefficiency of having some PE's idle during part of the

algorithm.

parallel processing



This paper is a preliminary attempt to provide a framework within which to model
feature dependent algorithms, and to, for example, quantify the above inefficiency to

assist in decisions about image distribution among PE's.

The following section develops a mathematical mode! of feature dependent algo-
rithms. Section 3 tests it using some real image data with edge pixels as the pixels

of interest. Section 4 concludes the discussion.

2. Mathematical Mode! of Feature Dependent Algorithms

Consider an N-pixel image and an m-PE MSP system. Assume that the pixels of
Interest occur randomly in the image and that the probability of a pixe! being of
interest is p regardless of its position. Assume that the MSP system is executing an
image processing algorithm on the image. Let the time to complete the algorithm be a
function, 7, of the number of pixels of interest in the image, i.e., the algorithm is a

feature dependent one.

For the single PE case (m=1) the expected value of the execution time, T4, is

given by:

Ty = f(Np) (1)

For the m-PE case assume that the image is divided among the m PE's on an
equal size basis. Each PE holds an n = N/ m pixel subimage. Let X; to be the random
variable describing the number of pixels of interest in subimage /, i=1,2,..,m. From
the above assumptlon that the probability of a pixel being of interest is p regardless
of its position, it follows that the X;'s are identically independently distributed (i.i.d)

random variables with a binomia! distribution (see Figure 2).

Let 7T, be the expected value of the maximum execution time among all PE's.
Since the algorithm is not finished until all the m PE's have completed the work in

their subimage, it follows that:

Tm = f(E[Xmax]) (2)
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i-th subimage of n
pixels with X; of
integest
image of N pixels
sartitioned into
subimages of n
pixels
Figure 2. A subimage and its associated random variable,
Whera:
Xmax = max(Xy, Xa,....... s Xm) (3)
To evaluate T, consider the following. Let p; be the probability of exactly j pix-
els of interest occurring in subimage /:
Prix;=j}=p;= [7] P (1-p) (4)
Let q; be the probability of greater than J pixels of interest occurring in subimage i:
) n
Prix;>j}=q;= 3% p (8)
r=j+1
Then:
L
9= 3 L] p’ (1—p)™=* (6)

r=j+1

Let P(2) be the generating function for the sequence p;, j=0,1,...,m
P(2) = pog+p1z+.ccc..+pp2” (7)

Let Q(2) be the generating function for the sequence q;, j=0,1,...,n:

parallel processing



7
Q(z) = qo+qiz+...... +q,2" (8)

From (7) and (8) it follows that:
Q(z) = 1= P2) (9)

1-2z
Equation (9) can be verified by equating the z coefficients on both sides of the

equation:

1-P(2) = (1- 2)Q(2) (g, =0) (10)
See[14].
Differentiating P(z) with respect to z yields:
P(z) = P1+2poz+...... +np,z711 (11)
Evaluating P'(z) at z=1 yields:
P'(1) = py+2ps+...... +np, (12)
The right hand side of the above equation is simply £[X;]. Thus:
E[x,;]1 =P (1) (13)
Differentiating both sides of (10) yields:

- P(2) = —Q(2) + (1- 2)Q'(2) (14)

Evaluating (14) at z=1 yields:

P'(1) = (1) (18)
Comparing to (13) gives:
E[X/] =Q(1) (16)
Next consider Pr{ X, .0 < j §:
Pri Xm,;x <j}=Pr{ X1=j and X,<2 --- and Xm<j} (17)

Since the X;'s are i.i.d, (17) reduces to:
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m
PriXmc =i} = [PriX =} (18)
For any /.
Using the relation:
Przxmax>j;:1"Permaxsj; (19)
Gives:
m
PriXnax > i3 = 1=[Prix; < 13 (20)
But from (16):
E[Xmax] = Qmax(1) . (21)
And, by definition:
Qrax(2) = Pr{Xmax > 1} + Pr{Xpax > 2 } #eot PriXpax > m | (22)
Therefore, substituting (20) into (22) gives:
n m
Tm =1 Z1—[ofx,sk;] (23)
k=0
Where Pr{ X; < k { is given by:
k [
PriX;<kj=1Y L] p (1—p)"=r (24)
r=0

Notice tha the value of 7,,,, is independent of i because the X;'s are i.d.d.

Following the usual arguments (see [15]) the efficiency £ can be defined in

terms of 7y and 7, by:

F= 11 (25)
mTny,

Thus the efficencytof executing feature dependent algorithms can be determined
from (1), (23), (24) and f, the function that describes the time to complete the algo-

rithm.

Graph 1 shows the variation of the efficiency, E, as a function of the ratio N/ m

for p = 0.2, 0.4, 0.6, 0.8.. The graph was plotted by assuming f to be linear. A more
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Graph 1. E versus N/m

realistic function would depend on the specific feature dependent algorithm being
considered. However, linear does appear to be a reasonable assumption for a large
class of algorithms. For example, a relatively complicated feature dependent algo-
rithm such as the Generalized Hough transform [1 B8] is approximately linear: for each

pixel of interest no more than a fixed number of accumulators have to be updated.

If care is taken T, can be evaluated in O(n) time. The term from (24) should not
be evaluated from scratch for each value of k. Also, for large values of n the terms

on the right hand side of (24) can be approximated by a Poisson distribution whose
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terms can in turn be evaluated using Stirling's formula and logarithms.

Several pelinte con be doduced from Graph 1. The efficiency tends to p as N/ m
goes to 1. This agrees with intuition; if there were as many PE's as pixels, p would
be the fraction likaly to contain an interesting pixel, and only this fraction would have
any work. For very low values of p (<<0.2) the efficiency can drop drastically for
MSP's processing images that have less than an order of magnitucde more pixels than
they have PE's. For example, PASM with 1024 PE's will operate at less than 40%
efficiency on images of 64 x 64 pixels if p=0.4. On the other hand if the images are
256 x 256 the efficiency jumps to over 80% for the same value of p. Clearly, for
high efficiency the image should contain several orders of magnitude more pixels than

the MSP has PE's.

3. Experimental Results

In an attempt to test the above results the following experiment was carried out
on a set of images of industrial parts. These images were obtained from the General
Motors database for the industrial bin of parts problem [17]. The names of the ones

used are listed in Table 1.

Image Name | No. of Edge Pixels P
bin1.piv 7732 .118
bin1.piw 12205 .186
bin3.piv 8831 160
bin&.piz 8032 .123
bin8.piv 5600 .088
yoke1.pit 4421 .064
yokeZ2.pit 5241 .080
yoked.pit 8018 122
rod1.pit 8768 .134

(bin1.piw 16822 .241

Table 1.
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The Sobel #dge aperator was applied to the above images. A pixel was defired
to be of inter=st if and only if it was on an cdye. The resulting image was throas-
holded and the number of edge points (number of pixels of inierest) was computed.
The threshold value was chosen to give a "good" edge image. All the images are
256x256 with 256 gray levels. The number of pixels of interest in each image and
the value of p are also shown in Table 1. The value of p was estimated as the

number of pixels of interest divided by the total number of pixels in the image.

The images were divided into subimages of equal sizes and the expected value
of the maximum number of pixels was obtained experimentally. The experimental
value obtained was compared with its theoretical value obtained from equation (23)
with f=1, for various values of m. Those results are shown in Graph 2. It can be
seen that there is a fairly good agreement between the theoretical results and the
experimental results when the the features are edge pixels. The lower of the two
curves is the theoretical one. This error is due the our assumption that the probabil-
ity of a pixel being of interest is not related to its position. In the case of edge pix-
els this Is clearly not so as they cluster in lines. Clustering moves the experimental

line higher.

In the case of specific features better results might be obtained if a more accu-
rate stochastic model of the features distribution can be developed. For example,
more accurate models of edge pixel! distributions have been developed [ 18], however

they apply only to edges and computing Tmax for them appears to be a problem.

4. Conclusions

This paper has presented a preliminary attempt to provide a framework within
which to model feature dependent algorithms, and to, for example, quantify the ineffi-

ciency that can occur in MSP's when subimages of equal size are distributed among

the PE's.
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The mathematical model was simple enough to allow key terms such as Tmax tO
be efficiently computed without compromising the accuracy of the result. Future

work might examine how £ can be determined if more complex, say Markov, modeis

were used for the features of an image.
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