THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY1

A CLASS OF CELLULAR ARCHITECTURES TO SUPPORT
PHYSICAL DESIGN AUTOMATION

R.A. Rutenbar, T.N. Mudge and D.E. Atkins

CRL-TR-10-83

FEBRUARY 1983

Room 1079, East Engineering Building
Ann Arbor, Michigan 48109

USA

Tel: (313) 763-8000

1This work was supported in part by NSF Grant No. MCS-8009315 and MCS-8007298. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily
reflect the views of the funding agencies.

A Class of Cellular Architectures to Support
Physical Design Automation

by

R. A. Rutenbar, T. N. Mudge and D. E, Atkins

Computing Research Laboratory
Department of Electrical and Computer Engineering
University of Michigan
Ann Arbor, M| 48108

Abstract

Special-purpose hardware has been proposed as a solution to several increasingly
complex problems in design automation. This paper examines a class of cellular
architectures--called raster pipeline subarrays--applicable to physical design auto-
mation problems represented on a cellular grid. Machines with this architecture were
first employed for cellular image processing, and many similaritles exist between
problems in grid~-based DA and ‘problems in cellular image processing and pattemn
recognition. A review of machines designed for cellular image processing shows how
DA machines proposed/constructed for grid-based problems flt naturally into a tax-~
onomy of image processors; a review of some of the mathematical tools developed to
formalize pattern recognition problems shows how they can be usefully applied to DA
problems. Implementations of design rule checking and routing algorithms are
described in detail for an existing raster pipeline subarray machine called a cytocom-
puter. Experimental results using this hardware are encouraging, and extensions to
large, practical problems are studied. Based upon these studies we define the archi-
tecture and necessary performance characteristics of a raster pipeline subarray
machine optimized specifically for grid-based DA applications. The merlts of such an
architecture are evaluated in the context of practical special-purpose hardware.

Key words--design automation, special-purpose hardware, design rule checking,
routing, image-processing.

1. Introduction

The successful implementation of increasingly compiex integrated systems has
been made possible only because of the existence of increasingly sophisticated CAD
tools. Traditional CAD research--for exampie, the mathematical analysis of design
automation (DA) algorithms and data-structures, the appiication of software structur-
ing techniques to chip layout, and the use of data bases to manage the design
process--has resuited In the production of software toois running on conventional
serlal computers. These tools are iimited In three fundamental ways: by the inherent
complexity of the probiem, by the efficiency of the coded implementation, and by the
resources of the machine on which the code runs. Recently, to overcome these three
iimitations. serious attention has been given to the application of speciai-purpose
hardware to CAD probiems [1]-[18]. The strategy Is to map the structure of the
problem onto a specially designed architecture to avoid these three limitations by
optimizing the hardware to expioit the paralielism inherent in the problem, by replacing
some software with hardware and firmware, and by Incliuding precisely those

resources critical to the solution of the probiem.

in this paper we will examine a class of architectures suitabie for physical
design probiems represented on a flxed celiuiar grid. Probilems such as design rule
checking (DRC), device exiraction, placement and routing are often represented and
solved in the framework of a ceIIuIal; grid. An immediate candidate architecture for
these sorts of probiems is the ceiliular array. indeed, advances in technology have
heraided a renaissance for the celiular array. However, traditional celiular
architectures--rectanguiar arrays of simple processors with memory and connections
to neighbors--are not the .only machine organization capable of efficient solution of
grid-based DA problems. In fact, architectures for solving grid-based probiems have
been studied extensively in the field of celiular image processing. Useful paraliels

may be drawn between architectures for celluiar Image processing and for grid-based

This work was supported in part by NSF grants MCS-8009315 and MCS-8007298.

CRL-TR-10-83 R. A. Rutenbar, T. N. Mudge, D. E. Atkins

.
wd

A

physicai DA; such architectures are essentially characterized by the manner in which
storage and processing power are aliocated to each ceil in the probiem. As part of

our examination this paper reports the resuits of DA experiments performed with a

cytocomputer1, a speciai-purpose architecture originally designed for image process-
ing applications [19]-[21]. The discussion sets in context the resuits summarized in
[15]. A cytocomputer is a pipeline of 3 x 3 subarray processors accepting image
data as a raster input stream and producing a raster output stream. For the purposes
of this discussion, we shali refer to the class of architectures which inciudes the
cytocomputer as raster plpeline subarray architectures. The results presented here
indicate that raster pipeline subarray architectures represent an architectural aiter-
native that in many situations delivers a more cost-effective solution than the tradi-

tional array approaches.

The paper is organized as follows. The image processing analogy is eniarged to

show how an explicit taxonomy of image processors effectively categorizes the

'diverse collection of special machines proposed/constructed to solve grid-based DA

probiems. Wé also show how some of the mathematical toois developed to solve pat-
tern recognition probiems of image processing appiications can be fruitfully applied to
DA problems; in particular a formalism using the morphological operators of Serra and
Matheron is discussed. With this background, cytocomputer architecture is con-
sidered in detaii. Next, cytocomputer impiementations for —design-rule checking and

routing are examined. Experiments were performed using a Model Iil cytocomputer

configured with one processing stage2 and controlied by an interpreter that aliows
the machine to be used interactively for aigorithm development. Concrete aigorithms
and executio_n times are given for width/spacing checks applicable, for example, to
the simple Mead and Conway NMOS rules [22], and for a maze-router connecting

two-point nets in a singie conductor layer. Extensions to more compiex probiems are

1 Cytocomputer Is a trademark of the Environmental Research Instltute of Michigan for image process-
Ing systems.

CRL-TR-10-83 R. A. Rutenbar, T. N. Mudge, D. E. Atkins

considered, and the strengths of the raster pipeline subarray are evaiuated in the
context of DA probiems. Based upon these studies, we propose an outiine for an

optimized DA machine with a raster pipeline subarray organization.
2. Celiular Architectures and Algorithms

Research in special-purpose architectures for image processing spans more than
two decades and has accelerated with recent advances in hardware technology
[23]-[28]. Aithough we have remarked that the analogy between image processing
and grid-based DA probiems is conceptuaily usefui, it shouid not be taken too far. For
example, the statistical inference and frequency-domain signal processing com-
ponent characterizing much image processing work Is wholly absent in DA work. Our
primary interest is in structural pattemn recognition and pattern manipuiation. From
this slightly different perspective we construct a taxonomy of image processors
emphasizing:

(1) how storage is ailocated to the celis of an image being processed,
(2) how processing power Iis appiled to ceiis or groups of celis,
(3) how processing eiements and storage eiements are interconnected.

¢

it will be shown how many grid-based DA architectures fit naturally into this scheme.
in particuiar, the place of the cytocomputer is described in this scheme. After this
discussion of hardWare, mathematical toois developed for pattern recognition are

described along with their application to DA work.

2.1. DA Architectures in an image-Processor Taxonomy

An essential probiem in image processor architecture is windowing [28].

Because real images span the range 102 to 10% celis or piiels (picture elements) on

a side, it is generally impossibie to ailocate a unique physicai processor to each celi

2 Multiple processing stages are essential for practical applications. Results of earlier work on
design rule checking using a simpler 83-stage TTL prototype of a Model | cytocomputer appear In

(13][14]

CRL-TR~-10~-83 R. A. Rutenbar, T. N. Mudge, D. E, Atkins

b

s o

.
[N
i

oo

%

in the image; rather, the image must be manipulated in subsections or windows. The
shapes of these discrete sections, their acquisition, their path to and from process-
ing elements, and the amount of parallelism in data-movement and data-manipulation

define the architecture.

Figure 1 ;hows a taxonomy emphasizing these features. It has three salient
points. First and foremost, because our primary interest is in DA architectures and
their classification, this scheme is just large enough to contain most of the interest-
Ing grid-based DA architectures of which we are aware; image processing archltec-
tt;res (interesting in thelr own right) which have no close analogue in DA machines
(e.g., pyramid machines) have simply been left out. Second, it is explicitly a hierarch-
ical classification in contrast to other classifications [23], [26]. To specify a
machine by its parents in the hierarchy gives its concise relatlonship to other
machines, highlighting critical similarities and differences. Third, and related to this
hierarchy, it places cytocomputers in the hierarchy to show their natural relatlonship
with subarray organizations, rather than in a separate category disjoint from all other

machine organizations.

At the first level the hierarchy divides into two basic machine organizations. As
noted in [23] there are machines whose architectures are dominated by a central bus
structure or, more generally in our terminology, by an Interconnection'-Network (ICN)
structure (see Fig.‘ 2). The other basic organization is, as expected, the array struc-
ture (see Fig. 3). By array structure we mean specifically the existence of one or
more rectangular arrays of interconnected processor/storage elements and the
machinery to move data through these arrays. Each of these two basic organizations

are subdivided into two classes.)

ICN structured machines are classified as using either a single bus or a routing-
network. For example PICAP Il [29] employs a single high-speed bus to connect

image memories, a neighborhood processor, and a filter processor. On the other hand,

CRL-TR-10-83 R. A. Rutenbar, T. N. Mudge, D. E. Atkins

the proposed PASM architecture [30] plans to empioy multi-path routing-networks to

connect a set of processor/memory subsystems.

The class of array-structured machines is also divided into two subciasses.
Adopting Preston's terminology [26], array structured machines are classified as
being subarrays or fuil-arrays. The distinction here is somewhat unclear, depending
not only on structural differences, but also on the size of the array involved. The
full-array is what would be labeled a traditlonal cellular array: a matrix of
processor/memory pairs each connected locally to its nelghbors. Machines in this
class include CLIP4 [31], a-96 x 98 array of simple blt-processors each with a 32 bit
RAM; the Distributed Array Processor (DAP) [32], a 64 x 64 array with 4K-bit
storage per processor; the Massively Parallel Processor (MPP) [33], 128 x 128 pro-
cessors with 1K-bit storage per processor; and the Adaptive Array Processor (AAP)
[34], whose building biock is a single chip 8 x 8 array with 96 bits of storage per
processor. Some of the machines with iarge memories In each cell (e.g.,/ MPP and
DAP) incorporate some notion of image-folding; images larger than the physical array
are folded into several planes and mapped onto the storage available In each cell. In
addition, DAP provides for limited global communication by including an additional bus
for each row and column of cells, enabling complete row-vectors and column-vectors

to be accessed and moved around the array.

The subarray class is also subdivided, and is characterlzed by the range of
subarray sizes and tha connections between distinct subarrays. A subarray is just
an array which is usually much smaller than the images to be processed; it is a pro-
cessing window. The smallest subarray is a single neighborhood, 3 x 3 on a square
grid, while the largest is generaily in the region between 16 X 16 and 32 x 32. The
simplest subarray is the class of raster single-subarrays (see Fig. 4). The basic idea
is to process the image data in a serial stream (raster order) as it passes by a subar-
ray processor. To do this, shift registers are introduced as buffers for a few rows of

the image. As the stream passes through the buffers and the processor, enough of

CRL-TR-10-83 _ R. A. Rutenbar, T, N. Mudge, D. E. Atkins

cae

&

2
i

the image is present to insure that each nelghborhood eventually arrives at the
subarray and is processed. The raster idea is especially attractive considering that
the source of many real images is serial: disks, CCD-cameras, or host-computer-
memory. The GLOPR machine [35] is a very early example of this organiZation. The
subarray class Is not restricted to a single subarray processing element; the second
subciass contains the muitiple-subarray machines. it too Is subdivided. Because the
single subarrays just discussed can output a data stream with a format Identical to
the Input stream, It is possible to connect several such machines in a pipellne, the
output of each being chained to the input of the next. Here the individual processors
are called stages, and the entire machine is a raster pipeline subarray (see Fig. 5).
This is the organization of a cytocomputer, the subject of the next section. Multiple
subarrays are not restricted to a raster input format. More generally these non-
raster organizations use several interconnected ‘subarray memories and subarray pro-
cessors to concurrently process several pieces of an image (see Fig. 8). It should be
clarifled here that the major difference between these machines and the apparently
simllar ICN based machines is a matter of emphasis. Of primary interest in muitiple
subafrays are the number, size, and speed of the subarray buffers and processors,
with their interconnections being of secondary interest. In ICN structures much of
the architecture is subordinated to the interconnection scheme. A machine in the
non-raster multiple subarray class is the Preston-Herron Processor (PHP) [38], in

which three image memories communicate with sixteen table-driven processors.

We have provided a concilse overview of image processing architectures to
classify the diverse set of proposed/constructed DA machines. it will be shown that
many grid-based DA machines are related through the previous taxonomy. The
existence of some superficial architectural similarities between these two classes of
machines is not surprising given some of the similarities between cellular image pro-
cessing tasks and grid-based physical DA tasks. However, it is significant that for

most of these DA machines there is a precise analogue in the image processing world.

CRL-TR-~-10-83 R. A. Rutenbar, T. N. Mudge, D. E. Atkins

This implies that future DA hardware can profit from the work being done on image
processing architectures by applying and extending this work rather than rediscover-
ing it. Our primary motivation is to develop the relationship between raster pipeline

subarray architectures and other DA architectures.

Full-array structures have been particularly popular for physical DA. Breuer and
Shamsa [7] have proposed a single chip 256 x 258 array of finite-state machines to
perform unit-cost Lee routing and a multi-chip 1024 x 1024 machine. losupovicz
[12] discusses the details of such a routing machine based on an interconnection of
smaller more modular building block chips. Adshead [2], [3] has reported successful
application of the DAP machine to problems in maze-routing and logic simulation.
Routing involves folding the cell-map representing a large gate-array onto the physi-

cal array; simulation involves coordinating updates to the states of loglc elements

distributed around the array. Blank [5], [6] has proposed two array architectures for:

solving general blt-map DA problems: a Bit Map Processor (BMP) and a Vlirtual Blit Map
Processor (VBMP). A BMP is a standard array of 1024 x 1024 simple processors
each with memory. A VBMP is a 32 x 32 array incorporating special hardware to sup-
port folding a larger virtuai grid onto the physical array. Large amounts of memory,
1K-bits for accumulators and 16K-bits for general registers, reside at each node of
the matrix, and the edge and comer cells include special mechanlsms for dealing with
border effects and neighborhoods straddling physical boundaries. Each cell in the
array can also be indlvidually addressed via row and column lines to provide some glo-
bal communlcatlon. Simulations for grid-based design-rule checking and simple
maze-routing have been constructed, and a prototype cell similar to a single BMP
array cell has been fabricated. Hong et al. [11] describe a Physical Design Machine
based on an array of commercial mlcroprocessors, which also incorporates provisions
for folding large problems onto the array. An 8 x 8 prototype with 15K bytes per pro-
cessor is operational, and claims are made that a 32 x 32 structure would likely suf-

fice for all real problems. Sophisticated global-routing algorithms have been

CRL-TR~-10~-83 R. A. Rutenbar, T. N. Mudge, D, E. Atkins

ey

£

i

H

%
H

implemented and run on modest test grids [16].

Bus structured machines have also been constructed. Damm et al. [9] have built
a Lee-routing engine by modifying a commercial minicomputer. A special cell-memory,
a hardware "kernel” of routing operations, and an additional bus interconnecting them
were added to optimize routing performance. Successful operation with printed cir-
cuit boards has been reported. (Outside the area of grid-based physical DA, the
Yorktown Simulation Engine (YSE) [17], an event-driven logic-simulator, is an ICN
structured machine. Up to 266 logic processors, each storing and updating logic ele-

ments, communicate over a cross-bar switch.)

Subarray architectures also appear. Seiier [18] has developed a hardware
implementation of Baker's raster DRC [37] using a raster subarray. The processing
section uses a few custom PLA-based chips to perform width checks, edge checks,
and logical combination of mask layers in a smaii window. A feedback mechanism with
shrink/expand templates is provided to enable larger width checking using multiple
Basses through the processor. The raster plpeline cytocomputer [13]-[15] has been
used to perform DRC and routing; these algorithms are the subject of succeeding

sections.

2.2. Cytocomputer Architecture

With this background, we proceed to describe cytocomputer architecture in
detaii. The difficulty in producing a cost-effective fuli-array architecture for image-
processing applications led the Environmentai Research Institute of Michigan (ERIM)
to deveiop the alternative architecture of the cytocomputer. In [20] Lougheed and
McCubbrey detaii some of the practical advantages accruing to a iow-compiexity
high-bandwidth cytocomputer image processor structure when compare;d with full-
arrays. In the foilowing we describe the system-ievel architecture of a cytocom-
puter, the structure of each stage, and the performance characteristics of the

machine on which our experiments were done.

CRL-TR-10-83 R. A. Rutenbar, T, N. Mudge, D, E. Atkins

10

Figure 7 shows a cytocomputer at the system ievel. Note that the machine is
connected as a peripheral to a host computer. The host sends instructions to the
cytocomputer controiier, a microprogrammed unit that programs the individual stages
in the pipellne and manages the movement of data through it. An image can move
through the cytocomputer in two ways: (1) the host sends an image to the image
buffer, then the controller repeatedly sends it through the plpeline and back into the
buffer untll processing Is done, and finally the host retrieves the processed image

from the buffer; (2) the host sends the serial inage stream directly into the pipeline,

managed by the controller, and receives the output stream directly. As expected,.

the second approach is siower because the host's operating system mediates much

of the transfer.

Figure 8 shows the structure of a cytocomputer stage. Common to both the
cytocomputer and full-array, each discrete processing step consists of transforming
each cell in an image based on its current value and the values of its neighbors. A
cytocomputer datapath is a serial pipeline of subarray processing stages with a com-
mon clock in which each stage performs a single neighborhood transformation on an
entire image. images enter the pipeline as a stream of eight-bit pixels in sequential
line-scanned format and progress through the pipeline of processing stages at a con-
stant rate. Shift registers within each stage store two contiguous scan lines while
window registers hold the nine neighborhood pixels which constitute the 3 X 3 subar-
ray input of a stage. At each discrete time step a new pixel Is clocked into each
stage. Simultaneously, the contents of all shift registers are shifted one element.
Each stage performs a programmed transformation of the center pixel based on the
 values of the center and its eight neighbors. Nelghborhood transformations are com-
puted within the data-transfer clock period, allowing the output of each stage to
appear at the same rate as its input. Following the initial delay to fill the pipeline,

processed images are produced at the same rate they are entered.

CRL-TR-10-83 R. A. Rutenbar, T, N. Mudge, D. E. Atkins

3

1

To visualize the transformation process, consider a 3 x 3 window moving across
an image as shown in Figure 9. Cell Ag g in the raster stream has entered the stage
and the complete 3 x 3 neighborhood of cell A5 5 is now stored in the stage subarray.
(That the cells appear reflected in the subarray is of no consequence; the require-
ment is that al/l cells of a neighborhood be available in the subarray.) Performing a
single neighborhood transformation now produces the modified value A?; which is
injected into the output stream. On the next cycle, Ag; enters the stage and the
computed value An5°l;v is output. In this example the latency of a stage--the number
of cycles between A entering and A'::w leaving--is always the same as the number
of cells in the raster stream between A; 5 and Ag g (shaded in Fig. 9). For an image N
cells wide this latency is N + 2 clock cycles. A pipeline can be viewed as a series of
3 x 3 stage windows following each other across the image, each one processing the

previous stage's output.

The following steps outline the processing that occurs in one stage in one clock

period [19] (refer to the numbered steps in Fig. 8):
(1) A pixel entering the stage is biased (normalized) or has some of its bits masked.

(2) The nine celis of the stored neighborhood are transformed into a nine-bit vector.
Each bit is essentially a true/false decision about each neighbor:
cells = constant;s, cellg > thresholdg, for example. This vector is an address into

a table.

(3) A new value for the center cell is selected from the following: the current value
of the center, the largest value in the neighborhood, or the value in the table

addressed by the nine-bit address just computed.

(4) The center value from (3) is used to address another table to produce a modi-
fied center value. This table is used typically for Boolean operations on bits or

for further arithmetic biasing of this value.

CRL-TR-10-83 R. A. Rutenbar, T. N. Mudge, D. E. Atkins

12

(5) The center vaiue from (4) is unbiased and unmasked. It is possibie, for example,
to aiter a singie bit in the center celi as a function of ail the bits of the neigh-

borhood without disturbing the other bits in the center.

These bias-values, masks, constants, and tables comprise the instructlons for a sin-
gle stage. Because the stage depends heavily upon table iook-up the format of the
data in each cell is arbitrary: each 8-bit cell can be viewed as eight independent 1-

bit fields, as a few multi-bit fields, or as a single encoded integer.

Equation 1 approximates the time, T, required for a cytocomputer with P pipellne
stages to perform K operatlons on each 3 o 3 subarray of an M x N image. Let t; be
the stage cycle time in sec/pixel, then:

TR[K/P](P(N + 2)t; + MNt.). (M
The [K/P] term is the number of passes through the pipeline. The last term is the time
required to pass once through the pipeiine. it is the sum of two terms: the time until
an output appears at the last stage of the pipe (called the /atency), and the time to
move all MN cells of the image through the pipellne. If K is not a multiple of P, then
the unused processing stages in the last pass through the pipeline are programmed

to pass the image stream with negligible delay.

Cytocomputers exist in both MSI and LS| implementations. Existing MSI| imple-
mentations usually have between one and ten stages. A single chip CMOS version of
a single stage, excluding line buffers, has been fabricated.’ The chip incorporates all
functions of the previous generation MS| stage hardware and has a cycle time t .~
1-2 us. Because of the considerable size reduction, a 100-stage cytocomputer
pipeline will fit on a modest number of circuit boards. All experiments reported in this
paper were performed on a singie-stage MSI TTL prototype of this chip with t.= 2 us

and a 256K-byte image buffer.

CRL~-TR-10-83 R. A. Rutenbar, T. N. Mudge, D. E. Atkins

i
;

R

¥

S

13

2.3. Formalism for Cellular Algorithms

We shall briefly describe a formalism calied mathematical morphology, developed
by Serra and Matheron [38], [39], which introduces several useful operators for
dealing with patterns in images and also introduces an algebraic framework in which
to manipulate them. It treats a two-dimensional binary image as a set of points (e.g.,
the opaque points on a transparent mask) where a point is an ordered pair of coordi-
nates in the plane. In our case the plane is a digital rectangular grid; this is a practi-
cal but not a mathematical necessity--practical insights may be gained from the

study of ideal problems in the continuous Euclidean plane.

Glven that A and B are binary images, and hence sets, we have all the usual
set-theoretic operators (i.e., the usuai Boolean operators): intersection, A (" B; union,
A | B; difference, A - B; and complement, K. Also, the usual operations of addition
and scaling can be applied to points represented as coordinates. Next, define the
notion of translation of a set by a point. The set A translated by point p, denoted A,

is:
Ap=fta+p|acAj,

which is just A with its /ocal origin moved to p. With translation we can define the
two essentlal primitives of dilation and erosion. Dilation, &, and erosion, @, are

defined as follows:

A®B= (JA, AOB={p|BycCAj
beB

The dilation A ® B is the union of translations of A by points from B. The erosion A @
B is the set of points to which we can translate B and still have it contained in A.
Loosely, we can think of dilation and erosion as formal generalizations of the intuitive
ideas of expanding and shrinking. However, erosions and dilations are defined for

arbitrarily complex sets A and B, whereas expands and shrinks are usually specified

with simple patterns (sets).

CRL-TR-10-83 R. A. Rutenbar, T. N. Mudge, D. E. Atkins

14

The utility of this formalism rests on the fact that all these operations are /oca/
in nature. Each operation can be reduced to a sequence of neighborhcod transforma-
tions in the 3 x 3 subarray of a cytocomputer stage. Algorithms can be designed at a
high level and then decomposed into an executable sequence of cytocomputer

operations, thus minimizing the need for ad hoc pattern specification.

To iilustrate the above ideas, consider Figure 10 in which image A is eroded by
the elementary image B. The points in the result are those points in A to which the
origin of B (marked + in its center) can be translated and still have B contained in A.
A cytocomputer stage implements this operation by a straightforward template match
on each 3 x 3 subarray of pixels; the central pixei is set to 1 just if the neighbor-
hood configuration contains B. In this example B Is an elementary image (also called
a structuring element [38]) because it fits in the subarray of a stage. In general,
operations with a larger more complex B will be decomposed into a sequence of ele-
mentary operatlons suitable for execution in the stage hardware. The algebra
includes identities which permit simplifications similar to those done in Booiean alge-
bra. For example, to compute A®B when B is a dilation of elementary images:

¢ B=B1@®B,@®B3®By
it is sufficient to compute:

AGB = ((((A©B41) ©B2) ©B3)©Bg)
“which can be done directly by four stages.

Two operators defined as compositions of the dilation and erosion primitives are
also particularly useful, as will be seen in later sections. These are called opening

and closing. If X and S are sets, then:

X opened by S=Xs=(X©S)® S

X closed by S=X5=(X®S)©S
Interpret sets X and S as geometric shapes in a plane. Then X opened by S is the

set of points in X touched by S as S siides around inside X. Closing has a similar

CRL-TR-10~83 R. A. Rutenbar, T. N. Mudge, D. E. Atkins

prrey

é’?,

156

interpretation for the complement of shape X.

Figure 11 demonstrates all these operations on two simple plane figures.

3. Design Rule Checking

The design rules are a set of geometrical constraints that the masks of the
wafer fabrication process must satisfy. The two general approaches to the imple-
mentatlon of DRC's reflect the data-structure chosen for the IC mask. Geometric-
shapes checkers perform checks on masks represented as sets of intersecting
polygons or rectangles [40]. Grid-based checke;‘s work wlth a mask represented as
a grid whose cells are labeled according to the presence or absence of particular
mask layers. Both nonuniform grids (the chips are dissected into contiguous rectan-
gles of arbitrary size, e.g. [41]) and uniform grids (the cells are squares) have been
used. Raster-scan approaches have been developed [37], [42] which access a uni-
form grid in raster order and check local design rules; the idea is to pass a small win-

‘gow over the grid and identify the local violation-patterns appearing in the window.

Roughly speaking, a design rule checker performs the following on the geometric

shapes comprising a mask:

Connectivity Resolution: discrete shapes on the same layer are merged into a
gingle larger shape if they overlap; connectivity is similarly assessed across

several layers, e.g., across contact windows.

Layer Combination: new layers are created from Boolean combinations of exist-

ing layers, e.g., the intersection of several layers.

Tolerance Checks: tests are made to determine whether a local group of
shapes on one or more layers satisfies some spatial constraint, e.g.,

corner/edge separation, incursion, inclusion, exclusion, size, area, perimeter.

When a mask is represented as a grid, local connectivity and layer combination are

easily computed. Overlapping shapes automatically become a single entity as the

CRL-TR-10-83 R. A. Rutenbar, T. N. Mudge, D. E. Atkins

16

cells within the shapes are labeled as belonging to a particular layer, and Boolean
combinations performed globally across several layers are sil_nply performed on each
cell in the mask. Global connectivity is harder to resolve because it involves pro-
pagating nodal connectivity information around the celils of the grid. Such global data
movement Is generally inefficient if we are restricted to local processing of celis.
Tolerance checks are more interesting since they require not just cell by cell pro-
cessing but also pattern recognition operations on spatiaily distributed groups of

cells.

Accordingly, this sectlon describes tolerance checks implemented on a cytocom-
puter. The checks are motivated by the NMOS design rules of [22]; we empioy a uni-
form grid of Ax A cells where)\ is the basic length unit in which design rules are

expressed.

3.1. DRC Algorithms

To illustrate the cellular DRC, we describe two different algorithms to perform a
wlidth-3A tolerance check on an orthogonal mask. This check identifies regions of a

mask less than 3\ wide.

in these algorithms a single mask is represented by a binary image occupying
one bit in each 8-bit cell of the cytocomputer input image. Each algorithm produces
another binary image, stored one bit pei’ cell, indicating the locatlons of width viola-
tions. In a complete DRC all masks of interest--metal, polysiilcon, diffusion, for
example--are stored in these parallel bit-planes. The 8-bit cytocomputer datapath
allows up to eight bit-planes--input masks, Intermediate resuits, final error

locations--to be processed simuitaneously.

The first algorithm is based on the simple observation illustrated in Figure 12, At
the left is a mask represented in the continuous plane on which we wish to perform a
width-W check. Let a disk of diameter W slide around the inside of the mask to all

possible locations at which it may be completely contalned. This is illustrated in the

CRL-TR-10-83 R. A. Rutenbar, T. N. Mudge, D. E. Atkins

17

middle of Figure 12. While it slides, note those points covered by the disk and trace
the path of its center. It is ciear the disk shouid not pass through regions which are
too narrow, i.e., regions which fail the width test. The result is shown at the right of
the figure. Except for some square-corner effects, those regions ieft uncovered all
violate the width test. Note also that the region traced out by the center of the disk
is not connected across the diagonal neck of the mask.

With these observations one can construct an executable width-3A algorithm.
Llet M be the mask-image to be checked. Because a real mask will have square
comers, replace the diameter-3 disk with a 3 x 3 square, S. The operation of finding
all points covered by S as it slides in M is precisely the opening Mg = (M@S)®S from
the previous section. The region traced out by the center of S is just the erosion

M®©S; call this C. The algorithm can be outlined as follows:

Algorithm 1 : Width-3A Test

Step 1: Open M with S. Areas of M not in the opening are errors.

Step 2: Erode M by S to get C. This is the path traced by the center of S.

Step 3: Tag the northeast corner of each component of C; call this set of points
Tne. This prepares to identify the regions of M which restrict the passage

of S by finding the breaks in C.

Step 4: Dilate Tyg over M with the following shape (marked + at its origin):

[+

This dilation intersects the southwest corner of another region of C if and
only if a break has occurred along a northeast/southwest axis. Mark the
points in this intersection as errors; they indicate a diagonal width viola-

tion.

CRL-TR-10-383 R. A. Rutenbar, T. N. Mudge, D. E. Atkins

18

Steps 5,8: Similar to steps 3,4 to find errors aiong the northwest/southeast axis.

This algorithm tags any region smaller than 3X\ x 3A, and tags the north side of
each pinched-neck diagonal width violation. it is generic in the sense that it can
implement any width-W check. For a width-W check, S is a W X W square and is used
to locate regions smaller than W x W. The figure of step-4 is a digital approximation
of a radius-W quarter-circle and is used to find breaks in C, the path traced by the
center of S. Breaks are characterized by diagonally adjacent corners of components
of C separated by no more than W. For example, if we mark one set of corners, Tyg,
the northeast corners, and then search nearby each for an unconnected southwest
corner, each region searched takes the shape of a radius-W quarter-circle. Note
that in the above case with W =3\ a radlus-3A\ circle is approximated as a 3 x 3

square.

The second algorithm is again based on the observation that the center of the
square S will not trace a single connected region as it slides through a figure with
wlidth violations. This algorithm uses the notion of a homotopic thinning [38] which
conceptually shrinks a figure without changing its connectivity, i.e., without introduc-
ing holes or breaking the figure into several pieces. Figure 13 illustrates a simple
thinning. Thinning Is implemented by sequenti#l erosions of the mask-image condi-
tioned so that removal of a point does not ajter the local connectivity of any figure.

The algorithm can be summarized as follows.
Algorithm 2 : Width-3A Test
Step 1: Open M by S. Any reglons of M not in the opening are errors.

Step 2: Erode M by S to get C, then thin the opening from Step 1 and compare to
C. Regions present in the thinning and not on the erosion mark 'diagonal
width errors, i.e., they bridge the gaps between the disconnected blocks

of C and identify the errors.

CRL-TR-10-83 R. A. Rutenbar, T. N. Mudge, D. E. Atkins

1
£

A —
e

18

These algorithms illustrate the utility of the formalism presented in the previous
section. Algorithms are expressed as sequences of operators working on geometric
objects; altering the size of these objects does not alter the basic algorithm. These
abstract operators are formally decomposed into a set of concrete operations that
can be performed by the hardware. This formalism frees these algorithms from much

of the tedious detail of pattern specification inherent in pattern matching.

3.2. DRC Experimental Resuits

Algorithm 1 requires 8 pipeline stages but was run in 15 stages due to con-
straints imposed by the software that programs the stage. Algorithm 2 required 6
stages and was run in 6. Figure 14 shows the results of running each algorithm on a
simple 64 x 64 test pattern. All errors are correctly detected. On the single-stage
cytocomputer each of these tests required about 0.1 seconds to run. Depending on
the sophistication of the checking needed and the amount of extra processing
required to put meaningful labels on errors, a DRC for this class of rules on five NMOS
mask layers will take between 150 and 250 stages. Table 1 estimates the time
required to run such a DRC on a 2000Ax2000A chip for several different pipeline
lengths. We assume a cycle time t; = 1us, and a sufficient mask-data transfer rate
to keep pace with the pipeline, i.e., the mask can be stored or regenerated with

negligible delay for multiple passes through the pipeline.

Plpeline Estimated DRC Time in Seconds
Length | 150-Step-DRC | 250-Step-DRC
1 600. 1000.

10 60. 100.
100 8.4 10.5
250 4.5 4.5

Table 1. Estimated DRC Time, 2000A x 2000A IC

CRL-TR-10-83 R. A. Rutenbar, T. N. Mudgse, D. E. Atkins

20

3.3. Enlarging the Scope of Application

It is clear from Table 1 that with a modest pipeline (10-100 stages) a chip
represented as a grid with a few million cells (a typical image) can be checked

against rules equal in complexity to those of [22] in 1-2 minutes.

However, several potential difficulties arise if this methodology is extended to
very large chips, for example to commercial microprocessors. There are two essential

problems: the size of a large layout, and the quality of a DRC for such a layout.

The size issue concerns the representation of a large chips on cellular grids. For
example, if f is the minimum feature size of a given layout, some commerclal micropro-
cessors when drawn on a grid of fxf squares require 10 to 15 million cells for resolu-~
tion [43]; for reference, a 300 mil x 300 mil chip drawn on a 1 um grid has about 60
million cells. Given that a complete DRC will requi}e several passes through a practi-
cal pipeline (10-100 stages) the questlon is how to generate, store or regenerate

the required chip image. There are at least two potential solutlons:

(1) Dedicate a large disk and a large image buffer to the pipeline. Disks storing
100M-bytes with 1M-byte/sec block transfer rate are common, and the cost-
per-bit of disk storage is declining. One pass through the pipeline has the fol-

lowing outline:

BEGIN
Generate mask image at host machine and store to disk ;
WHILE (more segments of mask-image) DO
BEGIN
Load next segment of mask into image-buffer;
Process buffer through plpe;
Stora segment back on disk;
END;
END;

A complete DRC will require several passeé after initial mask image generation.
The key constraints here are the mask-generation rate of the host, the 1/O

speed of the disk, and the size of the image-buffer. As an example, consider a

CRL-TR-10-83 R. A. Rutenbar, T. N. Mudga; D. E. Atkins

ey

AT

£27

21

system with the parameters of Tabie 2. This simpie sequentiai modei gives a
rough time of 1800 seconds for the data-movement and processing required to
produce an error-image for this chip on the disk (1000 seconds to make the

image initially, 4 x 64 iterations of a roughly 3 second disk-buffer-pipeline-

buffer-disk processing cycle3). About 80% of this is the time needed for the
host to make the mask-image. Software overhead will likely increase this by at

least 50%.

(2) Dedicate special-purpose hardware to the task of mask-image generation. The
preceding analysis assumes that the mask-image is fully instantiated on the
disk with no encoding. If some pre- and post-processing is available at each
end the of the pipe, a simpie run-length coding of each line will reduce storage
requirements and hence data transfer time. More complex schemes such as
hierarchical bit-maps [44], [45] might also be possible. Seiler [18] has dis-
cussed a single-chip polygon-to-raster converter allowing a polygon-based

mask structure to be rapidly processed by a raster subarray DRC machine.

We conclude that some combination of dedicated storage and special hardware

Is sufficient to manage the size probiem for large chips.

Value
Mask-Image Size 64M-bytes (8098 x 8096)
Host Processing Rate 64K cells/sec
Disk Transfer Rate 1M-byte/sec (average)
Pipeline Length 684 stages
Stage Cycle Time t. 1us
Image-Buffer Size 1M-byte
Complete DRC Length 256 steps

Table 2. DRC System Example Parameters

3Note that It s possible to process the mask-image in pleces without overlappling or extra processing
to correct boundary effects. Consider that, If each stage has line buffers longer than the width of the Im-
age, the entlre Image can be streamed through the plpeline and processed. Partition the image into hor-
lzontal bands spanning the whoie width of the mask-lmage. Load a band Into the image buffer, process
through the plpe but suspend the plpellne clock when the last cell enters the first stage, return the pro-
cessed portlon of the image to the disk, load the next band into the buffer, and restart the clock. This
simulates an unbroken image stream. :

CRL-TR~-10-83 R. A, Rutenbar, T. N. Mudge, D. E, Atkins

22

The second and perhaps more serious problem is the issue of quality: a cellular
DRC imposes restrictions on the layout of a chip and on the geometry-rules to be
checked. Layouts represented with a poiygon data-structure may contain features
of arbitrary shape and arbitrary size; polygon checkers can usuaily resolve electricai
connectivity and use this information in tolerance checks. Celiular checkers restrict
the layout to a uniform grid, restricting all features to orthogonal boundaries (no
oblique lines) and all distances to multiples of the unit cell size. Electrical connec-
tivity is not usually available during tolerance checking, resulting in nuisance errors.

These Issues are addressed below.

(1) Many layouts do not require features of arbitrary size. Although memories or
performance-optimized components require finer resolution of features for
which grid-based checkers are inappropriate, there are common applications
which have less stringent performance constraints but which still require much
real estate and which can be satisfactorily layed out on a cellular grid. The
recent popularity of simplified design rules in several technologies [46],[47]

leads us to conclude that grid-based design may be equaily acceptable.

(2) Some oblique lines are representable on celluiar grids at the expense of
Increased storage or processing. A scheme for 45° lines using several bits-
per-cell appears in [41]; the morphc;logical operators are applied to this scheme
in [48]. A method for 45° interconnect based on conditional labeling of cells
appears in [18]. Most layouts are primarily orthogonal. It has been argued that
obliques are a questionable luxury that may become too expensive to check in

the face of VLS| complexity [49].

(8) -Lack of eiectrical connectivity information is not unique to cellular checkers®.

Some recent university systems, e.g. [60], [51], have chosen not to implement

4connectivity extraction Is not impossible here but It is sxpensive. Baker's raster checker [37] in-
cludes a separate node-extraction phase, but the information is not used during the actual DRC. The over-
head of storing connectivity information, e.g., a node number in each cell, is expensive. Note that In a non-
uniform grid [41] it Is iess expensive because there are fewer celis.

CRL-TR-10-83 R. A. Rutenbar, T. N. Mudge, D. E, Atkins

S,

23

obliques and/or connectivity in order to pursue other research directions. Only
rules based explicitly on electrical information, e.g. fanout rules, are comprom-
ised here. Purely geometrical rules of considerable complexity--reflection rules,
transistor size rules, for example--checked with layer combinations and toler-
ance tests in commercial polygon packages are likewise checkable on a ceitular
grid; the only drawback is the possibility for nuisance errors due to connectivity

pathologies.

Glven the existence of a class of large designs that can be appropriately
represented on cellular grids, the strong demand for a comprehensive DRC at the end
of the design process with the accompanying long execution time for a typical
software DRC (often measured in days on a mainframe, e.g. [52]), and the increasing
demand for checking during design-entry, we conclude that, by providing a reason-
able quality DRC in the time range 10 minutes - 1 hour even for very large problems,

the special hardware examined above is a potentlally useful DA tool.

4. Routing

Maze-routing is a natural application for a cellular architecture. The continuing
viabillty of Lee-type routers in both PC board and LSl applications is indicated by
recent surveys [53], [64]. Much research has focused on modifications of the basic
Lee algorithm [65] seeking to improve the efficiency of software implementations
[66]-[68]. This section describes a cytocomputer routing experiment using a spe-
cially designed version of the Lee algorithm for two-point nets with a single conduc-
tor layer. Note that a cytocomputer router Is analogous to the inner-loop of a
software implementation: its only job is to find a path between two points on a grid.
The host processor must deal with wire-list deter'mir{ation, ordering, and unroutable
connections. Nevertheless, a hardware inner-loop will enhance the performance of

the complete routing system.

CRL-TR-10-83 R. A. Rutenbar, T. N. Mudge, D, E, Atkins

24

4.1. Routing Algorithms

We treat here the implementation of a unit-cost Lee-type maze-runner. The
cytocomputer's 8-bit datapath precludes a scheme with arbitrary weights (except
for very small test grids where no path to be completed exceeds 256 cells in length).

The actlvity in each cell of the routing grid is encoded into the following alphabet:

J, T source and target celis
BN | free and blocked cells ;
-, 2 arrows on wavefront pointing back to the source :
Te, T/, T3, T target labeled by wavefront {path found)
ST source labeled during target back-trace

&

I

This Is essentially the encoding proposed for the array architecture in [7] where the

expanding wavefront is composed of source-pointing arrows.
The routing of a single source-to-target path has three phases:

Wavefront-Expansion: iteratively expand from the source a wavefront of
back-pointing arrows; arrows on one wave frontier begin a path to the source

and are equidistant from the source. Continue until the target cell is reached.

Back-Trace: trace a path from the target back to the source along the arrows.

Clean-Up: remove extraneous labeled cells and relabel the new path as a

future obstacle.

Each of these phases is implemented as an algorithm which changes a cell In the grid
depending on its neighbors. We refer to a cell's neighbors using compass directions.
It is useful here to view a cytocomputer as emulating a full-array of finite-state
machines,

WAVE-EXPAND places an arrow in a cell if it is bordered by an active wavefront.
Any label In 8 = { «, ?, 4, », S} can be on a wave border. Each cell C in the grid is

tested as follows:
WAVE-EXPAND:

Fcef [1,1}
THEN BEGIN

CRL-TR-10-83 R. A. Rutenbar, T. N. Mudge, D. E. Atkins

"%
¥

25

IF north € 8
THEN attach * to C
ELSE IF west £ 8
THEN attach « to C
ELSE IFeast € 8
THEN attach » to C
ELSE IF south € 8
THEN attach i to C
END

When more than one labeling may be chosen, the arbitrary order of tests chooses
directions in the order *, «, -, |. Note that the operation attach does the obvious
function on the alphahet, e.g., D attach « = «, T attach * = Tt. Implemented on a
cytocomputer WAVE-EXPAND requires one stage, i.e., a P-stage pipeline can perform
P WAVE-EXPANDS in one pass. This step is repeated until the target T is labeled with
an arrow. ideally we should stop when the target ceill is labeled. However, the target
may actually be reached in the middie of the pipeline and we cannot simply stop the
raster stream. Hence, the target will probably be overrun and a few extraneous cells
will be labeled. The issue is how to determine when the target is reached. On the
current hardware the best solution is to put this operation in the pipeline controller's
microcode, allowing it to check the image buffer after each pass through the pipe and
signal the host when appropriate. A slower approach isrto return some of the image
to the host afterrK passes through the P-stage pipe (where K x P " expected length
of the-path being routed) allowing the host to check the target and repeat as neces-
sary. In our experiments the image was examined by the host after every 100

passes through the single stage pipeline.

BACK-TRACE simply traces the source-pointing arrows from the target back to

the source, attaching a T to each cell C on the unique path traced.

BACK-TRACE:
IF C € 8 AND .
((north = T.) OR (west = T-) OR (east = T«) OR (south = T?1))
THEN attach T to C

Unlike WAVE-EXPAND, BACK-TRACE is completely sequentlal. Hence, like the decision

to terminate WAVE-EXPAND, it is best implemented in the controller's microcode or,

CRL-TR~-10-83 R. A. Rutenbar, T. N. Mudge, D. E. Atkins

26

less efficiently, in the host. Nevertheless, our experiments used the pipeline for this
step to avoid the overhead of removing the image from the environment of the inter-

preter controlling the cytocomputer. One stage implements one BACK-TRACE step.

CLEAN-UP labels the new path as an obstacle and removes all other cells labeled

in WAVE-EXPAND:; it requires one stage.

CLEAN-UP:
Fcet{ .70 Te, Ts, T8
THEN relabel C as -
ELSE relabel C as L

Figure 15 shows a symbolic exampie of these three processes.

4.2, Routing Experimental Resuits

Figure 18 shows the results of an experiment In which a path of length 700 was
routed on a 200 x 200 grid. Although this test required about 120 seconds to run on
a single-stage machine (neglecting host overhead to terminate WAVE-EXPAND),
straightforward expansion to more pipeline stages drastically reduces this time. For
example, a 84-stage system willl require about 2 seconds for the same connection.
if BACK-TRACE and WAVE-EXPAND termination are implemented in microcode, the time
to route a wire becomes wholly dominated by the time to do WAVE-EXPAND. Assuming
microcode support, a sufficlently large image buffer, and t. = 1.0 us, Table 3 esti-
mates the time required to route wires of varying lengths on a 500 x 500 grid as a

function of cytocomputer plpeline length.

Pipeline Estimated Routing Time in Seconds
. Length Wire-lL.en 100 |Wire-Len 500 |Wire-Len 1000
1 25.1 125. 251.
10 2.55 12.8 25.5
100 . .300 1.50 3.00
250 .376 .761 1.60

Table 2. Estimated Routing Time, 500x500 grid.

CRL-TR-10-83 R. A, Rutenbar, T. N. Mudge, D. E. Atkins

bt s

s ms

.

g
>
i
&

27

With these parameters a 64-stage machine could place 500 wires of length 100 in

this grid in about 5 minutes.

4.3. Enlarging the Scope of the Application

It is clear from the preceding discussion that a machine with a modest pipeline
(10-100 stages) and microcode support can route grids representing many PC
boards (12 inches per side with 1/40th inch spacing is roughly a 500 x 500 grid)
and small gate-arrays (1000x1000 grid) in 10-100 minutes. This section discusses

extenslons to larger grids and more sophisticated routers.

Expansion to larger grid sizes can be accommodated with larger image buffers.
Size is less of a problem here than with a DRC: a 2000x2000 grid requires only 4M-
bytes of memory. With additional microcode support it becomes unnecessary to send
the entire grid through the pipeline during wavefront expansion. Because a wave-
front can expand at most K cells in any direction after K WAVE-EXPANDS [568] it is
only necessary to send through a P-stage pipe a grid large enough to contain the
wavefront after P steps. Hence, placing a short wire in a large grid requires no more

time than that required to place the same wire in a small grid.

More sophisticated routers can be accommodated at the cost of more passes
through the pipeline. Multl-point nets can be implemented directly for the router of
the preceding section using the strategy of [7]: first connect two points, relabel the
entire path as a source, choose another point on the net as a target and route again.
Multl-layer routing is possible if we store extra layer Information in each 8-bit cell
and use a more complex WAVE-EXPAND algorithm at a cost of two or more stages per
expansion step. Via-exclusion can similarly be handled with a more complex CLEAN-
UP step. These trade-offs are de;irable when a more complex rout(er produces higher
quality connections and hence more completions. As proposed in [16], several non-
interacting connections can be routed simultaneously on a single large grid with

appropriate partitioning.

CRL~TR-10-83 R. A. Rutenbar, T. N. Mudge, D. E. Atkins

28

Alternative schemes, such as channel-routers and line-routers, have in many
applications supplanted maze-routers. Although maze-routers offer a wide range of
routing performance their slow execution rate restricts them to those last few con-
nections unroutable by any other means. However, a hardware maze-router running
faster than software Implementations of the other schemes removes these restric-

tions and makes maze-routing an efficient scheme for use on all connections.

5. Raster Pipeline Architectures

We have used the phrase raster pipeline subarray to encompaés a class of
machine organizations. A cytocomputer is a particular member of this class, a
machine optimized for specific pattern recognition operations. The single-pipe, 8-bit
wide datapath, and table-driven organization of a cytocomputer closely matches it to
its intended applications. Nevertheless, it would be surprising.if this organization was
optimal for DA work. In this section we propose a design for a pipeline stage more
closely matched to the DA applications previously described. We also discuss the
merits of raster pipeline subarray systems with respect to the practical considera-

tions of selecting special-purpose hardware.

8.1. An Optimized Raster Pipeline DA Architecture

There are three essential characteristics of grld-based DA problems: a wide
range of grid slzes including large grids with 108 — 109 cells, a wide range of data--
blts, flelds, integers--required in each cell, and a wilde range of processing--pattermn
recognition, field manipulation, integer arithmetic--required on each subarray of cells.
The 8-bit table-driven structure of current cytocomputers Is insufficient to handle
these types of data formats and data manipulation. Moreover, the table-driven model
does not simply scale up to wider datapaths. Table look-up is impractical for more
than 12 or 13 bits, and hence, field manipulation achieved only with direct table

look-up is impossible for wider data. Arithmetic capabilities are also limited in current

CRL-TR-10-83 R. A. Rutenbar, T. N. Mudgs, D. E, Atkins

é‘

P

ey,
[

29

cytocomputers. This section will outline a stage structure capable of handling these

problems.

A given DA algorithm is mapped into a sequence of single-stage operations per-
formed in the pipeline; the number of pipeline passes necessary to implement the
algorithm dominates the executlon time for the algorithm. To minimize this time, it is
desirable to incorporate as much hardware in each stage as is necessary to perform
each algorithm step in one stage. For example, in a DRC it should be possible to per-
form pattern recognition steps on several independent mask-planes simultaneously in
a single stage. Also, it should be possible to perform one WAVE-EXPAND step for a

maze-router using arbitrary integer weights /penalties in a single stage.

Figure 17 shows the structure of such a stage. It resembles a cytocomputer
stage in that there is subarray storage, line-buffering, and a datapath using table

look-up. However, the following new features are incorporated:

Wide Datapath: 24-32 bits wide in all storage and processing sections. This

accommodates the need to support several data formats in each cell.

Subarray Access: the 3 x 3 subarray window is now more than simply nine
neighbors; with a 32-bit datapath the subarray can be viewed as a 3 x 3 x 32
array of bits, accessible as nine 32-bit words and thirty-two 9-bit image-
planes. This accommodates the need to perform several pattern processing

steps on independent mask-planes in one stage.

ALU, Field Manipulation, Table Look-Up: The datapath now has a full-width ALU
adding complete arithmetic capabilities. Table look-up is still provided but only
for the low-order bits of the datapath; 12-13 bit look-up (4K-8K tables) is
practical. LTo line up data for the table, field allgnment In the form of barrel-
shifts in 2-4 bit increments is provided at both ends of the datapath. Integers,
multl-bit fields, and bit-planes can coexist in a single celi; arithmetic, logic, and

table substitution can be performed on any of these formats. Temporary

CRL-TR-10-83 R. A. Rutenbar, T. N. Mudge, D. E. Atkins

30

storage similar to the subarray is provided for stage-intermediate results.

Datapath lnstruétions: Explicit control of the flow through the datapath of a
stage is provided by a controller with its own instruction-set. Each instruction
operates on one minor-cycle of the stage clock (similar but less flexible minor-
cycles exist in current cytocomputers). Several instructions are stored in a
stage and executed in order. Each instruction determines the source, process-
ing and destination of datapath operands. If storage permits, literal operands

from these instructions could also be injected into the datapath.

Note that this structure resembles that of a microprogrammed bit-slice machine.
The primary departures are the subarray access mechanisms, the explicit support for

tables and fields, and the desire to fit everything on as few chips as possible.

This structure realizes the goal of minimizing the number of stages required to
implement DA algorithms. Consider a DRC application: several independent mask-
planes are processed on successive minor-cycles by accessing different bit-planes
in the subarray and operating on each with transformations stored previously in the
datapath table. A more general WAVE-EXPAND step is done in one stage: 8 cycles to
determine the bordering cell with minimum/maximum weight, one cycle to

add/subtract this from the central cell, and one cycle to update any necessary flags.

Table 4 gives the performance goals for such a stade. Several trade-offs are

apparent. The datapath width affects the complexity of the ALU, the subarray and

L Parameter —vale
Datapath Width | 24-32 bits
Line-Buffer Length | 4K-18K
Stage Processing Rate | 1
Minor-cycles (instructions) | 10-12, & 100 ns/cycle
Table Look-Up | 4K-8K words
Fieid-Alignment | Barrei Shift, 2-4 bit increments
Temporary Storage | 4-9 full-width words

Table 4. Performance Goals for DA Pipeline Stage

CRL-TR=-10-83 R. A, Rutenbar, T. N. Mudge, D. E. Atkins

i

{

$
i
P

31

temporary storage, and the instruction storage. Overall pipeline rate impacts the
number of feasible minor-cycles, and the line-buffer and table access times. With a
semi-custom implementation (gate-arrays and 64K-bit memories) a single stage will
require about 10 chips. With a custom implementation, large memorles (e.g., 256K-bit
to 1M-blt chips [60]), and relaxed pin constraints [81] a 3-chlp stage is possible:

one chip each for the line-buffers, the stage-processor, and the tables.

We have not yet addressed the appropriate length for a pipeline of these
stages. Most applications argue for very long pipes, for example, to handle effi-
ciently the placement of long wires in a grid. However, it is usually not the case that
all stages are required at all steps of the algorithm. Global decislons may be neces-
sary after short processing sequences, the grid size may need. alteration (e.g., for
routing with dynamically changing bounding perimeters), or a temporary image may
need to be stored somewhere. For these situations a long pipeline will be underutil-
ized. The solution shown in Figure 18 employs multiple shorter pipellines. Here, pipe-
line k can be connected to pipellne (k+1) mod 2 to form longer pipes. More impor-
tantly, several short pipes can be concurrently performing different tasks: short DRC
steps, independent path connections, for example. (Conceivably, several indepen-
dent users can have a short dedicated pipe if appropriate multiple 1/O channels are
available.) This organization requires only the addition of switching multiplexors at
the front of each .plpe, and a small format-processor to choose which bits of which
streams are placed in the single final output stream. The complexity of such a sys-
tem is not excessive; assuming a 3-chip stage, a 1-chip switch, and a 10-chip
format-processor a subsystem with four 32-stage plpelines will require about 400

chips.

5.2. Practical Considerations for DA Architectures

Several criteria are available with which to evaluate the merits of any proposed

special-purpose machine [2]. Practical trade-offs among cost, speed, expandabillty,

CRL-TR-10~83 R. A. Rutenbar, T. N. Mudge, D. E, Atkins

32

and range of application are commonly considered. In this section we briefly discuss
some of the essential characteristics of raster pipeline subarray machines for DA

work.

Expandability: a machine based on a pipeline of homogeneous stages is
inherently modular. Adding stages is straightforward and practical. In addition,
the loose coupling of the major system components--disk, image-memory, con-

troller, pipeline--permits independent upgrading of any component.

Cost/Performance Range: both cost and performance are proportional to pipe-
iine length and image-buffer size. A low-end system will have only a single
short pipe and small buffer. A high-end system will have several long pipes, a

large buffer, and a dedicated disk.

Direct Accommodation of Large Problems: the only limitation on the grid-size
is the length of the line~buffers in each pipeline stage. Assuming a very large M
x N image can be generated, it is possible for the pipeline to process this image

directly, for any M, if each line-buffer length exceeds N.

Application Range: ciearly a variety of DRC and routing tasks can be per-
formed. Any problem that can be represented on a cellular grid and that is
characterized by local functional dependencies among cells is a candidate

application.

The primary weakness of these archltectures is the restriction on global and
condltional data-manipulation imposed by the pipeline structure. A P-stage pipeline
of neighborhood-processing stages can, In one pass, move any pixel by P cells in any
direction. The cost to move just one cell this distance is same as the cost to move all
cells this distance: one pass through the pipe. If one cell in an Irﬁage requires
knowledge about another cell a distance D>>P cells away, the cost is [D/P]>>1
passes through the pipe. Itis similarly difficult for a state change in one cell to influ-

ence globally all subsequent processing steps in the pipeline. If this state change

CRL-TR-10-83 R. A, Rutenbar, T. N. Mudge, D. E, Atkins

¥
8
£
5
:

33

occurs in the middle of a full pipeline with output already streaming from the final
stage it is impossible backup the raster, reprogram the stages, and rerun the image.
However, neither of these problems is serious enough to warrant abandoning
pipeline-based machines. With hardware/firmware support the pipeline controller can
perform much of this data-movement and examination, e.g., WAVE-EXPAND termina-

tlon.

It is useful here to compare raster pipeline subarray machines with full-arrays on

some of these points. The pipellne structure easily accommodates additional pro-

cessing stages. Arrays are generally not designed to accommodate additional pro-

cessors. Large arrays with thousands of processors are usually restricted to simple

but fast bit-sequential processors; algorithms may be lengthy because of this bit-
level processing but overall speed can be significant just because of the enormous
number of processors. Pipelines with 10-100 processors can afford more complex

stages; the goal is to incorporate as much processing power in each stage as possi-

PSR,

ble (e.g., the abillty to perform one WAVE-EXPAND step for a general weighted maze-
i runner in one stage) to minimize the number of passes through the pipellne. Both

,arrays with large memories at each node and pipelines with long line buffers can deal

directly with large problems. However, arrays are limited by the total storage avail-

able across all nodes, whereas pipelines are limited by the length of the line buffers.

Consider, for example, that both a 64 x 64 array with 4K-bits per node and a 64-
stage 32-bit wide pipeline with 4K-word line buffers require 16M-bits of storage. A
704 x 704 x 32-bit grid can be folded directly onto the array effectively filling up all
storage; any larger image must paged in and out of this storage. A 4K x 4K x 32-bit
image can be directly streamed through the pipeline. Both arrays and pipelines bene-
fit hniformly from improvements in device density and speed: incorp'orating more
stages (processors) onto a chip allows the construction of larger pipelines (arrays).
There will inevitably be some point at which chip count for a large pipeline system

matches that of a large array. In this situation the particular structure of the

CRL-TR-10-83 R. A. Rutenbar, T. N. Mudge, D, E. Atkins

34

problems at hand will determine the choice of hardware.

6. Conclusions

The class of raster pipeline subarray architectures encompasses a range of
machines and applications. We have shown that an appropriate raster pipeline subar-
ray organization is able to support several grid-based DA applications, the principal
strength of this organization being the wide cost/performance range achievable with
a modular pipeline structure. Results from experimental DA algorithms running on
cytocomputers are encouraging. We are currently interfacing a cytocomputer with a
new host environment--a VAX" 11/780 running UNIX™-- and developing new, more
comprehensive DRC and routing packages to run on this hardware. The intent is to
develop potential applications by studying prototype algorithms running on the
machine in a real environment. Moreover, it will enable us to identify more of the per-
formance bottlenecks to realistic applications discussed previously, and hence to

refine the optimized machine architecture for DA proposed here.

Acknowledgments

The authors are grateful to the Environmental Research Institute of Michigan for
early access to several cytocomputers, and wish to thank Robert Lougheed in partic-

ular for his support.

IVAX Is a trademark of the Digital Equipment Corporaﬂén.
XX
UNIX is a trademark of Beil Laboratories.

CRL-TR-10-83 R. A. Rutenbar, T. N. Mudge, D. E. Atkins

+
i

i

35

References

[1] M. Abramovici, Y. H. Levendel and P. R. Menon, "A logic simulation machine,” Proc.
19th Design Automation Conf., pp. 65-73, June 1982.

[2] H. G. Adshead, "Towards VLS| complexity: The DA algorithm scaling probiem: Can
special DA hardware help?" Proc. 19th Design Automation Conf., pp. 339-344,
June 1982.

[3] H. G. Adshead, "Employing a distributed array processor in a dedicated gate-
array layout system,” Proc. ICCC, pp. 411-414, Oct. 1982.

[4] R. L. Barto, S. A. Szygenda and E. W. Thompson, "Architecture for a hardware
simulator,” Proc. ICCC-80, pp. 891-893, 1980.

[6] T. Blank, M. Stefik and W. van Cleemput, "A parallel bit map processor architec-
ture for DA algorithms,” Proc. 18th Design Automation Conf. pp. 837-845,
June/July 1981.

[8] T. Blank, "A bit map architecture and algorithms for design automation,” Ph.D.
Thesis, Dept. of EE, Stanford Univ., Stanford CA., Sept. 1982.

[7] M. A. Breuer and K. Shamsa, "A hardware router,” Jour. of Digital Systems, vol.
IV, issue 4, pp. 393-408, 1981.

[8] C.R. Carroll, "A smart memory array processor for two layer path finding,” Proc.
2nd Caitech Conf. on Very Large Scale Integration, Jan. 1981.

[9] . E. Damm, H. Gethoeffer and K. Kaiser, "Hardware support for automatic routing,"”
Proc. 19th Design Automation Conf., pp. 219-223, June 1982.

[10] M. M. Denneau, "The Yorktown simulation engine,” Proc. 19th Design Automation
Conf., pp. 56-59, June 1982.

[11] S. J. Hong, R. Nair and E. Shapiro, "A physical design machine,” in VLS! 81, J. P.
Gray, Ed., London: Academic Press, pp. 348-365, 1981.

[12] A. losupovicz, "Design of an iterative array maze router,” Proc. ICCC, pp. 908-
911, 1980.

[13] T. N. Mudge, R. M. Lougheed and W. B. Teel, '"Design rule checking for VLSI cir-
cuits using a cellular computer,” Abstracts of the 1981 ACM Computer Science
Conf., St. Louis, pp. 29, Feb. 1981.

[14] T. N. Mudge, R. M. Lougheed and W. B. Teel, "Cellular inage processing tech-
niques for checking VLS| circuit layouts,” Proc. of the 1981 Conf. on Informa-
tion Sciences and Systems, The Johns Hopkins University, pp. 315-320, March
1881.

[15] T. N. Mudge, R. A. Rutenbar, R. M. Lougheed and D. E. Atkins, "Cellular image pro-
cessing techniques for VLSI circuit layout valldation and routing,” Proc. 19th
Dasign Automation Conf., pp. 537-543, June 1982.

[16] R. Nalr, S. J. Hong, S. Liles and R. Vlliani, "Global wiring on a wire routing
machine,” Proc. 19th Design Automation Conf., pp. 224-231, June 1982.

[17] G. F. Pfister, 'The Yorktown simulation engine: Introduction,” Proc. 19th Design
Automation Conf., pp. 51-54, June 1982. -

[18] L. Seiler, "A hardware assisted design rule check architecture,” Proc. 19th
Design Automation Conf., pp. 232-238, June 1982.

[19] R. M. Lougheed, D. L. McCubbrey and S. R. Sternberg, '"Cytocomputers: Architec-
tures for parallel image processing,” Proc. IEEE Workshop on Picture Data
Description and Management, Aug. 1980.

CRL-TR~10-83 R. A. Rutenbar, T. N. Mudge, D. E. Atkins

36

[20] R. M. Lougheed, D. L. McCubbrey, "The cytocomputer: A practical pipelined
image processor,"
Proc. 7th Annual International Symp. on Computer Architecture, pp. 271-277,
May 1980.

[21] S. R. Sternberg, ""Language and architecture for parallel image processing,"” in
Pattern Recognition in Practice, E. S. Gelsema and L. N. Kanal, Eds., Amsterdam:
North Holland Publishing Co., 1980.

[22] C. Mead and L. Conway, /ntroduction to VLSI Systems, Reading: Addison-Wesley,
1880.

[23] P. E. Danielsson and S. Levialdl, “Computer architectures for pictorlal information
systems,” Computer, vol. 14, no. 11, pp. 53-67, Nov. 1981,

[24] Languages and Architectures for Image Processing, M. Duff and S. Levialdi, Eds.,
London: Academic Press, 1981.

[26] M. Kidode, "Image processing machines in Japan," Computer, vol. 16, no. 1, pp.
68-80, Jan. 1983.

[28] K. Preston, "Cellular logic computers for pattern recognition,” Computer, vol. 16,
no. 1, pp. 36-47, Jan. 1983.

[27] K. Preston, M. J. B Duff, S. Levialdi, P. Norgren and J. Toriwaki, ''Basics of cellular
logic with some applicatlons in medical image processing,” Proc. of the IEEE, vol.
67, no. 5, pp. 826-856, May 1979.

[28] Multicomputers and Image Processing: Algorithms and Programs, K. Preston and
L. Uhr, Eds., New York: Academic Press, 1982.

[29] D. Antonsson et al., "PICAP - A system approach to image processing,” IEEE
Trans. Computers, vol. C-31, no. 10, pp. 997-1000, Oct. 1982.

[30] H. J. Siegel, et al., "PASM: A partitionable SIMD/MIMD system for image pro-
cessing and pattem recognition,” /EEE Trans. Computers, vol. C-30, pp. 934-
847, Dec. 1981,

[31] M. J. B. Duff, "Review of the CLIP image processing system," Proc. National
Computer Conf., pp. 1065-1060, 1978.

[32] J. K. lliffe, Advanced Computer Design, London: Prentice Hall, Chap. 12, 1982.

[33] K. E. Batcher, "Architecture of a massively parallel processor,"” Proc. 7th Annual
Symp. on Computer Architecture, pp. 168-174, 1980.

[34] M. Aoki et al.,, ""An LS| adaptive array processor,” Proc. ISSCC, pp. 122-123,
Feb. 1982.

[36] K. Preston and P. E. Norgren, “Interactive Image processor speeds pattem
recognitlon,” Electronlics, vol. 48, p. 89, 1872,

[36] J. M. Herron, J. Farley, K. Preston and H. Sellner, "A general-purpose high-speed
logical transform image processor,” /EEE Trans. Computer, vol. C-31, no. 8, pp.
796-800, Aug. 1982.

[37] C. M. Baker, "Artwork analysis tools for VLS| circuits,” M.S. Thesis, MIT, Cam-
bridge, MA, 1980.

[38] J. Serra, Mathematical Morphology and Image Processing, London: Academic
Press, 1981.

[39] G. Matheron, Random Sets and Integral Geometry, New York: John Wiley & Sons,
1975. .

[40] H. S. Baird, "Fast algorithms for LS| artwork.analysis," Jour. of Design Automa-
tion and Fault Tolerant Computing, vol. 2, no. 2, May 1978, pp. 179-2009.

CRL-TR-10-83 R. A. Rutenbar, T. N. Mudge, D. E. Atkins

37

[41] P. Losleben and K. Thompson, '"Topological analysis for VLSI circuits,” Proc. 16th
Design Automation Conf., pp. 461-473, June 1979,

[42] R. Eustace and A. Mukhopadhyay, "A deterministic finite automaton approach to
design rule checking for VLSI,” Proc. 19th Design Automaton Conf., pp. 712-
717, June 1982.

[43] E. H. Frank and R. F. Sproull, "Testing and debugging custom integrated circuits,”
Computing Surveys, vol. 13, no. 4, pp. 425-452, Dec. 1981.

[44] M. Marek-Sadowska and W. Maly, " A hierarchical layout description for artwork
analysls of VLSI IC,” Proc. ICCC-82, pp. 419-422, Oct, 1982.

[46] J. Wilmore, "The use of bit maps in designing efficient data bases for integrated
circuit layout systems,” Jour. of Digital Systems, vol. |V, issue 1, pp. 71-95,
1980.

[468] R. F. Lyon, "Simplified Design Rules for VLS| Layouts,” Lambda, vol. Il, no. 1, pp.
54-59, 1st Quarter, 1981.

[47] T. W. Griswold, "Portable design rules for bulk CMOS," VLS/ Design, vol. lll, no. 5,
pp. 82-67, Sept./Oct. 1982.

[48] R. A. Rutenbar, "A cellular framework and techniques for physical design auto-
mation problems,” CRL Tech. Report CRL-TR-6-83, University of Michigan, Jan.
83.

[49] P. Losleben, "Computer aided design for VLS|," in Very Large Scale Intergration
VLS!: Fundamentals and Applications, D. F. Barbe, Ed., Springer-Verlag, 1980.

[60] J. L. Bentley, D. Haken and R. W. Hon, "Fast geometric algorithms for VLSI
tasks,” Proc. COMPCON-80, pp. 88-92, 1980.

[61] M. H. Arnold and J. K. Ouserhout, "Lyra: A new approach to geometric layout rule
checking,” Proc. 19th Design Automation Conference, pp.530-536, June 1982.

[62] s.E. Bello, J. L. Hoffman, R. I. McMillan and J. A. Ludwig, '"VLSI hierarchical design
verificatlon,” Proc. ICCC-82, pp. 530-533,0ct. 1982.

[63] M. A. Breuer, A. D. Friedman and A. losupovicz, "A survey of the state of the art
in design automation,’’ Computer, vol. 14, no. 10, pp. 68-75, Oct. 1981.

[64] J. Soukup, "Circuit layout,” Proc. of the IEEE, vol. 69, no. 10, pp. 1281-1304,
Oct. 1981.

[66] C. Y. Lee, "An Algorithm for Path Connectlons and Its Applicatlons,"” IRE Trans. on
Electronic Computers, vol. EC-10, September 1961, pp. 346-368.

[68] F. Rubln, "The Lee path connection algorithm,"” /EEE Trans. Computer, vol. C-23,
pp. 907-914, Sept. 1974,

[67] J. H. Hoel, "Some variations of Lee's algorithm,” /EEE Trans. Comput., vol. C-25,
pp. 19-24, Jan. 19786.

[68] J. Soukup, "Fast maze router,’ Proc. 15th Design Automation Conf., pp. 100-
101, June 1978.

[69] S. Akers, ""Routing,” in Design Automation of Digital Systems, vol. 1,.M. Breuer,
Ed., Englewood Cliffs, NJ: Prentice Hall, Chapter 6, 1972.

[60] M. A. Fischetti, "VLSI/LSI components," Spectrum, vol. 20, no. 1, pp. 43-47, Jan.
1983.

[61] S. R. Parris and J. A. Nelson, "Practical packaging considerations in VLS| pack-
aging," VLSI Design, vol. Ill, no. 6, pp. 44-49, Nov./Dec. 1982.

CRL~-TR~-10-83 R. A. Rutenbar, T. N. Mudge, D. E. Atkins

CRL-TR-10-83

38

R. A. Rutenbar, T. N. Mudge, D. E. Atkins

vm
o it

g

ARRAY

SUBARRAY FULL-ARRAY

, SINGLE
i (RASTER)
NON-RASTER

Fig. 1. Taxonomy of image processors.

ROUTING
NETWORK

RASTER-
PIPELINE

ICN

(Interconnection
Network)

Fig. 2. ICN (Interconnection Network) architecture.
Sjis a processor/memory subsystem.

INSTRUCTIONS

GLOBAL
CONTROLLER

Fig. 3. Array architecture.

INPUT
IMAGE
RASTER

SUBARRAY
»{ LINE BUFFER >
l
Vv \
STORAGE NEIGHBORHOOD
FOR TWO ROWS (SUBARRAY)
OF IMAGE STORAGE

Fig. 4. Raster single subarray architecture.

OUTPUT
RASTER

@

g

INPUT SINGLE SINGLE SINGLE OUTPUT
IMAGE =—{ RASTER 1 RASTER 2 w = = =P{ RASTER N IMAGE
RASTER SUBARRAY SUBARRAY SUBARRAY RASTER

Fig. 5. Raster pipeline subarray architecture.

IMAGE

STORAGE
SUBIMAGE
ACCESS
SUBARRAY | SUBARRAY —— SUBARRAY
BUFFER 1 | BUFFER 2 BUFFER M
DATA DISTRIBUTION
SUBARRAY SUBARRAY SUBARRAY

PROCESSOR 1

PROCESSOR 2

PROCESSOR N

Fig. 6. Non-raster multiple subarray architecture.

s

‘o4n}o9}iyose waysAhs 193ndwo 203X * 2 "Bid4

HYALNdWODOLAD

LNdLNO JYdLSYY

X
q 2oviS le——d 7z @ovis |e— 1 @ovis [— — — — —
yaadngd o
| HOVHI a
a. ﬂ YATTOMINOD a
SNOTIONYISNI HOVLS "
SNOTLONYISNI L0ANT 104100
HOVHI HOVWI

JYHLNdWOO
LSOH

dOVYLS
LXIN O&

il bt

‘(g)-(1) suoijesado jo uopyduossep 104 1x9)] 20¢g
*ain}oayyoJe abeys sa3ndwosoih) - g by

JdOVLS ¥IALONIWODOLAD

(S)
ONINSYRWNN
ONISYIGNN

\

(v)
(4030071
AT9YL)
NOILYOIJIAOW
YALNID

/

\\\\\\\\\\

(€)
(dn3001
dTdYL)
NOILOITHS
YALNID

///////////

()
SNOILVYLNdWOD
YOHHDIAN
TYNAIATANI

]
AVHYYENS €X¢
44— Y3IJANd INIT
44— yFIINg IANIT
| (1) _
4= ONINSVH |&¢
ONISYIL 4DVLS
_ SNOIATYd

/

EO&&.

\
IMAGE | '
Ag. 6l R6,5| 6,4
new
i3 l ASIS
zé SUBARRAY
b
Ae 3|26,2]%,1 As 9 |As,s A5,7.__..A5,6 As s 1Bs,4 PROCESSOR
As 3{Bs,2|Ps,1| P, 0| 24,84, 7 =124, 5]|4,5|%,a
LINE BUFFERS

SUBARRAY

Fig. 9. lllustration of a single neighborhood transformation.

AcB

Fig. 10. lllustration of erosion A©B.

-————" ===
l | |
| Lo !
* | | | I
: | L_—J [
I I
| | |
| |
| |
L e e e e e — — -
% EROSION X(3S
e N |
I |
| [
| l
| I
L
A A
OPENING X CLOSING X°

S

Fig. 11. The dilation, erosion, opening, and closing
of figure X by figure S.

Fig. 12. Geometric basis for Algorithm 1 width-W check.
(a) Mask to be checked.

(b) Sliding diameter-W disk.
(c) Regions covered by disk (dotted) and traced by center (black).

Fig. 13. Geometric basis for Algorithm 2 widtﬁ-W check.
(a) Original mask to be checked.
(b) Thinned result (dotted).

e =@ = § g B8 £/
1 00O
g9+ L

Fig. 14. Results of width-3X checks on 64X X 64X mask.

(a) Mask to be checked.

(b) Algorithm 1 labels errors in black. Regions too small are black;
narrow necks are tagged by a black square north of violation.

(c) Algorithm 2 labels errors in black. Regions too small are black;
narrow necks are tagged by a black line across violation.

T+

¥y | « | «| « > | ¥ |+ |¥]|*
gl « |« > | S|« | «| +
4 + +
| 4 +1 4]+
4 N
p| o4 v
T R
I RN
(@) (b)
- | = | = |]| «
S|+« | «|+|+|+«|*
4
+ + |+ *
+ »| 4
T+ v |- +
T+|T«|T«|T«|T«|T<«
SERENENE
() (@)

Fig. 15. Routing process.

(a) WAVE-EXPAND in progress.

(b) Target labeled; WAVE-EXPAND terminated.
(c) BACK-TRACE in progress.

(d) Path complete after CLEAN-UP.

B

(a)

[TaRGE T

(d)

Fig. 16. Result of routing 700-cell path on 200 x 200 grid.
(a) Grid with Source (top left) and Target (lower right).
(b) WAVE-EXPAND in progress (wavefronts are shaded).
(c) BACK-~TRACE in progress (path is shaded).

(d) Final path after CLEAN-UP.

i
3

‘aupyoew yq Aesseqns suijadid 1a)ses 104 ainyoayyose abeig /1 ‘614

SATEVL —l SHYAIING INIT
X SSEO0Y |
— , :
ADVLS i NorTv |amdoot | BT | NoITv X ATHIVENS ADVLS
LXAN h aTaId | anavs Hic | amara H SNOTIATNA
ol R Wou d
AVIAYENS
TOMINOD
Pl SSEO0V HIVAVINA
SNOILONYLSNI |
HOVHOLS H
AUYHOdWAL 1
€T
71
11
4OVLS ANTTHdId ATONIS METTONINOD

ANIT3dId WOdd

-auyoew yg Aesreqns auljadid 1a)sel o) ainyoajyose auladid "gL ‘b4

dOY4LS
Addvdns
YdLSYYH

==

£ ANITAdId

f.

NO T LY TINdINYH ~__ | OTIQ;IIQ‘ __;l
oqumL 7 ANITAdId _
LNdLno T_ ILNdN:
HALSYH —‘ l JALSY
1 ANITAdId _/_
e ——nsuill
0 ANITAAId _/_

