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ABSTRACT

This report describes a model and analysis of
crossbar-based multiprocessor systems. A packet
switched multiprocessor system meodel is developed
and analyzed under certain system behavior assump-
tions. The model is based on an infinite customer mul-
tiple M/ D,/ 1/ L queueing network that represents the
gsystem conflguration. Performance measures that
provide insight into system behavior are derived.
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1. Introduction.

High performance multiprocessor computer architectures typically
require high capacity connection channels between processing elements. A
connection channel may be constructed in many ways, recently interconnec-
tion networks have been developed for this purpose. The selection of a particu-
lar interconnection network design is based on performance gains over other
designs. An interconnection network's performance is typically classified
according to three performance measures: network size; network connection
capability; and network operation behavior. The first two of these three have .
been thoroughly studied [Ben85, Clo53, GoL73, Law75, Sie77, SieB0, WuF80], the
third measure has also been studied but network behavior under several impor-

tant operating conditions remains an open question.

This report describes a model and analysis of the most basic switching ele-
ment of most interconnection networks of interest in high performance pro-
~cessing, the crossbar switch. The analysis is applied to a system whose inter-
connection network is a crossbar. Performance measures of the system are
obtained for a particular processor/program behavior model and a class of

memory behavior models.

Work done in the area has basically assumed that the system in some way
or another operates synchronously. Typically pr.ocessm"s and memories have
been modeled where one or both are synchronous subsystems [SkA89, Str70,
Bha?75, BaS78, Hoo77, SeD79, Pat79, Rau79, MaM81)]. In this report a queueing
model is developed that models processor behavior as a Poisson process and
mernory behavior as a multiple deterministic server. This model maintains the
deterministic model of memory behavior, but allows a queueing analysis to be
done. For special cases the analysis described is seen to agree with some of the

earlier analyses referenced above.
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The system to be modeled and analyzed is an n source, m sink system. A

source is a device which emits packets of constant length.! Packets emitted by
a source are sent to 1 of m sink devices. Sources may be devices such as pro-
cessors or memories, similarly sinks may be processors or memories. The
model applies to processor-to-processor connected systems, processor-to-
memory connected systems, etc. For simplicity, sources in this report are
considered to be processors and sinks are considered to be memory modules.
Figure 1 shows this configuration. The interconnection network is a crossbar.
That is, the analysis will be applied to a packet switched crossbar-based

processor-to-memory system.

There are several important measures to be found. They are measures of
system performance that are functions of design choices and program

demands on the memory system. The measures to be derived here are:

(1) Processor utilization (PU) - the fraction of time that the n processors are

executing instructions. That is, PU is the fraction of time that the proces-
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n-m Crossbar Optional Disk Units

Figure 1. System to be modeled.

! In applications such as computer network analysis, packets are messages that vary in length.
Packets here are memory reference words of constant length.
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sors are doing useful work.

() Memory utilization (MU) - the fraction of time that the memory modules
are performing memory operations (reads and writes). MU is the fraction

of time that memory modules are busy.

(3) Average queue length - the average number of packets present in one of

the memory module queues (to be discussed later).

(4) Packet delay time - the amount of time it takes for a packet to reach its
its destination after it is emitted. It is the amount of delay encountered
from packet emission to completion of service at the destination memory

module.

The report is organized as follows: Section 2 describes the multiprocessor
system to be modeled. Section 2 also discusses multiprocessor system archi-
tectures that are appropriate for application of the model described here. One
is a general purpose machine, the other is a numerically oriented machine
where processors have memory interface queues that buffer addresses and
data. Section 3 describes the analysis of a queueing model that represents the
system. A solution for an M/ D,/ 1/L? queue is derived and used. A general
solution for M/ G/ 1/ L queues may be found in [Coo72, GrH74]. Section 4 uses
the results from section 3 to derive expressions for the measures cited above.

Other measures have been proposed [MaGB81], but those developed here can

often form a basis for others.? Section 5 discusses special case solutions for

2 This notation will be explained later.
3 For example, [MaG81] defines processing power P, as the average number of active processors,
in the model here, P = n. They also define the average number of qu%lued Processor requests, Nq. In

the model presented here, if packeta in service are included, Ng = EE[NJ] . See section 4 for de-
. . =
tails of notation.



particular parameter choices. This provides insight into the way model parame-

ters interact in determining system measures. Section 6 is the conclusion.



2. System Model and Assumptions.

The packet switched system in Figure 1 is to be modeled with certain sim-

plifying assumptions:

(1)

(2)

(3)

All processors behave independently. In particular this means interproces-

sor data dependencies are not modeled here.

Each processor emits packets as a Poisson process with rate A\; (i is gen-

erally a processor number, 1 <i<n). Thus program behavior is modeled

as follows: a program executing on processor i emits packets* at any time,

the average time between packet emissions is 1 . This is simply a con-

M

tinuous time extension of discrete time processor models [SkA69, Str70,
Bha75, BaS78, Hoo77, SeD79, Pat79, Rau79, MaMB81] where the packet emis-
sion process is a Bernoulli process. In discrete time processor models, it
is assumed that processors emit packets during system cycles with proba-
bility p (which may be viewed as the fraction of instructions that reference
global memory, such fractions are characterized by Gibson mix relative
frequencies). The continuous time model is simply an extension of this
idea, in fact it is the process that arises if the system cycle time goes to

zero (with an appropriate adjustment in p) in the discrete time model.

All packet emissions are independent of each other. This assumption
means that programs/processors do not make global memory references
and wait for responses. This assumption makes all processor Poisson
processes independent of each other. It also means processors are never

idle waiting for memory responses.

4 Packets here are global memory reference words, global memory is that memory seen com-

monly by all processors, it is comprised of the memory modules on the right side of the crossbar of

Figure 1.

WMurltinda /T 214727 UHnltinvwmnnnoconrs HAadal




(4) When a program makes a global memory reference {a processor emits a
packet), the selection of a destination memory module is modeled using a

routing matrix P, where

P=(P;).

P;; = Pr{ packet emitted by proc. i is for mem. mod. j .

Thus P, is a probability conditioned on the event that a packet was emit-
ted. This is an observable measurement on the system. More specifically,
P;j's may be determined from examining program memory reference pat-
terns [BaS78, Hoo77]. By assumption (B)Aeach global memory reference is
modeled as being independent of previous and successive global memory

references.

Even though the queueing modél of the system is packet switched, actual
system operation resembles a paged memory system. In the system to be
modeled, processors emit read or write request packets. In the case of a global
memory read operation, a memory queue server {see memory modules shown
in Figure 3), upon receiving a read request, sets up a connection to the request-
ing processor. The connection is provided by a data-path crossbar (not shown in
Figure 1) which makes connections from memory queue servers to requesting
processors. After a connection has been set up by a memory queue server (of
which there are m, all of which operate independently), the desired memory
page is transferred to the requesting processor's local memory. There may be
many page sizes available to algorithms running on various processors. Notice
that no synchronization is present in memory service behavior, i.e., processors
and memories run asynchronously with respect to each other. It is assumed
that processors are able to handle the return connection data transfer rate.

Future work might include analysis of return queues at processors.

Multiple M/ D,/ 1/ L. Multiprocessor Model



In the case of a global memory write operation, a memory queue server,
upon receiving a write request, transfers a page of local memory (through the
data-path crossbar) into its global memory module. Global memory write
operations could alternatively be handled by transferring a word at a time to
global memory modules using the request packets as data carriers. The former

approach will be assumed for write operations.

The model may be applied to the analysis of MIMD (multiple instruction
stream, multiple data stream) environments where processor packet emissions
are independent and processors behave independently. These characteristics
are satisfled in a general purpose environment where each processor is mul-
tiprogrammed among several users. In this case each processing element
behaves like a multiprogrammed processor with memory. Global memory refer-
ences may be treated as page faults, so that processors context switch to
different jobs on each global memory reference. This treatment of user jobs
ensures that successive global memory references are independent. This situa-
tion also exhibits independent processor behavior. Although there are many
variations on general purpose machine operation, the model given here applies
particularly well to the above mode of operation due to the independence of

user jobs.

The analysis may also be applied to tightly coupled systems executing
parallel algorithms in an MIMD mode of operation. Consider a system of multi-
ple memory modules that store data, and multiple processors each organized
as shown in Figure 2. An example of such a processor is the MAP-200 [CoS81].
Each processor is divided into two subsystems: an address processor and a data
processor. These two subsystems are relatively loosely coupled so that they
may run asynchronously with respect to each other. It has been found that

such processors lend themselves to a wide variety of numerically intensive

computations, but in particular to weakly vectorizable® numerical
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computations [SmiB1]. In fact, our motivation for imbedding the processor in a
multiple processor architecture, and as a consequence developing the model in
this report, was to study the eflectiveness of such multiprocessors for solving

sparse matrix problems -- a weakly vectorizable computation.

To see how the processor of Figure 2 operates in the context of the mul-

tiprocessor architecture of Figure 1, consider the following. Assume each pro-
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Figure 2. Details of the processor.

5 Weakly vectorizable refers to computations in which it is difficult to organize the data into vec-
tors all having the same length. Instead, data appears in a variety of (usually short) vector lengths
and as simple scalars.
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cessor has its own private program memory initially loaded by some form of
system manager. Furthermore, assume each processor to be a three address
machine. During instruction execution, the address processor enters three glo-
bal memory data addresses into the three address queues. These queues are
emptied into the global memory system by the memory interface controller.
Thus these three address queues form the packet sources for each processor.
When addresses are emitted they are routed to their appropriate memory
module queues (Figure 3, see the next section). Data read from global memory
is loaded into processor data input queues. Data to be written into global
memory is stored in the data output queue until the required global memory

connection is ready.

In this application, memory pages range from single memory words used
in scalar operations, to vectors of memory words used in vector operations. As
will be seen, multiple page size selection may be used to represent multiple

vector sizes used during computations.

It is assumed here that interprocessor data dependencies and problem
partitioning are handled by the compiler, consequently, run-time or dynamic

parallelism is not achievable.

Multiple M/ D,/ 1/ L Multiprocessor Model
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3. Analysis of the Model.

Under the assumptions of section 2, the model will now be analyzed to find
the four performance measures listed in section 1. Steady state behavior is
assumed.

The system may be redrawn as in Figure 3. Here processors are replaced by
Poisson sources (which may be global memory address queues as described
above) and memory modules are replaced by queues and servers. The crossbar
is drawn as a bipartite graph to display the decomposition and superposition of

the processor Poisson processes.

From Figure 3 and the fact that this is an infinite customer model, it may
be seen that each queue behaves independently of others. A single queue solu-
tion will suffice to complete the queueing network analysis. All queue servers
operate on a first come, first served (FCFS) basis for those packets in the queue.

No other service disciplines are considered.

Length L queue

il S 9
A Aoyl '
Source 1 : — 1] ! Sink 1
' Bi(t) i
A A T T X
2
e I g W
| ﬁz(t) :

Figure 3. Queueing network model of the system.
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3.1. Single Queue Solution.

A solution for a single M/G/1/L queue is required for each of the m
memory module queueing stations. It is highly desirable to make the queues
finite length because implementations are finite in size. The analysis with
finite length queues shows performance verses queue size, thus providing

insight into system behavior as a function of queue sizes.

From decomposition and superposition of Poisson processes, it may be
seen that the jth memory module queueing station sees a Poisson process with
rate Ay at its input, further

n
)\,J = me)\i .

i=1

A column vector A\, may be defined from this and A, the processor emission

rate column vector:
Ao = PTA. (1)

A solution for the jth M/G/1/L memory queueing station may be found by
using the imbedded Markov chain that is defined by examining ’the queue size
after departure instants [Cin75, Coo72, GrH74, Kle?5]. Define the imbedded
Markov chain transition matrix T for a queueing station with a queue of length
L (not including the server, that is, L is length of the queue proper). The ran-
dom variable on which the Markov chain is defined is the number of packets

left in the queueing station immediately after a departure.

Multiple M/ D;/ 1/ L Multiprocessor Model
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Where the ¢y, 1 < w= L, are chosen to make the rows sum to unity. A detailed

discussion of the structure of the matrix T may be found in [Cin75]. Put briefly:

for rows 1 through L, only steps down one (if no arrivals occur between two

departures) or steps up of magnitude 0 through L — w for row w may take place.

If, say, k arrivals occur between two departures then the queue size is w + k-1

in the next state provided w+ k—1<L. If w + k —1 > L then the next state

becomes L because packets are rejected when the queue is full.

Qi) » 9k for queue j as seen in the T matrix for queue j, is given by:

ax; = Pr{ k packets arrive during a service }

(2)

Multiple M/ D/ 1/ L Multiprocessor Model
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Where,
B;(t) = Pr{ time of service completion for server j <t !.

That is, Bi(t) is the probability distribution for service time in queue j. See

[Cin75, Kle75] for more details about the derivation of g's.

As mentioned previously, processors may make requests for various sized
page transfers. The selection of the desired page size will be modeled with pro-

babilities as follows;

Let,

ay = Pr{ page size w is requested } .

Where page size w is chosen from a set of available page sizes. Another
requirement on a,'s is:

Z’: Oy = 1.

w=1
There are z page sizes available { Sy, Sz, . .., S;}. Let the actual page sizes be
measured in units of time required for transfer, i.e., there is a mapping:
§81,....5;y+1tt, ..., t;} that depends heavily on memory module speed. If
the memory parts chosen for the memory module design are slow, then ti's

may be large. Alternatively if memory parts are fast, then t;'s may be small.

Then,

B(t) = 3 agult —t,) .

w=l
where u(t) is the unit step function.

It disk access modeling is desired the u(t —t,) could be changed to

represent an Erlang server with average service time t; being the average disk

Multiple M/ D,/ 1/ L Multiprocessor Model
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access time. This model is useful for analysis of systems where global memory
module storage is page allocated in a similar manner to systems where virtual
memory is implemented. An Erlang server seems appropriate if several
sequential Poisson service times are involved in a disk access operation. See
[FuB75] for an analysis of drum type storage devices. Here though the simple
multiple deterministic server (a D, server) will be used for notational simpli-
city.

The probability density of the service time random variable becomes:

i‘%lii)- = 3 agb(t—ty) -

w=1

Where 4(t) is the Dirac delta function.

So equation (2) becomes:

~Ag it
_ e TGtk dBy(t)
Wi = Tk a9

This leads to an evaluation of g for queue j.

5 Op(Nestw) -
qk4=23%—)_ex"ﬁ' (3)

w=1

For simplicity g(t) = (t) has been assumed to be the same for all queues and

all processor service requests. A B(t) might look like:

t B(t)
DR 3 Pl
0.7 4+ Pre———
04 L —
} + -
1. 2. 3.

{ —

B(t) may be defined to be a D; server, it is a z stage type server. Figure 4

shows a graphic interpretation of this type of server, only one packet may be

Multiple M/ D,/ 1/ L Multiprocessor Model
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in the service facility at any time.

Define a probability distribution for queue j:
m; = Pr{ k packets are in queue j after a departure } .

Then define a row vector of these probabilities:
1l'j= [ﬂ'o.j.ﬂ’u.ﬂ’g'j. e ey TTL'j] .

In the steady state, m; is given by the unique solution to:

my =m0 (4)

m(11...11)=1. (5)

Equations (4) and (5) may be re-written as:

T.T _ T
Timy =mp,
_____________________________________ -
g \
[ |
: Stage 1 Stage 2 Stage 3 :
| i
i
i
[ i
| h=t, M deste~t, Bs=ta~ty |
i |
i
' f
! )
|
) i
“ /

T s e e e e e e e e e s e - o —— i - e e e e

k-1
m=a;, Mm=ay/ [[ (1 -ny).
w=1

Figure 4. A D, service facility.
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(11...11)f =1,
Which leads to,

(17 -1)n{ =0, (8)
(11...11)mf =1.
This may be re-written as 1 equation because one of the rows in (8) is a linear

combination of other rows, i.e., it is not required. Replace the bottom row of

(6) with (1 1...11). So finally the set of equations to be solved is:

Anl =(00...01)". (7)

And for the jth queue A; = Ais:

0 1 2 3 . . . L-3 L-2 L-t L
0 [t g 0 0 0 0 o 0]
1 qQ Q-1 do 0 0 0 0 0
2 qz qz q;—1 do 0 0 0 0
3 qs qs Qe q,—1 0 0 0 0
A=
L-3 | q-s Qs w4 w5 - - - ©~l  do 0 0
L2 | qu-2 Q-2 4d-3 d-& - - - e -1 Qe 0
L-t | ¢¢-v Q-1 =2 -8 - - - Qs @2 @1 qo
L L1 1 1 1 1 1 1 1

Therefore, #;’ = column L of A"
For demonstrative purposes, consider an example system:

L=3,

Multiple M/ D,/ 1/ L Multiprocessor Model
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n=m,
A= A= 1,
Py = =, for alli, j.
m
B(t) is the example shown above.
Note that all queues behave identically due to symmetry in P and A .

Evaluating the matrix A leads to:

—-.79731 .20269 0 0
27318 -.72684 .20269 0
22199 22199 -.72684 .20269

1 1 1 1

And solving for w gives:

"= [.017229 087775 .219821 .695175].

Consider now the case where L = «=. Here the solution is found by solving
the recurrence relation 7 = o' T for queue j. From [Cin75] the solution for the

jth queue follows:
o= 1 —Ae.]ts> 0

if a bounded solution for the average number of packets in queue j is to exist.

tg is the average time of service:

ty = }:’a,tw.

w=l
That is, Ae; < {1- for a bounded solution to exist. If this is satisfied, then the
]

rest of the m ;'s may be found from:

r
= (1 - 7\e.jts)[ ’it;‘j ] -

Multiple M/ D,/ 1/ L. Multiprocessar Model
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and fory=1,2,3, -,
k+1

Tyery = (1 _Aejta)i[ 2 (rvljrvaj rvk.j)

7.k

where,

k
rk,_l:l—qu_j. k=0.1,"'

w=0

S,k={v=(vy,...,%): ijv,,=7 ) Vg = l}.

w=l

Note that in the M/ D,/ 1/ = case Agj < -tl- is required if a bounded solution

(for the average number of packets in the queue and the average time spent in
the queue) is to exist. For the M/ D,/ 1/ L queue, any range of A, is allowed

and a bounded solution will exist.

Having obtained s for finite length queues, it is necessary to extend m; to
a vector of probabilities of queue occupancy at arrival (or random) times.

The afgument follows that of [Coo72]. Fork =0, 1, 2, .. ., L+1 define

ﬂ.k.j = Pr{ queue j contains k packets at an arrival i

. = —__];__. - . v
Ty = oy + Aejts ed k=01 - (81)
. 7o, | + Ae.jtl -1
w L+1.§ "0“] + Ae]ta (82)

The extended vector n"| is defined as
. _ . . .
"J_ [7‘-04- "lJl T "L+l,j] .

Note that for infinite length queues 7'} j = M for all j and k. From now on, 1r'1's

Multiple M/ D,/ 1/ L Multiprocessor Model
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are the probability distributions used to find system expected values.
Continuing with the example,

" = [.008986 1035350 .114656 382594 .478414].

Multiple M/ D,/ 1/ L Multiprocessor Model
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4. Measure Derivation.
Having obtained the 1r°,-'s from section 3.1, it is a simple matter to derive

the four measures cited in section 1.

Processor utilization may be defined as the average over all processors of

I ™ n 21 M

Note that since processors running programs are modeled as Poisson processes

which are independent of memory system behavior, PU; = 1. So
PU = 1.
That is, all processors are always busy.

Memory utilization is defined similarly:

m

MU = MU;.

L
Because the probabilities 1r'1 are stationary (the imbedded Markov chain is

time homogeneous) MU; is noted to be the fraction of time that server j is busy,

thus MU; = 1 — 7. So

™M

MU = -1:1;1- l(1 -y - (9)

—
[

Continuing with the example, MU = 0.991014 .

The average queue length, E[N;] for queue j, for finite length queues is:
L+} .
E[NJ]=kgk"k'j' L<o, (]_D)
1

For the running example above, E[Nj] = 3.2861 for all j. Which shows that the
queue may often be full. For infinite length queues the Pollaczek-Khinchin for-

mula may be used:

Multiple M/ Dy/ 1/ L Multiprocessor Model



(Ao jts)®

o) if Agjtay< 1, L=o. (11)

E[Nj] = A._jt, +

The final measure, packet delay time, is slightly more complicated to find.
First consider the M/ D,/ 1/ = case. Little's equation may be used once E[N;]

from equation (11) is known.

Let T;; be the continuous random variable associated with the amount of
time a packet from processor i spends in queue j, include service time in this

measurement. Then

E[N]]
E[T,]= =3, L=,
[Tl = 5

Thus,
E[Ty] = E[Txy] = E[T}] foralli, k=12, -~ ,n.

So E[Ti;] = E[T;]. (T; is simply the random variable representing the amount of
time any packet spends in queueing station j) this shows that any routing
matrix P and rate vector A that lead to the same A, will exhibit the same
E[T;]'s . In particular this shows that this system model is not as sensitive to P
and A as are finite customer models [Hoo77, SeD79, Pat?79, Rau79, MaG81,

MaMB81], i.e., systems where connections are circuit switched.

Using (11) the above may be re-written as:

Ae.jtl

e | if t,. <1, L=w.
201 - Aagtd) Ao ts

E[Tj] = t. 1+

An aggregate packet delay time for processor i may be defined:

m
E[T;] = 3Py E[T] i=12 - .n.
=1
Or,
E[T] = PE[T] .

Multiple M/ D,/ 1/ L Multiprocessor Model
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For finite length queues, the analysis is more complex because packets
may try to enter a full queue in which case they are rejected and assumed to

be resubmitted.

When a processor emits a packet for memory module j, the packet will be
rejected with probability n"L+“- (the probability that queue j is full at submis-
sion time, the result 1\"1,“,5 requires the Markovian properties of the source
processes). The rejected packet then returns to its processor where it will be
resubmitted after a At delay (this delay models processor resubmission delay,
it is a simple approximation to the resubmission process). Assume that resub-
missions are handled by interface logic so that processors are free to continue

processing even when packets get rejected.

1f 1r°1,+1_j is small, the emission/resubmission process resembles a Bernoulli
process. This approximation is supported by discrete time analyses and simu-

lations, see [MaMB1].

Define E[T;|A] to be the average time a packet spends in queue ] given that

it was accepted on its first entry attempt.

In a Bernoulli process with probability of event occurrence (1 — ".L+l.j)
(here the event is that a packet is accepted by queue j immediately, thus

1~ 77.L+1.j is the probability of event occurrence), the average number of trials

) '
required before the first event occurrence is E—;:;l—i—- . Thus the average
IV Lyt

delay from the first emission to service completion, given that the packet was

first rejected is:

L]
T L+1.j
L ]
1 =7

+ 1] At + E[T;[A] .

The total average packet delay time for finite queues, to an approximation, is:
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. N 1
E[T] ~ (1 — 7'Leyy) E[Ty|A] + 7'L4y TT.L‘— At + E[T;]A]
- +1,]

= E[T)|A] + —Lthl A, L<w.

1-m L+1,j

(12)

This approximation is expected to be accurate when 1r'L+1_j is small enough that:

1) the Poisson nature of the processor model is not disturbed much, and

2) ﬂ'.]_,”_j is the same for all resubmissions.

Evaluation of E[Tj]A] can be found using Little's result where Ae.j is reduced

to the rate of packet arrival and acceptance (1 — ‘"'Ln.j))\q . This yields:

E[N;]
E[T;|A] = o :
(1 = 71Dy
So (12) becomes:
E[T;] ~ E[,NI] + ".L’:‘-i At L<o, (13)
(1 = 7'Lerhey 1 =1Ly

Note that as At » =, E[Tj] » = (if n'L,;; #0) so memory queue behavior

resembles a saturated M/G/1/~ queue. Alternatively, as At -0,

E[N;]
(1 - ".Ln.j) Ne i

again resembles an M/ G/ 1/ queue solution. Obviously if 1r'LH_j - 0, the

E[T] ~» and if 7L,y is small (<1079) the approximation (13)

approximation approaches the M/ G/ 1/« solution form. Care must be used

when applying the waiting time approximation in (13).
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5. Special Case Solutions.

This section describes closed form solutions obtainable for smaller sizes of

the queue length L.

First the L = 1 case will be discussed, it will be seen that the results

approximate discrete time analyses.

Let L =1, that is, only a single buffer register is present at memory
modules. This would be the situation where processors must resubmit requests
until buffer registers are free to accept them. Note that this situation in gen-

eral does not have a low n"L“.j so the resubmission process approximation will

1

not hold very accurately. For simplicity let P;; = Y for alli and j, and Ay = A

for all i, also let there be one page size, z = 1. Then,

_ [CIo 1"%]
T |9 1=qo "’

Solving the relation w = w T yields:

o All
fig=qp=¢e
-n Aty
m= 1—e ™
Then from (B.1) and (8.2):
( Y &
77.0 = - 1 e M 1
"mM . n
] — Aty
\ 4
my = ' 1 ] [1 —e ™ Mi]
o Aty n
e ™ + — Aty
\ m Y.
. 1

ty n
e m +E)\t1

Evaluating the remaining measures gives:
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PU=1.
From equation (9):
% Aty
MU=1- ﬂ"o = n
"mM . n
e + — Atl
m
From equation (10):
E[Nj] = E[N] = ﬂ'.l + 27".2
-n Aty
=2 l+e ™
- -2
e ™ ! + % Atl

From equation (13):

[ ] L ]
my+ 27 m
1 2 + 2

%) 1—m
(1 ﬂ'z)m)\

E[T;] = E[T] ~ At .

It is interesting to note that if t; = 1, and 0 € A< 1 then MU is close to
E[bandwidth], defined as the average number of connectiox;s in use per unit
cycle, for request rate r = A in discrete time model analyses [SkA69, BaS78,
Hoo77, SeD79, Pat79, Rau79, MaMB1]. (In discrete time model analyses,
bandwidth has been defined as the number of connections available on a given
system cycle. In discrete time model analyses, r is taken to be the probability
of packet emission during a cycle, it is a request rate. Equai:ing r and A estab-
lishes a connection between the two modeling techniques.) If the bandwidth of a
continuous time model is defined as the average number of busy servers, then
the two models agree to some extent for large systems (n, m = 32). The simi-
larity occurs because the Poisson model of processor behavior is a continuous
time extension of the Bernoulli process model of processor behavior. The two

models should agree to some extent. This was noted differently by [BaS78]
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where they found that if n and m - =, then the discrete time model approxi-
mates the continuous time model. Here it is seen that the two models are simi-
lar in results (to within about 15%) for E[bandwidth] even when n and m are not

large. Figure 5 shows the two E[bandwidth]'s.

The primary difference between the two models is that in the discrete time
model, processors emit memory requests and wait for service, so the discrete
time model is a finite customer queueing model. The continuous time model is

an infinite customer queueing model. It seems reasonable that if

3\1_ > 8111p {E[Ty]} for alli, that is, the mean time between packet emissions is
1

greater than the maximum possible average packet delay time, the continuous
model is "approximately” a finite customer model. On the average each
memory reference is completed before the next packet is emitted. See Figure 6
for a timing description of the situation. Obviously, since the Poisson process is
memoryless, the approximation may be inaccurate, but for low emission rates
it may well be close to a finite customer model. This may be seen by observing
the curves of Figure 5 in the low rate region. The two analyses are very close for

low emission rates.

Another difference between the two models is that of service discipline, in
the continuous time model, the server operates on a FCFS basis for those pack-
ets in the queue. Whereas in the discrete time model the next request packet

to bé serviced is chosen randomly from those packets present at the server.

The difference does not affect MU much but does affect E[T]s.

Consider the case where L = 2. Again let Py; = é for alli and j, A; = A for

alli,and z = 1. Then,
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Lower curves are discrete time analysis results,
upper curves are continuous time analysis results.

Figure 5. E[bandwidth] for discrete and continuous time models.
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Again, solve w = T to get the steady state queue length probabilities, due to

symmetry w; = ;

Solving this gives:

Where,

for alli, j:

Qoo + ™) = 7g.,
Qo + ™) + qonz = ™,
ﬂ'°+ﬂ'1 +ﬂ'2= 1.

e = 0 )
1-q
m = W(1 ~do)
1-q
g = 1“Q0—Q1.
1-q
-
Q=e ™

n
-2 a
m M

n
= 2 at
D= e

The n° vector, E[N], and E[T] are lengthy and as such will not be written here

(see the Appendix).
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Figure 7 shows the effects of increasing L on MU for the equal rate, uniform
memory reference distribution case and the example A(t) used in the running
example. As suggested by such graphs, it may be seen that the analysis allows
L to be chosen so that MU is arbitrarily close to its maximum. In general, as L
getls larger, MU gets larger. As L increases, the cost of memory modules
increases also. There are many values for L that make MU as large as possible
(for a given P and A) but some of these values of L may violate a cost (or relia-
bility) constraint. The smallest L that satisfies the desired MU and E[T] con-

straints may be found iteratively but not analytically.

For example, to find the smallest L satisfying a desired lower bound on MU
and a desired upper bound on E[T] (if an L satisfying the desired constraints

exists) use a simple linear search on L:

(1) Choose a test set of program, processor, and memory module model

parameters:

E (P A, B(t). At)

The test set represents those algorithms that comprise the majority of

programs to be run on the system.

(2) Choose the minimum acceptable measures MU and packet delay time for

the model parameters chosen in step (1). Call these MUpin and E[T) ey -
(3) SetL=1.

(4) Compute MU from equations (1), (3). (7). (8.1) and (8.2) for all points in the

test set deflned by step (1).
(5) If some MU computed in step (4) < MUpin . go to step (8).

(8) Compute for all test points defined by step (1) E[T]'s from equations (10)

and (13) using the results from step (4).
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4. .

Exampie #(¢) .

Figure 7. MU as a function of L.
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(7) It all E[T]'s computed in step (6) < E[T]max. Stop. L now is the smallest
queue length that satisfies the desired constraints. Check to see if all
7'Lery's are small ( <107%), if so E[T] computed is sufficient. If some 7,

is large ( >107%) E[T] computed may be inaccurate.

(8) L+L+1,gotostep (4).
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6. Concluding Remarks.

This report has described a model and analysis of a crossbar-based, packet
switched multiprocessor computer system. The model was discussed in the
context of two systems: a general purpose multiuser system; and a numerically
oriented multiprocessor system (suitable for sparse array processing) based on
MAP-200 like processors. Performance measures for the model were defined. A
solution for the performance measures was derived. Using the model, queue

lengths that satisfy system requirements may be found.

The authors wish to thank D. G. Furchtgott for his careful proof-reading

and critique of this report.
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8. Appendix.

From section 5, the results for L. = 2 are written here.
. qf

o= n
2 2L -
%+m7\t1(1 q)
. _ qo(1 — qo)
n,; = n
2 - -
%*mmq(l Q)
. _ 1—qo—q
Nag= n
2 2L -
‘h"'m)\tl(l Q)
af + (= Aty - 1)(1 - qy)
S m
wma=

qf + ':1'11' Aty(1 - q,)

E[N]=n", + 2n°; + 3n"5

qo(Rqp — 1) + q, + 3;]:‘ At (1—qp) -1

2, 0 —
qg + - At (1 Ch)'

(2 — 1) + @1 + 3T Aty(1 —q)) - 1

E[T]
i‘ A1 - q)
@ + (= Aty — 1)(1 - q))
+ m L At
qf + Enn— At (1 = q)|(1 —q))
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