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ABSTRACT

In the following, two formulations for robot arm dynamics are developed, one
based on Lagrangian mechanics, and the other on Newton-Euler mechanics. Itis
then shown that the two formulations are mathematically equivalent, providing a
check on their consistency. The computational complexity of the methods are
compared. Finally, a modified formulation is developed which proves to be less
computationally complex and that allows more parallelism in its computation
than the original two formulations.
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0. INTRODUCTION

A mechanical manipulator is an open chain of links driven at each joint by
an actuator in a coordinated fashion to move the end-effector or "hand” link
with multiple degrees of freedom. In this paper we refer to such a manipulator
simply as an "arm.”

An accurate dynamic model for arm motion is useful in both simulation and
model based control of an arm. For the latter application several authors
[Pau72, Bej74, Lew74, HolBO, LWP8O, HoT80] have derived their own set of arm
equations from different physical approaches. Since the physical assumptions
of each author are identical, the derived equation sets, although dissimilar in
appearance, should be equivalent or consistent in content. Their computational
complexity, on the other hand, varies greatly. :

- Lewis [Lew74] uses Lagrange formalism to derive a compact but complex
set of equations which we refer to as the Lagrange set. Luh, Walker and Paul
[LWPB0] employ Newton's laws applied to rotating systems and obtain a less
compact but computationally less complex set of equations which we refer to as
the Newton-Euler set. Hollerbach [Hol80] derives a recursive Lagrange set which
has roughly the efficiency of the Newton-Euler set but not the compactness of
the Lagrange set of Lewis. Horowitz and Tomizuka [HoTB0] use Gibbs Appell for-
malism to derive a set of equations whose complexity falls between the Lagrange
and Newton-Euler set. They, however, did not propose to perform the actual
computations. In their case the structure of the equations was obtained in
order to parameterize the computation and allow adjustment of parameters by
adaptive control. We will not discuss the last two sets further.

It was our goal to find the most computationally efficient set of arm dynam-
ics equations in order to allow real-time control and high speed simulation of the
arm. To this end we have studied the Lagrange and Newton-Euler sets of equa-
tions and have explored the connection between the two tc check for con-
sistency and to determine if there might not be a middle ground where one
could achieve solutions of less complexity than either set of equations. This
report presents that study.

In the following sections we:
(1) introduce a standard set of notation
(2) present the Lagrange derivation
(3) present the Newton-Euler derivation

(4) exhibit the mathematical connection between the Lagrange and Newton-
Euler formulations

(5) develop an improved Newton-Euler formulation

(6) discuss the attributes of each equation set and determine the best set for
real-time control and high speed simulation

(7) discuss our simulation application
(8) summarize our results



1. NOTATION

We adopt the following set of notation which is consistent with most of the
literature.

Matrices, and tensors will be represented in upper case type, while vectors
will be in boldface type.

Rj‘ represents a three by three rotation matrix which maps a vector from its
representation in the i** link coordinate frame to its equivalent in the j' coordi-
nate frame. Some well known properties of rotation matrices represented in
this notation are:

(R)*=(R))"'=R] 1.1
A superscripted t denotes a transpose.

A rotation between coordinate frames i and j can be written as a chain pro-
duct of rotations between successive frames:

R{=RJ*'RI}% - - Ri, 1.2

In general, with the inverse defined by Eqn. 1.1, we have the relation Rijl;=Rj‘ for
all integer values of k. We further define R/=E, the identity, for consistency.

Each link, i, of the arm will have its own coordinate frame fixed in the ith
link and referred to as the i*® frame as pictured in Fig. 1. A unit vector along the
z axis of the i*! frame and represented in the i'" frame will be denoted by z;. The
same unit vector may be represented with respect to the base (0%) frame by
applying a rotation, i.e. Rz, but to simplify notation we star vectors which are
normally represented in their own link frame to indicate that they have been
rotated into a base frame representation, i.e. Riz;=z;. The lower index indicates
the fixed frame to which the vector belongs.

Rotations operate on a vector product in the following fashion:
R(b x ¢)=Rb x Re, : 1.3

where b and ¢ are any vectors, stnce a vector product must itself transform as a
vector under rotation.

We often encounter expressions of the form: ,
Ri(zi x ¢)=Riz; x Ric; 1.4

where z;, as before, is a unit vector in the z direction of the it frame, and ¢ is
also a vector in the i*! frame.

In order to simplify this above frequently occurring expression, we define a
matrix:

b -1 0
Q=1 0 o, 1.5
0 0 O
which can be shown by multiplication to have the property that:
Qlei=2 x ¢, 1.6

when ¢; is represented as a column vector in the it frame. Qi is actually the o;j,
spin matrix used often in Quantum Mechanics. The sigma matrices have the pro-
perty that oj;c;=x; X ¢, OiyCi=Yi X ¢;, and 0j,¢;=2%; X ¢;. The o, matrices are listed
below: :



Figure 1
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Using this notation a vector product can be defined as:
a; X bf:(aixaix+aiyaiy+aizaiz)bx:(atoi)bI'

where g, is a vector whose components are the g, matrices. We also define a
more general matrix transformation, Q}, such that:

(Riz;) X be=Qiiby . ' 1.8



where by is any vector in the k' frame. Eqgns. 1.4, 1.6 and 1.8 yield:
Ri(Ql'e;)=Ri(z x ¢;)=Riz x Ric;=QjRic, 1.9

We confine ourselves to arms with links connected in the fashion of Denavit
and Hartenberg [DeH55], where all relative joint rotations of the i*h link occur
about the z;_, axis, Fig. 1. In this case, matrices, Ri_,. have the form: '

[cosﬁi —cosg; sind;  sing; siny,;
RL,=|sin, cosg; cos¥; —sing; cosv;] , 1.10
0 sing; cosg;
where 9, is the relative joint angle between links i and i-1 (Fig. 1) and g, is a fixed
structural angle which allows successive coordinate frames to be set up so that

joint rotations always occur about the z axis of the previous link. For example,
in Fig. 1, a ¥, rotation about the z, axis aligns the x, and x; axis while the fixed

rotation of ¢,= g—about the x; axis brings the 2z, axis into coincidence with the Zg

axis. ( Note that the x; axis is always chosen perpendicular to both the Z;_, and
the z; axes.)

It can be shown that:
R,
0%,
and hence from definition Eqn. 1.9:
dR} e _
35, =R{TQIZIRL16=Q4 " Ric; 1.11
where j<k, and hence also:
o°R§
30,00,

where jsk=i. Thus, differentiation is reduced to matrix multiplication.

=ni-1lpi
_Qi—lRil—l '

R{T'QITIRKIQECIRE 6= Q4 'QE R, 1.12

Denavit and Hartenberg [DeH55] introduced a matrix, T}_,. which expresses
both the rotation and translation necessary to map a position vector in the ith
frame to its equivalent in a displaced i—1** frame. We use the notation of
[Lew74]. Ti_, operates on an augmented form of a vector d; in the i*! frame given

by:
la,
ar=|;

and the matrix T, is given by:
[RL, Pii—1]

Ta={ g ;4 1.18

The position pointed to by d? in the displaced i—~1'"® frame is given by:

Ti,d?

The submatrix, RL,, is just the rotation matrix discussed above, and pi-, is the
displacement of the it origin from the i—1t origin viewed in the i—~1" frame. A
similar vector describing the same displacement, but viewed in the it frame



would be R}“‘pj‘_,’. To be consistent with the notation of [LWPBQ] we define this
displacement between the i'* and i~1'" frames as viewed in the it frame as r;
(Fig. 2), hence we have:

RI7'p/_ =, : ' 1.14

The T} matrices can be chained in the manner of Eqn. 1.1 to obtain:
TI=THT2 - T, 1.15

R | R pRiE pE] RE, el
“lo 1[5 o 1l0 vl lo 1

Figure 2




in which case it can be shown by multiplication of the R and p submatrices of T
together with Eqns. 1.2 and 1.14 that the submatrix pj of T} can be written:
o4 i i
PI= 2 RP7pRi= Y RPREPE.,= Y RPr,, , 1.18
m=j+1 m=j+1 m=j+1

where j < i. Thus, the position vector pj‘ from the j** origin to the ith origin is
composed of a chain of vectors fixed in intermediate links. Furthermore, it can
be seen that:

1.17

vyl R} pi] la] Rid+p}
Tii:Ti’L =lo 1 [1 =[ 1

L.e. the position pointed to by vector d; in the i*! frame can be determined in the

j*® frame by rotating the d; position vector into the j*! frame (R/d;) and adding a

frame displacement, p}.
From 1.16 we have:

oph _ XII AR
0%, 2, 99,

'm
m=1

Replacing the partial derivatives using Eqn. 1.11 and Egn. 1.12 and moving the Q
to the left using Eqn. 1.9 we have:

apy . i
35 L RTQUIIRP M=) Q4RI 1.18
: s

m=]j m=j

and similarly:

OB piiq iRk R
= _ ol _ - r
aﬂ]aﬂk = J-1488-1 Xk-1\k-18m

i
= ZkQA“Qé‘"RE‘rm
m=

Assuming without loss of generality that j<k .

The notation, a'b, will be used to denote the dot product between vectors a
and b, while the notation, ab', the outer product, is equivalent to a vector
dyadic, in particular, (ab')e=a(b'c). The following vector and matrix identities
are used:

a x (b x c)=(a' ¢)b—c(a* b)=(Tr{c a!}E-c a') b 1.20

Notice we have used E as the identity matrix rather than the more usual I Tis
used later as the inertial tensor.,

Tr{a(b x ¢)'{=(b x c)ta=b'(c x a)=(c x a)'b 1.21
(axb)x e=ax (bxec)-bx (axc) | 1.22
TF{ABC]=TF[(ABC)"] =Tr‘[CtBtAt] 1.23

Finally, we introduce some notation for the Lagrangian formulation con-



Figure 3

cerning the link inertial tensors. Consider link q in Fig. 3. If we integrate the
infinitesimal mass dm times the outer product dqdé over the entire link mass, we
obtain an inertial type matrix, Jq defined by: : ’

Jq= fd didm 1.24
or
r Jd§dm  fdgudydm fdgdgdm
Ig=|fdgdgdm  fdZdm  fddg,dm 1.25
Sdudgdm fdgdgdm  fdZdm

The integrals above are taken about the upper end of the link. Normally inertias
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are not speciﬁed in this fashion but are taken about the center of mass. Using
the parallel axis theorem [Sym71], J; can be rewritten in terms of the link

center of mass inertial matrix, Iq. and the center of mass vector, Ty shown in
Fig. 3, as below:

1.26

[

) TS SR
gxx " lqyy tlgzz =2 S = =
> +mry MFgTqy MT Ty,
- | PR S |
Jy= Mgy Foy —in—-‘izy—y——ﬂﬂ- +mrg, MFqy Ty, .
I I I n+I _I z2Z =2
MTg,F gy MFg,Fqy —i—~ﬂu—2 +mry, |

where it is assumed that a principle set of inertial axis can be found by a simple
translation from the g™ origin to the q'" center of mass. Note that the inertial
tensor, Iy, can be written as:

Ig=Tr{Jq—mT Fg)E—(Jq—mFFL) 1.27

To be consistent with [LWPBO] we define an augmented matrix, J8 which has the
form:

.| Ja mdfq

= 1.28
1 mq?; mg | :

where mg is the q*" link mass.

Brackets will be sometimes be subscripted by Greek letters to indicate that
the brackets that follow with the same subscript have the same contents. For
example, [ -+ COMPLEX CONTENTS -+ ]u might be represented simply by

[' e
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2. LAGRANGE

Lagrange's equations allow one to determine a generalized force vector m
from the difference in the kinetic energy and potential energy of the arm, L =
K.E(n.m) - P.E.(n) where K.E. and P.E. are expressed in terms of a generalized

coordinate vector, , corresponding to w. The Lagrange relation is:
-d oL oL

i

We can compute L as follows. First we consider the P.E. contributions from grav-
ity. The potential energy of link q is just the mass times the height of the center
of mass times the acceleration of gravity, mgh. The position of the center of
mass of link q from the base is, using the T matrix:

(pg)*=Tgrg

The height of the center of mass is just the vertical component of the position
vector from the origin to the center of mass.

h=(28)'Tgrs .
where z§=(0010)! in the base frame. The total potential energy contribution is
summing over all the links:
n
P.E.=-} g(2§)'T¢mr? -
q=1

To compute the K.E. term consider a position vector, s, as in Fig. 3 which
points from the base coordinate system to an infinitesimal mass, dm, located in
the g'* link. s can be written as:

s=pd+dy=pg+Réd, 2.2
and using 1.17, the augmented form of s, s® can be written as:
s*=Tgdg .

The velocity of this infinitesimal mass in the base frame is:

_dS‘a — aTg y a
=T =3 55, s 2.4
The associated kinetic energy is %-(v")‘v“dm or ;—Tr{v“(v“)‘ldm which
equals:
1 aTg af ga\t aT‘? tl g
o~ —— )t 8.8 2.5
H e aram G o5,

The scalar, dm, has been moved inside the brackets in preparation for integra-
tion. When each link is integrated over its mass and the kinetic energy of all n
links is summed, we have:

1 & aT§ 4T '
KE == Tr ———J“(———)‘} . 2.6
24;;1]2::1231 {6'13]» 189y
since:
Jd3(a)dam=1z,

and J§ is defined in Eqn. 1.28.
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In our case the generalized coordinate is @ and the corresponding general-
ized force is T, a torque about the actuator axis. Applying Lagrange's equation
to this kinetic energy we obtain the torque, 7, at joint i, necessary to drive the
arm link:

d KE. _8KE _9PE
dt 99, GEN a9, .7

Ti=

i=1 ton. Note the potential energy has no ¢ dependence.
The potential energy contribution can be written by Eqn. 2.1 as:

aPE n oTg .

Now con31der the K.E. contribution:

0K.E. _ 1 BTc‘i‘ BTc‘i‘ oT¢
: = Ja L+ -_—J2 ty
8%, R& 121 [ 0 (3 ) i 35, 89, |
2 T8 .. ]
= Tr Y,
;22]}3 [619] 619 .

from Eqn. 1.23 and the symmetry of J. The summation over q ranges from i ton

since 30 =0 for all q<i. A similar argument applies to the range of j. The first
i
term becomes:
d 9KE. BTE oTg .,
= Tr Y9, 2.9
oS G

a%T aT .. dT 3RT, .
+2i iTF{ § J&( 619? )t 9+ d Jn‘;’(——él—)t By

et EXE N Y, 89,09,
The second term of Eqn. 2.7 using 1.23 and the symmetry of J is:
OK.E. _ oT¢ |, . .
- Tr Ja ty
8, 2 & ,]ilkil [619 8, 1353, ‘) Tk
aT§ 8°Tg .
+ 2 ty
99, Jq 99,89, )" ¥
aT§ 62T§ .
- Tr [ )ka] 2.10
E,Jikil 619 100 y

Combining both terms of Eqn. 2.9-2.10 with 2.8 we have:

ot | T .
'—EiT{ 619 )]191

1j=1

62T§ 22T

q=ij=1k=1

aTg
+ 2 g(z a)t mqrg
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The matrix structure of this formulation is appealing from a programming
viewpoint. It also has some appeal for control purposes in that it gives a set of
equations in a ¥ and ¥ dependent form that allows the easy incorporation of
feedback terms. The equations can be written: ‘

T=M(8)3 +C(3,9)+G(d), 2.11
where M is a symmetric mass-inertial matrix, C is a nonlinear coriolis-

centrifugal term, and G is a gravity term. M's symmetry follows from Egn. 1.23
and the fact that

n oTg oT§ n
Mj= E~Tr{——a19j Jg( ——3131. )t] = EVTI‘{
q=i q=i

atg . at1§ )"
a5, 1153 )t”
_a. fatg emg )
_qgiTr{aT’i—Jq( 9%, )t] i

because of J§ 's symmetry.

C can be written as a column of symmetric matrices:

l’s‘cl{s
VCRY
C= ,
s'cre
where:
. x 3T aT,
Ci=2Tr{— 8 I5( .3)‘,
q:i 619]613}( 619]

and where the symmetry of these submatrices, Ch=C;, results from the order of
the partials being immaterial.

G is a simple n by 1 column vector.

In spite of its concise notational representaﬁon. the Lagrange formulation
is computationally inefficient comparedzto other formulations. As we shall see

later in section 4, the and the ——— terms represent kinematic terms

av; 9900
which are recalculated each 2time a new element of the torque vector is deter-
o°T
mined. Furthermore, the 390 term is unnecessarily recalculated for each
i“Yk :

value of j, k, and i.
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3. NEWTON-EULER

The Lagrangian approach allows the formulation of the solution to problems
in dynamics in an "automatic” way. However, this ease of formulation is
obtained at the expense of physical insight into the problem. In particular, it is
often not possible to identify calculations that have little contribution to the
value of the solution. This is not the case with the Newton-Euler formulation.

In the Newton-Euler formulation one works from the base to the hand deter-
mining kinematic terms of the links and passing them up in a causal fashion.
Then one works from the hand to the base determining dynamic terms and pass-
ing them down in a causal fashion. One would assume this technique might be
the most efficient and this assumption appears to be true. A brief derivation of
the formulation will be presented below. This derivation follows that of [LWP80].

Since Newton's second law applies only to an inertial frame, in order to
avoid pseudo-forces all vector time derivatives must be taken with respect to
the base coordinate frame. We assume that the base (i=0) frame is such an
inertial frame, and as mentioned before in the interest of clarity all vectors
represented in the base frame will be starred.

Assume that frame i is rotating with angular velocity, ©;, with respect to
the base frame ( w; with respect to the i frame ). The time derivative of any
vector, s/, in the i*" frame as seen by the base (0 frame) is [Sym71]:

ds’ .. o ds
—-ry. S —— ,
6 w; Xs 3 3.1

dgt—symbolizes that the derivative is taken in the it* frame. If we assume §; in
i

. . N . ._dy
turn is the time derivative of another vector, say ly, (ie. s'= E—) from Eqgn. 3.1
0

we have:
da®1’ dL* dl’ dl’
1 = d ( 1 ) —w io X 1 + d 1
dt§ dty " dtg dty dt; dtg

=i % (@] X )+ x jt +‘£K(f-’i. x I+ jt )
. . e . P o e, @
=w; X (0] X )+20 x at, +a; X li+a—t?—, 3.2
where the angular acceleration,
._doyf . . dof  def
R T R T T

The relative joint rotation angle Ui between links i-1 and i is, by convention,
measured about the z”, axis (see Fig. 1). Therefore, 92", is the relative angu-
lar velocity between link i-1 and i. Angular velocities can be built up from the
relative angular velocities of the lower links by: '

G);zf-)i‘_l +1§iz,-._1 3.3

From Eqn. 3.1 and 3.3 the angular acceleration is then:
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oroder _del,  d(zl,9)
Podtg dt, dtg 3.4

- . . * y e 4
@it Xz 9+z 9,

since z;_, is constant in the i*} frame.

Recall from Fig. 2, pj} is a vector from the base origin to the origin of the ith
frame. i is a vector of constant length in the ith frame from the j— 1P origin to
the i*® origin. ¥’ is a vector fixed in the i*! frame pointing to the center of mass
of the i*h link. We see:

l=r'+pi! 3.5
pb=ri+p}
and:

B _ a7 arpf

i = = 3.6
* dtf  did ded
which from Eqn. 3.2 implies:
a'=w x (0 xr+a; x ri+a 3.7

since r is constant with respect to time derivatives in the i** frame.

It is also easy to show using Eqn. 3.2 that the center of mass acceleration is:
_._ ¥ +pd) d*F  d%ph
4T TaeE de2 M ded

=0 x (0 X F)+a; x F+a/ 3.8
Newton's law relates the acceleration and link forces shown in Fig. 4.
mid; =t~} 3.9

f; is the force on the it link caused by lower links and actuators acting at the
origin of the i—1* frame, and I{E, is the force caused by upper links and actua-
tors acting at the origin of the i*® frame.

The total torque at the center of mass, N;. can be expressed as the time
derivative of angular momentum.[Sym71]:

d(Ii.t"J i.) . . e d(Ii.u i.)
N; at w; X (Ie;) at 3.10

=0; x (o )+'a;" ,

since I is constant in its own frame. The total torque, N; is also related to the
moments in Fig. 4 by:

* * —_ » -— » *
Ni=ny —ni +5 X ), (T +r) x

which by Eqn. 3.9 gives:

Ni=n/-nj},~(F +r) x ma’-r’ x £, , 3.11
Equating 3.10 and 3.11 yields:
o=l +o; x (o)

3.12
e ® » —_— E ] E ] *
+H(T+r) X mya +r’ x £, +n,
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Figure 4

Only the contribution of n;’ parallel to the axis of rotation z, will be pro-
duced by the i** joint actuator (compare Figs. 2 and 4). Therefore, the torque
which the i*" actuator must produce to achieve the desired motion is:

Tiz(Zi._])tlli. 3.13

Inertias Ij' and vectors ¥, ry and z', assume angle dependent forms, I'(8),
F(9), r’(9) 2z ,(¥) if they are expressed in the base frame as required by
Eqns. 3.3-3.13. If, however, they are expressed in their own i"? coordinate frame
they are constant, independent of ¥. We apply a rotation RP to Eqn. 3.3-3.13 to
allow all the vectors and tensors to be represented in their own coordinate
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frames. Take Eqn. 3.12 for an example. Under rotation it becomes:
Rioni'=R-°I-'R5Ri°ai'+R-°a, (RU'RIRLw ;)
m;(RIE +RPr") x RP&'+R0r x RIFIRS 1%, 8.14
+RIVIRS 1%

Since ry=Rjr; and I/=R{LR? , etc, and RPRir;=r; and RO(RIL,RO)RI=]; we can now
express the rotated set of equations for an n link system iteratively as:

wo=0
a =0
2,=9.8 m/ s?

=R @ +32i-) 3.15
a ;=R a1+ @ X Zi_O+9Z_,) 3.16
a;=w; X (@; X r)+a; X +Ri'a;,_, 3.17
a4=w; X (0; X F)+a; X F;+a 3.18
f,=ma+RI I, 3.19
oi=lia;+e; x (Tiw)+m(F+r) x a+rn x RIY, 320

+R{ "oy

=(R{"'zi_y)'ny, 3.21
f,41=0
D, =0

Grav1ty can be included by starting with a base acceleration, a; of +9.8
m/ s® since an upward acceleration of g, as in an elevator, is equivalent to the
effect of earth’s gravity.

It is possible to assign values to f,;, and n,,,; from wrist sensor measure-
ments and allow the arm to adjust to forces and torques encountered by the
hand link.

If the application requires the form given in Eqn. 2.11, one can obtain the
M(¥® )ij. matrix element by "strobing” the iterative set of equations above with an
input ¥ unit vector with all inputs except ¥, set to zero. and with gravity set to
zero. This is the technique we use to obtain the M matrix in our simulation pro-
gram. If one also requires the Cj'k elements, they can be obtained by zeroing all
¥'s and §'s except ¥; and ¥y which are set to 1. Gravity is again set to zero.
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4. CONNECTION BETWEEN LAGRANGE AND NEWTON-EULER

We are now in a position to show the connection between the Lagrange and
Newton-Euler equations sets, and thereby able to show consistency or
"equivalence” between these equation sets. ‘

Eqn. 3.15 can be expanded by iteration to obtain:
i .
Qizz Ri]-—lzj-—ll’j 4.1
=1
Similarly, Eqn. 3.16 can be expanded by iteration:

i .. i .
ai= LR g B L R 0y X 70)9,

1= 1= 42
-ZR,J 1z, +2‘2Rk g, x RIz_ B0,
j=1k=1

With expansion Eqn. 4.1 and using Eqn. 1.B we can rewrite the first term in
the acceleration expression, Eqn. 3.17, as:

i & .
— i -1
Q; X (Qi X ri)—i 2 R,'] le..l X [le Zp X I‘i] ’l’j’l’k
j=1k=1

P 4.3
=Z Z Qi]—. 1 rlﬂ ﬂk

j=1k=1
From Eqn 4.2 the second term of acceleration in Eqn. 3.17 becomes:
&; X = ZRJ lz;_ X R +212 [R, 12y X R,j"‘zj_l] X 1) 90

j=1k=1
and with the help of vector identity Eqn. 1.22 and Eqn. 1.8:
—ZR X% r,ﬂj+212 g X [R,j"‘zj_l P ri]
j=1k=1
"'le_le..l X [Rik-—lzk__l X rl])'l’]'l"k
i
@x; X ri=2 Q,J"lriﬂj
4.4
+Z IZ (QF1QI Qi 1k Y By,
=1k=1
Combining Eqn. 4.3 and Eqgn. 4.4 we have:

a= ZQ’ *rﬂmz‘z QF Qi B

=1k=1

4.5
+ Z Z Qij—.lQik—-lriﬂjﬂk'*' R gy,

j=1k=j

8= ZQ,“‘rlﬂ +Z Z Q'R + R ey
j=1k=1

where u—max(j.k) and v=min(j,k). The second and third term above added to
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give k a range of 1 toi. Expanding the R{'a;_, term gives the following:

Ri 'a;_ 1—2Q1 iri- 119 "'EJZQl QT ri—lﬂjﬂk+Rii_zai—2-

j=1k=1
Continuing we have:
i m AN
a= ), 2 QTR
m=1 j=
+ 2 2 2 le lQlu lle‘m“s ’lsk+Rl 8%p .
m=1 j=1k=1

Changing the order of summation:

i i X e
a=y, 2 QiR Ty

4.6
+ 2 2 EQ" 1Qu- lRmrmﬂ6k+R gZg .
m=au j=1k=1
Pulling a rotatlon out:
a= R° » Soirp rm'
m=j j=1
+ 2 2 2 Qv lQél 1RO l‘m’19 ’lsk +R1 g2y .
mau j=1k=1
From Eqgn. 1.18 and 1.19 we have:
opd . .
_ROE 2 ( L ¥y8y) +RPgzg 4.7

fray et 619]-619,(
From Eqn. 3.18 the center of mass acceleration, 8;, can also be expanded:
Md, . .
&=R/ LZ Q4™ 'RETY,
& ,
i 4.8
+31) Qg_lQél_lRéf‘i{’j{’k +a; ,
j=1k=1

where again u=max(j k) and v=min(j,k). Using Eqns. 1.11 and 1.12 the above
becomes: .

02(6’19 rl)’ls+R 22(6’196’19 r,)1919k+a,

j=1k=1
i aRo _ apo e
-‘S nt 8, 39, )% 4.9
i 8°R} apd . . :
0 0 = Po i
Ry Eu{;( 50,0, " Bups, )it Riezo
One can already see terréns in & above which are submatrices of the
aTé a*T
Lagrange terms 53, and 59,90, These are just contributions of the coriolis

and centrifugal acceleration.
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In developing the expansion for a and a, we expanded the coriolis-
centripetal acceleration, & X b+ X(@ X b) operation where b was r for a and b
was T for @ In the following we write the inertia, I, as an integral over an outer
product, dd'; split this outer product and apply the coriolis-centripetal opera-
tion to one of the d vectors; then use the same expansion as above for the
coriolis-centripetal operation and then gather the d vectors back together into
an outer product and reintegrate to obtain an inertial J matrix.

For the present we ignore the last two terms of Eqn. 3.20, which represent
terms passed down from upper links. We discuss their contribution later.

Eqn. 3.21 then simplifies to:
Ti=(Rii_lZi—l)t[Iiai+r"i X Liw+mi(r+F) x & 4.10

Using the relation between the center of mass inertia, I, and the J inertial
matrix, Eqn. 1.27, this is:

7= (R ) (T E-D oy X (Trg)E-)o,
—(Tr{FFE-TE) aj—w; x ((Tr{FEE-TE))w;
+ my(Ti+r;) x ﬁi] .
using vector identity Eqn. 1.20, this becomes:
(RF12) (Tr i E-D) @+ o, x (TeHE-T)a—F x (a; % 7, »
=T X (@ X (@; X ) +my(F+r;) x 5:] '
The J terms of Eqn. 4.11 are defined as a mass integral of a dyadic, d;d},

Eqn. 1.24. If the integral over mass is pulled outside of the trace, these terms
becocme:

SRz ) Tri4.a8E-a,0ta)) BERPST

+H(RI™'7-) ) X ((TriddSE-dd) oy dm,
and then using vector identity, Eqn. 1.20:
=[R20t x (@, x &)
+(RI712)H@; X (4 (@, x 4))] dm

Examining the multiple vector product in the second term of the above expres-
sion:

@; X (d X (@; % d;))=d; x (@; X (@; X dj))+(@; X d;) x (@; X d;)

=d; X (@ X (@; X 4;))
Both terms then yield:

= [ (Rt x (@ x )

+ (R} 5)'d; % (@) % (@; % d)| dm

4.13



exchanging a dot and cross product we have:

= SR x @)@ x )+ (R, x 4), x (0, x 4)) am

=f Tr{(ai x 4)(Q)1d) e, x (@ x ¢><ij-*¢>t} dm

=fTF{(“i X di)dit(Qii‘l)t*"(Qi X (@ x di))dit(Qij‘l)t] dm

Using steps identical to Eqn. 4.1-4.4 which expand a; and @; Eqn. 4.13
becomes:

i . L.
=fTF{Ri0( Z RA‘IQ]]_‘IIR]]- l'gj
i=1

i . . .
+2. 2 (RETIRECIQECIRIZIQIIRE 89, 4.14
j=1k=1

didit(RioRti)‘lQij—‘llRii‘l)t] dm

Bringing the integral over m inside the trace and using Eqn. 1.11 and Eqn.
1.12 we have:

i

Tr{RP( h

=1

dRy .. 4 4 8%RL . . oR} :
Y+ ——— 9 )J;( — )R]

Since Tr{BCD}=Tr{CDB} and RPR{=E, the identity, this is:

i 8RY  BR} LA 8%R} 8RS -
W T t 4 Js t ; .
j‘:_,lTr{w]_ Ji( 55, P! j;k;Tr 59,30, il 55, ) B9y 4.18

Now consider the last three terms of Eqn. 4.i1 which using Eqn. 4.9 to
expand a and Eqns. 4.1 and 4.2 to expand @ and a with some cancellation we
have:

i opb . 4 dy 0%ph . .
i-1 Y. (R 4+ oy . )
(R 1z_,) [m,(r,+r,) x R} \jg 39, ﬂ]+j§k§l 53,0, V9y)

4.17
i OR

+myr; x RA(Y 31'5'“+Zj:zi: Ok} 90yr;)
m;T; i & 59, iTi 33,00, VKT

j=1k=1
+(Rii‘lzi—l)t[mi(?i+ri) x RiomigZO]
Consider the first and third terms of Eqn. 4.17:

, fiapg..iiang..
(R 1z ) (myF; % RiOLZl ‘5{,},‘%’"‘2 Y T8y

). 4.18
j=1km 0989y

7

The lower subscript on the bracket will be used to indicate that the contents of
the bracket remain the same in the following discussion. Using vector identity,




21

Egn. 1.20, and Q relation, Egn. 1.9, this becomes:

TY‘{RiO{' o ]7(Rii—lzi—l X mi?i)t} =TY‘{R ] mFH(Q)~ l)t} 4.19
and since
. . 8R{
i '=RPR§TQITIRE, =R? FE 4.20
Eqn. 4.19 becomeS’
[ A aRE ., ..
Tr{L B9, }jlk}_j w(wk — m,r,((wi ) 19]} 4.21
i= 7
Consider middle two terms of Eqn. 4.17:
i ph .
i—-1 t
(Ri™z-1)'myry x R| LZ 1’ ]Zlkzlw oo, By
: 4.22
Py B
kTif

using Eqn. 1.20 and again exchanging dot and cross products they can be recast
into: :

Tr{R [ ] (Ri_,z-, x m,r,)} . 4.23

and since by Eqn. 1.9 and Eqn 1.18:
i

Rl 1Zi-) X 1=Qf lri—RoRé lQli {RL 1ri=R{ 6? ) 4.24

they become:
apl
rol . . Po
Tr{m,R, | L( 39, } 4.25

Now consider the last terms in 4.17, i.e. the gravity terms.
(in ! l) [m,(r,+r,) x R mngO]
By exchanging a dot and vector product:

=(R{"'z_, x m;(T+1;) ) 'R%m;g zo=( N+ 1) ' RPmg zg

R t
=TrfRi°migZo[ il—l(f'i'*'ri)] ]

Using 4.20 and 4.24 this can be written:
i

=Tr§migzo[gﬁ 1} l Tr 2[ _‘{migZo)‘g

8T
= a\t —a
m;g(z§) 39, 0



Combining this result with Eqns. 4.21 and 4.25 we have:

i R4 opd ., ORd oR} apb . opd .| -
Bed e T : r B . r+ . t .
T j;Tr[( 39, Ji+m; 39, i )( 33, +(m; 39, Fi+my 39, M 35, )
i 8%R} a°pd dR}
+ ——— Ji+my i t
Tr[;lk;((aﬂjaﬁk it mi g s, T (s, ) 4.26
8°R} 0°pd apb o 8T}
+(———m;F; + Y 99+ m;g(28)t —F°
(613]613]‘ BT 5 8 m, N5g, )] Pidwrmig(ze) a9, 1

which can be shown by submatrix multiplication of the T matrices to be
equivalent to:

i faTd 8T ) ..
L= Jja —9'-, .
K ngr[wm 53, ]0’ 27
. . 4.
+§;§;T call REALITE R (t’*)t———faTé’-a
e e T e A T

where J? is defined as in Eqn. 1.28.

This is the same result as the Lagrange set of equations, Eqn. 2.7, when
upper link contributions are ignored.

Consider now the upper link contributions, i.e. the last two terms in Eqn.
3.20:

(Ri™'2iy) "y x R{*'5, +R{* 1y, ) 4.28

Assume for simplicity that i+1 is the last link of the arm, i.e. fi.2 and nj,, are
zero. We relax this assumption shortly.

We can rewrite the first term of Eqn. 4.28 using Eqn. 1.8, Eqn. 1.9, and Eqn.
1.21 as:

Tr[RiiniH( ii_ll'i)‘] :Tr[R(§+lfi+l(Ra_lQii—_llri)t - 4.29

using Eqn. 3.19 and Eqn. 4.9 this can be written:
et BRit! Apitl

0 - Po .\

iglixl §ERIHL apitt

2

+ Figt
TuE 8909, T 83,00,

4.30

)70y,
+m;48 ZO](Ré_lQii—_llri)t]

Using the same steps used in deriving Eqn. 4.26 the second term in Eqn.
4.28 (Ri"'2;_;)'Ri*'n;;,, can be written:
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i+1 6R6+1 ap6+l N 6R6+1
Tr[(—E—Ji,,ﬁmm—&Tr,&ﬁmmgzo)( 59, )

e L tmyy, ‘—‘j—"mn1820)(Ré—lQii:llRii+lri+1)t] ’i’j
4.31
)

aERHl 6+l 6R6+1

+ + —t
Tr{;lkzl fwwk Ty m‘“c'w 89 Fi1)( 8,
62R1+1 62 i+1 .
+( 619 6’0 ml+lrl+1+ 6’0 6,0 ml+1)(Rl!) IQJI 1R1+1r1+1)t ﬁ]ﬂk ,

Since from Eqn. 1.18:
apéi-l
09, '
Eqn. 4.30 and Eqn. 4.31 can be combined to form:

i+l 6R8+1 ap6+1 6R6+1
———Jjs1+m i) t .
Z [ i+l i+1 61’] i+l ( 6,01 )

j=1
6R6+1 ap6+l ap6+1 B
—_— . th .
+1i+1 2R6+l a2p&+l 6R6+1
+ it t
Tr E;kzl 6'0 6'0 l+1+ml+l 89 619]( vy ( 6'01 )
62R3+1 azp(ij+1 ap6+l
—_— M, By ——— s

RE'QIIn+RITIQITIRI Iy, = 4.32

-+

(miey
4.33

+( ))]19191(.

aR(i)+1 p6+l
+Trim;, g2 -+

which when combined with Eqn 4.27 can be reformed into:

i+l m oTm aT
=5 S { S ]«s
Sa | o, 619

itlm m [ 92T OTE |

+ Tr
r?:ij;kgl 00,89y m 99 )

] 9, , 4.34

i+1 AaTm
+ ) mung(z8)t ——r2
m=i 6'0
If the arm consists of n links then m can be summed from i to n, and we have
m
Eqn. 2.11. One can see that the

and the ———— terms contain the
kinematic mformatmn of the arm. Tke J matrices determine the dynamic

T¢g"
89, 99,09,

projects the dynamics of the it and upper links onto the

response and the
h i
—1"" actuator axis.
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5. IMPROVEMENTS TO NEWTON-EULER
We were successful in improving the Newton-Euler set in the following way.

If the operation, w; X (@ X b))+a; X b; is performed on general vector by, it is
equivalent by Eqns. 1.20 and 1.7 to [wjw! -Triw;w!{E+(a;)'o b or A;b where 4, is
given by:

[—(w§+wzz) Wry— &y  Wypt+ay

Aim|ogpta, —(wi+wf) ojw,—a,
Wty =0y Wyt —(wi+w?)
Using this consolidated operation, Eqns. 3.17-3.19 can be reexpressed as:

a=Ar+R/'a;,
B=m A (Fi+ ) +mR{ ey + RV M 5.1
And from Eqgn. 4.11 for T we have:
7i=(RI7 )Y (Tr i E-D a0, x (TriE-1)o,

—my(TriRFHE-FF) a;—0; X m;((TrifEHE-FE))w;

+ my(F+ry) ¥ (@)] - |

Thus, we obtain the following for 7:

:TI‘{AiKi(Qii_l)t]"'(Rii_lzi—l)t{mi(fi"'ri) X a;tr X Rii+lfi+l+Ri+lniv+l

K; is an inertial matrix about the i—1" origin but express in the i** frame as
below:
_Iixx+1iyy+1izz 0 0
2
K,= 0 Iixx_liyy"'lizz 0
2
Ligxtligy—1;
O XX lzz 122
0 2

The TriAK Qi)Y can be written as (R{")'Tr{A;Kio;} and therefore n can be
written:

n;=Tr{AK (o) +m;(F+1) x a+(r) x R, +R{"ny 8.2

The first term for n looks ominous but amounts to a (A;K;)y,—(AiKj),y contribution
to n, and similar contributions to ny and n,. o selects components of n. Itisa
matrix which performs the action of a cross product.



25

Replacing 3.19 by 5.1 and 3.20 by 5.2, we have the modified Newton-Euler
set. This form saves some computation (see next section, especially Tables 3
and 4) and gives more parallelism to the computations (see Table 5).
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6. COMPUTATIONAL COMPLEXITY COMPARISON

In the following we compare the Lagrange, Newton-Euler, and modified
Newton-Euler formulations to determine their relative computational complexity
as a function of the number of links in the arm, n. The complexity of the three
approaches is displayed in Table 1.

Approach multiplications additions
Lagrange %1—113+ -l—gﬁ—n2+5n %39-rla+58r12-—§3in

Newton—~Euler 108n-12 100n—-9

Modified Newton~Euler 890n-27 BBn—24

Table 1. Computational Complexity of Formulations

A similar table was derived by Hollerbach [HolB0]. However, he arrives at an
n* dependence for the Lagrange formulation and a 150n dependence for the
linear Newton-Euler formulation. The discrepancy can be accounted for by the
fact that he carried out the operations more or less as set forth" [HolB0] and
made no effort to interpret the equations more efficiently.

To see how Table 1 was derived consider first the Lagrange approach.
Determining the kinematic contribution for the ¥; coefficient is linear in the
number of links, n, but determining the coefficient of the V¥ is of order n®
since the calculations must be done for each value of j and k. These kinematic
calculations are then reperformed for all n torque calculations. So the whole
process is of order n3. A breakdown of computations is shown in the Table 2.
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Lagrange terms multiplications additions
T} 32n(n-1) 24n(n—1)
[T}
0
32 -1 2 -
ladl t n(n—1) 4n(n-1)
[ 82T
1] 32 2_ 2_
Iaﬂjaﬂk , —B—n(n 1) Bn(n*-1)
&l 1.l ¥ 17 5, 17 o, 209 16 5. BO
Li*l' g ]ﬁ’i*kill' o] | e e 2 FUHG
- - d
oT
Tr{| ]667;8% Bn®+8n Bn*+7n
1
n T3
> (28) ——mggrs 2n®+2n 2n®+n
2% gy,
Total —r1861 3+ -l—gé-nzhr)n _nth 3+58r12———ne;r

Table 2. Breakdown of Lagrange Terms

Multiplications by Q! have been ignored since they amount to a row interchange
and a row negation. Appendix A shows in more detail how the terms are com-
puted.

Now consider the Newton-Euler computations. Using the Newton-Euler
equation set one moves from the base of the arm to the hand in computing the
kinematics and then from the hand to the base in computing the dynamics.
Thus to compute the torque, T, the kinematic and dynamic calculations are per-
formed only once for each link. If there are K kinematic and D dynamic calcula-
tions per link, the computational complexity of the Newton-Euler set for an n
link arm is (K+D)n: a linear computation scheme. Besides this linearity another
advantage of the Newton-Euler set is that terms representing insignificant
torque contributions can be easily identified and, if approximations are accept-
able, deleted. Identifying insignificant terms in the Lagrangian formulation is
made difficult because individual contributions tend to be combined in unintui-
tive ways. (We noted earlier that the Newton-Euler formulation provided greater
physical insight into the problem.) The Newton-Euler and the modified Newton-
Euler computations are broken down in Table 3 and 4.

Many of the arithmetic operations tabulated in Table 4 can be performed
concurrently. Table & presents the number of steps required to perform the



modified Newton-

of inquiry will be

pursued in a future report.

N-E terms multiplications additions

w; 9n 7n
a; 9n 9n
A 6n 9n
a; 18n 15n
a; 9n 9n

f; 12(n-1) 9(n-1)
Lia; 9n 6n
w; X (Lw,) 15n 9n
m(r+¥F;) X 3 6n 3n
r; X RIVE 6n 3n
Rivimgy, 9n ~ 6n
add n 0 16n

Total 108n—-12 100n-9

Table 3. Breakdown of Newton-Fuler Terms
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Euler equations if this concurrency is accounted for. This line



N-E terms multiplications additions
N 9n n
a; 9n "9n
A 6n 9n
a; 18(n-1)  15(n-1)
m,a; 12n 9n -
f; 9(n—-1) 9(n-1)
TriAK (o )Y 6n 3n
m(ri+¥;) X § 6n 3n
r; X Ri*'t,,, 6n 3n
Riyimyyy 9n 6n
add n 0 18n
Total 90n-27 BBn—-24

Table 4. Breakdown of modified Newton-Euler Terms
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N-E terms multiplications additions

W, 9 7
a, 9 9
A, 6 9
S Wz 9 7
a; 9 : 9

Qivz, Xivz ., Ajyy L 3y, 18n 15n

m;a; , Tr{AKio;) . mF_, x &_,
Lo, o x RN, 9n 12n
Riiny,
Total 27n+42 27n+41

Table 5. Simultaneous steps in N-E computation.

It was noted earlier in Section 2 that some applications require the torque
to be in the form given by Eqn. 2.11, viz:

T=M(8)9 +C(3 8 )+G(¥)

This form results naturally from the Lagrangian formulations, however, it can be
- obtained with less effort from the Newton-Euler equation set using the technique
outlined at the end of Section 3. The number of calculations involved will be of

the form, kIMn+1)ﬁ,dln(n2+1) for the M matrix and of the form
ko n(n+1)6(2n+1)ﬁ’dg n(n2+1) for the C!' matrices. (Symmetry of the M and C!

matrices has been taken into account)
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7. APPLICATION TO SIMULATION

The improved Newton-Fuler together with the strobing technique proposed
at the end of section 3 can be used to perform efficient simulations. An impor-
tant use for simulation is in the evaluation of arm control strategies.

In simulating the arm we are given an input torque vector 7(t) and initial
values of the relative angular velocity vector, 4 (0) and relative angular position
vector, 9(0), and are required to determine the resulting 9 (t), ¥(t), and ¥ (t).
Solving Eqn. 2.11 for ¥ (t), we have an expression of the form:

B =M(8) ' [7-C(¥,9)-G(8)]=d.9)

If 9 is represented by y, we have a system of 2n equations (where again n is the
number of links):

¥ =1(8.9)

L]

d=y

Now that we have the equations in this form we can perform a standard
Runge-Kutta four point integration. Assume that y represents the augmented 2n
vector (y,9)" and further assume that g represents the augmented 2n vector
(7). The equations become simply:

y=g(y)
In the four point technique the function, g, is computed four times each step of
the simulation to determine values, h; given below:

h,=zg(y,)

1
hy=eg(y,+ ghl)

1
hg=e¢g(y,+ gha)

h,=zg(y,+hs)

These h terms are then weighted and summed to determine the next incremen-
tal value of y:

1
Yu+1=Ynt g(h1+2h2+2h3+h4)

The new values of y are, of course, just the new values 6f 4 and 9. The step size
¢ can be determined once one knows the maximum possible change in 4 or 9,
which can in turn be found from the maximum arm velocity. & should be taken
small enough so that changes in angle and angular velocity are not excessive.

Evaluating g at its various input values is not simple. One must obtain the C
and G contributions and subtract them from 7. Then one must determine the M
matrix, invert it, and then solve for 4. The Lagrange equations yield an explicit
form for the M, C and G matrices, but as was shown in the previous section, they
are of order n® Instead the following approach works better.

First one obtains the combined C+G contribution by zeroing the the ¥ input
vector and inputing the ¥ and ¥ vectors present in the y, y+ %—hl, y+ l-ha. or

2
y+h; input vector (depending on which point is being evaluated).

This contribution is subtracted from 7. Next one inputs zero gravity and also
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zeroes out the # contributions present in y, y+ ;—h,, y+ ;—hg, or y+hg, but retains

the ¥ values. The Newton-Euler equations are then strobed for various com-
ponents of M by setting all but one component - of 4 to zero. This process

involves operations of the order kln(n+1) +d; n(n2+1)

advantage of the symmetry of M (see Section 2). Inverting M can be done by
Gaussian elimination with no pivoting necessary since M is a positive definite
matrix. [HoT80] ¥ can be found using: '

¥ =M"Y{r-C-G)

The resultant ¥ and 3 are determined from the input T using Runge Kutta four
point integration discussed above.

+kon+dgon. One can take

[ 3
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8. CONCLUSION

A thorough investigation of the Lagrange and Newton-Euler arm formula-
tions was performed. They were shown to be consistent. The insight gained in
this study enabled us to formulate a more efficient Newton-Euler equation set
suitable for real-time control applications or high speed simulation studies.
Additionally, the technique of strobing, outlined in Section 3 allows one to iden-
tify the inertial and coriolis-centrifugal matrices used in an explicit representa-
tion of the torques without recourse to the Lagrangian formulation.
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APPENDIX

The following is a possible strategy for computing the Lagrange equations in
order n3 operations.

First build up all the transformations Tf. Product pairs are of the form:
T4T? TFTS T4 - - TEHTR, n-1 T multiplications
Triples can be built up as:

TST#TS TETSTE - - TEZETRATE, n-2 T multiplications

n-1
Thus to compute all the Tk's takes Y (n—-m) matrix multiplications or 32n(n—1)
m=1
multiplications and 24n(n—1) additions.

AT
One can compute the ﬁ-in the following way.
j f

QJT¢ takes 1 Q multiplication

QJT§ takes 1 Q multiplication

TeQ'Tf takes1 Qand1 T multiplication
QJT§ takes 1 Q multiplication

TdQ/T{ takes 1 T multiplication

TEQ/T] takes! Qand1 T multiplication

One can see the pattern. Each link takes n-1 T multiplications. (Q multiplica-
tions are not counted since they consist of a row negation followed by a row
n

interchange.) The total number of calculations is Y (m-1)T multiplications or
m=1
32n(n-1) multiplications and 24n(n-1) additions.

Th oTy t b ted using the T! and oTy
—— com ed usl e 1l a
e a’ﬂja’l’k erms can be co pu ng j n 5’61

fragments as the
examples below:

QJQPT takes 1 Q multiplication

QJQPTE takes 1 Q multiplication

QITIQ{T? takes I Q multiplication

TeQ!QIT? takes! Qand1l T multiplication

QIQJTS takes 1 Q multiplication

QITIQIT} takes I Q multiplication



QSTEQETS takes 1 Q multiplication
T{QIQIT{Td takes 1 T multiplication
TeQITEQETS takes1 Tand 1 Q multiplication

TEQEQETS takes1 Tand2 Q multiplications

For each link i it takes K%I-LT multiplications. If this is summed over all the

links, we have %g—-n(nz—l) multiplications and 16n(n®-1) additions.

To produce i} ——19 takes 16 q multiplications and 18(q-1) additions.
=10

. - T 8*Tg
Y a(g-1) ST : 0%,
To produce pairs 9y takes ) multiplications. Since 59,39, 619 59, ~,
in order to produce Sq‘ f_: ———{919,( takes an additional —9-(5——Lmult1phca-.

89,09,
=1k=1
tions and 16(q+1)(q—1) addltlons To combine these two terms takes an addi-
tional 16 additions. To multiply by J, takes 64 multiplication and 48 additions.

To produce the kinetic term:

aTg aTg
— 98,1
Li{ 87, é 89,09 iBid 9

takes 8§—q(q+1)+64 multiplications and 16q(q+1)+32 additions.

To produce the above terms for all values of q takes:

Z‘[B——q(q+1)+64] —-n(n+1)(n+2)+64n multiplications
. g=1

n
Z‘ 16q(q+1)+32]= 32n+?—n(n —1) additions

Now pick a value for i. To produce:

I aTg
T gy
for q=i to n takes 16(n-1+1) multiplications and 15(n-i+1) additions since we are

only interested in the diagonal terms. Besides this there is a cost for summing
the terms:

EJ""L
of n-i additions. Summing contributions for all i's results in:
n .
2. 18(n—i+1)=8n(n+ 1) multiplications
i=1 .
and

15(n—i+1)+n—i=8n%+7n additions

o

i=1



iii

In the gravity terms:
n 3TH
(zg)tzhé‘jf‘fnqgf:
=] 1

8Ta
only one component of Ej-mqgf-g need be considered since the (zg)' projects
i

out only one component. Computing the needed component requires 4(n-i+1)
multiplications and 3(n-i+1) additions. Summing tténs for all i yields 2n®+2n mul-
tiplications and g-na-l- g-n additions. Add to this %—-—%—additions to sum up the
results.

Summing all contributions gives us a total of:

§61_n3+ —l-ginhﬁn total additions

éagn3+58n2— %4—1'1 total multiplications

These are the results reported in Tables 1 and 2.



