SEL Report #130

Application of Sorting
Networks to Sparse
Matrix Problems.

T. N. Mudge

K. Hadavi

May 25, 1979

This work was supported in part by the
National Science Foundation under grant

NSF-ENG-78-5779.

DEPARTMENT OF ELECTRICAL AND COMPUTER ENSINEERING
SYSTEMS ENGINEERING LABORATORY

THE UNIVERSITY OF MICHIGAN, ANN ARBOR

%

APPLICATIONS OF SORTING NETWORKS TO SPARSE MATRIX PROBLEMS

by

T. N. Mudge and K. Hadavi

Technical Report

June 10 1979

The Computer Information and Control Engineering Program
and
The Electrical and Computer Engineering Department
The University of Michigan

T TR W Im INR IR TEE O WEn O wEm O mm W mm W

ABSTRACT

This report outlines how sorting networks can be used
to efficiently perform the following operations
frequently found in problems involving sparse
matrices.
1. Row operations =@ between sparse
vectors.
2. Dot products between sparse vectors.

Sorting networks -- in particular Batcher sorting
networks [B] -- are introduced. The architecture of an
attached support type processor for sparse matrix
problems is proposed, in which sorting networks are
used to gather data for processing.

ABSTRACT

i

TABLE OF CONTENTS

10 INTRODUCTION ooooooooooooooo000000000000000000000003
2. SORTING NETWORKS oooonoo.oooooo000000000000000000005

3. APPLICATION OF SORTERS TO SPARSE ARRAYS cesesssesesl?2
3.1. Row Operations12
3.2. Dot Products14
3.3. A Sparse Matrix Processor ieeesssecssesssensecsld

4. CONCLUSION oooooooooooooooooooooooooo0000000000000019

50 REFERENCES oooooooooo.gooooo0000000000000000000000020

-

TABLE OF CONTENTS ii

;

1. INTRODUCTION

Large sparse matrices occur in a wide range of applications
that include the following: network analysis problems where
large numbers of circuits are cascaded together, finite element
structural analysis, linear programming problems, electric power
system analysis, as well as the more recently developed field of
image reconstruction. Sparse matrices are so called because they
have only a small percentage of non-zero elements. For example,
it is not wunusual to find matrices of rank 0(1000) having no
more than 10 non-zero elements per row, in electric power flow
and transient stability problems.

In this report m will be used to denote the number of
elements in a sparse vector, or the rank of a sparse matrix. Its
meaning will be clear from the context. Similarly k will be used
to denote the upper bound on the number of non-zero elements in
a sparse vector, or in any row or column of a sparse matrix.
Sparsity implies that k<<m. Furthermore, we shall assume that
the distribution of non-zero elements is random, although this
is not the case for many important classes of sparse matrices,
e.g. tridiagonal matrices. Discussion of techniques for handling
more structured sparse matrices, such as tridiagonal matrices,
is outside the scope of this report. The term array will be used
to denote vectors of unspecified dimension.

Taking advantage of sparsity to speed up array operations
poses a number of problems for computer architects. High speed
vector processor architectures typified by supercomputers such
as the CRAY 1I, the CDC STAR, and the TI ASC appear unable to
take advantage of sparsity. This is largely due to the pipeline
organization of their processing units. To keep these units busy
it 1is necessary to restructure a problem into a chain of vector
operations between full vectors. For Sparse arrays having a
random structure this "vectorization" appears to be beyond
current techniques [C]. Hence, these machines are very much
under utilized when running sparse array problems. Recent
research, using electric power flow and stability problems as
benchmarks, indicates a more cost effective approach is to run
these problems on a conventional machine, such as a PDP/11, and
off-load the numerical computations to a high speed attached
processor, such as the Floating Point Systems' AP120B [BPW]. The
AP120B is a 38 bit floating point unit with a three segment
pipe. Having such a short pipe gives the unit the appearance of
a scalar processor, this relaxes the need to vectorize problems
that run on it. From this it can be concluded that computer
architectures that are organized around long pipelines appear
unsuitable for sparse array problems, unless some suitable
"gathering " mechanism can be devised that vectorizes the sparse
arrays. In this report presents some techniques that use sorting
networks as a gathering mechanism for the specific application
of large sparse array problems. However, some problems still

INTRODUCTION

i) i £ data from memory and it
remain regarding the accessing o Y 1ts
subsequen% aligﬁment after it has been processed and is ready to
be returned to memorY-

; tion 2, sorting networks -- i
In the next section, Sec ! \ in
particular Batcher's pitonic sorter [B] -= are introduced.
. . the bitonic sorter can be used to -
Section 3 outlinesS how ! , . o
efficiently perform the followlng two types of operations
roblems involving sparse matrices.

frequently found in P

ons between sparse vectors.

. eratil
1 Row Op s between sparse vectors.

2. Dot product
i i ting a bitonic sorter i
Based on this a processorl incorpora E 18
proposed for thepspecifiC application of sparse array handling.
. ' ith a discussion of extensions to th
Section 4 concludées wl . ; e
ideas presented in this report, and a discussion of the unsolved
problems.

INTRODUCTION

2. SORTING NETWORKS

A sorting network is a device with n input ports and n
output ports that accepts a list of up to n data items on its
inputs and sorts them based on some key specified in each data
item. The sorted list is then passed to its output ports,

There 1is a well developed theory available to the designer
of sorting networks (see [Kn] pp. 220-246). Most of this is
devoted to the construction of sorters from a basic building
block called a comparison-exchange module. As the name suggests
this module accepts two items of data on its input ports,
compares them using a key in each datum, then based on the
outcome of this comparison, conditionally exchanges them before
passing them to its output ports. Figure 1 illustrates a
comparison-exchange module. The data is input through ports A
and B, If A's key (denoted by key(A)) is less than or equal to
key(B), then A& is output through the port marked L and B is
output through the port marked H. Otherwise, if key(a) >key(B)
then an exchange is performed and A goes out on H and B on L. A
simplified diagram is shown alongside. The position of the
arrowhead indicates the H output and the tail indicates the L
output.

Figure 1. Comparison-Exchange Module.

Using comparison-exchange modules Batcher has demonstrated
two methods for constructing sorting networks. The first is
based on a network that merges two lists by separately merging
the odd positioned items in each list and the evenly positioned
items in each list, and then combining these two sublists using
a row of comparison-exchange modules. The other is based on a
bitonic sorting network which.we will discuss in more detail
shortly. Both require O(nlog“n) comparisoa—exchange modules to
. sort a list of n items, and both take 0(log“n) time units to do

the sort. Other networks have been demonstrated that are
marginally better [V], however, so far no improvements on the
asymptotic behavior of the above bounds have been shown for

1 All logarithms are to base 2, unless otherwise noted.

SORTING NETWORKS

networks in which fanout is not allowed (i.e. an output port of
a comparison-exchange module can feed at most one input port of
any other module). Figure 2 illustrates a sorting network based
on Batcher's bitonic sorter. -Note the absence of fanout. If
fanout is allowed sorters have been demonstrated that sort in

=
5 -
2] 3 QP
+ “ 0
S] 5 o
A o
) (a0
o ! 3 H 0
a2 l H R
&) W=
‘ FENNE}

=t
Nols=
s o

' Y
1 L—2 J 3 J

STAGES

Figure 2. An 8 Input Sorter.

O(logn) time [MP]. These are based on simpler elements than
comparison-exchange modules, but they require a discouraging
O0(n) such elements.

For the purposes of this report only bitonic sorters will
be considered in any detail. To explain how they work we first
need to define the term "bitonic".

Definition: A bitonic sequence is one of the following:

1. A monotonic sequence.

2. A sequence that partitions into two monotonic
sequences: one increasing, the other decreasing.

3. A sequence that after cyclic permutation
(rotation) falls into one of the above

categories.

It is understood that the term sequence refers to an
ordered list of items from some base set that can be put in one-
to-one correspondence with a subset of the natural numbers.

From the above definition it can be readily seen that the
following sequences defined on the natural numbers are bitonic:

SORTING NETWOCRKS

A, 26781716 31
B. 34 31 18 2 64 72 ‘ :
C. 13 16 25 22 16 156 3 4 ¢ 10

1 MIN;\
2 [__
Bitonic
Sorter
n/2 — —
n/2+1 FA\ —
n/2+2 [—
n/2+3 / n/?2 S—
. Bitonic
Sorter
n ——
MAXb/
Figure 3, Iterative Rule to Construct A Bitonic Sorter

the number of comparison-exchange modules is given by (nlogn) /2.
The key to the iterative rule of Figure 3 can be stated as
follows: If the input to the n/2 comparison—exchange modules is
a bitonic Sequence, then the output is two bitonic sequences,
MIN and MAX (see Figure 3), such that every item in MIN is 1less
than or equal to every item in MAX. This is stated more formally
in the following theorem due to Batcher.

Theorem 1. Let A =A[l],...,A[n] be a bitonic sequence
(assume n is even for convenience) Let
MIN[i] = min(A[i],A[i+n/2]) and

MAX[i] = max (A[i] ,A[i+n/2]) for 1<i<n/2. Then the
two sequences MIN and MAX are both bitonic, and
MIN[i] < MAX[j] for all i and j.

Proof: See [B] Appendix B.

In Figure 4 3 geometrical illustration is presented to give
some insight into Theorem 1 (this is similar to the approach

SORTING NETWORKS

taken by Stone in [Sl]). The 1line ABC represents a typical
bitonic sequence.- It can be viewed as a plot of the values of
the items in the sequences Versus their position in the

sequence. Point M is the midpoint in the sequence, i.e. there
are an equal number of items on either side of M. Items at

B
item — d - d —
value ,
X M Y
input ‘
bitonic n/2 —————
sequence
C
A
osition in sequente
) M
pair of M
output X1y
bitonic Y
sequence
C
A

Figure 4. Geometrical Aid to Theorem 1.

points X and Y are separated by half the length of the input
sequence (hence they will be compared in the same comparison-
exchange module) . Furthermore, all items to the left of X (those
on AX) are less than or equal to those between M and Y, and all
items between X and M are greater than or equal to the items to
the right of Y (those on YC). Since items on AX are compared
with those on MBY and items on XM with those on YC the output
shown at the bottom of Figure 4 results. Note AXYC and MBYXM are

SORTING NETWORKS

sl s W

both bitonic and every term in the first is less than or equal
tc those in the second. Rotating ABC in the horizontal direction
causes both AXYC and MBYXM to rotate also, but at twice the
frequency. .

From the above discussion it should be clear that bitonic
sorters can be used to merge two ordered 1lists by forming a
bitonic sequence from the lists then inputting them into the
sorter. One way the bitonic seéquence can be formed 1is by
concatenating one 1list with the reverse of the other. This
technique was used in Figqure 2 to construct a full sorter.
Referring to that figure it can be seen that Stage 1 consists of
4 bitonic sorters that sort pairs of items into ordered lists of
length 2 (these sorters are simply comparison-exchange modules).
These 1lists are arranged to form two 4 item bitonic sequences.
These 2 sequences are sorted using the two 4 input bitonic
sorters of Stage 2. The output of Stage 2 is arranged as an 8
item bitonic sequence which is then sorted by the 8 input
bitonic sorter of Stage 3.

In some cases it is necessary to merge two seéquences whose
combined length is greater than n, the number of inputs to the
sorter. The next theorem shows how to do this and gives an upper
bound on the number of time steps required.

Theorem 2. Given 2 ordered lists A and B of length s and t

respectively, and a bitonic sorter with n inputs
such that s>>n and t>>n, the upper bound on the
time to merge A and B is given by O((s+t)logn/n).

SORTING NETWORKS

10

Proof: Assume, for simplicity, that s=pn, t=gn and n=21 where
p, g and 1 are integer. Then the following procedure
merges A[l:s] with B[l:t] and places the result in
Cl[l:s+t]. ‘

Procedure MERGELONGLISTS
1<-3<-k<-1;
T{1l,..,n}]<-merge All,..,1] and B{l,..,1]1;
comment T 1s a temporary vector. Use of the n input
bitonic sorter 1is indicated by underlining "merge"
endcomment;
cli,..,11<-T[1,..,1];
while i< 2*p and j< 2*q do
begin if A[i*T1]>B[j*1] then
begin T{1l,..,n}<-merge T{1+1,..,n] ggg
B[j*1+1,.., (J+l)*l] 7

j<=3+1;
Clk*1+1l,..,(k+1)*1]<-T[1,..,1]:
k<-k+1
end
else begin T[l,..,n]<-merge T{1+1l,..,n] ggg
Ali*1+1,..,(i+1)*1];

i<—-i+1;
C[k*l+l,..,(k+1)*1]<—T[1,..,1];
k<-k+1
end
endif
endwhile

if j2*q then C[k*l+l,..s+t]<—A[i*1+l,..s] else
C[k*l+1,..,s+t]<—B[j*l+l,...,t] endif

endMERGELONGLISTS

This algorithm partitions A and B into 2p and 2q blocks of
n/2 items respectively. It then merges (using the sorter) block-
wise. Consider the situation after the i-th block of A and the
j-th block of B have been merged into the partial result. The
last item in the partial result is either A[il] or B[jl]. If it
is the former this implies there may be some items B[u] (u>jl)
that are less than A[il], hence the next block to be merged into
the partial result must be the j+1-st block of B. However, this
block need only be merged with the last n/2 items in the partial
result. A symmetrical argument arises if B[jl] is the last item
in the partial result -- the i+l-st block from A must be merged
into the partial result. This merging is repeated until either A
or B is exhausted. In the case where 2p>2q a concluding vector
transfer of the remaining 2(p-q) blocks in A to the result list
c is performed (the final if statement). A symmetrical case
arises for B if 2p<2q. ——

In the worst case the while loop will be traversed 2p+2q
times (i.e. k will step from 1 to 2p+2g). Whatever the result of
the test A[il]>B[jl] a merge using the sorter and taking O(logn)

SORTING NETWORKS

s Wy W

—"

P — —— e G o T = e e T .o

o B & A B F] Illh ik & i A& B [

time units takes place,
assume takes O(1l) time
by:

followed by a vector transfer

which

11

we

units. Thus the worst case time is given

O((2p+2g)logn) = O((s+t)logn/n)

SORTING NETWORKS

12

3. APPLICATION OF SORTERS TO SPARSE ARRAYS

In this section we shall show how bitonic sorters can be
use to facilitate two of the most common operations found in
manipulating sparse arrays and sparse matrices in particular.
These are [IOW operations between sparse vectors, and dot
products between sparse vectors. To do this we shall assume that
non-zero array elements are available together with their
indices in the form of data jtems with several fields. Any one
of these fields may be used as the key for the sorter. Figure 5
jllustrates an element from a matrix together with its index
fields. In general the number of index fields will equal the
dimension of the array from which the element has come. In
figure 5 they are shown in APL order (row followed by column,
see [P]), although other orderings may be more convenient
depending on the application.

A[7,3]é12 stored as:

12 7 3

Figure 5. Storage of a non-zero element.

After developing methods for row operations and dot
products based on bitonic sorters the design of a special
purpose processor for sparse matrix handling will be outlined.

3.1 Row Operations

A row operation is an element-wise operation between two
vectors to form a third, that is defined as follows:

for i <- 1 until m do ulil] <- VvIi] + a*W[il;
where U, V and W are vectors, and a is a scalar.

In the case of sparse vectors a time consuming activity
associated with this type of operation is pairing off
corresponding non-zero elements in the two vectors, in
preparation for scaling and adding. This preprocessing can be
done efficiently using a bitonic sorter. Figure 6 shows how.

In Figure 6 two sparse vectors from a matrix (rows 3 and

12) are preprocessed ready for the element-wise [rOW operation.
The sorter insures that elements to be combined appear at

APPLICATION OF SORTERS TO SPARSE ARRAYS

%ﬂl
£

13

adjacent output ports of the sorter. This happens because items
with equal keys (i.e. identical indices) appear next to one
another after sorting. They can then be fed directly into
processing elements for scaling and adding. Since figure'6 shows
two row vectors from the same matrix, the elements from both are

U v
. T Y\ r - ™
2 | 30|43 |€3] 3] 3|€I]] 9 2 1112 9|1 h2 [l [s h2 K3
SORTER
)

2 |3 [(6)|]4 || s [12]O[1 2 19 [3 39| 112 9 12
1 \/ i \/ l
2 3@ |4+8a 3| 1 3@ 3+11a | J€9| |9 3|6D

—\ 4
Assume result replaces row 3
**keys used in sorting are circled.

Figure 6. Preprocessing for a Row operation

sorted using their second index field as a key. Furthermore,
since the sorter requires a bitonic sequence to operate on, the
non-zero elements of the first vector are input in row major
order, and those of the second are input in reverse row major
order. The result is in row major order. Notice that only the
non-zero elements are ever used in this method, so they are the
only ones that need to be stored, and further that no testing
for zero elements is needed. Hence, the efficiency of this
method is related only to the number of non-zero elements, not
to the overall number of elements.

If the width of the sorter is greater than the combined
width of the two vectors, i.e. n>2k, a pair of vectors can be
preprocessed in logn time steps. This is an improvement over the
list searching and matching required in a conventional
environment that is by nature a serial operation (if we assume
that in most cases O(2k)=n, then preprocessing two sparse
vectors in a serial fashion would take O(n) time steps). An even
more important source of improvement arises by noticing that the
sorter lends itself naturally to pipelining -- registers need
only be inserted between each one of the logn levels. This gives

APPLICATION OF SORTERS TO SPARSE ARRAYS

14

a further increase in performance, provided the processing
elements have sufficient bandwidth to keep pace with the sorter.
1f this 1is the case and the pipe can be kept full, row
operations can now be performed in the time it takes to traverse
just a single stage of the sorter. In section 3.3 we will work
out an estimate for this. In the case of row operations
between 2 vectors where k>n. The result of Theorem 2 now reduces
to O((s+t)/n), i.e. an apparent speed up by a factor of n over
serial merging -- the best technique for combining two sparse
vectors in a more conventional processor.

3.2 Dot Products

A dot product is an operation between two vectors to form a
scalar, that is defined as follows:

a <~ 0;
for i <- 1 until m do a <- a + ulil*viil;
where U and V are vectors and the result, a, is scalar.

The’ same approach to preprocessing that was used for row
operations can be used. However, only those elements that appear
on the output ports adjacent to other elements with identical
index fields need to be considered by the processing elements.
These pairs must be multiplied, and then all the products must
be accumulated. Notice that in the case of one vector being a
row vector from a matrix and the other a column vector (as
frequently occurs when matrices, or vectors and matrices are
multiplied), the first one 1is sorted using its second index
field as a key and the second is sorted using its first index
field as a key.

3.3 A Sparse Matrix Processor

In this section we shall outline a design for a sparse
matrix processor based on a bitonic sorter. It could function as
the main arithmetic processing unit in a machine designed
specifically with sparse matrix problems as an application, or
it could operate as an attached processor in the style of the
AP120B. Figure 7 shows the block diagram.

The processing unit has 16 input ports that are each 64
bits wide —-- 32 bits for a floating point number, and 32 bits
for two 16 bit index fields. S is a bitonic sorter comprising 32
comparison-exchange modules arranged into 4 levels of 8 modules,
with each level separated by D flip-flops to allow pipelining.
The 16 outputs of S are feed into 16 matching elements (the Ms
in Figure 7) that can be programmed to detect whether their
input ports are carrying data with matching keys. The operation
of an M unit depends on whether a row operation or dot product

APPLICATION OF SORTERS TO SPARSE ARRAYS

gt wmm Ge? AN @wm ewe gme Wm0 e e -

15

is to be performed, which of the index fields are being used as
keys, and whether the left adjacent M unit detects a match.

If a row operation is to be performed an M element responds
in one of three ways.

S
i 1 4 11 | 4 j!
M M M M — M
| Ly I i I |
A A A A A A
' } } : ! T
15 0 1 2 14 15
Figure 7. Sparse Matrix Processing Unit.

1. If the appropriate index fields match, the two 32 bit
floating point numbers input to the element are sent to an
arithmetic processing element, A. In A one is scaled and
then they are added, and the result is output on the A
element's output.

2. If the appropriate index fields do not match, and if the
left adjacent M element does not find a match, then the M
element outputs on its left output the data item on its
left input. This is transmitted through the corresponding a
element. The right input is ignored.

3. If the appropriate index fields do not match, and if the
left adjacent M element does find a match, then the M
element ignores both of its inputs.

Note that no more than 2 consecutive outputs of S match at any

APPLICATION OF SORTERS TO SPARSE ARRAYS

16

time. Hence, pair-wise comparisons are sufficient. Furthermore,
this means that the unit shown in Figure 7 can be simplified
because no more than one of any consecutive pair of A elements
will be used at any one time. Therefore, only 8 A elements are
needed plus some multiplexing logic to enable sharing.

If a dot product is to be performed an M element responds
in one of two ways.

1. - If the appropriate index fields match the two 32 bit
floating point numbers input to the element are sent to an
A element where they are multiplied.

2. If they do not match both inputs are ignored.

To complete the dot product operation the output from the A
elements must be accumulated. This can be done most efficiently
using a multi-operand (8 in this case) carry-save adder tree
(see [AO] for design details).

In general, the index fields of the results of row
operations or dot products are selected from the index fields of
the inputs to the M elements. This task is handled by the M
elements.

To get a rough idea of the gate complexity of this
processor, as well as its operating speed, consider the
realization of one of the 32 comparison-exchange modules. Figure
8 shows a possible design. The width in bits of data paths is
indicated by drawing a slash through the path and writing the
number of bits next to it. For simplicity it is assumed that the
same pair of index fields are always used for comparison. This
requires additional programmable logic at the input to the
sorter to make sure this is true. This extra logic is more than
offset by the saving in the sorter design.

Let the ordered tuple <g,i> denote the number of gates (9)
and the number of inputs to those gates (i) used in the
realization of a logic function. Also, let T be the delay of a
single gate.

The complexity of realization of a 1 bit latch = <5,9>

Time to operate = 4T

Hence, complexity of

the two 64 bit pipeline latches = <640,1152>

The comparator that matches indices is a 16 bit fixed point
adder. Its time to operate will be a bottleneck in the operation
of the comparison-exchange module. Therefore, we shall consider
it to be implemented using a tree of lookahead units that
lookahead across 4 bits (thus the tree has 5 lookahead units 1in
it).

APPLICATION OF SORTERS TO SPARSE ARRAYS

-' ') - | A"w’”‘»' r. .» ‘ ”w‘.ﬂwnww-.m»wm. - - -

17
Complexity of the 16 bit subtractor
(including a 16 input NOR gate to detect a match)
= <217,552>
Time to operate = 10T
Complexity of
164 {»64
64 bit 4 bij
latch 6].a é)clht
fx. pt.
15 lébit Sub |je—1l6cg
¢ l 4
Figure 8. Details of a Comparison-Exchange Module.
the two 2-to-1 64 bit wide multiplexers = <386,770>
Time to operate = 3T
Hence, complexity of comparison-exchange module = <1243,2474>
And time to operate = 17T

Assume state-of-the-art ECL 1logic (e.g. Fairchild's F1l00K
series). Then T = 1ns, i.e. time/pipeline stage = 17nS. Thus if
the pipeline can be kept busy it can multiply two rank 1000
matrices in 17mS, provided k<8 for both of the matrices. This
bound 1is in keeping with the types of matrices that occur in
power systems problems (see [BPW]).

The total complexity of the sorter is about 40,000 gates

APPLICATION OF SCRTERS TO SPARSE ARRAYS

18

with 80,000 inputs. This compares favorably with present levels
of integration for .HMOS technology, but is beyond present ECL
technology. The major problem with realizing a sorter is not
gate complexity but pin count jimitations: if a comparison-
exchange module were in a single package it would require >256
pins. Hence the problem of partitioning the design of a sorter
Sstill needs attention. In the above discussion the M elements
and the A elements were assumed to be able to match the
bandwidth of the sorter. Furthermore, their complexity was
considered to be much less than that of the sorter, i.e. not

more than a few thousand gates.

APPLICATION OF SORTERS TO SPARSE ARRAYS

E;
f
|
!
i

ST

kite.

ey

m -wmww‘-‘w) 'Mﬂ.‘w " 'mw. - - .w a

19

4. CONCLUSION

The ideas presented .in this report offer solutions to some
of the problems that face the designer of a high speed computer
for handling 1large sparse matrix problems. However, several
problems still remain. Firstly, a minor point, and that is that
the performance of the processor described in section 3.3
deteriorates if the arrays are not sparse. Clearly, if the
arrays were full it would not be necessary to use the sorter,
and so using it with full arrays just causes it to be an
unnecessary bottleneck. Secondly, and much more important, data
still must be accessed before it is input to the sorter so that
its indices, that are to be used as sorting keys, form a bitonic
sequence. How this is to be achieved depends heavily on the
organization of the machine's memory system, and the data
structure used to store the arrays in that memory.

There are a number of methods for storing the non-zero
elements of a sparse matrix. Most are based on storing the non-
zero elements, often with their indices, as linked lists (see
[G] for .further details). Unfortunately these methods do not fit
in with the current techniques for data access and alignment
that have been developed for vector processors (see [Ku] and
[L]), as these techniques were developed for the more usual case
of full arrays. At present it is still not feasible to store
many of the sparse arrays that occur in real situations as if
they were full ones because of their large rank. Furthermore,
anticipated decreases in hardware cost will encourage attempts
at the solution of larger sparse matrix problems, even if they
encourage the solution of present sparse problems by using the
techniques developed for full ones. Hence, the problems of data
storage, access and alignment for sparse matrices will not be
solved by cheap hardware, at least not in an obvious way.

Several lines of research suggest themselves. Firstly, 1in
order to match the bandwidth of the memory system with
processors such as that proposed in section 3.3 it is necessary
to use multiple banks of memory, so that several words (data
items) can be accessed simultaneously. This is incompatible with
the linked list storage schemes referenced above, because of
their sequential nature. In a sequential environment linked list
storage performs better than hashing for the storage of sparse
matrices. In a parallel processor this may no 1longer be the
case, because each one of the independently addressable memory
banks can have its own private hash table. Thus hashing will not
inhibit parallelism, and deserves further consideration.
Secondly, if elements of arrays are stored as depicted in Figure
5, and the bitonic sorter is expanded to a full sorter, then
data access and alignment becomes much more simple. Data can be
scattered much more randomly throughout memory and still be
aligned. Of course the price for this is a factor of logn
increase in the size of the sorter.

CONCLUSION

20

[AO]

(B]

[BPW]

[C]

(G]

[Kn]

[Ku]

(L]

[MP]

[P]

[s]

(vl

5. REFERENCES

Atkins, D. E., and S. C. O©Ong, "Time-Component
Complexity of Two Approaches to Multi-Operand Binary
addition", IEEE TC, to appear.

Batcher, K. E., "Sorting Networks and Their
Applications", 1968 Spring Joint Computer Conf., AFIPS
Proc., Vol. 32, pp. 307-314, 1968.

Barry, D. E., C. Pottle, and K. A. Wirgau, Technology
Assessment Study of Near Term Computer Capabilities
and Their Impact on Power Flow and Stability
Simulation Programs, EPRI Final Rept. EL-946, Dec.
1978.

calahan, D. A., "Vectorized Solution of Load Flow
Problems", Exploring Applications of Parallel
Processing to Power Systems Analysis Problems, EPRI
Special Rept. EL-566-SR, Cct. 1977.

Gustavson, F. G., "Some Basic Techniques for Solving
Sparse Systems of Linear Equations", Sparse Matrices
and Their Applications, pp. 41-52, Ed. D. J. Rose and
R. A. Willoughby, Plenum Press, 1972.

Knuth, D. E., "Sorting and Searching”, The Art of
Computer Programming, Vol. 3, Addison-Wesley, 1973.

Kuck, D. Je, "A Survey of Parallel Machine
Organization and Programming", ACM Computing Surveys,
vol. 9, No. 1, pp. 29-59, Mar. 1977.

Lawrie, D., "Access and Alignment of Data in an Array

Processor," IEEE TC, Vol. C-24, No. 12, pp. 1145-1155,

Dec. 1975.

Muller, D. E. And F. P. Prepareta, "Bounds to
Complexities of Networks for Sorting and for
Switching", JACM, vol. 22, No. 2, pp. 195-201, Apr.
1975.

Pakin, S., APIN360, 2nd Ed. Science Research
Associates, 1972.

Stone, H. S., "Parallel Processing with the Perfect
Shuffle", IEEE TC, Vol. C-20, No. 2, PP. 153-161, Feb.
1971.

van Voorhis, D., "An Improved Lower Bound for Sorting
Networks", IEEE TC, Vol. C-27, No. 6, pp. 612-613,
Jun. 1972.

REFERENCES

