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ABSTRACT

This paper describes the initial phase of a study to determine the requirements of a

computer

architecture that exploits potential parallelism present in its data flow. The architecture is based

on the single assignment rule (each variable in a
shown to result in maximal parallelism. Unfortunatel
single assignment architectures practical. These are

program may be assigned only once). This has besn

¥, several obstacles need to be overcome to make
! implementing iterative procedures (e.g. DO

loops) in the face of the single assignment rule, and coping with possible unbounded memory require-

ments. This

advantage of the maximal parallelism requires a hi

processors. A result-forwarding scheme

1. INTRODUCTION

This paper describes the initial phase of a
study to determine the requirements of a
computer architecture that exploits potential
parallelism present in its data flow [M]. The
architecture supports a base language that is a
single assignment language.

The first single assignment language
was proposed by Tesler and Enea in [TJ]. A
program written in a SAL must obey the following
rule:

No variable is agssigned values by more
than one statement.

Their motivation for proposing a SAL was
twofold. First, they wantad a language suitable
for concurrent processes. Second, they wanted a
language in which the sequencing of statements
was handled in a unified manner. These two re-
quirements are met by a SAL, since, in a SAL
program, statements are available for execution
d4s soon as their operands are ready. This means
that the implicit parallelism in the data flow
can be exploited, and that statement sequencing
is wunified (it is based solely on operand
availability). Based on their work, Chamberlin
(C] produced a compiler for a SAL called SAMPLE.
This work brought out the following practical
problems: possible unbounded memory require-
ments, and how to construct an efficient
algorithm to select those statements that are
ready for execution (ideally this requires an
associative search). A group at C.E.R.T. in
Toulouse, France is presently constructing a
machine based on a SAL [S], called the LAU
system. Two other proposals for SALs are given
in [I] and [K1].

(SAL)

paper outlines a technique for overcoming these obstacles by using recursion. To take
gh bandwidth memory and multiple
between the instruction set processors is described which
reduces the bandwidth requirements of the memory.

instruction set

Figure 1 shows a SAL program using a three-

address instruction format. The associated
precedence graph is shown alongside. The SAL
automatically induces this precedence by the

order in which statements become ready for
execution, as determined by the availability of
their operands.

1. t1:=F(a,c) ﬂ 9
2. t2:26(t1,b)

3. t3:aF(t2,c) @ ©)
4. td:=F(t3,c) A

5. t5:=F(d,ec)

6. t6:2G(t5,e)

T. t7:2G(t6,th) ()

Figure 1. A SAL Program.

The choice of an architecture based on a
SAL has been made because, as is shown in [ul,
SALs yield programs that are maximally parallel.
A program has this property if the order in
which statements are made available for
execution is determined solely by the necessary
data dependencies. A property of maximal
parallelism is that the parallelism of a pregram
may be unbounded. An example of this would bae a
SAL procedure to compute the following vector
function: :

H(N) = <A(1),A(2),...,A(N)

where the computations for A(j) and A(k) are
independent if jtk. Each of the components A(L)
is computed concurrently, thus the degree of
parallelism is proportional to N, a parameter of
the procedure. This type of dynamie parallelism
is, as we shall see below, produced by SALs, but
is not present in systems based on more popular
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static models of parallelism such as Petri nets
[(Pe] (for an example of such systems see [Pal),
or parallel program schemata [Ka] (for an
example of such systems see [R]).

By basing our architecturs on a SAL we can
be assured of maximal parallelism in the data
flow of any target system. However, this should
not Dbe confused with maximum functional
parallelism. To illustrate the distinction,
consider the program of Figure 1 with F(x,y)
interpreted as x*y and G(x,y) as x+y. A
functionally equivalent program is shown in
Figure 2. Its assoclated precedence graph shows
a greater degree of parallelism. This increase
in parallelism is possible because the
programmer can make use of properties about
addition and multiplication (such as
assoclativity, commutativity, distributivity,
ete.) to restructure the program of Figure 1 to
yleld one having a greater degres of
parallelism. In general, automatic detection of
functional parallelism is undecidable [B], but
in many cases of practical interest it can be
achieved. (Considerable research in this area
has been done by Kuck - for a survey see [Kul).

Paradoxically then, detecting the maximum
amount of parallelism possible in a program in
which the functions are uninterpreted (maximal
parallelism) is a decidable question and
architectures to achieve this end are a
possibility, but detecting the maximum amount of
parallelisa in the cass of interpretad functions
is undecidable. Thus we have limited our
architecture to the automatic detection of
maximal parallelism. Any further speed-up made
possible by functional propsrties is more
conveniently delegated to a compiler optimizer.

. t1:=F(a,c) (1) (3) (5)
. t2:2G(t1,b)

. t3:sF(e,e) (2) (6
th:aF(t2,t3)

. t5:sF(e,d) e’

. t6:2G(t5,e)

t7:2G(t4,t6) (7)

~N AU FW N -
. .

Figure 2. A Functionally Equivalent Progranm.

Although an architecturs based on a SAL
gives maximal parallelism, several problems
arise as a consequence of using a SAL. The first
problem is how to implement iterative procedures
without vielating the single assignment rule. A
method for solving this, using recursion, is
presented in Section 2.1. It is an adaption of
an algorithm first presented in [U]. The second
problem (first recognized in [C]), is how to
cope with the possibly unbounded memory require-
ments of a SAL during its execution. A method
for alleviating this problem by dynamically de-
allocating no longer needed memory space, during
program execution, is also presented in Section
2.1. This wmethod results from our use of
recursion. The third problem (also first

recognized in [C]) is how to detect and select
those statements that are ready for execution. A
method for handling this problem, based on a
result-forwarding scheme between multiple
instruction set processors, described in [Kel,
is presented in Section 2.2

Achieving performance gains by taking
advantage of the parallelism at the instruction
sat processor (ISP} level has been questioned by
Amdahl in [(Am]. However, experimental results
presented in [Pl] for the LAU system are
encouraging, even though this architecture does
not take advantage of all parallelism that
occurs dynamically during program execution.
Furthermore, there is some evidence that proving
correctness of SAL programs is easier than
conventional programs (at least in the case of
determinate programs - see [As]). Finally, the
term "data driven” derives from the fact that
SALs are sequenced sclely by the flow of data -
the operands of the instructions

2. PRELIMINARY OUTLINE OF THE ARCHITECTURE

2.1 Ihe Baas Languags

Figure 3 illustrate how an iterative
program in the single assignment base language
might look. The one shown forms a vector of
thres elements from the unspecified element-by-
element dyadie¢ operation "o"™ on two other
vectors of three elements, At the bottom of the
figure is a similar FORTRAN program, which usas
a DO loop. The syntax of the SAL is not included
in this papar, as it is by no means finalized.
We shall explain, as they occur, those concepts
that are important to this discussion.

VF(&A:AL,4B,4C) &T<AN)
(&A4):2(&B) o (&C)
LAA:=z&A + 1
4&BB:=&B + 1
&CC:24C + 1
&J 381 + 1
F(&AA:AL,&BB,4CCI&JSEN)

O1:= 1
N:a 3
AO:=z 200
BO:=z 300
CO:z 400
F(AO:AF,BO,COIICN) OO

DO 10 I=1,3
10 A[I]sB[I]oC[I]

Figure 3. A Program in the Base Language.

In the example of Figure 3 the main body of
the program is enclosed between two [Js. It is a
six statement program. The first five statements
assign constants to variables I, N, A0, BO and
CO. The sixth statement calls a procedure F with




input variables A0, BO, CO, I and N, and an
output variable AF. Notice that no data type
declarations have been included - for the moment
it is sufficient to assume that variable names
rafer to integers. The output variable AF is
paired with A0 to indicate that its value is
returned by F, and that it is logically related
to AQ in the following way. During the execution
of a conventional program a variable, say V,
will take on a sequence of values. This cannot
occur in a SAL as each variable may be assigned
at most once. In a SAL, V would correspond to a
sequence of linked variables whose values
correspond to the past values of V. Such a 1list
is created by the recursive calling of F in the
example of Figure 3. AO corresponds to the first
item in the 1list and AF, after F has been
applied, corresponds to one after the last.
(Similar output variables could have been
included for BO, CO, I and N). The binary
relation (ISN) to the right of the vertical
line, used in the calling specification for F,
is interpretsd as a predicate. A procedure call
may be invoked as asoon as all the input
variables are assigned. If the predicate is true
the call proceeds, if not, the values of the
output variables are assigned the values of
their corresponding input variables and the the
call returns.

The definition of F 1is given befors the
main program. It is enclosed between twoVs. The
definition is made in terms of dummy variables
(identified by their ampersand prefix).
Variables enclosed in parentheses are pointers
(i.e, one level of indirection is allowed), and
the format of the assignment statements is
three-address. It can be seen that the language
is essentially at the assembly language level.
Only two types of statement occur: assignment
statements and procedure calls. Both types are
considered ready for execution as soon as their
operand/input variables have been computed. When
F is called, the variables used in the call are
substituted for the corresponding dummy onss in
the definition of F. Those dummy variables that
are not defined in the call (such as &AA, &BB,
&CC and &J in Figure 3) are assigned memory
locations (addresses) from a list of available
memory locations (called avail hereafter). In
the case of F, since it calls itself (last
statement in the definition of F), new copies of
all the statements in F are repeatedly made with
new variable names until the predicate is no
longer trus.

The result of the procedure call
F(AO:AF,BO,CO{ISN) is shown in Figure 4. The
statement shown immediately after the header for
F in Figure 3 is similar to the FORTRAN
statement A[I]=B[IJoC{I]. (Since the SAL has no
indexing capability pointers are used.) Three
copies of this are created by the procedure call
(see Figure %), each with a new set of pointers.
Before each copy is created the new pointer
variables (a,b,c for the first copy, e,f,g for
the second, etc.) must be obtained from avail

and assigned values. Thus the sequence of
variables <(A0),(a),(e)> represents a pointer
moving along the list of three elemants in the
result vector. AO is the start address of the
vaector and AF (=ize+l) 1is the address of the
next location after the last element of the
vector. Similarly <(BO),(b),(£)> and
<(C0),(e),(g)> represent the pointer values for
the two vectors from which the result is formed.

F(AOQ:AF,BO,COl IN)

N
(F(i:AF,J,kI 1<N)

Figure 4. The Effect of Calling F.

The number of copies of F is ccntrolled by
the sequence <I,d,h,l1>. The value of 1 is 4, for
which the predicate is false, thus three copies
of F are made and AF is assigned a value (340+3)
by the last one. The sequence <I,d,h,l1>
corresponds to the successive values taken on by
I, the 1loop counter, in the corresponding
FORTRAN program. Since all the elements of this
sequence and the elements of those sequences
corresponding to the pointers are concurrently
available in the SAL program (at least, after
they have all been formed), the three major
computation statements, viz:

(A0) :=(B0)o(CO)
(a):z(b)o(e)
(e):=(f)o(g)

can be performed concurrently (see Figure 14),
unlike their counterparts that compute A[1],A[2]
and A{3] 4in the FORTRAN program. Of course the
concurrency is not ideal, as copies of the major
computation statements are not made available
simultaneously - pointer and loop counter
variables need to be created and assigned first.
If this housekeeping can be  accomplished
efficiently and the unspecified operation "o" is
time consuming, the whole process has a high
degree of parallelism approximating that of a DO
TOGETHER type of command. If the major
computations in a recursive procedure call are
data dependent on their predecessors in the
recursive calling sequence (consider a program
to compute /X using Newton’s method) little
parallelism can be expected. This is consistent
with maximal parallelism. Speeding up such
programs requires knowledge about the functions
being computed (functional parallelism). Between
these two extremes of data dependency in
iterative programs - from programs in which each



iteration 1is independent of its predecessor, to
those in which each 1iteration depends on its
predecessor - lies a whole spectrum of
dependencies between iterations. By treating
iteration recursively, as illustrated above, in
connection with a SAL, these varying degrees of
parallelism can Dbe exposed automatically.
Neverthelaess, some inefficiencies do result from
using a SAL 1in the way proposed here. For
example, modifying ons element in a vector
requires renaming all the elements.

If a program is of ths DO FOREVER type
(e.g. an operating system) successful opsration
requires an infinite avail list. This is clearly
impossible. To overcome this, no longsr needed
memory locations are recognized and placed on
avail by a garbage <c¢ollector. This 1ias
accomplished as follows. A search through a SAL
program text, as a preprocessing step, allows a
count to be assigned to each variabdle and dummy
variable. The count corresponds to the number of
times the variable appears. on the right hand
side of assignment statemsnts plus the number of
times it oocurs as an input variable to a
procedure call (i.e. the count indicates how
many timss the variable is read). When the
program is run each read of a variable
decrements its corresponding count by one. When
that count reaches 2zero the variable is no
longsr nesded, and the garbage collector may
return it to avail. Note that A and (A) are
treatad as distinct variable names, and that the
preprocessing step required to determine the
value of the count
algorithm whose complexity increases only
linearly as the number of statements in the
progras. Whenever dummy variables are assigned a
variable name their associated count is added to

the count - associated with that variable. The: -
count associated with each dummy variable never

changes.

To assure that the single assignment rule
is obeyed it is necessary to chsck a SAL program
for the following two things. First, check to
ses that each variable that i3 the result of an
asaignment statement or the cutput variable of a
procedure call occurs at most once. Second,
define a binary relation d, the depsndence
relation, batween two program variables such
that AdB if A:=F(B,X) or A:=G(Y,B) for all F,G,X
and Y; or if A 1is the ocutput variable of a
function call to which B is an input variabls.
Represent d as a directed graph and check to see
that it 1is circuit-free. Recall that A and (A)
ars to be treated as distinet variables. The
problem of detecting whether two pointers (A)
and (B) point to the same location, and thus
permit the possibility of violating the single
assignment rule by both being the destination of
an  assignment statement, is left open.
(Detection at  execution time hardly seems
satisfactory.) :

for each variable is an-

 unimportant -

2.2 Ihe Related Machine Qreanization

Figure 5 shows a block diagram of the
machine organization to support the SAL outlined
in the previous section. Program text is stored
in IM, the instruction memory, along with the
read counts of the dummy variables in ths
procedure definitions. Instructions are read in
the order in which they occur in the program
text by IMM, the instruction memory manager.
These are sent on to IQ, the instruction queue.
In the case of procedure calls IMM replaces the
dummy variables by the variables in the
procedure call. Those dummy variables not
specified by the call are replaced by addresses
from avail. Avail is managed by GC, the garbage
collector. Avail is reprsented as a linked list
in CM, the count memory. GC contains a pointer
tec the top of this list. Each word in CM has a
countfield and a linkfield. If the countfielda(,
the word should be in avail. Ths linkfield is
uzed in this case to link the word to the list
avail. The words in CM are in cone-to-ona
correspondence with those in DM, the data
memory. The count at location m corresponds to
the number of reads left for the data item at
location m in DM. When a variable is read by an
ISP it signals GC which decrements the
countfield of the corresponding word in M. If
the countfield becomes zero, GC places the
pointer to avail into the linkfield and updates
ths pointer to avail with the address of the
variable. In the case of variables created or
used in procedure calls, certain countfields
must be added to. Information about this comes
from IMM and is used to select the appropriate
word from CM and add to its countfield using the
addepr/subtracter associated with CM.

. Instructions are issued from the IQ to ths
idle ISPs. VWhen an instruction resches an ISP,
the ISP looks for the twe operands. First it
checks RFT, the result-forwarding table. Failing
there it checks DM. Unieas both operands are
found the instruction is recycled through the
merge module back inte IQ. This recycling is
possible becauses in a SAL the order in which
statements ars presented for execution is
availability of the operands
guarantess a correct order of execution. If an
ISP can exscute an instruction, i.e., if it can
find both operands, it does several things. It
indicates to GC those variables whose
countfields must be decrsmented. Concurrently,
it initiates the instruction execution. Also
concurrently, it enters into an empty location
in RFT the nams (or address in DM} of its result
variable together with its number. When an
instruction first gets issued to an ISP, say ISP
k, that ISP checks for its operands in the RFT
as follows. It does an associative search,
through RFT, based on the address of each
operand. If it fails it goes to DM (see above).
If it succeeds it retrieves the ISP number
stored with the operand address. This number
denotes the ISP that 1is working on computing
that variable. The number k is then sent to that
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ISP where it 1is held in a result-forwarding
list. When the ISP has computed the variable it
sends the result to all those ISPs whose numbers
are in its result forwarding 1list. It also
writes through to DM and sets to "empty" the
location in RFT corresponding to the computed
variable.

The central idea of result-forwarding is to
reduce the bottleneck at DM, by reducing the
need to fetch operands from DM. Using multiple
DMs is another, more costly solution. For
result-forwarding to work effectively it
requires a certain amount of locality in the
program. A subset of the ISPs may be virtual,
i.e. Jjust reservation stations. Also a deadlock
can occur in which instructions continue to
recycle through IQ without any of them being
serviced. The main design parameters are 1, the
length of 1IQ, n, the number of ISPs and m, the
subset that is virtual.

3. CONCLUDING REMARKS

The above architecture would be ideal for
supporting a non-procedural language such as
LUCID (see[As]). However, for architectures
based on SALs there is, as yet, no method for
expressing programs that are intentionally non-
determinate (consider the problem of an airline
reservation system). To have a complete asystem
this deficiency needs to be removed.

I would like to thank Professor Keki Irani
for his helpful comments and suggestions during
the writing of this paper.
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