CASE STUDY OF A PROGRAM
FOR THE RECOGNITION OF OCCLUDED PARTS

BY

T. N. Mudge and T, 8. Abdel-Rahman
Computing Research Laboratory
Department of Electrical and Computer Engineering
University of Michigan
Ann Arbor, Mi 43109

Abstract--A case study is performed on a program for
the racognition of occluded industrial parts. The program
Is running on a VAX 11/780 and is typica! of many image
processing/pattern recegnition programs used in indus-
trial parts recognition. The objective of the study is to
investigate the possibility of “parallelizing” the program
and then matching it to an appropriate architecture. The
nature of the program and the nature of the data pro-
cessed during each stage of the program are identified
to aid selecting the most suitable architecture.

I, Introduction

In computer vision, the problem of matching, in an
optimal way, diverse algorithm characteristics to equally
diverse multiprocessor architectures is an interesting
one. Many factors should be taken into consideration in
arriving at the most suitable architecture. The factors
include[1,2,3): algorithm characteristics, processing ele-
ment design and the type of interconnection network
that couples the processing elements.

in order to Investigate the impact of the algorithm
characteristics on the type of architecture used, a case
study is performed on & program for the recognition of
occluded parts. Each major stage of the program is iden-
tified, The characteristics of the algorithm in each stage
are used to determine the most suitabte architecture for
that stage. To limit the study, only SIMD (Single Instruc-
tion stream Multiple Data stream) architectures and
MIMD (Multipie Instruction stream Multiple Data stream)
architectures are considered. These architectures are
described below.

The general configuration of the SIMD architecture
is depicted in Figure 1. It consists of a single control
unit, N processers, N memory modules and an intercon-
nection network(ICN). Each processor is connected to
its own memory module to form a processing element
(PE). All processors execute the same set of instruc-
tions, hence, there Js a single instruction stream. Each
processor executes instructions on the set of data
stored in its own associated memory module, hence,
there is a multiple data stream. The interconnection net-
work facilitates communication between the processing
elements,

SIMD architectures are ganerally more suitable for
low level image processing where identical operations
are performed on a large number of pixels. The image Is
partioned into subimages and each processor is assighed
a single subimage. Then, executing the same set of
instructions, all processors, in parallel, process all subim-
ages of the image.

The general configuration of the MiMD architecture
is depicted In Figure 2. It consists of N processors, a
shared memory and an interconnection network. Each
processor exacutes its own set of Instructions. Hence,
there is a multiple instruction stream. Each processor
axecutes its Instructions on the data in the shared
memory. Hence, there is a multiple data stream, The pro-
Cessors access the shared memory through the intercon-
nection network.

Control Unit

|

PE PE, EE

1eN B

Figure 1. General SIMD Configuration.

Hooae+ PRI @ of &

Figure 2. General MIMD Configuration.

MIMD architectures are generally more suitable for
high level image analysis. The techniques involved In
image analysis are usually referred to as pattern recog-
nition or image classification. Images are genarally
represented by data structures other than simple two
dimensional arrays. Image analysis algorithms include
many independent operations on common data that are
well suited for MIMD architectures.

il. Program Description

The program under consideration recognizes par-
tially occluded industrial parts by boundary template
matching[4]. In industrial part recognition, the type of
parts that may appear in scene are always known
beforehand. Therefore, industrial parts recognition has
much more restricted environment than "natural” scene
recognition where little is known ahout what may appear
in the scene. Hence, considerable amount of computation
can be saved if this fact is taken into consideration. A
database is constructed of all parts that may appear in
the application scene. From this database it is possible
to determine templates for each part and select a set of
features, called salient features, which differentiate
between the templates. Those templates are then
matched against the application scene using the salient
features first. The location and orientation of the best
match gives the location and orientation of the object.

The application scene image Is first replaced by its
edge map. Strengths and slope angles of edge points are
extracted from the image. These edge points are then
thinned out so only the strongest edge points which
< malntain boundary continuity remain. The recognition

algorithm works with edge boundaries. All images are
266x266 pixels in size with 256 gray levels. The algo-
rithm may be broken down into four major stages: Edge
detection, thining, linking, and subtemplate matching.

(1) Edge detection

The image is replaced by its edge map using the
Frei and Chen edge detection operator[5]. The operator
reports the presence of the edge along with its strength
and slope angle. The application of the operator mainly
involves the convolution of the Image with the two 3x3
operator windows shown in figure 3. The first convolu-
tion gives the strength of the edge in the X direction.
The second convolution gives the strength of the edge
in the Y direction. The strength of the edge as well as its
slope angle are obtained form these two quantities.

The input of the operator, the application scene, is
a 256x256 image plane of gray level pixels. The output
of the .operator, edge strengths in the X and Y direc-
tions, is stored In two similar image planes. Although the
apgplication of the operator logically reduces the size of
the input data from a 256x268 Image plane to a much
smalter number of edge pixels, the actuai representation
of the output is stil a 256x256 image plane. Hence,
there is no reduction in the size of the image data during
this stage of the program.

This algorithm Is feature independent as each pixel
of the input image receives the same amount of process-
ing[6]. The algorithm is context dependent as it requires
the values of neighboring pixels. It is a multipass algo-
rithm. It is univariate input as the input consists of only
the gray level image. [t is mulitivariate output as the
output consists of edge strengths and edge angles.

010
=l1{0|-1
gjl]o
sl1{ 0|1

olo|f o

110]-1

Figure 3. The Edge Detector Windows.

This stage of the program is best processed by an
SIMD architecture. The image can be divided among the
processing elements on an equal size basis without loss
of efflciency[6]. Each processing element convolves the
operator windows with the portion of the image it holds,
The interconnection network is used to transfer boun-
dary pixeis needed by neighboring processing elements.
As the algorithm is multipass and multivariate, a relatively
:arge local memory is generally required for each pro-
cessing element.

This stage consumes about 30% of the total exacu-
tion time of the program on a uniprocessor system.

{2) Thining

The thick edges obtained by the edge detactor are
thinned out preserving the continuity to obtain the
medial line of the part's boundaries in the image. The
algorithm described in [7] is used. The algorithm
extracts the medial line of a boundary by removing, at
each iteration, contour peints of the boundary except
the ones that may belong to the medial line. Contour
points are the points for which at least one of the condi-
tions shown in Figure 4 holds. In order to avoid nancan-
nected or empty medizal linas, each iteration cycle is sub-
divided into four subcycles. In each subcycle, only those
contour points that satisfy just one of the conditions in
Figure 4 are removed. That is, In each subcycle, anly
contour points from one direction are removed. This
scheme results in uniform deletion of contour points from
all directions. Hence, the algorithm mainly involves con-
volving the image with several 3x3 windows.

x{x]x x| x| x
0] 1] x x| 1] @
X! x| = x| x| x
Xl x| X x10|=x
x| 1| x 4 1l |x
X O x X X | x

Figure 4. Thinning algorithm Windows

The input of the algorithm Is the 256x256 Image
plane representing the edge strengths. The output of
the algorithm is a similar 266x256 image plane contain-
ing the thinned edges. There is no reduction in the size
of the data during this stage of the program.

The aigorithm is feature independent as all pixels
are processed equally. It is a single pass algorithm. It is
also context dependent as it requires values of neigh-
boring pixels. 1t is univariate input and univariate output.

This stage of the program is best processed by an
SIMD architecture. The image-can be divided among the
processing elements on an equal size basis without any
drop In the efficlency. Each processing element con-
volves the operator windows with the portion of the
image it holds. The interconnection network is used to
transfer boundary pixels needed by neighboring pro-
cessing elements. As the algorithm Is single pass and
univeriate, a relatively smaller size local memory in each
processing element is required.

This stage consumes about 15% of the total execu-
tion time of the program on a uniprocessor system.

{3) Linking

The thinned edges obtained from the previous stage
are linked together to form chains. The angle af each
aedge element is used to decide if the pixel should belong
to the chain or not. If the edge slope angle of the ele-
ment under consideratlon is consistent with the direc-
tional angle of the chain in the region where the element
Is located, then the edge element belongs to the chain.
Otherwise, the edge element is deleted.

The input of this stage of the program is the 2-D
image plane of thinned edges cbtained from the previous
stage. The output of this stage is a set of linked lists
representing the set of chains obtained by linking the
aedge elements. The elements of the linked list are the X
and Y coordinates of all pixels belonging to the chain
represented by the linked list. As a consequence of this
representation of image data, each pixel requires two
elements (bytes) to be identified (the X and ¥ coordi-
nates) rather than one element (the edge strength or
the gray level value). Therefore, depending on the
number of linked lists and the length of each list, there
may or may not be any reduction in the size of the image
data.

This algorithm is feature dependent as pixels are
procaessed accerding to the value of the angle of the
edge element. The algorithm is context dependent. It is
also a single pass algorithm. |t is univariate input as only
the input image pixels are needed. It is, generaily, mul-
tivariate output as the output consists of a set of linked
lists each representing a chain.

If this stage Is implemented on an S!MD architec-
ture, and tha image is divided among the processing ele-
ments on an equal size basis, the effigiency of the sys-
tem drops[6]. The image should be divided among the
processing elements on an equal interest basis. As the
algorithm is single pass and univariate, a relatively

Vlupég-f-mp&ﬂ@ £ &

smaller size of local memory is needed on each process-
ing element,

This stage consumes about 5% of the total execu-
tion time of the program an a uniprocessor system.

(4) Subtemplate Matching

This is the part recognition stage of the program.
Subtemplate sections from the database are matched
against application scene edge sections. Subtemplate
sections with salient features are used first. In order to
simplify the matching process, both the subtemplate
saction and the edge section are transformed into the
J9—s space (slope angle versus arclength representation
of data)[8]. The average angle for the template sectlon
Is determined by averaging the angles of the points in
the template section. The average angle for the edge
section is determined in a similar fashion. The differance
between the two angles is the relative orientation
between the template section and the edge section. The
template section Is then shifted to the same average
angle as the edge section and the two sections are
compared. If the two sections match, an accumulator at
the center of the template is incremented. The amount
of increment depends on the degree of match and on the
welght of the subtemplate section. This process is

repeated for all the subtemplate sections in a template. ;

If there is enough match, i.e., if the accumulator reaches
a certain threshold value, then the part represented by
the template Is recognized and located.

The image data during this stage is represented as
a linked list of boundary edge points.

This stage of the program is best processed on an
MIMD architecture. Various implementation approachs
may be followed. One approach is to let the system pro-
cessors work together to locate a single part. Each pro-
cessor is assigned a set of the part's subtemplate sec-
tions and attempts to find a match for each subtemplate
sectlon assigned to it. Once that section is matched, its
edge data is removed from the application scene to
speedup the remainder of the matching process. In order
to take advantage of the fact that some subtemplate
sections have more weight than others, the subtemplate
sections are ordered in descending weight and proces-
sor | is asslgned subtemplate section i mod N, where N
is the number of available processors. Consequently,
higher weight subtemplate sactions are processed first.

Another approach Is to let the processors work
independently, each processor on a different part tem-
plate. Each processor attempts to locate the part it is
assigned to. Once that part is located, its edge data is
removed from the application scene to speedup the
remainder of the matching process. If the number of
parts exceeds the number of available processors, each
processor is assigned more then one part.

A third approach is to attempt to locate all parts in
parallel. Subtemplate sections of all parts that may
appear in the application scene are ordered in descend-
ing weight. Processor i is assigned subtemplate sections

-

#

i mod N, where N is the total number of available proces-
sors. Each processor attempts to match the subtemplate
sections assigned to it keeping track of which subtem-
plate section belongs to which part template. Once a
section is matched or a part is located, all edge data
belonging to this section or part is removed from the
application scene. This speeds up the matching process
as high weight subtemplate sections, regardless of
which object they belong to, are processed first.

Experiments to determine which of these
approaches is most effective are being conducted on a
four processor Intel iAPX 432.

This stage consumes about 50% of the total execu-
tion time of the program on a uniprocessor system.

N, Summary

The feoYowing table summarizes the results
obtained:

Program | X Exs¢ | Dala Typa ¥ultlprozessor aystem

Siage | Time | sadsies | gy | Local IeN £,
scture | Memary
Edge
2-D array ShiD larger | ¢ aplex | High

Datectlon | 30%
236x256

2-Darray SIND Smaller | Complex | High

256x258

Linking sx 2-Darray SIMD Smaller | Complax | Drops
2561856

Matching o iinked st | MIND —_— Complex | High
Appl. Dapn.

Table 1. Summary,

The % execution time values are based on several runs
of the program on a uniprocessor VAX 11 /780 with vary-
ing application scene complexity.

IV. References

[t] Swain, Sieget and El-Achkar, "Multiprocessor Imple-
mentation of Image Pattern Recognition:A general
Approach,” IEEE Trans. on Pattern Recognition, Vol.1,
pp 309-317.

==

[2]

3l

(4]

E. Delp, T. Mudge, L. Siegel and H. Siegel, "Parallel
Processing for Computer Vision,” Proceedings of
the Society of Photo-optical Instrumentation
Engineers Technical Symposium East, Volume 336
(Robot Vision), May 1982, pp 161-187.

T. Mudge and E, Delp, "Special Purpose Architec-
tures for Computer Vision,” Proceedings of the 15-
th Hawaii Intaernational Conference on Systems Sci-
ence, January 1982, pp 378-387.

J. Turney, 7. Mudge, R. Volz and M. Diamond, “Exper-
iments in Occluded Parts Recognition Using the Gen-
eralized Hough Transform, Proceedings of the
Conference on Artificial intelligence, Okland, MI,
April 1988.

LR

[6]

(e]

[7]

(8]

W. Frel and C. Chen, "Fast Boundary Detection: A
Generalization and a New Algorithm,” IEEE Trans. on
Computers, Vol. C-26, No.10, October 1977, pp
988-998.

T. Mudge and T. Abdel-Rahman, "Efficlency of
Feature Dependent Algorithms for the Parallel Pro-
cessing of Images,” Proc. ICPP, Belliare, Michigan,
August 25-28, 1983, pp 369-373.

R. Stefanelli and A. Rosenfeld, "Some Parallel Thin-
ning Algorithms for Digital Pictures,” J. ACM, Vol.18,
No.2, April 1971, pp 255-284.

W, Perkins, "A Model Based Vision System tor Indus-
trial Parts,” IEEE Trans. on Computers, Vol.C-27,
No.2, February 1978, pp 126-143.

