Sponscred by

IEEE COMPUTER SOCIETY

IEEE CIRCUITS AND SYSTEMS SOCIETY
i In Cooperation with
IEEE ELECTRON DEMCES SQCIETY

153N 0-8186-0518.9

IEEE CATALOG NQ 83CH1949-7
LORARY CONGRESS NO: 83-81917

IEEE COMPUTER SOCIETY ORDEA NO, 518

I ORDER FROM: [EE SERVICE CENTER [EEE COMPUTER SOCIETY

445 HOES LANE POST OFFICE BOX 80452

PISCATAWAY, N.J, 08854 WORLDWAY POSTAL CENTER,
LOS ANGELES, CA 90080

@;THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC

WIRE ROUTING EXPERIMENTS ON A RAS TER PIPELINE SUBARRAY MACHINE t

R. A. Rutenbar, T. N. Mudge and D. E. Atkins

Computing Research Laboratory
Department of Electrical and Computer Engineering
University of Michigan
Ann Arbor, Michigan 48109

Abstract

Special-purpose hardware has been proposed as a solution
to several increasingly complex problems in design automation,
This paper discusses the implementation of Lee~-type wire rout-
Ing on a class of cellular architectures called raster plpeline
subarrays. Employed initially for cellutar image processing and
machine vision, machines in this class are also applicable to
problems in physical DA represented on celiular grids. Detailed
benchmarks are presented for routing algorithms running on an
existing raster pipeline subarray machine called a cytocomputert,
The paper discusses the impact on our routing algorithms of
some enhancements to the current hardware, and evaiuates the
merits of this class of architectures in the context of practical
special-purpose hardware. We outline the goals af this work in
the context of a larger project to identify the architectural and
performance characteristics necessary to optimize a raster
pipsline subarray machine specifically for grid-based DA applica-
tions.

1. Raster Pipeline Subarray Architectures

Several architectures have been proposed to implement
maze-routing [1,2], the majority of which employ some variant of
a classical cellular array: a rectangular grid of simple communi-
catlng processor/memory pairs, each manipulating some small
section of the complete grid. The raster pipeline subarray organ-
izatlon represents an alternate architecture for the maze-routing
task. By subarray we mean an array much smailer than the entire
grid representing the problem; a subarray processor is a small
processing window that can be passed across a large array. A
raster subarray proceassor accepts as input and produces as out-
Put & raster-order stream of grid cells; the inclusion of buffers
for a few lines of the array insures that as data passes through
the processor enough of the original array is present so that
each subarray eventually arrives at the subarray processor (Fig.
1). The identical f‘rmat of the input and output data streams
enables a series of 'hese processors to be connected in & pipe-
line with each processing the output stream of its predecessor
(Flg. 2). Parallelism is achieved because, after the pipeline fills,
every processor is working on some subarray of the original
problem. Each processor here is one stage in the pipeline, and
this organization is called a raster pipeline subarray architecture.
Benchmarks reported herein were obtained on such a machine, a
Model Il cytocomputer designed by the Envirormental Research
Institute of Michigan [3] and interfaced to a VAX 11/780 host
running UNIX". This machine processes B8-bit celis through a
pipeline with rate 480K-cellsfsec, and is currently configured
with a 256Kb buffer for intermediate array storage and two pro-
cessing stages.

2, Wire Routing Experiments

Qur primary motivation here is to explore the application of
these architectu-es to DA probiems, hence one natural problem
to explore is maze-routing. (For application to other DA prob-
lems, such as design rule checking, see [2,4].) The wavefront
expansion phase of a maze-router is a typical cellular problem
where each cell in the plane of the routing grid is modified as a
function of its neighbors. This phase dominates the execution
time of software maze-routers, prompting considerable research
Into techniques to eliminate unprofitable directions of cell
expansion. In so*tware, the addition of one layer of cells to an
existing wavefront (one expansion step) requires time

TThis work was supporied In part by NSF grants MCS-8009315 and MCS-
8007 298,

t’3‘!‘uccm'u'.mler Is a trademark of the Envkonmental Research institute of
Michigan.

‘UNIX Is a trademark of Boli Laboratorles.

135

proportional to the pumber of cells already on that wavefrant,
This is not so in hardware. Because each cell is processed in
constant time as it streams through the subarray pipeline {(when
streaming, cells enter and leave the pipe at the same rate), an
cells can be examined, added to the wavefront, or left
unchanged, with total 4lme proportional to the size of the gtid on
which the problem Is represented. If a few stages are required
to perform a single expansion step, then a long pipeline can per-
form many expansion steps as the grid streams through it and
incur, in comparison to a short pipeline, only the added time due
to the latency of the longer pipelina.

Because it is inefficient to process a large, mostly empty
grid during the initial expansion steps of any wire, but unavoid-
able during the final expansion steps for a iong, spatially distr-
buted wire, it is essential to control the size of the bounding rec-
tangle of the cells belng expanded. We employ a strategy of
expanding in a sequence of successively larger bounding frames
starting from the original source point(s). At the conclusion of
the k-th expansion the k-th frame is approximately a bounding
rectangle for the actlve wavefront; the wavefront is never
allowed to hit a frame hecause it will be distorted, destroying
any guarantee that a minimum length path will be found. These
frames increase in size until we reach either the net target point,
or an artificial boundary placed to constrain the extent of the
net [5), or the edges of the routing plane.

The time for this expansion phase is optimized by consider-
ing the following three factors. First, we must account for the
performance of the pipeline because the number of available
stages, their bandwidth, and the time to reprogram them deter-
mines the basic pipeline processing tima for each expansion
step. Second, we must account for the expected spatial distri-
bution of the wire because the wire's final length and bounding
rectangle determine the fina! number of expansion steps and the
largest frame that must be passed through the pipe. Finally, we
must account for the communication overhead introd .ced by the
interface from the host operating system to the hardware
because each pass through the pipeline, each adjustment of a
frame size, each test to see if a final target cell has been
expanded, etc., is accomplished by a host command that must
pass through several layers of host system software before it
gets to the hardware, If, in a sequence of frames, each frame is
too large, the expansion phase time is spent expanding mostly
empty grids. |f each frame is too close in size to the previous
one, most of the time is spent in host-to-hardware 1/0 overhead,
making each single expansion step costly and inefficient. An
optimum framing strategy exists between these two extremes.

A cowmplete router for n-point nets on a single conductor
layer in a unit-cost grid is currently functional on our hardware.
It accepts a wire-list and initial grid, and produces a final grid
with embedded wires. Parallel operations, such as the expansion
phase and grid clean-up phase, are performed in the pipeline;
sequential operations, such as the back-trace of each wire sag-
ment, are performed by the host. As benchmarks we considered
the test problems shown in Fig. 3. The terminals of one 2-point or
4-point net are placed on the diagonal of a 512 x 512 grid so
that the Manhattan length ot the final routed connection wiil be
2" cells. Several iterations of the router for each of several
values of N were performed, and statistics collected; a 1-stage
pipe was employed, Although these are simple problems for many
routers, e.g., a line-probe router, recall that It is the length of the
resulting path and the size of its bounding frame that determine
the execution time, not the presence or absence of clutter sur-
rounding the path. Therefore, since an identical connection
routed on a densely occupied grid will run in exactly the same
time, these are appropriate benchmarks. Flg. 4 shows the
results for elapsed and host CPU times. Note that both elapsed
and host CPU times increase with nat length: pipeline processing

3
*
%
k-
&
%
&
3
A
{T.é
5
E
&
&
%
¥
;:'C}
&
4
x

LTS WP R

v

ET o

Lo pant G i e BRUBNERE T dae i B N L g

time iIncreases as more expansion steps in increasingly large
frames are processed through the pipe, and host CPU time
increases because some |/0 overhead is associated with each
iteration of the expansion stap.

As another test we attempted to route 250 2-point nets on
two separate layers of an 8" x 12" printed circuit board again
using a t-stage pipe. A simple greedy strategy tried to connect
all 250 on the first layer, recorded the failures, then attempted
these unroutable connections on the second layer. In all 210
nets--not predominately “right-way” connections on each
layer--were placed in 680 seconds: 296 seconds to route 210
nets with total length 4401 ceils, and the remaining time ta
determine the unroutable nets on the first and second layers. it
is the time spent actually compieting connections here that is of
consequence: sophisticated ordering and via schemes will
greatly improve the overall performance but are unrelated to the
hardware's performance on individual wires; lengthy time spent
on unroutable connections is characteristic of maze-routers gen-
erally.

3. Context of the Application

This work is being conducted in the context of a larger pro-
ject to identify the architectural and performance characteris-
tics necessary to optimize a raster pipeline subarray machine
specifically for grid-based DA applications [2). The primary
strengths of the raster pipeline subarray architecture are its
loose coupling of system compenents, such as processing stages
and buffers, and the relative ease with which processing power
is increased by adding additional stages. As a practical matter,
this permits explicit tradeoffs to be made between cost and
performance. (Compare, for example, with the initia! cost and
expandability of a conventional large, fixed array of tightly-
coupled processor-memory paiwrs.) The above benchmarks are
essentially worst-case times because they are funning on a
machine with a short pipe, a slow clock, and a datapath archi-
tecture not designed specifically for DA applications.

Although comparable hard data for proprietary systems is sparse
in the literature, these waorst-case benchmark times for our
current low-performance hardware configuration are as far as
we can tell within an order of magnitude of those for a produc-
tion quality maze-router. Longer pipelines and faster stages will
both decrease routing time. Although the exact time is a func-
tion of the the framing strategy as the well as the hardware
speed, the time is roughly inversely proportional to pipeiine
length and rate. For example, an 8-stage pipe of stages with
bandwidth 2M-cells/sec will run at least an order of magnitude
faster. We are currently rerunning our benchmarks with a D2-
stage pipeline, and intend soon to expand to more stages,

Maze-routers have been supplanted in many applications by
faster routers, and are often relegated to those last few con-
nections unrcutable by any other means. We are exploring an
implementation that makes the power and flexibility of generat
maze-routers available with competitive execution times. This
work provides concrete data for the analysis of the hardware
tradeoffs required to complete an architectural specification for
such an optimal raster pipeline subarray DA machine.

References

[1] H. G. Adshead, "Towards VLS! complexity: The DA algorithm
scaling problem: Can special hardware help?" Proc 19th
Design Automation Conf., pp. 339-344, June 1982,

(2] R. A. Rutenbar, T. N. Mudge, and D. E. Atkins, A C/ass of Cel-
{ular Architectures to Support Physical Design Automation,
CRL-TR-10-83, Computing Research Laboratory, University
of Michigan, Feb. 1983.

[3] P. M. Lougheed and D. L. McCubbrey, "The cytocomputer: A
practical pipelined image processor,” Proc. 7th Internation
Symp. Computer Architecture, pp. 271-277, May 1980.

[4] T.N.Mudge, R. A. Rutenbar, R. M. Lougheed, and D. E. Atkins,
‘Cellular image processing techniques for VLSI circuit layout
validation and routing,” Proc. 19th Design Automation Conf.,
pp. 537-543, June 1982.

(5] sS. Akers, "Routing,” in Design Automation of Digital Systems,
vol. 1, M. Breuer, Ed., Englewood Cliffs, NJ: Prentice Halil,
Chapter 6, 1972.

HPUT
IMAGE ~
RASTER N
~
A e —
—
SUBARALY ouTroT
oo sorreaf—e | | }— PRAOCESSOR RASTER . .
| = = —pe1AL et
. =
o o
~N oy
i n
I f— .
sl LT aorrER = | T |
~
L .
~
STORAGE NEIGEBOREQOD
ggu‘:::_zms slgomz i 312 estla 52 cotln
Figure 1, Single Raster Subarray Processor Figure 3. Benchmarks for 2-Point and 4-point Nets
[2-point Ll 4-point
One Fass Through Router -Lowp One Pass 1w ough Boui s+ -Loop
@ Claosed Tiae o Clapsed Ties
- u Host [PU Ouarhead Tine . w Host {PU Ouarhrad Trar
i ¥
Tl o gt
g 1
L ™
“r w “_—._‘—.__./
INPOT SINGLE SINGLEZ SINGLE 0gTPUT
IMAGE ==#{ RASTER 1 BASTER 2= == mpd RASTER & [HAGE
FASTER STRARMAY SUBARRAY STBARRAY RASTIR
! - T wt T
w " w u? w W w

Figure 2. Raster Pipeline Subarray Arzhitecture

Pach Lergih e M2 < 312 Grad Pach Lengih on 312 & 312 Gad

Figure 4, Timing Results for 2-Point and 4-point Net Benchmarks

136

