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Abstract—Thiz paper presents a unified approach to three
stages of robot arm control based on the Newton-Euler eque-
tions of molion. The stages unified are: resolved motion,
gross motion, and fine motion. Apart from the conceptual
advantage this unification can require less computation
than if the three stages are computed separately. In partic-
ular, less computations are required for arms with no more
than about a dosen joints (a number unlikely to be exceeded
for most arma, at lenst in the near future). Computation
times are estimated assuming the computing elements are
fabricated from current VLSIC (very large scale integrated
circuit) technology. Rt iz also shown how friction can be
incorporated into the unified approach. The concept of
“peeudoforce” is introduced to relate fine motion to the
Newton-Euler equations.

Index Terms—Robotics, robot arm coaotrol, Newtoo-Euler
equations, resolved motion, gross motion, fine motion,
pseudo-foree,

INTRODUCTION

in what follows, the term “robet arm” or “arm" will refer
to a chain of links open on one end and animated by "actua-
tors” {a term which refers to the hydraulic valves or electric
motors responsible for driving the arm) located at each joint
between links. A robot arm is often referred to as a manipula-
tor, but the term "arm"” is used here for brevity. The last link
in the open chain will be referred to as the “hand" here,
although "end effector” iz also common terminoclogy. The
tirst link of the chain which is generally immobile and fixed in
gpace will be referred to as the "base” of the arm. Joints are
assumed to be rotational in erder to avoid unduly complicat-
ing the discussion. Prismatic joints can be dealt with without
any conceptual changes. Fig. 1 illustrates a typical robot arm
(Unimate's PUMA 6800).

Controlling a robot arm is a complex task that can be
conveniently divided into the following four stages:
(1) Trajectory planning—in this stage the arm's path through
space is determined. Depending on the application this
may involve obstacle avoidance strategies.

Resolved motion—in this stage the arm's trajectory is
resolved into the component joint motions.

Gross motion—in this stage torques and forces are
derived that are required by the joint actuators to gen-
erate the joint motions computed in stage 2. Typically
these torgues and forces form the basis of a control law
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that incorporates some type of negative feedback

Fine motion—in this stage torques and forces are derived
that are required to generate the incremental joint
motions necessary once the arm is close to its goal.

In this paper a unified solution to stages 2, 3, and 4 will
be presented. Several algorithms, notaebly the resolved
motion method of Whitney [1], the Newton-Euler (N-E) equa-
tions of motien first developed by Walker and Luh [2]-[8], and
the static forces of Paul [7] are all merged into one unified
algorithm. In addition, it is alsc shown how friction can be
incorporated into this unified approach. The trajectory plan-
ning stage will not be covered in this paper. Represeatative
schemes for trajectory planning are those of Pau] (8] or the
collision avoidance method of Perez and Wesley [9].

The purpose of control stages 2, 3, and 4 is to maintain
the motion of the arm along the trajectory derived in stage 1
by epplying corrective compensation through the actustors
to adjust for any deviations of the arm from the desired arm
trajectory. If a "perfect physical” model for the arm could be
defined and if the model could be "solved” rapidly enough to
output control signais at a rate compatible with the desired
arm motion there would be no need for feedback in the con-
trol strategy. A "perfect physical" mode! would, however,
have to be one which accounted for, ameng other things,
gravitational and inertial loading, friction, link flex, not to
mention all possible external perturbances. Clearly, such a
model requires an impossible amount of computation. Indeed.
in view of the need to include external perturbances, just
defining the model is impossible.

Since a complete tnodel is impossible, the question is,
then, how sophisticated should the model be that is to be
incorporated into the contrel strategy, and to what extent
should the feedback compensate for errors in modeling. The
appeal of most presently used control metheds is that they
ignore almost all the physical details of the arm® and still
obtain reasonable control. However, rigid links are required,
and lighter and more flexible links cannot be used because of
the impossibility of determining how they would behave when
most of the arm's physical properties are ignored. Another
penalty one pays for such ignorance of detail is the need for
large actuators to "lorce” the arm when it is least willing to
move along the desired path, especially when large accelera-
tiona are required. A disadvantage of using large actuators to
"force” the arm in its motion is made worse by the fact that
employment of large actuators in the links near the hand
result in an exponential increase in actuator eize as one
moves toward the base: the lower actuators must be able to
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move those (n the upper links. This problem can be circum-
vented to some extent by placing the actuators in the base;
however, the complexity of the drives required by this solu-
tion are a lmitation. A further penalty for ignorance of detail
Is lack of speed. In order tc maintain control of an arm by
methods that ignore significant physical properties it is
necessary to operate at much slower rates than physically
possible. Consequently, present control methods have
resuited in the development of relatively slow robots that are
unable to handle payloads of more than a few percent of their
mass. For example, the PUMA 800 is limited to a payload of 5
b and a tip speed of 1 m/s.

There are also limitations in present solutions of the fine
motion stage of arm control. For example, inserting a peg
into a hole is a characteristic task required of the arm.
Chamfering the peg to aid insertion ie the most primative
approach to solving this problem. The remote compliance
control technique [11), [12] is more sophisticated; it, in
essence, places flex in the hand. It has had considerable suc-
cess. However, to sclve the general problem of fine motion
during delicate operations of the hand an active scheme is
needed that explicitly models the arm in this stage of control
[13].

In our oplnion, one improvement to the present
shortcomings of arm controt ie to include more of the physics
of the arm in the model than is presently used. The physics of
the arm is well understood [14], and [2}-[8]. A more accurate
meodel in the coatrol loop offers greater versatility than the
presently used control techniques as we shall show in the next
section. One can determine the arm’'s gravitational loading,
inertial loading, friction, and can also model arm flex,
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Figure 1. PUMA 800 showing joint angles.

allowing the use of much lighter and more efficient arm
designs. But the technique goes further. Jnputs from hand
sensors {devices which measure external forces and moments
exerted on the hand by the external world) are easily incor-
porated tnto the model. This incorporation allows the model
to adjust for the gravitational and inertial loading of the pay-
load and to react Lo external forces and moments. As an
offshoot of Lhe preceding, during the fine motion stage of con-
trol, false or "pseudo-forces” and "pseudo-moments” can be
artificially generated and summed into the sensor inputs
from the hand. The arm will exert forces or moments to com-
pensate for these pseudo-force and -moment inputs. Thus, the
arm cah be made to exert any desired force and moment vec-
tors by incorporating oppositely directed pseudo-force and
-moment vectors into the hand inputs [8].

It a more accurate model of the arm Is used the amount
of computation associated with controlling the arm can be a
serious obstacle to meeling real-time constraints. However,
we have shown that current YLSIC technology will allow the
fabrication of cost-effective special purpose processors that
can overcome this difficulty In particular, we have shown
that if the control strategy is based on a medel employing the
N-E equations of motion real-time constraints can easily be
met assuming control stages 1, and 2 are computed off-line
[10]. {15]. The assumptions about stages 1 and 2 can be res-
trictive in those applications where the arm does not make
repetitive motions becsause each new motion will, in general,
require a new trajectory. Thus, the above stages of coatrol
will have te be completely recomputed for each motion
Unless atages 1 and 2 can be computed “on the fly* a set of
precomputed solutions will have to be stored. If the number
of possible trajectories is large this approach is impractical.
As will be shown, unifying stages 2 through 4 results in a need
for less computations for arms with no more than about a
dozen joints (a number unlikely to be exceeded for most
arms, at least in the near future) This allows stage 2 to be
calculated “on the fly”, thus reducing the restrictions on
applications that do not make repetitive motions

The next section introduces some necessary notation
before explaining how stages 2 through 4 of robot arm control
can be unified using the N-E equations. The final section adds
some conclusions and comments about future work.

UNTFYING ROBOT ARM CONTROL

Notation

The paths along which the n joints of the arm of n links
move during the arm's motion can be coilected into a set of
paths known as the arm trajectories. For arms with only
rotary joints such as the PUMA 800 the trajectories can be
specified with respect the relative angles between the joints
These trajectories will be referred to as the relative joint
angle trajectories, RJA trajectories, and will be represented
by a time dependent vector of angles between joints, @ (t)
For an n-jvinted arm this vector will have n components. See
Fig. 1 for an illustration of these angles for the PUMA arm
Discrete time points along the trajectories into which the tra-
jectories may be divided for control purposes are called "set
points”. (E.g. at time t=T the set point is the vector of n
values given by & (T).) The first and second time derivatives
of the RJIA trajectories are the RJA velocities, #(t), and RJA
accelerations, ¥ (t), respectively.

Each link, i, of the arm has its own coordinate frame
tixed in the link and referred to as the i*® frame. The coordi-
nate system of each link is iz located at the end farthest from
the base (see Fig. 2). A unit vector along the z axis of the it
frame and represented in the i frame is denoted by z
Similarly for unit vectors along the x and y axes An alterna-
tive representation will sometimes be used in which the unit



vector along the z axis of the I frame is denoted by (o),
Similarly for the x and y axes. By convention joint i is at the
1=1* origin and ¥ is taken about -y

Matrices, and tensors are represented In upper case
type, while vectors are in boldface type. Unless otherwise
stated vectors will be treated as column vectors.

Greek indices are used to denote components of a vector
or matrix and the "sumemation convention" i8 employed, i.e.
repeated indices are assumed summed over all three coordi-
nates. For example the inner preduct betwesn vectors a and
b can be written in two ways, in matrix notation, atb and in
terms of the vector components using the summation conven-
tion, a,b, (= a;b; + a,b, + a,b,).

Rl represents a three by three rotation matrix which
maps a vector from its representation in the [** link coordi-
nate frame to its equivalent in the j** coordinate frame. Some
well known properties of rotation matrices represented in
this notation are:

(R{)'=(R!)'=R/ 1
A superscript t denotes a transpose of the matrix.
A rolation between coordinate frames i and j can be writ-

ten as a chain product of rotations between successive
frames:

RI=RIRET - R 2
In general, with the inverse defined by Eqn. 1 and R/} defined
as the identity, one obtains the relation RFR{=R} for all
integer values of k.

Vectors rotated into the base (i=0) frame will be starred
in order to shorten and clarify notation. For example, =,° is
equivalent to Riz,. Matrices represented in the base frame
will be similarly starred.

Rotations operate on a vector product in the following
faghion:

Ri(t x ¢)=Rjb x He;, 3
where by and ¢ are any vectors-—a vector product transforms
like & vector under rotation,

Finslly, we define the Qf matrices, The Q® matrices have
the property that Q'e,=x; x ¢, QP¢=y; X ¢, and Qo= x X ¢

X0

Figure 2. Coordinate frames.

The action of a vector cross product can be captured with
these metrices. This notation is borrowed frem quantum
mechanics. The @f matrices are listed below:

00 c 01 -1 0
=P 0 -1|, ¢=|0 0 0], @=|1 0 © 4
1 0 -1 00 0 0 O
The Newton-Euler Equations

The N-E equations represent a fairly detailed model of
the dynamics of a robot arm. However, other formulations
provide similar detail. A comparison was made between the
N-E set of equations and several other arm formulations In
(6], [8]. The N-E set was found to be equivalent but computa-
tionally much more efficient than any of the other formula-
tiona [7], 18], {17]. The equivalence of the N-E formulation to
the other formulation is Lo be expected since all physical
assumptions are the same. The N-E equations are listed
below in the form presented in [6]. This form is slightly more
com;[.mtauonnlly efficient than the original form of Walker and
Luh {2].

wo=0 @o=0 my=9.Bm/s? 5
o=R ey + ""I:I—l) 8
a =R @ + @5 X 'I-I;’i + ‘;"1&—1) 7
A= (ﬁl)pQ’*'(f-’l)pQ’(m)xQ" 8
& = Ar + R e, 9
& =AM+ n) + R e 10
i = m@ + R/*',,, 11
8y = TriAK( Q7)Y (), +my(F+n) X B+ x R, e
+R{*iny,,
n=(R"'x)'ny 13
omd; —cosy sind; sing, sind,
Rl, = |sin®; cosy, cos®, —sing, cosy, 14
0 siag, cosyp,

=l +L_+

_IS'% o 0
Ke = 0 I"’_ > +I"“ o 15

-
0 8 e ;n log

Several ideas can be gleaned from these equations
without becoming intimidated by their apparent complexity.
We have assumed in presenting the above equations that we
are dealing with an arm having enly rotary joints such as the
PUMA of Fig. 1. The ¥;’s, 9's, and ¥;’s are components of the
RJA trajectories, the RJA velocities, and the RJA accslera-
tions respectively (see earlier definition), i.e.. 9,(t) is the tra-
jectory for a single joint.



Egn. 6 develops w;, the angular velocity of the i joint
as seen in its own frame. Notice that this equation is recur-
sive in that it contains terms from the next lower joint which
are rotated by rotation metrix R}™! from the lower i~1" joint
into the present i joint location. This recurslon just reflects
the simple fact that the angular velocities add together as
one proceeds up the arm from the base to the hand. The
same cen also be said of the following equations: Eqn. 7, which
defines the angular acceleration, a;, of the i** jount: Eqa. @,
which defines the linear acceleration, a,, of the i® joint; and
Eqn. 10, which defines the center of mass acceleration, &, of
the i** link. They are all recursive and represent the
kinematics of the arm. i.e, they define the geometrical
motion of the arm rather than the actual forces and moments
needed for such motion. The matrix, A, in Eqn B is an
acceleration type matrix and is & combination of @, and a,.
It contains Coriolis and centrifugal accelerations. The term
n s a distance vector from the i* joint to the i+1** joint
represented in the {** frame (alternatively, from the i—1%
origin to the 1 origin, see Fig. 3).

Once the kinematies of the arm is calculated, the motion
of the arm is defined and the forces f; and moments n
needed to cause the required moticn can then be determined.
This is accomplished in Eqns. 11 and 12 which represent the
dynamics of the arm. These equations are recursive going
down the arm. This reflects the fact that forces and moments
felt by the i+1** link are passed down to the {® link. When
i=n, indicating the uppermeost, or hand, link, then f, and n,
represent forces and moments acting on the hand. If the
band is equipped with band, wrist, or joint sensors [1B] the
forces and moments acting on the hand can be determined
and incorporated into the rmodel by setting f, and n, to the
velues determined by the sensors. Notice how naturally
forces and moments that the hand "feels” are incorporated
into a mode) based on the N-E equations of motion.

The K, matrix is an inertial matrix and my is the mass of
the i** link. The torque, 7,, needed by i actuator to achieve
the desired motion is obtained by projecting the component
of the moment n, onte the i® actuator axis, Ri~'x,_,. Recall
%, is the axis of the i actuator represented in the i~1%
trame. The application of R{™! rotates it into the i*® frame.

In summary, the N-E equations provide a method for cal-
culating the kinematics {angular and linear velocities and
accelerations) of the arm using the RJA trajectories, the RJA

velocities, and the RJA accelerations. The c¢omputation
proceeds from Lhe base to the hand. Once the kinematics
have been determined the N-E equations provide a method by
which the dynamics of the arm (forces and moments) can be
computed. This part of the computation proceeds from the
hand down. The forces and moments “felt” by the hand may
be incorporated through all the joints down to the base. Fig.
4 illustrates how the computaticons proceed.

Resolved Motion

Once the trajectory of the hand has been determined to
avoid collisions and actuator limitations (trajectory planning
stage). it becomes necessary to resolve this hand trajectory
into the RJA trajectories in order to use the N-E equations,
which are based on the RJA trajectories, to calculate the
actuator torques needed to drive the arm.

The term "resclved motion” was coined by Whitney when
he originally proposed the technique [1]). Our approach deter-
mines the RJA accelerations 4 given the hand link's accelera-
tion trajectery. a&,. Whitney originally proposed resolving
velocities. Clearly, the two methods are equivalent provided
appropriate initial conditions are given, however, resolving
velocities does not fit in with the N-E equations as con-
veniently.

The first step in resolved motion it to determine how
each infinitesimal joint motion (accelerations In our case)
affects the infinitesimal motion of the hand There exists a
linear mapping between the infinitesimal joint motion space
snd the infinitesimal hand motion space. This mapping is
defined by a Jacobian. The Jacoblan can be calculated expli-
citly or, as we shall show, can be "strobed" out of the N-E
equations. The basic idea behind strobing results from the
following observation: The ratios of infinitesimal hand
accelerations to infinitesimal joint accelerations are the ele-
ments of the Jacobian matrix. Therefere, if the nonlinear
components of the accelerations are delsted from the N-E
equations to linearize them, and if one of the RJA accelera-
tions is set to one, and the rest are set to zero, the result will
be a column of the Jacobian {(Once the equations have been
linearized we are no longer restricted to infinitesimal RJA
accelerations and can use unit vectors.) Thus, successive
columns of the Jacobian can be strobed out of the N-E equa-
tions with unit RJA acceleration vectors. The resulting linear

Figure 3. r; vectors and a pf* vector.

Figure 4. Arm kinematics and dynamics.




equaltlons relating the linearized hand acceleration to the RIA
accelerations can be solved to yield the RJA accelerations.
Note that a unique solution can only be guaranteed if n=8.
Unique solutions for arms with more joints require further
constraints.

First we will develop a the linear relation between the
hand's acceleration and the RJA accelerations using the N-E
equations. Eqns 6, 7, 9 are given below in an equivalent but
moedified form for discussion.

”lle'-l(""l-l"‘{’l"l-l) 18
@ =R @ oy X g R+ n,) 17
a=c X (o xn)+a, x n+R"" e 18

The hand linear and angular acceleraticns are specified
in Cartesian coordinates in the base or zero frame during the
trajectory planning stage, however, in order to employ Equs.
16 through 1B these must be converted to the hand or o't
frame. This conversion takes 18n multiplications and 12n
additions for both the a, and &, vector using a rotation on
each vector at each link.

For convenience in the digcussion that follows the con-

verted linear and angular hand acceleration vectors, are con-

ay

8n

time along the hand's trajectory one finds that the hand's

angular and linear acceleration can be written in terms of

linear and nenlinear contributions that are functions of 9 and

©¢. The terms Involving @, in Eqns. 17 and 1B represent non-

linear Coriolis and centrifugal accelerations. Omitting these
terms we obtain the linear relation;

ecthr=Dpd, 18
where D is an n by n "distance” matrix. This is the linear rela-
tion between the hand's acceleration and the jeint angular

acceleration promised earlier. Now an input unit vector #,
where all components are zero except for one, for example:

4= Plﬁ‘ﬂ, 80 ¢ 6,]‘ = [1.0_0_ - o]t 20

can be used to strobe out columns of the D matrix {rom the
linearized N-E equations.

We will now show that the D matrix, when represented in
the base frame (D°), is equivalent to Whitney's Jacobian, J [1].
Confirming our assertion that the above procedure is the
same &8 resolved motion.

catenated a, and &, into a six vector, ac,= . At any

Theorem:
D'=1
Where:
R L A
" |mo x p8° =z x pi° Sp-1 X pIN]

and:

nn.-g = l‘1.+l’g.q.1+ - +r.:
See Fig. 4 for an illustration of p§*.
Proof:

The linear part of & " from Eqn. 10 is
a,® = Ry (g Bt @p ™), 23
which when expanded by recursion yields:
= ERQ"&-l."’t
120
Applying a rotation into the base frame, Rf, results in:
@, = Ria,'™ = im Yz, B = i"l.-l;'-’i 24
i=0 1=0
From Eqn 1B the linear part of &, using recursive expan-
sion is:
.nh = ﬂah x rn"'R:_l(ﬂn-lh X Fpy)+
R REF (an-y B % o)+ -

Combining rotation matrices with Eqn 5 and distributing the
rotation across the cross product with Eqn. 7 one finds,

8,2 = @, x p,+ REVa, B x RO-1p_ 4
R:-E an-zun x Rg-arn-a"’ T

Now expanding a,"™ using Eqn. 23 and gathering terms of the
same ;s gives:

a1 = RINay X p Uy tREFE o X (Fut REIE, )0y -
= PR2 9 x 3 RPra)
i=0 msif

Applying a rotation into the base frame, R§, to both sides
yields:

a," = REa = ?;(Ré“&-. x ¥ 1li‘<§"r',.ﬁ3'.m)

25

From the above definition of pf*';, this is:
8, = i’f-l x P 26
§a0

-

Combining Eqns. 24 and 28 by concatenating the a,” and a,
into acy:

g 1 S
A L i=0
ac, = o] = )
fa g’;—l x pd,
N o M

2 % B8 a0 % B

Rotating both sides of Eqn. 19 into the base frame, allows cne
to conclude that D* = J.
QED.



Once D has been determined through the strobing pro-
cess, the RJA trajectory can be calculated. Eqn. 19, however,
relates the RJA trajectory to the linearized hand accelera-
tions. The precalculated hand accelerations can be linearized
by subtracting out the nonlinear Coriolis and centrifugal
terms. These nonlinear terms can be generated recursively
using sensed 9,'s as inputs:

a2t R (P oy X 2 B) 28

L] =y X {@; % n)"'“lmn“x r;+ R} a,., nontin 20

This vector can be subtracted from aec, (the precalculated
hand accelerations) to obtain & relaticn linear in 4

ac,— achln = golld = D §, 30
Now, using Gaussian elimination one can solve for 4.

The resclved motion stage requires the following compu-
tations: Determining acl takes 44n multiplications and
39n additions. It takes 24 multiplications and 19 additions to
determine the ni"" and &' at each joint. In strobing the it
joint the caleulations proceed from the % f'oint. to the hand.

This process of strobing results in ﬁn—g—l-t—l multiplications

and Mzn;ll additions. See Table 1 for a breakdown As
noted, Eqn. 30 can be solve for #(t) using Gaussian elimina-

3
tion. Gaussian elimination takes %--l--%—-—%n multiplications

o _n . o nf.n
and 373 additions for the elimination and 2 + 2

H
cations and 92—-"23 additions during the back solving. The D

matrix becomes singular when the arm is asked to execute
impoessible motion, such as overreaching. D also becomes
gingular when two joints are aligned in such a way that ejther
joint couid make the desired contribution to the hand's ac,
six vector. In the case of the first type of singularity, the arm
trajectory should be constrained to its legal bounds in the
trajectory planning phase. In the case of the second type of
singularity, the joint closer to the base is given the go ahead
to perform the needed motion while the joint closer to the
hand is maintained at its previous velue of velocity and
acceleration during the backsolving process preventing any
breakdown in the solution even though there may be a singu-
larity in D. A complexity analysis for the resolved motion is
given in Table 1 {all tables are after the References).

Applying the results of Table 1 to the PUMA of Fig. 1
yields a computation count for resolved motion of 982 multi-
plications and 780 additions {n=86). Closer inspection reveals
that many of these computations are unnecessary because of
the simple form of the arm vectors rj. The net result is that
the computation count can be reduced to about a third of
that predicted by the complexity analysis, i.e., about 330 mul-
tiplications and 270 additions. If this computation is mapped
onto the single chip processor discussed in [10]., [15]. the
computation time per set point works out to about 205 us.

multipli-

Gross Motion

In the process of determining the RIA accelerations, 4,
the kinematics of the N-E equations are essentially deter-
mined. The «;'s, the @™ and the a are calculated,
and the a;’s and a&;'s can be determined with relatively few
steps. The a;!® and &'™ can be determined from partial
terms used in finding the D matrix. To be precise it requires
3n{n+1) multiplications and 3n%+9n additions to compute the
oy's, A;'s and a's.

The next step is to determine the dynamics of the arm
using Eqns. 10-15. The torques 7; cbtained from Eqn. 13 are
the torques needed to move the arm along the desired trajec-
tory. The computational complexity of this calculation is

given in Table 2.

Friction can be modeled in the standard way as Coulom-
bic static friction and Coulombic dynamic Iriction where the
frictional moment is proportional to the force normal to the
axis of the actuator, i.e, TF™"=jpu ! ™ and when motion
atarts 1',‘”"’=Hmf." . In addition, viscous Iriction can be
included where the force is proportional to the velocity,
%=, In all cases, the N-E formulation provides the force,
f). and the moment. n,. applied to the actuator i, along with
the angular velocity, ¥, and the angular acceleration, ¥;.
Thus modeis depending on these variables for Coulombic and
viscous friction (such as the ones above) can easily be
employed. Even if friction is highly nonlinear and does not fit
any model lockup tables containing friction forces for various
forces, moments, and accelerations can be used. The tables
may be experimentally determined prior to arm assembly.

In the gross motion stage the N-E equations must incor-
perate a control loop to compensate for the shortcomings of
the model {see earlier discussion). A possible control stra-
tegy is explained below. It is adapted from the one proposed
by Lee et al. {18].

The Lagrangian squations [14], a computationally inetfi-
cient alternative to the N-E equations, are useful in that they
reveal a relation between the actuator torgques, T,
(represented here as an n-vector) and the RIA trajectories,
¥, velocities, 4, and accelerations, 4

T = K(8)e + C(9.9) + G(8) 31

These terms are implicitly calculated in the N-E aigo-
rithm. For discussion purposes assume that C, the noolinear
centrifugal and Coriolis terms, and G, the nonlinear gravita-
tional terms, can be calculated close to their true values.
Then Egn. 31 can be linearized by subtracting C and G from 7
to obtain =

e = N0 ¥, a2

The subscript. a, refers to the actual, or sensed, values of the
RIA trajectories, velocities, and accelerations. In the case of
torque it refers to the net value. The subscript, d. will refer
to the desired, or calculated, values below.

It when one inserts the resolved RJA trajectories values
into the N-E elgorithm, one adjusts ¥4 by adding in sensor
measured terms:

859 = 44k (9 -0 )+ (0 -8 ) = 8,44k, 8 4,8, 33

feedback is introduced. The e subscript represents error,
indicating, in this case, that RJA velocity and positional error
are fed back.

With the adjusted ¥, the Newton-Euler algorithm gives a
relation:

i = MO )(¥ 4tk 0+ 8 ) 34

The value of the torque at the actuators, 7, i3 an
approximation to the desired, or calculated, torque. 3Sub-
tracting Eqn. 32 from 34 one cbtains:

fr -Tah = H(ol)(a ."’kv“ -"'kp‘ c)

a system of damped harmonic equations with zero steady-
state error. The coefficient, k,, must be chosen large enough
to achieve the "stiffness” necessary for precise motion but
not too large to promote instability. The coefficient, k,. must
be chosen to produce a damped response. Wu and Paul [18]
have shown that k, should not be taken as constant but rather
k, ig inertial load dependent and hence is ¥ dependent.
Rather than calculate k, tables could be provided to lookup k,
values. The tables would not be excessively large since the
load varies little over wide angles.



The complexity analysis for the gross motion stage is
given in Table 2. Applying the results of Table 2 to the PUMA
of Fig. 1 yields a computation count for the gross motion
stage of 483 multiplications and 513 additions {n=86). Again,
cloger inspection reveals that many of these computations
are ubnecessary because of the simple form of the arm vec-
tors r, The net result is that the computation count can be
reduced to about a third of that predicted by the complexity
analysis, l.e., about 170 multiplications and 180 additions. I
this computation is mapped onto the single chip processor
mentioned earlier, the computation time per set point works
out to about 120 us. Combining this with the set point time
for the resolved motion stage gives a computation time of
about 325 us. In other words, resolving the motion between
consecutive set points and calculating an adjusted torque to
achieve that motion requires about 1/3 millisecond. This
compares favorably to present PUMA controllers that perform
solely a torque update every millisecond {resclved motion is
performed off-line) [10].

Fine Motion

During the terminal phase of arm motion when RJA velo-
cities and accelerations are small Coriolis and centrifugal
terms need not be calculated. Inertial linear and angular
accelerations no longer need be calculated. Also, gravity
terms may be updated less often since angles are not v
rapidly. Assume the fractional time for gravitational updates
is {. (Teble 3 displays the contribution of these terms.) To
achieve the desired motion of the hand the resolved motion
part of the gross motion stage can still be used. However, it
should be applied to the hand's linear and angular velocity
rather than the acceleration. This is what was originally pro-
peosed by Whitney [1].

To achieve desired output moments or forces by the
hand for use in insertion and tool manipulation pseude-forces
and -moments can be introduced into the equations. The
computer can generate force and moment inputs to the hand
which do not actually exist. The arm respends by compensat-
ing for these artificially introduced forces and moments. For
example, suppose it were desirable to scribe a straight line on
a sheet of metal with a 1 N force. The trajectory can be
planned so as to move the hand with constant velocity holding
the scribe perpendicular to the metal, and the arm can be
tricked into believing there is a -1 N force pushing againat it
by setting fy = fyeny = -1 N. The arm reacts by pushing with an
extra 1 N force in an effort to maintain its trajectory against
the pseudo-force (see Fig. 8). The advantage of the paeudo-
force technique is that it requires no extra computation and
“falls out” of the N-E moedel in a natural way.

Below the pseudo-forces and -moments concept witl be
shown to be equivalent Lo an alternative fine motion strategy.
the static forces and moments developed in Paul [7].

Assume the arm is static and that gravity hes already
been compensated for. Eqaos. 11 and 12 can be written:

= R-r. lf"-; a8

o, =1 x R, 4R} Iy, a7
Through recursion pseudo-forces and -moments input at the
hand can be pessed down to the i*® coordinate frame. (Since
the pseude-forces and -moments are introduced in the hand
frame, [p =y, a0d Dy =00, )

L = Rl L a8
B =r X R b ¥R r X RP L+ a0
RiPy X RP fyss

In terms of a matrix equation we can express the contribution

Fpseudo/,"/

F :
desired

Figure 8 Employing pseudo-forces to push against a surface.

of the force, f.ny,. or moment, N, experienced at the
hand, to the force, f;, or moment, n, as:

[:I_I Pxy RP¥a RPm PR X RPx PR X RPYs Ry X RP,
=" ,

Y Rfx, Ri'¥xn Ri'z,
["'“" £
np-ld. '
where p&, is given by:
PL=r+ R n+ - RPR 42

See Fig. 3. Note representation is in the i*® frame not in the
base frame. This is identical to the results obtained by Paul,
see [7].

The fine motion portion of the algorithm along with its
complexity analysis is detailed in Table 3 Included in the
analysis is “on the fly" resolved motion. As belore, the total
computation count is for one set point. For a PUMA arm the
oumber of multiplications is 415 + 225¢, and the number of
additions is 783 + 117¢. Again, simplifications allow us to
reduce these numbers to about a third, f.e., 140 + 75¢ multi-
plications and 280 + 39¢ additions. On the processor men-
tioned earlier this requires about {140 + 40¢) us per set
point. Recall that ¢ is typically a small fraction.

CONCLUSION

A unified approach to three stages of robot arm control
has been presented. The unification is based on the N-E equa-
tions of motion. Apart from the conceptual advantages of this
unification there are computational savings over treating
stages 2, 3, and 4 as separate computations. In particular,
less cotnputations are required fer arms with no more than
about a dozen joints (a number unlikely to be exceeded for
most arms, at least in the near future). Coupled with recent
advances in YLSIC technology. this now makes it possible to
perform stages 2, 3, and 4 "on the fly". In other words,
current real-time constraints (updating a set point each mil-
lisecond) can be met even il the trajectory changes each time
the arm moves. Of course, computations for the trajectory
planning stage must still be done off-line.



In the future, extending the accuracy of the arm mode]
appears promising. Preliminary studies suggest that the uni-
fied {ramework presented above will also provided a natural
framework for incorporating arm flex (assuming suitable sen-
sors are available} and & more accurate model of the actua-
tors. Improving the model improves the overall performance
of the arm. The underlying philosophy we are promoting is to
employ smart sensors and computers to improve the perfor-
mance of the arm rather than relying on highly rigid arms
with precision jointe driven by large powertul motors. Trends
in current technology suggest that this philosophy will result
in cheaper higher performance robots, simply because of the
dramatic cost reductions being achieved in the VLSIC tech-
nology ceatral to both the production of computer chips and
solid-state sensors. Ne such comparable improvement in
technologies associated with other aspects of robot arm fabri-
cation is occurring.

Finally, there is a considerable amount of research to be
done on trajectory planning algorithms. Once again the
dramatic cost reductions being achieved in VLSIC technology
(in particular memory fabrication) suggests that table-lookup
techniques may play a role in meeting real-time constraints.
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Terms

multiplications

additions

ae,; converted to hand frame 18n i2n
@ fn n
ﬂlmlln 11n Bn
A 6n fn
A|l'|+R|"" 8- 1Bn 15n
subtotal from ag, ™otie 440 30n
a,te .9_'1.(2_*'!1 7n§2+ 1)
a® x ﬂ%l 3n§;+ 1)
a®x n+R gy, 9“2"'1 911;1;-0-1!
subtotal for D ?ﬂaﬂﬁl 15n( 2n+ 1)
. o p® fn 8 n
Forward solving T -2
i et n n® n
Backsolving I 2 -2
3 3
Total n—+1302+%n 2 on2s 172

Table 1. Complexity analysis for resolved motion.




N—-E terms multiplications additions
o 2o 4n
@ a A ey 3n(n+1) an?+9n
m, 8 12n gn
1, 8(n-1) 9(n-1}
Tr [AK(Q7) o 3n
m(r+%) x & 6n 3n
xR, 15n n
R\ Dy fn 6n
add n parts 4] 15n
friction 2n 2n
Total 3n®+84n-9 3n?+69n-9

Table 2. Complexity analysis for gross motion.



Terms muitiplications additions
@y 8n 7o
a ™ en¢ 8nf
A én In+8n¢
D matrix Eﬂ%‘iﬂ m_n(zlﬂ)_
Forward solving %34-%!-?65 %’-%
Backsolving n?z + % _t;_g _%
o Snfatd) R,
maF* 12n¢ on¢
L 9(n-1) 8(n-1}
Tr {AK( Q7)Y én 3n
m(n+¥;) x af™ 8n¢ Sn¢
n 150 24n
friction en 2n
Total %’+13n=+§%—9 %’+10n:+3—39n—9
+t(%n’+52—7u +¢(Pé-+%n

Table 3. Complexity analysis for complete fine motion




