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ABSTRACT

This paper examines some computational issues in robotics. The concept of a
robot-based manufacturing cell is outlined by viewing its behavior at three lev-
els: machine level, cell integration level, and integration with higher level func-
tions. Computational requirements associated with the first two of these three
levels are discussed, and the need for very high computation rates at the
machine level of a manufacturing cell, particularly for the real-time control of a
robot arm and for robot vision is pointed out. The paper also explains the need
to be able to manage multiple processes at the cell integration level. A unified
solution to these computational needs which requires that the computation
structure used to control and rmanage a manufacturing cell be designed as an
object-based computer architecture is then proposed. The hardware/software
boundary in the implementation of the objects comprising the overall architec-
ture is transparent from a logical viewpoint but not from a timing viewpoint.
Real-time constraints are met by implementing time-critical process objects
directly in hardware. This "object level” design provides the hardware /software
transparency necessary to formulate a unified system specification for these
real-time embedded computer systems. Timing considerations can then be used
determine the hardware/software boundary. 2

1. INTRODUCTION

The factories of the future, in fact the only factories with a future, are those which are moving to increase produc-
tivity through greater automation of design, processing, assembly, and management [1]. The University of Michigan has
recently made a pajor commitment to the technological research and education necessary to achieve this goal. A
Center for Robotics and Integrated Manufacturing (CRIM) has been established in the College of Engineering to coordi-
nate and [ocus the research activities of 30 faculty and 50 staff and research assistants on problems of industrial auto-
mation [2]. Complex distributed computer systems are central to automated or integrated manufacturing and conse-
quently the computer science and engineering comrnunities at the University of Michigan and elsewhere are focusing
more and more attention on applying state-of-the-art cornputer related technologies to, as well as developing new tech-
hologies fer, advanced industrial automation. Indeed, results of this transfer of technology can already be seen in the
area of industrial inspection, an important part of manufacturing, where inexpensive rugged CCD solid-state cameras
coupled with microprocessors have made feasible a great in the level of automation [3]. In addition to benefiting from a
flow of ideas {rom cornputer related technologies, the field of robotics provides many challenging problems which may
provide lhe basis for fundamental breakthroughs in computer science/engineering. Notable among these problems are
the management of multiple processes in a real-time environment and the implementation of these processes so that
they meet the real-time constraints.

Of paramount importance in future manufacturing systems is the concept of a robot-based manufacturing cell com-
posed of a number of different material processing machines together with material handling facilities. Computer con-
trol is central to the operation of these manufacturing cells. Less abvious, but also of significant importance, is a cou-
pling of these cells to the outputs of computer aided engineering programs, e.g. geometric information in CAD databases.
Computer control combined with "general purpese” robots gives the manufacturing cell a high degree of [lexibility
through the ability to reprogram the operation of the cell. This enables the rell to function in a cost effective way in
manufacturing environments that do not fulfill the usual notion of mass production. An example of this is batch assembly
which represents cne third of all manufacturing in the United States {4].

While there exist a tew examples of automated manufacturing cells [5]. they are special purpose cells and limited in
their flexibility. In this paper we sketch a proposal for developing the hardware/software structure needed to control a
robol-based manufacturing cell. The aim is to develop a methodology which

= Can be applied across a large class of manufacturing cells.
* Results in systems that are easily extensible if additional sensors, robots, and /or machines are added.
* Resulls in systems in which the hardware /software boundary is transparent.
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The need for such a general methedology is enormous. As long as automated manufacturing cells are only produced on a
cne or two of a kind special purpose basis, there will be relatively few such cells in existence. The need for
hardware/soltware transparency is particularly important during the design of a cell where, in order to meet real-time
constraints. it may be necessary to move software implementations into special purpose hardware. If this can be done
transparently it will facilitate system developrment, since the task of logical systemn development can occur without
regard to the actual method of implementation. For similar reasons hardware/software transparency is important if
extensions to the a system are to be easily accommodated—altered requirements may tighten certain timing constraints
necessitating a migration of software into hardware.

In this paper we define computational issues in robotics with particular ernphasis on the use of processors which are
tailored to specific computaticnal tasks. Qur hypothesis is that “object-based computer systems" are excellent candi-
dates for the framework to accommodate the evolution of the complex hardware and software required to meet these
computational needs. In particular such systems provide a controlled means to enhance performance of an existing
robotics control system by the introduction of special-purpose (probably VLS]) components in a manner transparent to
the user. Hardware and software can be tied together in an evolutionary way.

This paper is organized as follows: The next section illustrates the concept of a robot-based manwacturing cell,
Section III explains the notion of an object-based computer architecture and how it fits into the real-time control of a
manufacturing cell. Section JV identities possible time-critical computations that might arise in a robot-based manufac-
turing cell. Finally, Section V concludes by noting how the proposed design approach fits well with the programming
language Ada, a language expressly designed for pregramming real-time embedded systems.

I1. ROBOT-BASED MANUFACTURING CELLS

Robot-based manufacturing cells have many different configurations; however, their operation may be explained by
viewing their behavior at three levels:

* Machine Level.
* Cell Integration Level.
* Intergration with Higher Level Functions.

Of critical importance in all three levels are the computer systems used to control the cell, their interconnection, and
their programming.

At the machine level there will be a variety of processing and material handling machines. Typical machines will
inelude numerically controlled lathes, drills, milling machines, presses, forges, and bending machines. Material handling
systems will include robots, conveyors, mobile carts (with attached robots). Robots of course have a dual nature and
may be considered processing machinery if they are used for assembly. Also at the machine level will be various types of
sensors which provide information by which machine guidance and control may be determined. Each of these machines
er sensors will require individual computer attention.

Computer based integration of these machines and their integration with higher level engineering functions offer a
significant increase in manufacturing productivity. Cell control may be hierarchically organized. Each machine or sen-
gor will have its own computer process controlling it. These processes will in turn communicate with a supervisor process
responsible for overall ceoordination of cell activity, Cornputerization of the engineering functions associated with
manufacturing is rapidly taking place., Computer aided design is already a one billion dollar a year business, and work is
progressing on computer aided process planning, material requirements planning, and shop floor scheduling. Eventu-
ally, the manufacturing cell will be coupled to the output of these processes. It is already possible to automatically gen-
srate NC machines programs from a CAD database description of a part.

To illustrate the above concepts Figure 1 shows a hypothetical manufacturing cell. In this particular cell material
handling is performed by the conveyor at the left, the inventory storage retrieval system at the top, the robots R1 and
R2, and the conveyor at the bottom. Material processing is performed by the NC machine at the right and by R2 in the
assembly area (R2 has a dual role). Parts flow in on a conveyor (the one at the left) where they are inspected by the
camera Cl. This sensor identifies each part so that the appreopriate processing/handling sequence can be initiated for
that part. Robot, R1, removes each part from the conveyor with the help of position information collected by Ci.
Depending on the type of the part and the state of the cell, the part may be temporarily stored in the inventory storage
retrieval system to smooth the {low of material through the cell. For example, if machine failures require succeeding
cells to be shut down for repairs R1 can still serve the incoming conveyor by simply storing each part. Alternatively, R1
may load the part into the NC machine for a sequence of machining operations. R1 is also responsible for changing tooils
in the NC machine--when not in use tools are stored in the tool magazine (M). After machining, the part is moved, by R1,
to the agsembly area where it is incorporated into a subassembly by the robot R2. The completed subassemnbly is placed
on the cutgoing conveyor (at the bottom) by R2 and transported to the next manufacturing cell. The assembly process,
performed by R2, is achieved with the aid of vision information from camera €2 and touch and force information from
pressure and force sensors in the grippers and the wrist of R2. In the case where parts arrive into the cell in an inap-
propriate sequence for assembly, they can be resequenced through the storage system. Additionally, if the flow of parts

trom preceding cells temporarily ceases, for whatever reason, the utilization rate of the machines in the cell can be
maintained by retrieving parts from storage.

From the above machine level description of the hypothetical manufacturing cell it becomes clear that there are a
number of interlocking processes to manage. This is done at the cell integration level. In Figure ! a "cell management
cornputer” is shown that performs this management function. The data rates required to provide local control to com-
ponents at the machine level of the cell dictate the need for special purpose processors. These are shown in Figure 1 as
attached processors (AP's) to the cell management computer. The cell management computer and its associated AP's
should be viewed as a single computation structure. Indeed, our proposal suggests that the strueture be defined as a sin-
gle object-based architecture in which the hardware/software boundary is legically transparent. The boundary, and
hence the placement of the AP's, would be defined by examining time-critical processes in the cell,
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Figure 1. Robot-based Manufacturing Cell.

The cell management computer is also responsible for communicating with computers at the factory management
level. The factory management level computers integrate with the CAD system database that describes the preoduct
which the various manufacturing cells are cooperating to produce.

IH. OBJECT-BASED COMPUTER ARCHITECTURES

sensus of opinion from language research directed at program decornposition emerged in favor of the use of information
hiding (also referred to as data encapsulation or package-based decomposition) as the major criterion for the modular
decomposition of computer programs [6]. This methodology employs the concept of a type manager to manage and
effectively hide the implementation of abstract data types from other the modules in the system [7]. Meanwhile, in
operating systems research, a consensus of opinien developed in favor of the concept of protection domains as a solution
to the data integrity and security problem. This concepl is analogous to the package based decomposition medel [8)

In the type manager concept each package is divided into two major parts, a specification and a body {shown in Fig-
ure 2). The specification contains the explicit description of the portion of the package which is visible to other modules
{packages). This usualily consists of descriptions of procedures which eperate on the “hidden” data abstractions, but can
also include, in the case of external type managers (described later), type definitions which detine the explicit data
abstractions on which this particular type manager will operate. The body, on the other hand, contains the actual pro-
cedure code along with the deseriptions of the “hidden” data abstractions which remain internal to the package. Other
than granting procedure calls and data accesses to items described in the specification, the contents of the package
body is inaccessible to all other modules (shown in Figure 3). External type managers are those type managers in which
the actual copies of the data abstractions to be manipulated exist in other packages. The description of these data
abstractions, however, is still given in the type manager's specification. Further, it is expected that all procedures which
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Figure 2. Package-based Decomposition. Figure 3. Interconnection of packages.

manipulate this data reside in the type manager package. This maintains the censistency with the notion that the imple-
mentation of an abstract data type need only be known to its specitic type manager.

Protections domains are realized by grouping all of the data in the system into items called "objects” [9], and then
employing a capability-based addressing scheme [10] to reterence these objects. So, for example, there will be objects
which represent the instruction code of procedures, activation records of executing processes, and even abstractions of
physical processors, Hence the phrase "object-based computer architecture.” Of course, the type managers and data
abstractions mentioned above will also be represented by objects. To enforce these protection domains, all objects in
the system are required to be referenced with capabilities,

To illustrate the concept of capabilities consider their implementation in Intel's IAPX 432, a commercially available
object-based system (in Intel's termineciogy capabilities are commonly referred to as access descriptors). Access
descriptors provide indexes into an object table directory and one of its corresponding object tables, they aiso specify
the read/write privileges for a particular access (see Figure 4). The object table entries not only contain the physical
memory addresses and swapped/not swapped bits pertaining to their respective objects, but also the specific type and
length of the objects as well. All of this information is directly accessible by the hardware and is, in fact, used to dynami-
cally check object types, access restrictions, and length bounds. This effectively allows the protection mechanism to
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Figure 4. Intel's Capability Addressing Model




extend down to objects which may represent items as small as single variables. Since there are no machine instructions
which allow memory to be referenced by physical addresses, capability addressing is forced upon all users, including the
operating system. This eliminates the need for separate privileged/user execution modes, hence all modules are given
only the privileges necessary to do their jobs. This is in direct contrast to conventional systems where processes requir-
ing rmore than the limited access available in user mode must be given full access to the entire systern.

The iAPX 432 architecture is sald to be object-based not only because it provides support for the concepts outlined
above, but because it also incorporates those same philosophies and methodologies into its actual design. System
objects which represent entities such as: processors, processes, activation records, dispatching queues, and free storage
act as complex operands for very powerful machine instructions. The concept of system objects naturally extends to
allow the incorporation of special purpase attached processors via their corresponding processor objects [11]. The
object oriented machine instructions provide the mechanisms for implementing the object based concepts, while the
operating system soltware provides for its policy and control, The packages which comprise the operating system are,
literally, type managers for the system resources mechanisms which are provided by the hardware. This consistency of
design philesophy between hardware (including special purpose AP's), operating system, and user software provides the
transparency necessary for total system integration.

IV. REAL-TIME COMPUTING REQUIREMENTS FoR RoBOTICS

In this section we shall discuss some time-critical computations frequently required in the control of robot-based
manufacturing cells. There are two major classes of cormputations that fall into the time-critical category: robot arm
control computations and robot vision computations. Therefore, depending on the level of sophistication of the control
strategy and the vision algorithms, it may be necessary to implement these processes directly in special purpose
hardware (the AP's of Figure 1). Continuing developments in VLSI] technology coupled with the promise of “silicon com-
pliers” make “custom” special purpose processors attractive for the future; presently, however, these processors should
be thought of as being implemented with off-the-shell, possibly high-speed, components. In either case, an important
concern is the integration of these processors into the overall celj management system. If the system is designed as an
object-based architecture this integration is accomplished as a by-product of the resulting hardware/software tran-
sparency.

Robat Arm Control
Controlling a robot arm is a complex task that can be conveniently divided inte the following four stages:

(1) Trajectory planning--in this stage the arm's path through space is determined. Depending on the application this
may involve obstacle avoidance strategies.

(2) Resolved motion--in this stage the arm's trajectory is resolved into the component joint motions.

{3) Gross motion—in this stage torques and forces are derived that are required by the joint actuators to generate the
joint motions computeqd in stage 2. Typically these torques and forces form the basis of a controel law that incor-
porates some type of negative feedback.

(4) Fine motion~in this stage the torques and forces that are required to generate the incremental joint motions neces-
sary once the arm is close te its geal are derived.

The purpose of control stages 2, 3, and 4 is to maintain the motion of the arm along the trajectory derived in stage 1
by applying corrective comnpensation through the actuators to adjust for any deviations of the arm from the desired arm
trajectory. If a "perfect physicat model” for the arm could be defined and if the mode! could be “solved” rapidly enough
to output control signals at a rate compatible with the desired arm motion there would be no need for feedback in the
control strategy. A "perfect physical medel” would, however, have to be one which accounted for, among other things,
gravitational and inertial loading, friction, link fex, not to mention all possible external perturbances. Clearly, such a
model requires an impossible amount of computation, Indeed, in view of the need to include external perturbances, just
defining the model is impossible.

Although a "perfect physical model” is clearly out of the question, in our opinion, one improvernent to the present
ghortcomings of arm control is to include more of the physics of the arm in the model. The physics of the arm is well
understood {12), and [13], [14). A more accurate medel in the control loop offers greater versatility than presently used
control techniques. One can determine the arm's gravitational loading, inertiai loading, friction, and can also model arm
flex, allowing the use of much lighter and more efficient arm designs. But the technique goes further. Inputs from pres-
sure and force sensors in the grippers and the wrist of the arm are easily incorporated into the model. This incorpora-
tion allows the modal to adjust for the gravitational and inertial loading of the payload and to react to external forces
and moments. As an offshoot of the preceding, during the tine motion stage of control, false or "pseudo-forces” and
"pseudo-moments” can be artificially generated and summed into the sensor inputs from the wrist. The arm will exert
forces or moments to compensate for these pseudo-torce and -moment inputs. Thus, the arm can be made to exert any
desired lorce and moment vectors by incorporating oppositely directed pseudo-force and -moment vectors into the hand
inputs [14], [15].

If @ more accurate model of the arm is used the amount of computation associated with controlling the arm can be
a serious obstacle to meeting real-time constraints. However, we have shown that current VL3I technology will allow the
fabrication of cost-effective special purpose processors that can evercome this difficulty. In particular, we have shown
that if the control strategy is based on a model employing the Newton-Euler equations of motion real-time constraints
can easily be met assuming control stage 1 is computed off-line [15]-[17].

In the context of cur propoesal for a computation structure to control manufacturing cells the computations associ-
ated with stages 2 through 4 would, typically, be handled by AP's and stage 1 would be handled by the cell tanagement
computer. Of course, the overall control strategy (all stages) would be deaveloped as a single integrated unit and the
assignment to hardware would only come after timing considerations have been taken into account. To illustrate the



potential for robot arm eontrel to be a time-critical function consider the following: If the Newton-Buler based control
strategy mentioned above is employed it has been shown that to control a PUMA 600 robot requires about 400 rnultiplica-
tive operations and 450 additive operations to be performed in less than a millisecond f1s].

Robot Vision

The special computational requirements of vision algorithms, particularly the high processing rates and the large
data sets of predominately two dimensional arrays, can be best met by a computer architecture that has been tailored
to those requirements. The objective in a manufacturing environment is to develop a vision subsystem capable of: per-
forming object segmentation based on a set of features relevant to a wide range of applications, supplying real-time sen-
sory feedback information, and functioning effectively in the noisy environments encountered in industrial applications.

Past work in the computer vision area has resulted in several experimental systems for industrial robots as wellas a
few cost-effective commercial systerns [18]-[20]. The major problems in the design of these systems have been segmen-
tation, object location, object orientation and cbject recognition. A typical vision system consists of the follewing pro-
cessing stages:

(1) Image acquisition of cne or more views of the object area. These views are usually abtained in the visible light spec-
trum by a video sensor, such as a CCD device, operating at standard NTSC video rates. Other parts of the light spec-~
trum have been used for computer vision such as the infrared region. In some cases laser ranging devices or struc-~
tured lighting is alse used for obtaining depth information.

{2) Image preprocessing to remove salt-and-pepper noise, filtering to correct uneven lighting, other forms of enhance-
ment.

(3) Feature extraction, typically segmentation operations. The features used include gray-level edges, texture edges,
shape descriptors such as a Fourier shape descriptors, area of objects, perimeter, depth from stereo views, depth
from structured lighting, depth from ultrasonic or laser ranging. shape-from-shading, and many others. The
features extracted are highly application dependent.

{4) Classification or feature evaluation with respect to object identification, pesition, and orientation. In the past most
decision procedures were based on pattern recognition concepts using either statistical or syntactie pattern recog-
nition. These techniques have lirnitations with regard to performance and ability to handle a large number of
features. The classification operation is a higher level operation that has no real lixed format and in many ways this
is the most difficult step in the vision operation.

There has been considerable interest in using artificial intelligence concepts to interpret or evaluate the features.
Thig is the problem of “image analysis" that DARPA has been addressing for several years {21]. We believe that Al con-
cepts combined with techniques capable of handling a large number of features efficiently will have to be used in solving
this very complicated problem. The use of “expert systems” is now being considered as a strong candidate for the gen-
eral scene interpretation problem.

A number of articles have appeared in recent years that identify the particular computational needs of computer
vision and the related area of image processing [22]-[25]. An lmportant point generally agreed upon is that computer
vision algorithms require very high comnputation rates if they are to be done in a “reascnabls” time. 1t has been
estimated [25)] that processor speeds on the order of 1 to 100 billion operations per second will be required to solve some
of the current problems in computer vision. While the current trend towards "massively parallel" architectures for
vision affords a solution, it raises the issue as to what algorithms can be implemented on such architectures. Algorithms
such as correlation matching, histogramming, and edge thinning are highly parallel operations and have been imple-
mented on various architectures [28]. Other algorithms, ineluding many feature extraction algorithms, do not exhibit a
high degree of parallelism.

In the context of our proposal tor a computation structure to control manufacturing cells the highly parallel compu-
tations would, typically, be handled by AP's. Higher level functions which do not exhibit much parallelism or require
large data sets, such as some of those found in feature extraction and classification algorithms, would be handled by the
cell management computer. Of course, the vision algorithms would be developed as part of the overall manufacturing
cell computation structure and the assignment to hardware would only comne after timing consideration had been taken
into account.

¥. CONCLUSION

This paper has proposed a unified solution to the design of the computation structure used to control and manage a
manufacturing. The solution proposes that the ecell be designed as an object-based computer architecture. The
hardware/software boundary in the implementation of the objecls comprising the overall architecture is transparent
from a logical viewpoint but not from a timing viewpoint. Real-time constraints are met by implementing time-critical
process objects directly in hardware. This "object level" design provides the hardware /software transparency necessary
to formulate a unified system specification for these real-time embedded computer systems. Timing considerations can
then be used determine the hardware /software boundary. -

The system design philesophy proposed in this paper is based on many of the concepts implicit in the design of the
Intel 432 micromainframe. In addition, the object level design, as we have outlined it, is consistent with much of the
underlying philosophy of the programming language Ada. It is interesting to note that Ada was developed on behalf of
the Department of Defense as a standard for use in military applications requiring embedded real-time systems [27]).
This development was motivated, in part, by a need to contain gosts on large and complex software development pro-
jects.

It can be seen from the earlier characterization of a manufacturing cell that it is a typical example of a real-time
embedded system requiring a large and complex software development effort. Therefore, it is our hypothesis that the
use of the Ada language in conjunction with an object based hardware architecturs will provide an environment



conducive to the development of the entire (hardware /software) cell control architecture. Current research underway at
the University of Michigan is directed toward demonstrating this hypothesis.
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