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Abstract

The dynamic performance of computer-controlled manipulators is directly linked
to the formulation of the dynamic model of manipulators and its corresponding control
law. Several approaches are available in formulating the dynamic models of
mechanical manipulators and most notably of these are the Lagrange-Euler
formulation and the Newton-Euler formulation. This paper describes an efficient
position plus derivative control in joint space for a PUMA robot arm whose dynamic
equations of motion are formulated by the Newton-Euler method. The controller
compensates the inertia loading, the nonlinear coupling reactance forces between
joints and the gravity loading effects. Computer simulation of the performance of the
control law is included for discussion.
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1. Introduction

The purpose of manipulator control is to maintain the dynamical response
of an electromechanical manipulaior in accordance with some pre-specified
system performance and desired gcals. In general, the control problem consists
of (i) obtaining dynamic models of the physical system and (ii) specifying
corresponding contrel laws or strategies to achieve the desirad system response
and performance. This paper deals with the laiter part of the control problem
of computer-controlled manipulators, and in particular, the PUMA robot arm.

A mechanical manipulator can be lreated as an cpen-loop articulated chain
with several rigid bodies {links) connected in series by either revolute or
prismatic joints. One end of the chain is attached to a supperting base while the
other end is free and attached with a tool {the end-effector) to manipulate
objects or perform assembly tasks. The motion of the joints result in relative
motion of the links. A priori information needed for control is a set of
differential equations describing the dynamic behavior of the manipulator.
Though various approaches are available to formulate the robot arm dynamics
such as the Lagrange-Euler [Lew72], the "Recursive-Lagzrange” [HolB0], the
Newton-Euler [LWP80], and more recently the “Gibbs-Appell” [HoT80]
formuiation, two main approaches remained to be used by most researchers to
systematically derive the dynamic model of the manipulator - the Lagrange-
Euler and the Newton-Euler formulations. After obtaining the dynamic equations
of motion of the manipulator, a suitable control law rmust be designed to
con}gt}_te the necessary torques/forces to actuate thz joints for every set point (
94,3999 ) in the pre-planned trajectory. Bejczy [Be}7<] based on the Lagrangian
formulation has shown that the dynamic equations of moticn for a 8-jointed
manipulator are highly nonlinear and consists of inertia loading, coupling
reactance forces between joints and gravity loading efizcts. Hence, the control
law must be designed to compensate all thesz nonlinear efiects. A position plus
derivative control based on the computed torgue tachinisue has been used
previously to servo a Stanford arm [3ar73] whose dynamic equations of motion
are formulated by applying the Lagrangian equations of motion to an open
articulated chain. However, the dynamic equations of motion as formulated by
the Lagrange-Euler method have been shown to be computationally inefficient
[TML80,Pau72], and real-time contrel based on the ‘cemplete’ dynamic model
has been found difficult to achieve if not impossible {Pau72]. A simple control
law in joint space which compensates the inertia loading, the coupling reactance
forces between joints and the gravity leoading will be shown through the
"Equivalence Formulation” [TML80] to have the same control effects as the one
obtained by the computed torque technique. This control law is based on the
dynamic equations of motien formulaied by the Newton-Buler method.
Computer simulation of the performance of the control law for a PUMA robot
arm on a VAX-11/780 computer shows the expected result.

In the following secticns, vectors are represented in boldface lower case
alphabets while matrices are in boldface upper case alphabats.

2. Kinematics and Notation for Ifanizulators

A mechanical manipulator consists of a sequence of rigid bodies, called
links, connected by either revolute or prismatic joints. Each pair of joint-link
constitutes one degree of [reedom. Hence for an n degree-of-freedom
manipulator, there are n pairs of joint-link with link 0 attached to a supporting
base where an inertial coordinate frame is establishad. In order to describe the
translational and rotational relationship between adjacent links, a Denavit-
Hartenberg matrix representation for a pair of jeint-linic is used [DeH55] and
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shown in Figure 1. Frem Figure 1, an orthonormal coordinate frame system {
%.%.% ) is assigned to the i'® pair of joint-link, whers the z; axis passes through
the axis of moticn of joint i+1, and the 1; axis is normal to the z,_; axis, while the
yi axis completes the right hand rulz. VWith this erthenormal coordinate frame,
link i is characterized by two parameters: a;, the commen normal distance
between z,; and z; axes, and o; the twist angle measured between z,_, and z
axes; and joint i which cennects link i-- to link i is charecterized by a distance
parameter d; measured between =) and 1 axes ard a joint variable 9 if it is
revolute. If joint i is prismatic, then it is characterized by an angle parameter B
and a jount variable d;. Vith the ccordinate frames established for adjacent links
(link i and link i), one can relate thz relationship between the adjacent
coordinate frames (i*handi-i**frames) by performing the following four
operations {see Figure 1): (a) Rotate an angle of 3; about =, axis. (b) Translate
a distance of d; along z; axis. {c) Translate a cistance of a; along rotated x;_,
axis. (d) Rotate an angle of ¢, about the rotated 1 axis.

These four operations may be expressed as a chain product of four
homogeneous coordinate transfcrmation matrices [DeHd2] as

cos¥; —cosa;sind; sine;sin Yy a; cos Y

sin?¥; cosa;cos ¥; —sina;cosV; g sin v
i s _ (2.1)
Lt 0 gin o COo3 ¢ d;

0 0 0 1
hi i
-1 Fi-1 (2.2)
I ¢ B '

The upper left 3x3 matrix of T}, is calied the rotation matrix &, while the
upper right 3x1 vector is callad the position vector nf, . One can view the
rotation matrix AL, as a transformation matrix vhich maps a vector
rj=(x.y,z)" expressed in the i} coordinate frame into the (i~1)* coordinate
frame with both origins coincidad at one point, and the position vector as the
displacement vector of the orizin of the i** ccordinate frame from the origin of
the (i—1)*" coordinate frame.

Rotation matrices 4], have the following useful properties:
(i) The inverse matrix of Al | is its transpose.

(A0 = (ALt = AL (2.3)

(i) Rotations between coordinate frames i and j can be written as a chain
product of rotation matrices between intermediate frames,

Al=p" AT - AL ifori<] - (249
= I]I A_]k
k=i+1
(iii) The rotation malrix operates on thiie cross vector as
Al (v x )= 1) x (&, 5) (2.5)
where 7 and s are vectors expressed in the i** coerdinate frame.
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(iv) Since the rotation matrix 2 is a functicn of the Joint variable ¥; ord;, its
partial derivative with respect to the joint variable g; {where q; = §; ) is
given as:

BAE; _ -‘*c,: IQ;jA,i—I Vs hi=Et 2. n (2 6)
6qj - ] : >t )
where
o -1 0
Q=|t 0 0 Vi gy = (2.7)
0 0 0o

Since
(Az) x by = Qi by (2.8)

where z, is a unit vector (0,0,1)" along the z; axis {or the axis of motion) and
by is any vector whose coordinates are expressed in the j** coordinate
frame, we can revrite Eqn (2.6) as

oAl . .
By~ (z; % AlLy) (2.9)
Similarly one obtains the second partial derivative of Ll as:

32[201' [["g-l (zj .1 X A}(—_1! (zlc- 1 % ‘5{‘;'.—1)) ; j= o
———= {41 (7 x ALY (mo X L)) ; i=j=k (2.10)
¢q;0q, 0 . otherwise

Let us deilne a displacement vector r ized in link i as:
Bl = Al (R.11)

where pl_; is the displacement of the orizin of the it coordinate frame from the
-1 P
1

gir
origin of the (i—-1)"" coordinate frame. Using the summation of vectors, we

obtain:
i Loy
Po = 2, b Ty (2.12)
k=1
and
0o = i £ (Zp % &5, B I=1;i=12,..n (2.13)
oq; k=1 oo
82p<': _ z]:r 1(_ y{.!—c"l { e X L e )) .j<1< (2 ‘|L)
EPr P ~e 0 ABjop XAy A8, ji-1 T = 14
UCIjGC}j; et S =1 =1\ |} 1+*m
The following vector identities will he nzeded for later use;
& X (bx e)={e! c)p—c(atb) = (Tr{e eYU—-c ) b (2.18)
Tr{a{b x 2}*) = (b x e)la={e x a)'b = b{c x &) {2.18)
ax(bxc)=bx{axe)riaxb)xe (2.17)
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Consider a differential mass dm in link i, if we integrate the outer product
rirf over the entire mass, we obtain the link inertia matrix J7 about the pivot of
link | defined by:

Ir= [rirtdm (2.18)
or
rfrfdm frerydm Jrr,dm
Jr= fr},rxdm f‘ry am fr,.rzdm (2.19)

Jr.redm frzr_,,dm frzzdm

Using the parallel axis theorem [Sym71], §F can be rewritten in terms of the it®
link center of mass inertia matrix, I, and the center of mass vector, T;, as below:

R L) A S |
b, Y, 22 s = - =
= k4 F2m, FyF,m; T, T,
Lex=1yu+1

= F, Py —’“‘—-%—“— . T, T,m, (2.20)
— - — ik Ixx'*‘]v'.'_]zz =2
FoTy Il T Ty -—2-—. [ % el

Note that the inertial tensor, I of link i can be written as:
L=(Tr{df - )V — (9] - 7z} (2.21)

Finally, to be consistent with the dimensionality of the homogeneous
transformation matrix T, we define an augmented 42 matrix, J;. which has the
form:

i mE

g

=!I , (2.22)
Ty Iy

where my is the mass of the i*" link.

The above kinematics relationship between adjacent links and their inertia
will be used in the following sections to derive the dynamic equations of motion
and show the equivalence of the two controllers basad on the two most popular
arm dynamics formulations.

3. Dynamics of llanipulators

The dynamic equations of motion for the PUXA robot arm can be obtained
from known physical laws (Newtonian and Lagrangian mechanies) and physical
measureiments (link inertias and parameters), The actual derivation is based on
the Lagrangian/Newtonian formulation applied to open articulated chains
represented in Denavit-Hartenberg matrix notation form. The equations of
moticn for a six-jointed manipulator have been derived previously by
Bejczy[Bej74], Paul{Pau72] and Lewis[Lew?4] using Lagrangian generalized
coordinates. The equations of motion derived from the Lagrangian and
Newlonian formutations will be briefly presented here.

3.1. Lagrange-SBuler Formulation [Leaw74]

Consider a position vector expressed in homogeneous coordinates,
p = (x vy, 2 1) which points from the base coordinate system to a differential

Octecker 15, 19281 Lagrange-Buler Formulation
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mass, dm, located in the i*" link. P can be written as:
p=Til-i . and r; = (Xj v ¥ Zi 1)L (31)

where r; is the position of the d1ﬁ°r-1ntia1 mass dm represented in the
i*" coordinate frame independent of <,.

The velocity of this differential mass with respect to the base coordinate
frame ( an inertial frame ) is:

i, 8T, .

i= g“?—-—[ﬁ?"q : fori=i,2,.n (3.2)

v
°T dt i

The associated kinetic energy dK; is 1—'l‘r(vé(t-'g)L)dm vhich equals:

i i 87 [ t
dK; = Y‘ M Tri= dm q;r:h,.] 3.3
i = lk : [OCLi ( 1) lafh: Rk ( )

When each link is integrated over its entire mass and the kinetic energies of all
links are summed, we have:

n ~|d i "" a’{" It
K.E. T‘fdl\. = Ie‘l[é—ll{s‘; E:" "”dch ] c,q_” (3.4)

dg;
Jj is defined as in Eqn. {2.22) and n=8 for a PUV A robot ar
The total potential energy of the arm is the sum of the potential energy of

each link expressad in the base coordinate frame:
5]

PE. = Z P, =) —mgzTig (3.5)

i=1 i=1

where
Tj is the position of the center of mass of link i
g is the gravity vector = (0,0, —[z],0)* and 2 = §.Bm/ s?

Applying the Lagrange-Euler equations of moction to the Lagrangian
L= K.E. ~ P.E, we obtain the necessary generalized torque %; for joint i to dmve
the i** link of the arm:

6, & [otk [aTH]] .
n=3 :L oL ) ETF{ Jk[ ”Cij

! =
dt |aqg; | 8a & 5 dg; 9g;
6 m om R pm ann‘t & g7 (36)
— o] 1 L R
+3 0 lr{ﬁ — Jm[ " ] Giqx — Mz ——x ; fori=1,2,...,6
m=ij=1lk=1 Oq_ioc’:.i( ug; ) i=j og;
Becauss of its matrix structure, this fermulation is appzealing from a
control viewpoint in theat il gives a set of closed forin differentiel eguations as:
D{9)E + E{6.8) + G{) = (3.7)
where
D{¥} = a6xb inertia acceleration matrix
L
e X |aTk [gvx
=% ETP[ uk[ —2 cfori=1,2,...,8 (3.8)
k=i=1 aq} (—'(Ji

H{®¥ , ¥) = a 6x1 nonlinear Coriolis and Centrifugal vector

Ocztober 15, 1981 Lagrenze-Coler Formulation
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oTs |
dq; J

6 m m TR
= Tr <
mz=:' 1 {afljaqk o

] S (3.9)

G{¥) = a B6x1 gravity loading vector of the links

8 aTi _
= Ejmj 85,0 fori=1.2,...,8 (3.10)
]:
¢ = (9, Y2, . Pg)*
¥ = (9, Y2, . Ug)"
Y= (6,, B2, -, Bt
T= (7,72 .73 .T4 . T5 .Tg)"

= external applied torgues for the joints

This form allows one to design a control law that compensates all these
nonlinear eficcts easily. Computationally, however, the Lagrangian formulation
is extremely inefficient as compared with other formulalions.

3.2. Newton-Euler Formulation [L1?80]

The Newton-Euler equations of motion of a manipulator consist of a set of
compact forward and backward recursive equations. The most significant of this
formulation is the computation time of the applied torques could be reduced
tremendously zo that real-time control is possible. A brief derivation of the
formulation based on [LWPB0] is presented here ior complet=ness.

In order Lo avoid pseudo-forces, ths time derivatives of all vectors must be
taken with respect to an inertial frame esteblished in link 0 { the base
coordinate frame). All vectors are represented with respect to the base
coordinate [rame.

The forward recursive eguations propazate linear velocity, linear
acceleration, angular velocity, angular acceleration, total link forces and
moments from thes base to the end-efiector of the manipulator. For
manipulators having all the rotary jeints, these equations are:

0 = w152y (3.11)
05 = Aoty X Bz 025 (3.12)
2=y X (o X by)+oy X ntey_ (3.13)
Zi=w; X (@ X Fj)+ay X Tita (3.14)
T = m;g; (3.15)

I{!i = 0 X (?jc._)i):—l‘g_l
= 0Byt X Eii'l—(f.i.i-mi) XK fi (316)
= oy, —{E+n) X myE-i X0

i+l

The backward recursive equaticns of motion propazate, from the end-efiector to
the base of th2 manipulator, the forces and mements exerted on link i by link i-
1.

=T+ L (3.17)

Octobar 15, 1821 HNevion-Fuler Formuaiation
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o =Lai+o; X (Lop)+ (5 n) X mig+r X §,, 40, (3.18)
7i={2- )"y (3.19)
where:

w; = angular velocity of link i

@ = angular acceleration of link i

r; = the origin of the i** frame with respect to the i—1'"* frame
r; = center of mass of link 1 with respect to the it frame
2; = linear acceleration of linl: i

2; = linear acceleration of the center of mass of link t

I; = inertia about center of mass of link i

Iy = total external force exerted on link i

Kj = total moment exerted on link i

fj = force exerted on link i by link i-1

n; = moment exerted on link 1 by link i-{

T; = torque exerted on link i

Inertias I, and vectors ¥, vy and 5,_, take on complex multi-angle dependent
forms if they are expressed in the base coordinate frame as required by Egns.
(3.11)-(3.19). Ii they are expressed in their own i* coordinate frame they are
constant. Ve will apply a rotation £; as dzfinad in Egn {2.2) to Bqns. {3.11)
(3.19) to allow all the vectors and tensors to bz reprasested in their own
coordinate frames. Talze Eqn. (3.18) for an example. Under rotaticn it becomes:

AP =APL AL ey AP Wy X (EPLELAS )

L Emoe VO g [ 8, sy 4 iF]
AT+ A0) X ASE ATy X LIV iy (3.20)

+ 1

i+17 0
+AT AR 1R

where A°LLL and £°r are in the i™ coordinate frame and hence censtent. Rather
than carry this notation we will assume all vectors and tensors are defined in the
coordinate frame of their subscript, te. we will represent A7%; by w; and APLA)
simply by I; . Vith this notation, Egns. (3.11)-(3.19) become:

= AT o +8i2-,) (3.21)
oG=8" eyt 0 X iz, + Gizy) (3.22)
ai=w; X (@ ¥ ry)+es X oA Tl (3.23)
gi=w; X (@ X T}ty X Tt (3.24)

fi=1T1,-Ei+f-'.iiH"'-- I '.li+[fi+l (325)

n;=la+o; X (Go)+m{Trm) X &+ % 40, ,.
- (3.28)
+A

- pni=1., L
=4 ) (3.27)
with the initial conditicnz of we = 0 2, = g%, . ¢, = 0 and z=28m/s

Cetober 153, 1731 Nevlon-Tuler Formulation
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4. Computed Torque Technique Ezased on the Hewtonian Eguations of Kolion

Given the equations of motion of a manipulator as in Lqn. {3.6) {Lagranze-
Euler formulation) or Eqns. (3.21)-(3.27) (Newton-Euler formulation), the control
problem is to find appropriate torques/forces to servo all the joints of the
manipulator in real-time to track a desired pesiiion trajectery as closely as
possible. Several methods are available in accomplishing this task. Most
notably of these are: (i) Resolved Moticn Rate Control (RIMRC)Whig9], (i)
Cerebellar ¥odel Articulation Controller (CMAC)[AIb75], (iii) Near-minimum-time
control [KaB7:], and (iv) Computed torque technique [Mar?3, Pau72].

The RMRC is a technique for determining the joint angle rates required to
cause a manipulator end point (or tool) to move in certain directions which are
expressed in hand or world coordinate system. In order to find the required 3,
the inverse Jacobian matrix (€)' is required. One of the drawbacks of this
method is the added computation load needed to find the inverse Jacobian
matrix and the singularity problem associated with the matriy inversion.

The CMAC iz a table look-up control method which based on neuro-
physiological theery. It computes centrol functions by referring to a table
stored in the computer memory rather than by solution ef analytic equations.
For useful applications several problems such as memory size managemeant and
accuracy need to be solved.

Due to the nonlinearity and complexity of the dvnamical model of
manipulator, a closed form selution of the optimal control is very difficult, if not
impossible. Near-minimum-time control is based on the lincarization of the
equations of motion about the nominal trajectory and hnear feedback and/ or
suboptimal conirol law are obtained analyiically. This control method is still too
complex to be used for manipulators with four or moyre degree of freedom and
furthermore it neglects the effect of unknown external lozds. -

One of the basic control schemes is the computed torgue technique [Mar73]
based on the Lagrange-Euler equations of motion. This section presents an
analogous control law derived from the computiad torgue technique based on the
equalions of motion derived from the Newton-Euler method as in Eqns {3.21)-
(3.27).

The computed torque technique assumes that one can accurately cempute
the counterparts of D{¥), H(¥, ), and G(?) in Eqn. (3.8) to minimize their
nonlinear effects and use a position plus derivative control to servo the joints
[Pau?2]. Thus the structure of the control law has ihe form of:

T = Da(qa){{éd + (09 - B) + I (w8 —«5)} ~ 12.(8, €) + C.(0) (4.1)
where
K, is a 6x6 velocity feedback gain matrix.
K, is a 6x6 position feedback gain matrix.
Substituting the 7 from Eqn (4.1) into Eqn. (3.6), we have
D{3)8 + I{B,¢) + G{¢) = Da(f;){{*f‘l S R 0) I (N C L)
. (4.2)
+ H (T, ) + Culw)
If Do(2) , Ho(6, D). Go{®) are equal to D{T), F(¥, 2}, Q) respectively, then
Ean 4.2 reduces to

I}{'t?){'é + e + pre] =0 (2.3)

October 15, 1931 Contro! Lavr
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Since D{4d) is always non- singular, andg if {a) I is symmetric and non-negative
definite matrix, \b) IS__, is symm ric and positive definile matrix, and (e¢) the
rank of lI\V | Kolied | KUG | = n, then

lth e(t) - 0

The analogous centrol law derived from the computed torque technique

based on Eqns (3.21)-(3.27) can be obtained by substituting ; in these
equations with

.. n
31+ Y K -9y + 2 Kis(sd - v,)

s=1 =1
or (4.4)
0.0 n N
S+ ) Kise, + 2 Ki%e,

s=1

where KP and I{,.{F are derivative and position feedback gains for joint i
respectively.

The following derivation shows that the recursive equations of motion with
the above santuuﬂon of 8; will give the desired position plus derivative control
for a PUMA robot arm.

Egn. (3.21) can be expanded to obtzin:

i . .
=2 (0 2 1) B (4.5)
=1
And Eqn. (3.22) eupanded as:

i n = ‘
o= (L7 B+ ) Kfe, + Y Kie)
=1 s5=1 s=1 (
' 4.8)
ii-1 : )
-LZ E (‘:—f{ zk-l) x \[-1 13, 1)13:13;:
j=1k=1

With Eqn. (2.3), the first terim in Eqn. {3.23) becomes

i
Wi X (wx X} = E 2 U:-fl Z; 1) X ( 5 _!‘-'s—l) x ))ka
j=1k=1
i (4.7)
=3 3 aitek b
=1k=1

Vith the help of Eqn. (2.17) and Ean. {2 8), the s=cond term of Eqn. (3.23)
becommes

i A . n . I .
o5 X 1= ) (A7) x {8 + 3 KPes + Y Kiey)
i el ) : 5
+ 2 0 U ) ) (¢ oo %) —(4 T gn) @ ((AF s ) x S (£.8)

j=1k=1

i n n 14
_ -1,./.2d v ig S, NV Ny
: E Qi vy t Y Koy + ]\i:’ 2. - it

e=1 a=1 j=1k=1

A R

~

CO"HJI"IILI’ Tgn. (4.7) and Eqn. {£.8) a2nd expending the 2., term in Eqn.

(3.23), we have:

-

Cotehar 15, 16851 Control Lavr
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i i . n . n -
2= 2, Ef‘-‘ (S + ) KPe 4 ) Kie,)
mzj j= =1 =t
’ (4.9)
Y 2 Z\qlv 'QPTIAPE LG, + Afs,

mameaxiik) i=1k=1
vhere u=max{j,k) and v=min(j,k)
Using Eqn. (2.17), and Eqn. (2.8). this bzcomes:
i m rd n . il ;
ai=), PETCAR LG + Y KPeo + Y Kife,)

-
maj j‘l s=1 s=1

£y DI ARI ST (ST AGIE IR

m=maxiik) i=ik=1

From Eqn. (2.13) and (2.14) we have:

(4.10)

L, 0P e, & K - 314 d?p}
ai=£1_02 Z( B85 (v_] Z ‘-\"ses + Z K; =s s)" ' UL’-}) + [*1 8254 gt2 (4-1 '-)
i=1k=1 j s=1 Ui t

As expected, the i*M acceleration with respect to the base rotated into the i'h
coordinate frame.

g; in Eqn. (3.24) can be written as:

. n n .
&rl-lu_};_'_l. (B8 + ) Kfe, + 3 Kiey)

i o (4.12)
1 le= N
Z LCJI ICH-11 .'\—11@—1111-]—1?1" VRS
j=1k=1
which using Eqns. (2.6)-{2.10) bzcomes
i Al apl n noo
= O <= 3y foad iz -y
al_ﬁ'i EI: 55, 1 r PR )\“J 2 I\v g + E I‘\f) 3:)
j=1 j] ] s=1 s=l
. D i (4.13)
gy B%AL o opl L.
+A,22( — 1 e + A722,

For the present we will ignore the last two terms of Egn. {3.28), which
represent force and moment exerted by the hand (end-effector) on the object.
We will discuss their contributions later.

Eqn. (3.27) then simplifies to:

7i=(heyt oy x (Te)+my(n+T) x &4 75, 1i=1.2,.n (4.14)
Using Eqn. {2.21) and Ecn. {2.15) this is:

"( T‘-(rv\J_‘-l)cl e X {(TF( i )&-’1)_"-1 x \(":i ted fi) (4 15)

ne fay ~e 72 0Y 0 O e i-1. N

~B % {05 3¢ (3 3¢ )+ my{ G li) X ':-;)Lc—j Zio)

Considz: Lhe .I" terms cof Eqn
integral ovar mass is pullec outside of

f (Tr(ee ) - zedeatd e,
X ({Tr{re) T—L‘;”.t)m,-)!-.‘ Zi-)dm

using Eqn. (2.15):

£.13) in the 11 ht of Egn. (2.i18). If the
e Lrace Lo me:

LY
Lil

(4.16)
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Zf(lf‘,' X (ai x ri)i?—lzj—l"_wl x (ri x (ml b -I\)*d gi- l)dm

= [ (o % BHE e % 1) 4o % (@ % 1) (412, X 1p))dm

= [Triles x 5 oy % (@ x £){€ 1) am (4.17)

| K}

= [ Tej(e x )G (o x (@ x )=l

Using steps identical to Eqns. (£.5)-{<.8), Eqn. (£.17) becomes:

i q f— 3 e I rim i i
= fTriaed, A7'C) PG+ ) K + Y Kg'es)
=1 s=) g=1
(4.18)
+ZEU“ T O AT e L AT B AT Y dm

d

Bringing the integral over dm insid2 the trace cperator and using Egns.
(R.6)-(2. 10) we have:

o A° (%5 o '\'E\ ris . :
s=1 s=1 i
Since Tl‘{E"B"Tl §CDE) and [P0 =Uthe i
t
L ford (o)) :
*o A1 el ] LT
ZTI‘ == ¢ (& - 3OSeg+ MK
- o L *h s e
ov; T ew ) | M T g s=1

Now consider the last three terms of Egn. {4£.15) and use Eqn. (£.13) it
becomes:

i A i i A2ni
. t d, ol o i . r ) i i 8%pl .
[[zi‘"‘zi 1] m(F+ry) X £50 ), =6 + 2 K, + ) Kfe)+ )Y ——=—54,)
_ a x =5 j % - P ~s b Zanoon i k
i=1 9V e=1 s=1 j=1k=1 U0y
i 9L O n iod g3l
of D saad cisn oo 3, VR o o -
+myry < AP R Y, Kfeo+ ) Kfe )t ) i 0;6)) (£.21)
=1 j £=1 s=1 i=lk=1 iYYk

Consider the first and third terms of Ean. (4.21):

- t [i ARl 4 & . o dod el L.
Ai—1, = ) : 3 A ' ris . 5 LI
[%i bi—l] MiE X L8N SN+ ) K+ 1 Kife)+ ) ), 3850, vivk (4.22)
=1 YV s=1 s=1 i=lk=1 ¥ Y P VR
Using Egn. (2.15) and Een. {2.8) this bacoraes
.o[... [ 5 - , e t] - ,.~c[ . whrpd-1yt L]
Tr £ l V=1 XIS J =Ti ) l Ty By (': 20)
and since
aLl
Ql—l_foll lc'l:l'-l_z:_-'__c — 4L.22
1¢£ i 80, ( )

Eqn. (£.23) becomes:

=15, 1€31 Contro! Layr
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[i apl iod agf\i . a[i . n
=TriY) —=—+ %' " 25 e o + (2 4.25
Tu L_:_,l 35, j;lk__;l 50,55, 80 ) (v} + E K%e sgl Kifes) (4.25)
Consider the next two terms of Bgn. (£.21),
. [ 4 ni .. n n i :' 82
(200, mir AL 5B+ B Kot B e + 13 T g5
i=1 Oﬁj s=1 s=1 j=tk=1 3?3 3‘13 (4 26)
i 3AL . s n i RAl '
(251&_(15 .I-Z I 2 5)1722_{7_\’]6] :)
j=1 Vi s=1 j=lk=1 U0V
Using Eqn. (2.15) they can be recast into:
]
Tr[&l } 11‘1 15i-1 X m,‘*,-)tj . (427)
and since by Ean. {2.8) and Eqn {2.13):
Apl
Az x =6} =L AL =42 6:30 (4.28)
i

they become:

o], 8:
Tr{mjA,Pl- - ]'\ a0

Consider the last term in Dgn. (£.21) and exchangzing the dot product and
vector product, it becomes

[ = - ] ‘It
[lfii] e X T+ l‘s)] Limgs,

}‘} (4.29)

= (&UT + g))fmyas, (4.30)
: t
= Trli’ioml::—r.zc {:il_l o+ ri)] ]

Using Eqn. (£.24) and Eqn. (£.28), it becomes

: L
. 8L ani \
IrmZe, | — P
l I 1 A TN

(4.31x)
g '-'“)t]

6 LQ_
= myE o (
89

J2N
[#))
o)

—

where
:(0 D.!é;f.O)" : Fl:(i:vFivil-lt

Combining this result with Bgns. {£.23) and {£.29), wz have:
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i i Yyt Syt
i, [ o4l opd_,.[0£1) 94 apl [apl)
=), Tr JF+m, —t 2 (2 — 21 3rad Kise, + K‘se
i = (6191 <1 '61}] 3] anJ ( 13""] ’B"Jj’ aJ]J M E] 2 s)
4 [ el e%pi (et
i), B [ e f*)[ﬂf;] (4.33)
i=ik=1] YVj0Vk Oviovy l_(‘/u] J
i az L ]
( 824l ey 87 \ap;] S8 ol
~  LLljLj< P = ) v f; —"
8909, ' 83;6%m;’ avlj ’ R TV

T_l\ r

. . .

('b, + }_, ]\CSCS +- " ey
s5=1 “_l

. 4.34)
N (
aﬁIJ ‘Uk’L’j n.[l‘a 6'{_; Ly

where ! is definad as in Eqn. {2.22)

This is the same result as Eqr. (3.6) when upper link contributions are
ignored.

Consider now the upper link contributions, i.e. the last two terms in Eqn.
(3.28):

. t . :

[["il lzi—l] (o % LM A ) (4.35)
Assume for simpliciiy that i+1 is the lzst link of the arm, ie. fi+z and nj.2 are
zero. We will relas Lhis ass zumpticn shorily.

We can rewrits the first term of Eqn. (£.35) us ing Dan. {2.8), and Eqn. (2.18)

as:
Trisd* 1, () ;)LJ? ‘TF{’ S PR v At WWE B (4.36)
Using Eqn. (3.25) and Eqn. (4.13) this can be written:
r!+1 ' H'l a:‘,i+1 T r
L'c ' ~Eg » .
=Tr LZ( i1+ 53 }(Ujd 4 Z I g,seg + 2 }\K;es)
H i s=1 s=1
irlitl gzﬂéﬂ grltl (4.37)
faf o) . - ’ 1 j—
+ ( Do aLle ‘“i+l+ non oA = }'3.;01 ' nlll']%"‘ﬁ ( 'Cl; Qll_l"l)
=is) 67,895, 8¢;00y

Using the sam° steps uszd in deriving Egn. (£.33) the second term in Eqn.
(£.35) 1.1“”*11:,+1[_i Zi-; . can be vritten:
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i+l aAHl [,H-l 6'1+1
— r "0 =t —
- T '\ 6 o~ Ji+l+rni+l 013. Li+l + mi+lg'1'c)\ 66 )L
j=1 vj H i
BAiiF! dplt! e
‘*’(mnl_v-_‘fn-l‘:‘min_a"r"‘ My 18%e) (ol =10 L )t
}
(V8 + Z‘ Kieg + 2 Kise, (4.38)
s=1
9] 225 it i+1 -1+1
id g=f: 8”pd [iF
I'e e At
+Tr22(\ 6‘(}“67}] "l"'l-i n1]+1 aﬁao ]+l)\ an 7
j=1k=1 } <
G, 621}1“ fpi—tei-lyitl G
+(‘_‘——1.. MG+ _—_in e Il|+1)\fto (A :+1) 13‘:.’3k.
Since
op”'
i=-1pyi- Iod=tp bl o
AO Ql r ‘[i(! Ql [‘]] Ljg1— 619 1 (4.39)
1
Eqn. (4.37) and Bqn. (4.38) can be combined to form:
+1 irl il -\u-l aitl i+l irl
“JETF 0% -1+1+1’“'11+1ar\ rnl)(al \'L*‘(min__ahc -l;|r1+mn+lapc H 9o A
i=1 av; 89, ad; - c';“_, 99, 09
4 n n )
5 che ie
(‘U] + Z I\.". 2 + E Ki-‘ Gs)
s=1 s=1
i+1i+1 Gepvl a2 éi-l gaitt .
+Tr — T m, ek V=2 3t 4.40
|=1k=1(( O";:U” e i+1 i+] G avk 1+178 89, s ( )
621‘\(1,“ 621.‘(1;1 )(ap}:-‘-lu) Lo
e 1 T L m = 898
(6’193'6‘5‘}; 14l ovjaﬁ i+l 6i J v
| (o op):
+ Trimj, 2% Y Py
[ i+15%c 151 aﬁ'i J

which when combined with Eqn. {£.34) can be refermed into:

o “q 6 J = \;‘J
1}.
g=ij=1 ] 1 s=1 s=1
4.41
lﬂi 3 [ 2'?3 [a'"g]‘ g 873 (4.41)
Tr A IRV m,= ——v,
n - i A4 1 d oo A1 Q
g=il=1k=1 VK l(“}lJ =i O,

If the arm consistg of n links then g can be surmmed from i to n, and we have
Eqn. (4.1) which is the :a.nn!o gous ccnlrel law derived from the computed torque
technigue bazed en the L“'ﬂla?lﬂlr_ll eqlations of motion.

5. Computer Sirzulztiosn Rzsulic

This gzction discusses the computzr simulation result of the proposed
control law derived from the computed torque technique and comparoes its
computationzl complexily with the analojouz controil law obtained from the
Lagrange-Buler equations of motion. As a mean of comparizon, their efficiency
is determined bazad on th2 number of mathem "ti“al cperations {multiplications
and additionz) in terms of the number of _] nts of the robet arm , n. The
number of mathematical operations of some of the terms in both control laws

Octobar 15, 1801 Comaputer Simulation
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may be slightly different from other papers [TVL80,Hol82] due to the method of
implementation of the centrol algorithms in programming.

In this study, the homogeneous transformation matrices T, are computed
first and then other relevant terms such as velocity, acceleration and gravity
terms in the Lagrange-Euler equetions of molion zre ceinputed respectively.
The comparisons of the number of mathematical operations in the control laws
based on these twe formulations are tabulated in Table 1. and Tabie 2. In
general, for a six-jointed robot with rotary joints, the number of mathematical
operations in the control law as in Eqn (£.1) based on the Lagrangian formulation
is about 100 times more than that of Newton-Culer {ormulation.

The feedback gains K, and I, of the control law are kept constant for the
whole motion execution to facilitaie the comparizon of both control laws. The
elements of K, and I7, are assigned esccording to the stability criterion as
outlined after Eqn. (4£.3). Since it is unlikely that the natural frequency of a
PUMA robot arm will be over ten hertz, the principal diagonal elements of I, are
assigned the value of 100 and the diagonal elements of I, to 2 VK], = 20 Azain to
simplify the comparison, all the nen-diagonal elerments of I7, and [, ere zero
which neglect the position and derivative error efiects between joints. Future
investigation will focus on finding proper algorithms for selecting the elernents
of K, and K.

Based on a PDP 11/45 computer and its manufacturer's specification sheet,
an ADD (integer addition) instruction requires 300 ns and a Y UL {integer
multiply) instruction requires 3.3 p—sec. If w2 eszurne that for ezch ADD and
MUL instruction, we need to fetch data from the core memiory and the memory
cycle time is 450 ns, then the propesed control lei- bassd on the Newton-Duler
formulation of robol arm dynamies raquiras approvirnately 3 msee. to combpute
the necessary torques/forces to servo all the joints of a PUliA robot arm for a
position set point. This certainly is quite acezpiablz for thz tirne delay in the
servo loop and thus allows one to pariorm real-tirnz contrel en a PUMA robol
arm with all its dynamics taken into consideration.

A computer simulation study to evaluate the perforinancs of the above
control law for a PUMA robot, whose equations of motion are derived by the
Newton-Euler formulation, was carried cut on a VAX-11/780 computer. The
initial and final joint angles of a PUXA 800 series robot arm are:

Binial = (80°, 0°, 90°, 0°, 0°, 0%)*

Bapa = (45°, 30°, 0°, 45° , 60°, 9C°)*

The position errors 94{t) — %.(t) ior each joint are ploited and shown in Figures
3-8. The sampling time is chosen to bs 0.01 second. TFigure 2 shows the fAow-
chart for the computer simulation prozram implementation. In Figures 3-8,
although the position errors are slizhitly "cscillatery” about the desired position
set points, they are alivays well balow and within the reszolution of a i2-bit A/D
converter (less than 4.26x:07% radian per bit ). Since the manipulator is a
highly nonlinear and complex systara, further improvements in the performance
of the control law can be done by uzing adapiive feedback geins. Our future
vork will focus on finding propear adantive contral strategies for industrial robots

LS

vwhose loads are varying within a tas'z eyele time.
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Controllzr based cn

Lazrenge-uler Fullipiicaticas £dcitions
Bquations of Iioticn
T 32n{n—1) 24n{n-1)
8T) 5 51p—s

= = n—as

_.mjg—-—,aqj | 4n{9n=-7) n.g__..é...i
j
i m;g EFL“J 0 l—n(n—l)
: B 2

16

aTk a":;k t 128 65
0y c 1o ]
r LT -—nfn.‘-l fn.:.’ {1 )
aq, ! By g 1 Xn*-2) . > 1)(n+R)
1
. eole Yt |
S BTy |8tk 0 1,
Pl vk “n{n—1){n+1
k=rmextiy) | 0 dq g Hn+1)
t
a*1y  [ath) 128 65
Tr I o O 2/ .- Lo bBo 2 -
aqjaq-]: m.L Goﬂ J B il \n ")(D‘T ") 2 i1 \n' J)(n+2)
i~ AL
3 T[aai‘;n T 6'L.°.1] 0 1 2,
M= = {n—1){n-+1
m=max{i.ik) anch 0g; J | g )\ )
94+ e+ Ke 2n 4n
T = D{¢% + K& + Ie) n?{n+2) n?{n+1)
+ H (€ 9) + Q¢
|
2 ) 15 a3 . &7
Total 138 nt + ééins B—Dn" - 7%1’13
S . o , Bol - 82 . 620 2 131
latheratical Operations + —n°+ —n + 0% S
3 3 3 8
where n = number of degree-of-ireedem of the robet arm
Table i Ereakdeown of Llethamatical Operations of the Controller
Eased on Lzzrange-Eulei Formulation
Tabizs
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Controller basad on
Newton-Buler Tultiplications Acditicns
Eguations ¢f iiotion
AR Sn Tn
o 9n 9n
&; 27n 22n
R 15n l4n
O 3n 0
£ 9{n-1) Gn—6
; Zin i8n
n; ' 2in-15 24n—15
S8+ Ké; + Kpe 2n 4n
Total ilGn—2< 107n-21
Mathemmatical Operations

where n = number of degree-of-ireedom of the robot arm

Table 2 Breakdown of Mathemeatical Operations of the Controller
Based on Newton-Buler Formulation
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