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Abstract

This paper prasents a proposal for a hierarchical con-
trol structure that uses special purpose processors for the
control of industrial robots. The systems consist of a gen-
eral purpose computer as a supervisory machine with
attached special purpose processors that perform the bulk
of the numerically intensive computations in the treal-time
control algorithms. The host machine performs trajectory
planning, coordinate systems transformations, and coordina-
tion among various robots. The special purpose processor is
proposed as a single chip processor which performs real-
time interpolation hetween set points from the host machine,
computes the correction torque for each Joint of the robot
arm. Comparisons between the proposed control structure
and current industrial control technique are discussed. Tha
architecture of the processor is outlined. The gross motion
control strategy is briefly discussed and the computationa!
complexity of the control law is tabulated. Finally, the
results of a functional simulation of the processor exacuting
part of a control program are noted.

Introduction

Present computer technology provides cost effectiva
solutions to many problems which were not too long ago
considered infeasible. With the increasing availability of
inexpensive memory and the burgeoning of VLS| technology,
it is now cost-effactive to design special purpose attached
processors that are tailored to specific but complex compu-
tational problems. Normally, these problems could only be
solved by expensive mainframe machines. One such problem
is the real-time control of a robet arm.

The purpose of robot arm control is to maintain a
prescribed motion for the arm along & desired arm trajectory
by applying corrective compensation torques to the actua-
tors to adjust for any deviations of the arm from that
desired trajectory. Several modes of manipulator control
have evolvad during the last three decades. The
computer-controlied mode is the center of current develop-
ment trends. This technique promises to extend the use of
robot arms far beyond the domain of repetitive tasks.

Conventional servomechanism techniques are being
used in present day computer-controlled manipulators. How-
aver, the motion dynamics of an 'n" degree-of-freedom
maniputator is inherently nonlinear and can only be described
by a set of 'n" highly coupled nonlinear second order ordi-
nary differential equations. The noenlinearities arise from
inertial loading, coupling between neighboring joints, and
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gravitational loading of the links. Furthermore, the dynamic
parameters of a manipulator vary with the position of the
joint variables which are themselves related by complex tri-
gonometric transformations. The servomechanism approach
modeis the varying dynamics of a manipulator inadequately
and neglects the coupling effects of the joints. As a result,
manipulators controlled this way move at slow speeds with
unnecessary vibrations. This reduces their application to
tasks which can tolerate limited precision.

A priori information needed for control is a set of equa-
tions of motion describing the dynamic behavior of the mani-
pulator. The dynamic equations of motion formulated by the
lLagrange-Euler (L~E) method have been shown to be compu-
tationally inefficient’?, However, a direct Newton-Euler
(N-E) formulation coupled with an appropriate special pur-

pose processor has been suggested as & solution®.

This paper presants a proposal for a hlerarchical con-
trol structure that uses special purpose attached proces-
sors. This proposal, it is argued, would allow tha real-time
control of industrial robots, in particular the PUMA robots,
The main advantages of this approach are: (i) The computa-
tion of the joint torques is based on the dynamic model of a
robot arm allowing a faster more responsive control system
to be constructed. (ii) The dynamic model facilitates vari-
able feadback gains to accommodate varying payloads.

In the following sections vectors are represented in
boldface lower case alphabets while matrices are in boid-
face upper case alphabets.

Current Control Methods

As noted above, given the equations of meotion of a
manipulator, the control problem is to find appropriate
torques/forces to servo all the joints of the manipulator in
reaf-time to track a desired trajectory as closely as possi-
ble. Several control methods have been developed to
accomplish this task. Notable among these are: (i) The
resolved motion rate control®, (i) The Cerebellar Model Arti-
culation Controller®, (iii) The near-minimum-time control®, (Iv)
The suboptimal control?, and {v) The model reference adap-
tive control®. Of particular relevance to this discussion is
the current PUMA robot arm contral scheme, which we will
briefly describa.

The controller consists of an LSI1-11/02, and six 6503
microprocessors each with a joint encoder, a digital-to-
analog converter (DAC), and a current amplifier. The control
structure is hierarchically arranged. At the top of the sys-
tem hierarchy is the 1L.81-11/02 microcomputer which serves
as a supervisary computer. At the lower Jevel are the six
6503 microprocessors--one for each degree of freedom
(see Fig. 1--all figures are at the end of the paper), The
LSI=11/02 computer performs two major functions: (i) on-
line user interaction and subtask scheduling from the user's



VAL' commands, and (i) subtask coordination with the six
6503 microprocessors to carry out the command. The on-
ling interaction with the user includes parsing, interprating,
and decoding the VAL commands, in addition to reporting
appropriate error messages to the user. Once a VAL com=-
mand has been decoded, various internal routines are called
to perform scheduling and coordination functions. These
functions which reside in the EPROM of the LSI-11/02 com-
puter include: (i) coordinate systems transformations (e.g.
from the world coordinates XYZOAT to the joint coordinates
V4,82, * * * Bg OF vice versa) (il) joint-interpolated trajectory
planning; this involves sending incremantal location updates
comresponding to each set point to each joint every 28 ms.
(hi) acknowledging from the 8503 microprocessors that
each axis of motion has completed its required incrementat
motion. (iv) two instruction lookahead to perform the con-
tinuous path interpolation if the robot Is in continuous path
mode.

At the lower level in the system hierarchy is the joint
controller which consists of a digital servo board, an analog
serve board, and power amplifiers. The 8503 microproces-
sor is an integral part of the joint controller which directly
controls each axis of motion. Each microprocessor resides
on a digital servo board with its EPROM and DAC. It com-
murdcates with the LSi-11/02 computer through a
Unimation-designed interface board which functions as a
demultiplexer that routes set points information te each
joint controlier. The interface board is in turn connected to
a 16 bit DEC paralie! interface board (DRV-11) which
transmits the data to and from the Q-Bus of the LSI-11/02
(see Fig. 1). The microprocessor computes the error signal
and sends it to the analog sarvo hoard which has a lead-lag
compensator dasigned for each joint motor. The feadback
gain of the compensator is tuned to run at a "VAL speed” of
100. There are two servo loops for each joint control (see
Fig. 1) The outer loop provides pasition error information
and is updated by the 6503 microprocessor about every
millisecond. The inner loop consists of analog devicas and a
compensator with derivative feedback to put damping on
the velocity varlable. Both servo loop gains are constant
and tuned to perform as a “critically-damped joint system”
at a normal speed of 100 (VAL spead). The main functions
of the microprocessor include:

(1) Every 28 ms, receive and acknowiedge set points from
the LSI-11/02 computer and perform interpolation
betwesn the current joint value and the desired joint
value,

{2) Every millisecond {approximately), read the ragister
value which stores the incremental values from the
encoder mounted at each axis of rotation.

(3) Update the error actuating signals derived from the
joint-interpolated set points and the values from the
axis encoders.

(4) Convert the error actuating signal to voltage using the
DAC's, and send the voltage to the analog servo board
which moves the joint.

It can be seen that the PUMA robot control scheme is
basically a position plus derivative control method. One of
the main disadvantages of this control scheme is that the
feedback galns are constants and prespecified. It does not
have the capability of updating the feedback galns under
varying payloads. Since an industrial robot is a highly non-
linear system, the inertial loading, the coupling betwaen

TovaL is a registered trade-mark of Unimatlon. It Is the command
language for the PUMA series of robot arms,

joints and the gravity effects are all position dependent
terms. Furthermore, at high speeds the inertial lcading term
can change drastically. Thus, the above control scheme
using constant feedback gains to control a nonlinear system
does not perform well under varying speeds and payloads.
In fact, the PUMA arm moves with noticeable vibrations at
reduced speeds.

One solution to this problem is the use of digital controi
with feedforward components computed by a special pur-
pose processor, The proposed control structure would pro-
vide an improvement over the existing PUMA robot arm con-
trol technique.

Proposed Digital Control Scheme

As noted above, the PUMA robot arm control scheme
suffers from the fact that the feedback gains are constant
and a simple servomechanism Is used to servo a nonlinear
system. We argue that a better solution is the use of a
spacial purpose processor (APAC--Attached Pracessor for
Arm Control) to compute all the joint torques plus the
correction torques based on a compieta dynamic model of
the robot arm. This has the advantage of being able to
change the feedback gains in the digital servo loop if the
load Is changing within a task cycle,

Overall System Configuration

The proposed overall system control structure is also
hierarchically arranged. The LSI-11/02 computer still
serves as a supervisory computer while the APAC performs
the dedicated functions of servo control. The LSI-11/02
performs the same functions as before, while the APAC
raplaces all the functions of the 8603 microprocessors per-
forming dedlicated control according to the dynamic model of
the robot arm. The APAC controls the robot arm as a whole
system whereas the 8503 microprocessors perform Indivi-
dual joint servoing. The system is similar to that depicted In
Fig. 1. At one end the APAC communicates with the LSI-
11/02 computer through a DEC parallel interface board. At
the other end it communicates with the analog devices such
as power amplifiers through a multiplexer. All the joint posi-
tion information from the encoders are fed back to the APAC
also through a multiplexer. Based on the dynamic model for-
mulated by the N-E method and the feedback information
from all the joints, the APAC computes ali the joint torques
and the corraction torques and feeds the required signals to
the power amplifiers within one millisecond. The dynamic
model and the control equation used by the APAC are dis-
cussed in detall in the next two sections.

Speacial Purpose Processor Architecture

This section presents the preliminary specification for
a very large scale integrated {(VLSI) circuit implementation
of our proposed APAC, a single chip processor for dedicated
numerically intensive control applications. Circuit densities
commensurate with levels of integration projected for the
mid-1980s are assumed. The proposed APAC is suitabie for
real-time contrel where sophisticated control strategies
require very large numbers of high precision arithmetical
operations to be performed for every input/output transac-
tion. tn particular, the APAC is intended for the real-time
control of a robot arm. The APAC functions as an attached
processor of a general purpose minicomputer. It operates
on 32 bit floating point data. Conceptually, it lies between
Floating Point Systems' AP1208, a high performance numeri-
cally oriented attached processor, and the intel 80879. a
single chip numerically oriented attached processor in the
Intel 8086 family of components. All three work with
floating-point numbers. The APAC differs from the AP1208



by being much simpler, iess flexible, slower, and by having a
smaller word size (32 bits versus 38 bits). It differs from
the 8088 by having its own on chip program memory,
input/output buffers to facilitate real-time applications, and
two independent function units. However, the 8087 has a
more flexible number format, and can deal with several vari-
ants of the |IEEE floating point standard up to and Iincluding
the 80 bit format. This praiiminary study assumes the APAC
will be implemented in nMOS. However, our eventual aim is
to investigate the design of the APAC in a faster technology
that still has the density of integration assoclated with
nMOS. A prime candidate is the |13L (Isoplanar integrated
injection Lagic) technology developed by Fairchild Corpora-
tion. The major components are as follows:

1. A 32 bit floating point adder unit (AU).

2. A 32 bit floating point multiplier unit (MU).

a. A 268x32 register file (RF).

4, A 32x32 bit input buffer (I1B).

6. A 32x32 bit output buffer (OB).

B. A 1Kx50 bit program memory (PM).

7. A 4x10 bit program counter stack (PCS).

8. A 1x50 bit program memory data register (PMDR).

9. A 186 bit loop counter (LC).

10. Condition cade logic (CC).

The data path is shown in Fig. 2. A preliminary gate level
logic design and layout of an nMOS realization of tha chip,
using the design rules given in Mead and Conway‘o. indi-
cates that 50% of the area will be occupied by the AU, MU,
BF and PM. The other components occupy less than 10% of
the area, and the buses, control signal lines, and bonding
pads occupy the remaining 40% of the chip. An estimate,
based on a logic gate count, of the number of active dev~
lces required by the chip indicates that 80% will be con-
tained In Just four of the components--the AU, MU, RF, and
PM. The estimate shows 16K devices are required for the
AU, 32K far the MU, 18K for the RF, and 56K for the PM.
The estimate for the total device count works out to be
150K. This is well within projections for single chip systems
in the mid 1980's. At that time 1 milion devices/chip are
anticipated'!,

The floating point number format used in the design
study is the 32 bit proposed IEEE standard described in
Coonen’2, Both the AU and the MU were designed to handle
this format. However, the rounding modes, rounding preci-
slon control, infinity arithmetic, denormalized arithmetic,
most of the floating point exceptions, and the various
axtended formats called for by the proposed standard were
not considered in the design of either the AU or the MU.
Naturally, inclusion of any of these features would increase
the complexity of both the AU and MU, and estimates of the
device count would have to be adjusted accordingly.

The Al is a three stage plpeline with the first stage per-
forming fraction alignment, the second stage performing
fraction addition, and the final stage performing normaiiza-
tion. Alignment is performed using an 8 bit subtractor with
full lookahead to determine the number of shifts needed fol-
lowed by a & (= [log 24]) level 24 bit barrel shifter to
exacute the shifts. Fraction addition is performed using a
standard 24 bit binary adder structure with partiai carry
lookahead across groupings of 4 bits. Normalization is per-
formed using another 24 bit barrel shifter. The basic
machine cycle (M-cycle) is targeted at 500 n5. Each stage
of the pipeline completes s task within an M-cycle, thus
when the AU is in streaming mode--operands are being fed

to it as fast as possibie--it produces a resuit every 600 nS.
The AU is constructed from standard NOR/NOR PLAs (pro-
gram logic arrays'®) baving an estimated delay of 50 nS.
This Is fast enough to be used as a bullding block in the
construction of an alignment stage--potentially the most
time consuming of the AU's three stagas--that can operate
within 500 nS. it is also fast enough to construct the
binary adder for the fraction addition, as well as the barrel
shifter for the normalization stage.

The MU is also a threas stage pipeline with the first
stage performing partial product generation and carry-save
addition, the second stage performing carry propagation
addition to produce the unnormalized 48 bit product frac-
tion, and the final stage performing normalizatlon, truncation
to 24 bits, and exponent addition. The design of the multi-
plier is quite standard. Stage one uses a tree of 3-Input to
2-output carry-save adders, implemented with PLAs as the
basic building block. With a tree height of 8 (= [ log 24])
and 50 nS delay per PLA the 500 nS time Hmit for a pipeline
stage is easily met (generating the partial products requires
only an array of AND's and adds only 15 nS to the delay
time). Stage two uses a 48 bit adder with full lookahead.
The lookahead is across groups of 4 bits, and is perfaormed
by lookahead units that are realized as PLAs. The lookahead
units themselves produce group propagate and group gen-
erate signals which feed another level of lookahead units.
This process is continued in the standard fashion to produce
a lookahead tree of height 3 (=[ log 48] ). The total time
to add is thus (3x2)x50=160 nS plus the delay through a
full adder {50 n5). The third stage performs normalization
using a shift reglster--normalization after multiply never
requires more than a one position right shift if numbers are
represented in the format above. The finat step in stage
three--axponent addition--is performed using a simple & bit
ripple carry adder. The effect of normalization on the
axponent is also accounted for by reusing this adder.

Notice that in both the design of the AU and the MU
very conservative timing estimates wera used. The only
critical parts are stage one of the AU {alignment) and stage
one of the MU (the carry-save adder tree).

The PM Is to be realized as a 1Kx50 bit dynamic
memoty. The design Is based on the standard single
transistor dynamic memory cell. Tha memory is organized as
50 "planes” of 32x32 cells. The PM is addressed using a
4x10 bit program counter stack which allows convenient
subroutine linkage between subroutines nested up to three
deep. Refresh for the memory is achieved by cycie stealing
every 16th instruction fetch (this has not been taken into
account In the performance figure of the next section). The
refresh address is kept in a § bit counter that is incre-
mentad every 18th M-cycle. The PM can be regarded as
being a writable control store, i.e., programming the APAC is
assentially done at the micracode level. The instruction for-
mat is shown in Fig. 3. There are two basic types of
instructions distinguished by the leftmost two bits.

Type 1 controi the AU and MU indicating which regis-
ters in the RF are the sources for their operands and which
registers are the dastinations for their results. Fleids SA1
and SA2 indicate sources for the AU, and fleld DA indicates
a destination for the AU's result. Similarly for the MU--see
Flg. 3. Provision Is made to specify a no-operation for the
AU and/or the MU. Since both the AU and the MU are three
stage pipelines and since it takes one M-cycle to move data
to these units (see later), the destination field information
is not needed by the control logic until four M-cycles after
the source field information. To account for this both the



destination fields of the PMDR are piped through their own
four stage delay lines before baing dacoded by the control
logic. The leftmost two bits must also be piped through a
four stage delay to allow the control logic to determine
whether or not to ignore the output of the destination field
delay lines. This technique for controliing pipelines is
expiained in more detall in Kogge'3.

Type 2 instructions control data transfers from the
head of the IB FIFO to registers in the BF, as well as from
the registers in the RF to the tail of the OB FIFO (specified
by fields IB and OB in the format of Fig. 3). Type 2 instruc-
tlons also handle branching. A 10 hit next address fiald (NA
in the format of Fig. 3) is stacked on the PCS if the condi-
tion indicated by the CC field is met. Conditions include: IB
full; OB full; result of add positive; result of add negative;
result of add zero; always true, l.e. an unconditional branch.
Detection of the conditions is performed by the condition
code logic--CC in Fig. 3. To use the APAC efficiently type 2
instructions should be kept to a minimum.

Notice that the instruction format is very “horizontal”
allowing concurrent operation of the AU and the MU to be
specified. The job of taking advantage of this potentiai for
concurrancy Is left entirely up to the user. This means that
program preparation }s quite complex if maximum use is to
be made of the APAC. However, as stated in the introduc-
tion the APAC is intended for dedicated environments where
it is likely to execute only a vary small set of programs. The
development of these programs should be considered as
part of the overall system design. As noted earlier, this
approach to program development Is mora In line with micro-
code development than standard program development.

The RF is a 266x32 bit static memory. The design is
based on the standard six transistor static memory cell’®,
It is organized as 266 32 bit ragisters. The registers share
a single 32 bit wide output bus and a single 32 wide input
bus {see Fig. 2). The output bus connects the registers to
the two AU inputs, to the two MU inputs, and to the tall of
the output buffer, OB. During type 1 instructions the use of
the output bus is multiplexed. Data is moved from the RF
registers to the two AU inputs and the two MU inputs in four
steps--one step per inpui. The complete transfer takes an
M-cycle; each step takes 125 nS. The input bus connects
the output of the AU, the output of the MU, and the head of
the 1B to the RF registers. As with the output bus, during
type 1 instructions, the input bus is multiplexed. Data is
moved from the AU output and the MU output in two steps,
ohe step per output. The complete transfer takes an M-
cycle; each step takes 250 nS. For data to make a round
irip from a register through a function unit and back to a
register takes five M-cycles.

The 1B and the OB are 32 word FIFQ buffers for input
and output respectively. in the case of the 1B, data can be
added to the tail and removed from the head asynchro-
nously, untess the buffer is full. Adding to the tail is under
the control of an external clock which need not run syn-
chranously with the chip timing. This requires a synchronizer
circult. Designing correctly operating synchronizers can be
very involved; however, it need not be since the problem
has been thoroughly studied in Stucki'®. The operation of
the OB is also asynchronous in a similar fashion,

Finaily, the PM and the PCS can be loaded through the
input port to allow the chip to function as an attached pro-
cassor.

The next subsection presents the control equations
and the dynamic model of a PUMA robot arm suitable for

implemantation in the APAC,

Dynamic Model of a Robot Arm

The dynamic equations of motion for a robot arm can be
obtained from known physical laws (Newtonian mechanics)
and physical measurements (link inertias and parameters).
The actual derivation can be based on either a Lagrangian
or Newtonian approach applied to open articulated chains
represented in Denavit-Hartenberg matrix notation form.
The equations of motion derived from the Lagrangian and
Newtonian approach are briefly presented below.

Lagrange-Euler Formulation'®
Applying the L-E aquations of motion to the Lagrangian

function of the robot arm yields the necessary generalized
torque T, for joint i to drive the i'® link of the arm:
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where Tr indicates the Trace operator, Ji is the Inertial ten-
sor expressed in the k!" coordinate frame, m is the mass of
the i™" link and F; is the position of the center of mass of link
R

Because of its matrix structure, this formulation is
appealing from a control viewpoint in that it gives a set of
closed form differential equations:

D98 + H(S, B + G(9) = 1 (2)

This form allows one to design a control law that com-
pensates for all the nonlinear effects easily. Computation-
ally, however, the 1-E formulation is extremely inefficient
compared to the following formulation.

Nawton-Euler Formulation!?

The N-E equations of motion of a manipulator consist of
a set of compact forward and backward recursive equa-
ticns. They have significantly less operations than the L-E
formulation. The formulation, based on a modification of
Luh's approach?:17, is presented below.

The forward recursive equations propagate linear velo-
clty, linear acceleration, angular velocity, angular accelera-
tion, total link forces and moments from the base to the
end-effector of the maniputator. For manipulators having all
the rotary joints, these equations are:

@ = R ey +924-1) (¥
& = R (o1 + iy X Bzioy + B2ig) (M
& = o % (oo % M)+ x rp+R{ a1 (5)
& = oy @ (& X F)+oy X Fitay ()]

The backward recursive equations of motion propagata, from
the end-effactor to the base of tha manipulator, the forces
and moments exerted on link | by link i-1, as follows:

i = I‘l‘l|i|+R||+1f|+1 = F|+H.I+rf|+1 (7)
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where the 4/'s, §'s, and i§|'s are the relative angles, veloci-
ties, and accelerations between link =1 and link | for i =
1,...8; and
e = the angular velocity of link | with respect to the ith
cocrdinate system;
oy = the angular acceleration of link | with respact to the
it" coordinate system;
#, = the origin of the i'" frame with respect to the j—1th
frame;
F| = the center of mass of link i with respect to the o
frame;
a| = tha linear acceleration of link i with respect to the
coordinate system; .
& = the linear acceleration of the center of mass of link i
with respect to the i" coordinate system;
k = the inertia about center of mass of link | with respect
to the it" coordinate system;
F, = the total external force exarted on link i with
respect to the it coordinate system;
N; = the totai moment exerted on link i with respect to the
it" coordinate system;
#, = the force exerted on link | by fink i-1 with respect to
the it coordinate system;
n; = the moment exerted on link i by link -1 with respect
to tha i'™ coordinate system;
7; = the torque exarted on link i.

Iih

Given the equations of motion of a manipulator as in Eq.
2 (L-E formulation) or Egqs. 3-8 (N-E formulation), the control
problem is to find appropriate torques/forces to servo all
the joints of tha manipulator in real-time to track a desired
position trajectory as closely as possible. One of tha basic
control schemes Is the computed torque technique based on
the-L-E' or the N-E equations of motion'®. Paul! concluded
that closed loop digital control is impossible if the complete
L-E equations of motion are used. It requires 2,000 floating
point multiplications and 1,500 floating point additions to
compute all the joint torques per set point for a Stanford
arm. Lee'® applied the computed torque technique to the
N-E equations of motion and derived an efficient control law
in the joint space to servo a PUMA robot arm. The control
law is computed iteratively using the N-E equations of
motlon. Using a conventional uniprocessor computer such as
a PDP-11/45, the feedback control equation can be com-
puted within 3 ms if all the complex trigonometric functions
are implemented as table look-up. If the APAC is used in
place of a PDP-11/45, not only can the computation be
speeded up (see next section), but even more complex
modeis can be considered In which friction and backlash can
be accounted for.

The computed torque technique assumes that one can
accurately = compute the counterparts of
D(5) , H(% , ¥ , and G(4) in Eq. 2 to minimize their nonlinear
effects, and use a position plus derivative control to servo

the joints'. Thus, the structure of the control law has the
form:

7= D) + K (P — ) + Kp(v? - 0)
+ Hg(¥ , 9 + Ga{®)

where K, is a 6x8 velocity feadback gain matrix, K; is a
6x6 position feedback gain matrix,
D,(8) , Hy(¥ , %) and G,(¥) are the counterparts of

(10)

D(¥) , H(¥ , ¥ and G(3) respectively in Eq. 2.
Substituting the T from Eq. 10 into Eq. 2, we have:
D(B)3 + H(8,) + 6(8) = an
D.(«’)F’" + K(F — 9 +Kp(s? - 19)] + Ha(9, ) + Gal®)

If D4(8), Ha(8, §), Ga(B) are equal to D(B) , H(3 , B , G(V)
respectively, then Eq. 11 reduces to:

Dw)['e' +Kya + x,,e] =0 (12)

Since O(4) Is always non-singular, and if () K, is a sym-
metric non-negative definite matrix, {ii) K, is a symmetric
positive definite matrix, and (ill) the rank of

o 1 kKo 10 | KS="Ky | = n, then lim e(t) + 0

The analogous control law derived from the computed
torque technigque based on Eqgs. 3-9 can be obtained by
substituting 4 in these equations with:

BT KA )+ D KO -8
o a=1 =1 (1 3)

40+ i Kise, + i Ki'e,
s=1 s=1

whera K!* and K{* are the derivative and position feedback
gains for joint | respectively. The physical interpretation of
putting Eq. 13 into the N-E recursive equations can be
viawed as follows:

(1) The first tarm will generate the desired torque for each
joint If there is no modeling error and the system
parametars are known. However, there are errors due
to backlash, gear friction, uncertainty about the inertia
parameters, and time delay in the servo loop so that
deviation from the desired joint trajectory will be inev-
itable.

(2) The ramaining terms, in the N-E equations of motion, will
generate the correction torque to compensate for small
deviations from the desired joint trajectory.

(3) The control law is a position plus derivative control and
has the effect of compensating the inertial loading,
coupling effects, and the gravity loading of the links.

Computational complexity of the control equations as in
Eq. 13 is tabulated in Table 1. Using the APAC, Eq. 13 and
Eqs. 3-9 can be computed in 1 ms. Since an industrial robot
is a highly nonlinear system, care must be exercised in
choosing the feedback gains in the controi equations. In
order to achieve a "critically damped"” systam for each joint
subsystem {which in turn loosely implies that the whole sys-
tem behaves as a “critically-damped” system), the position
feedback gain matrix K, and the velocity feedback gain
matrix K, can be chosen as in Paul'®,

Simulation of Gross Motion for the PUMA Arm

To illustrate the effectiveness of the APAC a functional
simulation was performed using APL. The details are dis-~
cussed in ¥. The forward and backward recursive equations
tor computing the actuator torques were used as a bench-
mark, since they are the major computational task in the
proposed arm control strategy. These were programmed for
the APAC. A listing of the program showing how the function
units can be efficiently scheduled can be found in 3. The
APAC is operating at its maximum rate when both function
units are in streaming mode, In this mode it is producing the
results of two floating-point operations every M-cycle, i.e.,
it is operating at a rate of 4 MFLOPS. Our simulation showed
that about 73% of the time the function units produced




results, i.e. the APAC was operating at an average of 2.93
MFLOPS for this banchmark. This corresponds to a torque
computation (l.e., actuator signals for all six joint motors) in
about 250 us. To achieve this considerable time was spent
hand optimizing the program. Scheduling two pipelined func-
tion units is time consuming. Support software to help with
this aspect of program preparation would be a necessity in
a production environment.

Conclusion
This paper has presented a proposal for a hierarchical
control structure that uses a special purpose attached
processors--the proposad APAC. We hava argued that this
approach will allow the real-time control of an industrial
robot, in particular a PUMA robot. The encouraging perfor-
mance figures citad above support this argument.

References

1.  Paul, R. "Modeling, Trajectory Calculation, and Servoing
of a Computer Controlled Arm,” Stanford Artificial Intel-
ligence Laboratory Memo AM-177, November 1972.

2. Turney, J., Mudge, T. N., Lee, C, §. G., "Equivalance of
Two Formulations for Robot Arm Dynamics,” SEL Report
142, ECE Dapartment, University of Michigan,
December 1980.

3. Turney, J., Mudge, T. N, "VLS| Impiementation of a
Numerical Processor for Robotics,” Proceedings of the
27-th International Instrumentation Symposium, Indi-
anapolis, Indiana, April 1981, pp. 168-175.

4.  Whitney, D. E., "Resolved Motion Rate Control of Mani-
pulators and Human Prostheses,” IEEE Transaction on
Man-Machine Systems, Vol. MMS5-10, no. 2, June 1869,
pp 47-53.

6. Albus, J. S., "A New Approach to Manipulator Control:
The Cerebellar Model Articulation Controller (CMAC),'
Journal of Dynamic Systems, Measurement and Control,

. Transaction ASME, Series G, Vol. 97, No. 3, Sept.
1975.

6. Kahn, M. E., Roth, B., "The Near-Minimum-Time Control of
Open-Loop Articulated Kinematic Chains,” Transactlon
of the ASME, Journal of Dynamic Systems, Measure-
ment, and Control, September 1971, pp 164-172.

7. Saridis, G. N, Lee, C. 8. G., "An Approximation Theory of
Qptimal Control for Trainable Manipulators,” /{EEE Tran-
saction on Systems, Man and Cybernetics, Vol. SMC-9,
no. 3, March 1979, pp 152-188,

8. Dubowsky, 8., DesForges, D.T., “The Application of
Model Referenced Adaptive Control to Robotic Manipu-
lators,” Transaction of the ASME, Journal of Dynamic
Systems, Measurement and Control, Vol. 101, Sep.,
1979, pp 193-1689

9. Palmer, J., "The Intet 8087 Numerlc Data Processor,”
Proc, 7th Annual Symposium on Computer Architecture,
La Baule, France, May 1980, pp. 174-181.

10. Mead, C. A, and L. A. Conway, /ntroduction to VLS! Sys-
tems, Addison-Wesley, 1980.

11. Patterson, D. A, and C. H. Sequin, "Design Considera-
tions for Single-Chip Computers of the Future,” /EEE
Trans. Computers, Vol. C-29, No. 2, Feb. 1880, pp.
108-116.

12. Coonen, J. T., "An Implementation Guide to a Proposed

Standard for Floating-Point Arithmetic,”
Magazine, Jan. 1880, pp. 68-79.

Computer

13. Kogge, P. M., "The Microprogramming of Pipelined Pro-
ceassor,” Proc. of the 4th Annual Symposium on Com-

puter Architecture, March 1977, pp. 63-69.

Ohzone, T., J. Yasui, T. Ishihara, and 5. Horiuchi, "An
8Kx8 Bit Static MOS RAM Fabricated by n-MOS/n-Well
CMOS Technology,” [EEE J. Solid-State Circuits, Vol.
5C-15, No, §, Oct. 1980, pp. 864-861.

Stucki, M. L., and J. R. Cox, "Synchronization Stra-
tegies,” Proc. Caltech Conf. on VLS!, Jan, 1979.

Bajczy, A. K., “Robot Arm Dynamics and Control,” Techn-
ical Memo 33-669. Jet Propulsion Laboratory, February
1974.

Luh, J. Y. 8., M. W, Walker, and R. P. C. Paul, "On-Line
Computational Scheme for Mechanical Manipulators,”
Trans, ASME: Journal of Dynamic Systems, Measure-
ment, and Control, Vol. 120, June 1980 pp. 69-76.

Lee,C. 5. G., Chung, M. J.,, Mudge, 7. N., and Turney, J.
L., “On the Control of Mechanical Manipulators,” 8 th
IFAC Symposium on identification and System Parameter
Estimation, June 7-11, 1882, Washington, D.C.

Paul, R., Robot Manipulators, MIT Press, 1981.

14.

16.

18B.

17.

ia.

19,

Controller based on

N-E Equations Multiplications Additions
of Motion
R ni—— e —
47 an n
oy Bn 8n
a; : 27n 22n
a , 16n 14n
F; 3n 0
£ 9(n-1) 9n—6
N; 24n 18n
n; 21n-156 24n—-18
9+ Koy + Kpoy 2n l an
‘ Total

119n-24 107n-21
Math. Operations ‘

Tabie 1

sreakdown of Mathematical Operations of the Controliar
Based on the Newton-Euler Formulation

where n = number of degree-of-freedom of the robot arms
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