Proc. 1979 Conf. on Information Sciences and Systems,

Johns Hopkins Univ., Mar. 79.

A DISTRIBUTED OPERATING SYSTEM MACHINE*

T.

Mudge

Systems Engineering Laboratory
Pepartment of Electrical and Computer Engineering
and CICE Program
The University of Michigan
Ann Arbor 48109

ABSTRACT

This paper describes a forwarding algorithm
suitable for a distributed nulti-microprocessor
realization of an operating system machine, A
specific operating system will not be
described. The algorithm simplifies the design
of any system of computational tasks that
exhibit a high degree of parallelism, by
reducing the inter-task coordination and
synchronization problem. It is an improvement
of an algorithm given in [To]. Unlike the
version in [Tol it does not require an
associative search, _and thus retains its
efficiency even when applied to large systems.

1. INTRODUCTION

This paper describes a forwarding
algerithm suitable for a distributed multi-
microprocessor realization of an operating
System machine. A specific operating system
will not be described. The algorithnm simplifies
the design of any system of ccmputational- tasks
that exhibit a high degree of parallelism, by
reducing the inter-task coordination and
synchronization problen.

The execution of an operating system
results in a collection of computational tasks
which exhibit a high degree of parallelism, but
whose interactions do not conform to a simple
regular structure. Hence, coordination and
synchronization become a significant part of
the design problem. Cur algorithm allows the
designer to specify a target system as a list
of tasks without concern for the
synchronization problem. It is sufficient that
if one task is to precede another, it precedes
it in the 1list. At run time the forwarding
algorithm automatically detects which tasks can
go ahead based on the availability of their
input data, thus the algorithm 1is data driven.

The advantages of the data driven approach

* This work was Supported in part by the
National Scignce Foundation under Grant NSF-
ENG-78-5779.

to controlling systems can be summarized as
follows: In conventional computer systems a
computational task, such as the execution of an
instruction, is carried out upon the receipt of
a control signal from a centralized controller
(consider the design of a microprogrammed
computer). To make sure that the instruction
executes with the correct data requires the
controller to have knowledge of the data flow.
In the case of parallel processing the number
of possibilities for data flow patterns becomes
very large, thus making the controller
correspondingly complex. By allowing the data
to drive instruction execution, and hence in a
sense create its own control signals
dynamically, this complexity, which eventually

" becomes overwhelming in large conventional

Systems, is much reduced in similar data drigen
ones. (For a discussion of the relationship of
data flow concepts to operating systems see

[p1.)

2. THE FCRWARDING ALGORITHM

Figure 1a shows a diagram of a multi-
nicroprocessor system appropriate for our
forwarding algorithm. The major components are
memory modules, processors, and interconnection
logic. The algorithm does not derend on the
memories being high speed or low speed, nor on
them being randem access or sequential access,
However, to implement the forwarding algorithm
efficiently each memory mecdule needs a limited
amount of processing capability for the tag
handling that forms the basis of the algorithm.
The only constraint on the processors is that
they be able to perform the very limited amount
Qf. processing required of them by the
Flgorithm, and that there be at 1least one
processor that is capable of distributing tasks
from the 1list of tasks that form the target
operating system. This implies that at least
one processor have some global knowledge of the
system configuration. Ctherwise, the algorithm
does not depend on the processors being of a
particular type. They may be full instruction-

A DISTRIBUTED OPERATING SYSTEM MACHINE*

T. N. Mudge

Systems Engineering Laboratory
Department of Electrical and Computer Engineering
and CICE Program
The University of Michigan
Ann Arbor 48109

ABSTRACT

This paper describes a forwarding algorithm
suitable for a distributed multi-microprocessor
realization of an operating system machine. A
specific operating system will not be
described. The algorithm simplifies the design
of any system of computational tasks that
exhibit a high degree of parallelism, by
reducing the inter-task coordination and
synchronization problem. It is an improvement
of an algorithm given in [To]. Unlike the
version in [To]l it does not require an
associative search, and thus retains its
efficiency even when applied to large systems.

1. INTRODUCTION

This paper describes a forwarding
algorithm suitable for a distributed multi-
microprocessor realization of an operating
system machine. A specific operating system
will not be described. The algorithm simplifies
the design of any system of computational tasks
that exhibit a high degree of parallelism, by
reducing the inter-task coordination and
synchronization problem.

The execution of an operating system
results in a collection of computational tasks
which exhibit a high degree of parallelism, but
whose interactions do not conform to a simple
regular structure. Hence, coordination and
synchronization become a significant part of
the design problem. Our algorithm allows the
designer to specify a target system as a list
of tasks without concern for the
synchronization problem. It is sufficient that
if one task is to precede another, it precedes
it in the 1list. At run time the forwarding
algorithm automatically detects which tasks can
go ahead based on the availability of their
input data, thus the algorithm is data driven.

The advantages of the data driven approach

* This work was supported in part by the
National Science Foundation under Grant NSF-
ENG-78-5T779.

to controlling systems can be summarized as
follows: In conventional computer systems a
computational task, such as the execution of an
instruction, is carried out upon the receipt of
a control signal from a centralized controller
(consider the design of a microprogrammed
computer). To make sure that the instruction
executes with the correct data requires the
controller to have knowledge of the data flow.
In the case of parallel processing the number
of possibilities for data flow patterns becomes
very large, thus making the controller
correspondingly complex. By allowing the data
to drive instruection execution, and hence in a

sense create its own control signals
dynamically, this complexity, which eventually
" becomes overwhelming in large conventional

systems, is much reduced in similar data driven
ones. (For a discussion of the relationship of
data flow concepts to operating systems see
[Dl.)

2. THE FORWARDING ALGORITHM

Figure 1a shows a diagram of a multi-
microprocessor system appropriate for our
forwarding algorithm. The major components are
memory modules, processors, and interconnection
logic. The algorithm does not depend on the
memories being high speed or low speed, nor on
them being random access or sequential access.
However, to implement the forwarding algorithm
efficiently each memory module needs a limited
amount of processing capability for the tag
handling that forms the basis of the algorithm.
The only constraint on the processors is that
they be able to perform the very limited amount
of processing required of them by the
algorithm, and that there be at least one
processor that is capable of distributing tasks
from the 1list of tasks that form the target
operating system. This implies that at least
one processor have some global knowledge of the
system configuration. Otherwise, the algorithm
does not depend on the processors being of a
particular type. They may be full instruction-

set processors, I/O proc€ssors, or special
purpose processors such as floating point
units. Also, since the algorithm facilitates a
high degree of parallelism among the target
system's tasks, the interconnection logic
should be capable of supporting high bandwidth
intra-system communication. In general, this
rules out a single bus. Furthermore, since this
intra-system communication is determined by
destination addresses (see later), some form of
interconnection logic that routes data by
address 1is appropriate. Thurber gives a survey
of such logic in [Th].

In order to explain the operation of the
forwarding algorithm it is first necessary to
clarify what 1is meant by a task. For our
purposes the general form of a task is as
follows:

R <~ P(D)

Where, R is the set of range memory locations
used by the task, i.e. the set of
locations that the task writes to.

P is the (virtual) processor that runs
the task.

D 1is the set of domain memory locations
of the task, i.e. the set of
locations that the task reads from.

In the simplest case a task can be a register
transfer operation, in more complicated cases a
task may be a program or collection of
programs.

The following list of tasks will be used
to illustrate the algorithm.

1. A <~ P1(B)
2. C <- P2(4a)
3. D <~ P3(0C)
4. C <~ PUW(E)

For the sake of this explanation we will
consider that one of the processors issues
these tasks sequentially, as follows:

Task 1 ig issued: The contents of memory
region B is moved to
processor P1 and P1 is set

to work on it (see Figure 1a). A tag (C)) is
placed at the beginning of memory region A to
reserve it for the result of P1(B). At the same
time a 1list is created with A as the first
element of the 1list (here A denotes the
necessary information to define the region in
memory named A), sSo that P1 has a record of
where to send its output. This list is called
the destination 1list of P1. Task 2 may now be
issued. Note that, in general, task 1 will
still be in operation.

Task E.ii issued: The contents of memory
- region A is moved to

processor P2 (see Figure

1b), i.e. the tag (D) is move to P2. Since a
tag, and not data, was found it is necessary to
go to the processor identified by @ (i.e. P1)
and append to its destination list the name P2,
so that the as-yet-uncomputed data represented
by (D will be sent to P2. In other words, when
P1 has finished the first task, it will now
know to send its output to both A and P2. At

.the same time a tag ((@) is placed at the

beginning of memory region C to reserve it for
the result of P2(A), and C (here C denotes the
necessary information to define the region in
memory named C) is appended to the destination
list of P2, so that P2 has an up to date record
of where to send its output. Task 2 may now be
issued.

Since the only data moved to P2 is a tag
(@), P2 is blocked from further use until P1
completes. In general, this inefficiency can be
overcome by using virtual processors. These can
be implemented by having each real processor
maintain several sets of the following: a
request register (suitable for holding a tag),
and some memory for a destination list. Each
set corresponds to a virtual processor. When a
virtual processor has real data to work on, the
task 1is accomplished by the real processor. In
a properly designed system, each real processor
should be busy most of the time without being a
bottleneck to system performance.

Task 3 is issued: The contents of memory
- region c is moved to
processor P3 (see Figure
1e). Since this is the tag (@) the name P2 is
appended to the destination list of P2, so that
P2 can forward its result directly to P3 as
well as C. At the same time a tag () is
placed at the beginning of memory region D to
reserve it for the result of P3(C), and D is
appended to the destination list of P3. Task U4
may now be issued.

Task 4 is issued: The contents of memory
- region E is moved to PU,

and P4 is set to work on it

(see Figure 1d). A tag (@) is placed at the
beginning of memory region C to reserve it for
the result of PU(E). However, C already
contains a tag (@), so the following
additional steps must be taken: Before writing
over @, the old tag (i.e. ®) is used to
indicate the processor (in this case P2) whose
destination list now contains an entry, C, that
no longer needs that processor's result. In
response to this the entry C in P2's
destination 1list is deleted. In Figure 1d the

MEMORY a |ls c D E
MODULES
D ||,
CONNECTION ' ‘—Jl l ' l
LOGIC | 1] |
PROCESSORS —| p1Y P2 P3 P4
@
a B o D E
@ @
| | i | |
] |] |
Pl P2 P3 P4
° s
a B c D E
) @ €
| | | | |
| | { |
Pl P2 P3 P4
Ld T® $®
e
A B c D E
©)
@ K| ©
I [] | I
| | | l—
Pl P2 P3 P4
® ?® f®

Figure 1: Task Issuing.

Figure la:
Task 1 is
issued.

Figure 1b:
Task 2 is
issued.

Figure lc:
Task 3 is
issued.

Figure 14d:

Task 4 is
issued.

MERGE

H‘

Issue next task. Let
this be R + Pk(D).

P \A Pk *°*°* Pn

JOIN

N
-———-—-——2:<(Eggs D contain a tagé:>—*

Read the tag
into Pk. Let
this tag be

u. Goto Pu & N

append the -——4Read D into Pk FORK
name Pk to
Pu's destin- .

-ation list.

N

ﬁ\@RGE

J:——2£<<:Boes R contain a t;;?:)
N
C \ Let this tag N
MERGE be v. Goto
e Pv & delete’

the name R
from its z ’

. destination Set ta k
Execute Pk(ﬁﬂ list. ;

Output
from Pu

into
the beginning of
memory region R.
(Overwrite v if
‘-\\t*‘ it is present).
JOIN & Append the name

R to Pk's dest-
-ination list.

Send result
to the places
on Pk's dest-

-ination list. N)
Pk is now P

p FORK
available.

e

Figure 2: Task Issuing.

@

A+P1l (B)
Y
C+P2(A)
A B c ||p
||, ||l®
| _J I {
Ii__l { | {
W
Plel Ple2 P21l P22
® ®
@) |” > ||°
Re=d 1 (o3
T 7 l [
1 1 | | |
~
Plel Ple2 P2el P2e2
L d QZD Ld

EEET) -

Figure 3:

Iteration.

Figure 3a:
Situation after
the first iteration.

Figure 3b:
Situation after the
second iteration

overwriting and deletion of an item are denoted
by an X through that item. Finally, the
destination 1ist of P4 is updated by appending
C to it.

Concurrently with this task issuing,
processors may be completing tasks that were
previously issued to them. When a processor
completes a task its result is output
(forwarded) to all those places on its
destination 1list. The list is deleted and the
tags at the result destinations are deleted
also. Figure 1 does not show any of the four
tasks completing. It assumes all four are
issued before any of them get done.

A flowchart of the decision process
associated with the issuing of tasks is shown
in Figure 2. It is self explanatory except for
the following operators: FORK, JOIN, and MERGE.
The FORK operator transmits control on both of
its outputs upon receiving it on its input. The
JOIN operator transmits control on its output
only after it has received it on both of its
inputs. Lastly, the MERGE operator transmits
control on its output whenever it receives it
on one of its inputs. In a well-formed
flowchart, control can pass along at most one
input of a MERGE module at any one time.

The operation of the forwarding algorithm
can be summarized by noting the following
points. During 1its progress the algorithm
dynamically lays out a linked 1list over the
processors. This list represents the necessary
precedence between tasks. It achieves this by a
tagging technique which allows memory regions
and processors to be reserved until their
intended contents and operands are available.
In this way potential parallelism among the
tasks is scheduled dynamically. The processors
start their operations only upon the receipt of
their operands, thus the dynamic scheduling is
effected by the availability of data - hence
the target system is data driven.

Figure 3 shows the situation that arises
when tasks are executed iteratively. The
iterations unwind quite naturally to fill the
number of virtual processors available (assume
P1.1 P1.2, etc., are virtual P1 processors).
Issuing is held up by the lack of suitable
processors. As with Figure 1, no tasks are
shown completing.

3. DISCUSSION OF THE ALGORITHM

The above algorithm 1is similar to the
forwarding algorithm found in the floating
point unit of the 5/360 model 91 [To]. This
last algorithm was shown to be optimal by
Keller (see [K]), in the sense that it ensures

its sequence of tasks will execute with maximal
parallelism. Because of the similarity to our
forwarding algorithm, this result holds for our
algorithm also. Thus any target systems
designed using our algorithm will exhibit
maximal parallelism among the tasks that make
up that system.

The key difference between our algorithm
and Tomasulo's is that our algorithm does not
require processors to make an associative
search to determine where to send their output.
Instead the processors know exactly where to
send their output by refering to the entries in
their destination 1lists. The idea of using a
destination list to avoid having to make an
associative search was first suggested by
Keller in [K]. However, he did not incorporate
it into an algorithm, because at that time
there was no solution to the problem of
updating destination lists when tags are
overwritten. Our algorithm solves this problem
by first examining the tag to be overwritten
(see Figure 2) and then using it to point to
the processor whose destination list must be
modified. Once the associative search component
of Tomasulo's algorithm has been eliminated it
can be applied efficiently across a complete
system. A precursor to the forwarding algorithm
presented in this paper can be found in [M1].
It was first suggested in [M2].

4. REFERENCES

[D] Denning, P.J., "Operating Systems
Principles for Data Flow Networks",
Computer Magazine, pp. 86-96, Jul.
78.

[X] Keller, R.M., "Look-Ahead
Processors," Computing Surveys, Vol.
T, No. 4, pp. 177-195, Dec. 75.

[M1] Mudge, T.N.,"A Data Driven Computer
Architecture"”, Proc. 1978 Conf. on
Information Sciences and Systems, pp.
365-370, Mar. 78.

[M2] Mudge, T.N.,"A Distributed Operating
System Machine", Proc. Louisiana
Computer Exposition pp. 143-166, Mar.
79.

[Th] Thurber, K.J.,"Interconnection

Networks - A Survey and Assessment",
Proc. NCC, pp. 909-914, Jun. T74.

[Tol Tomasulo, R.M., "An Efficient
Algorithm for Exploiting Multiple
Arithmetic Units," IBM Jour. R&D,
Vol. 11, No. 1, pp. 25-33, Jan. 67

