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SPECIFYING A DESIGN LANGUAGE FOR DIGITAL SYSTEMS
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ABSTRACT

Criteria for specifying a design language are
proposed, The similarity these have with the
tenets of structured programming is pointed
out, A design language is specified using
these criteria, whfch can describe networks

of asynchronous logic modules, The process of
translating the design language into networks
of modules is outlined, An example design is
presented. Finally, the design language is
shown to satisfy the proposed criteria,

INTRODUCT ION

In an attempt to formalize the design process for large digital systems,
many researchers have suggested the use of design languages, Examples of
such languages and advocacy of their advantages can be found in references
1, 2, 3 and 4, However, using a design language (DL) does not necessarily
facilitate the design process, A poorly specified language can encumber
the design process and fail to guide it away from design faults, This
Papsr shows that through careful specification a DL can be created for a
specific application (in this case the design of networks of asynchronous
logic modules) so that by working within the syntax of the language, the
designer is forced to formulate his design in a manner that allows hinm
enough freedom to describe any flowchartable process, while at the same time
limiting his freedom to describe faulty designs (in this case networks
Which hang-up)., Furthermore this is achieved without the imposition of a
complex syntax,

The process of specification is aided by a set of criteria that the DL
should satisfy, The underlying motivation is to specify a DL which enables
the user to design digital systems efficlently and with the mininum of
design errors, Prevention rather than cure is the guideline,

The DL specified translates onto a set of asynchronous logic modules to
produce the control structure of a digital system. Actions in the data
structure of the system are assumed to be representable as register trans-
fers, The asynchronous modules used by the design language are the ¥ (wye)
module, the S (sequence) module, the J (junction) module, the U (union)
module, the D (decode) module and the I (iterate) module, These are dis-
cussed at length in the literature (references 5, 6, 7) and have been used
in paper designs to illustrate their viability in constructing the control
structures of complex digital systens (reference 8). The reader is
assumed to have some familiarity with these modules,
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A design error, or an 111 formed design, is considered to have occurred ifr
the DL describes a network of the above modules, which during the course of
normal operation will eventually hang-up or deadlock,

SPZCIFYING A DESIGN LANGUAGE

The first step towards specifying a DL is the formulation of a description
of the class of designs that the DL is required to produce, The DL should
then be specified by a set of syntax rules that satisfy the following thres
conditions,

C1) The language resulting from the set ~of syntax rules should
include the class of designs that the DL is intended to
produce,

C2) The language should not include i1l forned designs.

C3) The language should be specified in such a way that the
user can easily avold making syntatical errors.,

The requirement that C1 be true of the language is obvious, However it is
necessary to check that specifying a DL to satisfy C2 and C3 does not result
in 1t failing to satisfy C1, Given a description of the class of designs
that the DL is required to produce and a set of syntax rules, it should be
possible to prove whether or not the language resulting from the syntax
rules includes the required class of designs. As an exanple, the DL pre-
sented in the next section is required to produce designs which control any
flowchartable process, making it suitable for the design of the control
structure of a large class of general purpose digital hardware, Examination
of the syntax rules shows that such designs are indeed produced within the
limits of the syntax rules,

The requirement that C2 be true of the language specified means that a syn-
tax analyser will implicitly check for design faults, If the characteris-
tics of an i1l formed design (in our case networks which hang-up) are
identified, a set of syntax rules can be formulated which produce designs
in the language which are never ill formed, Given a set of conditions
which define a w21l formed design and a set of syntax rules which define
the DL it should be possible to prove that the DL includes only well formed
designs,

Condition C3 is not a condition that can be shown to have been satisfied by
mathematical demonstration as C1 and C2 can, This is because it is a qual-
itative rather than quantitative condition., A loose characterization might
be to say that given two DLs satisfying Ci and C2, the one with the silpl?r
syntax rules more nearly satisfies C2, Whether this makes the user's task
easier is open to debate; however, it certainly makes a syntax analyser's
task less conmplex,

The many underlying similarities between the requirements of a good pro-
cedure oriented programming language and a DL are highlighted by Ci1 and c3.
These two conditions are inherent in the philosophy of structured program-
ming, In the case of procedure oriented programeing languages the class of
programs of interest are those with flowchartable control logic, The
"Structure Theorem" (reference 9) guarantees that by using the three types
of structure f THEN g, IF p THEN f ELSE € and WHILE p DO f (f and g pro-
cedures and p a predicate), any flowchartable control logic can be repre-
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sented, Hence C1 is satisfied for procedure oriented programming languages
even when the restricted constructs required for structured programs are
used. Whether C3 is satisfied is arguable, as noted above; however, the
above three constructs allow the programmer to formulate his programs in a
systematic top down fashion (reference 9 ) which has received wide accept-
arce as a methodology which is suitable for program formulation by humans,
ari hence which tends to reduce programmer errors. On the other hand, C2
is not true for procedure oriented programming languages, as certain con-
trol logic can be indicated by the programmer which is not executable (111
formed), This is particularly easy if unrestrained use of the GO TO state-
ment is allowed; thus the requirement of structured programming that GO TOs
be forbidden, or else used in some very restricted fashion,

A DL is specified in the next section, and at the end of the section it is
shown to satisfy the above three criteria,

A DESIGN LANGUAGE

The Syntax

Tre syntax of the DL is given in the appendix, Several illustrative exam-
Plzs of the use of the DL are shown in figure 1. The networks of modules
that these examples translate to are shown alongside, It should be clear
from the appendix that the language is block structured, There are three
types of blocks (PROC, DPROC, and WPROC) and an example of each is shown
in figure 1.

Figure 1(a) shows a block named "P" which describes the following process.
Upon the activation of process "P", "A" is initlated together with the reg-
ister transfer action "D « S" (move the contents of data cell S to data
cell D). When "A" is conpleted process "B" is to be initlated. When both
"D « S" and "B" are completed process "A" is to be reinitiated. Finally,
¥ith the completion of "A", process "P" is considered completed, This is an
example of a PROC type block. Notlce the integers to the left of the state-
nents, These are used in the parentheses on the right of the statements to
indicate sequencing information. For example, statement 4 says that process
"A" is to be initiated when the processes indicated in statenents 2 and 3
are both completed. No parenthesized integers to the right of a statement
Indicates it is to be initiated immediately the process described by its
block is initiated,

Figure 1(b) shows an example of a DPROC type block. This indicates how the
control is to branch according to the state of some external variables (x).
The reserved word NONE stands for the union of all thcse conditions of the
external variables not explicitly listed (i.e. Xo V Xl= 1), The reserved
¥ord COMPLZTZ indicates that if NONE is true the empty process (§) is to be
completed. Then the process described by block "D" is considered completed,

Figure 1(c) shows an exanple of a WPROC type block, In this block process
"A" is to be initiated first, When it is completed the register transfer
Processes "Dl « S1" and "D2 <« S2" are both to be initiated, When they are
both completed the whole block, starting with A, is to be reinitiated as
long as the predicate "X=1" holds true. As soon as the predicate is no
longer true, and both "D1 < S1" and "D2 <« S2" have been completed, the
process "I" 1s then considered completed,
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Space limitations prevent a more complete exposition of the DL. For this
the reader is referred to reference 10, However, fore closing this sub-
sectlon on the DL's syntax, a few more comments are in order,

There are only three types of statements in the DL, The I0 type, which in-
dicates external asynchronous communications with the control structure,
The REG-TRF type, which indicates Tegister transfers in the data structure
(e.g. statement 3, figure 1(a)). Finally, the PROC-CALL type, which indi-
cates a process which is described by the block having the same identifier
as the PROC-CALL statement (e.g. statement 1, figure 1(a)), Notice the
analozy with subroutine calls in procedure oriented programming languages.
Natural top down structuring of the design also results from this last type
of statement,

The similarities between the DL and a procedure oriented language such as
Algol are obvious, Nevertheless there are several important differences.
Firstly there is no parameter passing by the PROC-CALL type statements
(this would be analogous to subroutine parameter passing), This was done
for simplicity and there is no conceptual reason Wwhy the DL could not be
extended to incorporate this facility, Parameters could be data cells or
other blocks, so that a block could be shared by several similar tasks
which operate on different data cells, (The translator would have to add
switches to the data structure so that different sections of the data struc-
ture could be switched to the same section of control structure for process-
ing), Secondly an Algol like language is a sequence of statements whose
order of execution is important, In the DL the oxder in which the state-
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ments appear within their blocks, and also the order in which the blocks
appear is unimportant, This is because the result of translating a design
in the DL onto the modules can be viewed as a directed graph whose nodes are
the modules, The positior of an arc in the graph 1s not dependent upon the
crder in which it is placed into the graph,

The Translation Process

It is appropriate at this point to make some qualitative comnments about the
translation process., A more in depth quantitative treatment is given in
reference 10,

The translation process is quite simple, as can be deduced from figure 1,
DPROCs translate to networks of D modules, WPROCs translate to networks of
4, S and J modules headed by an I module, and PROCs translate to networks of
", S and J modules, The intra block connections of W, S and J modules are
determined by the sequencing or order information given in the parentheses
to the right of the statements. The order information can be easily expand-
el to form a matrix representing the binary relation "is the successor of",
This is done below for the block of statements given in figure 1(a), If
={1,3)=1 then the statement labelled i "is the successor of" thke statement
labelled j,

01234
0({000O0O
1110000

m=21010¢0Ca0
3110000
4100110« J

L

o —>

Zach statement except 0 and those having no successors (e.g. 4 in the above)
translates to a three port S module, Columns with n+! ones imply n W mod-
ules and rows with n+! ones imply n J modules. A sinilar relational matrix
for inter block connections can be formed and the assignment of U modules
deduced,

These matrices, the inter block matrix and the intra block matrices can also
be used to complete the syntax analysis, The context free grammar in the
appendix which describes the DL's syntax, does not give a complete descrip-
tion of the syntax, Several other constraints must be imposed, so that C2
is satisfied, which cannot be conveniently expressed by a set of production
rules, Firstly there are to be no directed cycles in the networks of mod-
ules described by the DL. Secondly whenever a process is shared (e.g. A in
figure 1(a)), implying the use of a U module, descriptions in the DL which
allow the possibility of both input links to the U module to be simultan-
eously active are to be excluded from the langrage. (The reason for these
constraints are explained more fully in the last subsection of this section),
These additional constraints can be checked for by various operations with
the relational matrices.

As an example: directed cycles in a block can be identified by forming m,
mz,,,., mk~1 (k = number of statements in the block) and checking for ones
in their main diagonals, Due to the block structure of the DL, the rela-
tional matrices are usually small (typically less than 10 X 10), making
matrix manipulations quite feasible,

909



Proceedings of the 13th Annual Allerton
Conference on Circuit and System Theory

An Example Using The Desizn Lanscuage

The desizn example presented here is a single instruction computer called
SIM (Single Instruction Machine) which performs the single three address
instruction:”
SUBTST A, B, P = A « C(A) - C(B)
IF C(A) = 0 THEY
BC < C(P) (PC is the program counter)

Its control structure is described in the DL below.

SIM Comments:
WHILE RUN = 1 QQ This 1is the shasic instruction fetch
1) DECI and execute cycle. It continues as
2) FETCH (1) long as the RUN button is on., Fur-
3) EXeC  (2) thermore, it tests the interrupt flag
(D=CI) before each cycle,
DiCI
DEZCODE INT AS
1 = INTR
0 = COMPLETE :
INTR INTR handles the interrupt, IPA
1) MAR < IPA holds the address at which the inter-
2) DR « IP rupting data is to be stored, IP
3) M < DR (1,2) holds the interrupting data. The in-
terrupt is only for inputting data,
FETCH 1is is the FETCK routine., MAR is
1) MAR < PC the memory address register. PC is
2) DR «— M (1) the program counter., DR is the data
3) ¢ <« I8¢ (1) register, Note the parallelism be-
tween statements 2 and 3,
EXEC This executes the 3 address instruc-
1) IR < DR tion, 1IRA holds the address A, IRB
2) MAR < IRA (1) holds the address B, OUTPUT DR1 and
3) DR « M (2) DR2 are links out of the control
4) OUTPUT DR1 (3) structure, These indicate to the ex-
5) A < DR (3) ternal environment that the DR is
6) MAR ~— IRB (3) loaded with data which could be read
7) DR «— M (4,5,6) out to some external device, Since
8) DR «<— suB  (7) the system is asynchronous, SIM will
9) MAR < IRA (7) not continue until the OUTPUT ports
10) OUTPUT DR2 (8) Teceive an acknowledge signal from
11) ¥ < DR (8,9) the external environment,
12) DEC (10,11)
DEC DEC checks to see if the result of
DECODE DR AS the subtraction is zero,
0...0=238R
NONE = COMPLZTE
BR If the result is zero, BR handles the
1) DR « PC branch of control. C(PC) is loaded
2) PC «— IRP (1) at the branch address and PC is load-
3) MAR < PC (2) ed with the branch address,

L) M « DR (3)
5) PC « I (3)
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The resulting data structure is shown in figure 2, Symbols such as I repre-
sent identity operators, The one indicated moves data from the program
counter to the memory address register when requested to do so by the S mod-
ule corresponding to the DL register transfer statement "MAR <— PC" (see
FETCH block statement 1).

MAR > M

> o+

0O

IP IRP|IRA|IRB| IR

Figure 2

When a control structure is hooked up to a particular data structure the
determinism of the total system must be verified, The presentation of a
systematic method to check for determinism is outside the scope of this
paper. In the above example the determinism was checked by visual examina-
tion of the resister transfer statements in the DL description, (This would
clearly be inadequate in a much larger design).

The block structure of the design is shown in figure 3, together with a
close-up of the inside of one of the block (INTR), Figure 4 shows the real-
ization of the most complex block (EXEC) in terms of the modules.

The Design language And The Three Specification Conditions

In this subsection some informal arguments show that the DL presented above
satisfies the specification conditions C1, C2 and C3. (More formal argu-
nents can be found in reference 10).

The DL is required to produce designs which control any flowchartable pro-

cess, It was noted earlier that the following logical structures were
sufficient to represent any flowchart logic, :

911



Proceedings of the 13th Annual Allerton
Conference on Circuit and System Theory

CLOSE-UP OF INTR

Fizure 3

oP-1537

Figure 4
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1) £ THEN g
2) IF p THEN f ELSE g
3) WHILE p DO f

These three logical structures exist in the DL; 3) exists explicitly - the
WHILE block (WPROZ), 2) exists in a more general form - the DZCODZ block
(DPROC), and 1) exists in a more general form - the sequencing or order in-
formation. Hence C1 1s satisfied by the DL, since the language resulting
from the set of syntax rules includes the class of designs that the DL is
required to produce,

In their paper "Asynchronous Control Networks", Bruno and Altman (see refer-
ence 6) present a set of criteria that any network of W, S, J, D and I mod-
ules must conform to, to ensure thatsit cannot hang-up, If the network of
modules is viewed as a single conponent directed grarh:

1) I nodules must be 2-way articulation points,
2) D modules must be 3-way articulation points,

#hen the I and D modules are removed the reraining components are composed
of ¥, S and J modules,

3) These components must be circuit free,
4) Their precedence graph nmust be circuit free,

(The precedence graph of a network N of the above modules describes the rel-
ative order with which the output links of N can be activated (references 6
and 7)).

The control networks described by the DL include an additional module, the U
module, This invalidates criteria 1) and 2). However, in reference 10 it
is shown that because of the restricted use of the U nodule bty the DL, any
network of W, S, J, D, I and U modules described by the DL is well formed
provided an associated network of ¥, S, J, D and I modules satisfies the a-
bove criteria, It is also shown that if the design in the DL is syntactic-
ally correct, the separate blocks for I and D modules (WPROCs and DPROCs)
together with the fact that entry to a block is always thru a single link,
imply criteria 1), 2) and 4) are satisfied by the associated network.
lastly, it is shown that checking for 1), 2) and 4) in a directed graph cor-
responds to recognizing the context free language which is the DL, a compu-
tationally much more efficient procedure, Criterion 3) is satisfied by a
syntactically correct design, as is the additionzl constraint, the U condi-
tion., (The U condition requires that both input links to a U module never
be active simultaneously), It was noted in the subsection on the transla-
tion process, that these two remaining conditlons were checked for by the
manipulation of small matrices, Hence the DL satisfies C2, since it does
not include i1l formed designs. .

Whether the DL satisfies C3 is a matter of opinion. The following closing
remarks of this section give the author's opinion, The block structuring,
especially the requirement of separate blocks for WHILT and DZCODZ state-
ments should help the designer to formulate his design in an error free
fashion, Furthermore, the top down structuring of the blocks induced by the
PROC-CALL type statements maintains a correspondence between the textual
description of the digital machine and its proposed overation that should
also facilitate the design process, The only sources of syntactical error
not made conspicuous by the form of the syntax are U condition conflicts and
the creation of directed circuits thru incorrect use of the order informa-
tion,
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APPENDIX
The syntax is given in extended BNF., Use is made of the following meta-
symbols,
A[B] & AlIAB
A{BIC)} ® ABIAC
(AT e Alaalamnl,,,
(ar* = aytig
Non-terminal symbols are sequences of uppercase letters and hyphens, They
are separated by tlanks, The terminal symbols are underlined, Those that

are spelt differently in the text are listed together with their spelling
below.,

DL carriage return, line feed INITIATE 9
53 ASSIGN -
BP ) COMMA i
LETTER Ayees92 Z230 0
DIGIT ) ) ONE 1

Blanks may be inserted between terminals for ease of reading,

PRCGRAM ::= {PROCIDPROCIWPROC}*

PROC
DPROC 1t=
WPROC 1=

STAT-LIST
STAT

PROC-CALL
REG-TRF
IO

DSTAT t:=
DLIST #i=

WSTAT 1t:=
PRED 1t:=
PROC-ID 1:
NAME 1]
D i3
LABEL
NUM

ORDER-INFO
SUB-OPTION
SUB-LIST

ACTION 3:=
NBITS
BITS

1=

REL #:= us

DL
oL
DL

PROC-ID STAT-LIST
PROC-ID DSTAT
PROC-ID WSTAT STAT-LIST

11= (DL LABSL STAT}*
1:= {PROC-CALLIREG-TRF| IO} ORDZR-INFO

PROC-ID
NAME ASSIGN NAME
{INPUT|OUTPUT)} PROC-ID

DL DECODE NAME AS DLIST

(DL BITS INITIATE ACTION}DL NBITS INITIATE ACTION
DL WHILE PRED DO

NAME REL {NUMINAME)

= ID

= ID SUB-OPTION
= LETTER(LETTER|DIGIT}*
= NUM RP

= (DIGIT;*

::= SUB-OPTION
~ [LP SUB-LIST RP]

= NUM{COMMA NUMY®

s

H
.
L
i

COMPLETE | PROC-ID
BITSINONE
{ZERO|ONZ }*

eful binary relations
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