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ABSTRACT

Studies in Exascale Computer Architecture: Interconnect, Resiliency, and
Checkpointing

by

Sandunmalee Nilmini Abeyratne

Chairs: Trevor N. Mudge and Ronald Dreslinski Jr.

Today’s supercomputers are built from the state-of-the-art components to extract as

much performance as possible to solve the most computationally intensive problems in

the world. Building the next generation of exascale supercomputers, however, would

require re-architecting many of these components to extract over 50× more perfor-

mance than the current fastest supercomputer in the United States. To contribute

towards this goal, two aspects of the compute node architecture were examined in this

thesis: the on-chip interconnect topology and the memory and storage checkpointing

platforms.

As a first step, a skeleton exascale system was modeled to meet 1 exaflop of

performance along with 100 petabytes of main memory. The model revealed that large

kilo-core processors would be necessary to meet the exaflop performance goal; existing

topologies, however, would not scale to those levels. To address this new challenge,

we investigated and proposed asymmetric high-radix topologies that decoupled local

and global communications and used different radix routers for switching network

traffic at each level. The proposed topologies scaled more readily to higher numbers

xv



of cores with better latency and energy consumption than before.

The vast number of components that the model revealed would be needed in these

exascale systems cautioned towards better fault tolerance mechanisms. To address

this challenge, we showed that local checkpoints within the compute node can be saved

to a hybrid DRAM and SSD platform in order to write them faster without wearing

out the SSD or consuming a lot of energy. A hybrid checkpointing platform allowed

more frequent checkpoints to be made without sacrificing performance. Subsequently,

we proposed switching to a DIMM-based SSD in order to perform fine-grained I/O

operations that would be integral in interleaving checkpointing and computation while

still providing persistence guarantees. Two more techniques that consolidate and

overlap checkpointing were designed to better hide the checkpointing latency to the

SSD.

xvi



CHAPTER I

Introduction

Supercomputers work on the most compute intensive applications in the world

that require rigorous mathematical calculations and data processing. In the United

States and abroad, supercomputers are used by governments and research institu-

tions to solve a vast range of scientific problems. For instance, they are used to

study weather patterns and predict storms, discover oil and gas, study atoms and

particles, and most recently to develop precision medicine. Institutions around the

world compete to build powerful supercomputers and they are ranked by the Top 500

List, which ranks twice annually the 500 fastest supercomputers in the world by their

peak floating point operations per second (FLOPS) rate [9]. The international race

to build the fastest supercomputer is not just a matter of national pride, but also

pivotal to the technological advancement of each country. At the time of this writing,

two of China’s custom designed supercomputers, Sunway TaihuLight and Tianhe-2

(MilkyWay-2), take the top 2 spots, followed by three supercomputers belonging to

the U.S. Department of Energy, Titan (Cray XK7), Sequoia (IBM BG/Q), and Cori

(Cray XC40).

Performance is by far the most important goal in building these systems, followed

by keeping costs and power consumption to a minimum. For the next decade, the

biggest milestone for the supercomputing community is to build an exascale super-

1



computer with the ability to compute one exaFLOP1 (1018 floating point operations)

per second. When built, this supercomputer will be 50× faster than Titan, currently

the fastest supercomputer in the United States whose peak performance is roughly 20

petaflops [21]. This high performing supercomputer will be built from linking together

thousands, maybe hundreds of thousands, of high performing compute nodes.

To better understand the scale of the future supercomputer, a skeleton exascale

system that would meet 1 exaflop of performance and have 100 petabytes of dynamic

random access memory (DRAM) main memory was modeled. This skeleton design,

shown in Figure 1.1, was inspired by DARPA’s ExaScale Computing Study: Tech-

nology Challenges in Achieving Exascale Systems [19]. Some of the main parameters

were kept similar in value with DARPA’s design such as the 6 Gflops of performance

per core tile, the number of cores per node, and the total number of nodes. This is

just one design point among many possible exascale designs.

As outlined in the figure, we estimated 768 cores per compute node, which far

exceeds multi-core and many-core processors with 10 to 100 cores [4, 5, 7, 8, 10] in

the market today. Although processors with fewer cores can be used, that approach

would have to be compensated with adding more compute nodes in order to attain

the same exaflop performance goal. More compute nodes occupy more real estate

(cabinets, racks, floor space), need more Local Area Network (LAN) switches, and

introduce more wiring.

Even after incorporating bigger kilo-core processors, future exascale supercomput-

ers will still have millions of other components. For instance, according to the skeleton

model, the entire system would have 204,800 compute nodes. This number far ex-

ceeds the 18,688 nodes in Titan. Furthermore, at least 100 petabytes of DRAM-based

main memory would be required to support the amount of data being processed by all

the cores. Even when using the industry’s highest capacity 128GB DDR4 modules,

1also exaflop

2



PCIe

Memory Cntrl

Q
P
I
/
H
T

I
/
O

GPU

Coprocess
ors

Flash 
Storage

Network 
Switch

DIMM Slots

32KB 
I$

32KB 
I$Core

L2 Cache Bank

Core Tile
6 Gflops

Compute Node
768 core tiles (4 socket packages)

4.608 Tflops, 512 GB RAMSocket Package
192 core tiles
1.152 Tflops

Exascale System
204800 compute nodes
1 exaflop, 100 PB RAM

Figure 1.1: A skeleton exascale architecture

819,200 modules are required. Additional switches, routers, and power rails are also

needed to support the increase in number of nodes.

1.1 Problem Space

In this dissertation, we studied two problems regarding the architecture of an

exascale compute node. The first research problem targeted on-chip interconnect

topologies for kilo-core processors. The layout of a processor with a thousand cores

looks vastly different than one with just 10 cores. For instance, wire length from cores

at the center of the chip to the edge peripherals can be 10× longer than wire lengths

from edge cores. In this study, we asked the question whether existing topologies

used for many-core processors will scale for kilo-core processors. After making the

observation that kilo-core processors benefit from decoupling local communication to

nearby cores and global communication to faraway cores, we proposed two highly

scalable on-chip interconnect topologies called Super-Star and Super-StarX for kilo-
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core processors. These topologies were designed to improve interconnect throughput,

reduce packet latency, and reduce interconnect energy consumption.

The second research problem we studied was checkpointing for fault tolerance.

Due to the vast number of components present in the system, it is inevitable that

there will be many failing components that must be handled gracefully with quick

recognition and recovery. Fault tolerance is imperative to supercomputers because

scientific applications have lengthy computations that can take days, weeks, or even

months to complete. Checkpointing the application’s progress periodically to a sta-

ble, non-volatile storage device aids in maintaining its progress even in the midst

of failures such as power outages, cosmic rays, software bugs, etc. Checkpointing

has other uses in supercomputing as well such as record-replay debugging and post-

processing visualizations. In this study, we asked the question whether a local Solid

State Drive (SSD) can be used as a checkpoint storage platform without degrading

performance and wearing out. After making the observation that DRAM main mem-

ory can help offset costs of checkpointing to the SSD, we proposed a hybrid DRAM

and SSD solution for local checkpointing at the compute node. This hybrid solu-

tion was designed to improve the speed of checkpointing and to reduce its energy

consumption by trading off some tolerance against power failures.

The final part of my dissertation centered on hiding the checkpointing latency to

the SSD. Current ways of writing I/O data to an SSD involves the operating system

and incurs huge slowdowns to guarantee the data has been fully persisted. After

making the observation that dual in-line memory module (DIMM)-based SSDs offer

a tighter coupling between main memory and storage as compared to conventional

Serial ATA (SATA) or Peripheral Component Interconnect Express (PCIe)-attached

SSDs, we proposed a fine-grained data copying method between main memory and

SSD storage that tracks and copies only the modified parts of the data. Additionally,

we propose two techniques called consolidation and early-late overlapping to more ef-
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fectively hide the enormous performance degradation incurred by conventional check-

pointing methods. These optimizations were designed to further improve the speed

of checkpointing while reducing main memory bandwidth and main memory space

consumption by checkpoints.

The next three sections will introduce the three main works of this dissertation.

1.2 Asymmetric High-Radix Topologies

In the first work, we explored the challenges in scaling existing on-chip network

topologies towards kilo-core processors. Current low-radix topologies such as mesh

optimize for fast local communication, but do not scale well to kilo-core processors

because of the large number of routers required. These increase both power and hop

count. In contrast, symmetric high-radix topologies such as concentrated mesh and

flattened butterfly optimize for global communication with fewer hop counts, but

degrade local communication with their large, slow routers.

To address both local and global communication optimizations independently, we

decoupled the interconnect design by using asymmetric high-radix topologies. By set-

ting a design goal of matching router speed with wire speed, our proposed topologies

use fast medium-radix routers to optimize for local communication and a few slow

high-radix routers that reduce hop count to optimize for global communication. Our

asymmetric high-radix designs are enabled by recently proposed Swizzle-Switches,

which allow us to achieve performance scalability within realistic power budgets.

We proposed two asymmetric high-radix topologies: Super-Star (asymmetric folded

Clos) and Super-StarX (asymmetric folded Clos with superimposed mesh). The new

topologies were evaluated on a chip with 552 cores and 24 memory controllers. The

cores were modeled after an out-of-order ARM Cortex A15 core and laid out on a

24×24 grid. Our evaluations show that the best performing asymmetric high-radix

topology improves average network latency over a mesh topology by 45% while re-

5



ducing the power consumption by 40%. When compared to symmetric high-radix

topologies, network throughput improves by 2.9× while still providing similar latency

benefits and power efficiency.

This first work was published in the Proceedings of the International Symposium

on High Performance Computer Architecture (HPCA) in 2013 [11].

1.3 Hybrid Checkpointing to DRAM and SSD

In the second work, we explored the challenges of checkpointing fast and reliably

to the compute node’s storage. Checkpoint/restart is a key ingredient in attaining

resilience, but it is becoming more challenging as the amount of data to checkpoint

and the number of components that can fail increases in exascale systems. To improve

the speed of checkpointing, emerging non-volatile memory (phase change, magnetic,

resistive RAM) have been proposed. However, using unproven memories to create

checkpoints will only increase the design risk for an exascale memory system. In

this work, we showed that exascale systems with hundreds of petabytes of memory

can be constructed with commodity DRAM and SSD flash memory and that newer

non-volatile memory are unnecessary, at least for the next generation.

The challenge when using commodity parts is providing fast and reliable check-

pointing to protect against system failures. A straightforward solution of checkpoint-

ing to local flash-based SSD devices will not work because they are endurance and

performance limited. Hence, we presented a checkpointing solution that employs a

combination of DRAM and SSD devices. A Checkpoint Location Controller (CLC)

is implemented to monitor the endurance of the SSD and the performance loss of the

application and to decide dynamically whether to checkpoint to the DRAM or the

SSD.

The CLC improves both SSD endurance and application slowdown; but the check-

points in DRAM are more exposed to failures because Error Correction Codes (ECC)
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in DRAM are weaker than those in SSDs. In order to protect data in DRAM, we

proposed a low latency ECC that can correct all errors due to bit/pin/column/word

faults and also detect errors due to chip failures, and we protected the checkpoint

with a Chipkill-Correct level ECC that allows reliable checkpointing to the DRAM.

The two ECC mechanisms were developed jointly with researchers at Arizona State

University [12].

Using our system, the SSD lifetime increases by 2×—from 3 years to 6.3 years.

Furthermore, the CLC reduces the average checkpointing overhead by nearly 10×

(47% from a 420% slowdown), compared to when the application always checkpointed

to the SSD.

This second work was published in the Proceedings of the Second International

Symposium on Memory Systems (MEMSYS) in 2016 [12].

1.4 Improvements to Checkpointing with a DIMM-based SSD

In the third work, we explored the challenges of hiding the checkpointing latency

to the SSD. Writing a checkpoint to the SSD requires a guarantee in return that it

has been persisted to the device in case a power failure later on wipes out the data.

Currently, applications that require persistence must employ an fysnc() operation

and expose the copying latency of the entire data set from main memory to storage.

Conversely, employing a background thread or process to hide I/O latency triggers

copy-on-write semantics that not only uses additional memory space to create dupli-

cate copies but also uses additional memory bandwidth for in-memory copying.

In order to address this problem, we proposed to directly write-protect memory

pages with checkpoint data and incrementally copy that data from main memory to

storage in parallel with ongoing computation. In order to engineer the incremen-

tal copying of data from memory to storage, we use newer DIMM-based SSDs. The

memory-bus attached DIMM-based SSD is able to track modified cache lines of mem-
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ory at a fine granularity via the shared memory controller. During I/O operations,

the SSD controller is able to request only modified cache lines for saving, thereby

reducing I/O latency and traffic.

Using the proposed fine-grained copying method, we additionally propose to con-

dense and consolidate multiple modified main memory pages into a checkpoint with

a few flash pages. Consolidating amortizes the slow programming latency of a flash

page over as much checkpoint data as possible. Applying consolidation on top of the

conventional stop-and-copy method speeds up checkpointing by 41% on average. We

proposed a second method called early-late checkpointing to overlap data copying

with computation by starting checkpointing of select memory pages earlier than the

beginning of the checkpoint phase and continuing to checkpoint them well into later

computation phases. Applying the early-late method speeds up checkpointing by 32%

on average over stop-and-copy. Together, the proposed consolidating and overlapping

methods provides a 79% speedup.

A faster checkpoint latency to the SSD implies that more checkpoints can be

written there (endurance allowing) such that less progress will be lost in a failure.

Consolidated checkpoints also reduce checkpointing energy and space.

1.5 Dissertation Organization

The research work is presented in five self-contained chapters. Chapter II gives

background information of fault tolerance, checkpoint/restart, non-volatile memories

and flash. Chapter III presents the study on asymmetric on-chip network topologies.

Chapter IV presents the work on hybrid checkpointing to commodity DRAM and SSD

platforms. Chapter V discusses further improvements to hiding checkpoint latency

with a DIMM-based SSD. Finally, Chapter VI includes the summary of this work and

conclusions.
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CHAPTER II

Background

This chapter provides some background into fault tolerance, checkpoint/restart,

and flash memory.

2.1 Fault Tolerance in High Performance Computing

We follow the terminology set by Sridharan et. al in distinguishing between errors

and faults [107, 108, 109]. A fault is the underlying cause of an error such as a

dead component and an error is a symptom or a manifestation of the fault such as

an incorrect value produced by the dead component. Fault tolerance is imperative

to ensure that an application successfully finishes with the correct result. If the

application ended with the wrong output or crashed, then that is an obvious sign

of a fault somewhere in the system. The application could, however, produce the

correct result after prolonged execution indicating that there might be a silent data

corruption (SDC) [16] fault present in the system. Applications such as miniFE that

iterate until the value converges within an error tolerance exhibit this behavior.

Faults can appear in many places such as the program code, any piece of software

at any layer, and hardware components (cores, registers, caches, memory, storage, net-

work cards, network cables, motherboard, power supply, etc). Errors can be caused

by software bugs, hardware bugs, environmental factors (e.g. power outages, cos-
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mic rays), human errors, and by many other unknown origins [99]. Achieving fault

tolerance has to be a combination of detection, identification, correction, and preven-

tion. There are several works in literature by author Bianca Schroeder that study

the failures seen in high performance computers [97, 98, 99]. Ideally, each of these

hardware components should have built-in many ways to detect, identify, and correct

errors. But this is not a straightforward solution due to the overhead of additional

circuitry, performance slowdown, and higher cost. Furthermore, sometimes errors

are correctable—as commonly seen in memory structures that use error correction

codes—but other times they necessitate replacing the failed part.
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Figure 2.1: Timing overheads by conventional checkpointing methods

Figure 2.1 plots the mean time between failures (MTBF) value and the peak

Linpack performance of some supercomputers deployed in the United States over the

past decade and a half. It can be seen that over the years the MTBF has remained

at or below 40 hours (with the exception of Sequoia). This indicates that even if

the fault tolerance ability of individual components has gotten better, the increasing

number of components in a system leads to the same aggregate failure rate.

Achieving resilience is becoming an even bigger problem at exascale due to the

following reasons [38]:

• Number and variety of components are increasing. Heterogeneous architec-
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tures such as CPUs, GPUs, many-core co-processors, accelerators and such are

required if we are to ever achieve the exascale goal. They introduce different

types of errors and different failure rates. Adding error detection and correction

circuitry to each component becomes expensive.

• Transistors are becoming smaller. Smaller device sizes and lower voltages in-

crease vulnerability to soft errors. Transistors that are only a few atoms thick

are easily upset by cosmic rays. Smaller feature sizes also inherently have larger

process variation, which results in occasional inconsistent behavior. Smaller

transistors and wires also age more rapidly and unevenly leading to frequent

permanent failures.

• Adding resilience is expensive. Strengthening components against failures by

adding hardware resilience requires adding more circuitry, making the compo-

nents more expensive. In addition to cost, the power may also be higher.

2.2 Checkpoint/Restart

The most common approach to fault tolerance in high performance computing

(HPC) is checkpoint/restart. It is one of the most intuitive and simplest ways of

surmounting failures of any type. The idea is to simply restart the program after

a failure. However, rather than restarting from the beginning, the idea is to restart

from the last known point of correct execution. Often, restart is assumed to take

place after the failed component has been corrected or replaced.

2.2.1 Problems with Checkpointing

The most troublesome portion of checkpoint/restart is creating the checkpoints

themselves. Since failures are often unexpected, both in the time of their occurrence

and in their severity, it is desirable to checkpoint as often as possible to be well-
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prepared to recover to the most recent correct state of execution. The goal is to re-do

as little work as possible in order to minimize execution time. However, the cost

of checkpointing is that it has to be mutually exclusive from application execution.

In other words, in order to capture a consistent application state (i.e. a snapshot of

applications state frozen at a moment in time), the program cannot be both executing

and checkpointing at the same time. Since checkpointing while updating data could

lead to capturing an unstable state of execution.

Since the checkpointing time is non-trivial, constantly stopping the program to

create checkpoints add noticeable slowdown to any HPC application. In the future, as

supercomputers run bigger applications with more data across more compute nodes,

the slowdown due to checkpointing will only worsen. Therefore, there is an inevitable

tradeoff between the amount of time spent on checkpointing vs. the progress lost as

a result of rolling back to a distant past.

2.2.2 Efforts to Reduce Checkpointing Overhead

One of the biggest issues of checkpointing is the time overhead associated with

it. Ideally, checkpoints should be saved to the most visible and accessible location,

which is often the parallel filesystem (PFS). The PFS is hosted on ‘storage nodes’

which are accessed via ‘I/O nodes’. As a side note, the storage nodes, I/O nodes,

or the interconnect connecting all the nodes may themselves fail. Writing a system-

wide checkpoint originating from multiple Message Passing Interface (MPI) tasks

running across hundreds of compute nodes over narrow I/O channels to the PFS

adds significant overhead. It has been reported that applications spend as much

as 15-30 minutes [27] waiting for a checkpoint to finish. There has been a wealth

of research addressing the time overhead. We classify these approaches into several

main themes below.

• Reducing distance to checkpoint storage. Rather than sending a checkpoint all
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the way to the filesystem, hierarchical checkpointing has been proposed to store

the checkpoint at multiple levels of storage, such as at the local compute node,

intermediate I/O nodes, and the PFS [18, 33, 74, 92]. Diskless checkpointing

proposed to save checkpoints to the storage of other compute nodes [43]. Burst

buffers proposed to place storage that can ‘absorb the burst of checkpointing

traffic’ at the I/O nodes [67]. One problem with local checkpointing is that some

supercomputers today do not have storage in the compute nodes, only DRAM

memory. However, this trend is set to change with Theta (2016), Summit (2018)

and Aurora (2019) supercomputers that have announced to place an SSD in each

compute node [13].

• Reducing the size of checkpoint. A few ways of reducing the checkpoint size

is incremental checkpointing, compression [50, 75], compiler analysis to remove

dead variables [25, 26, 83], and application-level checkpointing in which the pro-

grammer annotates critical data. All these ideas aim to save only the minimal

possible state to ensure correct restart. Reducing the checkpoint size not only

reduces time overhead, but also the area/storage overhead necessary to store it.

• Reducing stalled time due to checkpoint. Interleaving or overlapping check-

pointing with application execution, lazy checkpointing, and skipping check-

points are all ways of reducing stalled time. Pages whose data values will

not change before the next checkpoint can start checkpointing early, interleav-

ing with computation. This approach reduces the amount of data left to be

checkpointed during the actual checkpointing phase. Another, lazy way is to

simply mark the checkpoint data with a write-protect flag and have a back-

ground thread save them while the application continues execution. Data can be

write-protected in hardware by appropriately modifying cache, memory, and/or

paging hardware. The fork() operation in the Linux kernel can create a back-
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ground child process with an identical memory image and its copy-on-write se-

mantic automatically duplicates write-protected pages before modifying them.

The challenge with this approach is finishing checkpointing as fast as possible

so as not to create too many page copies. In the worst case, copy-on-write

could double the memory footprint of the checkpointing application. Once the

checkpoint is finished, the child process can be killed. Finally, the compiler or

the runtime system can decide to skip some checkpoints that are unlikely to be

needed for recovery.

• Use of non-volatile memories. Non-volatile memories are an attractive option

for checkpointing for two reasons: 1) they are faster than conventional hard

disk drive storage and 2) they are non-volatile. Checkpoints are always stored

on a non-volatile platform to ensure persistence across reboots. Non-volatile

memories such as flash, STT-RAM, PCM, and resistive memories are orders of

magnitude faster than hard disk drives, and in some cases like STT-RAM, they

are as fast as DRAM.

2.2.3 Non-volatile Memories for Checkpointing

There are many types of non-volatile memories, but the most commonly heard

of are NAND and NOR flash, ferroelectric (FeRAM or FRAM), magnetic (MRAM),

phase-change (PCM or PCRAM), and resistive (ReRAM or RRAM). Within this list

of NVMs, there are two distinct groups by the maturity of the technology. Flash is the

most mature technology while the rest are called “emerging non-volatile memories.”

Flash exists in many forms in the market already, some common products are SSDs,

SD memory cards for cameras and mobile phones, and USB thumb drives. Flash

products have been widely popular for over a decade and its properties, behavior,

and failures are well-understood. Furthermore, its manufacturing process is well-

established, making flash products incredibly inexpensive compared to the emerging

14



NVM technologies, although they are still more expensive than hard disk drives.

The “emerging” group of technologies are still being developed by research and

industry alike. The two biggest advantages of emerging technologies are that 1) they

are all faster than flash and 2) they all have more write endurance/lifetime than flash.

There are no commercial products on the market for them, but companies such as

Intel, Micron, SanDisk, Toshiba, SK Hynix, and HP Labs have either attempted or are

currently attempting to make them into usable products. HP Labs started building

memristors as far back as 2008. In 2015, one year after ambitiously announcing their

plan to build a memristor-based machine, named the ‘Machine’, HP Labs decided to

remove the memoristors from their Machines until further notice because it was not

economically viable for volume production. A small Santa Fe startup beat HP to the

market by putting the first memoristor chip on the market priced at $220 each for

experimental uses.

While memristors are making slow progress, a notable program that has been

garnering a lot of media attention lately is 3D XPoint from Intel. Despite speculation

from industry experts, Intel has yet to reveal the real technology behind 3D XPoint.

Intel’s Optane SSD based on 3D XPoint technology was released at the beginning of

2017. Undoubtedly, the biggest issues plaguing non-volatile memories are: 1) it is

unclear when we can produce them in commercial quantities, 2) it is unclear how much

they will cost, and 3) it is unclear what problems they will face over the long-term in

the hands of consumers.

2.2.3.1 Flash Memory Operation

In this dissertation, we advocate flash-based SSDs for checkpointing. Commercial

availability and maturity of NAND-flash prove them a low-risk option sufficient for

at least the first generation of exascale systems, if used correctly. Therefore, in this

section we provide some background into how flash memory operates.
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The internal organization of a flash die is shown in Figure 2.2a. 512 16KB pages

are organized into blocks of 8MB, several of which are grouped into planes. A single

flash die contains one or two planes. The smallest programmable unit is a single

page and it takes 1600µs for a 16KB page [71]. Two pages (a plane pair) can be

programmed at once if there are two planes in the die and a bandwidth of 19.5 MB/s

per NAND flash die can be achieved.

SSDs exploit three dimensions of parallelism to improve the bandwidth to flash

devices (Figure 2.2b). First they use plane-level parallelism in which 1 to 4 planes

are operated on simultaneously for read/write/erase operations. Second, they use

die-level parallelism in which each package contains as many as eight dies and each

die can be operated on independently. Thirdly, they use channel-level parallelism in

which multiple packages are connected to the SSD controller over different channels

and these channels can be operated on individually and simultaneously.
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Figure 2.2: Flash organization

Table 2.1 shows a sampling of raw NAND flash devices sold by manufacturers Mi-

cron, Toshiba, and Samsung. It shows that typical flash program latencies range from

220µs to 1.6ms for page sizes ranging from 2KB to 16KB. The write bandwidth of

a single flash device is less than 25MB/s at best. In contrast, commercially available

SSDs market up to 450MB/s to 2GB/s for SATA and PCIe connections, respec-

tively. Comparatively, DRAM main memory bandwidths of 12.8GB/s DDR3-1600

and 19.2GB/s DDR4-2400 surpasses even the best SSDs.
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Table 2.1: A sampling of commercially available raw flash devices and their reported
read, program, and erase latencies.

Manufacturer & Year Device Size (Gb) Page Size & Read Program Erase
Spare Area (µs) (µs) (µs)

SLC Types [72, 112]
Micron 2006 4/8/16 2KB + 64B 25 220 1500
Micron 2010 4 4KB + 224B 25 200 2000
Toshiba 2013 16 4KB + 232B 30 300 3000

MLC Types [71, 72]
Micron 2005 16/32/64/128 4KB + 218B 50 900 3500
Micron 2009 64/128/256/512 8KB + 448B 75 1300 3800
Micron 2013 128/256/512/1024 16KB + 1216B 115 1600 3000

3D V-NAND [55, 90]
Samsung 2014 2-bit 128Gb (24 layers) 8KB + 698B 49 600 4000
Samsung 2014 2-bit 128Gb (32 layers) 16KB + 1536B 35 390 4000
Samsung 2015 3-bit 28Gb (32 layers) 16KB + 1536B 45 700 3500
Samsung 2016 3-bit 256Gb (48 layers) 16KB + 1536B 45 660 3500
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CHAPTER III

Asymmetric High-Radix Topologies

3.1 Introduction

Today’s chip designers have resorted to increasing the number of cores in a chip as

a power-efficient approach to throughput scaling. Processors with 10 to 100 cores [4,

5, 7, 8, 10] are already in the market today, and a processor with 1000 cores (kilo-core)

may soon be a reality. While off-chip interconnection networks for 100s of nodes have

been studied in the past, a power and performance scalable on-chip network for a

kilo-core chip is a new challenge.

If we use a conventional topology constructed out of low radix routers1, such as

a 2D-Mesh [7, 48, 91, 111, 119], then the number of routers required increases as the

number of cores increases. The power consumption of this growing number of routers

coupled with the decreased performance resulting from larger hop counts will soon

become prohibitive.

One solution to this problem is to consolidate routers into a few large but efficient

high-radix switches. While high-radix switch designs were thought to be imprac-

tical due to the power and area complexity, recent work with the Swizzle Switch

design [36, 94, 95, 96, 103] has demonstrated that on-chip high-radix switches are

feasible. The Swizzle-Switch is shown to scale up to a radix of 64 while supporting

1Radix is defined as the number of ports in a router
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128-bit channels, consuming less than 2W of power and operating at a frequency of

1.5GHz in 32nm technology. High-radix topologies facilitated by Swizzle-Switches

make it possible to design scalable on-chip networks for kilo-core processors within

realistic power budgets. A high-radix switch can be utilized to improve scalability

of interconnects in kilo-core chips by concentration [17], where multiple cores/nodes

share a router, thereby reducing the number of routers and network diameter. Also,

high-radix switches can be used for designing a topology which provides more physical

express links between non-adjacent routers [59], again reducing the network diameter.

However, there are two problems with these approaches. First, using concentration to

scale common designs (e.g., 2D-meshes), leads to lower network throughput because

of bandwidth bottlenecks in inter-router links. Second, spatially close-by nodes are

communicating through slower high-radix switches, degrading the performance of lo-

cal communication. Thus, conventional high-radix topologies trade-off performance

of local communication between close-by nodes for improving performance of global

communication by reducing hop-count between nodes that are farther apart.

Our solution to mitigate these problems is an asymmetric high-radix topology.

The key design principle of such topologies is to match the frequency of the routers

with the length of the wires that connect them. For local communication, wires

are short and hence wire delay is small. Therefore, the routers that facilitate local

communication should operate at a higher frequency and lower radix to ensure that

both wire and router delays are balanced and neither dominates overall latency. Since

communication is local, low hop count is maintained even with lower radix routers.

In contrast, global communication inherently spans long distances and hence incurs

large wire delay. The global router can afford to be slow because the wire latency

will be large at most frequencies. Thus, the router frequency can be reduced and its

radix can be increased. To offset the effect of the slower router, the high radix of

the global router ensures that the number of hops is reduced, which is important for
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lowering network latency for global communication.

Based on the above design principle, we propose two asymmetric high-radix topolo-

gies for kilo-core processors: Super-Star and Super-StarX. Super-Star is a hierarchical

star topology in which a cluster of nodes are connected to a fast medium-radix local

router. All local routers are connected by a high-radix global router. The network di-

ameter is two hops. To increase network throughput we duplicate the global routers

and there is no connection between the global routers. Super-Star with multiple

global routers has the same connectivity as a folded-Clos topology [57] with one mid-

dle stage. Unlike current on-chip implementations of folded-Clos which assume equal

radix routers, we explore Super-Star with high-radix global routers and low-radix

local routers.

The second design, Super-StarX, extends the Super-Star design to permit adja-

cent local routers to directly communicate with each other instead of going through a

global router, which further improves the performance of local communication. This

optimization increases the radix of local routers by only four, which does not sig-

nificantly decrease the frequency of local routers. The connections to global routers

remain the same as in Super-Star and hence, global communication is as efficient as

Super-Star with a network diameter of only two hops.

As a comparison point a third design, Super-Ring, is a hierarchical ring topology

that does not follow our design principle of matching router delay with wire delay. In

Super-Ring, a cluster of local routers is connected to a medium-radix global router.

The global routers are then connected in a ring. The Super-Ring provides greater con-

nectivity between global routers compared to Super-Star and Super-StarX. We show

that Super-Star and Super-StarX topologies, unlike meshes and symmetric high-radix

topologies, are energy proportional. Their achieved throughput is proportional to the

power consumed. The network throughput and power consumption can be turned up

or down by varying the number of global routers. Thus network architects can choose

20



fewer global routers at design time or power-gate the global routers at run-time. It is

possible to power-gate the global routers because even a single global router assures

full network connectivity. We model a processor with 576 nodes in 15nm technology.

This model provides a reasonably large system to study the scalability of intercon-

nect topologies towards future kilo-core chips. We study the proposed network designs

through detailed floor-planning, circuit-level delay analysis of routers and wires, net-

work power models, and micro-architectural cycle accurate performance simulations.

We study statistical traffic, and also 44 different benchmarks with multiprogrammed

workloads of single threaded and multi-threaded shared-memory applications.

Our evaluations show that the best performing asymmetric high-radix topology

improves average network latency over a mesh by 45% while reducing the power

consumption by 40%. When compared to symmetric high-radix topologies (i.e. con-

centrated meshes and flattened butterfly), our proposed topologies improve network

throughput by 2.9× while still providing similar latency benefits and power efficiency.

Over a varied set of application workloads, the final proposed topology improves ap-

plication performance by 17%, while reducing power consumption by 39%.

In summary, our key contributions are:

• We propose asymmetric high-radix topologies for performance and power scal-

able on-chip networks for designing kilo-core systems. Our proposed topologies

optimize for both local and global communication.

• Our key design principle for asymmetric topologies is to match router speed

with wire speed. Fast medium-radix routers support local communication along

short wires and a few slow high-radix routers support global communication by

reducing hop count. The global high-radix routers can afford to be slow because

wire delays of global routes are inherently longer.

• Based on our design principle, we propose and evaluate two asymmetric high-
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radix topologies: Super-Star (asymmetric folded-Clos) and Super-StarX (asym-

metric folded-Clos with superimposed mesh). These topologies vary in their

degree of local and global connectivity.

• We also find that Super-Star and Super-StarX topologies, unlike meshes and

symmetric high-radix topologies, are energy proportional.

3.2 Motivation and Background

3.2.1 Scaling of Low-Radix Mesh Topology

Low-radix mesh [7, 48, 91, 111, 119] topologies have become popular for tiled

manycore processors because of their low complexity, and planar 2D-layout properties.

Figure 3.1 shows the layout of a mesh topology. For our studies, we investigate a 576-

node chip with 552 core tiles and 24 memory controller tiles. The length of a tile

is 0.9mm. The tile dimensions are chosen such that it can accommodate a simple

out-of-order ARM Cortex A15 core, 32 KB of L1 cache, 256 KB of L2 cache and

a small radix-5 mesh router in 15nm design. The tiles are connected with a 24×24

2D-mesh.

Unfortunately, as we scale up the mesh topology towards kilo-core processors, it

shows poor performance scalability due to its quickly growing network diameter. The

large number of routers required by the mesh topology pushes the overall network

power far beyond practical limits [23, 24]. High average hop count also leads to high

variability of available per core bandwidth [65] and exacerbates worst case latency.

Figure 3.2 illustrates the scaling characteristics of the mesh topology as we in-

crease the number of cores from 36 to 576 (Section 3.4 provides simulation and

modeling details). The network latency and power is shown for two injection rates,

0.05packets/ns/core (low) and 0.5packets/ns/core (high). Even at a low injection

rate the network latency degrades by 3× as we increase the number of cores from
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Figure 3.1: A diagram of a core tile and a mesh topology.
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Figure 3.2: Scaling of mesh topology with the number of cores.

36 to 576. At the high injection rate, the degradation in latency is steeper. Thus,

higher performance afforded by increasing number of cores can be offset by communi-

cation overheads. Figure 3.2b shows the steep increase in network power from 6.3W

to 97.1W as we increase the number of cores from 36 to 576. Figure 3.2c illustrates

that the available per core throughput reduces by 3.7× as we increase the number

of cores from 36 to 576. Ideally, we would like the network to provide a constant

per-core bandwidth with increasing number of cores, such that the performance of

individual cores is not effected by scaling up the number of cores.

The above studies motivate the need for a scalable interconnect topology. It

can be seen that future manycore processors cannot afford the luxury of a low-
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complexity mesh topology. In this work, we propose asymmetric high-radix topolo-

gies as a solution. Before we delve into high-radix topologies, we give a brief back-

ground on the Swizzle-Switch, which is the key-enabler of our designs. For more

details on implementation of the Swizzle-Switch, we refer the reader to recent prior

work [36, 94, 95, 96, 103].

3.2.2 Enabling High-Radix Routers with Swizzle-Switch

The SRAM-inspired design of the Swizzle-Switch provides good scalability to large

radices. Traditional matrix-style switches consist of a crossbar that routes data and

a separate arbiter that configures the crossbar. This decoupled approach poses two

hurdles to scalability: (1) the routing to and from the arbiter becomes more chal-

lenging as the radix increases and (2) the arbitration logic grows more complex as

the radix increases. Arbiters that need to distribute their arbitration over multiple

stages incur the overhead of flip-flops to store the control flow signals. The work

done by Passas [80] illustrates the difficulty of implementing a multistage arbiter for

a high-radix switch. In Passas work, a radix-128 switch is shown to have a crossbar

arbiter that consumes 60% of the total crossbar area and requires three stages to do

arbitration.

To overcome these limitations, the Swizzle-Switch combines the routing-dominated

crossbar and logic-dominated arbiter by embedding the arbitration logic within the

switch crosspoints. The Swizzle-Switch design reuses input/output buses for arbi-

tration, producing a compact design. The arbitration is done in a single cycle by

comparing priority bits that are embedded in the switching fabric. At the end of each

arbitration stage, the priority bits are automatically updated by setting and re-setting

appropriate priority bits to achieve least recently granted order of arbitration. To re-

duce power, the Swizzle-Switch uses SRAM-like technology with low-swing output

wires and a single-ended thyristor-based sense amplifier. We studied the scalability
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of the Swizzle-Switch across a wide range of radices. Figure 3.3 shows the frequency

and energy per bit transferred of the Swizzle-Switch as function of its radix. Even

when the radix is increased to 64, the Swizzle-Switch with 128-bit channels can con-

tinue to operate at a high frequency of 1.5GHz while consuming less than 2W of

power. In 32nm technology, this Swizzle-Switch requires ∼2mm2 of area.

Figure 3.3: Scaling of a 128-bit Swizzle-Switch with radix.

3.3 High-Radix Topology Design

In this section, we explore several high-radix topologies and analyze their scala-

bility in the context of kilo-core processors. First, we discuss symmetric high-radix

topologies consisting of all equal-radix routers and their design trade-offs. Then, we

discuss asymmetric high-radix topologies where router radix is guided by wire delay.

These topologies are designed to optimize both local and global communication

3.3.1 Symmetric High-Radix Designs

3.3.1.1 Concentration

Balfour and Dally [17] proposed a concentrated mesh which allows a few nodes

to share a router. The number of nodes sharing a router is called the concentration

degree of the router. Since the router is shared, the radix of its switch increases by
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least its concentration degree. Concentration yields two benefits: 1) it reduces the

network latency by reducing the network diameter and average hop count; and 2) it

reduces the number of routers, which can lead to power savings.

However, the benefits of concentration are largely dependent on the power-frequency

scalability of the switch. As we increase the concentration degree (and hence the

switch radix), the routers become larger and slower in terms of frequency, and the

wires which connect them become longer. Thus the benefits due to reduced hop count

may be offset due to reduction in performance of individual switches.
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Figure 3.4: Concentrated Mesh Topology: (a) Layout of tiles in a cluster for a con-
centration degree of 36. (b) Layout of concentrated routers in a mesh. (c) Layout of
concentrated mesh with 4 parallel links between routers.

In [17], the authors target a 64-tile system where 4 tiles share a router. We

find that a concentration degree of 4 does not provide sufficient scalability for kilo-

core systems. To scale to 576 nodes, we leverage Swizzle-Switches to increase the

concentration to much higher degrees, and study the trade-offs between reduced hop

count and reduced router frequency. Figure 3.4b shows the layout of concentrated

mesh with a concentration degree of 36 for our target processor design. Each router

services 36 tiles. A group of 36 tiles has 5.4mm by 5.4mm dimensions (Figure 3.4a).

The longest local link between the tiles and router is 2.7mm. The links between

routers are 5.4mm long. The radix of each router is 40 and the router operates at

frequency of 2.2GHz. The network diameter reduces from 46 hops to 6 hops when
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compared to mesh.

From our studies, we find that concentrated meshes provide significantly lower

throughput than mesh. This is because concentrated meshes have lower bandwidth

and the inter-router links become a bottleneck. The local links between the tiles

and cores seldom become the bottleneck. Thus, we consider a new concentrated

mesh design which has multiple parallel links between routers to improve throughput.

However, these additional links further increase the switch radix, and hence reduce

the router frequency. Figure 3.4c shows the layout of a 36-degree concentrated mesh

with 4 parallel links between the routers. The radix of each router increases to 52

and its frequency reduces to 1.8GHz.

In our evaluations, we show that the conflicting trade-offs discussed above limit

the benefits of concentration.

3.3.1.2 Flattened Butterfly

The flattened butterfly is a cost-efficient topology that can be extended to high-

radix routers [59]. It is derived by combining the routers in each stage of a con-

ventional multi-stage butterfly network. The flattened butterfly reduces hop count

over conventional mesh by concentration as well as rich connectivity by using longer

express links between non-adjacent routers.

The flattened butterfly topology can be scaled up by either increasing concentra-

tion, or increasing the dimensions (i.e. stages). For our studies, we choose to increase

concentration. We limit ourselves to 2-dimensional flattened butterfly to reduce the

stages and hence achieve a low network diameter of 2 hops. Also, the 2-dimensional

flattened butterfly renders well to a 2D-planar layout.

The flattened butterfly uses symmetric high-radix routers, concentration, and ex-

press channels to improve scalability. Its symmetric nature trades off efficiency of

local communication to achieve faster global communication. Also, its scalability in
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terms of network throughput is limited due to concentration.
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Figure 3.5: Flattened Butterfly Topology

Figure 3.5 shows the layout of the 4-ary 3-flat 2-dimensional flattened butterfly

used in our studies. Each router is shared by 36 tiles. The cluster of tiles around a

router will be similar to Figure 3.4a. There are 16 routers of radix-42 operating at a

speed of 2.1GHz. The longest link in the topology is about 17.6mm and is pipelined

to deliver flits in 3 cycles.

3.3.2 Asymmetric High-Radix Designs

Above, we observed that traditional symmetric high-radix topologies trade-off

local communication for global communication. These topologies have large high-

radix routers which reduce hop count and optimize for global communication delay.

But this is at the cost of higher local communication delay, which requires routing

through the slow high-radix routers even for close-by cores.

Our approach towards designing a high-radix topology consists of three key ele-

ments. First, we split the communication into local traffic between cores which are

near-by and global traffic between cores that are spread apart. This is not a new

concept and has been used in prior interconnect designs [32] and in other contexts,
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such as road systems in cities, power supply grids, etc. Second, we make the key ob-

servation that for each type of communication, router speed should match wire speed.

For local communication—where cores are close-by, wires are short, and wire delay is

small—the router should be fast and have lower radix. Since communication is local,

the lower radix does not increase hop count significantly. For global communication

the routes will be inherently long and wire latency will be large regardless of the num-

ber of pipeline stages. Hence, global routers can afford to be slower allowing their

radix to be increased. With higher radix, the number of hops is reduced, which results

in lower network latency for global communication. Finally, we tackle the problem

of reduced network throughput in highly concentrated topologies by replicating the

global routers.

Based on the above guidelines we explore two high-radix topologies: Super-Star

and Super-StarX. As a comparison point, we also consider a third asymmetric high-

radix topology that does not follow our design principle, Super-Ring, which employs

the popular ring interconnect for global routers.

Multi-stage topologies such as trees [17, 68] and Clos [57] that have been proposed

for on-chip networks have hop-counts proportional to the number of stages. The scal-

ability of Swizzle-Switch to higher radices enables us to achieve optimal performance

and power with only two-stages, thus precluding the need to explore greater than

two-stage switches.

3.3.2.1 Super-Star

The first asymmetric design is a hierarchical star topology. In Super-Star, a cluster

of nodes are connected to a fast medium-radix local router as shown in Figure 3.6a.

Figure 3.6b shows the logical sketch of Super-Star with local routers and a global

router. The global router is connected to all local routers. The network diameter is

two hops. The number of global routers can be increased to provide higher through-
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Figure 3.6: Super-Star Topology: (a) Layout of tiles within a cluster with a Local
Router (LR). (b) Logical view of Super-Star showing connectivity between Local
Routers (LR) and Global Router (GR). (c) Layout of Super-Star with four GRs.

put. There is no connection between the global routers. With multiple global routers,

the Super-Star topology has the same topology connections as a 3-stage folded-Clos.

However, current on-chip implementations of folded-Clos use equal radix routers [57].

This work is different in that we use few high-radix global routers and many low-radix

local routers.

Figure 3.6c shows the physical layout of the Super-Star topology with 4 global

radix-36 routers and 36 local radix-20 routers. The figure shows only a few distinct

links with their dimensions for clarity. All outgoing links are pipelined to match the

clock frequency of the router. Note, some global routers are spatially closer to a local

router than others. However for simplicity and load balance, the global routers are

chosen in a round-robin manner during the routing stage. More sophisticated routing

schemes which account for wire-dimensions and buffer occupancy are also possible.

An interesting property of Super-Star is energy proportionality. The network

throughput achieved by Super-Star topology and its power consumption is propor-

tional to the number of global routers. Moreover, the entire network remains fully

connected even with a single global router. Thus, network architects can choose to
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have fewer global routers, if they are power constrained. Alternatively, the network

can have a sufficient number of global routers to satisfy the peak throughput require-

ment. But when network load is low, a subset of global routers can be power-gated.

In mesh and traditional symmetric high-radix topologies, energy proportionality is

hard to achieve because all routers need to be active to keep the entire network fully

connected, even when the overall network load is low.

3.3.2.2 Super-StarX

In the Super-Star topology, fast local communication is restricted to the cores

within a cluster connected by the local routers. The local routers which are spatially

close (i.e. neighbors in the layout) still need to communicate via a global router. We

observe that providing connectivity between neighbors is cheap in terms of radix (the

local routers radix only increases by 4, leading to minimal decrease in frequency), and

this connectivity can reduce the latency of the local communication further. We refer

to this new topology, which is derived from Super-Star by connecting the adjacent

local routers as Super-StarX.

Figure 3.7a shows the logical sketch of Super-StarX. Note, all the beneficial charac-

teristics of Super-Star, such as low latency, energy proportionality, etc, are preserved

in Super-StarX. Although, sophisticated adaptive routing solutions are possible due

to path diversity, we chose to implement a simple routing scheme in Super-StarX. The

new links added between local routers are used only to communicate between neigh-

boring local routers. All other inter-cluster communication between local routers is

via the global routers. Thus, unlike concentrated mesh, in Super-StarX, the maximum

number of hops is still limited to two hops. Figure 3.7b shows the layout of a Super-

StarX topology with 4 global radix-36 routers and 36 local radix-24 routers (each

local router is shared by 16 tiles). The link dimensions remain similar to Super-Star

topology.
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Figure 3.7: Super-StarX Topology: (a) Logical view of Super-StarX showing connec-
tivity between Local Routers (LR) and Global Router (GR). (b) Layout of Super-
StarX with four GRs.

3.3.2.3 Super-Ring

Our previous asymmetric high-radix topologies (i.e. Super-Star and Super-StarX )

connect the global router to all local routers. The local routers are medium-radix,

fast, and matched to local wire delay. The global routers are high-radix, slower, and

matched to global wire delay. Finally, we explore a topology which does not follow

our design philosophy. In Super-Ring, the chip is divided into four logical quadrants

with one global router per quadrant. The local routers are still medium-radix and

match local wire delay. However, global routers are also medium-radix and are only

connected to a subset of local routers. To provide full network connectivity, global

routers are connected to each other in a ring. Note, all global routers need to be

active for full connectivity, thus this topology is not energy proportional. Figure 3.8a

shows the logical sketch of Super-Ring. Figure 3.8b shows the layout of a Super-Ring

topology with 36 local radix-17 routers (each local router is shared by 16 tiles) and

4 radix-11 global routers. The link dimensions between local and global routers are
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Figure 3.8: Super-Ring Topology: (a) Logical view of Super-Ring showing connectiv-
ity between Local Routers (LR) and Global Router (GRs). (b) Layout of Super-Ring
with four GRs.

shorter than Super-Star topology.

3.4 Evaluation Methodology

3.4.1 Router Delay and Power Model

We analyze the power and delay of each component of a router such as, links,

buffers and switch (i.e. Swizzle-Switch), through SPICE modeling in 32nm industrial

process and scale it conservatively to 15nm technology. Our models include energy

spent due to clocking and leakage energy. The Swizzle-Switch architecture has been

validated with a fabricated and tested silicon prototype [94, 96]. We assume a 128-bit

Swizzle-Switch for all routers in our topologies and determine its frequency and power

consumption at different radices. For each router, we assume a buffering of 4 virtual

channels per port and a buffer depth of 5 flits per virtual channel. The routers utilize

simple dual clock I/O buffer design with independent read and write clocks (similar

to [73]). We conducted buffer sensitivity studies which showed that this much of
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buffering was sufficient, even for topologies with long links. Our simulations model in

detail the interface between routers operating at different frequency and multi-cycle

links.

3.4.2 Link Delay and Power Model

Wire delays were determined using wire models from the design kit using SPICE

modeling. Our analysis takes into account cross-coupling capacitance of neighboring

wires and metal layers. For all links, we consider options that trade off energy for

speed. We use different metal layers with either single or double spacing. Repeater

insertion is adjusted so that repeaters are placed in the gaps between cores. The

repeater placement was considered for all topologies to accurately estimate timing.

On average the wire delay was found to be 66ps/mm and wire energy was found to

be 0.07pJ/mm/bit.

3.4.3 Performance Simulations

We use a cycle-accurate network-on-chip simulator for our analysis. All routers,

irrespective of radix, use a two-stage microarchitecture [82]. We use simple deter-

ministic routing algorithms, finite input buffering, wormhole switching, and virtual-

channel flow control. The long links in different topologies were pipelined at the router

frequency. The heterogeneity of frequency between routers was faithfully modeled.

The activity factor of links, buffers and switches were collected from cycle-accurate

simulations and integrated with power models to determine the network power.

We evaluate the proposed topologies with uniform random statistical traffic with

a packet size of 512 bits (i.e. 4 flits). The datapath width is constant across all

topologies and is equal to 128 bits. The network latency is reported is nanoseconds

and the network throughput is reported in packets/nanosecond/node.

For applications, we use a trace-driven, cycle-accurate manycore simulator with
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the above network model integrated with core, cache and memory controller models.

Note, all the different components are tightly integrated to create a close-loop sim-

ulation environment. For example, the cores stall on a cache miss, the dependency

between different coherence messages is obeyed, and queueing delays at the cache

controllers and memory controllers are modeled. Thus, we can measure the execution

time for the different workloads we simulate. Table 3.1 provides the configuration

details.

Table 3.1: Simulated kilo-core processor configuration

Cores 552 cores, 2-way out-of-order, 1GHz frequency
L1 Caches 32 KB per-core, private, 4-way set associative,

64B block size, 2-cycle latency, split I/D caches, 32 MSHRs
L2 Caches 552 banks, 256KB per bank, shared, 16-way

set associative, 64B block size, 6-cycle latency, 32 MSHRs
Main Memory 24 on-chip memory controllers with 4 DDR channels

each @ 16GB/s, up to 16 outstanding requests per core,
80ns access latency

We use a set of multiprogrammed application workloads comprising scientific,

commercial, and desktop applications. In total, we study 44 benchmarks, includ-

ing SPEC CPU2006 benchmarks, applications from SPLASH-2 benchmark suites,

and four commercial workloads traces (sap, tpcw, sjbb, sjas). The traces for SPEC

CPU2006 where collected using dynamic binary instrumentation [81]. The commer-

cial workload traces where collected over Intel servers. The traces for SPLASH2

benchmarks were collected by running the benchmarks on gem5 full-system simula-

tor [20]. The details of how each multiprogrammed workload mix is derived from

the different single-threaded and multi-threaded benchmarks are discussed in Sec-

tion 3.5.3.
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3.5 Results

3.5.1 Analysis with Uniform Random Statistical Traffic

We first study the benefits and limitations of concentration. Figure 3.9a shows

the average network latency and Figure 3.9b shows the network throughput with

varying degrees of concentration. As postulated in Section 3.3.1.1, concentration

provides excellent latency benefits at the cost of reduced throughput. Also, the

latency benefits flatten out after reaching a concentration degree of 36. Beyond this

concentration degree the benefits due to reduced hop count is countered by reduced

router frequency. The average network latency before saturation drops from 16.8ns

in mesh to 8.9ns for concentration degree of 36 and increases back to 9.2ns at a

concentration degree of 64.
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Figure 3.9: Network latency (a) and throughput (b) for concentrated mesh with
different concentration degrees.

In order to regain the throughput lost by concentration, we experiment with a new

concentrated mesh topology with multiple parallel links. For this study we choose the

largest concentration degree which provides the best latency and consumes the least

power, i.e., concentration degree of 36. Although concentration degree of 8 has the

best latency in Figure 3.9a, the higher number of routers dissipates more power. We

maximize the concentration degree to reduce the number of routers and hence reduce
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Figure 3.10: Network latency (a) throughput (b) and power (c) for concentrated mesh
with additional number of inter-router links.

power. Figure 3.10b shows the average network throughput and Figure 3.10c shows

the network power as a function of achieved throughput, with varying number of

interrouter links. It can be seen that although we regain some of the lost throughput

by adding additional inter-router links, the power grows steeply with additional links.

Each additional set of links make the router bigger (router’s radix increases by 4 times

the number of parallel links), slower, and increases its power. The concentrated mesh

with 16 parallel links consumes a power of 100.1W while providing a peak throughput

which is only 60% of mesh’s peak throughput. Thus, we conclude that concentration

alone cannot scale the interconnect to kilo-core processors.

Table 3.2: Router radix, link dimensions, and network area for different topologies.

# Routers Radix Network Avg. Link Length(mm)
Topology Local Global Local Global Area Local Global
mesh 576 - 5 - 38.19 0.79 -
cmesh-low 144 - 8 - 13.18 1.28 -
cmesh-high 16 - 52 - 15.20 3.25 -
fbfly 16 - 42 - 10.82 3.56 -
superstar 36 8 24 36 18.24 1.80 12.90
superstarX 36 8 28 36 21.45 2.11 11.30
superring 36 4 17 11 7.12 1.80 6.48

Next, we study the different asymmetric high-radix topologies. We present the

best configurations of each topology. Table 3.2 provides the number of routers and

their radix, network area and link dimensions for different topologies. The design
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goal was to restrict interconnect to 5% of chip area (466mm2) while meeting per-

formance and power targets. Figure 3.11 shows the average network latency and

network throughput for different topologies. The low-radix mesh topology has high

average network latency because of large number of hops. However, it is also able

to achieve good network throughput because it has high bandwidth. The average la-

tency of mesh topology before saturation is 16.8ns and it saturates at the throughput

of 0.14packets/ns/node.
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Figure 3.11: Performance of different topologies with uniform traffic:(a) Network
latency and (b) Network throughput.

In contrast, the symmetric high-radix topologies enjoy low latency because of

reduced hop count. However, they quickly saturate because of bandwidth bottleneck

in inter-router links. The cmesh-low topology has a low concentration degree of

4. The cmesh-high topology has a high concentration degree of 36 and in addition

has 4 parallel links between the routers. The cmesh-low, cmesh-high and flattened

butterfly (fbfly) topologies have an average network latency of 9.6ns, 10.8ns and

7.9ns and a saturation throughput of 0.07packets/ns/node, 0.04packets/ns/node and

0.044packets/ns/node. We also studied improving the bandwidth of symmetric high-

radix topologies by increasing the datapath width and link width beyond 128 bits.

However, we find that increasing datapath width makes the router slower as well as

increases network power consumption significantly.
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The asymmetric high-radix Super-Star and Super-StarX topologies enjoy both low

latency and high throughput. They achieve low latency by effectively optimizing both

local and global communication. They achieve high network throughput by having

multiple global routers. The Super-Star and Super-StarX topologies have an average

network latency of 9.3ns and 9.5ns, about 45% improvement over mesh. Note, since

we are simulating uniform random traffic pattern, the Super-StarX latency is similar

to Super-Star. As shown later in a clustered traffic study, Super-StarX provides better

latency for higher proportion of local traffic. Again, all average latencies are taken

before saturation. While fbfly has a lower average latency than these topologies, it

also saturates at a lower throughput. The Super-Star and Super-StarX topologies

have a saturation throughput of 0.18packets/ns/node and 0.20packets/ns/node.

The Super-Ring topology, although an asymmetric high-radix topology, was de-

signed without adhering to our goal of matching router delay to wire delay. In this

topology, the global routers are medium-radix, smaller and faster. Thus, global

wire-delay is not matched to router speed. The local routers are still medium-

radix. In addition, there is no redundancy between the global routers. Thus, inter-

router links between global routers can become bandwidth bottlenecks. The Super-

Ring provides an average latency of 10.6ns and quickly saturates at throughput of

0.01packets/ns/node. We conclude that matching wire delay with router speed is

important and a naive asymmetric hierarchical topology cannot provide optimal per-

formance.

Figure 3.12 shows the network power and network energy for different topolo-

gies. Figure 3.12a plots the network power (Y-axis) as function of achieved network

throughput (X-axis). The network power increases with increasing network through-

put. The lines for different topologies stop at different throughputs and the end

points correspond to the saturation throughput of that topology. It can be seen that

symmetric high-radix topologies stop very quickly due to their lower throughput. In
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Figure 3.12: Power characteristics of different topologies with uniform traffic:(a) Net-
work power and (b) Network energy.

general, the topologies which reach further right and have a slow slope of increase in

power with respect to throughput are more desirable. It can be seen that Super-Star

and Super-StarX topologies achieve the best power efficiency: 1) their slope of power

increase with respect to throughput is smallest and 2) their achievable throughout

is farthest to the right. They can achieve 39% higher throughput while consuming

only 60% of power when compared to mesh. If we limit the network power to 30W

across all topologies, the proposed Super-Star and Super-StarX topologies can pro-

vide 3× higher throughput than mesh and 1.4× higher throughput than cmesh-low.

Figure 3.12b shows the energy per bit of the different topologies at a low injection

rate of 0.04packets/ns/node. It can be seen that the proposed high-radix topologies

trade-off link and buffer energy for switching energy.

To further emphasize the benefit of providing fast connectivity to adjacent local

routers in Super-StarX, we simulated a clustered traffic pattern. In this traffic pattern,

communication is only to cores within the same cluster or to cores in adjacent clusters.

The cluster size of both Super-Star and Super-StarX is 16 tiles. The locality-aware

routing policy of Super-StarX uses the links between local routers to route most

packets. The routing policy adapts to high congestion by routing packets via the

global routers when the buffer occupancy for links between local routers exceed a
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predetermined threshold. Figure 3.13 shows the network latency and network power

for this study. The additional connectivity and the adaptive, locality-aware routing

policy of Super-StarX provide much lower latency than Super-Star and better power

efficiency.

(a) (b)

Figure 3.13: Network latency (a) and Network power (b) for clustered traffic study
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Figure 3.14: Energy proportionality of Super-Star topology with varying number of
global routers:(a) Network latency (b) Network throughput and (c) Network power.

Finally, we evaluate the energy proportionality of our proposed Super-Star topol-

ogy. Figure 3.14b shows the proportional growth in throughput as we increase the

global routers (GRs) from 1 to 8. Figure 3.14c shows that the network power increase

with respect to achieved throughput has similar slope for all the different configura-

tions (GR1 to GR8). Thus, if the required throughput of the system is low, designers

can save power by using fewer GRs. In mesh and symmetric high-radix topologies,

all routers are necessary to provide full network connectivity. Thus, it is hard to

design these networks in an energy proportional manner. To bound these topolo-
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gies to a lower Thermal Design Power (TDP) budget (e.g. TDP is equal to 30W ),

they will have to be either 1) under-clocked, sacrificing latency or 2) have complex

source throttling mechanisms to limit the injection rates at source nodes such that

the network power does not exceed the pre-decided TDP.

3.5.2 Bisection Bandwidth Wires

Table 3.3: Bisection bandwidth wires of different topologies for equal wires study.

Non-equal # Wires Equal # Wires
Bus Width Bisection Wires Bus Width Bisection Wires

128 6,144 512 24,576
128 9,216 256 18,432
128 10,240 256 20,480
128 10,240 256 20,480
128 36,864 73 21,024
128 44,544 64 22,272
128 9,216 256 18,432
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Figure 3.15: Network latency (a) and Network power (b) for equal wires study

Bisection bandwidth of the topologies in Figure 3.11 varies significantly. We as-

sumed a constant 128-bit datapath width, which results in different number of wires

at the bisection for different topologies, as listed in Table 3.3. The bisection wires

include wires from tiles to local routers as well as inter-router links. For a better

comparison of topologies, we conducted a new study with an equal number of wires
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for all topologies. To achieve the same number of wires (approximately 21,000), the

datapath width was adjusted according to number of links at bisection. The new

channel widths are listed in Table 3.3. Figure 3.15 shows the average network la-

tency and network power for this study. The wider datapath of mesh and cmesh-low

causes the frequency of the router to decrease, thus we observe a small increase in la-

tency compared to Figure 3.11. Except for cmesh-high and fbfly, which benefits more

from the additional bandwidth than the loss due to decreased router frequency. On

the other hand, the narrower datapath of Super-Star and Super-StarX causes their

throughput to saturate at a lower injection rate. Routers of Super-Star and Super-

StarX become smaller due to the narrower channels, which results in better power

efficiency, whereas the large channels of mesh and cmesh-high increases switch power

significantly. Similar to Figure 3.12a, if we limit the network power to 30W across

all topologies, the proposed Super-Star and Super-StarX topologies can provide 3×

higher throughput than mesh and 1.4× higher throughput than cmesh-low.

3.5.3 Application Workloads

Table 3.4: List of workloads with their cache miss rates.

Workload Applications L1 MPKI L2 MPKI
Mix 1 applu, astar, barnes, bzip2, calculix, gcc, gobmk,

gromacs, hmmer, perlbench, sjeng, wrf 2,543 807
Mix 2 applu, bzip2, calculix, deal, gcc, gromacs, libquantum,

perlbench, sap, sjeng, tonto, wrf 4,173 1,854
Mix 3 art, calculix, gobmk, gromacs, h264ref, libquantum,

namd, ocean, omnet, perlbench, sap, sjas 7,211 3,119
Mix 4 astar, deal, Gems, gobmk, gromacs, lbm, leslie, mcf, milc,

namd, sjeng, swim 15,899 9,263
SPLASH mix Barnes, Cholesky, FFT, FMM, Lu, Ocean, Radix, Raytrace 4,096 1,408

In this section, we study the characteristics of different topologies with real ap-

plication workloads. We evaluate five multiprogrammed workloads. The first four

workloads, Mix 1, Mix 2, Mix 3 and Mix 4, run 46 copies of 12 unique applications

which are chosen randomly from our suite of 35 single-threaded applications. The
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fifth workload, SPLASH mix, runs 64 threads each of 8 parallel applications taken

from SPLASH-2 benchmark suite. The workloads are listed in Table 3.4 along with

the total cache miss rate of each workload measured in terms of Misses Per Kilo

Instructions (MPKI).
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Figure 3.16: Performance of different topologies with application workloads: (a) Ex-
ecution Time (a) and Network Power

Figure 3.16a shows the system performance of various topologies and Figure 3.16b

shows the network power consumption. We can observe that trends from our stud-

ies with statistical traffic persist. The Super-StarX topology provides an average

performance improvement of 17% over the mesh topology while consuming 39% less

power. Although the symmetric high-radix topologies and Super-Ring topology con-

sume lower power, they have higher degradation in performance because they provide

lower network throughput. The asymmetric high-radix topologies both improve per-

formance and consumes lower power

3.6 Related Work

In this chapter, we study the scalability aspects of switch design and network

topology design in the context of kilo-core processors. Below we summarize the

closely related works.
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3.6.1 Network-on-Chip Topologies

Todays multicore processors use a variety of interconnect topologies such as shared

bus, rings, crossbars and meshes. The shared bus fabric was the prevalent interconnect

design for decades because of low design complexity, low power consumption, and

ability to support snoop-based coherence protocols. Unfortunately, buses do not

scale beyond a few cores. Kumar et al. [64] showed that the shared bus fabric does

not scale beyond 16 cores. To overcome scalability limitations, multicore processors

adopted crossbars and rings.

The Niagara processor [63] implemented a crossbar interconnect to facilitate com-

munication between 8 cores, 4 cache banks and I/O modules. Niagaras interconnect

consisted of two 124b and 145b crossbars, operating at 1.2GHz frequency in 65nm

technology, providing a data bandwidth of 134.4GB/s, while consuming ∼3.8W of

power. Recently, IBM Cyclops64 [123] supercomputer manycore processor chip im-

plemented a 96-radix, 96b wide crossbar operating at 533MHz and occupying an

area of 27mm2.

Ring interconnects have been popular with multicore processors [14, 46, 102] due

to relative simplicity of design of individual switches and the ability to provide global

ordering. IBM Cell [14] has four 128b unidirectional rings operating at 1.6GHz fre-

quency and supporting data bandwidth of ∼200GB/s. STs Spidergon [22] proposes a

bidirectional ring augmented with links that directly connect nodes opposite to each

other on the ring. These additional links reduce the average hop distance. To over-

come bandwidth limitations, recent ring implementations use wide datapaths (e.g.

Intels Sandybridge [105] processors use 256b rings). Unfortunately, rings bisection

bandwidth does not scale with the number of nodes in the network, limiting it scala-

bility to few dozens of cores.

The 2D mesh [7, 48, 91, 111, 119] topologies have become popular for tiled many-

core processors because of their low complexity, planar 2D-layout properties and
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better scalability compared to rings. The TILE64 processor [119] implements five

32b 8×8 mesh networks to support various message classes and connect 64 nodes.

Intels Single Cloud Computing (SCC) [48] processor chip implements a 128b 6×4

concentrated mesh interconnect where two cores and two cache tiles share a router.

SCCs interconnect consumes ∼12W power while operating at 2GHz frequency in

45nm technology.

Beyond commercial processor implementations, on-chip network topologies have

been explored actively by academic researchers. Wang et al. [118] did a technol-

ogy oriented, and power aware topology exploration for mesh/tori topologies with

analytical models.

Several designs have been proposed to overcome the inefficiencies of 2D-meshes.

Hierarchical bus-based topologies [32, 113] have been proposed to reduce power con-

sumption and minimize network latency. The bus-based proposals have limited scal-

ability and were optimized for processors with 32 to 64 cores. Balfour and Dally

proposed concentrated meshes [8] with express channels. Kim et al. [59] proposed

flattened butterfly topology to reduce latency by providing rich connectivity.

Grot et al. [44] proposed multi-drop express channels (MECS) to reduce network

latency by facilitating one-to-many communication over long express channels. The

multi-drop concept of MECS topologies can be applied to the long channels in our

proposed topologies to further improve network latency. However, the MECS topol-

ogy can have significant buffering requirements to cover credit round trip delays over

the express channels [45], as we scale up the network size. In [45], the authors discuss

the challenges of scaling on-chip networks towards 100s of cores and propose use of

the MECS topology to reduce cost of providing quality-of-service in network-on-chips

with up to 256 nodes.

We believe, that while the above proposals were good designs which improved

network latency significantly over the mesh topology, the design challenges and trade-
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offs for a kilocore processor interconnect are different. Our proposed designs leverage

the rich diversity of radix offered by Swizzle-Switches and our design space exploration

is guided by wire delay slack leading to asymmetric radix designs. In our evaluations,

we analyze the scalability of existing symmetric radix topologies such as concentrated

meshes and flattened butterfly and compare our proposed designs to them.

Multi-stage fat trees [68], Reduced Unidirectional Fat Trees (RUFT) [87] and

Clos [57] topologies have been also considered for on-chip networks. However, these

proposals were based on traditional switch designs and thus limited all routers to

radix-8. The Rigel 1000-core accelerator [54] proposes the use of a multi-stage tree

interconnect.

In our design, routers with different radices operate at different frequencies. Prior

work has exploited multiple frequency domains in 2D-mesh interconnects to manage

congestion [73] and apply Dynamic Voltage Frequency Scaling (DVFS) [48].

Previously deployed systems have used a hybrid of multiple types of topologies to

achieve high bandwidth across the entire computing system. The Thinking Machine

Coporation’s CM-2 combined mesh and hypercube by having each node in the hyper-

cube be a mesh of simpler nodes [35]. Another design used the dragonfly topology to

connect cabinets and a 3D flattened butterfly topology to connect the nodes inside the

cabinet [61]. Hybrid topologies exhibit a degree of asymmetry in which the topology

at each level is selected to optimize the type of communication at that level. In our

Super-StarX design that superimposed a mesh on a folded-Clos, we introduce this

type of asymmetry at the on-chip network level. We believe going forward kilo-core

processors will continue to trend towards a combinations of topologies.

3.6.2 High-Radix Switches

Prior works have recognized the multifaceted benefits of high-radix switches [58,

59, 60, 101]. Kim et al. [58] proposed several optimizations to improve the scalabil-
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ity of switches with respect to radix. The optimizations included breaking down the

arbitration into multiple local and global stages, decoupling the input and output vir-

tual channel/switch allocation by including intermediate buffers at cross points and

hierarchical crossbars with intermediate buffering. Recently, Passas et al [79, 80] pro-

posed high-radix crossbar interconnects for 128 tile chips. Their implementation of a

128-radix crossbar was 32b wide, divided the data transfer into 3-stages and operated

at a frequency of 750MHz at 90nm technology. The crossbar datapath occupied an

area of 7.6mm2, while the arbitration logic (or scheduler) is a iSLIP [69] scheduler

and occupies an area of 7.2mm2. Their work recognizes that arbitration complexity

is a bottleneck in designing high-radix switches and proposes wiring optimizations to

reduce the arbitration delay to 10ns.

In contrast to above decoupled approaches, Swizzle-Switches take an integrated

approach towards arbitration to provide excellent scalability. The datapath and ar-

bitration in a Swizzle-Switch is tightly coupled in a SRAM-like layout, reducing the

area and critical path delay for the switch. Unlike traditional logic-tree arbiters, the

arbitration in Swizzle-Switch is done by updating the internally stored priority bits

on a cycle-by-cycle basis.

3.7 Summary

To realize kilo-core processors, it is important that we find a solution for designing

a performance and power scalable on-chip interconnection network. In this chapter,

we proposed a class of asymmetric high-radix topologies that decouple local and

global communication optimizations. Our proposed topologies employ the design

principle that routers need to be only as fast as the wires that connect them. Thus,

we employed fast, medium-radix switches for local routers to achieve efficient local

communication. Using a few high-radix global switches to connect local routers, we

were able to reduce the hop count for global communication and also improve the
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overall throughput of the network.

Our experiments demonstrated that the best performing asymmetric high-radix

topology improves average network latency over mesh by 45% while reducing the

power consumption by 40%. When compared to symmetric high-radix topologies

(i.e. concentrated meshes and flattened butterfly) our proposed topologies improve

network throughput by 2.9× and network latency by 14% while providing similar

power efficiency.
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CHAPTER IV

Hybrid Checkpointing to DRAM and SSD

4.1 Introduction

Aggregate failure rates of millions of components result in frequent failures in

exascale supercomputers. In particular, exascale systems are projected to have mem-

ory systems as large as 100 petabytes—that is 100× larger than the supercomputer

Titan’s 1 petabyte memory system. The millions of memory devices that make up

these memory systems contribute significantly to failures [100] and overcoming them

requires a fast and reliable checkpoint/restart framework.

Checkpointing—periodically saving a snapshot of memory to stable storage—is a

useful practice to rollback the application to a point before failure, without restarting

from the very beginning. Exascale systems rely heavily on checkpoints to recover from

many types of failures including hardware failures, software failures, environmental

problems, and even human errors [99]. Usually, checkpoints are made to a non-volatile

storage such as a hard disk, but increasingly, solid-state drives (SSDs) are replacing

hard disks because they provide higher read/write bandwidth, lower power consump-

tion, and better durability [78]. The question becomes whether SSDs are sufficient

for storing checkpoints or if we should wait for emerging memory technologies.

The biggest disadvantage of NAND-flash SSDs is its lower endurance, which is on

the order of 104-105 program/erase cycles. SSD manufacturers employ various tricks
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such as DRAM buffers and sophisticated wear-leveling to extend lifetime. Currently,

SSDs on the market are guaranteed a lifetime of 3-5 years with a cap on the total

number of terabytes that can be written [51]. Nevertheless, writing gigabyte-sized

checkpoints several times a day to the SSD can take a toll on its endurance.

Many have suggested using emerging non-volatile memory technologies such as

phase change memory, memristors, and STT-RAM for checkpointing, often touting

their superior read and write speeds and higher endurance [29, 34, 56]. While we do

not disagree with these studies, emerging technologies must overcome many unde-

veloped steps between a successful prototype and volume production. It is difficult

to guess when, or if ever, emerging technologies will be ready for the first round of

exascale supercomputers. The U.S. Department of Energy’s Exascale Computing Ini-

tiative plans to deploy exascale computing platforms by 2023 [116]. Designs for 2023

systems will have to be finalized 3-4 years prior, similar to plans for Summit (2018)

and Aurora (2018-2019) supercomputers that were completed by 2015. At some point,

system designers will have to reason about reliable, off-the-shelf components that will

be available in the next 3 years. We show that existing non-volatile storage options

that are proven less risky due their maturity and low cost are sufficient for the near

future, if used correctly.

When using SSD flash memory for checkpointing, reducing the checkpoint size

or frequency remain the most effective ways to stretch its lifetime. To this end, we

propose a system that selectively checkpoints to a DRAM in order to reduce the

number of writes to the SSD thereby lengthening its useful lifetime. To accomplish

this task, we implement a Checkpoint Location Controller (CLC) that i) estimates

SSD lifetime, ii) estimates application’s performance loss, and iii) monitors checkpoint

size. The CLC detects checkpointing frequencies that lead to SSD lifetime falling

under the typical manufacturer’s guarantee of 5 years, and reduces these frequencies

by redirecting some checkpoints to the DRAM. We believe this is the first work to
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consider the lifetime of the SSD while writing checkpoints to it; previous work [67]

that also used SSD ignored its endurance.

DRAM is prone to transient errors and checkpoints corrupted by them cannot

be used for recovery. Then, a key feature to enable our technique of writing fewer

checkpoints to the SSD is to have a strong error correcting code (ECC) that can

protect the checkpoints in DRAM. For that reason, we propose a dual mode ECC

memory system that protects regular application data with a normal ECC algorithm

and checkpoint data with a strong ECC algorithm. The normal ECC, which is on the

critical path of memory accesses, is an RS(36,32) code that has small decoding latency

to correct or detect errors. It can correct all errors due to a bit/pin/column/word

failure and detect all errors due to a chip failure. The strong ECC is a two-layer

RS(19,16) code that provides Chipkill-Correct level reliability without modifications

to the DRAM devices. If an unrecoverable error corrupts the DRAM checkpoint, then

the application will restart from the checkpoint in the SSD. The resultant capability

to write reliable checkpoints to memory relieves the burden on the SSD, in turn

lengthening its lifetime. More importantly, the combined DRAM-SSD checkpointing

solution makes it possible to design an exascale memory system without relying on

unproven emerging memory technologies.

In summary, we make the following contributions:

• A low-risk exascale memory system. We use mature technology in com-

modity DRAMs and SSDs to create a low design-risk checkpointing solution

and prove that system designers do not have to wait until newer non-volatile

memory technologies are ready.

• Hybrid DRAM-SSD checkpointing. Our local checkpointing solution is a

hybrid mechanism that uses both DRAM and SSD flash memory to achieve

speed and reliability (Section 4.3).
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• SSD-lifetime-aware checkpoint controller. We design an intelligent Check-

point Location Controller (CLC) that decides when to checkpoint to the SSD

considering its endurance decay and performance degradation (Section 4.3.3).

• Dual-ECC memory. We propose a dual mode ECC memory that has a

normal ECC mode to protect regular application data and a strong ECC mode

to protect the DRAM checkpoint. ECC-protected checkpoints ensure error-free

restarts at recovery (Section 4.4). The dual-ECC modes were developed in

collaboration with researchers at Arizona State University.

Our results from microbenchmark simulations averaged across various checkpoint

sizes indicate that the CLC is able to increase SSD lifetime by 2×—from 3 years

to 6.3 years—exceeding the guaranteed lifetime of 5 years [51]. Furthermore, the

performance estimation feature in the CLC that monitors application slowdown is

able to reduce the checkpoint overhead to a 47% (on average) slowdown, compared

to a 420% slowdown when the application always checkpointed to the SSD—nearly a

10× savings.

4.2 Motivation

Local checkpoints to local storage (DRAM or SSD) have stemmed from a need to

avoid the slowdown resulting from transferring checkpoints to the remote parallel file

system (PFS) over limited-capacity I/O channels. It is difficult to decide on the best

local storage because each has their advantages and disadvantages. On one hand,

DRAM is fast (50ns [117]) but loses the checkpoint after a reboot. Furthermore,

limited DRAM capacity not only limits the size of the largest checkpoint that can be

made but also limits the amount of usable memory for applications.

On the other hand, SSDs are reliable and capacious but slow and have low

endurance (105 program/erase cycles). To illustrate the speed difference between
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ramdisk—a virtual disk created in DRAM to write checkpoint files—and the SSD, we

measured the total runtime of a microbenchmark (details provided in Section 4.5.1)

under three näıve implementations i) no checkpointing, ii) checkpointing to ramdisk

only, and iii) checkpointing to SSD only. For this simulation, we assumed that both

ramdisk and the SSD had unlimited checkpoint storage. As can be seen in Figure 4.1,

writing the checkpoint to ramdisk incurs a small 14% slowdown, but checkpointing

to the SSD incurs a considerable 4.6× slowdown averaged across all the checkpoint

sizes.
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Figure 4.1: Microbenchmark runtime results with various checkpoint sizes demon-
strate that always checkpointing to the SSD incurs significant overhead. Baseline
runtime = 8.3 minutes.

A key observation that we made during our experiment was that even when check-

pointing only to the SSD, files are first written into the page cache allocated in the

main memory. Files in the page cache are not necessarily flushed to the storage device

when the file is closed because the operating system chooses to delay writes to block

devices in order to hide I/O latency. The operating system provides no guarantee as

to when the checkpoint will be persisted. Waiting for the operating system to write

back data at its own discretion puts the checkpoint in a vulnerable state, exposed to

memory failures and power failures. On the other hand, the programmer can choose
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to explicitly flush the page cache after each checkpoint at the cost of performance

overhead because the slow write delay to flash becomes fully transparent to the ap-

plication. Our solution to this dilemma is to write a select few checkpoints to the

SSD and always flush them. To balance out the performance loss, we explicitly write

the remaining checkpoints to main memory—not to the page cache, but rather to

a ramdisk specifically for writing checkpoints. Explicitly writing checkpoints to the

memory (as opposed to the letting the operating system implicitly write them), allows

the application to know which of its checkpoints are not guaranteed to be safe.

The hybrid solution merges the benefits of both DRAM and SSD: namely, speed

and reliability. Furthermore, checkpointing to the DRAM helps to reduce SSD

wearout. The shortcomings of our solution is that it limits the available memory for

applications and increases the memory pressure (i.e. ratio of active memory pages)

due to active checkpoints residing in memory. The pros and cons of the proposed

technique are listed in Table 4.1.

The checkpoints in ramdisk are exposed to DRAM failures, but ECC algorithms

exists that are capable of protecting against most memory failures—except for a

power outage. The stronger the ECC, the more time and power that it takes to

decode data. A second key insight into our idea is that it is possible to use stronger

ECC algorithms for checkpoints because decoding them is not on the critical path of

normal application execution.

Alternative memory technologies such as phase-change, magnetic, resistive RAM,

and 3D XPoint holds promise because they are almost as fast as DRAM (10-300ns [117]),

yet also as reliable as storage. However, these technologies are not yet as dense or cost-

efficient as flash. Although Intel’s 3D XPoint is expected to cost half of DRAM [77],

recent innovations in 3D NAND-flash such as stacking 48 layers [55] will only cheapen

flash. Furthermore, unlike emerging technologies, flash devices have well understood

failure patterns and strong ECC codes to protect them [110]. Commercial availabil-
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Table 4.1: The pros and cons of the proposed technique compared to DRAM-only or
SSD-only checkpointing. The memory occupancy is marked as ”Med” because the
CLC can detect and send large checkpoints always to the SSD.
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ity and maturity of both DRAM and NAND-flash prove them a low-risk option for

at least the first round of exascale systems. Should emerging technologies become

better than flash, they can easily be integrated into our hybrid system and achieve

even better performance.

In the remainder of the chapter, we address two questions: 1) how to decide when

to checkpoint to the DRAM or the SSD? and 2) how to design a strong ECC algo-

rithm to protect the checkpoints without interference to non-checkpoint-data memory

accesses? To answer the first question, we implement the CLC in Section 4.3.3 that

is aware of the endurance limits of the local SSD device and the performance degra-

dation from writing to it. To answer the second question, we introduce a dual-mode

ECC design in Section 4.4 that can be dynamically encode data in either normal

ECC or strong ECC depending on whether the data is normal application data or

checkpoint data.

4.3 Hybrid DRAM-SSD Checkpointing

An overview of the hybrid solution is presented in Figure 4.2. Where past sys-

tems chose either DRAM or SSD as the checkpointing platform [89, 124], our hybrid
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solution uses both considering SSD lifetime, application performance, and checkpoint

size. In our system, all compute nodes contain main memory DIMMs consisting of

x4 ECC-DRAM devices and one high-capacity SATA SSD with flash. Our system

can exist within a hierarchical framework where global checkpoints are written to

the remote PFS. Note that this system differs from double checkpointing in other

work [76, 124] that write identical checkpoints to two platforms in “buddy” nodes.

Double checkpointing wastes memory space. In contrast, the hybrid system writes

only one checkpoint to one platform in a given checkpoint interval as illustrated in

Figure 4.3. Although not implemented in this work, a possible optimization is to

implement the hybrid system on top of a buddy system, where either the ramdisk or

SSD checkpoint is saved in the buddy’s ramdisk or SSD, respectively.
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Figure 4.2: The proposed idea utilizes both commodity DRAM and commodity SSD
for checkpoints.
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Figure 4.3: In the hybrid system (c), the CLC intelligently selects which checkpoints
are to be written to the SSD considering endurance, performance, and checkpoint
size.
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4.3.1 Checkpointing to the Ramdisk

Checkpoints to memory are written outside of the application’s address space to

ensure its persistence after the application crashes or ends. This can be achieved

by writing checkpoints to the ramdisk. There are two types of ramdisk file systems:

ramfs and tmpfs. The main difference between them is that ramfs cannot be limited

in size—i.e. it will keep growing until the system runs out of memory—whereas

tmpfs will start swapping to disk once the specified size limit is full. We use tmpfs

and enforce a size limit that ensures checkpoint memory does not encroach upon the

application’s memory.

4.3.1.1 Memory Requirement

In-memory checkpointing to DRAM requires prudent management of memory

resources. Out of the available memory on each server node, a certain quantity is

set aside for checkpointing by mounting a ramdisk into the memory space. The user

should consider the memory requirement for both the application and the checkpoint.

For example, 4GB out of a 24GB system can be set aside for checkpoints, leaving only

20GB for the application. The high performance application running on the node can

be adjusted for the smaller memory size by setting a smaller problem size per MPI

process, or by running fewer MPI processes on the node.

4.3.2 Checkpointing to the SSD

Since the future of emerging NVMs are unclear, we suggest that they should not

be used in the first generation of exascale machines. Commercial availability and

maturity of both DRAM and NAND-flash prove them a low-risk option sufficient for

at least the first generation of exascale systems, if used correctly.

In fact, since flash SSDs are readily available in the market, HPC system design-

ers are already considering them for checkpointing. SSDs have been most commonly
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proposed as a “burst buffer”—a storage buffer that is placed between the compute

nodes and storage nodes to quickly absorb bursty I/O traffic [67]. The original burst

buffers paper suggested placing the SSDs in the I/O nodes because they still have

system-wide visibility. Subsequent suggestions have been made to place the burst

buffers in the compute nodes as well [93]. In literature, Ni et al. [76] and Bautista

Gomez et al. [43] uses SSDs to relieve memory pressure on DRAM. Several supercom-

puters that will be built between 2016-2019 such as Cori, Summit, and Aurora, all

plan to include persistent memory in each compute node in the form of an SSD [13].

Our system uses application-level checkpointing in which the programmer

carefully selects the data to be saved such that the program can be successfully

restarted with that data. The data is written out in the format of a file, and storing

and retrieving the file is handled by the file system on the SSD. Usually, when writing

a file to any storage device, it is first temporarily allocated in the memory then flushed

to the device later. To ensure the file has persisted to the SSD, the Linux fsync()

operation must be called after each checkpoint. Otherwise, there can be no guarantee

the file is recoverable after a crash and reboot.

4.3.3 Checkpoint Location Controller (CLC)

The CLC writes checkpoints to the ramdisk or to the SSD by setting the file path

to point to either the ramdisk or the SSD. The decision is made just before the ap-

plication starts writing each checkpoint. The CLC can maximize the lifetime of the

SSD (Section 4.3.3.1), and/or minimize the performance loss of the application (Sec-

tion 4.3.3.2). It can also take into account the size of the checkpoint (Section 4.3.3.3).

An overview is in Figure 4.4. Section 4.3.3.4 shows how all three metrics are combined

into one algorithm used by the CLC.
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Figure 4.4: This state machine representing application execution shows how in the
checkpoint phase the CLC dynamically decides the checkpoint location on each iter-
ation.

4.3.3.1 Lifetime Estimation

The endurance of an SSD is described by bytes written (e.g. TBW–terabytes

written or PBW–petabytes written), which is the total amount of writes that it can

withstand without wearing out. To obtain an example for the lifetime of a real device,

we chose the Intel DC S3700 SSD in 800 GB as a reference [51]. Intel’s “DC” data-

center SSD’s are some of their highest endurance SSDs suitable for high performance

computing. The S3700 reported an endurance rating of 14.6 PBW [51].

To measure endurance decay, the CLC calculates an ‘expected lifetime’ (Lexpected)

and an ‘estimated lifetime’ (Lestimated). The ‘expected lifetime’ is a static calculation

based on how many petabytes have already been written. For example, a brand new

SSD is expected to last 5 years, but as it accumulates writes, the lifetime linearly

shortens. The ‘estimated lifetime’ is a dynamic calculation of how long the SSD

might last given the current application’s write bandwidth. If the ‘estimated lifetime’

is smaller than the ‘expected lifetime’, then that is interpreted as a sign of high usage

and accelerated endurance decay. Below are the two equations for this metric.

Lexpected = (PBWrating − PBWused) ×
5 years

PBWrating

(4.1)
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Lestimated =
PBWrating − PBWused

BSSD

(4.2)

where PBW = petabytes written and BSSD = write bandwidth to the SSD.

4.3.3.2 Performance Loss Estimation

Additionally, the CLC can be configured to monitor the dynamic performance loss

of the application as a result of checkpointing to the SSD. If this option is enabled, the

CLC monitors the amount of time elapsed since the launch of the program and the

fraction of that time spent on checkpointing. We employ a stop-and-copy style check-

pointing operation. Just before the next checkpoint, the CLC determines whether

the time already lost to checkpointing exceeds the specified bound (e.g. 10%), and if

so, directs the next checkpoint to the ramdisk. Each MPI process makes this decision

independently.

Tslowdown =
Tchk

Tcompute + Tchk
(4.3)

4.3.3.3 Checkpoint Size

Finally, the CLC considers the size of the checkpoint to determine if there is

enough ramdisk space available. Since ramdisk shares the main memory, its size must

be limited to avoid swapping from the disk. CLC directs all large checkpoints to the

SSD. However, if this decision conflicts with the prior ‘lifetime’ and ‘performance

loss’ decisions, then the checkpoint is skipped altogether and the application moves

on until the next checkpoint interval.

The downside to this approach is that it reduces the number of checkpoints and

increases the average rollback distance during recovery. A more severe outcome is

unintended uncoordinated checkpointing which can cause the application to restart

from the beginning if all the MPI processes cannot agree on single synchronized
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checkpoint to roll back to. To avoid such issues, the CLC can potentially be forced

to checkpoint on particular intervals.

4.3.3.4 CLC Library

Currently, the controller is written as a library that is added to the application’s

source code. It can interface with existing application-level checkpointing mechanisms

and frameworks such as Scalable Checkpoint/Restart (SCR) [74]. The algorithm

used by the controller is provided below. Lines 2-3 call the lifetime estimation and

performance loss estimation features and lines 4-11 make a decision based on their

results. Lines 12-15 checks the checkpoint size and skips writing large checkpoints to

the ramdisk. Lines 16-17 actually writes the checkpoint and updates the checkpoint

overhead measurement.

Algorithm 1 Checkpoint Location Controller (CLC)

1: function CLC(D, r, i) . Where D - data, r - MPI rank, i - chkpnt number
2: Lestimated, Lexpected = lifetimeEstimation()
3: Tslowdown = performanceEstimation(Tchk, Ttotal)
4: if Lestimated > Lexpected then
5: loc = SSD
6: if Tslowdown > bound then
7: loc = RAM
8: end if
9: else

10: loc = RAM
11: end if
12: size limit = TMPFS SIZE/numMPIRanks
13: if loc == RAM and sizeof(D) > size limit then
14: return
15: end if
16: writeCheckpoint(loc,D, r, i)
17: update(Tchk)
18: end function
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4.3.4 Recovery by Checkpoint Procedure

During restart, the application first searches for a checkpoint file that has been

saved by a previous run. An attempt is always made to recover from the checkpoint

in ramdisk. If it finds the latest checkpoint in ramdisk, it begins reading in that

checkpoint. However, if the ECC logic signals a detectable, but uncorrectable mem-

ory error, then the entire ramdisk checkpoint is discarded. Information regarding

uncorrectable memory errors can be located by ‘edac’ (‘error detection and correc-

tion’) kernel modules in Linux. The backup checkpoint file in the SSD is read in if

the one in memory was corrupt. The checkpoint in the SSD could be older, leading

to a longer rollback distance during recovery. We assume that the SSD has strong

ECC built-in that protects its checkpoint and that it is always reliable.

4.4 DRAM ECC Design

The proposed dual-ECC mode memory system has normal ECC for regular data,

and strong ECC, that is Chipkill-Correct, for checkpoint data. A typical memory

access to a DDR3 x4 memory module containing 18 chips (16 for data and 2 for ECC)

reads out a data block of size 512 bits over 8 beats. A Chipkill-Correct scheme can

correct errors due to a single chip failure and detect errors due to two chip failures. For

x4 DRAM systems, such a scheme is based on a 4-bit symbol code with 32 symbols

for data and 4 symbols for ECC parity and provides single symbol correction and

double symbol detection. It has to activate two ranks with 18 chips per rank per

memory access resulting in high power consumption and poor timing performance

[53, 115]. In contrast, the proposed ECC schemes for regular and checkpoint data

only activate a single x4 DRAM rank and have strong reliability due to the use of

symbol-based codes that have been tailored for this application. Reed-Solomon (RS)

codes are symbol based codes that provide strong correction and detection capability
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[66]. Here, we propose to use RS codes over Galois Field (28) for both normal and

strong ECC modes.

Fault Model. When selecting the ECC algorithms for normal and strong ECC,

the type of failures and how they manifest in the accessed data are considered. The

DRAM error characteristics are well analyzed in [107, 108, 109]. In this work, we

assumed errors are introduced by 5 different faults (bit/column/pin/word/chip) [62].

A bit fault leads to a single bit error in a data block. A column failure also leads to

a single bit error in a data block. A pin failure results in 8 bit errors and these errors

are all located in the same data pin positions. A word failure corrupts 4 consecutive

bit errors in a single beat. A whole chip failure leads to 32 bit errors (8 beats with 4

bits/beat) in a 512 bit data block.

Faults can also be classified into small granularity faults (bit/column/pin/word)

and large granularity faults (chip). Several studies have shown that small granularity

faults occur more frequently than large granularity faults and account for more than

70% among all DRAM faults [107, 108, 109]. Hence, errors due to small granularity

faults should be corrected with low latency in any ECC design.

beat 0
beat 1
beat 2
beat 3
beat 4
beat 5
beat 6
beat 7

x4 x4 x4 x4

Figure 4.5: The depicted normal ECC access reads 512 bits from eighteen x4 chips,
two of which are ECC chips. Two beats are paired up to create 1 8-bit symbol per
chip. The first 4 and last 4 beats form two RS(36,32) codewords (green and blue).
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4.4.1 Normal ECC

Normal ECC provides error correction coverage for regular data accesses, similar

to typical ECC DIMMs for servers. It is designed to meet the following requirements:

1. To correct frequent errors due to single-bit/pin/word failures without triggering

restart from a checkpoint.

2. To have small decoding latency of syndrome calculation since it is in the critical

path of memory access.

3. To activate one rank per memory access and to have better timing/power/energy

than Chipkill-Correct.

To satisfy these requirements, we use RS(36,32) over GF(28) for normal ECC. It

has a storage overhead of 12.5%, which is the golden standard for ECC design [62].

RS(36,32) has a minimum distance of 5 and supports the following setups: (i) double

error correction, (ii) four error detection, and (iii) single error correction and triple

error detection [66]. If the decoder is designed for setup (i), then 2 symbol errors due

to 1 chip failure can be corrected. However, 4 symbol errors due to 2 chip failures

cannot be corrected and will lead to silent data corruption [62]. If designed for setup

(ii), errors due to 2 chip failures can be detected but small errors due to bit/pin/word

failures cannot be corrected. These small granularity faults are reported to occur fre-

quently in memory systems and they must be corrected in order to avoid unnecessary

restarts from checkpoints. Setup (iii) can correct all errors due to small granular-

ity (single bit/pin/word) faults in a single chip, detect errors due to 1 chip failure,

and has strong detection capability for 2 chip failures. Specifically, for double chip

failures, setup (iii) can correctly detect several combinations of two small granularity

faults and provide very strong detection for the other cases. Based on this reasoning,

RS(36,32) with setup (iii) is chosen to protect normal data.

Results will later show that the normal ECC scheme has a very low silent data
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corruption rate of 0.003% and a small latency of 0.48ns for the syndrome calculation.

Furthermore, since only 1 rank is activated in each memory access, it has better

timing/power/energy performance than the traditional x4 Chipkill-Correct scheme.

Memory access pattern: As illustrated in Figure 4.5, upon a memory read,

one rank with 18 chips are activated and 512 bits are read out over 8 beats. Each

beat contains 4 bits from a single chip, thus two beats can be paired to form an 8-bit

symbol in an RS codeword. The 18×2 = 36 symbols from the first 4 beats are sent to

one RS(36,32) decoding unit followed by the second set of 36 symbols from the next

4 beats. If a codeword has 1 symbol error, it is corrected and sent to the last level

cache (LLC). If an uncorrectable error (i.e. ¿1 erroneous symbol) is encountered, then

a flag is set. In such a case, the OS would see the flag, terminate the application, and

trigger rollback and restart from the checkpoint. Upon a memory write, the ECC

encoder forms two RS(36,32) codewords and stores them in a DRAM rank as in a

normal memory write.

4.4.2 Strong ECC

Checkpoints that are stored in DRAM memory have to be protected by a strong

ECC mechanism to preserve the integrity of the checkpoint data. The proposed strong

ECC is designed to meet two requirements:

1. To provide Chipkill-Correct level reliability, which can correct all errors due to a

single chip failure and detect all errors due to two chip failures. The strong error

correction capability reduces the probability of accessing the SSD’s checkpoint

during restart.

2. To require minimal differences in hardware so as to be able to switch easily from

and to normal ECC. Since ramdisk pages can be mapped anywhere in physical

memory, the DRAM modules should be flexible in holding normal or checkpoint

data without special modifications to the DRAM devices.
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We propose using RS(19,16) over GF(28) for strong ECC. It works by a hierarchical

two-layer scheme where 18 out of the 19 symbols are stored in one rank and the 19th

symbol (the third parity symbol) is stored in another rank, as in V-ECC [122].

The two-layer scheme works because of the embedded structure of the RS code

[66]. The parity check matrix of RS(18,16) is embedded in the parity check matrix of

RS(19,16) and thus these two codes can share the same decoding circuitry. The two

symbols in the syndrome vector of RS(18,16) are identical to the first two symbols

in the syndrome vector of RS(19,16). Once RS(18,16) detects errors, the third ECC

symbol can be used to generate the third symbol of the syndrome vector of RS(19,16)

and then the RS(19,16) decoder can perform error correction [66].

A direct implementation of this scheme would result in two memory accesses

thereby degrading performance and incurring higher power consumption. Thus, an

ECC cache is employed to store the third parity symbol and hide the latency due

to the extra read and write accesses as in [122]. Additionally, activating just one

rank per memory access has better timing/power/energy compared to conventional

Chipkill-Correct.

Memory access pattern: As illustrated in Figure 4.6a, upon a memory read,

only one rank is activated and 18 symbols (16 data + 2 ECC) are sent to the RS(18,16)

decoder. Every two beats of data form one RS(18,16) codeword. The RS(18,16)

decoder is designed to perform detection only. Note that RS(18,16) can detect up to

2 symbol errors (2 chip failures). If it detects errors, the decoder is halted and the

third parity symbol is fetched from the ECC cache and sent to the RS(19,16) decoder.

If the ECC cache does not have the parity symbol, then a second memory access is

used to get it from another rank (Figure 4.6b). RS(19,16) can perform single symbol

correction and double symbol detection (SSC-DSD) and can thus provide Chipkill-

Correct level protection. If the RS(19,16) decoder detects an uncorrectable error, then

the entire DRAM checkpoint is discarded and the application retrieves a potentially
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Figure 4.6: (a) Strong ECC creates four RS(18,16) codewords (green, blue, purple,
and pink); each codeword is based on 2 beats of data; (b) If errors are detected, four
additional ECC symbols are retrieved to form four RS(19,16) codewords.

older checkpoint from the SSD. The recovery procedure was outlined in Section 4.3.4.

Upon a memory write, 512 data bits are encoded into 4 codewords. Two of the

parity symbols in each codeword are stored in the two ECC chips in the same rank

by a regular memory write operation. The third parity symbol is stored in the ECC

cache or in another DRAM rank.

4.4.3 Modification to the Memory Controller

The strong ECC mode exists simultaneously with normal ECC that protects reg-

ular memory data; and only requires modification to the memory controller, not the

DRAM devices. In order to identify ramdisk/checkpoint data, the page table can be

marked with a special flag to indicate ramdisk pages. As illustrated in Figure 4.7,

regular data is routed via the normal encoder/decoder and ramdisk data is routed via

the strong encoder/decoder. We rely on an ECC address translation unit to determine
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the location of the second memory access for strong ECC as in V-ECC [114].
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Figure 4.7: Modified Memory Controller with two decoders for normal and strong
ECC.

4.5 Evaluation Setup

4.5.1 Microbenchmark

A microbenchmark was written to evaluate the performance of writing a wide

variety of checkpoint sizes to different platforms. It was written as an MPI program

in C++ to simulate typical parallel supercomputing applications. It mainly consists

of two phases: compute and checkpoint. The compute phase runs an algorithm

which takes roughly 5 seconds to finish, and the checkpoint phase writes a file of a

specified size to either the ramdisk or the SSD. The microbenchmark runs for 100

total iterations of the two phases.

The microbenchmark can be launched with any desired number of MPI processes.

To take our measurements, we ran the microbenchmark with 64 MPI processes across

8 nodes. The desired checkpoint size is passed into the microbenchmark as an input,

and the same size of checkpoint is made in all 100 iterations. Although there are

some supercomputing applications whose checkpoint sizes vary during runtime, most

applications save a particular data structure such as the <x,y,z> position vectors of

particles or a vector of temperatures. Thus, having a fixed checkpoint size throughout
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is acceptable.

We measured the total runtime of the microbenchmark under three näıve imple-

mentations i) no checkpointing, ii) checkpointing to ramdisk only, and iii) checkpoint-

ing to SSD only. The results, which were already shown in Figure 4.1 in Section 4.2,

indicated that writing the checkpoint to ramdisk incurs only a small slowdown of

14%, whereas the SSD incurs a 4.6× slowdown.

4.5.2 MPI Barrier Synchronization Latency

In a globally coordinated checkpointing approach, the overall checkpointing la-

tency consists of two parts: coordination time and storage access time. In the coordi-

nation part, all the MPI processes across all the nodes are synchronized via a global

MPI barrier. In our simulations, although we did not explicitly measure this latency,

it is captured in the total runtime to completion in our simulations.

With many improvements to the global interconnection network, the coordination

latency to synchronize the MPI barrier is relatively fast even in large networks. A

750-node Cray XC system using an Aries interconnect reported the end-to-end latency

(from source compute node to destination compute node) of an 8-byte MPI message

to be 1.3µs [15]. On the other hand, previous studies have found that the storage

access latency is the dominating part of the overall checkpointing latency, as much

as 95% [37, 40]. There have been proposals to group MPI processes into many small

groups and synchronize only the MPI processes within that group rather than a large

global synchronization [41, 47]. These advances further reduces the coordination

latency.

4.5.2.1 Typical Checkpoint Sizes

Checkpoint sizes can be reported for an MPI process, for a node, or for an entire

application. It is difficult to determine real checkpoint sizes unless real HPC applica-
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tions are run at scale on a supercomputer. Even though mini-apps and proxy-apps are

representative of the algorithms of the HPC applications, one of their shortcomings

is that they are not representative of the runtime or the memory size of large HPC

applications.

We conducted a survey of past literature to determine typical checkpoint sizes.

An older version of NAS Parallel Benchmark suite checkpointed 3.2MB-54MB per

process [49]. MCRENGINE, a checkpoint data aggregation engine, was evaluated

on applications having checkpoint sizes between 0.2MB-154MB per process [52]. An

experiment on Sierra and Zin clusters at LLNL wrote 50MB and 128MB per process,

respectively [85]. A PFS-level checkpointing evaluation on two large clusters HERMIT

and LiMa wrote 294MB and 340MB per process, respectively [104]. Note that often

times more than one MPI process runs on a multi-core node. Node level checkpoint

sizes have been reported between 460MB-4GB/node [76].

To illustrate the wide variety of existing checkpoint sizes, our microbenchmark ex-

periments use between 100MB-1000MB per MPI process; and we run 8 MPI processes

per node.

4.5.3 Proxy-apps

The proposed Checkpoint Location Controller was validated against two real

benchmarks: miniFE and Lulesh. miniFE is a proxy-app whose main computa-

tion is solving a sparse linear system using a conjugate-gradient (CG) algorithm. In

a checkpoint, miniFE saves solution and residual vectors. Lulesh is a proxy-app that

models shock hydrodynamics. It solves a Sedov blast problem while iterating over

time steps. In a checkpoint, Lulesh saves the vectors for energy, pressure, viscosity,

volume, speed, nodal coordinates, and nodal velocities. The simulation setup and the

parameters used to run the benchmarks are given in Table 4.2. The parameters were

decided upon using instructions that came with each application on how to scale up
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the problem size given the available memory in each node, which was 24GB in our

servers.

Table 4.2: Simulations parameters for miniFE and Lulesh

miniFE Lulesh
Parameters 528×512×768 45×45×45
Setup 64 MPI processes, 8 nodes

24GB/node
Checkpoint sizes:

1 MPI proc: 50 MB 8 MB
1 node: 400 MB 64 MB
App. Total: 3.1 GB 512 MB

Baseline runtime: 236 sec. 74,470 sec.
Checkpoint once/iteration, once/iteration,
behavior: ∼1 sec/iter, ∼11 sec/iter,

200 iterations, 6,499 iterations

4.5.4 SSD Device Reference

We chose the Intel DC S3700 SSD in 800 GB using a SATA 3 6Gbps connec-

tion for our experiments [51]. It reported an endurance rating of 14.6 PBW and a

maximum sequential write speed of 460 MB/s. We were able to achieve write speeds

of only 250 MB/s during our checkpoint experiments. The write bandwidth to the

SSD is important because faster writes lead to less application slowdown and less

overall power consumption. There is a PCIe version of the same SSD available with

higher bandwidth; however PCIe is more expensive. On CDW-G, a popular IT prod-

ucts website, Intel’s PCIe-based SSDs for data centers retail at upwards of 92¢ per

gigabyte. On the other hand, their SATA SSDs retail as low as 71¢ per gigabyte.
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4.6 Results

4.6.1 Controller Results

4.6.1.1 Lifetime Estimation

The first set of results are with only the lifetime estimation (abbreviated LE)

feature. Again, the controller uses Eq. 4.1 and Eq. 4.2 (Section 4.3.3.1) before each

checkpoint to determine if the current rate of checkpointing by the application will

prematurely wear out the SSD. We assumed an endurance rating of 14.6 PBW (on a

brand new SSD) that leads to 5 years of useful life.

Each node has a local SSD and the controller takes into account the endurance

of the local SSD and the cumulative bandwidth of 8 MPI processes in the node

writing checkpoint files to it. As can be seen in Figure 4.8a, once the endurance is

taken into account, fewer checkpoints are written to the SSD, especially at larger

checkpoint sizes. At 1000MB per process, only 12% of checkpoints are written to

the SSD. Advantageously, this leads to a performance improvement; the slowdown of

the benchmark is considerably lessened to an average of only 1.9× (Figure 4.8b)—as

opposed to the nearly 8× slowdown (4.6× on average) if always checkpointing to the

SSD.

The shaded region above each bar for the CLC’s results in Figure 4.8b indicates

the overhead due to encoding the checkpoint data with strong ECC before writing to

the DRAM. In experiments, the overhead of a second memory access was simulated by

writing the checkpoint twice to DRAM. Using this method to measure ECC overhead

predicted about 20% additional slowdown, making the average slowdown about 2.1×.

This is a worst case estimation of the ECC overhead; in practice, the second memory

access can be optimized by using an ECC cache for parity symbols of strong ECC.

Figure 4.9 shows the improvement in endurance gained by the endurance-aware

checkpoint controller. This result was obtained after the application completed, and
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Figure 4.8: Microbenchmark results with the CLC’s lifetime estimation (LE) feature
enabled. (a) For bigger checkpoint sizes, more checkpoints are written to the ramdisk.
(b) The CLC significantly reduced the slowdown. The shaded region above each bar
is the overhead for strong ECC’s second memory access.

was based on its runtime and how many checkpoints it wrote to the SSD. If check-

points were only written to the SSD as in Figure 4.9a, then the SSD is estimated

to last an average of 3 years across all the checkpoint sizes. On the other hand, the

LE feature of the controller extended the SSD lifetime to an average of 6.3 years

(Figure 4.9b), ensuring that users can get the guaranteed 5 years of life from their

SSD.
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100 MB

1000 MB
3 yrs

(a) SSD Only
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Figure 4.9: Expected lifetime of the SSD is improved with the LE feature in the CLC.
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4.6.1.2 Performance Estimation

Although, the controller was able to successfully prolong SSD endurance, the ap-

plication still experienced 2.1× slowdown, as was shown in Figure 4.8b. To further

minimize performance loss, with the LE feature still enabled, we also enabled the per-

formance loss estimation (abbreviated PLE) feature. The performance loss bound

was set to 10% in this experiment. Note that the 10% bound was optimistic be-

cause even the ‘always-ramdisk’ checkpoint experienced 3%-25% slowdown across the

checkpoint sizes.

As Figure 4.10a shows, the controller wrote even fewer checkpoints to SSD when

the PLE feature was enabled; almost 99% of checkpoints were written to ramdisk.

Nevertheless, it was successful in decreasing slowdown even further to only 36% on

average (47% with strong ECC overhead). More importantly, the controller’s achieved

performance is more closer to the ‘always-ramdisk’ approach which achieved 14%

slowdown on average (42% with strong ECC overhead).
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Figure 4.10: (a) Performance loss estimation (PLE) feature attempts to contain the
performance loss within a specified bound (e.g. 10%) and leads to even fewer check-
points to the SSD. (b) PLE’s improved slowdown is closer to ramdisk’s. Shaded
regions above each bar represent worst-case overheads from strong ECC encoding.

For the sake of comparison, we also implemented a näıve scheme where every 10th
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checkpoint is written to the SSD, labeled as “9:1 Ramdisk:SSD” in Figure 4.10b. This

scheme performed better than CLC’s smarter scheme for checkpoint sizes of 100 MB

and 200 MB per process, indicating that a fixed scheme might be sufficient for applica-

tions with small checkpoint sizes that want to achieve a balance between performance

and reliability. However, across all checkpointed sizes, it’s average slowdown was 58%

(72% with strong ECC overhead), that is 22% worse than CLC’s PLE feature. The

ratio 9:1 was arbitrarily picked; a larger ratio can be chosen for even smaller perfor-

mance loss if the DRAM checkpoint has strong ECC protection.

4.6.1.3 Checkpoint Size

CLC’s size checking feature is configured to direct checkpoints bigger than a par-

ticular size (e.g 0.5GB) to the SSD, that is, these large checkpoints are never written

to the ramdisk. In this configuration, some checkpoints maybe skipped if the LE and

PLE features indicate unfavorable results. Figure 4.11a shows that for checkpoint

sizes 600MB and bigger, the CLC wrote less than 10% of the intended number of

checkpoints. It also increased the average checkpoint interval of this microbenchmark

(ideally a 5-second interval) from less than 10 seconds to 1-2.5 minutes (Figure 4.11b).

Skipping checkpoints leads to longer rollback distances and, more severely, to

unintended uncoordinated checkpointing (Section 4.3.3.3). To avoid such issues, the

CLC can be changed forcefully write particular checkpoints.

4.6.1.4 Energy

Energy saved from writing checkpoints to the DRAM is an additional benefit

of our proposed hybrid method. First, we measured the power consumed during a

checkpoint operation to both the ramdisk and the SSD. Power measurements were

obtained via the “watts up?” meter and its smallest sampling rate is 1 second.

It measures the load of one entire server node; thus, the measured power includes

76



600 700 800 900 1000
Checkpoint Size (MB) per MPI process

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Ra
tio

 o
f C

he
ck

po
in

ts

(a) Checkpoints Made to SSD

600 700 800 900 1000
Checkpoint Size (MB) per MPI process

0
20
40
60
80

100
120
140
160
180

Av
er

ag
e C

he
ck

po
in

t I
nt

er
va

l (
se

co
nd

s)

6.9 7.3 7.6 7.9 8.1

Hybrid
CLC: always SSD

(b) Avg. Checkpoint Interval

Figure 4.11: (a) With CLC’s size checking feature, big checkpoints are always written
to the SSD. But this leads to only a small fraction of checkpoints actually being
written, while the rest are skipped. (b) This feature drastically increases the average
checkpoint interval.

everything from CPU, DRAM, I/O bus, SSD, and more.

Figure 4.12a shows the node’s power consumption while continuously writing a

10GB file. We chose a very large file size to obtain a measurable power sample

because writing small files to the DRAM is very fast (under 1 second) and does not

get picked up by the “watts up?” meter. The idle power of the server was 37W and

checkpointing to the SSD saw a jump to 50W on average. Interestingly, checkpointing

to DRAM registers much higher power consumption at 79W on average. However,

writing to the DRAM took only 3 seconds compared to the 42 seconds for the SSD.

Overall, DRAM uses less energy because of its speed advantage.

Second, the power numbers obtained from the power profile and the ratio of

checkpoints sent to the ramdisk vs. SSD were used to calculate the total energy

consumption during checkpointing. Figure 4.12b shows that between 10×-12× energy

savings were gained from the checkpoints that were written to the ramdisk instead

of the SSD. These results demonstrate the energy savings with only the LE feature

from Figure 4.8.
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Figure 4.12: (a) The SSD consumes 50W during a write operation, whereas the
DRAM consumes 79W. (b) However, due to DRAM’s faster write bandwidth, re-
directing some checkpoints to the DRAM saves overall checkpoint energy.

4.6.1.5 Real Applications

Finally, we evaluated the CLC with real benchmarks miniFE and Lulesh. miniFE

wrote 50MB checkpoints per MPI process with only 1 second of computation in a

checkpoint interval. At a node level, 8 MPI processes write 400MB of checkpoints

each iteration. As can be seen in Figure 4.13a, the ‘always-SSD’ approach caused

nearly a 19× slowdown, as did the CLC with LE feature enabled. The slowdown

is a consequence of the frequent checkpoint behavior of this application. However

the checkpoints were small enough not to cause premature wearing out of the SSD;

hence, the CLC directed almost all checkpoints to the SSD. Enabling the PLE feature

with a bound of 10% was able to decrease the slowdown to 1.2×, but then the CLC

directed almost all checkpoints to the ramdisk. In comparison the “9:1” scheme that

sent 1 out of 10 checkpoints to the SSD saw a 2.9× slowdown and ‘always-ramdisk’

approach saw a 1.1× slowdown.

Figure 4.13b shows the results for Lulesh, which wrote very small 8MB checkpoints

per MPI process at a sufficiently large interval of 11 seconds. Since the bandwidth
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to the SSD is low enough so as not to cause accelerated endurance decay, the CLC

always chose the SSD. Enabling the PLE feature reduced the performance loss from

17% down to 13% by redirecting 17% of all checkpoints to the ramdisk. With only

2% slowdown, Lulesh is an example of an application that might be better suited for

a static “9:1” scheme that balances out both reliability and performance.
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Figure 4.13: Neither miniFE nor Lulesh checkpoints with high enough bandwidth
to wear down the SSD; thus CLC’s LE feature allows most checkpoints to the SSD.
Enabling the PLE feature, on the other hand, makes the CLC re-direct most of
miniFE’s checkpoints to the DRAM.

4.6.2 ECC Overhead & Error Coverage Results

The performance overhead of ECC on application runtime were already included

in results in Figures 4.8-4.13. This section focuses on synthesis and error coverage

results for ECC.

4.6.2.1 Synthesis

We synthesized the decoding units of RS(36,32), RS(18,16) and RS(19,16) codes

over GF(28) using 28nm industry library. The syndrome calculation is performed

for every read and so we optimize it for very low latency. The decoding latency

of syndrome calculation is 0.48ns for RS(36,32) code and 0.41ns for RS(18,16) and
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RS(19,16) codes. Thus the syndrome calculation latency is less than one memory

cycle (1.25ns if the DRAM frequency is 800MHz).

For normal ECC, if syndrome vector is not a zero vector, RS(36,32) performs

single symbol correction and triple symbol detection. It takes an additional 0.47ns

to correct a single symbol error or declare that there are more errors. For strong

ECC, RS(18,16) is configured to only perform detection. If the syndrome vector is

not a zero vector, the memory controller reads the third ECC symbol and forms the

RS(19,16) code. After calculating the syndrome vector for RS(19,16), the decoder

spends an additional 0.47ns to correct a single symbol error and if it cannot correct

the error, it declares that there are more errors. The synthesis results are shown in

Table 4.3.

Table 4.3: Synthesis results for proposed RS codes

RS(36,32) RS(18,16) RS(19,16)
Syndrome 0.48ns (σ) 0.41ns (ρ) 0.41ns (ρ)

Calculation
Single Symbol Correction & N/A N/A ρ + 0.47ns
Double Symbol Detection

Single Symbol Correction & σ + 0.47ns N/A N/A
Triple Symbol Detection

4.6.2.2 Error Coverage

The reliability of four ECC schemes, namely, RS(36,32) for normal ECC, RS(18,16)

and RS(19,16) for strong ECC, and x4 Chipkill-Correct was evaluated. 10 million

Monte Carlo simulations for single bit, pin, word, and chip failure events were con-

ducted. Each fault type was injected into a single chip or two chips. For each type of

error event, the corresponding detectable and correctable error (DCE) rate, detectable

but uncorrectable error (DUE) rate and silent data corruption (SDC) rate [62] were

calculated; Table 4.4 gives the corresponding simulation results for these four ECC

codes.

RS(36,32) for normal ECC can correct all errors due to small granularity faults
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Table 4.4: The error protection capability

Failure Mode RS(36,32) RS(18,16) RS(19,16) Chipkill-Correct
Single Chip Failures

1 bit DCE: 100% DCE: 0% DCE: 100% DCE: 100%
DUE: 0% DUE: 100% DUE: 0% DUE: 0%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

1 pin DCE: 0% DCE: 0% DCE: 100% DCE: 100%
DUE: 100% DUE: 100% DUE: 0% DUE: 0%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

1 word DCE: 100% DCE: 0% DCE: 100% DCE: 100%
DUE: 0% DUE: 100% DUE: 0% DUE: 0%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

1 chip DCE: 0% DCE: 0% DCE: 100% DCE: 100%
DUE: 100% DUE: 100% DUE: 0% DUE: 0%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

Double Chip Failures
1 bit + 1 bit DCE: 0% DCE: 0% DCE: 0% DCE: 0%

DUE: 100% DUE: 100% DUE: 100% DUE: 100%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

1 bit + 1 pin DCE: 0% DCE: 0% DCE: 0% DCE: 0%
DUE: 100% DUE: 100% DUE: 100% DUE: 100%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

1 bit + 1 word DCE: 0% DCE: 0% DCE: 0% DCE: 0%
DUE: 100% DUE: 100% DUE: 100% DUE: 100%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

1 bit + 1 chip DCE: 0% DCE: 0% DCE: 0% DCE: 0%
DUE: 100% DUE: 100% DUE: 100% DUE: 100%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

1 pin + 1 word DCE: 0% DCE: 0% DCE: 0% DCE: 0%
DUE: 100% DUE: 100% DUE: 100% DUE: 100%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

1 pin + 1 pin DCE: 0% DCE: 0% DCE: 0% DCE: 0%
DUE: 99.9999% DUE: 100% DUE: 100% DUE: 100%
SDC: 0.0001% SDC: 0% SDC: 0% SDC: 0%

1 pin + 1 chip DCE: 0% DCE: 0% DCE: 0% DCE: 0%
DUE: 99.9969% DUE: 100% DUE: 100% DUE: 100%
SDC: 0.0031% SDC: 0% SDC: 0% SDC: 0%

1 word + 1 word DCE: 0% DCE: 0% DCE: 0% DCE: 0%
DUE: 100% DUE: 100% DUE: 100% DUE: 100%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

1 word + 1 chip DCE: 0% DCE: 0% DCE: 0% DCE: 0%
DUE: 100% DUE: 100% DUE: 100% DUE: 100%
SDC: 0% SDC: 0% SDC: 0% SDC: 0%

1 chip + 1 chip DCE: 0% DCE: 0% DCE: 0% DCE: 0%
DUE: 99.9969% DUE: 100% DUE: 100% DUE: 100%
SDC: 0.0031% SDC: 0% SDC: 0% SDC: 0%

and can detect all errors due to a single chip failure. For faults across 2 chips, it

can fully detect errors due to a single bit fault in each chip, a single bit fault in one

chip and a single pin fault in another chip, and several other error events as shown

in Table 4.4. This code has good detection capability for errors due to a pin fault in

each chip, 1 pin fault in one chip and 1 chip failure and double chip failures.

The combination of RS(18,16) and RS(19,16) that is used for strong ECC achieves

Chipkill-Correct reliability. Recall that RS(18,16) is activated every time to provide

detection. It can detect all errors due to double chip failures, and once errors are
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detected, RS(19,16) decoder is activated. It can correct all errors due to a single chip

failure and detect errors due to double chip failures and thus it achieves Chipkill-

Correct level reliability.

4.7 Related Work

Zheng et. al [124] proposed to pair two processors in a buddy system where each

process makes two identical checkpoints to its own local storage and to the buddy’s

local storage. The default local storage is the local memory, known as double in-

memory checkpointing ; if a local disk is available then double in-disk checkpointing can

be carried out instead. At recovery, one of the two buddies provides the restoration

checkpoint. Similar to our results, their in-memory checkpoint was faster, but the disk

was more practical for applications with big memory footprints. We believe that our

two methods can be combined to form a better hybrid-buddy checkpointing method

where instead of wasting memory by storing double checkpoints to attain resilience,

either our ramdisk or SSD checkpoint can be stored at the buddy’s node.

Rajachandrasekar et. al [84] proposed a new in-memory file system called CRUISE

(Checkpoint Restart in User SpacE) in which large checkpoints to main memory can

transparently spill over to SSD storage. CRUISE is mounted similarly to a ramdisk.

Our work can augment CRUISE by providing the necessary strong ECC protection

for memory checkpoints. Similarly, CRUISE’s spill feature can augment our CLC for

checkpoints that are too large to fit in memory. CLC’s lifetime estimation feature can

provide CRUISE with important information about the endurance of the SSD/spill

device.

Saito et al. [89] investigated improving energy consumption during checkpoint

write operations to a PCIe-attached NAND-flash device. They suggest that there

exists an optimal number of I/O processes that can simultaneously write to the device.

They minimize energy consumption by applying DVFS and keeping an I/O profile
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that helps to quickly determine the optimal number of I/O processes. This work

could possibly be added to our CLC as a new “energy estimation” feature and help

predict energy consumption for an energy-limited system that checkpoints to SSDs.

Yoon and Erez [114] proposed Virtual ECC (V-ECC) to protect memory systems

with strong ECC mechanisms without modifying existing DRAM packages. This

idea makes it possible to provide large parity even for systems that have no dedicated

parity hardware. We borrow their technique to provide strong ECC protection for

our checkpoints, where the extra parity symbols for strong ECC is stored like data.

4.8 Summary

Exascale supercomputers have millions of components that can fail. A 100 petabyte

memory system—100× larger than ORNL Titan supercomputer’s 1 petabyte memory

system—alone consists of millions of DDR4 DRAM devices backed by hundreds of

thousands of SSD flash devices. Resilience to failing components must be achieved

by creating a fast and reliable checkpoint/restart framework.

In this chapter, we proposed a hybrid DRAM-SSD checkpointing solution to

achieve speed and reliability for local checkpointing while also reducing the endurance

decay of SSDs. The Checkpoint Location Controller (CLC) that we implemented

monitors SSD endurance, performance degradation, and checkpoint size to dynam-

ically determine the best checkpoint location. CLC running on a microbenchmark

showed an SSD lifetime improvement from 3 years to 6.3 years. Application results

on miniFE and Lulesh validated that the online controller can make appropriate

decisions to limit the slowdown due to checkpointing.

Furthermore, our normal ECC provides low-latency correction for errors due to

bit/pin/column/word faults and our strong ECC provides Chipkill-Correct capability

to DRAM checkpoints to reduce the overheads of rollback. The system presented

in this chapter demonstrates that it is in fact possible to build an exascale memory
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system using commodity DRAM and SSD and gain both speed and reliability without

relying on emerging memory technologies.
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CHAPTER V

Improvements to Checkpointing with a

DIMM-based SSD

5.1 Introduction

Local checkpointing to storage inside the compute node has been proposed to

overcome long checkpointing latencies to the parallel file system (PFS) [18, 33, 74, 92].

There are a couple of ways of doing I/O to local storage. One is to use synchronization

primitives (fsync(), O SYNC) to fully persist the data to the underlying storage. This

is usually slow because the I/O function will block until all the data is written at

the SSD’s programming speed. It is often used in stop-and-copy checkpointing for

simplicity. The other is to use non-blocking I/O in which the function returns almost

immediately and the data is copied to the SSD at the operating system’s discretion.

While fast, the non-blocking method provides no persistence guarantees.

One solution to this problem is to use a background thread to perform I/O while

the foreground thread continues processing. However, the problem with this method

is that a separate process will cause resource contention for cores and caches. Fur-

thermore, spawning a background process with fork() triggers Linux copy-on-write

semantics where the background process duplicates memory pages that the foreground

process tries to modify. The in-memory duplication increases memory bandwidth and
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occupies additional memory space.

In this chapter, we proposed a method of doing partially non-blocking I/O that

also provides persistence guarantees to the application. Although the previous hybrid

framework provided persistence guarantees, it did so using an fysnc() synchroniza-

tion call that was fully blocking. The proposed method enables the application to

notify an I/O controller about which memory regions need to be saved and resume

processing without blocking for the entire copy operation. The application blocks

only when it attempts to modify a memory region that has not yet finished check-

pointing. One of our main design goals was to minimize additional main memory

footprint and main memory bandwidth used by checkpointing; therefore, unlike the

copy-on-write method, the proposed method waits for the checkpoint to finish rather

than creating in-memory copies.

To engineer the proposed I/O method, we used newer DIMM-based SSDs. In

contrast to conventional SATA/PCIe-attached SSDs that require traversing the I/O

hub chipset, DIMM-based SSDs place flash storage on the memory bus and offers

a tightly coupled connection between DRAM main memory and storage. This type

of SSD allows small, cache line-sized transfers to be made from main memory to

storage rather than large, block-sized transfers typically made by DMA engines to

SATA/PCIe-based SSDs. Furthermore, the SSD Controller (or I/O controller) can

make I/O requests directly to the DDR memory controller on the shared memory bus,

which is faster than the handshaking protocols usually employed by DMA engines over

the PCIe bus. In addition, the shared memory controller’s ability to see both which

memory regions are being modified and which memory regions have already been

saved to the SSD allows us to easily give persistence guarantees to non-blocking I/O.

At the same time, we proposed two optimizations to further hide checkpointing

latency to the SSD. These optimizations are aided by the partially non-blocking I/O

to the DIMM-based SSD mentioned above. The first optimization condenses and
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consolidates many sparsely updated DRAM pages into a few flash pages. Condensing

and consolidating was designed to amortize the microseconds-long programming la-

tency of flash over as much data as possible. Condensing is enabled by tracking dirty

cache lines in every physical page; then the SSD Controller requests only those dirty

cache lines for copying. Cache lines across many physical pages are consolidated into

one flash page assuring that the checkpoint size is reduced. Note that condensing

and consolidating would help even blocking I/O and also works for other flash-based

systems such as SATA/PCIe-attached SSDs.

The second optimization overlaps checkpointing with application execution by be-

ginning copying pages earlier than the start of the checkpoint phase and continuing

later than the end of the checkpoint phase. This optimization is ultimately a further

improvement to checkpointing via non-blocking I/O. Early checkpointing minimizes

the amount of blocking on unfinished checkpointing regions later on. Late check-

pointing takes advantage of the fact that some pages are infrequently modified and

checkpoints them lazily. Both early and late checkpointing exploits cold periods in

updates to memory pages.

Our proposed design strives to reduce the time overhead of checkpointing to the

SSD. As compared to the conventional stop-and-copy method, our consolidate method

improved average performance by 36% on simulations performed on SPEC CPU2006

benchmarks. In the worst case, where densely updated pages cannot be condensed

and consolidated, the proposed design will not be worse than the stop-and-copy per-

formance. The overlapping method improved average performance by 33% over stop-

and-copy method. Applied together, they improved average performance by 73% over

stop-and-copy method.

In summary, we made the following contributions:

• Fast checkpointing to SSD. First and foremost, we proposed methods to

hide local checkpointing latency to the SSD over conventional stop-and-copy
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without incurring significant slowdowns or additional memory footprint.

• Partially non-blocking I/O. We proposed to use DIMM-based SSDs to per-

form partially non-blocking I/O. The application sets up the SSD Controller

to save a region of its memory space and resume processing. Subsequently, the

SSD Controller copies the data by making small, cache line-sized requests to the

DDR memory controller. This method allows I/O latency to be hidden without

losing the persistence guarantee.

• Consolidation. We proposed to condense and consolidate sparse updates to

main memory pages into a few flash pages in order to amortize the microseconds-

long program latency of flash over as much data as possible.

• Early-Late Checkpointing. We proposed to utilize cold periods in memory

pages to checkpoint them earlier or later than the intended checkpoint phase.

The early-late method both benefits from and further improves the use of par-

tially non-blocking I/O for checkpointing.

5.2 Motivation and Background

5.2.1 Checkpointing to Conventional SSDs

It is desirable to obtain a guarantee of persistence after the checkpoint has been

made to the SSD to protect against a future failure that may corrupt or wipe out

the volatile main memory and caches. According to the Linux man pages, obtaining

that guarantee requires using either fsync() or O SYNC/O DSYNC flags with write().

Forced synchronization such as these are often performed as blocking I/O where the

application stalls and waits until the I/O function returns after completing the entire

copy operation. In the case of writing to the SSD, this incurs long latencies attributed

to slow SSD programming speeds.
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Alternatively, file I/O can be overlapped with application execution using a sep-

arate background thread or process. But, employing a background process for each

foreground MPI process creates contention for CPU resources in a shared many-core

environment. Also, as mentioned earlier, the background process invokes copy-on-

write semantics that consumes additional bandwidth for in-memory duplication.

Furthermore, the copy operation itself is performed by a DMA engine. After

the application initializes a write(), and after the filesystem location is resolved,

the device driver allocates a DMA buffer, places the data there and hands over the

handle to the DMA engine. Placing the data in the DMA-accessible region of memory

is a privilege of the kernel, which makes it difficult for an application employing

non-blocking I/O to check whether that data has been persisted. In Linux, raw

I/O (O DIRECT flag) directly from user space to the SSD almost always must be

synchronous, that is, the write() system call cannot return until the operation is

complete [88].

Finally, the DMA operation itself involves handshaking protocols to access main

memory. When the DMA engine is granted access to main memory, CPU requests are

suspended until the DMA engine releases its hold on the memory bus. DMA setup

costs are better amortized over large transfer sizes, but large transfers may block

CPU requests for too long. In another mode known as “cycle stealing mode”, both

CPU requests and I/O requests alternate on the memory bus, but the handshaking

process to setup the DMA becomes costly.

5.2.2 New Opportunities with DIMM-based SSDs

Whereas SATA, SAS, PCIe, and NVMe all connected to the processor package

via an I/O hub and PCIe switches, DIMM-based SSDs will connect via the memory

bus. Higher memory bus bandwidths of 12.8GB/s (DDR3-1600) or 19.2GB/s (DDR4-

2400) also means that storage is no longer bottle-necked by the I/O links. While some
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I/O latency is reduced, the DIMM-based SSD storage is still accessed by invoking

the filesystem, block layer, and device driver code for easier adoption into existing

systems. Accessing memory, on the other hand, requires no kernel intervention. While

all the ways of doing I/O (blocking, background process, and direct) with conventional

SSDs are still applicable to DIMM-based SSDs, having storage on the memory bus

presents a unique opportunity to offload data transfer responsibilities of the device

driver to the hardware.

In the new architecture design that we proposed, the SSD Controller takes re-

sponsibility for transferring data between memory and storage and uses the shared

memory controller to mediate communication between them. Unlike the DMA en-

gine, the SSD Controller does not perform lengthy handshaking protocols, master

the memory bus and block CPU’s access to it, or make bulk transfers from mem-

ory. Instead, the SSD Controller requests fine-grained cache-line sized memory reads

from the memory controller. User space memory can be read directly; therefore, by

simply marking those pages as read-only until they are checkpointed automatically

guarantees that the application waits until the checkpoint has been persisted before

progressing.
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Stop-and-Copy

Copy-on-Write extended Compute 2 
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Compute 1 Compute 2
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Check 0
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Figure 5.1: Timing overheads by conventional checkpointing methods
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5.2.3 Shortfalls of the Stop-and-Copy Method

Conventional stop-and-copy checkpointing can be applied to DIMM-based SSDs.

A software-level approach pauses processing until all data is copied from memory to

flash. Alternatively a hardware-level approach in the memory controller stalls write

requests. When checkpointing is done, the hardware memory controller resumes write

requests. The advantages of stop-and-copy is that it is easy to implement and it

requires the fewest hardware changes between all of the methods. Its biggest disad-

vantage is the inevitable stalling and performance loss, as illustrated in Figure 5.1.

5.2.4 Shortfalls of the Copy-on-Write Method

Easily implemented in software, the copy-on-write method delegates checkpointing

to a background thread while the foreground thread continues execution. The oper-

ating system marks all pages “read-only” in the process’s page table until updated

pages are copied from memory to storage.

The benefit of copy-on-write is that the application’s stall time is proportional

to DRAM’s copying speed, not flash speed. Furthermore, similar to stop-and-copy,

copy-on-write applies after the transition to the next checkpoint interval, thus, it

captures and preserves the very last update to each page. Lastly, the duplicate is

only created once—upon the very first modification to the page since transitioning

to the next checkpoint interval. In Figure 5.1, the beginning of phase Compute 3 is

reached far soon than the stop-and-copy method.

The biggest downside to copy-on-write, however, is that it requires additional

DRAM main memory space. By default, the Linux fork() operation requires the

background thread to duplicate memory pages that the foreground thread wants to

modify. In the worst case in which the application wants to modify all memory

pages shortly after beginning the next interval, the memory footprint will double.

Furthermore, DRAM-to-DRAM copying incurs more memory bandwidth on top of
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the DRAM-to-flash copying. To manage the memory footprint from spiraling out of

control, the system has to prevent more than one duplicate of any page. In order to

enforce this policy, uncheckpointed pages more than two intervals old will be forced

to finish checkpointing at the cost of stalling. Hence, copy-on-write works best if

the checkpoint size is small enough such that the copying time to flash is relatively

smaller than the checkpoint interval length.

Figure 5.2a and 5.2b are runtime and memory bandwidth results from running 7

of the most memory intensive benchmarks with conventional checkpointing methods.

As illustrated, stop-and-copy incurs tremendous slowdown and copy-on-write incurs

a lot of memory bandwidth. Copy-on-write performance in Figure 5.2a is almost as

bad as stop-and-copy for the most memory intensive benchmarks (GemsFDTD, lbm,

mcf, and milc) because the length of time to copy all modified pages was longer than

the checkpoint interval we selected, which forced the application to stall.
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Figure 5.2: Checkpoint results (a) runtime and (b) memory bandwidth with conven-
tional stop-and-copy and copy-on-write methods. Although copy-on-write improves
performance, it is at the cost of extra memory bandwidth use.

5.2.5 Using DIMM-based SSDs to Hide Checkpoint Overhead

A key benefit of DIMM-based SSDs is that they are directly accessible via the

memory controller, which also manages DRAM main-memory. This direct access in

hardware opens up the opportunity to access the file system storage directly without
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invoking the kernel. Moreover, it opens up the opportunity to overlap checkpoint data

movement with application execution without the use of a background thread/process.

A large capacity DIMM-based SSD with smart wear-leveling in the FTL should main-

tain the same endurance guarantees as an equivalently-sized SATA/PCIe SSD. More-

over, the shorter data path over the memory bus reduces the energy consumption of

the checkpoint over a conventional SSD.

To guide our search for a better checkpointing methodology that functions with

the DIMM-based SSD setup, we defined the following three design principles:

1. Optimizations proposed to hide the overhead of writing the checkpoint to the

DIMM-based SSD should not cause slower application performance than the

conventional stop-and-copy checkpoint.

2. The checkpointing method should minimize the use of DRAM main memory.

Since high density flash storage is now on the memory bus, we should avoid

further wasting precious DRAM memory on checkpoints.

3. The checkpointing method should minimize memory bandwidth and memory

traffic congestion to running applications. Although memory bandwidth is usu-

ally over-provisioned, adhering to this principle saves energy.

We measured the above three principles in our experiments with the metrics of

application’s performance, checkpoint’s memory footprint, and overall memory band-

width, respectively. Before we delve into the proposed methods, we give a brief

background on DIMM-based SSDs and NVDIMMs in the next subsection.

5.2.6 A Brief Background into Flash on the Memory Bus

Bringing flash memory onto the DRAM memory bus interface can eliminate be-

tween 5% and 25% percent of I/O access latency associated with kernel functions,

PCIe/SATA interface protocols, and data transfer across links [120]. High density
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flash devices can expand memory capacity at low cost, opening up opportunities to

run memory-intensive applications unlike ever before. Although there are some re-

search ideas [42, 86] and industry ventures into using emerging non-volatile memories

(ReRAM, PCRAM, and STT-MRAM), such as 3D-XPoint DIMMs, flash is still by

far the most popular and practical choice of non-volatile memory.

There are two main ways of putting flash on the memory bus: as memory (NVDIMMs)

or as storage (DIMM-based SSDs). JEDEC has categorized NVDIMMs into three

main types: N, F, and P. NVDIMM-N types have both flash and DRAM on the same

DIMM, but, only DRAM is system mapped and accessible by the operating system.

Its capacity is equivalent to DRAM (up to 32GB) and it operates at the speed of

DRAM. The battery-powered flash is only used for backing up DRAM during sys-

tem powerdown. NVvault [1] (August 2014) and HybriDIMM [3] (August 2016) by

Netlist, SafeStor by SMART Technologies [6], and NVDIMM-Ns by Micron are some

of the products that are now on the market. NVDIMM-Ns are not a good choice for

checkpointing. Due to the lack of space on the DIMM, NVDIMM-Ns are unable to

hide the raw read/program latency using the same techniques that SSDs use such

as placing multiple flash devices, applying channel-level parallelism, and installing

large DRAM buffers [106]. For example, even though a single flash device offers a

bandwidth of only 10-20MB/s [31], one of the fastest PCIe SSDs by Intel offers an

impressive 32 channels and a 2.25GB DRAM cache that boosts its sequential read

bandwidth to 1.75GB/s and write bandwidth to 1.1GB/s [70]. The limited flash stor-

age on an NVDIMM-N also means that it does not have high endurance and using it

as a random access memory will only lower its endurance [39].

NVDIMM-F types and DIMM-based SSDs are all-flash DIMMs. NVDIMM-Fs

are memory mapped flash while DIMM-based SSDs are block-oriented filesystems.

DIMM-based SSDs strive to be competitors for SATA/PCIe SSDs with capacities

as large as 400GB. Although the high bandwidth, low latency memory bus interface
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provides fast access to storage as compared to the traditional SSD interface, the kernel

still has to be invoked to access the filesystem and block layers. Their endurance will

be the same as an equivalently-sized SSD. Diablo Technologies has created two DIMM-

based SSD products that they call Memory Channel Storage (MCS): ULLtraDIMM in

partnership with SanDisk and eXFlash in partnership with IBM. Diablo Technologies

also recently revealed an NVDIMM-F product, Memory1, a fully flash DIMM that is

memory mapped [2]. Memory1 expands memory capacity but requires a faster DRAM

cache that could act as working memory with hot/cold page migration. Memory1

is neither persistent memory nor persistent storage because it is erased on reboot.

Finally, when Intel and Micron releases their 3D-XPoint technology on the DIMM

form factor, they will likely be DIMM-based SSDs.

NVDIMM-P types do not exist yet. This is the ultimate hybrid memory where

both flash and DRAM are on the same DIMM and both are system mapped. It would

combine the persistent memory in the N types along with the block-oriented access

in the F types. It would simultaneously offer large capacity and semi-fast access.

5.3 Proposed Work

5.3.1 Partially Non-blocking I/O with DIMM-based SSDs

Although a DIMM-based SSD is similar to a traditional SSD in components and

internal structure, one important difference is that the memory controller has purview

over both it and the main memory. This shared controller introduces a new oppor-

tunity to move data directly between memory and storage without invoking the op-

erating system. Leveraging this unique feature in DIMM-based SSDs, we introduce

a new communication protocol between memory and storage that allows the SSD

Controller on the DIMM-based SSD to autonomously request copies of memory pages

via the shared memory controller. Prior to initiating the data movement, the SSD
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Controller receives instructions from the operating system’s file system and block

layer protocols as to the name, location, size of the file, and a list of which memory

pages should be retrieved to write that file. With this information in hand, the SSD

Controller autonomously sends read requests to the shared host memory controller.

Each read request retrieves a cache line-sized data unit until the entire set of memory

pages for the complete file has been retrieved. Once the file has been persisted to

flash storage, the SSD Controller notifies the kernel of its completion.

To enable this process, the writing of a checkpoint file is initiated the same as

before by invoking the kernel and requesting space allocation on the SSD. The ker-

nel’s file system code (virtual filesystem, file organization layer, and the flash specific

filesystem) determines the appropriate location to write the file, allocates disk space,

and retrieves the physical block numbers for the SSD. Rather than continuing on with

device driver commands to copy pages from memory to flash, the kernel sends the list

of memory locations to copy and the physical blocks numbers to which they should

be copied to the SSD Controller. At this point, the application resumes the next

compute phase. The division of software and hardware responsibilities are illustrated

in Figure 5.3.

A detailed diagram of the copying process is given in Figure 5.4. ¶ The SSD Con-

troller initiates checkpointing by sending the host memory controller a read request.

· The read request is placed in the memory’s read request queue. ¸ The read request

is sent to the DRAM DIMM during its turn according to the scheduling policy. ¹

The response data is placed in the memory’s read response return queue, similar to

normal memory reads. º When processed, the response is forwarded to SSD write

queue. » Finally, when the SSD receives the data it may buffer it or program the

flash device.
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5.3.2 Condensing and Consolidating DRAM Pages

In this chapter, we proposed two optimizations to hide checkpointing latency

to the SSD. Our optimizations were guided by our design principles to hide time

overhead without using extra memory space or bandwidth. In this subsection, we

explain why many of the previously proposed latency-hiding techniques for DRAM

and other non-volatile memories (STT-MRAM, ReRAM, and PCRAM) that rely

on byte-addressability and low write latency will not work for flash and how the

consolidation method is more suitable.

5.3.2.1 Byte-addressable Techniques are Inappropriate for Flash

Block remapping in the recent ThyNVM work relied on fast write speeds to use

NVM as the “working memory” and remapped a 64-byte cache line to a new memory

location upon checkpointing [86]. It is impractical to use flash memory as working

memory because it is not byte-addressable and it cannot do in-place updates. First,

flash is not byte-addressable because it has to be read and programmed at the gran-

ularity of pages. Second, when a cache line is updated, the whole page has to be

re-written. An erased flash page starts out with all cells in the logical ‘1’ position

and programming the page can only change them to a logical ‘0.’ Therefore, a flash

system must always be setup to use DRAM as the working memory with write-backs

to flash as checkpointing.

Flash programming time, however, dwarfs DRAM read time. Flash requires at

least 200µs to write a 4KB page compared to the 320ns required to read it sequentially

from DRAM (assuming DDR4-1600 at 800MHz). Due to the large disparity in

write bandwidths between DRAM and flash, a write-back scheme would require large

buffers or queues. In contrast, NVMs that are only marginally slower than DRAM rely

on prefetching and the cache hierarchy to hide write-back latencies. ThyNVM hid

write-back latency by temporarily applying block remapping within DRAM. That
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approach is akin to copy-on-write (i.e. page remapping), which, as we discussed

earlier, has high memory overhead.

5.3.2.2 Investigating Sparsity of Updates

The constraints of non-byte-addressable flash memory imply that large data trans-

fers are better in order to amortize the long program latency. This observation led

us to seek a checkpointing method that combines data and minimizes the number

of writes to flash. To this end, we investigated the memory access patterns of a se-

lection of non-memory intensive (Figure 5.5a) and memory intensive (Figure 5.5b)

SPEC CPU2006 benchmarks. We collected the number of write requests arriving

at the memory controller per page per checkpoint interval. We found that all but

two benchmarks had 60% or more pages with fewer than 8 write accesses within one

checkpoint interval. About 90% of pages had less than 64 accesses, implying that not

all of the 64-byte cache lines in a 4KB page were modified. Only bzip2 and lbm had

a majority of entirely updated pages. 23% of bzip2 pages and 88% of lbm pages had

more than 64 write accesses. While more than 64 writes do not necessarily imply

that they were to unique cache lines, it is a strong possibility that the entire page

was updated.
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Figure 5.5: Number of write requests to a physical page at the memory controller in
(a) non-memory intensive and (b) memory intensive benchmarks.
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5.3.2.3 Consolidating to Reduce Checkpoint Size

Based on our observations that many pages have sparse updates, we propose a

checkpointing method that condenses sparsely updated physical pages and consolidates

them into one flash page. Our goal is to amortize the program latency of one flash

page across as many DRAM pages as possible. Our concept is illustrated in Figure 5.6.

In this work, we assumed that each physical page is 4KB, the same size as a typical

OS page, and that the minimum modifiable unit is a 64-byte cache line. A single

16KB flash page can hold up to four noncondensed physical pages. Each consolidated

entry has 20 bytes of metadata that consists of the physical page address (6 bytes),

a bitmap of the stored blocks (8 bytes), and the flash address (6 bytes), which the

location of the condensed page in flash. The bitmap serves two purposes: a count

of how many 64-byte cache lines are in the entry, and their block offsets. Metadata

for each consolidated page is stored separately in a common location for the entire

checkpoint.
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Figure 5.6: Condense and Consolidate Concept

Condensing leverages the concept of sparse granularity of updates. While block

remapping leveraged the same concept, condensing applies it across two memory

platforms (from DRAM to flash) rather than on the same platform. Besides, unlike

block remapping within DRAM, condensing not just hides write-back latency, but

decreases it overall without incurring memory overhead.

Consolidation requires only 20 bytes of metadata per 4KB page (0.5% overhead).
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In the extreme situation where only one cache line is updated per page, storing 20

bytes of metadata per 64-byte cache line would lead to a 31.25% footprint overhead.

Consolidation offsets this overhead by amortizing the programming latency over 256

physical pages (assuming a 16KB flash page). Note that even in the stop-and-copy

case, storing noncondensed pages requires 12 bytes of overhead (physical page ad-

dress and address of its location in flash). Consolidation is similar in concept to

compression.

Figure 5.7 presents a detailed comparison of checkpointing without and with con-

solidation. Figure 5.7a and 5.7c would be how conventional stop-and-copy check-

pointed. As in incremental checkpointing, only updated pages are checkpointed. We

omitted showing metadata in this illustration for simplicity.
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Figure 5.7: Checkpointing overview (a),(c) without and (b),(d) with consolidating.

Several checkpoints can be merged periodically to gain back free space in flash.

We piggyback checkpoint merging on garbage collection. Merging is costly because
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it requires reading metadata of all the checkpoints. To minimize the number of write

operations, we merge checkpoints backwards in time. For example, in Figure 5.7,

merging starts with Chk4 and goes backwards to Chk1. For consolidated pages, the

merging process also reads the bitmaps and figures out which blocks to omit from the

merge. For example, Page 2 in Figure 5.7b contains only the first 2 lines from Chk3

and only the last 3 lines from Chk4.

5.3.3 Early and Late Checkpointing

Consolidating took advantage of the sparsity of updates, but it cannot hide check-

pointing latency when the majority of pages have dense updates. This was true for

lbm and bzip2.

Upon further scrutiny, we noticed that many pages have ‘hot’ and ‘cold’ periods.

In other words, updates to a page exhibited temporal locality followed by a period

of no write accesses. Figure 5.8 shows the write access patterns to pages for all the

benchmarks for 5 billion instructions. Checkpoints were taken at intervals of 1 billion

instructions (marked as vertical dashed lines).

bwaves (5.8a): The two sloping lines indicate accesses to 2 distinct memory

regions. There are no repeating accesses to the same page, thus, bwaves’s pages are

perfect for overlapping checkpointing with computation.

bzip2 (5.8b): The straight line indicates that the same set of pages are accessed

repeatedly. This finding matches Figure 5.5a that showed bzip2 having many write

accesses to a single page. Therefore, bzip2 is not a great candidate for overlapping.

omnetpp (5.8c): Accesses patterns are mix between bwaves and bzip2.

leslie3d (5.8d): The first benchmark to demonstrate an iterative pattern. Chunks

of pages are modified in short bursts. Lower address regions have longer cold periods

and higher address regions have short cold periods.

lbm (5.8e): Walks the entire address space at every iteration. After being touched,
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each page has a long cold period for nearly 2 seconds. lbm had the highest no.

of accesses at 116 million to about 103K pages, verifying the observation made in

Figure 5.5b that lbm has high locality of accesses per page. lbm is a good candidate

for overlapping.

milc (5.8f): Pages are walked in a short time. Accesses in low region are spread

out across a large number of pages and accesses in the high region are concentrated to

a small number of pages. milc can benefit only a little bit from overlapping because

the iterations are close together and cold periods are not long.

GemsFDTD (5.8g): Accesses seems to be concentrated to 4 distinct regions.

Each region is modified as a chunk followed by a long cold period. GemsFDTD would

benefit from overlapping.

mcf (5.8h): Walks the entire address space in very short iterations. mcf is not a

good candidate for overlapping.

HPC Apps (Figure 5.8i and 5.8j): Both miniFE and Lulesh have cold periods,

but only of about one-half or one-third of a second. Still, they would benefit from

overlapping.

Pages that have very long cold periods in between accesses have more chances

to checkpoint without stalling the application. In contrast, trying to checkpoint

pages that are frequently updated is likely to stall the application when those pages

are locked down. Our investigation revealed that applications with large memory

footprints are also more likely to give their pages long cold periods while they are

updating another part of memory (e.g. lbm and GemsFDTD). Our hypothesis is that

utilizing these cold periods to overlap checkpointing with application execution will

help to hide checkpointing latency.

We split overlapping into two periods called early and late. In the early method,

pages are checkpointed during the compute phase before the interval ends. It is

good for pages that have a long cold period before the checkpoint phase (before
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(a) bwaves (b) bzip2

(c) omnetpp (d) leslie3d

(e) lbm (f) milc

(g) GemsFDTD (h) mcf

(i) miniFE (j) Lulesh

Figure 5.8: Write access patterns to physical pages of SPEC CPU2006 benchmarks
for 5 billion instructions. The dashed vertical lines are checkpoint intervals at every
1 billion instructions. The Y-axis shows the address space by physical page number
(without the 12-bit page offset). Inside a box in each plot, pages indicate the number
of unique physical pages and the number of write accesses plotted.
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the vertical dashed line). In the late method, pages that were modified in previous

intervals are checkpointed during the computation phases of later intervals. It is good

for pages that have long cold period extending well into subsequent compute phases

(e.g. bwaves).

With regards to early checkpointing, predicting when a page enters the cold period

would require tracking when the last update to the page arrived, which involves

calculating and maintaining a local inter-arrival frequency of updates for each page.

Instead, basing off of the observations about write access patterns made in Figure 5.5,

we count the number of write accesses to the page to determine whether it is a good

candidate for checkpointing early. The write access counter is incremented for every

write to the page and cleared at the beginning of the next interval. In the experiments

we ran, we waited until a page had 8 write accesses before checkpointing it.

One problem with early checkpointing is that in some applications pages have

multiple hot periods in the same compute phase. Then, it could be modified again

even if it was early-checkpointed. As a solution to miscalculated early checkpoints,

we maintain a modified bit per each page. On every write access, the modified bit

is set and the write accesses counter is incremented. If a modified page has more

than 8 write accesses, then it is a candidate for early checkpointing. When the page

is copied to flash, its modified bit is cleared. If the modified bit is set again within

the same interval that means the page has to be re-checkpointed. On a transition to

a new checkpoint interval, the write accesses counter is cleared.

m 64 bits 

Block Bitmap Modified 
Phase # MWrites # 

(~8) 1

~11 Bytes

V

1

P

1
Indexed by memory 

page address

Figure 5.9: A Memory Accesses Tracking Table (MATT). P=this page is top priority
for checkpointing because a write request is blocked and waiting, M =this page was
modified again after it was checkpointed early, V =this page is valid in memory.

Late checkpointing is a solution to pages that could not be checkpointed early.
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The advantage of the late checkpointing method is that the application can transition

into the next computation phase without stopping to finish the checkpoint. Our

late checkpointing method recognizes that cold periods can cross interval boundaries

and that even though there was not enough time during the previous interval, the

application does not need to unnecessarily stall before the transition because there

maybe plenty of cold time in the next interval before the page is accessed again.

Late checkpointing is a new spin on copy-on-write and has one caveat. Unlike the

former, which duplicated pages to DRAM, upon a write access to an uncheckpointed

page from the previous interval, late checkpointing will stall the application and

wait until the page is read out to flash. This approach may create performance loss

and may face adverse situations if the application touches all pages shortly before

and after a checkpoint interval transition. However, by avoiding duplicating pages in

DRAM, we abide by our 2nd principle to minimize DRAM usage. In order to minimize

performance loss, we make any uncheckpointed pages that are stalled on the critical

path of application execution a top-priority for the next round of flash programming.

Another key idea that makes late checkpointing a success is that we allow check-

points to span multiple intervals (as opposed to conventional overlapping methods

where current pages must be checkpointed by the end of the following interval.) In

order to implement this, each page records its last modified phase #. When the page

is checkpointed even at a much later interval, the SSD Controller knows to which

interval’s checkpoint it should append the current page. For example, interval 1’s

pages can begin checkpointing early in interval 1 and continue into interval 4. Draw-

ing from the illustration in Figure 5.7, Page 6 could still be uncheckpointed in interval

4. A page cannot be modified across intervals, however, until its previous changes are

checkpointed.

For maximum performance gains we combine early and late checkpointing into

a single method which we call early-late checkpointing. The early-late method con-
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verts the notoriously bursty I/O behavior of checkpointing into non-bursty I/O by

spreading out the flash bandwidth utilization over time.

Finally, we illustrate the timing overheads of the newly proposed methods by a

diagram similar to the one that was in Section 5.2. Figure 5.10 shows that condensing

and consolidating shorten the checkpointing time and improves the stop-and-copy

approach. Early and late, on the other hand, is an overlapping method that is different

from stop-and-copy. It completely hides the checkpointing overhead other than when

it has to block during an update to an uncheckpointed page.

dddCompute 3

condensed

Chk 0

Compute 0 Compute 1 Compute 2
Check 2

Compute 3
Chk 1

uncondensed

Condensed and Consolidated
condensed

Early and Late 

Check 0dddddd
Compute 0 ddddddCompute 1

Check 1
Check 2

extended Compute 1
waiting for Check 0 to finish

start early

may not be able to finish all 
pages by end of the phase

Compute 2

extended Compute 3 waiting 
for some Check 2 pages

Check 1 is still ongoing
at the end of Compute 2

Check 2 temporarily gains higher priority 
over the unfinished Check 1 due to 

waiting updates in Compute 3 

finish late

Figure 5.10: Timing overheads by the new checkpointing methods

5.3.4 Area Overhead

We introduce a new Memory Accesses Tracking Table (MATT) to help with par-

tially non-blocking I/O. It is indexed by a page’s physical address and tracks the

modification to each physical memory page. Figure 5.9 shows a MATT entry, which
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contains a bitmap of the page’s modified cache blocks (64 bits), the phase in which

it was last modified (a variable m bits), the number of writes accesses to it (8 bits

is sufficient, since we only want to differentiate between sparse and dense writes), a

priority bit, a modified bit, and a valid bit. Roughly 11 bytes are sufficient per 4KB

page. In total, the table would occupy 44MB to track all the pages of a 16GB DIMM.

The host memory controller is modified to receive requests by the SSD Controller.

This change makes our design different from existing designs because the SSD Con-

troller will become an active device operating autonomously to conduct data transfers.

In contrast, today, DIMMs plugged into the memory bus are passive devices.

5.3.5 Memory Accesses Tracking Table Design

Due to its large size, the MATT is located on the DIMM-based SSD. It is accessed

by the SSD Controller on three occasions. On the first occasion, the memory controller

looks up the MATT when it receives a write request from the CPU (see Figure 5.11a).

Each write request is queued in the Mem WrQ and the memory controller requests

the SSD Controller to lookup the MATT entry to check whether the page belongs to

a pending checkpoint or not ¶ - ¸. If the page has not yet been checkpointed, the

MATT remembers that there is a waiting write request by marking it a top priority

for the next round of flash programming (setting the P bit in the MATT entry).

The SSD responds back to the memory controller which marks the request in the

Mem WrQ ready or not ready ¹ - º.

On the second occasion, the SSD Controller reads the MATT entries of pages

it has to checkpoint (see Figure 5.11b). The block bitmap of each entry identifies

modified cache lines. · The SSD Controller initiates checkpointing by requesting the

host memory controller to read a dirty cache line. ¸ The memory controller issues

read requests to DRAM. ¹ - º Data responses are directly forwarded to the DIMM-

based SSD. » Once the flash buffer is full, it is programmed on to the flash device.
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If there is a waiting write request, the SSD Controller notifies the memory controller

when all the modified blocks of the corresponding page has been copied.

Finally, on the third occasion, the memory controller sends the MATT an updated

block bitmap of recently modified pages (see illustration in Figure 5.11c). ¶ - · To

avoid generating DIMM-based SSD traffic each time a write request is processed, the

memory controller keeps a small associative cache (Bitmap Buffer) of equal size to

the write request queue (64 entries) and writes the page addresses and block bitmaps

of the write requests it processes. ¸- ¹ Entries are flushed based on an LRU policy

and written back to the MATT table on the DIMM-based SSD.

In this design, we assumed that all the dirty cache lines are flushed to main memory

prior to starting the checkpoint. In this way, the application is free to modify cached

data while it continues processing in the next compute phase. The memory controller

can hold off write requests and keep the memory state clean until the checkpoint is

finished. If we do not flush dirty cache lines to main memory first and instead tries to

write them directly from the caches into the SSD, then that leads to fragmented dirty

data and it becomes more difficult to condense a particular page and build a block

bitmap that reflects all the dirty lines in both the caches and the main memory. In

addition, directly flushing the caches to the SSD is not feasible because the capacity

of the combined caches are too big to write very quickly to the flash-based SSD.

Finally, the caches have no way to check which cache lines have been checkpointed or

not without additional status bits. Therefore, the best approach is to flush the dirty

cache lines to main memory at the beginning of each checkpoint.
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Figure 5.11: DIMM-based SSD with a MATT. (a) Write requests to DRAM look
up the MATT to ensure that it’s not about to overwrite an uncheckpointed page.
(b) The SSD Controller scans the MATT and initiates checkpointing. (c) The block
number of each write request is saved to the bitmap buffer as it’s processed by the
memory controller.

5.4 Evaluation Methodology

5.4.1 Simulator and Application Workloads

We used the gem5 simulator in system call emulation mode for our analysis. The

gem5 configuration parameters are shown in Table 5.1. The DRAM components in

gem5 were used as is. When modeling the checkpointing to the DIMM-based SSD,

read requests for copying pages from DRAM to flash are queued in the read queue

in the memory controller. The read queue is shared between read requests from the

CPU and checkpointing requests from the SSD Controller. Copying an entire 4KB

page generates 64 read requests and may cause congestion in the read queues. The

flash programming time is modeled as a long delay in between page copying requests.

We evaluate all methods with a selection 8 of memory intensive and non-memory

intensive benchmarks from SPEC CPU2006 and 2 HPC proxy apps: miniFE and

Lulesh. Table 5.2 presents statistics for each benchmark that indicates their memory

intensity. We observed that the commonly used L2 MPKI metric does not best convey
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Table 5.1: gem5 simulator configuration.

CPU 1-core, 3GHz, 8-issue, out-of-order
L1 I/D 32KB/32KB, 2-way, private, 64B line
L2 2MB, 8-way, 64B line
Host Memory Split read/write request queues, and buffering per controller rather than
Controller per rank or per bank. Read queue size=32, Write queue size=64.

FR-FCFS policy. RoRaBaCoCh. Open-adaptive page policy.
DRAM 2GB DDR3-1600, 1 channel, 8 devices per rank, 1KB page per device

tRCD-tCL-tRP = 13.75ns (11 clock cycles)
DIMM-based SSD SSD Controller has double page buffering. 1 flash channel, 8 packages.

16KB page size, 45µs read, 660µs program, 3.5ms erase. 68MB MATT table.

the checkpoint size. For example, lbm has the highest MPKI of 31.13 and 116 million

write requests to memory. Its average number of modified pages per checkpoint

interval, however, is roughly 103K pages, which is less than one-third of the 367K

pages that mcf modifies with only half as many (55 million) write requests. Therefore

we provide the two additional metrics: number of write requests to memory and the

average number of modified pages per checkpoint interval.

Table 5.2: Benchmark statistics collected for 5 billion instructions.

Benchmark L2 MPKI Number of Mem. Avg. # of Modified
Write Requests Pages / Interval

Memory
Non-
Intensive

bwaves 0.17 720,651 2,428
bzip2 0.98 3,495,375 1,084
omnetpp 7.94 550,346 3,614

Memory
Intensive

GemsFDTD 22.88 50,469,314 179,955
lbm 31.13 116,718,340 103,146
leslie3d 21.67 33,910,187 16,322
mcf 21.30 55,611,218 367,247
milc 15.97 30,438,219 108,755

HPC Apps
miniFE 37.81 11,413,495 17,295
Lulesh 7.52 16,879,622 16,857

5.4.2 Checkpointing Setup

Checkpointing in our evaluation is system-level (or hardware-level) where all mod-

ified pages are checkpointed as a process image as opposed to application-level check-

pointing where the programmer annotates which critical data structures should be to

saved to non-volatile memory.
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Figure 5.12: Distribution of flash pages vs. the number of consolidated physical
pages they hold. The bigger and longer the tail of the distribution, the more apt the
benchmark is for consolidation.

In our simulations, checkpointing for all benchmarks are done at intervals of 1

billion instructions and the benchmarks are simulated for a total of 5 billion instruc-

tions. Our chosen checkpoint interval maybe too frequent, especially for applications

with large memory footprint. It is up to the system designer to select a checkpoint

interval that balances time lost to checkpointing vs. progress lost.

5.5 Results

In this section, we present the results for the consolidate method and the early-late

method.
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Figure 5.12 shows the distribution of flash pages vs. the number of consolidated

physical pages per flash page. The minimum number of pages that can be consolidated

into a single flash page is 4; because each OS page is 4KB and each flash page is 16KB.

As seen, every benchmark had some number of flash pages with more than 4 physical

pages consolidated into it. mcf and GemsFDTD, the 2 benchmarks with the largest

memory footprints according to Table 5.2, exhibited long tail distributions, indicating

that consolidation was beneficial for them. GemsFDTD also did have a significant

number of flash pages with only 4 consolidated pages. lbm was the worst candidate

for consolidation because the vast majority of its pages could not be condensed.

Figure 5.13 shows the runtime results. Figure 5.13a are the simulated number of

seconds for 5 billion instructions. Figure 5.13b shows the slowdown over not check-

pointing at all. As expected, the stop-and-copy method incured the worst slowdown:

2.1× on average. Consolidation reduced the slowdowns of GemsFDTD from 5× to

3.6×, mcf from 7.1× to 2.3× and milc from 4.4× to 1.7×. Averaged across all the

benchmarks, consolidation reduced the slowdown to just 55%. Early-late was the

most beneficial to lbm, reducing its slowdown from 93% to 2%. It also helped bwaves

reduce from 20% to 0%, omnetpp reduce from 20% to 0%, miniFE reduce from 37%

to 1%, and Lulesh reduce from 62% to 2%. Early-late was not as helpful for mcf and

milc. We mentioned earlier that bzip2 would not benefit from early-late overlapping,

but it reduced the slowdown from 5% to 1%. However, bzip2 had the smallest mem-

ory footprint of all the benchmarks, so its slowdown was not bad to begin with. We

reaped the most benefits from applying consolidation on top of early-late overlapping.

Together they reduced to the average slowdown to 22%.

Figure 5.13c shows the speedup of the new checkpointing methods over stop-and-

copy as the baseline checkpointing method. The results reflect the same observations

made in Figure 5.13b.

Figure 5.13d shows the overall memory bandwidth. As expected, consolidation
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Figure 5.13: Runtime results of the proposed optimized checkpointing methods. Stop-
and-copy (S&C) exhibits the worst-case slowdown, consolidate (Cons) is applied on
top of stop-and-copy, early-late (Ear-Lat) is the overlapped method.
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Table 5.3: Qualitative comparison between conventional and proposed approaches.

Approach Performance Memory footprint Memory bandwidth

No checkpoints No loss No extra No extra
Stop-and-copy Worst loss No extra Checkpointing I/O
Copy-on-write Better than stop-and-copy Double in worst Checkpointing and

if few pages and large intervals case memory copy I/O
Consolidate Better than stop-and-copy No extra Equal to or less than

if many sparse page stop-and-copy
Early + Late Better than stop-and-copy No extra Equal to more than

if pages have long cold periods stop-and-copy

always improves the memory bandwidth. Stop-and-copy used 20% of additional mem-

ory bandwidth, averaged across all benchmarks; consolidation reduced this to 11%.

Early-late method on the other hand, had worse than expected memory bandwidth

(30%), most likely due to multiple hot periods requiring re-checkpointing of early

checkpointed pages. Applying consolidation to early-late checkpointing was able to

recover the memory bandwidth back to 18%.

Table 5.3 presents a qualitative comparison between conventional checkpointing

methods and the proposed optimizations.

5.5.1 Comparison to the Hybrid Framework

In the hybrid DRAM-SSD framework proposed in Chapter IV, we selectively

checkpointed to both DRAM and the SSD to balance reliability and speed. Fur-

thermore, checkpointing to the DRAM helped to reduce SSD wearout. Figure 5.14

summarizes scheduling of 10 checkpoints using the hybrid framework. In this sec-

tion, we will discuss what happens in a system that implements consolidation and

early-late checkpointing within a hybrid framework.

First, consolidation could lead to more checkpoints to be written to the SSD. In

the example shown in Figure 5.14, consolidation targets just the checkpoints saved

to the SSD (namely 0, 3, and 8). Since consolidation makes a single SSD checkpoint

faster, more of them can be written to the SSD for the same performance loss tolerance

margin. But, saving more checkpoints to the SSD can again lead to more wearout
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Figure 5.14: Example of checkpointing schedules in the hybrid framework. Assuming
the ideal schedule for reliability sacrifices time and assuming the ideal schedule for
performance sacrifices reliability. Therefore, a more realistic schedule obtained with
the hybrid framework and lifetime estimation minimizes wearout by redirecting every
other checkpoint to the DRAM. If the performance loss is still greater than the user set
bound (e.g. 10%), the hybrid framework with performance loss estimation redirects
more checkpoints to the DRAM.

of the SSD. Therefore, it is important to always use the lifetime estimation feature

provided by the hybrid framework to keep the number of checkpoints written to the

SSD in check.

Second, the SSD checkpoint can be written with the early-late method without

additional changes. Let’s examine a situation where the first couple of checkpoints

are written to the SSD and the third checkpoint is written to the DRAM. With

early checkpointing, writing can begin even before the compute phase ends. Early

checkpointing is the same as before. By the end of the first compute phase there has

been no visible performance degradation. With late checkpointing, writing continues

into the second compute phase. Modifications to the uncheckpointed pages may stall,

however, while waiting for late checkpointing to write them to the SSD. By the time

the second compute phase ends, the performance degradation due to stalling may

have accumulated beyond the user-set maximum performance loss bound. Then,

during the transition period from the second to the third compute phases, the CLC
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makes the decision that the third checkpoint should be written to the DRAM. Since

writing to the DRAM is relatively fast, the third checkpoint does not have to employ

the early-late method. Instead, it can be quickly written to the DRAM at the end of

the compute phase. Meanwhile, late checkpointing from the first and second phases

could be overlapped with the third compute phase and they can continue slowly

writing back to the SSD.

To summarize, adopting consolidation and early-late checkpointing within a hy-

brid framework is the most effective way to hide the performance degradation due to

checkpointing.

5.6 Related Work

In this chapter, we studied techniques to reduce checkpoint time in the context of

DIMM-based SSDs. Below we summarize the closely related works.

5.6.1 Work on NVDIMMs

DIMM-based SSDs and NVIDMMs are a fairly recent invention and there is lim-

ited industry and research documentation regarding it.

Chen et al. [28] explored the challenge of placing an NVDIMM on the memory

bus. Specifically, they addressed the issues of mixing I/O and memory traffic on

the same channel and the performance degradation caused by it. They proposed

to split the transaction queue into two queues in the memory controller in order to

address the speed mismatch issue between DRAM and flash. They also proposed a

proactive garbage collection design for flash that minimizes data movement. Their

work is appropriate for an NVDIMM-F design where communication between the

DRAM and the flash has to traverse the memory channel(s) and has to be mediated

by the host memory controller. Our work is different from theirs in that we use an

NVDIMM-N design. Our I/O requests do not clog up the memory queues because the
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SSD Controller only requests a page copy when there is space in the page buffer. Our

data is moved directly from DRAM to flash via the shared data bus on the DIMM.

Their proactive garbage collection design, however, can improve our design as well.

5.6.2 Hybrid Memory

NVDIMMs based on emerging non-volatile memories (PCRAM, ReRAM, STT-

MRAM) do not yet exist in products. Research literature has, however, explored

these hybrid memory designs.

Ren et al. [86] proposed a DRAM+NVM hybrid memory design—Transparent

Hybrid NVM (ThyNVM)—that periodically checkpoints to recover after a system

failure. ThyNVM leveraged spatial locality of updates and determined that the work-

ing copy of sparse updates should be kept in NVM and checkpointed there via block

remapping. While block remapping is possible for byte-addressable memories, it does

not work for flash as we explained in Section 5.3.2.1. ThyNVM further employed

block remapping to DRAM while writing back densely updated pages to NVM. This

practice assumes that pages can be quickly written back to NVM because if not, this

would use a lot of extra memory space; especially because densely updated pages are

likely to receive the most updates.

Gao et al. [42] proposed Mona for hybrid DRAM+PCM systems. Mona writes

partial checkpointing during application execution utilizing idle time periods. It di-

vides each checkpoint interval into dynamic partial checkpointing (during application

execution) and final checkpointing segments. In partial checkpointing, they estimate

the coldness of dirty pages and write them to PCM. Our early checkpointing is similar

to their use of idle periods. They find a sufficiently long idle period and lockdown the

entire rank to perform a bulk copy of dirty pages to PCM. We do not do this because

long flash program latencies are prohibitive. During final checkpointing, they finish

writing the pages that they could not write back early. In our design, we employ late
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checkpointing rather than stopping.

5.6.3 Compression

Consolidating is similar to the concept of checkpointing compression, which has

been studied [50]. Moshovos et al [75] placed a compressor on-chip that compresses

cache lines belonging to checkpoint records before they are sent to memory; their goal

was to reduce memory bandwidth occupied by checkpoints. MCREngine [52] com-

presses several HDF5 format checkpoint files made by application-level checkpoints.

MCREngine’s compression is applied to global checkpoints written to the parallel file

system (PFS). Different from existing work, we proposed a hardware-based consoli-

date mechanism from DRAM to flash that maintains physical page addresses.

5.6.4 Overlapping with Application Execution

Related work for hiding checkpoint overhead by overlapping with application ex-

ecution falls into two distinct camps: aggressive and early or lazy and late. Early

checkpointing usually involves coldness prediction or utilizing idle periods. Lazy

checkpointing usually involves employing background threads, copy-on-write, and

history checkpointing. Moshovos et al [75] opted for the lazy style by checkpointing

the old value when it is overwritten by the new value: this is the history file method.

Yamagata et al [121] suggested a temporal reduction in checkpointing by spread-

ing out I/O by checkpointing data as soon as their values become fixed. Between

the intervals of two coordinated checkpoints, they speculatively predict whether each

memory write will be the last write prior to the next checkpoint, and thus can be

checkpointed early. After being checkpointed early, the page is again write protected.

Any further write attempts will detect a false positive prediction. Those pages are

written again at the coordinated checkpoint. Our proposed early checkpointing fol-

lows a concept similar to theirs.
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Our idea for late checkpointing was inspired by [30]. They proposed BPFS—a

file system for byte-addressable persistent memory. In enforcing ordering from LLC

to persistent memory, rather than flushing the entire cache at each epoch boundary,

BPFS required each line in the cache hierarchy to be extended by an epoch ID counter

that tracked which epoch the cache line was modified in. The cache replacement policy

would not evict a cache line from a newer epoch until all the cache lines from older

epochs were evicted. Similarly, rather than stopping and checkpointing, we track the

modified phase # of each page so that they could be checkpointed later on.

5.7 Summary

DIMM-based flash storage platforms are a fairly recent invention that fits an

entire SSD on an interface traditionally designed for DRAM main memory. Given

their functional similarity to SSDs, they are easily adopted into existing systems

with minimal BIOS updates. The conventional filesystem and block-oriented access

protocols that are imposed on DIMM-based SSDs, however, do not fully unlock the

potential of situating the SSD on the memory bus. We designed a new communication

protocol that directly moves data between main memory and flash storage without

kernel intervention. Our work uses this new style of flash storage for checkpointing

and proposes two new techniques—consolidate and late checkpointing—to hide flash

program latency and reduce checkpointing overhead.

The proposed consolidate method leverages the granularity of updates to amortize

the flash program latency over many page copies. It condenses sparsely updated

pages and consolidates them into a single flash page. The proposed early-late method

leverages cold periods to overlap checkpointing with application execution. The late

method realizes that cold periods can span multiple checkpoint intervals and uses

them to lazily writeback pages rather than stopping the application at the end of

each interval.
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Individually, our consolidate method and early-late method improved performance

by 36% and 33% over stop-and-copy, respectively. Combined, they improved perfor-

mance by 73% over stop-and-copy. All in all, we reduced the average perfor-

mance slowdown due to checkpointing from 2.1× to 22%.

With regards to memory bandwidth, the consolidate method reduced the average

additional memory bandwidth used by checkpointing operations from 20% in stop-

and-copy to 11% with consolidation. Mispredictions in early checkpointing resulted in

30% of additional memory bandwidth for checkpointing, but applying consolidation

reduced it to 18%.
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CHAPTER VI

Conclusion

In this concluding chapter, we summarize the contributions of this dissertation

and discuss their implications for future exascale system design.

We started our work by modeling a skeleton exascale supercomputer to meet 1

exaflop of performance. It had 204,800 compute nodes with 768 cores per node.

The processors chosen to attain such a large number of cores needed an efficient

interconnect topology that can deliver high throughput at low latencies. For that

purpose, we built Super-Star and Super-StarX, two asymmetric, on-chip interconnect

topologies that scale in performance and power towards kilo-core processors. Our

best topology improved the average network latency by 45% and reduced the power

consumption by 40% over the mesh topology. Asymmetric topologies decouple local

and global communication and use a mix of medium-radix and high-radix Swizzle-

Switches with the intent of matching router speed to wire speed. Unlike meshes,

they can also adjust the number of high-radix global switches to be more energy

proportional to the amount of traffic.

The millions of components that constitute the exascale system also make it vul-

nerable to their aggregate failure rate. Checkpoint/restart being the most commonly

used fault tolerance mechanism, checkpointing locally to storage within the compute

node was previously proposed to improve the large time overheads of traditional global
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checkpointing. In the second part of this dissertation, we weighed the pros and cons

of using the different types of storage platforms available at the local compute node.

We did not use emerging non-volatile memory because their immature technology

adds an unknown design risk to the already experimental nature of exascale system

design. Instead, we proposed a hybrid DRAM-SSD checkpointing solution to achieve

speed and reliability for local checkpointing while also reducing the endurance decay

of SSDs. We demonstrated that for a particular set of benchmarks, we could extend

the usability of the local SSD from 3 years to 6.3 years. We also proposed a dual-ECC

mode for DRAM that protected both regular data and checkpoint data.

In the final part of this dissertation, we explored ways of hiding the data movement

latency of checkpoint data from the main memory to the SSD even more effectively. In

the proposed solution, we involved DIMM-based SSDs and designed a data movement

procedure that worked with the shared memory controller to nonintrusively copy data

from main memory. Our design also provided a persistence guarantee to non-blocking

I/O that could not be provided in existing kernel I/O operations. The consolidation

and overlapping optimizations that could be realized as a result of non-blocking I/O

collectively reduced local checkpointing time overhead from 2.1× to 22%.

At a broader level, we demonstrated that architectural changes can be made to

extract more performance for exascale systems. The research presented in this dis-

sertation is pertinent to CPU architects, memory architects, storage architects, and

emerging non-volatile memory architects. In future work, it would be interesting to

characterize the relationship between kilo-core processors and their demand for mem-

ory bandwidth and I/O operations. If storage were to be even more closely integrated

with memory, such as NVDIMM-Ps that intend to put DRAM and flash on the same

module, I/O operations could be made even faster. If having non-volatile storage

inside the compute node is becoming the norm, it maybe worthwhile to more tightly

integrate checkpoint/restart operations.
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At the same time, it is worth investigating how kilo-core processors contribute

to the failure rate of supercomputers. There is still a lot of missing information

regarding how supercomputers fail. As the first generation of exascale systems are

designed and built, component manufacturers and system designers should integrate

tools to log and analyze failures. Supercomputing institutions should collect and

disseminate those failure data for analysis by researchers and industry alike. If we

can determine that failure rates of individual components are high, then we can

know to build components that can self-detect and self-correct failures. However,

additional circuitry for error correction will certainly increase cost. On the other hand,

if failure rates are relatively low, efficient checkpoint/restart solutions for node-level

checkpointing like the ones proposed in this dissertation maybe sufficient.
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J. D. Maŕın (2008), Ruft: Simplifying the fat-tree topology, in Parallel and
Distributed Systems, 2008. ICPADS’08. 14th IEEE International Conference
on, pp. 153–160, IEEE.

[88] Rubini, A., and J. Corbet (2001), Linux device drivers, ” O’Reilly Media, Inc.”.

132



[89] Saito, T., K. Sato, H. Sato, and S. Matsuoka (2013), Energy-aware i/o opti-
mization for checkpoint and restart on a nand flash memory system, FTXS
2013.

[90] Samsung (2014), White Paper: Samsung V-NAND technology, http://www.
samsung.com/us/business/oem-solutions/pdfs/V-NAND technology WP.pdf.

[91] Sankaralingam, K., R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W.
Keckler, and C. R. Moore (2003), Exploiting ilp, tlp, and dlp with the poly-
morphous trips architecture, in ACM SIGARCH Computer Architecture News,
vol. 31, pp. 422–433, ACM.

[92] Sato, K., N. Maruyama, K. Mohror, A. Moody, T. Gamblin, B. R. de Supinski,
and S. Matsuoka (2012), Design and modeling of a non-blocking checkpointing
system, in High Performance Computing, Networking, Storage and Analysis
(SC), 2012 International Conference for, pp. 1–10.

[93] Sato, K., S. Matsuoka, A. Moody, K. Mohror, T. Gamblin, B. R. de Supinski,
and N. Maruyama (2013), Burst SSD Buffer: Checkpoint Strategy at Extreme
Scale, Burst SSD Buffer: Checkpoint Strategy at Extreme Scale.

[94] Satpathy, S., R. Dreslinski, T.-C. Ou, D. Sylvester, T. Mudge, and D. Blaauw
(2011), Swift: A 2.1 tb/s 32× 32 self-arbitrating manycore interconnect fabric,
in VLSI Circuits (VLSIC), 2011 Symposium on, pp. 138–139, IEEE.

[95] Satpathy, S., R. Das, R. Dreslinski, T. Mudge, D. Sylvester, and D. Blaauw
(2012), High radix self-arbitrating switch fabric with multiple arbitration
schemes and quality of service, in Design Automation Conference (DAC), 2012
49th ACM/EDAC/IEEE, pp. 406–411, IEEE.

[96] Satpathy, S., K. Sewell, T. Manville, Y.-P. Chen, R. Dreslinski, D. Sylvester,
T. Mudge, and D. Blaauw (2012), A 4.5 tb/s 3.4 tb/s/w 64× 64 switch fabric
with self-updating least-recently-granted priority and quality-of-service arbi-
tration in 45nm cmos, in Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2012 IEEE International, pp. 478–480, IEEE.

[97] Schroeder, B., and G. Gibson (2010), A large-scale study of failures in high-
performance computing systems, IEEE Transactions on Dependable and Secure
Computing, 7 (4), 337–350.

[98] Schroeder, B., and G. A. Gibson (2007), Disk failures in the real world: What
does an mttf of 1, 000, 000 hours mean to you?, FAST 2007.

[99] Schroeder, B., and G. A. Gibson (2007), Understanding failures in petascale
computers, in Journal of Physics: Conference Series, vol. 78.

[100] Schroeder, B., E. Pinheiro, and W.-D. Weber (2009), DRAM errors in the
wild: a large-scale field study, in ACM SIGMETRICS Performance Evaluation
Review, vol. 37.

133

http://www.samsung.com/us/business/oem-solutions/pdfs/V-NAND_technology_WP.pdf
http://www.samsung.com/us/business/oem-solutions/pdfs/V-NAND_technology_WP.pdf


[101] Scott, S., D. Abts, J. Kim, and W. J. Dally (2006), The blackwidow high-radix
clos network, in ACM SIGARCH Computer Architecture News, vol. 34, pp.
16–28, IEEE Computer Society.

[102] Seiler, L., et al. (2008), Larrabee: a many-core x86 architecture for visual com-
puting, in ACM Transactions on Graphics (TOG), vol. 27, p. 18, ACM.

[103] Sewell, K., et al. (2012), Swizzle-switch networks for many-core systems, IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, 2 (2), 278–
294.

[104] Shahzad, F., M. Wittmann, T. Zeiser, G. Hager, and G. Wellein (2013), An
evaluation of different I/O techniques for checkpoint/restart, IPDPSW 2013.

[105] Shimpi, A. L. (2010), Intel’s Sandy Bridge Architecture Exposed, http://www.
anandtech.com/show/3922/intels-sandy-bridgearchitecture-exposed/4.

[106] Shin, W., J. Park, and H. Y. Yeom (2016), Unblinding the os to optimize user-
perceived flash ssd latency, in 8th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage 16), USENIX Association.

[107] Sridharan, V., and D. Liberty (2012), A Study of DRAM Failures in the Field,
SC 2012.

[108] Sridharan, V., J. Stearley, N. DeBardeleben, S. Blanchard, and S. Gurumurthi
(2013), Feng Shui of Supercomputer Memory: Positional Effects in DRAM and
SRAM Faults, SC 2013.

[109] Sridharan, V., N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,
J. Shalf, and S. Gurumurthi (2015), Memory Errors in Modern Systems: The
Good, The Bad, and The Ugly, ASPLOS 2015.

[110] Sun, F., K. Rose, and T. Zhang (2006), On the use of strong bch codes for
improving multilevel nand flash memory storage capacity, in IEEE Workshop
on Signal Processing Systems (SiPS): Design and Implementation.

[111] Taylor, M. B., et al. (2002), The raw microprocessor: A computational fabric
for software circuits and general-purpose programs, IEEE micro, 22 (2), 25–35.

[112] Toshiba Corporation (2017), Toshiba NAND Flash Memory, https://toshiba.
semicon-storage.com/ap-en/product/memory/nand-flash.html.

[113] Udipi, A. N., N. Muralimanohar, and R. Balasubramonian (2010), Towards scal-
able, energy-efficient, bus-based on-chip networks, in High Performance Com-
puter Architecture (HPCA), 2010 IEEE 16th International Symposium on, pp.
1–12, IEEE.

134

http://www.anandtech.com/show/3922/intels-sandy-bridgearchitecture-exposed/4
http://www.anandtech.com/show/3922/intels-sandy-bridgearchitecture-exposed/4
https://toshiba.semicon-storage.com/ap-en/product/memory/nand-flash.html
https://toshiba.semicon-storage.com/ap-en/product/memory/nand-flash.html


[114] Udipi, A. N., N. Muralimanohar, N. Chatterjee, R. Balasubramonian, A. Davis,
and N. P. Jouppi (2010), Rethinking DRAM design and organization for energy-
constrained multi-cores, in ACM SIGARCH Computer Architecture News,
vol. 38.

[115] Udipi, A. N., N. Muralimanohar, R. Balasubramonian, A. Davis, and N. P.
Jouppi (2012), LOT-ECC: Localized and Tiered Reliability Mechanisms for
Commodity Memory Systems, ISCA 2012.

[116] U.S Department of Energy Office of Science and National Nuclear Security Ad-
ministration (2014), Preliminary Conceptual Design for an Exascale Computing
Initiative.

[117] Vetter, J., R. Schreiber, T. Mudge, and Y. Xie (2015), Blackcomb: Hardware-
Software Co-design for Non-Volatile Memory in Exascale Systems.

[118] Wang, H., L.-S. Peh, and S. Malik (2005), A technology-aware and energy-
oriented topology exploration for on-chip networks, in Design, Automation and
Test in Europe, 2005. Proceedings, pp. 1238–1243, IEEE.

[119] Wentzlaff, D., et al. (2007), On-chip interconnection architecture of the tile
processor, IEEE micro, 27 (5), 15–31.

[120] Xu, Q., H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi, Z. Guz, A. Shayesteh,
and V. Balakrishnan (2015), Performance analysis of nvme ssds and their im-
plication on real world databases, in Proceedings of the 8th ACM International
Systems and Storage Conference, p. 6, ACM.

[121] Yamagata, I., S. Matsuoka, H. Jitsumoto, and H. Nakada (2006), Speculative
checkpointing.

[122] Yoon, D. H., and M. Erez (2010), Virtualized and Flexible ECC for Main Mem-
ory, ASPLOS 2010.

[123] Zhang, Y. P., T. Jeong, F. Chen, H. Wu, R. Nitzsche, and G. R. Gao (2006), A
study of the on-chip interconnection network for the ibm cyclops64 multi-core
architecture, in Parallel and Distributed Processing Symposium, 2006. IPDPS
2006. 20th International, pp. 10–pp, IEEE.

[124] Zheng, G., L. Shi, and L. V. Kalé (2004), FTC-Charm++: an in-memory
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