
Architecting Memory Systems for Emerging Technologies

by

Byoungchan Oh

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering)

in the University of Michigan
2018

Doctoral Committee:

Professor Trevor N. Mudge, Co-Chair
Assistant Professor Ronald G. Dreslinski Jr., Co-Chair
Professor David Blaauw
Professor William R. Martin

Byoungchan Oh

bcoh@umich.edu

ORCID iD: 0000-0001-9612-2501

© Byoungchan Oh 2018

All Rights Reserved

To my family and all those who wished me well.

ii

ACKNOWLEDGMENTS

I would like to thank my primary advisor, Professor Trevor Mudge, for his invaluable sup-

port and guidance. I appreciate everything he has done for me. No words can express

my gratitude to him. Professor Ronald Dreslinski, my co-advisor, has perfectly comple-

mented Trev. I also would like to thank my dissertation committee members, Professor

David Blaauw and William Martin, for their wisdom and guidance in the final steps of my

studies.

I am pleased to have met lifelong friends in TRON lab: Antony Gutierrez, Qi Zheng,

Nilmini Aberaytne, Yajing Chen, Cao Gao, Jonathan Beaumont, Dong-Hyeon Park, Yiping

Kang, and Johann Hauswald. I shall never forget the countless hours and moments together.

I especially appreciate the kindness, consideration, and help of Nilmini during whole my

Ph.D. study and life. I would like to thank all those who directly and indirectly have

helped my studies: Doowon Lee, Yongkee Kwon, Jihyae Bae, Dong-Keun Kim, Professor

Jeongseob Ahn, and Professor Nam Sung Kim.

Lastly and most importantly, I would like to thank my parents and brother. I am forever

grateful for their unwavering faith and support. To my loves, Blue, Berry and Mijung, I

could finish my studies thanks to you. I owe much of my successes to my wife and her

devotion to my family.

Thank you.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Figures . vi

List of Tables . viii

Abstract . ix

Chapter

1 Introduction . 1

1.1 Memory System . 1
1.2 Memory Technology . 2
1.3 Emerging Memory Technology . 6
1.4 Dissertation Organization . 8

2 STT-MRAM Architecture for Smart Activation and Sensing 9

2.1 Introduction . 10
2.2 Challenges in Architecting STT-MRAM 13

2.2.1 Large Sense Amps with High Power Consumption 13
2.2.2 Limitations with Shared Sense Amps 14

2.3 SMART Architecture . 17
2.3.1 Re-architecting STT-MRAM . 18
2.3.2 Benefits . 20
2.3.3 Discussion . 26

2.4 Device Modeling . 28
2.4.1 Area Model . 29
2.4.2 Timing Model . 30
2.4.3 Energy Model . 30

2.5 Evaluation . 32
2.5.1 Evaluation Methodology . 32
2.5.2 Performance . 33
2.5.3 Energy . 35
2.5.4 Sensitivity Analysis . 38

2.6 Related Work . 39

iv

2.7 Summary . 40

3 Improving Load Balancing for Memory Channels 41

3.1 Introduction . 42
3.2 Background . 44

3.2.1 Increasing Demand of Memory Capacity and Bandwidth 44
3.2.2 High Bandwidth Memory . 44

3.3 Challenges in Many Channel Memory Systems 48
3.3.1 Imbalanced Channel Utilization 48
3.3.2 Implementation Challenges of Memory Controllers 50

3.4 Overview of the Proposed Design . 52
3.4.1 Re-architecting Memory Controllers 53
3.4.2 Re-architecting HBM . 58
3.4.3 Overhead . 59

3.5 Evaluation . 61
3.5.1 Methodology . 61
3.5.2 Performance Analysis . 62
3.5.3 Area Overhead . 65

3.6 Related Work . 66
3.7 Summary . 67

4 Conclusion . 69

Bibliography . 71

v

LIST OF FIGURES

1.1 Von Neumann architecture. 1
1.2 Memory hierarchy. 2
1.3 DRAM scaling trend [1]. 3
1.4 Increasing throughput loss and power consumption by refresh [2]. 3
1.5 Impacts of the DRAM page size in STREAM benchmark [3]. 4
1.6 Increasing data rate from SDR to DDR4. 5
1.7 STT-MRAM cell structure and MTJ. 6
1.8 2.5D integration between HBM and GPU through a interposer. 7

2.1 Bank architecture and operation of DRAM (left) and conventional STT-MRAM
(right). 15

2.2 SMART bank architecture and data/control flow. 18
2.3 Change of read and write accesses after making sensing operation triggered by

a RD command. 19
2.4 SMART page mode and enhanced bank architecture. 20
2.5 Relation between page size and ACT energy. 21
2.6 Impact of tRRD on bank-level parallelism. 22
2.7 tRRD and tFAW for various page sizes. tRRD and tFAW for DRAM are

obtained from a DDR3 datasheet [4]. 23
2.8 Comparison of the three repair schemes. 24
2.9 Change of row access cycle on row misses. 25
2.10 Row hit rate in various workloads. 34
2.11 Read latency profile of mix6 workload. 35
2.12 Performance improvement compared to DRAM. 36
2.13 Energy savings over DRAM. 36
2.14 Breakdown of average memory power. 37
2.15 Normalized performance improvement and energy saving of the conventional

STT-MRAM (Conv-Delay) to the baseline DRAM with various page size. . . . 38
2.16 Normalized IPC and energy to DRAM with various configurations (average of

all mix workloads). 39

3.1 GPU systems with GDDR5 and HBM. 45
3.2 3D structure of HBM and a simple example of TSV connection to DRAM dies. 46
3.3 Comparison between two memory organizations [5]. 47
3.4 Channel Utilization. 48

vi

3.5 Simple diagram for work stealing. 49
3.6 Performance according to queue depth. 50
3.7 Schedulers of the memory controller in many channel memory systems [6]. . . 51
3.8 Hierarchical queue structure. 53
3.9 Limited scheduling. 55
3.10 Avoiding timing constraint. 56
3.11 HBM with crossbars. 60
3.12 Performance improvement after the migration. 63
3.13 Change of imbalanced memory service time. 63
3.14 MPKI and locality. 64
3.15 Performance according to different queue configuration. 65

vii

LIST OF TABLES

2.1 Comparison with previous studies . 27
2.2 Area comparison . 29
2.3 Timing and latency comparison . 30
2.4 Energy and current comparison . 31
2.5 Default system configuration . 33
2.6 Workloads for multi-core simulations . 33

3.1 Configured System . 61
3.2 Workload list . 62
3.3 Estimated area . 66

viii

ABSTRACT

The advance of traditional dynamic random access memory (DRAM) technology has slowed

down, while the capacity and performance needs of memory system have continued to in-

crease. This is a result of increasing data volume from emerging applications, such as

machine learning and big data analytics. In addition to such demands, increasing energy

consumption is becoming a major constraint on the capabilities of computer systems. As

a result, emerging non-volatile memories, for example, Spin Torque Transfer Magnetic

RAM (STT-MRAM), and new memory interfaces, for example, High Bandwidth Mem-

ory (HBM), have been developed as an alternative. Thus far, most previous studies have

retained a DRAM-like memory architecture and management policy. This preserves com-

patibility but hides the true benefits of those new memory technologies.

In this research, we proposed the co-design of memory architectures and their manage-

ment policies for emerging technologies. First, we introduced a new memory architecture

for an STT-MRAM main memory. In particular, we defined a new page mode operation

for efficient activation and sensing. By fully exploiting the non-destructive nature of STT-

MRAM, our design achieved higher performance, lower energy consumption, and a smaller

area than the traditional designs. Second, we developed a cost-effective technique to im-

prove load balancing for HBM memory channels. We showed that the proposed technique

was capable of efficiently redistributing memory requests across multiple memory channels

to improve the channel utilization, resulting in improved performance.

ix

CHAPTER 1

Introduction

1.1 Memory System

A memory system is one of the core sub-systems in modern computer architectures. Mod-

ern computer architectures are based on Von Neumann architecture which mainly con-

sists of memory, input/output, the arithmetic/logic unit, and the control unit as shown in

Fig. 1.1 [7,8]. The memory in Von Neumann architecture stores program data and instruc-

tion data. Thus, this architecture is sometimes called to a stored-program computer [9].

Because storing data to memory and loading data from memory are essential operations

in this architecture, performance and energy consumption of the memory system signifi-

cantly affect overall system performance and energy consumption [10–12]. Moreover, the

importance of a memory system continuously is increasing with emerging applications and

services which need more memory capacity and bandwidth [13–15] .

MEMORY

CPU

CONTROL

UNIT

ARITHMETIC

LOGIC UNITINPUT OUTPUT

CODE DATA

Figure 1.1: Von Neumann architecture.

1

REGISTER

CACHE

Main Memory

STORAGE

CPU

FA
S
TE

R

LA
R

G
ER

On-

chip

Off-

chip

Figure 1.2: Memory hierarchy.

Memory systems have evolved with a hierarchical structure as shown in Fig. 1.2 [16].

This structure can take both advantages of short access time offered from small memories

(e.g, register files and caches) and area efficiency provided from large memories (e.g, main

memory and storage). A main memory is not too fast, but not too small. Because the

different process technology from that of CPU is used for main memories, they are typically

off-chip devices. Generally, the main memory holds whole program code and data whereas

caches temporally hold partial code and data1. Thus, there are frequent accesses to the main

memory in irregular applications, where cached data are not reused well. Besides, recent

in-memory database techniques increase use of the main memory [14, 17].

1.2 Memory Technology

Memory Cell. Dynamic Random Access Memory (DRAM) is a type of random access

semiconductor memory that stores each bit of data in a separate tiny capacitor. It is used

as the main memory in most computing systems. As the de facto standard in the past

several decades, DRAM has been continuously increased in capacity as shown in Fig. 1.3.

However, after increasing for decades, the capacity of DRAM nowadays has now stopped

at 8 Gb. The root cause resulting in this trend is DRAM’s refresh operation. Because the

cell capacitor is leaky, DRAM cells must be periodically refreshed to prevent data loss

1If a main memory space is not enough, storage can be used as the main memory by the page swap

2

1985 1990 1995 2000 2005 2010 2015 2020

1Mb

4Mb

16Mb

64Mb

Year

D
en

si
ty

128Mb
256Mb

512Mb

1Gb
2Gb

4Gb
8Gb ? ? ?

Figure 1.3: DRAM scaling trend [1].

20

20

60

80

0

100

2Gb 4Gb 8Gb 16Gb 32Gb 64Gb

Th
ro

u
g
h
p
u
t

Lo
ss

 [
%

]

Density

(a) Throughput loss by refresh

0

350

2Gb 4Gb 8Gb 16Gb 32Gb 64Gb

P
o
w

er
 C

o
n
su

m
p
ti

o
n
 [

m
W

]

Density

300

250

200

150

100

50

Refresh Power

Non-refresh Power

(b) Relative power consumption of refresh

Figure 1.4: Increasing throughput loss and power consumption by refresh [2].

within their retention time (typically 64 ms). Unfortunately, this retention time has not

improved.2 If DRAM capacity is increased without improvement of retention time, more

DRAM cells must be refreshed within the same period. Thus, the relative time spent for

refresh is increased according to the capacity. This increased refresh time can be converted

to throughput loss as shown in Fig. 1.4a. Furthermore, the power consumption for refresh

is also increased in proportion to capacity. The refresh power consumption, which does not

contribute to computation, will become comparable with the dynamic power consumption,

which is directly involved with the computation as shown in Fig. 1.4b.

Memory Interface. Double Date Rate (DDR), which is successors to Single Data Rate

2In fact, the retention time is becoming worse and thus some recent DRAM devices have shorter retention
time (32 ms) than the normal 64 ms [18].

3

0.5

0.6

0.7

0.8

0.9

1.0

IP
C

 [
N

o
rm

.]

Page Size [Byte]

(a) Performance

0.5

0.6

0.7

0.8

0.9

1.0

M
e

m
o

ry
 P

o
w

e
r

[N
o

rm
.]

Page Size [Byte]

(b) Memory power

Figure 1.5: Impacts of the DRAM page size in STREAM benchmark [3].

(SDR), is the most widely used interface standard for a main memory. In DDR memories,

a memory access is divided into two types of accesses, row access and column access. A

row access command activates or deactivates a row in a memory array. When a row is

activated, all cells connected to that row are sensed by sense amps and the sensed data are

stored in row buffers. Because data are already stored in the row buffer, a following column

access command can be served from the row buffer without additional array access.3 Also,

a following column access going to the same row can be served without additional row

access, because all data for the row are already stored in the row buffer. This operation is

called page mode operation and still remains unchanged in modern DDR devices. The size

of data sensed by a row activation command is defined as page size. In general, page mode

increases performance by avoiding repeated activation of the same row to access different

columns. Thus, the large page size is good for performance especially when data locality is

high. However, the wasted energy is increased in large pages because all data in a page (i.e,

the row buffer) are not used always. As shown in Fig. 1.5, it is hard to capture both high

performance offered by large pages and low power consumption offered by small pages at

the same time [19–22].
3A read command can immediately read out data stored in the row buffer, but a write command needs

to access the array after updating data in the row buffer. However, after updating the row buffer but before
finishing array access, another column access is allowed.

4

500

1000

1500

2000

2500

3000

Year

D
a
te

 R
a
te

 [
M

b
p
s]

SDR DDR DDR2 DDR3 DDR4

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

19
96

Figure 1.6: Increasing data rate from SDR to DDR4.

Total peak memory bandwidth is defined as,

Memory Bandwidth = Data Rate×Bus Width×Number of Channels (1.1)

where data rate is equal to memory bus clock speed in SDR and double of the clock speed

in DDR, bus width is traditionally is 64 bits, and the number of channels is typically 1∼6

for main memory systems. As shown in Fig. 1.6, data rate from SDR to DDR4 has been

continuously increased. That is, traditionally memory bandwidth has been increased by

increasing data rate (i.e, clock speed). However, increasing the clock speed has several

challenges. First, the clock speed in latest DDR generation is already 1.2 GHz and it is

fast enough. There will be some degree of increase in the clock speed, but that would not

be an order of magnitude increase. That is, it is hard to achieve an order of magnitude

higher memory bandwidth by increasing the clock speed. Second, generally faster clock

requires higher supply voltage. Although technology improvements such as low voltage

swing termination logic (LVSTL) suppress the increase of the supply voltage, increasing

clock speed cannot save power consumption.

5

Bitline (BL) Source line (SL)

Wordline (WL)

MTJ

(a) Bit-cell structure of STT-MRAM

MTJ

Storage layer
Tunneling barrier
Reference layer

Parallel state (P)

Anti-Parallel state (AP)

Low resistance (RP)

High resistance (RAP)

(b) Magnetic Tunneling Junction

Figure 1.7: STT-MRAM cell structure and MTJ.

1.3 Emerging Memory Technology

Memory Cells Technology. Because of DRAM’s refresh and the limitations caused by it,

emerging non-volatile memories such as Resistive RAM (ReRAM), Phase Change Memory

(PCM) and Spin Transfer Torque Magnetic RAM (STT-MRAM) have been receiving more

attention. However, unlike other emerging non-volatile memories, STT-MRAM is consid-

ered to be a replacement candidate for a main memory because of its fast access speed and

high endurance [23–29]. An STT-MRAM cell consists of an access transistor and a Mag-

netic Tunneling Junction (MTJ) to store data as shown in Fig. 1.7a. There are three layers in

an MTJ: two magnetic layers and one tunneling barrier between them as shown in Fig. 1.7b.

The “reference” magnetic layer has a fixed magnetization and the “free/storage” layer has

a variable magnetization. When their magnetization directions are the same (parallel state,

P), an MTJ shows low electrical resistance (RP). When their magnetization directions are

different (anti-parallel state, AP), they show high resistance (RAP). This change in the re-

sistance is called the tunneling magnetoresistance effect. The spin transfer torque (STT)

force is exerted by injecting a spin-polarized current to change the magnetization direction

of the free/storage layer. In order to enable bi-directional change, a bi-directional current

should flow through an STT-MRAM cell. Therefore, one terminal of an MTJ is connected

to a bit-line (BL) through a selection transistor and the other terminal is connected to a

6

Logic Die

DRAM Die
DRAM Die
DRAM Die
DRAM Die
DRAM Die
DRAM Die
DRAM Die
DRAM Die

GPU

Interposer

Figure 1.8: 2.5D integration between HBM and GPU through a interposer.

source-line (SL) for the write operation as shown in Fig. 1.7a [30, 31]. Although this cell

structure is similar to a DRAM cell structure, the STT-MRAM cell is larger due to the

larger access transistor. The larger access transistor is required to drive enough current to

switch the magnetization direction. Alternatively, increasing the write time (pulse width)

can reduce the amount of current required and thus the cell size can be smaller [32, 33].

Memory Interface Technology. There are variants of DDR standard for specialized appli-

cations: Low Power DDR (LPDDR) optimized for power consumption and Graphic DDR

(GDDR) optimized for performance. Although several unique features exist in LPDDR

or GDDR such as Partial Array Self Refresh (PASR) in LPDDR and separate higher speed

Write Clock (WCK) in GDDR, their basic operations are almost same as normal DRAM [5,

18,34]. Besides, they all use narrow (32∼64 bits per channel) and fast (up to 7Gbps per pin)

memory channels. Because of this narrow and fast channel, increasing memory capacity

and bandwidth is limited by the power budget. Moreover, accommodating more memory

chips to achieve higher the capacity and bandwidth can limit the form factor. In order

to overcome this issues, 3D stacked DRAM memories, such as High Bandwidth Memory

(HBM) and Wide I/O (WIO), have been developed [35,36]. In Fig. 1.8, an example of 2.5D

integration between a processor (GPU) and a stacked DRAM (HBM) through a silicon in-

terposer is described. Because the interconnections through the interposer are much shorter

7

than the interconnections between off chips on PCB, the data transfer energy is lower on

the interposer. In addition, a stack of DRAM dies in HBM provides multiple channels (up

to 8) within a small space and the interposer can accommodate all I/Os for the channels.

Because the bandwidth is linearly proportional to the data rate and total number of I/Os

for all channels, HBM’s large number of I/Os (1024 vs. 32 for GDDR5) allows to lower

the data rate (2Gbps vs. 7Gbps for GDDR5) while increasing the bandwidth (256GB/s vs.

28GB/s for GDDR5).

1.4 Dissertation Organization

The research work is organized as follows. Chapter 2 presents a co-design of memory ar-

chitecture and its management policy for an STT-MRAM main memory. Chapter 3 presents

a cost-effective technique to improve load balancing for HBM channels. Finally, Chapter. 4

includes the summary of this work and conclusions.

8

CHAPTER 2

STT-MRAM Architecture for Smart Activation

and Sensing

STT-MRAM is a promising memory technology as a drop-in replacement of DRAM for

main memory, because it can offer higher energy efficiency than DRAM with latency com-

parable to DRAM. However, STT-MRAM needs to employ current sense amps which con-

sume an order of magnitude larger space and power than voltage sense amps adopted by

DRAM. Consequently, to manage the high cost of sense amps, STT-MRAM decouples bit-

lines from sense amps and shares one sense amp with 16∼128× bit-lines, exploiting the

non-destructive nature of its read operation. However, such STT-MRAM reduces the size

of row buffers and incurs more row-buffer misses (i.e, higher activation energy and lower

performance) than DRAM along with other issues, especially when it follows interfaces

and policies designed for DRAM.

To cost-effectively address these issues, we propose SMART, co-designing STT-MRAM

architecture and its management policy in this study. Specifically, unlike DRAM and con-

ventional STT-MRAM, SMART proposes to sense bit-lines after receiving a column access

command instead of a row activation command. This can provide several benefits including

larger pages, fewer sense amps, lower activation/sensing power, shorter latency, fewer ad-

dress pins and more efficient repairs of defective columns than conventional STT-MRAM.

Our evaluation shows that SMART consumes 11% (39%) lower energy while providing 9%

(5%) higher performance than conventional STT-MRAM (DRAM) on average. In addition

9

to these benefits, SMART is 6% smaller than conventional STT-MRAM.

2.1 Introduction

STT-MRAM is one of the promising emerging non-volatile memory (NVM) technologies

as a drop-in replacement of DRAM for main memory because of its faster speed and higher

endurance than other NVM technologies [23–29]. However, STT-MRAM has some dis-

advantages over DRAM. One of such disadvantages is a need to use large and high-power

sense amps in STT-MRAM. Specifically, STT-MRAM needs current sense amps consum-

ing an order of magnitude larger space and higher power than voltage sense amps adopted

by DRAM. To manage the cost of implementing such sense amps, STT-MRAM leverages

the non-destructive nature of its read operation and shares one sense amp with 16∼128

bit-lines in each bank [37–42]. Such STT-MRAM architectures, nonetheless, suffer from

two limitations.

First, STT-MRAM with fewer sense amps provides smaller row buffers and thus pages

than DRAM, as the number of sense amps determines the size of row buffers [16]. Larger

pages provide higher performance with more row-buffer hits when data locality is high,

but they consume more energy when data locality is poor, which is also known as the

overfetching problem. In contrast, smaller pages consume less energy when data locality

is poor, but they give lower performance with more row-buffer misses when data locality is

good. The size of STT-MRAM row buffers is far smaller than that of DRAM row buffers

but much larger than that of a column access. Therefore, STT-MRAM suffers from more

row-buffer misses than DRAM without completely eliminating the overfetching problem.

Second, when such STT-MRAM uses interfaces and policies designed for DRAM, it

suffers from a column address fragmentation problem [27, 42]. Specifically, DRAM re-

quires sense amps to sense all 16,384 bit-lines in a sub-array and latch the data until open-

10

ing another row due to the destructive nature of its read operation. Therefore, for a given

row address, DRAM performs both activation and sensing at the same time with a single

row activation (ACT) command. However, it becomes problematic to directly apply such

an activation/sensing approach to STT-MRAM with fewer sense amps than the number of

bit-lines (i.e, size of a row), because STT-MRAM must receive both a row address and

some of a column address at the same time to connect a sub-set of chosen bit-lines to

the sense amps through multiplexers when activating a row. That is, STT-MRAM with the

same capacity as DRAM requires more address pins to send not only a row address but also

some of a column address together with a row command1. Besides, such a fragmentation

of a column address between row and column commands considerably worsens efficiency

and flexibility of column repair mechanisms as a row or column command has only partial

column address information [43, 44].

To cost-effectively address these issues, we propose SMART, STT-MRAM ARchiTecture

supporting smart activation/sensing. Specifically, exploiting one of the advantages of STT-

MRAM, non-destructive nature of its read operation, we propose to provide only 64 sense

amps2 for each bank and make a column access command instead of a row activation com-

mand sense bit-lines. This deceptively simple change, which is not possible for DRAM

with the destructive nature of its read operation, can offer the following advantages over

conventional STT-MRAM.

(1) SMART offers the illusion of providing 16× larger row buffers with 16× fewer

sense amps than conventional STT-MRAM. That is, SMART provides 2KB pages with

only 64 sense amps per bank, whereas conventional STT-MRAM gives 128B pages with

1,024 sense amps per bank. Furthermore, conventional STT-MRAM repeatedly consumes

long time (tRC = 27.5ns) and high power to access the same row but columns which

1DRAM uses the same set of address pins to receive both row and columns addresses in a time multiplexed
manner. Since a row address typically needs more bits than a column address, the number of row address bits
determines the number of address pins in DRAM.

2In this study, we assume DRAM and STT-MRAM modules, each consisting of eight ×8 devices for 64-
bit I/O. Therefore, each device must sense 64 bits to support the burst length of 8 for a single column access
command.

11

were not selected and sensed by the previous row command. This is because conventional

STT-MRAM needs to recognize such memory accesses as row-buffer misses to select and

sense different bit-lines. In contrast, SMART can recognize such memory accesses as row-

buffer hits and it only needs another column access command because it selects and senses

different bit-lines which were already connected to the necessary cells by the previous row

activation command.

(2) SMART consumes ∼88% lower activation power than conventional STT-MRAM.

Specifically, conventional STT-MRAM senses 1,024 bit-lines as part of a row activation,

and sensing power dominates the activation power. In contrast, SMART consumes 16×

less sensing power than conventional STT-MRAM because it senses only 64 bit-lines (i.e,

granularity of a column access) as part of a column access. Hence, SMART practically

eliminates the overfetching problem. Furthermore, whenever a memory write access de-

mands an activation of another row, conventional STT-MRAM unnecessarily consumes

sensing power because sensing is part of the row activation. However, SMART does not

consume any sensing power for such a memory write access, because sensing is not part of

a row activation but part of a column read access.

(3) SMART offers shorter latency for memory accesses. Specifically, high sensing

power imposes tRRD and tFAW constraints in DRAM and STT-MRAM and limits the

number of row activation commands in a certain time period. As SMART significantly

reduces sensing power, it can eliminates these two constraints and handle more row acti-

vation commands in a shorter time period than conventional STT-MRAM. As previously

mentioned, conventional STT-MRAM performs sensing as part of row activation while

sensing is unnecessary for memory write accesses. Moreover, sensing constitutes a notable

fraction of activation time. Therefore, SMART can also reduce latency of memory write

accesses especially to different rows compared with conventional STT-MRAM.

(4) SMART needs fewer pins and offer 10.7×more efficient repairs of defective columns

than conventional STT-MRAM. Particularly, SMART does not sense bit-lines as part of

12

row activation. Therefore, it does not need to select and connect specific bit-lines to sense

amps as part of row activation. That is, it only needs to receive a row address for activation

like DRAM. Besides, SMART receives the full column address with a column command,

it can use the same efficient mechanism as DRAM for repairing defective bit-lines.

(5) SMART eliminates the need for sending separate pre-charge commands since a col-

umn command can comprise the function of a pre-charge command. As a result, SMART

not only offers 11% shorter latency for memory accesses which are directed to the same

bank but incur row-buffer misses, but also consumes less command bus bandwidth than

conventional STT-MRAM.

In summary, (1)–(5) not only reduce energy but also improve performance. Our eval-

uation shows that SMART consumes 11% (39%) lower energy while providing 9% (5%)

higher performance than conventional STT-MRAM (DRAM) on average. In addition to

these benefits, SMART is 6% smaller than conventional STT-MRAM.

2.2 Challenges in Architecting STT-MRAM

In this section, we compare STT-MRAM with DRAM and explicate challenges and limita-

tions in conventional STT-MRAM.

2.2.1 Large Sense Amps with High Power Consumption

STT-MRAM is expected to offer cell read/write speed comparable to DRAM and good

endurance (> 1015) [45–49]. A recent study demonstrated 4Gb LPDDR2-compatible

STT-MRAM with 9F 2 cell size and sub-50ns read/write speed [27]. Such characteris-

tics make STT-MRAM a promising alternative to ∼7F 2 DRAM. However, STT-MRAM

poses unique challenges especially in implementing a sense amps (SA) [37, 50–54].

First, STT-MRAM needs a large current SA with a reference current generator because

sensing small difference in on/off resistance is challenging, which is further worsened by

13

process variations. This requires STT-MRAM to adopt a very complex current SA which

consumes an order of magnitude larger space than a voltage SA employed by DRAM.

Second, sensing in STT-MRAM consumes high power. DRAM SAs simply charge or

discharge bit-lines (BLs) once per sensing, whereas STT-MRAM SAs need to continuously

flow current to BLs until they reach a level sufficient for sensing. To eliminate the power

consumed by the continuous current flow, separate buffers are implemented and data in

SAs are copied to the buffers so that the SAs can be turned off immediately after sensing

bit-lines [41, 50].

2.2.2 Limitations with Shared Sense Amps

DRAM needs to directly couple every BL with a dedicated SA in each sub-array, as shown

in Fig. 2.1a due to its destructive nature of read operation. STT-MRAM, however, shares

one SA with 16∼128 BLs after it decouples SAs from BLs with multiplexers [27,37,38,42],

as depicted in Fig. 2.1b. This is to manage the cost of SAs, exploiting its non-destructive

nature of its read operation.

DRAM operating in page mode senses cell states of a row and stores them into a row

buffer3 when an ACT command is received. This allows DRAM to pre-charge/activate a

row once for multiple column accesses, as depicted in Fig. 2.1c. Such an operating mode

has not changed in modern DRAM architectures [34, 55–57]. Fig. 2.1d describes the steps

of serving a read request in STT-MRAM following the same page mode as DRAM but

sharing one SA with 16 BLs to reduce the cost. A row activation command first asserts

a word-line (WL) connected to 16,384 cells (2KB). Since there are only 1,024 SAs (i.e,

128B row buffer), a column selection signal (CSL0) uses part of the column address (Col0)

to select one BL out of 16 BLs. The column selection signal (MCSL-SCSL) in an STT-

MRAM bank shown in Fig. 2.1b corresponds to the WL selection signal (MWL-SWL).

The remaining part of the column address (Col1) selects global bit-lines (GBLs) and it is

3The 16,384 SAs shared by two adjacent sub-arrays serve as a row buffer.

14

SIO0

SIO1

BL0 BL1 BL2 BL3

LIO1CSL0

SWL

Column Decoder
IO Sense Amplifier

R
o

w
 D

ec
o

d
er

MAT

LIO

CSL

IOSW

SIO

SWL
IOSW

CSL1

IO Switch

MWL

BLSA/EQ
Column Switch

SWL Driver

IOSWBLSA (Row Buffer)

BLSA (Row Buffer)

Sub-array

BL

LIO0

(a) Bank architecture and interconnect of
DRAM

GBL0 GSL0

SWL

GBL1 GSL1

Sense Amplifier
Row Buffer

R
o

w
 D

ec
o

d
er

SWL Driver
MAT

GBL/GSL

SCSL

BL

SL

SWL

Sub Colum
Driver

MWL

MCSL

SCSL0

SCSL1

Column Decoder

Column
Switch

Sub-array

BL0 SL0 BL1 SL1 BL2 SL2 BL3 SL3

SCSL0

SCSL1

(b) Bank architecture and interconnect of con-
ventional STT-MRAM

2KBWL

2KBBLSA

8BCSL

8BIOSW

8BIOSA

Row

Col

8BDQ

A
C
T

R
D

ADDCMD
Control

Flow Bit Width

(c) Data/control flows for a single read operation
in DRAM

2KBWL

128BCSL0

SA

8BCSL1

8B

Row

Col1

DQ

A
C
T

R
D

Col0

128B

ADD
Control

Flow Bit Width

(d) Data/control flows for a single read operation
in STT-MRAM

SensingMEM
CELL

BL

CL

WL
DRIVER

ACT RD

WL SIO LIO GIOIOSWCSL IOSA DQ

SIO LIO GIOIOSWCSL IOSA DQ

SIO LIO GIOIOSWCSL IOSA DQ

tRCD tCCD

BLSA

(e) Page mode and pipelined RD operations in
DRAM

MEM
CELL

BL GBLCSL0WL SA

ACT

tRCD tCCD

CL

Sensing

RD

WL
DRIVER

GIO DQCSL1

GIO DQCSL1

GIO DQCSL1

SIO

(f) Page mode and pipelined RD operations in
STT-MRAM

Figure 2.1: Bank architecture and operation of DRAM (left) and conventional STT-MRAM
(right).

determined by a column access command (RD or WR). Such STT-MRAM, however, suffers

from the following limitations.

Limitation 1: Longer latency. DRAM places bit-line sense amps (BLSAs) [25,27] above

and below a sub-array because the charge sharing limits the BL length in DRAM [58, 59].

Because the local I/O (LIO) lines are too long to be driven by small BLSAs, larger I/O

sense amps (IOSAs) are placed near the column decoder of each bank to assist the transfer

of data through the LIO lines. In contrast, STT-MRAM does not require BLSAs [25, 27],

placing only column multiplexers above and below a sub-array with one set of SAs at the

bottom of a bank consisting of 128 sub-arrays. The column multiplexers connect one BL

in a group of BLs to a SA through a GBL, which makes the sensing path of STT-MRAM

15

longer than that of DRAM. That is, the sensing path of STT-MRAM is the height of a bank

while that of DRAM is the height of a sub-array. This in turn increases tRCD, minimum

time from ACT to RD or WR while decreasing CL as shown in Fig. 2.1f [42].

Limitation 2: Smaller pages. Consider STT-MRAM sharing one SA with N BLs where

N is 16∼128 in prior work [27, 37, 60]. When STT-MRAM has 16,384 cells connected

to a WL like DRAM, the page size of such STT-MRAM becomes 1/N of that of DRAM.

Although not all data in pages are always used, smaller pages degrade performance of

applications especially with high data locality such as streaming. Furthermore, with fewer

SAs than BLs (i.e, cells in a row), STT-MRAM encounters the following three cases: (1)

an access to another row (i.e, row miss); (2) an access to the same row with BLs selected

and sensed by previous ACT (i.e, row hit); or (3) an access to the same row but BLs which

are not selected and sensed by previous ACT yet (i.e, row hit but row buffer miss). The third

case needs to be handled like a row miss because connecting appropriate BLs to SAs and

sensing them are coupled with ACT in STT-MRAM sharing one SA with many BLs. That

is, some of a column address becomes part of a row address since they are needed before

sensing appropriate BLs. Consequently, selecting different BLs which were not selected

by previous ACT always demands another ACT.

Limitation 3: Lower repair efficiency. The fact that a column address is split between

row activation and column access commands, referred to as column address fragmentation

in this study, creates two important challenges in managing chip yield and compatibility

with existing DDR interfaces. Typically, the minimum repair granularity is a row or a

column. For the sake of repair efficiency, any redundant WL can replace any defective WL

in the same bank and any redundant BL can replace any faulty BL in the same mat. This

technique is known as any-to-any replacement [61]. In STT-MRAM architecture sharing

one SA with multiple BLs, however, both ACT and RD/WR do not have the full column

address information. STT-MRAM uses the partial column address from ACT to select one

BL in every BL group. That is, it selects one BL from each BL group and each mat has 64

16

BL groups. Therefore, if the partial column address to replace a defective BL in a BL group,

it needs to replace every BL selected by the same partial column address. Consequently,

STT-MRAM needs at least one redundant BL for every BL group (i.e, 64 redundant BLs

per mat). On the other hand, STT-MRAM uses the partial column address from RD or WR

to select 64 BL groups from 1,024 BL groups (i.e, the number of SAs). Hence, if it uses the

partial column address to replace a defective BL in a BL group, it needs to replace every

BL in the BL group. That is, STT-MRAM needs at least one redundant BL group in each

mat, (i.e, 16 BLs per group). Both cases negatively affect chip yield because they limit the

flexibility of any-to-any replacement and increasing the minimum repair granularity.

Limitation 4: Higher pin cost. In DRAM, row and column addresses share the same

address pins because they are delivered at different times [34, 56]. The number of address

pins is equal to the number of row address bits because there are typically more rows than

columns (e.g, 64K rows and 2K columns in ×8-8Gb DRAM). In STT-MRAM, however,

more address pins are needed to send some of a column address with a row address. For

example, we need 4 more pins for STT-MRAM with N = 16. Therefore, STT-MRAM

with the shared SA architecture is not compatible with conventional DDR interfaces. To

solve this problem, comboAS [27, 42] proposes to start actual row activation only after

RD or WR sends a column address, but it always increases CL by the row activation time.

LPDDR2-NVM [62, 63] proposes another command, PREACT to deliver a part of the row

address before sending ACT so that STT-MRAM can compose a complete row address after

receiving the ACT command. This also increases row activation time while consuming

more command bus bandwidth.

2.3 SMART Architecture

Due to the destructive nature of read operation, DRAM requires an ACT command to sense

the state of every cell in a row after the WL is asserted. This demands the number of SAs to

17

LSL0

LSL1

LBL0

LBL1

CSL0 CSL1 GSL1

SSL

SWL

BL0 SL0 BL1 SL1 BL2 SL2 BL3 SL3

GBL1
GSL0

GBL0
Column Decoder
Sense Amplifier

MAT

GBL/GSL

CSL

SSL

LGBL/LGSL

SWL

Sub Array
Switch

MWL

SWL Driver

Sub-array

Column
Switch

R
o

w
 D

ec
o

d
er

BL

SL
SSL

(a) Bank architecture

2KBWL

CSL

SSL

8BSA

8B

Row

Col

DQ

A
C
T

R
D

8B

8B

ADD
Control

Flow Bit Width

(b) Data and control flow

Figure 2.2: SMART bank architecture and data/control flow.

be equal to the number of cells in a row. Therefore, the number of cells in a row determines

both the page size and the activation power in DRAM. This makes it impossible for DRAM

to offer both high performance of large pages and low power of small pages at the same

time. In contrast to DRAM, because of the non-destructive nature of read operation, STT-

MRAM does not need to make an ACT command sense the state of every cell in a row

after asserting the WL. Exploiting such a property, we propose to re-architect STT-MRAM

which senses BLs as part of RD instead of ACT and re-define its page mode operation. In

the remainder of this section, we first present the detail of SMART architecture and then

discuss the five key benefits of SMART over conventional STT-MRAM and/or DRAM.

2.3.1 Re-architecting STT-MRAM

In SMART a given ACT command completes its operation immediately after asserting a

WL. That is, the ACT command does not sense any BL but it is a subsequent RD command

that senses 64 BLs specified by the column address of the RD command. This, in turn,

allows SMART to provide 2KB pages with only 64 SAs per bank along with other signifi-

cant benefits which will be discussed in Sec. 2.3.2. To efficiently support such ACT and RD

commands for SMART, we propose a bank architecture depicted in Fig. 2.2a.

Traditionally, the I/O interconnect of DRAM has a hierarchy as depicted in Fig 2.1a.

Specifically, the interconnect from a memory cell to a SA is called BL. For a given column

access, 64 BLs/BLSAs are selected by column selection lines (CSLs) and connected to

18

ACT

Row Add
Decode

WL
Activation Sensing

Col Add
Decode I/O Gating

RD
DOUT

tRCD CL

ACT

Row Add
Decode

WL
Activation

SensingCol Add
Decode I/O Gating

RD
DOUT

tRCD CL

ACT

Row Add
Decode

WL
Activation Sensing

Col Add
Decode

WR
DIN

tRCD CWL tWR

 Cell Write

PRE

ACT

Row Add
Decode

WL
Activation

Col Add
Decode

I/O Gating

WR
DIN

tRCD CWL tWR

 Cell Write

PRE

Read Latency Write Latency

C
o

n
ve

n
ti

o
n

al
O

p
e

ra
ti

o
n

P
ro

p
o

se
d

O
p

e
ra

ti
o

n
I/O Gating

Cmd/Add
Propagation

Figure 2.3: Change of read and write accesses after making sensing operation triggered by
a RD command.

segmented I/O (SIO) lines in a sub-array through column switches (i.e, multiplexers). Then,

the SIO lines are connected to local I/O (LIO) lines running vertically across a bank through

I/O switches (IOSWs) [64]. The SIO, LIO and IOSW in DRAM correspond to local BL

(LBL), GBL, and sub-array selection line (SSL), respectively, in SMART. Lastly, 64 SAs

are placed at the bottom of each bank where IOSAs (cf , Sec. 2.2.2) are located in DRAM.

In summary, SMART has a bank architecture similar to DRAM, but SMART has only 64

SAs per bank whereas DRAM has 16,384 SAs per sub-array.

This SMART bank architecture does not increase latency of memory read accesses,

because the total amount of time for performing ACT and RD remains the same as conven-

tional STT-MRAM. As shown in Fig. 2.3(left), compared with conventional STT-MRAM,

SMART simply reduces the amount of time for ACT (tRCD) while increasing the amount

of time for RD (CL). On the other hand, as shown in Fig. 2.3(right), SMART can decrease

latency of memory write accesses. Specifically, compared with STT-MRAM, ACT-WR does

not consume any time for sensing BLs without affecting CWL, time between the moment at

which a WR command is sent and the moment at which its first data (DIN) is placed.

In DRAM, the SIO-LIO lines are electrically isolated from the GIO lines, as shown

in Fig. 2.1a. This allows DRAM to internally pipeline more than two consecutive RD

commands which can be issued at every tCCD interval (typically ∼5ns) without waiting

for long CL (typically ∼13.75ns), as shown in Fig. 2.1e. SMART, however, has longer

19

WL Sensing

CL

WL
DRIVER

ACT RD

BL GIOLBL SA
SASSL

SSLCSL
CSL DQGBLMEM

CELL

BL GIOLBL SA
SASSL

SSLCSL
CSL DQGBL

BL GIOLBL SA
SASSL

SSLCSL
CSL DQGBL

tRCD tCCD

(a) Page mode and pipelined RD commands

LBL

BL

GBL

LBL

Sense Amps Sense Amps
Sense Amps

BL

GBL

(b) Enhanced bank architecture

Figure 2.4: SMART page mode and enhanced bank architecture.

read time than tCCD because RD also senses BLs, as shown in Fig. 2.4a. To hide such long

sensing time for consecutive RD commands, we propose to double the number of LBL and

GBL lines, column multiplexers, and SAs, as shown in Fig. 2.4b. The two sensing paths

take turns to serve consecutive RD commands so that SMART can handle one RD command

at every tCCD interval, as depicted in Fig. 2.4a. Our analysis in Sec. 2.4.1 shows that the

cost of doubling the number of sensing paths does not increase the cost of STT-MRAM.

In fact, SMART decreases the cost by ∼6% because SMART still uses 8× fewer SAs than

conventional STT-MRAM.

2.3.2 Benefits

With the bank architecture presented in Sec. 2.3.1, SMART can provide the following

notable benefits over conventional STT-MRAM.

Benefit 1: Larger pages and fewer SAs. SMART with a re-defined page mode can give

the illusion of providing larger pages but demanding fewer SAs than conventional STT-

MRAM. Specifically, an ACT command of SMART simply asserts a WL to connect every

cell in the row to 16,384 BLs, and it is a subsequent RD command that selects appropriate 64

BLs and senses them. That is, SMART needs only 64 SAs per bank for 2KB pages whereas

conventional STT-MRAM implements 1,024 SAs per bank for 128B pages. Because con-

ventional STT-MRAM implements 16×fewer SAs than BLs, it repeatedly consumes long

time (tRC = 27.5ns) for accessing the same row but columns which were not selected and

sensed by the previous ACT command. SMART, however, does not consume tRC for such

20

Word-line Activation

Page Size = 2KB

E
n

e
rg

y

Bit-line Charging and Sensing

Wasted energy

Word-line Activation

Page Size = 128B

E
n

e
rg

y

Bit-line Charging and Sensing

Wasted energy

Wasted energy

Read access
granularity

Reduced pages in
conventional STT-MRAM

DRAM

SMART

Read access
granularity

Read access
granularity

Bit-line
Charging and

Sensing

E
n

e
rg

y

Word-line Activation

Page Size = 2KB

Figure 2.5: Relation between page size and ACT energy.

column accesses because it only needs another RD command to connect and sense these

columns. This can significantly reduce the latency of sequential memory accesses. Note

that the SAs in conventional STT-MRAM consume ∼9% of STT-MRAM space based on

an adapted version of DRAMSpec [65]. That is, SMART can reduce the space and acti-

vation power consumed by SAs to 12.5% of conventional STT-MRAM. This is sufficient

not only to negate the cost increased by another read path but also to significantly reduce

sensing power and memory access latency, as elaborated below.

Benefit 2: Lower activation power with fewer SAs. ACT energy is a major contribu-

tor to total DRAM energy in DRAM. To reduce the ACT energy, DRAM architectures with

smaller pages and fine-grained activation have been proposed [19–22]. In contrast, SMART

reduces ACT energy while providing larger pages with fine-grained activation at a smaller

cost than STT-DRAM. Fig. 2.5 illustrates the relationship between page size and ACT en-

ergy in DRAM, STT-MRAM and SMART. In a DRAM device providing 2KB pages, ACT

21

ACT RD

DOUT

tRRD

ACT RD

DOUT

CL

tRCD
Limited bank

interleaving by tRRD

ACT RD

DOUT

ACT RD

DOUT

CL

CL

tRCD

CL

tCCD

tRCD

Bank interleaving
without tRRD restriction

Figure 2.6: Impact of tRRD on bank-level parallelism.

asserts a WL, connecting 16,384 cells to 16,384 BLs. Although we consider higher WL

voltage (VPP) than the BL voltage (VDD) and low efficiency of the charge pump to gener-

ate VPP (∼30% [66]), we see that charging/discharging the BLs still dominates the ACT

energy because of the large number of BLs. Since a RD command accesses only ∼0.4%

(= 64/16,384) of cells in a row, sensing 16,384 BLs for only a few RD accesses, referred to

as the overfetching problem, wastes a significant amount of energy in DRAM, as shown in

Fig. 2.5(top).

Benefit 3: Shorter latency with lower activation power. High ACT power affects not only

total memory energy but also overall memory performance. Specifically, simultaneous ac-

tivation of multiple rows, each charging/discharging 16,384 BLs, draws a large amount of

current. This requires some time to recover from the voltage drop of the power delivery

network, which is enforced by tRRD (RAS to RAS delay) and tFAW (four activation win-

dow). If there are two read accesses to different banks, the second ACT command can be

scheduled between the first ACT and RD commands, but not until tRRD has elapsed from

the first ACT command, as depicted in Fig. 2.6(top). tFAW limits the number of ACT com-

mands to four within a tFAW time window. Therefore, these constraints limit bank-level

parallelism and they are imposed on not only DRAM but also other memory technologies.

For example, LPDDR2-NVM also defines tRRD and tFAW [63].

We plot tRRD and tFAW for various page sizes in Fig. 2.7, where the maximum activa-

tion current values are determined by a method of prior work [67]. This shows that tRRD

22

0
2
4
6
8

10
12
14
16
18
20

tR
R

D
 [

n
s]

Page Size [Byte]

tRRD (STT-MRAM)
tRRD (DRAM)

(a) tRRD

0
10
20
30
40
50
60
70
80
90

100

tF
A

W
 [

n
s]

Page Size [Byte]

tFAW (STT-MRAM)
tFAW (DRAM)

(b) tFAW

Figure 2.7: tRRD and tFAW for various page sizes. tRRD and tFAW for DRAM are
obtained from a DDR3 datasheet [4].

and tFAW of conventional STT-MRAM with the page size of 128B are∼6.2ns and∼30ns,

respectively. Since a current SA consumes far more power than a voltage SA, STT-MRAM

needs longer tRRD than DRAM for the same page size. In contrast, SMART activates

16× fewer SAs and thus consumes less power than conventional STT-MRAM. Note that

SMART ACT does not consume any sensing power and the recovery time for activating 64

SAs is short enough compared to tCCD (∼5ns). Hence, SMART can practically eliminate

these two constraints and handle multiple ACT–RD commands to different banks back to

back. This significantly reduces the latency of memory accesses especially for memory-

intensive applications. For example, SMART can serve two ACT–RD commands to two

different banks without consuming tRRD, as shown in Fig. 2.6(bottom).

Lastly, SMART also consume shorter time and less power than conventional STT-

MRAM for memory write accesses. This is because an ACT command of SMART does

not consume time and power for sensing which is unnecessary for memory write accesses,

whereas conventional STT-MRAM still does.

Benefit 4: Fewer pins and more efficient repair. Unlike conventional STT-MRAM,

SMART does not demand any part of a column address with ACT, and thus it needs the

same number of address pins as DRAM. That is, SMART does not suffer from the column

address fragmentation problem discussed in Sec. 2.2.2. As discussed in Sec. 2.2.2, repair-

23

MAT

Repair Logic

MAT

SA
Repair Logic

CS

Repair granularity 1 BL 64 BLs 16 BLs

Repair flexibility Within a MAT Within a BL group Within a MAT

DRAM
& SMART

Conv. STT-MAM
Repair @ ACT

Conv. STT-MAM
Repair @ RD/WR

u v

Normal SA Redundant SA

1024 NBLs 4 RBLs
16 NBLs
1 RBL

SA
CS

SA
CS

Total 64 SAs
Total 64 RBLs

MAT

SA
Repair Logic

CS

w

SA
CS

SA
CS

16 RBLs1024 NBLs

u v w

Normal BL (NBL)
Redundant BL (RBL)

(a) Example of various column repair schemes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60

C
h

ip
 Y

ie
ld

Number of redundant BLs per MAT

DRAM & SMART

Conv. STT-MRAM @ ACT

Conv. STT-MRAM @ RD/WR

(b) Chip yield according to repair schemes

Figure 2.8: Comparison of the three repair schemes.

ing a mat of conventional STT-MRAM is not as efficient and flexible as DRAM because the

column address fragmentation problem splits a column address between ACT and RD. This

can significantly increase the cost of repairing mats or decrease the yield of STT-MRAM

chips. Fig. 2.8a describes the column repair schemes for DRAM and conventional STT-

MRAM. In DRAM (1), we can replace any 1,024 BLs with any 4 redundant BLs in a mat,

and we repair a BL with a RD or WR command comprising a complete column address [68].

As SMART also exposes a complete column address to a RD or WR command, it can adopt

the same column repair scheme as DRAM. In conventional STT-MRAM, however, nei-

ther a ACT command nor a RD/WR command has a complete column address. This makes

repairing BLs far less efficient and flexible than DRAM or SMART.

Consider STT-MRAM with 1,024 BLs per mat and N (= 16) BLs per SA, (i.e, 1,024/N

= 64 BL groups). If we are to repair a BL with ACT (2), we need one redundant BL for

every N BLs (= 64 redundant BLs) as ACT can select only one BL in each BL group. On

the other hand, if we are to repair a BL with RD or WR (3), we need to replace the entire BL

group including a defective BL with a redundant BL group (= 16 redundant BLs) because

RD or WR can select only BL groups.

We analyze the chip yield for various numbers of redundant BLs in Fig. 2.8b where we

assumed that capacity of a chip is 8Gb, the number of mats is 16,384 in a chip where each

24

ACT RD

DOUT

tRCD

PRE

ACT RD PRE

ACT RD

ACT RD

ACT RD ACT RD

DOUT

DOUT DOUT

DOUT DOUT

CL

tRAS tRP

tRCD

CL

tRTP tRP

tRCD

CL

tRTP

CL

tRCD

tRCD

CL

tRCD

CL

No recovery in STT-MRAM

Skipping pre-charge
in SMART

DRAM

Figure 2.9: Change of row access cycle on row misses.

mat has 512 WLs and 1024 BLs, N is 16 for conventional STT-MRAM, memory defects

follow a Poisson distribution [68, 69], the target bit error rate (BER) after row repair

is 10−7 and both DRAM/SMART and conventional STT-MRAM use the same row repair

scheme. This shows that conventional STT-MRAM has a lower chip yield than DRAM or

SMART for the same number of redundant BLs. In other words, to accomplish the same

chip yield (99%) under the same BER (107), conventional STT-MRAM requires 10.7×

more redundant BLs than DRAM and SMART.

Benefit 5: Eliminating precharge commands. To activate another row in the same bank

(handle a row-buffer miss), a precharge (PRE) command needs to be sent to DRAM before

an ACT command. Specifically, PRE in DRAM consists of two phases: (1) deactivating an

asserted WL and (2) initializing BLs before ACT senses BLs. (2) also destroys cell states

if it is performed before the WL is completely deactivated. Therefore, (1) should be com-

pletely done before (2) is started, and the amount of time for (1) and (2) (tRP) increases

latency of memory accesses when row-buffer misses occur, as shown in Fig. 2.9(top). Fur-

thermore, when STT-MRAM follows the same page mode operation as DRAM, it experi-

ences more row-buffer misses with smaller pages and thus it pays this penalty more fre-

quently than DRAM.

Unlike DRAM, however, STT-MRAM does not need to sequentially perform (1) and

25

(2) because of the non-destructive nature of its read operation. Moreover, STT-MRAM

immediately transfers the cell states sensed by SAs to registers serving as a row buffer

(Sec. 2.2.1). This allows STT-MRAM to initialize the BLs and SAs immediately after

sensing BLs as part of ACT and reduce tRP. Note that STT-MRAM initializes its BLs

by discharging them to VSS . The driving strength of charging BLs is limited to prevent

unexpected changes of cell states (read disturbance) [40, 70], but that of discharging BL is

not limited. Hence, the amount of time for (2) can be much shorter than DRAM and it is

already included in tRAS instead of tRP [27, 42, 50]. This reduces tRP of STT-MRAM

by the amount of time for (2). Consequently, as shown in Fig. 2.9(middle), STT-MRAM

can serve the second RD command faster than DRAM, but it does not reduce or hide the

amount of time for (1), still demanding a separate PRE command. In contrast, SMART

can overlap the amount of time for (1) (∼3.7ns) with the amount of time to decode a given

row address and compare the address with addresses in a row repair table [68] during the

early phase of ACT for the next row (∼4.2ns)4. This allows SMART to completely remove

PRE right before ACT, further reducing the latency to handle row-buffer misses. Note that

prior work only reduces tRP [42,59] while SMART does not consume tRP at all to handle

row-buffer misses.

2.3.3 Discussion

SMART can consume far less space for SAs and redundant BLs than conventional STT-

MRAM but more space for another sensing path per bank. Overall, SMART is ∼6%

smaller than conventional STT-MRAM (Sec. 2.4.1). We summarize the key differences

among DRAM, LPDDR2-NVM, conventional STT-MRAM and SMART in Table 2.1

SMART does not increase the latency of serving a single read request or consecutive

read requests issued at the tCCD interval but it still increasesCL. This may increase overall

4In this case, we leverage the∼0.5ns difference, but some overlap between deactivating the previous WL
and activating the current WL is still acceptable because such overlap does not destroy the cell states.

26

Ta
bl

e
2.

1:
C

om
pa

ri
so

n
w

ith
pr

ev
io

us
st

ud
ie

s

D
R

A
M

L
PD

D
R

2-
N

V
M

[3
8,

63
]

C
on

v-
D

el
ay

[2
7,

42
]

C
on

v-
Pi

n
[2

4,
41

]
T

hi
s

w
or

k
(S

M
A

R
T

)
Pa

ge
si

ze
L

ar
ge

(2
K

B
)

Sm
al

l(
32

B
)

Sm
al

l(
12

8B
)

Sm
al

l(
12

8B
)

L
ar

ge
(2

K
B

)
A

ct
iv

at
io

n
en

er
gy

H
ig

h
M

ed
iu

m
M

ed
iu

m
M

ed
iu

m
E

xt
re

m
el

y
lo

w
B

an
k-

le
ve

lp
ar

al
le

lis
m

L
im

ite
d

by
t
R
R
D

/t
F
A
W

Sa
m

e
as

D
R

A
M

Sa
m

e
as

D
R

A
M

Sa
m

e
as

D
R

A
M

N
o

lim
ita

tio
n

Pi
n-

co
m

pa
tib

le
w

ith
D

D
R

Y
es

Y
es

(3
-p

ha
se

ad
dr

es
si

ng
)

Y
es

(d
el

ay
ed
A
C
T

)
N

o
Y

es
R

ep
ai

rfl
ex

ib
ili

ty
H

ig
h

L
ow

L
ow

L
ow

H
ig

h

P
R
E

te
ch

ni
qu

e
SA

L
P

[5
9]

:C
an

vi
ol

at
e

t
R
P

to
ac

ce
ss

di
ff

er
en

t
su

b-
ar

ra
y

N
o

E
ar

ly
PA

[4
2]

:I
nt

er
na

lly
pe

rf
or

m
P
R
E

af
te

rt
he

se
ns

in
g

an
d

se
tt
R
P

=1
N

o
N

o
P
R
E

co
m

m
an

d
an

d
no

t
R
P

N
ee

d
so

ft
w

ar
e/

O
S

su
pp

or
t

N
o

Y
es

,f
or

w
ri

te
op

er
at

io
n

N
o

N
o

N
o

H
ig

hl
ig

ht
ed

gr
ee

n:
go

od
fe

at
ur

es
,

hi
gh

lig
ht

ed
ye

llo
w

:g
oo

d,
bu

tl
im

ite
d

,(
C

on
v-

D
el

ay
an

d
C

on
v-

Pi
n

ar
e

th
e

co
nv

en
tio

na
lS

T
T-

M
R

A
M

de
si

gn
s)

27

read latency of serving multiple read requests issued at longer intervals than tCCD. How-

ever, our evaluation shows that the performance degradation caused by the increased CL

is outweighed by the performance increase by larger pages, higher bank-level parallelism,

and lower row-buffer miss latency.

Since a row buffer holds data only for a previously accessed column, SMART cannot

compare-before-write when a WR command is sent to a different column of the activated

row. Comparing data before writing reduces write energy and improves the endurance by

not overwriting the same data [27, 71]. However, the high endurance of STT-MRAM cells

(> 1015) guarantees practically unlimited write operations (Sec. 2.2.1). Moreover, cell

write energy is not a major component in overall write energy. Therefore, such a technique

has limited impact on giga-bit scale STT-MRAM (Sec. 2.4.3).

Lastly, as this work focuses on re-architecting STT-MRAM for higher performance

and lower energy, we do not discuss challenges related to its cells, such as thermal stability,

write endurance, and read disturbance in detail [47, 70]. Nonetheless, recent studies have

demonstrated small (sub-20nm) STT-MRAM cells that can offer fast switching time (sub-

10ns) under low write current (sub-10uA), high write endurance (> 1015), thermal stability

and read disturbance [72–74].

2.4 Device Modeling

To evaluate DRAM, STT-MRAM and SMART, we take DRAMSpec [65], a detailed tim-

ing, power, and area exploration tool which is originally developed for DRAM but can be

adapted for other memory technologies such as STT-MRAM. For the baseline DRAM, we

consider ×8 8Gb DRAM devices. While keeping the same chip floor-plan as DRAM, we

adapt the bank architecture and interconnect models to model STT-MRAM and SMART

with parameters taken from NVSim [75] and prior work [27,28,32,33,46] and then extrap-

olated to 30nm technology.

28

Table 2.2: Area comparison

DRAM Conventional
STT-MRAM

SMART

Cell size 7.2F 2 10.9F 2 10.9F 2

SA size 1,213F 2 27,111F 2 27,111F 2

of SA per bank 1,048,576 1,024 128
Bank area (µm2) 2,914×7,512 3,132×8,695 2,980×8,390
Chip area (mm2) 185.65 224.19 (21% ↑) 211.48 (14% ↑)

2.4.1 Area Model

We assume a 7.2F 2 DRAM cell (2F×3.6F = WL×BL) provided by the DRAMSpec’s

30nm technology model and a 10.9F 2 (3F×3.6F) STT-MRAM cell. For conventional

STT-MRAM, we take N = 16 which is from an industry STT-MRAM chip [27]. Following

the JEDEC standard for DRAM, SMART has the same number of rows and columns as

DRAM. However, SMART can implement any page size with the number of SAs equal to

the number of bits per column access.

We also assume 12 redundant WLs and BLs per mat for DRAM and SMART (default in

DRAMSpec) whereas we suppose 32 redundant BLs per mat for conventional STT-MRAM

(Sec. 2.3.2). Prior work [50] demonstrated the layout area of various SAs for STT-MRAM,

but it designed the SAs with a logic technology. Thus, we convert transistor sizes and

design rules to those of a memory technology based on the ITRS roadmap to re-estimate

the area [76].

We summarize the analyzed area of key memory components in Table 2.2. The total

height of the BLSA blocks in DRAM is ∼20% of the total chip height in a 20nm 8Gb

DRAM device [77]. Therefore, the number and size of SAs greatly affect the total chip

size. SMART has 2× more sensing paths than conventional STT-MRAM, but it consumes

∼6% smaller space because it needs 8× fewer SAs. Albeit SMART uses 1.5× and 21.4×

larger cells and SAs than DRAM, it uses 8,192× fewer SAs. This is because that a bank

has 128 sub-arrays and a pair of two sub-arrays shares 16,384 SA in DRAM. SMART is

29

only 14% larger than DRAM whereas conventional STT-MRAM is 21% larger.

2.4.2 Timing Model

Table. 2.3 summarizes the timing parameters and read access latency of DRAM, con-

ventional STT-MRAM and SMART, based on the memory clock frequency of 800MHz.

DRAM gives the shortest latency for a single read access because the sensing speed of

DRAM is faster than that of STT-MRAM. However, the overall latency of multiple read

accesses is not determined not only by the sensing speed but also by other timing parame-

ters such as tRRD, tFAW, tRAS and tRP, especially when different banks and rows need

to be accessed.

Table 2.3: Timing and latency comparison

DRAM Conventional
STT-MRAM

SMART

tRCD (clock cycle) 11 17 (1) 8
tRAS (cc) 27 18 (19) 9
tWR (cc) 12 19 (19) 19
tRP (cc) 11 4 (4) 4
tRTP (cc) 6 1 (18) 9
tRRD (cc) 6 5 (5) 1
tFAW (cc) 32 24 (24) 4
CL (cc) 11 8 (25) 17
Latency for single read 22 25 (26) 25
Latency for five reads
- all different banks

54 49 (50) 41

Latency for two reads
- same bank, but differ-
ent rows

60 47 (48) 42

The numbers in () are for the delaying ACT like comboAS [27, 42].

2.4.3 Energy Model

In conventional STT-MRAM, activating fewer SAs reduces the energy consumption of a

single ACT command. SMART, however, completely removes sensing energy from ACT

30

and thus it gives much smaller ACT energy than conventional STT-MRAM, as shown in

Table 2.4. Instead, SMART includes the sensing energy in RD and thus the RD energy is

higher than DRAM and conventional STT-MRAM. The conventional STT-MRAM has the

lowest RD energy because of the reduced read path. Besides, STT-MRAM consumes higher

WR energy than DRAM because of higher write current per cell. However, considering the

energy consumption to transfer data across the chip through long interconnects, the impact

of the cell write energy on the total write energy is limited.

Table 2.4: Energy and current comparison

DRAM Conventional
STT-MRAM

SMART

ACT (nJ) 1.28 0.45 0.09
Single RD (nJ) 0.27 0.26 0.31
Single WR (nJ) 0.28 0.35 0.34
Energy for 8B read (nJ) 1.54 0.71 0.39
Energy for 2KB read (nJ) 69.99 86.56 78.19
Energy for 8B write (nJ) 1.55 0.81 0.43
Energy for 2KB write (nJ) 72.79 96.80 87.40
IDD0 (mA) 67 64 43
IDD2P (mA) 14 17 16
IDD2N (mA) 36 39 38
IDD3N (mA) 51 39 38
IDD4R (mA) 122 121 127
IDD4W (mA) 122 132 131
IDD5 (mA) 245 - -

Table 2.4 shows the dynamic energy consumption of a single memory device for a

single column (8B) request and a single page (2KB) request. If all columns in a page

are accessed, STT-MRAM consumes more energy because of its inherent higher sensing

and cell write energies. However, a single read/write access in STT-MRAM consumes less

energy than DRAM because of the low ACT energy consumption. Comparing the two STT-

MRAM’s energies, SMART is more energy-efficient in all cases. This is because there is

no wasted energy for the single column access and there are fewer ACT commands for

the 2KB access. In addition, because SMART does not include sensing energy in write

31

requests, the gap between the two STT-MRAM designs in a 2KB write is larger than that

in a 2KB read.

IDD2P is the power-down current and it is close to the sum of total transistor leak-

age. Thus, IDD2P is usually proportional to the total transistor width under the same

technology. For simplicity, we increase IDD2P of STT-MRAM linearly with chip size.

IDD2N and IDD3N are background current under precharge-standby and active-standby,

respectively. The difference between IDD2P and IDD2N mainly results from the ad-

dress/clock buffer current components. Thus, we assume the same increment for STT-

MRAM’s IDD2N. However, IDD3N stems from DRAM’s unique leakage component.

When a row in a bank is activated, 32,768 BLs are fully charged or discharged, whereas

all BLs are precharged to VDD/2 level when the row is deactivated. If the BL length is

512, then 16,777,216 cells are connected to the 32,768 BLs. The increased voltage differ-

ence between BL to a cell transistor increases leakage current, which is mostly GIDL and

junction leakage current [78]. Because of this large number, small leakage current changes

cause huge increases in IDD3N. However, the BL/SL condition of STT-MRAM is differ-

ent from that of DRAM during active-standby, because BLs and SLs are always discharged

except during sensing and writing. Therefore, we assume IDD3N is the same as IDD2N in

STT-MRAM.

2.5 Evaluation

2.5.1 Evaluation Methodology

We evaluate SMART using MARSSx86 [79] and DRAMSim2 [80]. The configured system

for the evaluation is shown in Table 2.5. Power-down mode is enabled to minimize standby

power when there are no pending requests in the memory controller.

We employ two benchmark suites: SPEC2006 [82] and STREAM [3]. For multi-core

simulations, multi-program workloads are composed as shown in Table 2.6. Misses-per-

32

Table 2.5: Default system configuration

Component Specification
Processor single and quad core
Last Level Cache 2MB-8 way (single), 4MB-16 way (quad)
Memory Controller FR-FCFS [81], open-page, Ch:Ra:Ro:Ba:Co
Memory System 8GB single rank/ch (8Gb x8-DDR3L-1600)

kilo-instructions (MPKI) increases from mix1 to mix9. For all workloads, one billion in-

structions are simulated in their region of interest. In our evaluation, there are two con-

ventional STT-MRAM designs with the shared SA structure: Conv-Pin and Conv-Delay.

Conv-Pin emulates the designs proposed in [24, 41]. However, they have no consideration

for the expanded address pins which result from the shared SA structure and are not com-

patible with JEDEC DDR. On the other hand, Conv-Delay internally delays the activation

instead of increasing pin count [27, 42].

Table 2.6: Workloads for multi-core simulations

Workload Application list
mix1 bzip, povray, astar, libquantum
mix2 hmmer, sjeng, xalancbmk, libquantum
mix3 gobmk, h264ref, astar, lbm
mix4 povray, omnetpp, soplex, lbm
mix5 sjeng, xalancbmk, mcf, stream scale
mix6 h264ref, povray, hmmer, lbm
mix7 bzip, omnetpp, stream copy, stream scale
mix8 gobmk, milc, stream add, stream copy
mix9 hmmer, mcf, stream triad, stream add

2.5.2 Performance

In SMART, we strive to implement large pages (2KB) with low cost. Memory performance

is affected by row buffer hit rate and page size. Both DRAM and SMART can implement

2KB pages, while the conventional STT-MRAM designs can implement only 128B pages.

The row buffer hit rates are shown in Fig. 2.10. SMART has a row hit rate within 1% of

33

0

20

40

60

80

100

H
it

 R
at

e
 [

%
]

DRAM Conv - Pin Conv - Delay SMART

Figure 2.10: Row hit rate in various workloads.

DRAM’s. However, both conventional designs have significantly lower hit rates, especially

in STREAM workloads. Although all designs show low hit rate in a few workloads, the

designs with the larger pages still perform better.

Fig. 2.11 shows the overall read latency distribution of the three devices under the mix6

workload. DRAM has a long tail latency because of refresh, but STT-MRAM has a short

tail. In the Conv-Pin, we clearly observe two peaks in its distribution corresponding to read

latency under row hits and misses. In SMART, there is no clear second peak because row

misses are serviced faster and their read latency is partially overlapped with read latency

under row hits. Although SMART has no data in 10∼19 cc range due to its long CL, it

mostly falls within 30∼39 cc, implying that it is neither too quick nor too slow. DRAM

also has most of its latency within 30∼39 cc, but its long tail negatively affects the overall

latency. The average read latency of DRAM, Conv-Pin, and SMART is 52.6, 57.9 and 47.1

cc, respectively.

Fig. 2.12 shows system IPC improvement over DRAM. Conv-Pin and Conv-Delay de-

grade IPC on average by 3.7% and 4.3%. For some memory intensive workloads IPC

degrades more than 30%. The biggest drawback in conventional STT-MRAM designs is

the small page size. A substantial drop in row hit rate as compared to DRAM (e.g, bwaves,

sphinx3 and STREAMs) significantly degrades their IPC. For workloads with similar row

hit rate (e.g, lbm and milc), IPC is better than DRAM due to the removed refresh and

34

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

0 100 200 300 400

o

f
R

e
ad

 R
e

q
u

e
st

s

Latency [clock cycle]

DRAM Conv - Pin SMART

1E+6
3E+6
5E+6
7E+6

20 30 40 50 60 70

Figure 2.11: Read latency profile of mix6 workload.

restoration operations and the reduced precharge time. For non-memory-intensive work-

loads, regardless of hit rate, the IPC difference is negligible. Between the two conventional

designs, Conv-Delay shows worse overall performance than the Conv-Pin because of its

long CL.

SMART, on the other hand, improves IPC on average by 5.1% over DRAM. Because

SMART has the same page size as DRAM, it achieves row hit rates as high as DRAM for

applications having sequential memory accesses. In addition, SMART improves perfor-

mance for applications having random memory accesses (low row hit rate) due to better

row-miss latency and bank-level parallelism. As a result, MPKI is correlated to the IPC

difference. In memory intensive workloads with (MPKI >15) (e.g, GemsFDTD, lbm and

libquantum), there is up to a 34% IPC improvement over DRAM. Non-memory intensive

workloads with (MPKI < 1) (e.g, gamess, and namd), show no significant IPC improve-

ment.

2.5.3 Energy

SMART has three advantages in energy over DRAM. First, ACT energy is extremely low,

because sensing, which was the main energy contributor to ACT, was moved to RD. Second,

cell leakage current is eliminated while the bank is activated (low active-standby power).

35

-1
00

102030

IPC Improvement [%]

C
o

n
v

-
P

in
C

o
n

v
-

D
el

ay
SM

A
R

T
3

4
.3

-1
3

.7
-1

2
.8

-3
6

.5 -3
2

.4

-1
7

.6
-1

8
.8-3

5
.3

-3
1

.2

-3
8

.1

-3
3

.9

Fi
gu

re
2.

12
:P

er
fo

rm
an

ce
im

pr
ov

em
en

tc
om

pa
re

d
to

D
R

A
M

.

0

1020304050 Energy Saving [%]

C
o

n
v

-
P

in
C

o
n

v
-

D
el

ay
SM

A
R

T

Fi
gu

re
2.

13
:E

ne
rg

y
sa

vi
ng

s
ov

er
D

R
A

M
.

36

0

20

40

60

80

100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
R

A
M

C
o

n
v-

P
in

C
o

n
v-

D
e

la
y

 m

D
R

A
M

C
o

n
v-

P
in

C
o

n
v-

D
e

la
y

SM
A

R
T

D
R

A
M

C
o

n
v-

P
in

C
o

n
v-

D
e

la
y

SM
A

R
T

D
R

A
M

C
o

n
v-

P
in

C
o

n
v-

D
e

la
y

SM
A

R
T

gcc omnetpp lbm stream_scale

R
o

w
 H

it
 R

at
e

 [
%

]

P
o

w
e

r
[W

]

Background Activation Read/Write Refresh Row Hit

Figure 2.14: Breakdown of average memory power.

Last, STT-MRAM cells are non-volatile and have no refresh. While both the conventional

STT-MRAM designs enjoy similar advantages over DRAM, they saved ACT energy by

reducing the page size and impacted the row hits.

Fig. 2.14 breaks down average memory power. ACT power is higher than RD/WR power

in DRAM. The average refresh power is 14∼29% of the total memory average power and

its relative portion increases in non-memory intensive workloads (e.g, gcc). Although ACT

power in the conventional STT-MRAM is less than in DRAM, the difference decreases

when the conventional designs have low row hit rates (e.g, omnetpp and stream scale). In

these workloads, because memory has fewer chances to enter power-down mode due to row

misses, the background power becomes higher than in DRAM in spite of the lower IDD3N .

RD/WR power is also higher than DRAM because of higher cell write current. In contrast,

in SMART, the ACT power does not dominate total memory power. Although its RD/WR

power is the highest among the four devices, the total dynamic power, which is the sum

of ACT and RD/WR power, is the lowest. In addition, because SMART enters power-down

mode as often as DRAM, background power stays low.

Fig. 2.13 shows the energy savings over DRAM. On average, the Conv-Pin and Conv-

Delay save 24.9% and 24.5% of energy and SMART saves 38.9%. Due to small page

size, energy savings of the conventional STT-MRAM is more sensitive to the row hit rate

37

-20

-15

-10

-5

0

5

10

IP
C

 Im
p

ro
ve

m
e

n
t

[%
] 64B 128B 256B

(a) Performance improvement

-10

0

10

20

30

40

En
e

rg
y

Sa
vi

n
g

[%
]

64B 128B 256B

(b) Energy saving

Figure 2.15: Normalized performance improvement and energy saving of the conventional
STT-MRAM (Conv-Delay) to the baseline DRAM with various page size.

difference than SMART.

2.5.4 Sensitivity Analysis

Page size. Fig. 2.15 shows performance improvement and energy savings for various page

sizes in conventional STT-MRAM. Overall, large pages improve performance while small

pages save energy. The 256B page size slightly outperforms DRAM while saving less than

10% of energy. However, 256B (N=8) is not a practical page size considering the large

size and high power consumption of the SAs. In prior STT-MRAM chip demonstrations,

N ranges from 16 to 128 [27, 33, 37, 40, 48]. N=16 was conservatively selected for the

baseline STT-MRAM.

Address mapping and channels. The results for two mapping schemes with 1∼4 channels

are shown in Fig. 2.16. DRAM is sensitive to the number of channels and performs the

worst with a single channel because it is completely blocked during refresh. Generally,

more channels increase the total bandwidth, but they also increase the number of memory

chips and energy.

Conventional STT-MRAM is sensitive to the address mapping scheme. It performs

better under Ro:Co:Ra:Ba:Ch because of its small pages. In general, the page size and row

buffer locality are important to the Ch:Ra:Ro:Ba:Co mapping and the number of banks,

38

0.50

0.75

1.00

1-Ch 2-Ch 4-Ch 1-Ch 2-Ch 4-Ch

Ch:Ra:Ro:Ba:Co Ro:Co:Ra:Ba:Ch

IP
C

 [
N

o
rm

.]

DRAM Conv - Delay SMART

(a) Normalized IPC

0.50

0.75

1.00

1.25

1-Ch 2-Ch 4-Ch 1-Ch 2-Ch 4-Ch

Ch:Ra:Ro:Ba:Co Ro:Co:Ra:Ba:Ch

En
e

rg
y

[N
o

rm
.]

DRAM Conv - Delay SMART

(b) Normalized energy

Figure 2.16: Normalized IPC and energy to DRAM with various configurations (average
of all mix workloads).

ranks, and channels plays a primary role under the Ro:Co:Ra:Ba:Ch mapping.

In contrast, SMART is less sensitive to address mapping and channels, because it has

large pages, short row-miss latency, and no ACT to ACT constraint. In addition, there is

no significant difference in energy savings according to the number of channels, because

SMART reduces both dynamic and static energies.

2.6 Related Work

Kultursay et al. evaluate STT-MRAM as a main memory with optimizations such as par-

tial write and write bypass [25]. They show comparable performance with DRAM and a

60% reduction in memory dynamic energy. Wang et alinvestigate the design challenges

of shared SAs such as small pages and pin compatibility [42]. With memory-architectural

study, they propose three optimizations, comboAS, DynLat, and EarlyPA. Although these

studies solve the compatibility problem and compensate for the reduced performance, the

root cause of small pages and low chip yield remains unsolved.

LPDDR2-SX was designed for DRAM and its counterpart LPDDR2-NVM was de-

signed for non-volatile devices with long write latency and large read/write circuits such

as PCM [62, 63]. LPDDR2-NVM introduces a new command to deliver column selection

rather than using additional pins. Although it can be a good candidate for STT-MRAM,

39

its inherent performance is worse than LPDDR2-SX because of its three-phase addressing

and software managed indirect write. Recently, 4Gb STT-MRAM has been demonstrated

with LPDDR2-SX but not LPDDR2-NVM [27, 28].

SALP-1 [59] and EarlyPA [42] are similar to our skipping precharge in terms of al-

leviating PRE overhead. Unlike our technique, however, SALP-1 can only overlap PRE

and next ACT when their sub-arrays are different. In EarlyPA, the precharge operation is

automatically performed immediately after the sensing operation. Although this technique

can efficiently hide the precharging time when the following command is RD, WL must be

reactivated when the following command is WR. In contrast, our technique can hide PRE

latency for both RD and WR.

2.7 Summary

We proposed SMART, co-designing STT-MRAM architecture and its management policy.

By performing the sensing operation after receiving a RD command instead of a ACT com-

mand, SMART takes several advantages including larger pages, fewer sense amps, lower

activation/sensing power, shorter latency, fewer address pins and more efficient column

repair scheme over conventional STT-MRAM. With these benefits, SMART not only re-

duces energy but also improves performance compared to both DRAM and conventional

STT-MRAM. In addition to the improvements in energy consumption and performance,

SMART saves area from conventional STT-MRAM.

40

CHAPTER 3

Improving Load Balancing for Memory

Channels

The performance needs of memory systems caused by growing volumes of data from

emerging applications, such as machine learning and big data analytics, has continued to

increase. As a result, HBM has been introduced in GPUs and throughput oriented proces-

sors. HBM is a stack of multiple DRAM devices across a number of memory channels.

Although HBM provides a large number of channels and high peak bandwidth, we ob-

served that all channels are not evenly utilized and often only one or few channels are

highly congested after applying the hashing technique to randomize the translated physical

memory address.

To solve this issue, we propose a cost-effective technique to improve load balancing for

HBM channels. In the proposed memory system, a memory request from a busy channel

can be migrated to other non-busy channels and serviced in the other channels. Moreover,

this request migration reduces stalls by memory controllers, because the depth of a mem-

ory request queue in a memory controller is effectively increased by the migration. The

improved load balancing of memory channels shows a 10.1% increase in performance for

GPGPU workloads.

41

3.1 Introduction

Graphic Processing Units (GPUs) have developed for 3D graphics, games, and animations,

and evolved for general purpose high performance computing [83–85]. GPU’s on-chip

computing capability has been improved rapidly in the past two decades [86]. However,

the scaling of off-chip memory bandwidth has not followed the increasing computing ca-

pability. Thus, memory bandwidth often becomes the bottleneck limiting application per-

formance [87]. Traditionally, GDDR, which is throughput-optimized DDR and whose the

latest generation is GDDR5, memories have been used for GPUs. However, GDDR5 has

challenges in increasing memory bandwidth, because its interface is narrow (16 or 32 per

chip) and fast (up to 7Gbps per pin). Although high date rate is good for high bandwidth, it

can be achieved by consuming high power. In addition, the small number of I/Os provided

from GDDR5 requires many memory chips to be accommodated in GPUs to achieve high

bandwidth. As a result, the required power and area make GDDR5 prohibitive beyond 1

TB/s of memory bandwidth [88].

High Bandwidth Memory (HBM) has been developed to overcome limited bandwidth

of GDDR5 under the given power budget and form factor [35, 89, 90]. HBM is an on-

package stacked DRAM and provides high peak bandwidth (∼256 GB/s) through multiple

(up to 8) and wide channels (128 I/Os per channel). For the power efficiency, data rate (ı.e,

double of clock speed in DDR) and thus supply voltage are lowered in HBM, but the in-

creased number of I/Os and channels results in higher peak bandwidth than that of GDDR5-

based GPUs. In other words, the high peak bandwidth of HBM stems from a number of

memory channels. Therefore, high bandwidth can be achieved in HBM when all HBM

channels are utilized well. However, it is hard to evenly utilize all memory channels for

all applications because each application has different memory access pattern. Moreover,

substantial imbalance on memory channels still remains after applying XOR-based address

mapping scheme, which randomizes the address mapping to avoid excessive contention on

one or few memory channels/banks [91, 92].

42

To address this issue, we propose a cost-effective technique to improve load balancing

for HBM channels. Our technique is conceptually similar with the work stealing technique

used in multi-core scheduling, where an idle core steals a work item in a busy core and

the load is balanced across multiple cores [93, 94]. Similarly, in our proposed HBM-based

memory sub-system, a memory request in a busy channel is migrated to other non-busy

channel and issued through that channel. Then, the migrated request is rerouted to its origi-

nal memory device. However, in traditional GDDR5-based memory sub-systems, this sim-

ple load balancing technique is hard to apply because of mainly two reasons. First, memory

controllers and their physical channels are placed on the different side of the host processor

chip. Thus, the memory request migration requires global interconnection across whole

chip. Second, in order to reroute the migrated requests, extra off-chip interconnections to

connect all off-chip GDDR5 chips are needed. Considering the cost to implement extra

internal and external interconnections, the load balancing on memory channels by migra-

tion and rerouting would be impractical in the traditional GDDR5-based system. However,

unlike the GDDR5-based system, the HBM-based system has several advantages in imple-

menting this load balancing technique. First, multiple memory controllers for one HBM

are locally placed because they are connected to the same chip having multiple DRAM

devices. Thus, the local interconnections can enable the memory request migration. Sec-

ond, one HBM has 8 channel’s DRAM devices and rerouting of the memory request can be

performed inside of HBM. Because each DRAM die for a channel has the physical connec-

tion of all TSVs and this connection can be electrically controlled, a simple modification

in HBM can implement the rerouting.

In our proposed memory system, if a channel is highly utilized whereas other channels

are not, the memory request migration is triggered. Then, the migrated memory request

is rerouted to its original DRAM device by controlling electrical connection of TSVs in

HBM. Through this balancing technique, the imbalance on memory channels is reduced by

7% on average. Moreover, because this requests migration effectively increases the depth

43

of memory request queue in a memory controller by occupying other memory controller’s

queue, the stall by memory sub-system is reduced. These improved load balancing and

queue depth, in turn, bring 10.1% of GPU performance improvement (up to 26%).

3.2 Background

3.2.1 Increasing Demand of Memory Capacity and Bandwidth

The increasing volume of data to be processed by machine learning and big data analyt-

ics demands data parallel architectures such as Single Instruction Multiple Data (SIMD)

and Single Instruction Multiple Threads (SIMT) architectures [95, 96]. Especially, GPUs

become the de facto standard and, in turn, the state-of-the-art servers in clouds and dat-

acenters are equipped with GPUs to speed up general purpose computation (ı.e, General

Purpose computing on Graphics Processing Units (GPGPU)) [85]. Because GPUs have

been designed to improve the throughput of applications by spawning many threads simul-

taneously, the capacity and bandwidth of memory have played an essential role in building

high performance applications. For example, in many programming models in GPGPU ap-

plications such as nearest neighbor classifiers, decision trees, and neural networks, the size

of GPU memory often imposes limitations on the data of size, resulting in decreased per-

formance by continually transferring data from the system’s memory to the GPU’s mem-

ory [97]. In addition, because many of GPGPU applications are memory intensive and

sometimes exhibit irregularity in their memory access patterns, their performance is signif-

icantly affected by memory bandwidth [98].

3.2.2 High Bandwidth Memory

HBM and HBM-based systems. Memory bandwidth has been continuously increased to

meet GPU performance growth. However, in traditional GDDR5-based systems, there are

44

Host

Processor

Host

Processor

Off Chip

DRAM

Stacked

DRAM

Interposer

GDDR5-based GPU System HBM-based GPU System

M.C

M.C

M.C

M.C

M.C

M
.C

M
.C

M.C: Memory

Controller

Figure 3.1: GPU systems with GDDR5 and HBM.

mainly two challenges in increasing memory bandwidth. First, the increased memory band-

width brings a significant increase in the power budget for memory and this power budget

is becoming prohibitive as the bandwidth scales beyond 1 TB/s [88]. Because GDRR5 is

connected to a host processor through fast (up to 7Gbps per pin) and narrow (16 or 32 per

chip) external I/O interface, its energy-per-bit presents high (∼14pJ/bit). Second, GDDR5

can limit form factors. As shown in Fig. 3.1(left), GDDR5 requires a large number of

memory chips to reach high bandwidth because of its narrow channel. Also, to build a

large memory system with a given density of GDDR5, more memory chips are needed.

The large footprint by GDDR5 does not only affect form factors, but this also degrades the

signal integrity on the memory interface because of long connection distance [99, 100].

HBM, which is an on-package stacked DRAM, has been introduced to overcome power

and form factor challenges of GDDR5. Unlike GDDR5, HBM employs a slow (∼2Gbps

per pin) and wide (128 per channel) channel and accordingly supply voltage becomes low-

ered (1.5V -> 1.2V)1. In addition, since HBM has multiple stacked DRAM dies and is con-

nected to the host processor via silicon interposer within a package, this system can accom-

modate a large number of memory devices with a small space as shown in Fig. 3.1(right).

1In this study, we take HBM generation 2 (HBM2) as a baseline. However, we do not differentiate HBM
and HBM2 in this study because main features of them, such as wide I/O, multi channels and 3D stacked
DRAM dies, are almost same.

45

Logic Die

CH0 CH1
CH2 CH3
CH4 CH5
CH6 CH7
CH0 CH1
CH2 CH3
CH4 CH5
CH6 CH7

eFuse
Decoder

DQ
T

S

V

CMD
ADD

EN T

S

V

EN

EN
EN

eFuse
Decoder

DQ
T

S

V

CMD
ADD

EN T

S

V

EN

EN
EN

8-CH PHY

mBIST IEEE1500

µBump

Logic Die

DRAM Die

Bank

Bank
Group

MUX MUX

CH0

CH2

Figure 3.2: 3D structure of HBM and a simple example of TSV connection to DRAM dies.

TSV connections. Fig. 3.2 depicts the internal structure of HBM. An HBM is made with

various capacity, the number of stacked layers and channel configurations [35]. In this

study, the baseline HBM has 1Gb capacity and 2 half-channels per DRAM die and total 8

DRAM dies (total 8Gb). All DRAM dies are fabricated identically and thus all they are

physically connected to TSVs for 8 channels. Then, a set of TSVs for certain channels

can be electrically connected to one of the DRAM dies by using tri-state buffers with the

decoder logic shown in the left of Fig. 3.2. During a manufacturing step, a Stack ID (SID)

is programmed to the decoder to enable or disable the tri-state buffers by using electrical

fuses (efuses). We describe a example of these physical and electrical connections between

TSVs and DRAM dies in Fig. 3.2, where the set of TSVs have physically connections to

both DRAM dies but only the bottom DRAM die for CH0 is electrically connected to the

TSVs.

Bank group structure. The bank group feature, which is used in GDDR5 and DDR4, is

adopted in HBM [5, 18, 35]. We describe the organization of a DRAM device with and

without the bank group feature in Fig. 3.3. As shown in Fig. 3.3a, all banks are connected

to one internal shared data bus. Traditionally, in order to bridge the gap between slow data

46

Bank 7
Bank 6

Bank 5
Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Row Buffer

IO Gating

C
o

n
tro

l Lo
gic

C
M

D
/A

D
D

DATA

(a) Memory organization without bank-group

Bank 3
Bank 2

Bank 1
Bank 0

Bank Group 0

Row Buffer

 Local IO Gating

 Global IO Gating

DATA

C
o

n
tro

l Lo
gic

C
M

D
/A

D
D

Bank 3
Bank 2

Bank 1
Bank 0

Bank Group 1

Row Buffer

 Local IO Gating

(b) Memory organization with bank-group

Figure 3.3: Comparison between two memory organizations [5].

transfer speed on the shared bus and fast interface speed, data are transferred on the shared

bus in parallel and then serialized out the interface with multiple clock cycles (a.k.a n-

prefetch). In this structure, if the speed gap is increased, the prefetch length and accordingly

burst length, which determines memory transaction and LLC line sizes, should be increased

together to keep seamless burst read/write operations. Furthermore, bank-level parallelism

in this structure is not improved well along with the number of banks because of limited

scalability of the single shared bus. In order to avoid increasing prefetch length and improve

parallelism, the bank group feature has been introduced as depicted in Fig. 3.3b. In the bank

group structure, multiple banks groups (typically,4 or 8 groups, 4 by default in this study)

have their own internal data bus and multiple banks (2 or 4 banks, 4 by default) in a bank

group share one data bus. As the result of the separated data bus, multiple sets of data

can be concurrently transferred between the interface and bank groups. However, different

timing constraints, tCCDS and tCCDL, are applied when accessing banks in different bank

groups and the same bank group, respectively. tCCDL is the minimum time between two

read commands (or write commands) when accessing the same bank group and determined

by the data transfer time on the shared data bus in the bank group. However, tCCDS is the

minimum time between two read commands (or write commands) when accessing different

bank groups and not determined by the data transfer time because two read accesses are

47

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Sk
e

w
n

e
ss

of Memory Request
Memory Service Time

2.514

Figure 3.4: Channel Utilization.

served on different buses in different bank groups. Thus, the bank level parallelism in a

bank group is still preserved, but the bank group level parallelism is a higher degree of

parallelism.

3.3 Challenges in Many Channel Memory Systems

3.3.1 Imbalanced Channel Utilization

In general, the memory address mapping scheme is designed considering both spatial lo-

cality and parallelism [101]. For example, consecutive cache line accesses are scheduled

to the same row in the same bank to take advantage of shorter latency when row buffer hit.

On the other hand, accessing blocks of cache line alternates between multiple banks and

channels by exploiting bank- and channel-level parallelism. However, depending on work-

loads memory system can suffer from excessive contention on one or few certain banks and

channels. To prevent this situation, a permutation-based mapping scheme (i.e, hashing), in

which channel and bank selection is determined by XORing a subset of MSB-side bits, has

been proposed [91, 92]. Although this technique partially randomizes memory accesses, it

is hard to completely eliminate the imbalanced memory requests on all channels and banks.

48

Processor 0 Processor 1

Scheduler 0 Scheduler 1

Steal

Figure 3.5: Simple diagram for work stealing.

Fig. 3.4 shows the skewness of total memory requests and service time across 8 chan-

nels of an HBM. The skewness is defined to the ratio of the minimum value to the maxi-

mum value. If the address mapping scheme is ideal and thus all channels receive the equal

number of memory requests, the skewness of total memory requests becomes 1. Although

the skewness of total memory requests is closed to 1 in many workloads due to XORing

applied in the address mapping scheme, some workloads exhibit high skewness. Further-

more, this imbalance on the total number of memory requests is amplified on the service

time, which is defined to the total time spent to serve all memory requests in a memory

controller, as shown in Fig. 3.4. Because spatial and temporal locality in each channel can

be different with the same of requests, they can make different scheduling scenario and

result in non-equal memory service time in each channel.

The imbalanced memory requests and utilization across the memory channels can neg-

atively affect overall performance by hindering exploiting full capability of all memory

channels. Work stealing, which is well-known scheduling technique for multi-core sys-

tems, has been proposed to balance workloads and improve performance [93, 94]. We

describe the simplified mechanism of the work stealing in Fig. 3.5. If a processor is idle

49

0.9

1.0

1.1

1.2

1.3

1.4

N
o

rm
al

iz
e

d
 IP

C

8 16 32 64

Figure 3.6: Performance according to queue depth.

(processor 1) is idle, it looks at the queue of another processor (processor 0) and steals its

work if there are outstanding works. In this case, because all processors are identical, a

work item can be executed in any processor. Therefore, the load balancing technique for

memory channels like the work stealing can be considered to a good solution for imbal-

anced memory channels. However, the load balancing technique cannot be simply applied

to the traditional GDDR5-based system, because each memory request (the work item in

the work stealing) has its own memory address and it must be served in the preassigned

memory device by the address. In other words, if a memory request is migrated to other

channels and issued through the other channels, it must be rerouted and served in its ini-

tially assigned memory device.

3.3.2 Implementation Challenges of Memory Controllers

Having large request queues in the memory controller is generally beneficial to the per-

formance because of mainly two reasons. First, the request queue is the buffer to mitigate

the gap between fast input and slow service speeds of memory requests [102]. Thus, the

queue depth determines the capability to hold the number of outstanding requests and this

can significantly affect the performance when workloads are memory-intensive. Second,

50

DATA
(CH N)

CMD
(CH N)

CH N

CH2

CH1

Write Queue

Read Queue
Timing Registers

CMD
(CH0)

DATA
(CH0)

Bank N

Bank 0

Ordering Logic

Command Queue

Transaction
Processing

Comparator

Open Row Add

Hit Cmd

Arbiter

CH0

Figure 3.7: Schedulers of the memory controller in many channel memory systems [6].

there are more chances to make better scheduling decisions (i.e., shorter latency) in larger

queues [103]. For instance, a First-Ready First-Come-First-Served (FR-FCFS [81, 104])

scheduler can make more row hits with a larger queue because the scheduler observes more

memory requests and this increases the probability to find memory requests corresponding

to the scheduling priority. However, there are fewer row hits with a smaller queue because

of limited visibility to memory requests. Fig. 3.6 depicts the performance improvement

according to the number of queue entries with various GPGPU applications. Based on

workloads and their memory intensity, the sensitivity of performance improvement to the

queue depth varies, but most workloads show higher performance with larger queues.

Unfortunately, in practical, it is hard to implement a sophisticated scheduling policy

on a large queue. For example, in order to enable an FR-FCFS policy, the row address

of all outstanding requests in the queue should be compared to the address of the already

open row per bank every cycle [105, 106]. Such fully associative search demands Content

Addressable Memories (CAMs). The design cost of CAM combining with the scheduling

51

logic super-linearly increases with the increase of the number of queue entries [103, 107].

Furthermore, as depicted in Fig. 3.7, each memory channel needs its own independent

memory controller. Therefore, the area of memory controllers has a significant impact on

total chip area in many channel memory systems.

3.4 Overview of the Proposed Design

In previous sections, we discussed why all memory channels are not evenly utilized and the

request redistribution technique such as work stealing cannot be simply applied to memory

systems. In addition, we observed performance improvement with large request queues in

memory controllers, but it is hard to implement large queues with a FR-FCFS scheduling

policy, because of the super-linearly increasing design cost as a result of the number of

queue entries. With such observations, we propose a new memory system design to miti-

gate the imbalance of channel utilization and effectively increase the queue depth without

increasing the actual queue size. In brief, our design allows memory requests to be inserted

in, and issued from, any memory controller belonging to the same HBM. Then, the memory

request issued through other channels is re-routed inside of the HBM. The bank-group fea-

ture enables us to concurrently serve multiple requests in the same memory device. There

are three key observations which led to the proposed design; (1) multiple memory con-

trollers for one HBM are placed locally, (2) in a HBM, all TSVs have physical connections

to all DRAM dies and a set of TSVs constituting a channel can be electrically connected

to any DRAM die by the decoder logic, and (3) multiple sets of data can be transferred

concurrently inside of DRAM having bank group feature. In the remainder of this section,

we first present the memory controller design and scheduling policy for our new design and

then introduce the new HBM architecture.

52

CH0 CH1 CH0 CH1

Original queue Unified hierarchical queue

Full !
1st Level
Queue

2nd Level
Queue

Sch
ed

u
ler

Sch
ed

u
ler

M
igrato

r
Sch

ed
u

ler

M
igrato

r
Sch

ed
u

ler

Figure 3.8: Hierarchical queue structure.

3.4.1 Re-architecting Memory Controllers

In general, each memory controller for each channel operates independently. In other

words, each memory controller does not communicate with one another. There were stud-

ies to propose a technique to coordinate all memory controllers by connecting them to each

other. Exchanging the scheduling status of each memory controller or globally applying

a single scheduling priority can improve performance, because a single memory channel

can be accessed by multiple threads and memory requests issued by a single thread can

spread across multiple different channels. However, because memory controllers for dif-

ferent channels are often placed in opposite side of the chip as shown in Fig. 3.1, it is

hard to implement the global interconnection between memory controllers in a traditional

GDDR5-based system.

Unified Queue Structure. Unlike GDDR, where one chip provides only 32 I/Os and two

chips compose one channel, one HBM provides 8 channels and accordingly the 8 memory

controllers for the one HBM can be placed locally as shown in Fig. 3.1. Therefore, the

interconnection between these memory controllers can be, also, implemented locally. With

this observation, we propose a hierarchical queue structure as shown in Fig. 3.8. In our

53

hierarchical queue, one large queue is split into two smaller queues. Because of the super-

linear relation between the size of a queue and area, we can save area by dividing the

large queue. The saved area is used to implement crossbars. (Detail area analysis will be

discussed in Sec. 3.5.3.)

In the proposed memory system, a memory request in a channel can be migrated to

other channels having room to accept the memory request through the crossbar. In example

of Fig. 3.8, each channel has a 4-entry request queue and channel 0 (CH0) is already full.

In this case, the upper level (e.g., last level cache) of the memory controller (e.g, last level

cache) cannot issue a memory request to CH0 and thus it is stalled, because there is no entry

to accept the memory request in CH0 as shown in Fig. 3.8(left). However, if a memory

request in CH0 is migrated to CH1 and thus one empty entry is created in CH0, CH0 can

keep accepting memory requests without incurring stalls in its upper level (right in Fig. 3.8).

Therefore, this technique can effectively increase queue depth and accordingly reduce the

stall of the last level cache.

Channel Borrowing. In addition to the increased queue depth, we allow issuing the mem-

ory requests migrated from different channels. As a result, the migration reduces over-

all queuing delay because the memory requests migrated from a busy channel and issued

through idle (or less busy) channels do not experience long waiting time in the queue. Note

that the memory request issued through a different channel from its original channel must

be re-routed to its original channel’s DRAM device. Also, a DRAM device should equip

the capability to handle more than two memory requests at the same time because multiple

requests can be sent to the same DRAM device through different channels. To address these

issues, we exploit the facts that all DRAM dies (all channels) have physical connections to

all TSVs and the bank-group structure is capable of serving multiple requests concurrently.

The cost-effective implementation inside of HBM will be discussed in the next section.

There are several challenges in scheduling the memory requests migrated from other

channels. First, each memory controller must consider the timing constraints and bank

54

RD1

ACT0
CMD
CH0

tRRD_S

ACT2

CMD
CH1

ACT1

ACT0
CMD
CH0

tRRD_S

ACT2

CMD
CH1

ACT1

ACT0
CMD
CH0

tRRD_S

CMD
CH1

ACT1ACT1

tRRD_S violation!

ACT1 ACT2

Cannot move

ACT2

Migration
Early issue

Migration

tRRD_S

u

v

w

time

time

time

Figure 3.9: Limited scheduling.

status of all other channels to avoid command/data collision and timing violations. DRAM

has various timing constraints which must be considered in scheduling memory requests in

order to guarantee correct memory operations inside of DRAM (e.g, tRCD2), provide the

power recovery time after high power consumption (e.g, tRRDS3) and avoid data collision

on the memory bus (e.g, tCCDS). Hence, the scheduler in a memory controller has to abides

by all timing constraints for all other channels as well as that for its channel when issuing

memory requests. In Fig. 3.9, for example, CH0 has three memory requests requiring a

activation command (ACT) and CH1 has no request to issue (1). In this case, if only

tRRDS for each channel is considered, the second ACT command (ACT1) in CH0 can be

migrated to CH1 and can be issued through CH1’s memory bus and ACT2 can be issued

earlier in CH0 (2). Although ACT0 and ACT1 can be issued through different channels,

2minimum time between activation and read/write commands
3minimum time between two activation commands for different banks in different bank group

55

RD0 RD1

RD1

DATA0

RD3

DATA1 DATA3

OK, if tCCD_S is kept

DATA2

RD2

Issue early

CMD
CH0

DATA
CH0

CMD
CH1

DATA

CH1

Migration

RD2

tCCD_S

tCCD_S

time

time

Figure 3.10: Avoiding timing constraint.

they will meet in the same DRAM device and make a tRRDS violation. In order to avoid

the violation, ACT1 in CH1 must be issued after tRRDS is elapsed from ACT0 issued in

CH0. In addition to the delayed ACT1, ACT2 in CH0 must consider when ACT1 is issued

in CH1 and cannot be issued earlier as shown in Fig. 3.9(3). Therefore, this scheduling

example does not have any benefit. Furthermore, this unuseful scheduling is even possible

only when each memory controller considers the timing constraints of all channels and

bank status of all other memory controllers.

Second, it is hard to determine the priority of the memory requests with the mixed mem-

ory requests having different channel addresses. As discussed in Sec. 3.3.2, a FR-FCFS

scheduler compares the address of all outstanding requests to already open row addresses

of all banks. Because a bank address of the memory request migrated from other channels

should be considered by another independent bank regardless of the same bank address

(e.g., BANK0-CH0 and BANK0-CH1), this request migration can effectively increase the

number of banks to be considered for the scheduling. Thus, the scheduling complexity and

thus the design complexity increase by the increased number of banks.

Considering the two challenges described above, the scheduling memory requests with

the requests migrated from other channels is practically impossible. In order to overcome

these challenges, we only migrate the memory requests which meet the predefined condi-

56

Rule 1: Migration conditions at the 1st level

1. Full of their 2nd level queue—Only when
the 2nd level queue is full, requests are mi-
grated to other channels. Normally, requests
are served in their original channel.

2. Room of other 2nd level queue—Only when
the 2nd level queue has enough room, where
more than half of entries are not occupied,
requests are migrated to this queue.

3. Different bank group—Requests having
different bank group address from that of
the outstanding requests in the 2nd level in
the same memory controller are migrated to
avoid collision on the internal memory I/O
for the same bank group.

4. Column command—Requests having no
need to issue row commands are migrated to
avoid timing violation inside of DRAM.

tions. The first condition is that the memory request has the different bank group address

from that of all outstanding memory requests in the second level queue. Because we exploit

bank group level parallelism inside of DRAM, the memory requests having different bank

group address can be served in DRAM at the same time. In other words, if the memory

requests having the same bank group address are issued through the different channel at

the same time, DRAM cannot accept all of them because there is only one shared internal

I/O for a bank group inside of DRAM. Second, the memory request having currently open

row’s address is migrated to other channels. In other words, row commands (i.e, ACT and

PRE) have to be issued in the original channel and column commands (i.e, RD and WR)

can be issued in any channel. This second condition enables the avoidance of all timing

violations related internal memory operations (e.g, tRCD and tRRD). Then, the migrated

memory requested can be treated as a native memory request in a memory controller. As

shown in Fig. 3.10, RD1 migrated from CH0 can be issued through CH1 unless it violates

tCCDS of CH1, which is tCCD for different bank group access and thus RD2 in CH0 can

be issued earlier. Rule 1 summarizes all conditions for the migration.

57

Rule 2: Scheduling priorities at the 2nd level

1. Migration—Migrated requests which are al-
ways ready to issue are prioritized over na-
tive requests.

2. Open row (FR-FCFS)—Row-hit requests
are prioritized over row-miss requests. This
priority is only applied to native requests.

3. Arrival time (FCFS)—Older requests are
prioritized over younger requests.

As we discussed earlier, the migration increases the number of banks to be considered

in scheduling requests. However, in the proposed memory system, the memory requests

going to the open row are only migrated. In other words, all migrated requests are ready to

issue unless they violate tCCDS. Rule 2 describes the priorities for the scheduling decision

at the second level of queues. Note that FR-FCFS requires the same number of comparators

with the number of banks (typically, 16). However, to search the migrated requests only one

small comparator is enough, because unlike the comparators for FR-FCFS which compare

row address (15 bits for the baseline HBM) per bank, the comparator for the migrated

requests only compares channel address (3 bits for the baseline HBM).

3.4.2 Re-architecting HBM

As we discussed in Sec. 3.2.2, all channels in a HBM have physical connections to all

DRAM dies and a set of TSVs constituting a channel can be electrically connected to any

DRAM die. In addition, the bank group structure enables DRAM to concurrently transfer

multiple requests inside of DRAM because each bank group has an individual separated

I/O. Motivated by these observations, we introduce alternative paths inside of HBM to

serve more memory requests as shown in Fig. 3.11. In the original design, the DRAM die

assigned for CH7 is only electrically connected to a set of TSVs constituting CH7 and a

memory request coming from the TSVs of CH7 is transferred to bank group 0 through the

4:1 muxes/demuxes. Because in the original design, only one set of TSVs is connected to

58

this DRAM die and only one memory request is issued to a channel at a time, one set of

muxes/demuxes can relay the memory request to a bank group and only one bank group

can receive a memory request at a time. However, in our proposed HBM, any DRAM die

is electrically connected to any set of TSVs by the crossbars. Hence, a memory request

coming from any channel can be relayed to any bank group through the 8:4 crossbars, con-

sisting of sets of 8:1 muxes/demuxes and 4:1 muxes/demuxes as shown in Fig. 3.11(right).

Based on the channel address of a request, the tri-state buffers and the first stage multiplex-

ers (8:1 muxes) are controlled. Then, the bank group address is used for the second stage

multiplexers (4:1 muxes). In Fig. 3.11(right), for example, two memory requests are send-

ing to the same DRAM die of CH7 through CH0’s and CH7’s TSVs, respectively. Although

the two requests are issued from different memory controllers and transferred through dif-

ferent channel’s buses and TSVs, they are relayed to the same DRAM die because of their

same channel address. However, they have different bank addresses and are eventually ar-

rive in different bank groups. Also, no collision of memory requests occurs in the crossbars

(i.e, the requests coming from different TSVs, but going to the same bank group), because

memory requests having different bank group addresses can be issued through different

channels at the same time in the new HBM.

3.4.3 Overhead

To enable the migration of memory requests, we introduce extra circuits and storage. In

this section, the overhead of our proposed memory system is discussed.

In memory controllers. At the first level of the request queue, in order to search the migra-

tion candidate, our design requires similar comparison logic with the FR-FCFS scheduler.

In addition, the table keeping track of the bank group status is required. Second, the 8:8

crossbars are introduced to connect memory controllers for all channels for one HBM. Last,

in order to differentiate the channel address of a request, 3 bits are added to each entry of

the second level queue. However, because the queue depth of each level queue is half of

59

T
S

V
 (

C
H

7
)

T
S

V
 (

C
H

2
)

T
S

V
 (

C
H

1
)

T
S

V
 (

C
H

0
)

B
an

k
G

ro
u

p
 3

8
:1

 M
U

X
/D

EM
U

X
4

:1
 M

U
X

/D
EM

U
X

8
:1

 M
U

X
/D

EM
U

X
4

:1
 M

U
X

/D
EM

U
X

8
:1

 M
U

X
/D

EM
U

X
B

an
k

G
ro

u
p

 0
4

:1
 M

U
X

/D
EM

U
X

B
an

k
G

ro
u

p
 1

B
an

k
G

ro
u

p

A
d

d
re

ss
C

h
an

n
el

A

d
d

re
ss

Tri-State Buffers

D
R

A
M

 D
ie

 (
C

H
7

)

B
an

k
G

ro
u

p

8
:4

 C
ro

ss
b

ar
s

P
ro

p
o

se
d

 D
e

si
gn

TSVs

8
:1

 M
U

X
D

EM
U

X
4

:1
 M

U
X

D
EM

U
X

B
an

k
G

ro
u

p
 2

T
S

V
 (

C
H

0
)

T
S

V
 (

C
H

7
)

T
S

V
 (

C
H

2
)

T
S

V
 (

C
H

1
)

B
an

k
G

ro
u

p
 0

B
an

k
G

ro
u

p
 3

B
an

k
G

ro
u

p
 2

B
an

k
G

ro
u

p
 1

4

:1
 M

U
X

/D
EM

U
X

B
an

k
G

ro
u

p

A
d

d
re

ss

M
U

X

Tri-State Buffers

D
R

A
M

 D
ie

 (
C

H
7

)

B
an

k
G

ro
u

p

O
ri

gi
n

al
 D

e
si

gn
TSVs

Fi
gu

re
3.

11
:H

B
M

w
ith

cr
os

sb
ar

s.

60

the baseline queue, we, actually, can save area in spite of the extra circuits and storage. The

detail about the area will be discussed in Sec. 3.5.3 with various queue configurations.

In HBM. In order to reroute the migrated memory requests, we use the 8:4 crossbars and

extra control signals. The estimated area increase using CACTI-3DD [108] and 20nm

DRAM technology information [109] is 1.5% of a DRAM die.

3.5 Evaluation

3.5.1 Methodology

Table 3.1: Configured System

Component Specification
Number of SM 15
Maximum Threads per SM 1536
L1 Data Cache per SM 16 KB
Number of Memory Channel 8
L2 Cache per Memory Channel 128 KB
Compute Core / Interconnect / Memory Clock 1000/1000/1000 MHz
DRAM Scheduling Policy FR-FCFS

HBM Configuration per channel
8Gb, 128 I/Os,
2KB pages, 4 bank groups,
4 banks per bank group

HBM Timing Parameters (tCK)

tRC=47, tRCD=14, tRP=14,
tRRDS=4, tRRDL=6, RL=14,
WL=2, tCCDS=1, tCCDL=2,
tRTPS=3, tRTPL=4, tWR=14

For our evaluation, we use GPGPU-Sim version 3.2.2 and implement our technique in its

memory system [110]. The configured system for the evaluation is summarized in Ta-

ble. 3.1. We model HBM based on [88] and present its key parameters in Table. 3.1. In

order to evaluate our load balancing technique, we use several GPGPU benchmark suites

such as MARS [111], Rodinia [112], Parboil [113] and mummerGPU (mum) provided in

GPGPU-Sim. The workloads used in the evaluation are listed in Table. 3.2. We run all

benchmarks for their full length to capture whole characteristics of them. For the baseline,

61

each memory controller has request queues of depth 16. In our memory system, the first

level and second level queues have 8 entries, respectively. However, the second level queue

can be shared by other channels, if memory requests meet the migration conditions.

Table 3.2: Workload list

Suite Benchmark (abbreviation)

MARS
Page View Count (PVC), Page View Rank (PVR),
Similarity Score (SS)

Parboil
Fast Fourier Transform (fft),
Sum of Absolute Difference (sad),
Sparse Matrix Dense Vector Multiplication (spmv)

Rodinia

Back Propagation (bp), Breath First Search (bfs),
Computational Fluid Dynamics Solver (cfd),
K-means Clustering (kmeans),
Needleman-Wunsch Algorithm (nw),
Speckle Reducing Anisotropic Diffusion version 1
(srad1), srad version 2 (srad2)

3.5.2 Performance Analysis

Fig. 3.12a plots the normalized instruction per cycle (IPC) to the baseline after applying

our load balancing technique. The 32-entry queue and 64-entry queue are the same systems

with the baseline except for the queue depth. As we discussed previous sections, having

large queues is good for performance. As shown in Fig. 3.12a, our memory system outper-

forms the baseline and large queue systems. The improved IPC over the baseline is 10.1%

on average and up to 26.0%. Because the request migration effectively increases the request

queue depth, our memory system can hold more memory requests without incurring stall

at the upper level. In bp and srad1, their performance is sensitive to queue depth and the

increased queue depth in SMART mainly results in their performance improvement. How-

ever, in some applications (e.g, bfs, mum and nw), the queue depth does not have significant

impact on the performance. In these applications, our memory system still brings perfor-

mance improvement. This is because, in the proposed memory system, memory requests

can be issued through different channels from their original channel, which reduces overall

62

0.9

1.0

1.1

1.2

1.3

1.4

N
o

rm
al

iz
e

d
 IP

C

32-Entry Queue
64-Entry Queue
Proposed

(a) IPC improvement

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
e

m
o

ry
 In

d
u

ce
d

 S
ta

ll proposed

(b) Normalized memory induced stall cycle

Figure 3.12: Performance improvement after the migration.

0.7

0.8

0.9

1.0

1.1

1.2

1.3

N
o

rm
al

iz
e

d
 S

e
rv

ic
e

 T
im

e before after

Average

(a) Change of channel skewness in fft

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Sk
e
w
n
e
ss

before after
2.514 1.915

(b) Change in skewness of memory service time

Figure 3.13: Change of imbalanced memory service time.

queuing delay by migrating blocked requests from the busy queue. Fig. 3.12b shows the

normalized stall cycles of memory controllers, in which memory controllers cannot accept

memory requests because there is no empty entry in their request queue. Our load bal-

ancing technique does not specifically prioritize certain critical requests (e.g, the requests

determining the degree of memory divergence), but it reduces overall latency of memory

requests. Thus, the reduced stall cycles in memory controllers are mostly reflected in the

performance.

In Fig. 3.13, we present service time of each channel in fft and the skewness of the

service time. In fft, the skewness of the number of memory requests was ∼1.06, which

means there is only a 6% inequality in the number of requests between channels. How-

ever, the skewness of the memory service time, which is defined to be the active time of

63

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0

5

10

15

20

25

30

C
o

lu
m

n
 /

R
o

w
 A

cc
e

ss
e

s

M
is

se
s

P
e

r
K

il
o

 In
st

ru
ct

io
n

s

MPKI
Row BufferLocality

Figure 3.14: MPKI and locality.

memory controllers to serve the memory requests, was ∼1.44 (Fig. 3.4 in Sec. 3.3.1) and

is much bigger than the skewness of the number of memory requests because of the dif-

ference in spatial and temporal localities between the channels. Because we migrate the

memory requests from the busy channel to non-busy channel, this load balancing results

in 12% reduction in the skewness of the service time. As shown in Fig. 3.13a, the busy

channel becomes less busy and the non-busy channel becomes busier in our memory sys-

tem. Fig. 3.13b shows the improved load balance in the proposed memory system. Overall,

the skewness is reduced by 7% across all workloads, and there is a substantial reduction in

mum (24%).

As we discussed in Sec. 3.4.1 (Rule 1), not all memory requests are migrated to other

channels in our memory system. In order to obtain benefits from the migration, 1) the work-

loads should be memory intensive to generate enough congestion in the memory system,

2) the memory channels should be skewed in terms of their request service time and 3) the

memory requests should have a certain degree of spatial locality to meet the migration con-

ditions. We present the memory intensity of the workloads as misses-per-kilo-instructions

(MPKI) and the spatial locality as the ratio of the number of column commands (RD and

WR) to the number of row commands (ACT) in Fig. 3.14. A weak correlation between

performance improvement and MPKI is observed, whereas the row buffer locality of the

64

0.9

1.0

1.1

1.2

1.3

1.4

N
o

rm
al

iz
e

d
 IP

C

1st-2nd Queue: 4-8 Entries

1st-2nd Queue: 8-8 Entries

1st-2nd Queue: 4-12 Entries

Figure 3.15: Performance according to different queue configuration.

workloads has a strong correlation with performance improvement.

In Fig. 3.15, we present performance improvement with various queue configurations.

Because we effectively increase the queue depth, 4-8 configuration (4-entry for the first

level queue and 8-entry for the second level queue), whose total number of queue entries

(12) is smaller than the baseline (16), outperforms the baseline. Also, when the total num-

ber of queue entries is same, the 4-12 configuration shows slightly higher IPC than the

8-8 configuration. Because the migration can happen when memory controllers have more

than half of empty entries at the second level queue, having a larger second level queue

can permit more migrations and yield higher performance improvement than the smaller

second level queue. The difference in performance between 8-8 and 4-12 configurations is

1-3%.

3.5.3 Area Overhead

In order to estimate the area of the memory controller, we developed Verilog models syn-

thesized with a 45nm design library [114]. For this estimation, we only use standard cells.

That is, all memory-components such as CAMs, buffers, and scheduling tables are mod-

eled using flip-flop but not customized cells, and are therefore conservative. We present the

65

estimated area in Table. 3.3 Although we introduce crossbars and few extra logic, it is the

reduced queue depth that mainly saves the area.

Table 3.3: Estimated area

Configuration Area (normalized)
4-8 0.90
8-8 0.95

4-12 0.97

3.6 Related Work

Multi-Channel Memory Controllers. ATLAS is a scheduling technique proposed for fair

scheduling across multiple memory channels [115]. ATLAS periodically orders threads

based on the service they have attained from the memory controllers. After a long time

quanta, information about the received service is exchanged between memory controllers

and a central controller prioritize the threads that have attained the least service over others

in the next epoch. Although ATLAS use a long time quanta to provide scalability, this

approach is not practical for GPUs having thousands of threads.

Chatterjee et al. proposed a memory scheduling technique to manage memory latency

divergence in GPUs [101]. In order to avoid inter-warp interference, they proposed forming

batches of memory requests from a single warp called a warp-group. Also, their scheduling

technique coordinates scheduling decisions across multiple memory channels with dedi-

cated point-to-point interconnections between memory controllers.

Although these scheduling techniques can improve performance by coordinating schedul-

ing decisions across multiple memory channels with given memory requests in a channel,

there is no consideration about load balancing for memory channels.

Cost- and Complexity-Effective Memory Controllers. Staged Memory Scheduler (SMS)

is a decentralized architecture for application-aware memory scheduling [103]. SMS de-

couples the memory controller’s primary tasks and partitions them across simpler hardware

66

structures in a staged fashion. Because of the decentralized small request queues and sim-

pler scheduling logic, SMS significantly saves area over FR-FCFS scheduler while improv-

ing performance. However, batch formation in SMS occurs an individual queue per thread.

Thus, this scheduler is not suitable for GPUs having thousands of threads.

Yuan et al. addressed the high complexity of out-of-order scheduling such as FR-FCFS

and proposed a complexity-effective solution for achieving the scheduling comparable to

that of out-of-order scheduler [106] . Their key observation is that the row locality of the

memory requests sent from the shader cores are much higher before they enter the inter-

connection network compared to when they arrive at memory controllers. By recovering

the destroyed row locality in the interconnection network, their simple in-order memory

controllers perform comparably with an out-of-order scheduler.

Similar to our design, they strove for reducing the implementation cost of memory

controllers. However, both designs mainly focused on implementing an individual memory

controller for a channel without consideration about the coordination between multiple

channels.

3.7 Summary

The performance of memory systems often significantly affects overall system perfor-

mance. HBM is optimized for high performance by providing a number of memory chan-

nels. Specifically, it is adapted to GPUs to meet their demand for high memory bandwidth.

We observed that only one or a few memory channels are often highly utilized in GPGPU

applications. This imbalance on memory channels hinders exploitation of the full band-

width of an HBM. To overcome underutilized memory bandwidth, we propose a technique

to improve load balancing for HBM channels. Our technique enables memory requests to

migrate from a busy channel to other non-busy channels and service it in the other channels.

In addition, the proposed technique effectively increases the depth of a request queue in a

67

memory controller, which results in the reduction of the stall cycles by memory controllers.

Our load balancing technique mitigates the imbalance of the memory channel utilization

and brings 10% of performance improvement for GPGPU applications.

68

CHAPTER 4

Conclusion

This dissertation focused on memory system design with emerging technologies to im-

prove performance and energy efficiency. In this concluding chapter, we summarize the

contributions of this dissertation and discuss their implications for future memory system

design.

First, we started our study by investigating previous memory system designs with STT-

MRAM. We found that most previous studies have not been fully exploited the advantages

of STT-MRAM and thus there were lots of inefficiency in the previous designs. To ad-

dress these issues, we proposed SMART, a new microarhictecture for an STT-MRAM main

memory by fully exploiting the non-destructive nature of STT-MRAM cells. By moving

the sensing operation from the row activation to the read operation, SMART realizes advan-

tages in area, performance, and energy consumption. Our idea enables an area-efficient im-

plementation of STT-MRAM main memory by reducing the number of SAs while keeping

page size as large as DRAM, but without the overfetch problem. In addition, all operations

regarding refresh, restoration, and precharge are removed in SMART, resulting in further

improvement in both performance and energy consumption over DRAM. We demonstrated

that an STT-MRAM main memory can be more energy-efficient and in some cases faster

than DRAM.

In the second part of this dissertation, our study moved from main memory space to

graphic memory space. Traditionally, GPUs have used performance-optimized memory

69

and recently HBM, which is 3D stacked DRAM. Although HBM provides high peak mem-

ory bandwidth through multiple and wide channels, we found that it is hard to fully utilize

all of the bandwidth provided by HBM. Our observation was that all channels of an HBM

are not evenly utilized and often a few channels are still highly congested even after apply-

ing the hashing technique to randomize the address of memory requests. To solve this issue,

we proposed a cost-effective technique to improve load balancing for HBM channels. In the

proposed memory system, a memory request from a busy channel can be migrated to other

non-busy channels and serviced in the other channels. Moreover, the proposed technique

effectively increases the depth of a request queue in a memory controller and this results

in the reduction of stalls by memory controllers. Our load balancing technique mitigated

the imbalance of the memory channel utilization and showed performance improvement

for GPGPU applications.

In conclusion, the performance and energy efficiency of memory systems can be im-

proved with emerging technologies, but they can be further improved if we fully exploit

their hidden benefits. We believe that there are still undiscovered opportunities for emerg-

ing memory technologies.

70

BIBLIOGRAPHY

[1] Yoon, J. H., “3D NAND technology implications to enterprise storage applications,”
Santa Clara, CA, USA: Flash Memory Summit, 2015.

[2] Liu, J., Jaiyen, B., Veras, R., and Mutlu, O., “RAIDR: Retention-aware intelligent
DRAM refresh,” ACM SIGARCH Computer Architecture News, Vol. 40, IEEE Com-
puter Society, 2012, pp. 1–12.

[3] McCalpin, J. D., “A survey of memory bandwidth and machine balance in current
high performance computers,” IEEE TCCA Newsletter, 1995.

[4] Micron, “8Gb DDR3L, MT41K1G8,” 2015.

[5] MICRON, “DDR4 SDRAM,” https://www.micron.com/˜/media/
documents/products/data-sheet/dram/ddr4/4gb_ddr4_dram_
2e0d.pdf, 2014.

[6] Intel, “DRAM Controllers for System Designers,” https://www.altera.
com/solutions/technology/system-design/articles/_2012/
dram-controller-system-designer.html, 2012.

[7] Von Neumann, J., “First Draft of a Report on the EDVAC,” IEEE Annals of the
History of Computing, Vol. 15, No. 4, 1993, pp. 27–75.

[8] Hennessy, J. L. and Patterson, D. A., Computer architecture: a quantitative ap-
proach, Elsevier, 2011.

[9] Russo, J., “Stored program pay-per-play,” April 8 1997, US Patent 5,619,247.

[10] Boncz, P. A., Manegold, S., Kersten, M. L., et al., “Database architecture optimized
for the new bottleneck: Memory access,” VLDB, Vol. 99, 1999, pp. 54–65.

[11] Mahapatra, N. R. and Venkatrao, B., “The processor-memory bottleneck: problems
and solutions,” Crossroads, Vol. 5, No. 3es, 1999, pp. 2.

[12] Mutlu, O., “Memory scaling: A systems architecture perspective,” Memory Work-
shop (IMW), 2013 5th IEEE International, IEEE, 2013, pp. 21–25.

[13] Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., and Demmel, J., “Opti-
mization of sparse matrix–vector multiplication on emerging multicore platforms,”
Parallel Computing, Vol. 35, No. 3, 2009, pp. 178–194.

71

https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr4/4gb_ddr4_dram_2e0d.pdf
https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr4/4gb_ddr4_dram_2e0d.pdf
https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr4/4gb_ddr4_dram_2e0d.pdf
https://www.altera.com/solutions/technology/system-design/articles/_2012/dram-controller-system-designer.html
https://www.altera.com/solutions/technology/system-design/articles/_2012/dram-controller-system-designer.html
https://www.altera.com/solutions/technology/system-design/articles/_2012/dram-controller-system-designer.html

[14] Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H. C., McElroy,
R., Paleczny, M., Peek, D., Saab, P., et al., “Scaling Memcache at Facebook.” nsdi,
Vol. 13, 2013, pp. 385–398.

[15] McDaniel, M. A. and Einstein, G. O., Prospective memory: An overview and syn-
thesis of an emerging field, Sage Publications, 2007.

[16] Jacob, B., Ng, S., and Wang, D., Memory systems: cache, DRAM, disk, Morgan
Kaufmann, 2010.

[17] Lindström, J., Raatikka, V., Ruuth, J., Soini, P., and Vakkila, K., “IBM solidDB: In-
Memory Database Optimized for Extreme Speed and Availability.” IEEE Data Eng.
Bull., Vol. 36, No. 2, 2013, pp. 14–20.

[18] JEDEC, “GRAPHICS DOUBLE DATA RATE (GDDR5) SGRAM STAN-
DARD,” https://www.jedec.org/system/files/docs/JESD212C.
pdf, 2016.

[19] Zhang, T., Chen, K., Xu, C., Sun, G., Wang, T., and Xie, Y., “Half-DRAM: a
High-bandwidth and Low-power DRAM Architecture from the Rethinking of Fine-
grained Activation,” International Symposium on Computer Architecture (ISCA),
2014.

[20] Sudan, K., Chatterjee, N., Nellans, D., Awasthi, M., Balasubramonian, R., and
Davis, A., “Micro-pages: increasing DRAM efficiency with locality-aware data
placement,” Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), 2010.

[21] Udipi, A. N., Muralimanohar, N., Chatterjee, N., Balasubramonian, R., Davis,
A., and Jouppi, N. P., “Rethinking DRAM design and organization for energy-
constrained multi-cores,” International Symposium on Computer Architecture
(ISCA), 2010.

[22] Cooper-Balis, E. and Jacob, B., “Fine-grained activation for power reduction in
DRAM,” IEEE Micro, 2010.

[23] Asifuzzaman, K., Pavlovic, M., Radulovic, M., Zaragoza, D., Kwon, O., Ryoo,
K.-C., and Radojković, P., “Performance Impact of a Slower Main Memory: A
Case Study of STT-MRAM in HPC,” International Symposium on Memory Systems
(MEMSYS), 2016.

[24] Meza, J., Li, J., and Mutlu, O., “Evaluating row buffer locality in future non-volatile
main memories,” 2012.

[25] Kültürsay, E., Kandemir, M., Sivasubramaniam, A., and Mutlu, O., “Evaluating
STT-RAM as an energy-efficient main memory alternative,” Performance Analysis
of Systems and Software (ISPASS), 2013.

72

https://www.jedec.org/system/files/docs/JESD212C.pdf
https://www.jedec.org/system/files/docs/JESD212C.pdf

[26] Suresh, A., Cicotti, P., and Carrington, L., “Evaluation of emerging memory tech-
nologies for HPC, data intensive applications,” International Conference on Cluster
Computing (CLUSTER), 2014.

[27] Rho, K., Tsuchida, K., Kim, D., Shirai, Y., Bae, J., Inaba, T., Noro, H., Moon, H.,
Chung, S., Sunouchi, K., et al., “23.5 A 4Gb LPDDR2 STT-MRAM with compact
9F2 1T1MTJ cell and hierarchical bitline architecture,” International Solid-State
Circuits Conference (ISSCC), 2017.

[28] Chung, S.-W., Kishi, T., Park, J., Yoshikawa, M., Park, K., Nagase, T., Sunouchi, K.,
Kanaya, H., Kim, G., Noma, K., et al., “4Gbit density STT-MRAM using perpen-
dicular MTJ realized with compact cell structure,” International Electron Devices
Meeting (IEDM), 2016.

[29] Rizzo, N., Houssameddine, D., Janesky, J chand Whig, R., Mancoff, F., Schneider,
M., DeHerrera, M., Sun, J., Nagel, K., Deshpande, S., et al., “A fully functional 64
Mb DDR3 ST-MRAM built on 90 nm CMOS technology,” IEEE Transactions on
Magnetics, 2013.

[30] Kim, C.-k., Kang, D.-s., Kim, H.-j., Park, C.-W., Dong-Hyun, S., Lee, Y.-S., Kang,
S.-b., Oh, H.-R., Cha, S.-h., et al., “Magnetic random access memory,” 2013, US
Patent App. 13/768,858.

[31] Kim, H.-j., Kang, S.-K., Dong-Hyun, S., Kim, D.-M., and Lee, K.-C., “Magneto-
resistive memory device including source line voltage generator,” 2015, US Patent
9,036,406.

[32] Raychowdhury, A., Somasekhar, D., Karnik, T., and De, V., “Design space and scal-
ability exploration of 1T-1STT MTJ memory arrays in the presence of variability
and disturbances,” International Electron Devices Meeting (IEDM), 2009.

[33] Chung, S., Rho, K.-M., Kim, S.-D., Suh, H.-J., Kim, D.-J., Kim, H.-J., Lee, S.-
H., Park, J.-H., Hwang, H.-M., Hwang, S.-M., et al., “Fully integrated 54nm STT-
RAM with the smallest bit cell dimension for high density memory application,”
International Electron Devices Meeting (IEDM), 2010.

[34] JEDEC, “Low Power Double Data Rate 3 (LPDDR3,” http://www.jedec.
org/sites/default/files/docs/JESD209-3C.pdf.

[35] JEDEC, “High Bandwidth Memory (HBM) DRAM,” https://www.jedec.
org/sites/default/files/docs/JESD235A.pdf, 2013.

[36] JEDEC, “Wide I/O 2 (WideIO2),” https://www.jedec.org/system/
files/docs/JESD229-2.pdf, 2014.

[37] Kim, C., Kwon, K., Park, C., Jang, S., and Choi, J., “7.4 A covalent-bonded cross-
coupled current-mode sense amplifier for STT-MRAM with 1t1mtj common source-
line structure array,” International Solid-State Circuits Conference (ISSCC), 2015.

73

http://www.jedec.org/sites/default/files/docs/JESD209-3C.pdf
http://www.jedec.org/sites/default/files/docs/JESD209-3C.pdf
https://www.jedec.org/sites/default/files/docs/JESD235A.pdf
https://www.jedec.org/sites/default/files/docs/JESD235A.pdf
https://www.jedec.org/system/files/docs/JESD229-2.pdf
https://www.jedec.org/system/files/docs/JESD229-2.pdf

[38] Choi, Y., Song, I., Park, M.-H., Chung, H., Chang, S., Cho, B., Kim, J., Oh, Y.,
Kwon, D., Sunwoo, J., et al., “A 20nm 1.8 V 8Gb PRAM with 40MB/s program
bandwidth,” International Solid-State Circuits Conference (ISSCC), 2012.

[39] Chung, H., Jeong, B. H., Min, B., Choi, Y., Cho, B.-H., Shin, J., Kim, J., Sunwoo,
J., Park, J.-m., Wang, Q., et al., “A 58nm 1.8 v 1gb pram with 6.4 mb/s program bw,”
International Solid-State Circuits Conference (ISSCC), 2011.

[40] Tsuchida, K., Inaba, T., Fujita, K., Ueda, Y., Shimizu, T., Asao, Y., Kajiyama, T.,
Iwayama, M., Sugiura, K., Ikegawa, S., et al., “A 64Mb MRAM with clamped-
reference and adequate-reference schemes,” International Solid-State Circuits Con-
ference (ISSCC), 2010.

[41] Lee, B. C., Ipek, E., Mutlu, O., and Burger, D., “Architecting phase change memory
as a scalable dram alternative,” International Symposium on Computer Architecture
(ISCA), 2009.

[42] Wang, J., Dong, X., and Xie, Y., “Enabling high-performance LPDDRx-
compatible MRAM,” International Symposium on Low Power Electronics and De-
sign (ISLPED), 2014.

[43] Kim, D.-g. and Park, K.-t., “Semiconductor memory device with three-dimensional
array and repair method thereof,” Oct. 4 2011, US Patent 8,031,544.

[44] Yang, T.-C., Chih, Y.-D., and Liu, S.-H., “Redundancy circuits and operating meth-
ods thereof,” Aug. 7 2012, US Patent 8,238,178.

[45] Worledge, D., Hu, G., Trouilloud, P., Abraham, D., Brown, S., Gaidis, M., Nowak,
J., O’Sullivan, E., Robertazzi, R., Sun, J., et al., “Switching distributions and write
reliability of perpendicular spin torque MRAM,” International Electron Devices
Meeting (IEDM), 2010.

[46] Kitagawa, E., Fujita, S., Nomura, K., Noguchi, H., Abe, K., Ikegami, K., Daibou, T.,
Kato, Y., Kamata, C., Kashiwada, S., et al., “Impact of ultra low power and fast write
operation of advanced perpendicular MTJ on power reduction for high-performance
mobile CPU,” International Electron Devices Meeting (IEDM), 2012.

[47] Thomas, L., Jan, G., Zhu, J., Liu, H., Lee, Y.-J., Le, S., Tong, R.-Y., Pi, K., Wang,
Y.-J., Shen, D., et al., “Perpendicular spin transfer torque magnetic random access
memories with high spin torque efficiency and thermal stability for embedded appli-
cations,” Journal of Applied Physics, 2014.

[48] Park, C., Kan, J., Ching, C., Ahn, J., Xue, L., Wang, R., Kontos, A., Liang, S., Ban-
gar, M., Chen, H., et al., “Systematic optimization of 1 Gbit perpendicular magnetic
tunnel junction arrays for 28 nm embedded STT-MRAM and beyond,” International
Electron Devices Meeting (IEDM), 2015.

74

[49] Kan, J., Park, C., Ching, C., Ahn, J., Xue, L., Wang, R., Kontos, A., Liang, S.,
Bangar, M., Chen, H., et al., “Systematic validation of 2x nm diameter perpendicular
MTJ arrays and MgO barrier for sub-10 nm embedded STT-MRAM with practically
unlimited endurance,” International Electron Devices Meeting (IEDM), 2016.

[50] Song, B., Na, T., Kim, J., Kim, J. P., Kang, S. H., and Jung, S.-O., “Latch offset
cancellation sense amplifier for deep submicrometer STT-RAM,” IEEE Transactions
on Circuits and Systems I (TCAS I), 2015.

[51] Jefremow, M., Kern, T., Allers, W., Peters, C., Otterstedt, J., Bahlous, O., Hofmann,
K., Allinger, R., Kassenetter, S., and Schmitt-Landsiedel, D., “Time-differential
sense amplifier for sub-80mV bitline voltage embedded STT-MRAM in 40nm
CMOS,” International Solid-State Circuits Conference (ISSCC), 2013.

[52] Na, T., Kim, J., Kim, J. P., Kang, S. H., and Jung, S.-O., “An offset-canceling triple-
stage sensing circuit for deep submicrometer STT-RAM,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 2014.

[53] Chang, M.-F., Shen, S.-J., Liu, C.-C., Wu, C.-W., Lin, Y.-F., King, Y.-C., Lin, C.-
J., Liao, H.-J., Chih, Y.-D., and Yamauchi, H., “An offset-tolerant fast-random-read
current-sampling-based sense amplifier for small-cell-current nonvolatile memory,”
IEEE Journal of Solid-State Circuits (JSSC), 2013.

[54] Chang, M.-F., Sheu, S.-S., Lin, K.-F., Wu, C.-W., Kuo, C.-C., Chiu, P.-F., Yang,
Y.-S., Chen, Y.-S., Lee, H.-Y., Lien, C.-H., et al., “A high-speed 7.2-ns read-write
random access 4-mb embedded resistive ram (reram) macro using process-variation-
tolerant current-mode read schemes,” IEEE Journal of Solid-State Circuits (JSSC),
2013.

[55] Cuppu, V., Jacob, B., Davis, B., and Mudge, T., “A performance comparison of
contemporary DRAM architectures,” International Symposium on Computer Archi-
tecture (ISCA), 1999.

[56] JEDEC, “DDR3 SDRAM Specification,” www.jedec.org/sites/default/
files/docs/JESD79-3E.pdf, 2009.

[57] JEDEC, “High Bandwidth Memory (HBM) DRAM,” https://www.jedec.
org/sites/default/files/docs/JESD235A.pdf, 2013.

[58] Moon, Y., Cho, Y.-H., Lee, H.-B., Jeong, B.-H., Hyun, S.-H., Kim, B.-C., Jeong,
I.-C., Seo, S.-Y., Shin, J.-H., Choi, S.-W., et al., “1.2 V 1.6 Gb/s 56nm 6F 2 4Gb
DDR3 SDRAM with hybrid-I/O sense amplifier and segmented sub-array architec-
ture,” International Solid-State Circuits Conference (ISSCC), 2009.

[59] Kim, Y., Seshadri, V., Lee, D., Liu, J., and Mutlu, O., “A case for exploiting
subarray-level parallelism (SALP) in DRAM,” 2012.

[60] Alam, S. M., Andre, T., and Gogl, D., “Memory controller and method for interleav-
ing DRAM and MRAM accesses,” 2016, US Patent 9,418,001.

75

www.jedec.org/sites/default/files/docs/JESD79-3E.pdf
www.jedec.org/sites/default/files/docs/JESD79-3E.pdf
https://www.jedec.org/sites/default/files/docs/JESD235A.pdf
https://www.jedec.org/sites/default/files/docs/JESD235A.pdf

[61] Yoo, J.-H., Kim, C. H., Lee, K. C., Kyung, K.-H., Yoo, S.-M., Lee, J. H., Son, M.-
H., Han, J.-M., Kang, B.-M., Haq, E., et al., “A 32-bank 1 Gb DRAM with 1 GB/s
bandwidth,” International Solid-State Circuits Conference (ISSCC), 1996.

[62] Li, Z., Zhou, R., and Li, T., “Exploring high-performance and energy proportional
interface for phase change memory systems,” International Symposium on High Per-
formance Computer Architecture (HPCA), 2013.

[63] JEDEC, “Low Power Double Data Rate 2 (LPDDR2),” http://www.jedec.
org/sites/default/files/docs/JESD209-2B.pdf, 2009.

[64] Lim, K.-N., Jang, W.-J., Won, H.-S., Lee, K.-Y., Kim, H., Kim, D.-W., Cho, M.-H.,
Kim, S.-L., Kang, J.-H., Park, K.-W., et al., “A 1.2 V 23nm 6F 2 4Gb DDR3 SDRAM
with local-bitline sense amplifier, hybrid LIO sense amplifier and dummy-less array
architecture,” International Solid-State Circuits Conference (ISSCC), 2012.

[65] Naji, O., Weis, C., Jung, M., Wehn, N., and Hansson, A., “A high-level DRAM tim-
ing, power and area exploration tool,” Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), IEEE, 2015.

[66] Min, K.-S. and Chung, J.-Y., “A fast pump-down V BB generator for sub-1.5-V
DRAMs,” IEEE Journal of Solid-State Circuits (JSSC), 2001.

[67] Lee, D. U., Lee, K. S., Lee, Y., Kim, K. W., Kang, J. H., Lee, J., and Chun, J. H.,
“Design considerations of HBM stacked DRAM and the memory architecture ex-
tension,” Custom Integrated Circuits Conference (CICC), 2015.

[68] Horiguchi, M. and Itoh, K., Nanoscale memory repair, Springer Science & Business
Media, 2011.

[69] Horiguchi, M., Etoh, J., Aoki, M., Itoh, K., and Matsumoto, T., “A flexible redun-
dancy technique for high-density DRAMs,” IEEE Journal of Solid-State Circuits
(JSSC), 1991.

[70] Lin, C., Kang, S., Wang, Y., Lee, K., Zhu, X., Chen, W., Li, X., Hsu, W., Kao, Y.,
Liu, M., et al., “45nm low power CMOS logic compatible embedded STT MRAM
utilizing a reverse-connection 1T/1MTJ cell,” Electron Devices Meeting (IEDM),
2009 IEEE International, IEEE, 2009, pp. 1–4.

[71] Oh, B.-C., Bae, J.-H., Fujita, K., and Shirai, Y., “Electronic device including semi-
conductor memory and operation method thereof,” 2014, US Patent 6,442,585.

[72] Nowak, J. J., Robertazzi, R. P., Sun, J. Z., Hu, G., Park, J.-H., Lee, J., Annunziata,
A. J., Lauer, G. P., Kothandaraman, R., OSullivan, E. J., et al., “Dependence of
voltage and size on write error rates in spin-transfer torque magnetic random-access
memory,” IEEE Magnetics Letters, Vol. 7, 2016, pp. 1–4.

76

http://www.jedec.org/sites/default/files/docs/JESD209-2B.pdf
http://www.jedec.org/sites/default/files/docs/JESD209-2B.pdf

[73] Grezes, C., Lee, H., Lee, A., Wang, S., Ebrahimi, F., Li, X., Wong, K., Ka-
tine, J. A., Ocker, B., Langer, J., et al., “Write Error Rate and Read Disturbance
in Electric-Field-Controlled Magnetic Random-Access Memory,” IEEE Magnetics
Letters, Vol. 8, 2017, pp. 1–5.

[74] Saida, D., Kashiwada, S., Yakabe, M., Daibou, T., Fukumoto, M., Miwa, S., Suzuki,
Y., Abe, K., Noguchi, H., Ito, J., et al., “1x- to 2x-nm perpendicular MTJ Switching
at Sub-3-ns Pulses Below 100uA for High-Performance Embedded STT-MRAM for
Sub-20-nm CMOS,” IEEE Transactions on Electron Devices, Vol. 64, No. 2, 2017,
pp. 427–431.

[75] Dong, X., Xu, C., Xie, Y., and Jouppi, N. P., “NVSim: A Circuit-Level Performance,
Energy, and Area Model for Emerging Nonvolatile Memory,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2012.

[76] ITRS, http://www.itrs2.net/2013-itrs.html, 2013.

[77] Park, J., Shin, D.-H., Cho, Y.-H., and Kwon, K.-W., “Inverted bit-line sense amplifier
with offset-cancellation capability,” Electronics Letters, 2016.

[78] Oh, B., Abeyratne, N., Ahn, J., Dreslinski, R. G., and Mudge, T., “Enhancing
DRAM Self-Refresh for Idle Power Reduction,” International Symposium on Low
Power Electronics and Design (ISLPED), 2016.

[79] Patel, A., Afram, F., Chen, S., and Ghose, K., “MARSS: a full system simulator for
multicore x86 CPUs,” Design Automation Conference (DAC), 2011.

[80] Rosenfeld, P., Cooper-Balis, E., and Jacob, B., “DRAMSim2: A cycle accurate
memory system simulator,” IEEE Computer Architecture Letters, 2011.

[81] Rixner, S., Dally, W. J., Kapasi, U. J., Mattson, P., and Owens, J. D., “Memory ac-
cess scheduling,” International Symposium on Computer Architecture (ISCA), 2000.

[82] Henning, J. L., “SPEC CPU2006 benchmark descriptions,” ACM SIGARCH Com-
puter Architecture News, 2006.

[83] Harris, M. and Luebke, D., “GPGPU: General-purpose computation on graphics
hardware,” International Conference on Computer Graphics and Interactive Tech-
niques: ACM SIGGRAPH 2005 Courses: Los Angeles, California, Vol. 2005, 2005.

[84] Kirk, D. et al., “NVIDIA CUDA software and GPU parallel computing architecture,”
ISMM, Vol. 7, 2007, pp. 103–104.

[85] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A. E.,
and Purcell, T. J., “A survey of general-purpose computation on graphics hardware,”
Computer graphics forum, Vol. 26, Wiley Online Library, 2007, pp. 80–113.

[86] Chen, J. Y., “GPU technology trends and future requirements,” Electron Devices
Meeting (IEDM), 2009 IEEE International, IEEE, 2009, pp. 1–6.

77

http://www.itrs2.net/2013-itrs.html

[87] Keckler, S. W., Dally, W. J., Khailany, B., Garland, M., and Glasco, D., “GPUs and
the future of parallel computing,” IEEE Micro, Vol. 31, No. 5, 2011, pp. 7–17.

[88] Chatterjee, N., OConnor, M., Lee, D., Johnson, D. R., Keckler, S. W., Rhu, M.,
and Dally, W. J., “Architecting an energy-efficient dram system for gpus,” High Per-
formance Computer Architecture (HPCA), 2017 IEEE International Symposium on,
IEEE, 2017, pp. 73–84.

[89] NVIDA, “Inside pascal: NVIDIA's newest computing platform,” https://
devblogs.nvidia.com/inside-pascal, 2016.

[90] AMD, “Inside pascal: NVIDIA's newest computing platform,” https://www.
amd.com/en/technologies/hbm, 2015.

[91] Vandierendonck, H. and De Bosschere, K., “XOR-based hash functions,” IEEE
Transactions on Computers, Vol. 54, No. 7, 2005, pp. 800–812.

[92] van den Braak, G.-J., Gomez-Luna, J., González-Linares, J. M., Corporaal, H., and
Guil, N., “Configurable XOR hash functions for banked scratchpad memories in
GPUs,” IEEE Transactions on Computers, Vol. 65, No. 7, 2016, pp. 2045–2058.

[93] Blumofe, R. D. and Leiserson, C. E., “Scheduling multithreaded computations by
work stealing,” Journal of the ACM (JACM), Vol. 46, No. 5, 1999, pp. 720–748.

[94] Mitzenmacher, M., “The power of two choices in randomized load balancing,” IEEE
Transactions on Parallel and Distributed Systems, Vol. 12, No. 10, 2001, pp. 1094–
1104.

[95] Gupta, P., Sharma, A., and Jindal, R., “Scalable machine-learning algorithms for
big data analytics: a comprehensive review,” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, Vol. 6, No. 6, 2016, pp. 194–214.

[96] Singh, D. and Reddy, C. K., “A survey on platforms for big data analytics,” Journal
of Big Data, Vol. 2, No. 1, 2015, pp. 8.

[97] Cano, A., “A survey on graphic processing unit computing for large-scale data
mining,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
Vol. 8, No. 1, 2018.

[98] Burtscher, M., Nasre, R., and Pingali, K., “A quantitative study of irregular programs
on GPUs,” Workload Characterization (IISWC), 2012 IEEE International Sympo-
sium on, IEEE, 2012, pp. 141–151.

[99] Ikeda, H. and Inukai, H., “High-speed DRAM architecture development,” IEEE
Journal of Solid-State Circuits, Vol. 34, No. 5, 1999, pp. 685–692.

[100] Loi, I. and Benini, L., “An efficient distributed memory interface for many-core
platform with 3D stacked DRAM,” Proceedings of the Conference on Design, Au-
tomation and Test in Europe, European Design and Automation Association, 2010,
pp. 99–104.

78

https://devblogs.nvidia.com/inside-pascal
https://devblogs.nvidia.com/inside-pascal
https://www.amd.com/en/technologies/hbm
https://www.amd.com/en/technologies/hbm

[101] Chatterjee, N., O’Connor, M., Loh, G. H., Jayasena, N., and Balasubramonian, R.,
“Managing DRAM latency divergence in irregular GPGPU applications,” Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, IEEE Press, 2014, pp. 128–139.

[102] Little, J. D. and Graves, S. C., “Little’s law,” Building intuition, Springer, 2008, pp.
81–100.

[103] Ausavarungnirun, R., Chang, K. K.-W., Subramanian, L., Loh, G. H., and Mutlu, O.,
“Staged memory scheduling: Achieving high performance and scalability in hetero-
geneous systems,” Computer Architecture (ISCA), 2012 39th Annual International
Symposium on, IEEE, 2012, pp. 416–427.

[104] Zuravleff, W. K. and Robinson, T., “Controller for a synchronous DRAM that max-
imizes throughput by allowing memory requests and commands to be issued out of
order,” May 13 1997, US Patent 5,630,096.

[105] Rotithor, H. G., Osborne, R. B., and Aboulenein, N., “Method and apparatus for out
of order memory scheduling,” Oct. 24 2006, US Patent 7,127,574.

[106] Yuan, G. L., Bakhoda, A., and Aamodt, T. M., “Complexity effective memory access
scheduling for many-core accelerator architectures,” Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, ACM, 2009, pp. 34–44.

[107] Palacharla, S., Jouppi, N. P., and Smith, J. E., Complexity-effective superscalar pro-
cessors, Vol. 25, ACM, 1997.

[108] Chen, K., Li, S., Muralimanohar, N., Ahn, J. H., Brockman, J. B., and Jouppi, N. P.,
“CACTI-3DD: Architecture-level modeling for 3D die-stacked DRAM main mem-
ory,” Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012,
IEEE, 2012, pp. 33–38.

[109] Semiconductor, S., “Research collaboration communications,” 2016.

[110] Bakhoda, A., Yuan, G. L., Fung, W. W., Wong, H., and Aamodt, T. M., “Analyzing
CUDA workloads using a detailed GPU simulator,” Performance Analysis of Systems
and Software, 2009. ISPASS 2009. IEEE International Symposium on, IEEE, 2009,
pp. 163–174.

[111] He, B., Fang, W., Luo, Q., Govindaraju, N. K., and Wang, T., “Mars: a MapReduce
framework on graphics processors,” Proceedings of the 17th international confer-
ence on Parallel architectures and compilation techniques, ACM, 2008, pp. 260–
269.

[112] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H., and Skadron,
K., “Rodinia: A benchmark suite for heterogeneous computing,” Workload Char-
acterization, 2009. IISWC 2009. IEEE International Symposium on, Ieee, 2009, pp.
44–54.

79

[113] Stratton, J. A., Rodrigues, C., Sung, I.-J., Obeid, N., Chang, L.-W., Anssari, N.,
Liu, G. D., and Hwu, W.-m. W., “Parboil: A revised benchmark suite for scientific
and commercial throughput computing,” Center for Reliable and High-Performance
Computing, Vol. 127, 2012.

[114] University, O. S., “FreePDK: Unleashing VLSI to the Masses,” https://
vlsiarch.ecen.okstate.edu/flows/, 2017.

[115] Kim, Y., Han, D., Mutlu, O., and Harchol-Balter, M., “ATLAS: A scalable and high-
performance scheduling algorithm for multiple memory controllers,” High Perfor-
mance Computer Architecture (HPCA), 2010 IEEE 16th International Symposium
on, IEEE, 2010, pp. 1–12.

80

https://vlsiarch.ecen.okstate.edu/flows/
https://vlsiarch.ecen.okstate.edu/flows/

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Memory System
	Memory Technology
	Emerging Memory Technology
	Dissertation Organization

	STT-MRAM Architecture for Smart Activation and Sensing
	Introduction
	Challenges in Architecting STT-MRAM
	Large Sense Amps with High Power Consumption
	Limitations with Shared Sense Amps

	SMART Architecture
	Re-architecting STT-MRAM
	Benefits
	Discussion

	Device Modeling
	Area Model
	Timing Model
	Energy Model

	Evaluation
	Evaluation Methodology
	Performance
	Energy
	Sensitivity Analysis

	Related Work
	Summary

	Improving Load Balancing for Memory Channels
	Introduction
	Background
	Increasing Demand of Memory Capacity and Bandwidth
	High Bandwidth Memory

	Challenges in Many Channel Memory Systems
	Imbalanced Channel Utilization
	Implementation Challenges of Memory Controllers

	Overview of the Proposed Design
	Re-architecting Memory Controllers
	Re-architecting HBM
	Overhead

	Evaluation
	Methodology
	Performance Analysis
	Area Overhead

	Related Work
	Summary

	Conclusion
	Bibliography

