
Realizing Software Defined Radio – A Study in

Designing Mobile Supercomputers

by

Yuan Lin

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2008

Doctoral Committee:
Associate Professor Scott A. Mahlke, Co-Chair
Professor Trevor N. Mudge, Co-Chair
Professor Marios C. Papaefthymiou
Associate Professor Dennis M. Sylvester
Professor Chaitali Chakrabarti, Arizona State University

ABSTRACT

Realizing Software Defined Radio – A Study in Designing Mobile

Supercomputers

by

Yuan Lin

Co-Chairs: Scott A. Mahlke and Trevor N. Mudge

The physical layer of most wireless protocols is traditionally implemented in custom

hardware to satisfy the heavy computational requirements while keeping power consump-

tion to a minimum. These implementations are time consuming to design and difficult to

verify. A programmable hardware platform capable of supporting software implementa-

tions of the physical layer, or Software Defined Radio (SDR), has a number of advantages.

These include support for multiple protocols, faster time-to-market, higher chip volumes,

and support for late implementation changes. The challenge is to achieve this under

the power budget of a mobile device. Wireless communications belong to an emerging

class of applications with the processing requirements of a supercomputer but the power

constraints of a mobile device – mobile supercomputing.

This thesis presents a set of design proposals for building a programmable wireless

communication solution. In order to design a solution that can meet the lofty require-

ments of SDR, this thesis takes an application-centric design approach – evaluate and

optimize all aspects of the design based on the characteristics of wireless communication

protocols. This includes a DSP processor architecture optimized for wireless baseband pro-

cessing, wireless algorithm optimizations, and language and compilation tool support for

the algorithm software and the processor hardware. This thesis first analyzes the software

characteristics of SDR. Based on the analysis, this thesis proposes the Signal-Processing

On-Demand Architecture (SODA), a fully programmable multi-core architecture that can

support the computation requirements of third generation wireless protocols, while op-

erating within the power budget of a mobile device. This thesis then presents wireless

algorithm implementations and optimizations for the SODA processor architecture. A

signal processing language extension (SPEX) is proposed to help the software develop-

ment efforts of wireless communication protocols on SODA-like multi-core architecture.

And finally, the SPIR compiler is proposed to automatically map SPEX code onto the

multi-core processor hardware.

ii

c© Yuan Lin 2008
All Rights Reserved

To my Shepherd, mom, dad, and Jen

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank God – Father, Son and Spirit. Without

His love and guidance, I would be lost. I am grateful that He has led me to complete

my graduate study at the University of Michigan. Hindsight is always 20/20. I see now

through all the difficulties that He is there with me, guiding me and loving me.

I would like to thank both of my advisors, Prof. Trevor Mudge and Prof. Scott Mahlke,

for their guidance and support. Without them, this thesis would not have be possible.

Both have been excellent mentors to me. It is a great privilege to have worked with both

of them. They have provided me with invaluable guidance, support, and opportunities to

succeed. I would like to thank Prof. Chaitali Chakrabarti for being my ”unofficial PhD

advisor”. It has been a pleasure working with you. Your helpful insights have made a

great impact on my graduate work. I would also like to thank the other members of my

dissertation committee, Prof. Marios Papaefthymiou and Prof. Dennis Sylvester. Thank

you both for your time and valuable comments.

The work presented in this thesis is a collaboration between many graduate students.

It would not have been possible without the help of my colleagues. I would like to thank

Hyunseok Lee for his invaluable expertise on wireless communication protocols. Mark

Woh and Yoav Harel both have helped me tremendously with the SODA processor’s

power analysis. They also have contributed greatly in the design of the SODA processor

architecture. Yoonseo Choi was responsible for constructing parts of the compiler system.

iii

Without the help of my colleagues, I would have struggled much longer in my PhD journey.

I also had the chance to met many of my fellow graduate students. They made my

graduate experiences much more fun and rewarding. I would like to thank Zaher Andraus,

Geoff Blake, Jason Blome, Yoonseo Choi, Mike Chu, Nate Clark, Ganesh Dasika, Kevin

Fan, Shuguang Feng, Shantanu Gupta, Jeff Hao, Yoav Harel, Amir Hormati, Taeho Kgil,

Manjunath Kudlur, Hyunseok Lee, Mojtaba Mehrara, Robert Mullenix, Hyunchul Park,

Dave Roberts, Sangwon Seo, Mark Woh, and Hongtao Zhong. I have become good friends

with many of them, and I will cherish their friendships for the rest of my life.

Finally, I would like to thank my family. Mom and dad, thank you so much for all

of the love and sacrifice that you have done for me. Without you, I won’t even get the

chance to write this thesis. I am eternally indebted to you. My wife Jennifer Wang, you

are a ray of sunshine in my life. I consider myself truly blessed to have married you. You

are my best friend and best supporter for the past six years. I can’t even begin to imagine

my life without you. You are the reason that I am able to finish this PhD thesis. Thank

you.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

CHAPTERS

1 Introduction . 1
1.1 Contribution . 3
1.2 Organization . 6
1.3 Acknowledgements . 7

2 The W-CDMA Wireless Communication Protocol 9
2.1 Protocol Overview . 10
2.2 Workload Analysis . 12
2.3 Summary . 16

3 SODA: A DSP Architecture For SDR . 17
3.1 Introduction . 17
3.2 W-CDMA Analysis Overview . 18

3.2.1 System-level Behavior . 18
3.2.2 Algorithm-level Behavior 19

3.3 Architectural Design Tradeoffs for SDR 20
3.4 SODA Architecture for SDR . 22

3.4.1 Architecture Overview . 22
3.4.2 Arithmetic Data Precisions 26
3.4.3 Vector Permutation Operations 26
3.4.4 Long Vector Arithmetic Operations 27
3.4.5 Vector-Scalar Move Operations 27
3.4.6 Algorithm Specific Operations 29
3.4.7 Vector Alignment Through Programmable DMA. 31
3.4.8 Embedded Low-power Design 31

3.5 SIMD Design Tradeoffs . 32

v

3.6 Experimental Evaluation . 36
3.6.1 Protocol System Implementations 37
3.6.2 Performance and Power Results 39
3.6.3 The Cost of Programmability 43

3.7 Summary . 44

4 W-CDMA Algorithm Implementations . 45
4.1 Introduction . 45
4.2 FIR Filter . 46
4.3 Rake Receiver . 48

4.3.1 Searcher . 50
4.3.2 Rake Fingers and Combiner 51

4.4 Convolutional Decoder . 53
4.5 Turbo Decoder . 56

4.5.1 Performance Results . 59
4.5.2 Related Work . 63

4.6 Summary . 63

5 The ARM Ardbeg SDR Processor . 64
5.1 Introduction . 64
5.2 Architectural Overview . 66

5.2.1 SODA Architectural Overview 67
5.2.2 Ardbeg Architecture . 69

5.3 Architectural Evolution From SODA to Ardbeg 70
5.3.1 Optimized Wide SIMD Design 70
5.3.2 LIW SIMD Execution . 75
5.3.3 Application Specific Hardware Acceleration 77
5.3.4 Hardware Support for Multi-core Scheduling 82

5.4 Results and Analysis . 83
5.4.1 Wireless Protocols Results 85
5.4.2 Wireless Algorithms Analysis 86
5.4.3 Wireless Algorithm Power Breakdown 89

5.5 DSP Processor Architecture Survey 91
5.5.1 SIMD-based SDR Processor Architecture 92
5.5.2 Reconfigurable SDR Processor Architectures 93
5.5.3 VLIW-based DSP Architectures 95
5.5.4 Vector/SIMD based Multi-media Solutions 95

5.6 Summary . 96

6 Language Extensions for Software Defined Radio 97
6.1 Introduction . 97
6.2 Modeling Wireless Protocols . 99

6.2.1 Streaming Computation in Wireless Protocols 100
6.2.2 Parameterized Dataflow Model (PDF) 101
6.2.3 Modeling Streaming Communications 103

vi

6.3 SPEX Extensions for Streaming Computation 106
6.3.1 Overview . 107
6.3.2 SPEX Streaming Types . 108
6.3.3 SPEX Streaming Functions 110
6.3.4 SPEX Streaming Constructs 113
6.3.5 Implementing DSP Algorithm Kernels 115
6.3.6 Implementing Memory Buffers 117
6.3.7 Implementing DSP Systems 121

6.4 Related Work . 124
6.5 Summary . 125

7 Compilation Support for the Ardbeg processor 126
7.1 Introduction . 126
7.2 The SPIR Compiler . 130

7.2.1 Rationales for Function-level Compilation 130
7.2.2 Overall Compiler Infrastructure 131
7.2.3 SPIR Intermediate Representation 133
7.2.4 Input and Output Language Formats 133
7.2.5 Experimentation Infrastructure 136

7.3 From SPEX to SPIR: Frontend Compilation 136
7.3.1 Basic Dataflow . 137
7.3.2 Parameterized Dataflow . 139

7.4 Function-level Scheduling and Optimizations 141
7.4.1 Scheduling Overview . 142
7.4.2 Coarse-grained Software Pipelining 143

7.5 From SPIR to SocC: Code Generation 148
7.5.1 Predicated Execution . 148
7.5.2 Memory Buffers and DMA Operations 149
7.5.3 SocC Output Example . 149

7.6 Related Work . 151
7.7 Summary . 152

8 Conclusion . 153
8.1 Summary . 153
8.2 Future Work . 155

BIBLIOGRAPHY . 157

vii

LIST OF FIGURES

Figure

1.1 Throughput and power requirements of typical 3G wireless protocols. The
results are calculated for 16-bit fixed point operations. 2

2.1 Physical layer operation of W-CDMA wireless protocol. Each block in-
cludes the algorithm’s name, vector or scalar computation, vector width,
and the data precision. The algorithms are also grouped into four cate-
gories, shown in shaded boxes: filtering, modulation, channel estimation,
and error correction. 10

2.2 Workload analysis result of W-CDMA physical layer processing. ”Vector
comp” indicates whether the algorithm contains vector-based arithmetic
operations. ”Vector width” lists the native computation vector width. ”Bit
width” lists the data precision width. ”Comp Mcycle/sec” lists the cycle-
count of running the algorithm on a general purpose processor. 12

2.3 Memory requirements for the W-CDMA physical layer algorithms. ”KB” is
the memory size requirement in KByte. ”MBps” is the memory through re-
quirement in KByte-per-second. ”Input buffer and output buffer” are the
IO memory requirements. ”Scratchpad” is the internal memory require-
ment. As shown in the figure, the overall memory size and throughput
requirements for W-CDMA is not very high. Majority of which come from
scratchpad memory access of intermediate computation results. 15

3.1 SODA Architecture for SDR. The system consists of 4 data processing
elements (PEs), 1 control processor, and global scratchpad memory, all
connected through a shared bus. Each PE consists of a 32-wide 16-bit
SIMD pipeline, a 16-bit scalar pipeline, two local scratchpad memories, an
Address-Generation-Unit(AGU) for calculating memory addresses, and a
Direct-Memory-Access (DMA) unit for inter-processor data transfer. 23

3.2 8-wide SIMD Shuffle Network(SSN) . 24

3.3 Scalar-SIMD Operations for Various DSP Algorithms 28

3.4 Special Intrinsic Operations . 30

3.5 Average normalized power of a 4-PE configuration for achieving the com-
putational requirements of W-CDMA and 802.11a in 180nm technology . . 33

viii

3.6 W-CDMA 2Mbps DCH data channel implementation. The kernel mapping
is shown with the algorithm mapping and memory allocation on the PEs,
control processor, and global memory. The execution trace is shown with
two periodic real-time deadlines: power control and searcher. 38

3.7 Kernel Algorithms in W-CDMA and 802.11a and their performance on a
GPP and SODA. 40

3.8 System Area and Power Summary . 41

3.9 Power efficiency comparison between SODA-based and ASIC implementa-
tions for FIR filter and Turbo decoder. The Turbo decoder ASIC data are
taken from TI Turbo Coprocessor [26], and FIR filter ASIC data are taken
from [77]. 43

4.1 2Mbps W-CDMA workload profile in Mops on a general purpose processor
(GPP) . 46

4.2 FIR filters expressed in direct form and transposed form. The two filter
forms are mathematically equivalent . 47

4.3 W-CDMA rake receiver. It consists of a searcher, despreader/descrambler
pairs, and a combiner. Due to multi-path fading effect, a searcher is used to
find the synchronization points for each delayed version of the same signal
stream. Each despread/descrambler pair correspond to one of the delayed
signal stream. And the combiner combines the different paths together. . . 48

4.4 Trellis state computation, and SIMD implementation using the SSN 55

4.5 Block Diagram of a Turbo Decoder . 56

4.6 Parallel MAX-Log-MAP Scheduling . 57

4.7 Computation time of 1 iteration of Turbo decoding for parallel processing
vs. parallel processing with overlapping interleaving 59

5.1 SODA and Ardbeg architectural diagrams, and a summary of the key ar-
chitectural features of the two designs. 68

5.2 Plots of normalized energy, delay, and energy-delay product versus area
plots for different Ardbeg SIMD width configurations running 3G Wireless
algorithms. The results are normalized to the 8-wide SIMD design. 71

5.3 SIMD shuffle network for the SODA PE and the Ardbeg PE. For illustration
clarity, these examples show 16-wide shuffle networks. The SODA PE has
a 32-wide 16-bit 1-stage iterative shuffle network, and the Ardbeg PE has
a 128-lane 8-bit 7-stage Banyan shuffle network. 72

5.4 Normalized energy and energy-delay product for key SDR algorithms run-
ning on Ardbeg for different shuffle network topologies. 73

5.5 Ardbeg VLIW support. Ardbeg has 7 different function units, as listed in
sub-figure a. These seven function units share 3 SIMD register file read
and 2 write ports. At most two SIMD operations can be issued per cycles,
and not all combinations of SIMD operations are supported. Different LIW
configurations are evaluated in terms of delay and energy-delay product, as
shown in sub-figure c and d. The results are shown for software pipelined
Ardbeg assembly code. 75

ix

5.6 Ardbeg’s pair-wise butterfly SIMD operation implemented using a fused
permute and ALU operation. The figure shows pairs of 2-element butterfly.
Ardbeg supports pairs of 1-,2-,4-,8-,and 16-element butterfly of 8- and 16-
bits. This butterfly uses the inverse perfect shuffle pattern because the
input to each SIMD ALU lane must come from the 2 inputs of the same
SIMD lane. 80

5.7 SSN shuffling patterns used for matrix transpose. 81

5.8 DSP algorithms that are used in W-CDMA, 802.11a and DVB wireless
protocols. 83

5.9 Throughput and power achieved for SODA and Ardbeg for W-CDMA,
802.11a and DVB. ASIC 802.11a, Pentium M, Sandblaster, and ADI Tiger-
Sharc results are also included for comparison purposes. Results are shown
for processors implemented in 90nm, unless stated otherwise. 85

5.10 Ardbeg speedup over SODA for the key DSP algorithms used in our wire-
less protocol benchmarks. The speedup is broken down into the different
architectural optimizations. These include optimized SIMD ALU, wider
1-cycle SIMD shuffle network, reduced SIMD memory latencies through
LIW execution, and compiler optimizations with software pipelining. . . . 86

5.11 SODA and Ardbeg power consumption breakdown for the four key kernel
algorithms. The power consumptions are normalized to their respective total. 90

5.12 Architectural comparison summary between proposed SIMD-based SDR
processors. *For the Icera DXP and the Phillips EVP, some of the archi-
tectural details are not released to the public at this time. 92

6.1 Part a: W-CDMA System Level Diagram. W-CDMA is used as the on-
going example for SPEX in this study. Part b: DSP system run-time
streaming computation pattern. The receiver may use different number of
rake fingers (denoted by the R and P nodes) and different channel decoding
algorithms (denoted by the T and V nodes). Shaded B nodes are memory
buffers. 100

6.2 PDF execution model consists of three steps. Step 1, the parameterized
dataflow graph is constrained into a synchronous dataflow graph. Step 2,
the dataflow is executed following a static compile-time schedule. Step 3,
PDF graph’s data and states are updated with the most recent computed
values. 102

6.3 Example of a vector stream buffer with 1 writer and 2 readers. This buffer’s
communication pattern has all four streaming properties. This is a vec-
tor buffer, which requires multi-dimensional streaming patterns. Its has
non-sequential streaming patterns because its readers must periodically
reconfigure their streaming addresses. The writer and readers are decou-
pled because they have different real-time deadlines. This is also a shared
memory buffer because the readers share the same data, but have different
streaming patterns. 105

6.4 SPEX language constructs for describing dataflow operations. 113

x

6.5 DSP algorithm kernel example – FIR filter. The keyword stream kernel

is on line 1 to indicate that this is a PDF actor function. 116

6.6 A vector stream buffer with 2 readers and 1 writer. Data objects are de-
clared with the keyword spex memory (on line 2). This example implements
the same buffer shown in Figure 6.3 . 118

6.7 Rake receiver implemented with PDF graph functions: pdf graph init,
pdf graph, and pdf graph final. These three PDF functions are used to
describe the three stages in a PDF’s run-time execution. pdf graph init is
used to describe the PDF graph initialization; pdf graph is used to describe
the PDF graph execution; and pdf graph final is used to describe the
PDF graph finalization. 120

6.8 W-CDMA receiver implementation. The example shows both C and SPEX
implementations of the receiver. 123

7.1 SDR control-data decoupled MPSoC architecture consisting of one general-
purpose control processor, multiple data processors, and a hierarchical
scratchpad memory system that are all interconnected with a bus. 127

7.2 Two-tier compilation approach for SODA and Ardbeg processors. On the
system-level, the compiler deal with coarse-grained compilation challenges,
such as function-to-processor assignments and DMA operations. On the
kernel-level, the compiler deal with fine-grained compilation challenges,
such as VLIW scheduling and vectorization for SIMD processors. The
SPIR compiler is a system-level compiler that only address the coarse-
grained compilation challenges. 128

7.3 The overall SPIR compilation flow. The input is written in C with SPEX
language extensions. The frontend translates the input into a SPIR dataflow
graph. Dataflow scheduling and optimizations are applied to the SPIR
dataflow graph by annotating the dataflow actors with processor assign-
ments and memory allocations. The code generation then translate the
SPIR graph into SocC multi-threading C code. 132

7.4 SocC programming example. SocC allows programmers to explicitly par-
allelize a program without the complexity of writing the code for explicit
thread management. PE0-PE2 refer to the Ardbeg data processors. DMEM0-
DMEM2 refer to Ardbeg data processors’ local memories. 134

7.5 This diagram describes a simple stream construct written in SPEX, and
its corresponding SPIR PDF representation. 137

7.6 This diagram describes a stream construct with the if-else construct, and
its corresponding SPIR boolean dataflow representation. 140

7.7 This diagram describes a stream construct with the ll-for construct, and
its corresponding SPIR reconfigurable dataflow representation. 141

7.8 Execution speedup for W-CDMA benchmarks compiled by greedy modulo
scheduler running on 1 to 16 data processors. 146

xi

7.9 SPEX, SPIR, and SocC implementation of a simple feedforward dataflow
containing two actors. The SPEX implementation is the input of the SPIR
compiler, and the SocC implementation is the output of the SPIR compiler.
In the SocC implementation, the dataflow is mapped onto two Ardbeg PEs,
and is software pipelined into two stages. 150

xii

CHAPTER 1

Introduction

Untethered digital devices are already ubiquitous. The world has over 3.3 billion active

cell phones [8], each a sophisticated multiprocessor. With worldwide wireless semicon-

ductor revenue totaled $24.3 billion in 2005, mobile terminals have arguably become one

of the dominant computing platforms. We expect to see both the types and numbers of

mobile digital devices increase in the near future. New technologies will improve the mo-

bile phone by incorporating advanced multi-media functionalities. They will also improve

the laptop by shrinking the form factor and increasing its battery life. These trends have

blurred the line between traditional desktop computing and mobile cellular phones. We

are in an era where users are no longer satisfied with computing powers that are confined

to their homes or offices. Instead, users want to bring computing powers to wherever

they are and whenever they want. To achieve this, we require software applications with

the extraordinary computational requirement of a supercomputer running on the power

budget of a mobile device – mobile supercomputers [12].

Software Defined Radio (SDR) is one of these mobile supercomputing applications. It

promises to deliver a cost effective and flexible mobile communication solution by imple-

menting the wide variety of the wireless protocols in software. The operation throughput

1

1

10

100

1000

0.1 1 10 100

Power (Watts)

P
e

a
k

 P
e

rf
o

rm
a

n
c

e
 (

G
o

p
s

)

General Purpose

Computing

Pentium M

1 M
ops/m

W

B
e
tte

r

P
o
w

e
r E

ffic
ie

n
c
y

10 M

ops/m
W

100 M
ops/m

W

TI C6x

IBM Cell

Embedded

DSPs

High-end

DSPs

Mobile SDR

Requirements

Figure 1.1: Throughput and power requirements of typical 3G wireless protocols. The
results are calculated for 16-bit fixed point operations.

requirements of current third-generation (3G) wireless protocols are already an order of

magnitude higher than the capabilities of modern DSP processors. This gap is likely to

grow in the future. Figure 1 shows the computation and power demands of a typical

3G wireless protocol. Although most DSP processors operate at an efficiency of approxi-

mately 10 million operations per second (Mops) per milliwatt (mW), the typical wireless

protocol requires 100 Mops/mW. Hence, most wireless protocols to date have been im-

plemented with custom hardware. Although custom hardware can meet the operational

requirements, a programmable solution offers many potential advantages:

• A programmable architecture would allow multimode operation, running different
protocols depending on the available wireless network-GSM in Europe, CDMA in
the USA and some parts of Asia, and 802.11 in coffee shops. This is possible with
less hardware than custom implementations require.

• A protocol implementation’s time to market would be shorter because it could reuse
the hardware. The hardware integration and software development tasks could
progress in parallel.

2

• Prototyping and bug fixes would be possible for next-generation protocols on ex-
isting silicon through software changes. The use of a programmable solution would
support the specification’s continuing evolution; after the chipset’s manufacture, de-
velopers could deploy algorithmic improvements by changing the software without
redesign.

• Chip volumes would be higher because the same chip could support multiple proto-
cols without requiring hardware changes.

1.1 Contribution

In the foreseeable future, it is likely that many mobile communication devices are

going to be supported by SDR technology. This thesis presents a set of design proposals

for realizing a programmable wireless protocol implementation. In order to design a solu-

tion that can meet the lofty requirements of SDR, this thesis takes an application-centric

approach – evaluate and optimize all aspects of the design based on the characteris-

tics of wireless communication protocols. Because SDR is an interdisciplinary research

topic, this thesis examines multiple research subjects under the overall objective of real-

izing SDR: computer architecture, DSP algorithm optimizations, programming language

design, and compiler construction. We must first understand the workings of wireless

protocols and their algorithms. A DSP processor is then designed and optimized for

wireless communication algorithms. These wireless algorithms must also be optimized

for the DSP architecture. Language and compilation support must be provided to bridge

the gap between the programmers and the hardware. This thesis makes the following

contributions:

• A programmable multiprocessor architecture, SODA, for supporting third genera-
tion wireless protocols within the power budget of a mobile device.

• Design and implementation of wireless protocol’s DSP algorithms for SODA.

• A comparison study between the SODA processor and the Ardbeg processor. The
Ardbeg DSP processor is a commercial prototype based on the SODA architecture.

3

• A programming language extension, SPEX, for describing wireless protocols.

• A proposed multiprocessor compiler, SPIR, for the Ardbeg processor.

Wireless Protocol Analysis. Wireless protocols are collections of disparate DSP

algorithm kernels working together as one system. It requires both the implementation

of each algorithm as well as the construction of the entire system with the algorithms as

building blocks. The DSP algorithms consist mostly of long vector arithmetic operations.

The system consists of streaming computation where data are processed sequentially

through a pipeline of DSP functions.

Software protocol processing provides many advantages over hard-wired solutions.

However, the performance requirements for current generation wireless protocols are an

order of magnitude higher than the capabilities of modern general purpose and DSP pro-

cessors. This thesis chooses the W-CDMA wireless protocol as our case study. Workload

profiling shows that the 2Mbps W-CDMA baseband processing requires the computa-

tional power of approximately seven Pentium 4 processors. In addition, a mobile SDR

processor must run on the power budget of a mobile terminal. A typical mobile de-

vice allocates around 0.5 Watt for baseband processing, whereas typical general purpose

processors consume over 20 Watts.

Processor Design. This thesis proposes a multi-core DSP architecture, SODA, for

supporting SDR. SODA consists of one control processor, four data processors, and a

shared global memory. The control processor is an embedded general purpose processor

that is capable of handling the control-intensive code that is used to manage the overall

baseband processing system. The data processors are specialized DSP processors that

can perform data-intensive computations.

Because the biggest challenge is meeting the computation requirements while operat-

ing within the embedded power envelope, the focus is on designing a power-efficient data

4

processor. Therefore, we picked an existing low-power embedded processor, ARM Cortex

M-3, as SODA’s control processor. The design of the SODA data processor is motivated

by the observation that the majority of the computation are long vector arithmetic oper-

ations. Previous researches have shown that a Single Instruction Multiple Data (SIMD)

architecture is a good fit for vector-based computations. However, most existing SIMD-

based processors operate on relatively short 4 to 8 element vectors, due to intra-vector

data rearrangement difficulties in general purpose computations. Because the SODA data

processor is targeted only at the set of DSP algorithms for wireless communication, the

data rearrangement issue can be handled efficiently through a specialized vector permu-

tation network. Analysis shows that a wide SIMD datapath that supports 32 element

vectors is the most power efficient for wireless baseband processing algorithms.

A commercial SDR processor based on the SODA processor architecture has been

developed by ARM Ltd. The Ardbeg processor is also a multi-core DSP processor that

consists of 32-lane SIMD data processors. This thesis provides a detailed comparison

study between the SODA and Ardbeg processors. This study reconfirms many of the

SODA architectural decisions. It also reveals many design shortcomings of SODA, and

explains the subsequent design improvements in Ardbeg.

Algorithm Implementations. Each DSP algorithm in W-CDMA is hand coded and

optimized for the SODA data processor. The majority of wireless protocols’ algorithms

operate on large vectors, and are therefore a good fit for a wide-SIMD design. This

thesis validates this claim by demonstrating the implementation of key DSP algorithms on

SODA. In addition, DSP algorithms usually have multiple different implementations, not

all of which can be mapped efficiently onto the wide-SIMD design. This thesis describes

a set of DSP algorithm implementations that are suited for the SODA architecture.

Language and Compiler Support. This thesis also proposes a programming lan-

5

guage and compilation flow for mapping wireless protocols onto SODA-like multi-core

DSP architectures. Motivated by the streaming computation of the DSP systems, pre-

vious works have proposed using concurrent dataflow models to describe DSP systems.

The majority of the compilation research focused on the static dataflow model due to its

simplicity and determinism. Although wireless protocols have streaming properties that

match the dataflow model, they cannot be described with a static dataflow model. In

between long episodes of streaming computation, DSP systems intermittently reconfigure

the streaming patterns to account for changes from the users and the environment. This

thesis finds that a reconfigurable dataflow model, parameterized dataflow, is better suited

for describing wireless protocols.

The SPIR compiler is a function-level compiler, which means that the granularity of

an atomic execution unit is a function, not an instruction. Traditional compiler’s inter-

mediate representation (IR) is used to model instruction-level interactions. A different IR

is needed to model the inter-function behavior. This thesis proposes using the parameter-

ized dataflow model as compiler’s intermediate representation. The proposed high-level

programming language, SPEX, is a language extension for C. Its purpose is to serve as a

guideline for programmers to write stylized C code that can be translated into the param-

eterized dataflow model. SPIR compiler’s backend performs optimization on the dataflow

IR and generates multi-threaded C code for the Ardbeg processor.

1.2 Organization

The remainder of this dissertation proposal is organized as follows. Chapter 2 provides

our analysis on the software characteristics of our SDR case study – the W-CDMA wireless

protocol. In Chapter 3, this thesis proposes the Signal-Processing On-Demand Architec-

6

ture (SODA), a fully programmable architecture that supports SDR. In Chapter 4, this

thesis then shows our SDR algorithm implementations on SODA. In Chapter 5, this the-

sis presents a comparison study between SODA and its subsequent commercial prototype

– Ardbeg. In Chapter 6, Signal Processing language EXtensions (SPEX) are proposed

. And finally, in Chapter 7, an multiprocessor compiler is described to automatically

parallelize SPEX code onto the Ardbeg processor.

Ultimately, we believe that the need to support many increasingly complex wireless

protocols will make the use of programmable systems for these protocols inevitable. And

the techniques proposed in this thesis are relevant in designing viable solutions for SDR

and other mobile supercomputing applications.

1.3 Acknowledgements

The work presented in this thesis is a collaboration between three professors and eight

graduate students. The author of this thesis has been the student leader on all fronts of

this project, but other people have made many key contributions to the projects as well.

The wireless protocol analysis was led by Hyunseok Lee. Other contributors included

the author of this thesis, Yoav Harel and Mark Woh. The architecture study was led by

the author of this thesis, with helps from Hyunseok Lee, Mark Woh, and Yoav Harel.

Yoav Harel was involved in the architectural design. Hyunseok Lee helped on the wireless

protocol analysis and benchmarking. And Mark Woh was responsible for the SODA power

analysis. The comparison study between SODA and Ardbeg is done as a collaboration

between Mark Woh, the author of this thesis, and Sangwon Seo. The SPEX language

extension is proposed solely by the author of this thesis. There are other contributors to

the SPIR compiler. They include Yoonseo Choi and Manjunath Kudlur. Yoonseo Choi

7

was responsible for the Ardbeg code generation. And Manjunath Kudlur developed an

optimal software pipelining algorithm as a part of the compiler optimization.

8

CHAPTER 2

The W-CDMA Wireless Communication Protocol

The goal of this study is to design a programmable solution for wireless communi-

cation protocols. The first step of this process is to develop a deep understanding of

the underlying requirements and computation characteristics of wireless protocols. The

majority of the computation occurs at the physical layer of protocols, where the focus is

the signal processing. Traditionally, kernels corresponding to the dominant tasks, such as

filters and decoding, are identified. Design alternatives are then evaluated on the subset

workload. This approach has the advantage of dealing with a small amount of code. How-

ever, we have found that the interaction between tasks in SDR has a significant impact

on the hardware architecture. This occurs because the physical layer is a combination

of algorithms with different complexity and processing time requirements. For example,

high computation tasks that run for a long period of time can often be disturbed by small

tasks. Further, these small tasks have hard real-time deadlines, thus they must be given

high priority. We believe it is necessary to explore the whole physical layer operation with

a complete model.

Among many wireless protocols, we select the wideband code division multiple access

(W-CDMA) protocol as a representative wireless workload for study. W-CDMA system

9

2Mbps W-CDMA Diagram

A
n

alo
g F

ro
n

ten
d

U
p

p
er layers

Transmitter

Receiver

LPF-Tx
vector: 64

16 bits

Scrambler
vector: 2560

1 bit

Spreader
vector: 512

8 bits

Interleaver
scalar
8 bits

Turbo Encoder
vector: 3

1 bit

Descrambler
vector: 2560

8 bits

Despreader
vector: 512

8 bits

C
o

m
b

in
er

vecto
r: 12

8 b
its

Deinteleaver
scalar
8 bits

LPF-Rx
vector: 64

8 bits Descrambler
vector: 2560

8 bits

Despreader
vector: 512

8 bits

Channel Estimation

ModulationFiltering Error Correction

Searcher
vector: 320; 8 bits

Turbo
Decoder
vector: 8

8 bits

Figure 2.1: Physical layer operation of W-CDMA wireless protocol. Each block includes
the algorithm’s name, vector or scalar computation, vector width, and the data precision.
The algorithms are also grouped into four categories, shown in shaded boxes: filtering,
modulation, channel estimation, and error correction.

is one of the dominant third generation wireless communication networks where the goal

is multimedia service including video telephony on a wireless link [41]. W-CDMA im-

proves over prior cellular protocols by increasing the data rate from 64 Kbps to 2 Mbps.

Additionally, W-CDMA unifies a single service link for both voice and packet data, com-

pared with supporting only one service in previous generations. We have developed a

full C implementation of the W-CDMA physical layer to serve as the basis for our study.

The implementation can be executed on a Linux workstation and thus studied with con-

ventional architectural tools. In this chapter, Section 2.1 provides a summary of the

computing characteristics of the W-CDMA physical layer.

2.1 Protocol Overview

The protocol stack of the W-CDMA system consists of several layers. Each protocol

layer provides a specific function in the system. For example the physical layer placed at

the bottom of protocol stack is responsible for overcoming errors induced by an unreliable

10

wireless link, and the medium access control (MAC) layer resolves contention on the

shared radio resources. In this section we discuss the computation model of the W-CDMA

physical layer.

Due to the high computation demand and tight power budget, the physical layer

in most wireless protocols is implemented in ASICs. Although SDR encompasses all

protocols layers, this thesis only focuses on the physical layer due to its computation

and power importance. The operation of physical layer utilizes both digital and analog

circuits. Because the operation frequency of analog circuits such as low noise amplifier

and mixers is over GHz level, it is infeasible to achieve programmability with current

digital circuit technology. Thus, this thesis narrows down our focus on the physical layer

operation performed by digital circuits. Figure 1 shows a high level block diagram of

W-CDMA physical layer implemented by digital circuits. It is placed between upper

layer protocols and the front-end circuit. The upper layer protocols are implemented on

a general purpose processor due to their relatively low computation requirements. The

front-end circuit is realized by analog circuit technology.

The operation flow of the W-CDMA physical layer is shown in Figure 2.1. It contains

a set of disparate DSP algorithm kernels that work together as one system. There are

four major components: filtering, modulation, channel estimation, and error correction.

Filtering algorithms are used to suppress signals transmitted outside of the allowed fre-

quency band so that interference with other frequency bands are minimized. Modulation

algorithms map source information onto the signal waveforms of the transmitter, and

receivers demodulate the signal waveforms back into source information. Channel estima-

tion algorithms calculate the channel conditions to synchronize the two communicating

terminals to ensure lock-step communication between the sender and the receiver. Error

correction algorithms are used to combat noisy channel conditions. The sender encodes

11

Defined in W-CDMA standard

Vector

Comp.

12 fingers, 3 base stations

Spreading factor = 4

12 fingers, 3 base stations

3 base stations

Defined in W-CDMA standard

2Mbps data rate

4 filters x 65 coeff x 3.84Msps

2 filters x 65 coeff x 7.68Msps

yes

yes

yes

yes

no

no

partial

yes

yes

Scrambler

Descrambler*

Spreader

Despreader*

PN Code (Rx)

PN Code (Tx)

Combiner*

FIR (Tx)

FIR (Rx)

3 base stations, 320 windows

1 frame

1 frame

K=4

K=4, 5 iterations

no

no

partial

yes

yes

Searcher*

Interleaver

Deinterleaver

Turbo Enc.

Turbo Dec.*

Vector

Length

2560

2560

512

512

1

1

12

64

64

320

1

1

3

8

Bit

Width

1,1

1,8

8

8

8

8

8

1,16

8,8

1,8

8

8

1,1

8,8

Comp.

Mcycles/sec

240

2,600

300

3,600

30

10

100

7,900

3,900

26,500

10

10

100

17,500

Algorithms Configurations

W-CDMA (2Mbps)

*These algorithms have dynamically changing workloads that are dependent on channel conditions

Figure 2.2: Workload analysis result of W-CDMA physical layer processing. ”Vector
comp” indicates whether the algorithm contains vector-based arithmetic operations. ”Vec-
tor width” lists the native computation vector width. ”Bit width” lists the data precision
width. ”Comp Mcycle/sec” lists the cycle-count of running the algorithm on a general
purpose processor.

the original data sequence with a coding scheme that inserts systematic redundancies into

the output, which is decoded by the receiver to find the most likely original data sequence.

2.2 Workload Analysis

Workload Profiling. Figure 4.1 shows the result of our profiling. The first column

lists the W-CDMA algorithms that have been implemented as a part of this study. The

second column lists the corresponding configurations for each of the algorithms. The third

and fourth column lists the vector computation information for the algorithms. The fifth

column lists the data precision width.

12

The last column shows peak workload of the algorithms. The peak workload is the

minimum performance needed to sustain 2Mbps throughput, under the worst wireless

channel condition. For example we need a processor with approximately 8 GOPS in

order to finish the transmitter FIR task within 0.67 msec. For peak workload analysis,

we compiled our W-CDMA model with an Alpha gcc compiler, and executed on M5

architectural simulator [16]. We measure the instruction count that is required to finish

each algorithm. Results are calculated by dividing the instruction count by the maximum

processing time of each algorithm. The workloads of Viterbi and Turbo decoder requires

further verification because their processing times are not fixed. The data are calculated

under the assumption that the processing time of Viterbi decoder is 40 msec and that of

Turbo is 25 msec.

The results show that there are a set of key DSP algorithms that are responsible

for the majority of the computation. These algorithms include the FIR filter, searcher,

Turbo decoder, descrambler and despreader. Therefore, a SDR processor must process

these algorithms efficiently.

Parallelism in the Protocol. To meet the real-time W-CDMA performance require-

ment in software, we must exploit inherent algorithmic parallelism. Figure 4.1 columns

3 and 4 show the potential parallelism that can be exploited either through Data Level

Parallelism (DLP) or Thread Level Parallelism (TLP). We define DLP as the maximum

SIMD variable vector width. The first column represents maximum possible DLP through

the maximum number of elements in a vector. The width of element in a vector is shown

at the second column. Because a vector operation needs two operands, we represent the

element width of each vector separately. We define TLP as the maximum number of

different threads that can be executed in parallel.

From this result, we can see that searcher, filter, scrambler, and descrambler contain

13

a lot of vector parallelism due to intensive vector operation. In addition, we can expect

tasks level parallelism from them. For searcher operation we can issue 5120 tasks concur-

rently. For the case of scrambler and descrambler we can expect tasks level parallelism

by bisecting a wide vector into smaller ones. Although sliced vectors are not perfectly

uncorrelated, we can execute the smaller vector operations with negligible dependency. At

the practical view point, too wide vector is implausible. However turbo decoder, which is

one of dominant workloads, contains limited vector and task level parallelism. The vector

width of turbo decoder is 8.

Intrinsic Computations. Many DSP algorithms have a large number of multipli-

cation operations. Because multiplication is a power consuming operation, it is advanta-

geous to convert this into other operations. First, the multiplications in the spreader and

scrambler can be simplified to an exclusive OR, because both operands are either 1 or

-1. Second, the multiplication operations in the searcher, descrambler, despreader, and

FIR(Tx) can be simplified into conditional complement operations, because one operand

of the multiplications in these algorithms is either 1 or -1, and the other operand is a fixed

point number. However, the multiplication of the FIR(Rx) cannot be simplified because

both operands are fixed point numbers.

Vector permutations are required for the Turbo decoder, FIR, and searcher, because

either output or operand vector needs to be permuted. In Turbo decoder, the core com-

putation operation is the Add-Compare-Select operation, which consists of one vector

addition, one vector comparison, one vector permutation, and one vector move operation.

Memory Requirements. Figure 2.3 lists the memory size and throughput require-

ments for W-CDMA algorithms. Memory usage is divided into data and instruction

memory access. Data memory access is further divided into input buffer, output buffer,

and scratchpad memories. Input and output buffers are used for IO memory accesses, and

14

Defined in W-CDMA standard

12 fingers, 3 base stations

Spreading factor = 4

12 fingers, 3 base stations

2Mbps data rate

4 filters x 65 coeff x 3.84Msps

2 filters x 65 coeff x 7.68Msps

Scrambler

Descrambler*

Spreader

Despreader*

Combiner*

FIR (Tx)

FIR (Rx)

3 base stations, 320 windows

1 frame

1 frame

K=4

K=4, 5 iterations

Searcher*

Interleaver

Deinterleaver

Turbo Enc.

Turbo Dec.*

Algorithms Configurations

W-CDMA (2Mbps)

*These algorithms have dynamically changing workloads that are dependent on channel conditions

KB

0.7

5.6

0.1

0.4

0.1

0.3

10.5

20.8

1.2

26.1

2.6

61.5

MBps

15.4

123.2

1.9

7.6

0.1

7.6

245.8

2.1

1.1

5.2

4.0

96.0

KB

0.7

5.6

0.4

0.1

0.1

10.3

2.5

0.1

1.2

26.1

7.8

2.6

MBps

15.4

123.2

7.6

1.9

0.1

245.8

61.4

0.1

1.1

5.2

12.0

4.0

KB

0.7

0.7

0.1

0.1

0.1

0.1

0.1

32.0

9.5

8.7

0.1

6.4

MBps

15.4

15.4

3.9

3.9

0.1

1996.8

1996.8

2654.3

1.9

5.2

2.0

25600.0

Inst.

Mem.

0.5

0.5

0.4

0.3

0.1

0.2

0.2

3.1

0.1

0.1

1.6

3.4

Input Buffer Output Buffer Scratchpad

Data Memory

Figure 2.3: Memory requirements for the W-CDMA physical layer algorithms. ”KB” is
the memory size requirement in KByte. ”MBps” is the memory through requirement in
KByte-per-second. ”Input buffer and output buffer” are the IO memory requirements.
”Scratchpad” is the internal memory requirement. As shown in the figure, the overall
memory size and throughput requirements for W-CDMA is not very high. Majority of
which come from scratchpad memory access of intermediate computation results.

the scratchpad memory is used for storing intermediate computation results. As shown

in the figure, the overall memory size and throughput requirements for W-CDMA are not

very high. Majority of which come from scratchpad memory access. Most algorithms are

streaming DSP algorithms, where each input data is consumed once in a sequential order,

and each corresponding output data is produced in the same sequential order. Streaming

DSP algorithms do not need to buffer data, which result in smaller memory requirements.

The exceptions are the Turbo decoder, searcher, interleaver and deinterleaver – all require

their input data to be buffered. Interleaver and deinterleaver do not process their input

data in a sequential order. Turbo decoder and searcher process input data multiple times.

This is the reason behind the relatively high memory requirements for these algorithms.

Power Budget. [62] has presented an overall evaluation of cellular phones as embed-

15

ded systems. It has outlined the power budget for the various components in a cellular

phone. For W-CDMA physical layer processing, the power budget is typically around

300mW. This varies for difference wireless protocols and mobile devices.

2.3 Summary

W-CDMA wireless protocol has very high performance requirement that goes beyond

general purpose desktop processors, while also has sub-watt power budget of a typical

mobile terminal. The algorithms have abundance of data-level parallelism, with the ma-

jority of the computations being long vector arithmetic operations. The vector arithmetic

operations are dominated by 8- to 16-bit fixed point addition/subtraction operations, with

some additional multiplication operations. Fixed point divide operations are rarely used,

and floating point arithmetic operations are not required. The algorithms also have rel-

atively small memory footprints. The majority of which are used as scratchpad memory

for holding intermediate computation results. The IO memory throughput between the

algorithms is very low. In addition to W-CDMA, we have also examined several other

wireless protocols, including 802.11a [1] and 4G [39], and find these characteristics to

be common across all of the protocols. The results of these studies are omitted in this

thesis. For more information, please refer to [52], [56] and [84]. A viable SDR processor

must exploit these common protocol characteristics in order to meet both the power and

performance requirements.

16

CHAPTER 3

SODA: A DSP Architecture For SDR

3.1 Introduction

The proposed programmable architecture, SODA, can meet the extraordinarily high

performance requirements of current and future wireless protocols, use reasonable hard-

ware area, and operate within an embedded DSP processor’s power budget. The archi-

tecture is made up of four cores, each containing asymmetric dual pipelines that support

scalar and 32-wide SIMD execution. The arithmetic units are customized for 16 bits,

and the register files and software-controlled scratchpad memories need only a few ports.

Our results show that in a 90nm implementation, our architecture meets the through-

put requirements of the 2Mbps W-CDMA protocol and 24Mbps 802.11a running at only

400MHz. The area requirement is projected to be 6.7mm2. At the nominal operating

voltage of 1V, this translates into a power consumption of less than 500mW. This number

includes an ARM Cortex-M3 [2] control processor which is responsible for part of the

protocol processing.

The main contributions of SODA are the following:

1. A design study of a fully programmable wide-SIMD architecture, SODA, that can
meet the power and performance requirements of high-end wireless protocols. The

17

discussion outlines the architectural design choices and trade-offs required for an
application-domain specific multiprocessor architecture for SDR.

2. An evaluation of the wireless algorithms on the proposed architecture which shows
that high-end embedded programmable systems can meet the wireless protocols’
throughput requirements.

3.2 W-CDMA Analysis Overview

The majority of previous architectural studies on DSP applications have focused

mainly on small DSP kernels in existing benchmark suites, such as MediaBench [48]. Such

an approach cannot be used here since wireless protocols have complex inter-algorithm

interactions that cannot be characterized by studying individual algorithms in isolation.

Therefore, we have implemented the complete W-CDMA physical layer in C to study the

behavior of wireless protocol operations, as explained in [52]. Through the implementa-

tion of this protocol, we have found system-level challenges that have not been addressed

in the literature, as well as many algorithmic-level implementation details that could not

have been discovered through compiler analysis. Here we summarize our key observations

into two categories: protocol system-level behavior and DSP algorithm-level behavior.

3.2.1 System-level Behavior

DSP Kernel Macro-Pipelining – Wireless protocols usually consist of multiple DSP al-

gorithm kernels connected together in feed-forward pipelines. Data are streamed through

kernels sequentially. With no data temporal locality, cache structures provide little addi-

tional benefits, in terms of power and performance, over software controlled scratchpad

memories.

Low-throughput Inter-kernel Communication Traffic – Between DSP algorithm kernels,

data are transferred as scalar variables. The traffic throughput of the protocol systems

18

are not very high (as in 7.68MBps for W-CDMA receiving front-end). This implies that

inter-kernel data traffic can be mapped onto low-throughput, low-power inter-connects

with minimal performance degradation.

Heterogeneous Inter-kernel Communications – Some inter-kernel communications can

be streamed, where the receiving kernel can process input data individually (i.e. filters).

Other inter-kernel communications must be buffered, as the receiving kernels require

blocks of the data (i.e. Interleaver and Turbo Decoder). Kernels with the same through-

put, but different communication patterns will result in dramatically different hardware

requirements. Streamed kernels need only small FIFO queues, but the buffered kernels

require a large memory space.

Real-time Deadlines – W-CDMA has multiple periodic deadlines. Meeting these dead-

lines is one of the challenges that has not been addressed in previous published DSP archi-

tectural studies. Meeting real-time deadlines requires concurrent execution management

for multiple DSP algorithms.

3.2.2 Algorithm-level Behavior

High Data-Level Parallelism – Most of the computationally intensive DSP algorithms

have abundant data level parallelism. For example, the searcher, the heaviest workload

of the W-CDMA protocol, can be represented by 320-wide vectors.

8 to 16bit Data Width – Most algorithms operate on variables with small values. Our

analysis of W-CDMA and 802.11a suggests that the architecture should provide strong

support for 8 and 16 bit fixed point operations. 32 bit fixed point and floating point

support is not necessary.

Scalar-Vector operations – Because data are transferred as scalar data streams, but

processed as vector variables, efficient scalar-vector conversion operations are needed to

19

convert the inter-algorithm scalar variables into vector variables for intra-algorithm vector

processing.

3.3 Architectural Design Tradeoffs for SDR

In this section, we discuss the architectural implications for supporting the wireless

protocols. This includes managing concurrent DSP algorithm execution, controlling inter-

algorithm communication, meeting real-time deadlines, and supporting high-throughput

DSP algorithms.

Control Plane Vs. Data Plane. Complete software implementations of wireless

protocols usually require two separate steps: 1) the implementation of the DSP algorithms;

and 2) the implementation of the protocol system. The DSP algorithms are computational

intensive kernels that have relatively simple data-independent control structures. The

protocol system has relatively light computation load, but complicated data-dependent

control behavior. Therefore, our proposed SDR solution includes a two-tiered architecture:

a set of data processors that are responsible for heavy duty data processing; and a control

processor that handles the system operations, and manages the data processors through

remote-procedure-calls and DMA operations.

Static Multi-core Scheduling Vs. Multi-threading. Traditional micro-architectural

techniques, such as simultaneous multithreading and cache coherency, that were origi-

nally developed for server-class multiprocessors provide a convenient abstraction to the

programmer but they can be of limited value in high-throughput embedded systems.

Strict real-time requirements also require deterministic architectural behavior. This im-

plies that micro-architectural features that trade-off good average-case performance for

non-deterministic and poor worst-case performance (e.g., caching, multi-threading and

20

prediction) are not well suited to these applications.

To reduce hardware complexity and produce efficient deterministic code behavior,

we omit multi-threading and cache coherency support. Instead, each protocol pipeline is

broken up into kernels, and each kernel is assigned statically to a processing element which

is then statically scheduled to execute according to the algorithm data flow. This model

grew out of our observations that inter-kernel communication throughput is low, and

intra-kernel computational throughput is high. Therefore, the static scheduling approach

can result in less communication traffic compare to the case when kernels are split into

threads.

Scratchpad Memory with Data Streaming. In addition to data computation,

programmers also need to handle the data communications between algorithms. These

inter-algorithm communications are usually data streaming buffers that are ideal for non-

blocking DMA transfers. While the processors operate on the current data, the next

batch of data can be streamed between the memories and register files in the background.

Streaming computations have been previously proposed for multi-media processor archi-

tectures, including the Imagine processor [10], and the IBM Cell processor [40]. They

have shown that scratchpad memories, instead of cache, are best suited for streaming

applications. We find that streaming computation fits naturally with wireless protocol

computations.

Wide SIMD Execution Unit. The computation intensive DSP algorithms in wire-

less protocols usually contain operations on very wide vectors. In addition, vector widths

and strides are always known during compile time. Although a vector architecture would

be a good fit for wide vector computation, the extra hardware support for dynamic vec-

tor management is unnecessary, as all data operations can be statically scheduled. This

favors a wide SIMD-styled clustered execution. Traditional SIMD architectures have a

21

short SIMD width due to the difficulties in data alignment. In addition, general pur-

pose SIMD accelerators usually need to support a large range of data sizes (for example,

Intel MMX [65] supports 8/16/32/64 bit SIMD operation). Therefore, the bottlenecks

of a SIMD system are often the data movement and alignment operations, not data

computation operations. Previous studies have addressed this problem through complex

multi-ported memories and register files, or a full crossbar interconnect. In the context

of the power budgets for mobile devices, these are infeasible solutions.

Wireless protocols’ DSP algorithms have well-defined intra-vector data permutation

patterns and operate on 8- and 16-bit data. These traits significantly simplify the data

movement requirements. Therefore, we can afford to scale up the SIMD width to exploit

DSP algorithms’ very wide vector operations, with the intra-vector data permutation

supported through an SIMD shuffle network.

Asymmetric VLIW Instructions. In addition to the heavy vector computation,

there are many small, yet equally important scalar DSP algorithms in wireless protocols.

Wide SIMD execution units are too inefficient for these scalar and narrow SIMD opera-

tions. Therefore, architectural support for scalar execution is also needed. In most cases,

scalar operations can be executed concurrently in VLIW lock-step with the SIMD oper-

ations. The VLIW is asymmetric because instructions for SIMD pipeline cannot execute

on the scalar pipeline, and vice versa.

3.4 SODA Architecture for SDR

3.4.1 Architecture Overview

The SODA multiprocessor architecture is shown in Figure 3.1. It consists of multiple

processing elements (PEs), a scalar control processor, and global scratchpad memory, all

22

512-bit
SIMD
Reg.
File

E
X

512-bit
SIMD
ALU+
Mult

SIMD
Shuffle

Net-
work
(SSN)

W
B

Scalar
ALU

W
B

E
X

Scalar
RF

Local
SIMD

Memory

Local
Scalar

Memory

S
T
V

AGU
RF

E
X

W
B

AGU
ALU

1. SIMD pipeline

2. Scalar pipeline

4. AGU pipeline

V
T
S

Pred.
Regs

W
B

SIMD
to

Scalar
(VtoS)ALU

RF

DMA

SODA
PE

5. DMA

3. Local
memory

Local
Memories

Execution
Unit

In
te

rc
o

n
ne

ct
 B

u
s

Global
Scratchpad

Memory

Control
Processor

SODA System

To
System

Bus

PE

Local
Memories

Execution
Unit

PE

Local
Memories

Execution
Unit

PE

Local
Memories

Execution
Unit

PE

Figure 3.1: SODA Architecture for SDR. The system consists of 4 data processing ele-
ments (PEs), 1 control processor, and global scratchpad memory, all connected through a
shared bus. Each PE consists of a 32-wide 16-bit SIMD pipeline, a 16-bit scalar pipeline,
two local scratchpad memories, an Address-Generation-Unit(AGU) for calculating mem-
ory addresses, and a Direct-Memory-Access (DMA) unit for inter-processor data transfer.

connected through a shared bus. Each SODA PE consists of 5 major components: 1) an

SIMD (Single Instruction, Multiple Data) pipeline for supporting vector operations; 2) a

scalar pipeline for sequential operations; 3) two local scratchpad memories for the SIMD

pipeline and the scalar pipeline; 4) an AGU pipeline for providing the addresses for local

memory access; and 5) a programmable DMA unit to transfer data between memories

and interface with the outside system. The SIMD pipeline, scalar pipeline and the AGU

pipeline execute in VLIW-styled lock-step, controlled with one program counter (PC).

The DMA unit has its own PC, its main purpose is to perform memory transfers and

data rearrangement. It is also the only unit that can initiate memory access with the

23

a) 8 wide Shuffle
Exchange Network

b) 8 wide Inverse
Shuffle Exchange

Network

c) 8 wide SSN with Shuffle
Exchange, Inverse Shuffle

Exchange and feedback path

16bit Flip-flop 16bit 2-to-1 MUX

Figure 3.2: 8-wide SIMD Shuffle Network(SSN)

global scratchpad memory.

The SIMD pipeline consists of a 32-way 16-bit datapath, with 32 arithmetic units

working in lock-step. It is designed to handle computationally intensive DSP algorithms.

Each datapath includes a 2 read-port, 1 write-port 16 entry register file, and one 16-

bit ALU with multiplier. The multiplier takes two execution cycles when running at

the targeted 400MHZ. Intra-processor data movements are supported through the SSN

(SIMD Shuffle Network), as shown in Figure 3.2. The SSN consists of a shuffle exchange

(SE) network, an inverse shuffle exchange (ISE) network, and a feedback path. Previous

work [82] has shown that any permutation of size N can be done with 2log2N−1 iterations

of either the SE or ISE network, where N is the SIMD width. For the permutation patterns

of SDR algorithms, we found that we can reduce the number of iterations if we include

both the SE and ISE networks. In addition to the SSN network, a straight-through

connection is also provided for data that does not need to be permutated.

24

The SIMD pipeline can take one of its source operands from the scalar pipeline. This

feature is useful in implementing trellis computations. It is done through the STV (Scalar-

To-Vector) registers, shown in the SIMD pipeline portion of Figure 3.1. The STV contains

4 16-bit registers, which only the scalar pipeline can write, and only the SIMD pipeline

can read. The SIMD pipeline can read 1, 2, or all 4 STV register values and replicate

them into 32-element SIMD vectors. SIMD-to-Scalar operations transfer values from

the SIMD pipeline into the scalar pipeline. This is done through the VTS (Vector-To-

Scalar) registers, shown in Figure 3.1. There are several SIMD reduction operations

that are supported in SODA, including vector summation, finding the minimum and the

maximum.

The DMA controller is responsible for transferring data between memories. It is the

only component in the processor that can access the SIMD, scalar and global memories.

Traditional DMA controllers perform copies from one memory region to another, where

regions are either contiguous or have a simple stride access patterns. They are usually

implemented as a slave device, controlled through a set of DMA registers and synchro-

nization instructions that are executed on the master processor. In our processor, the

DMA is also implemented as a slave device controlled by the scalar pipeline. However,

it has the capability to execute its own instructions on its internal register file and ALU,

similar to the scalar pipeline. This gives the DMA the ability to access the memory in a

wide variety of application-specific patterns without assistance from the master processor.

This ability allows inherently scalar memory transfer algorithms, such as interleaving, to

be implemented efficiently on the DMA.

25

3.4.2 Arithmetic Data Precisions

SODA PE only provide support for 8- and 16-bit fixed-point operations. Many em-

bedded processors also have support for 32-bit fixed point or floating point arithmetic

operations. We found this to be unnecessary for wireless baseband processing. In W-

CDMA wireless protocol, the majority of the algorithms operate on 1- to 8-bit data, with

some algorithms operate on 16-bit data. In 802.11a wireless protocol, the majority of the

DSP algorithms operate on 16-bit fixed point data, with a few algorithms operate on 8-bit

data. Neither protocol requires 32-bit fixed point or floating point support. Therefore,

SODA PE is optimized for 8-bit and 16-bit operations in the SIMD lane by supporting

32-lane 16-bit SIMD fixed-point arithmetic operations. Because floating point units re-

quire large area, not supporting the floating point provides significant power and area

saving. The AGU registers are 12-bit, but only support 8-bit addition and subtraction.

This is because AGU is used for software management of data buffers, in which 8 bits are

sufficient. The higher 4 bits are used to address different PEs, as well as different memory

buffers within PEs.

3.4.3 Vector Permutation Operations

With SODA’s SSN network (shown in Figure 3.2), any 32-wide vector permutation can

be performed with the maximum of 9 cycles. Combining with predicated move operations,

the SSN network can support any vector length permutation. However, for every 32-wide

vector permutation, one additional instruction must be used to setup the permutation

network. This is because each MUX within the shuffle network requires its own control

bit. Each iteration through the SSN requires 64 bits. For a maximum of 9 iterations, this

requires 576 bits of control information. The SSN is not very efficient if there are many

26

permutation patterns that are used frequently. It is better suited for algorithms with only

single or a few shuffle patterns. Through our algorithm analysis, we find that this is the

case for SDR algorithms. The majority of the algorithms only use one or a few shuffle

patterns, which makes the network setup overhead not significant.

3.4.4 Long Vector Arithmetic Operations

Different DSP algorithms have varying levels of data level parallelism. From a DSP

programmer’s perspective, it is easier to express operations in the algorithm’s native

vector width, rather than the PE’s SIMD width. For example, a 64 tap FIR filter can

be expressed most succinctly with 64-wide vectors. We refer to this native vector width

as the virtual vector width. Translating assembly code with virtual vector width into

code with PE’s specific SIMD width is straight forward in most cases. For most SIMD

operations, such as add or comparison, this simply requires duplicating the instructions.

Some vector permutation operations, such as vector shift up/down, can be translated

completely in software, but would benefit from having hardware support: the operation

requires one scalar register to store the value that is shifted out, and one scalar register

to feed in the value that is shifted in. Vector to scalar operations, such as finding the

minimum value of a vector, or calculating the dot product, benefit greatly from hardware

support. Overall, most of the hardware support consists of temporary scalar registers

that can be read or written by the SIMD units.

3.4.5 Vector-Scalar Move Operations

Most of the inter-kernel communications are via scalar streams, but intra-PE com-

putations are vector operations. Therefore, support for a scalar-vector interface between

the scalar and SIMD pipeline is needed. In our architectural diagram, Figure 3.1, this is

27

Scalar
to SIMD

SIMD to
Scalar

Scalar Stream
to SIMD

Bitwise Scalar
to SIMD

Disjoint Scalar
to Wide SIMD

SIMD to
Scalar Stream

SIMD to
Bitwise Scalar

Wide SIMD to
Disjoint Scalar

(a) (b) (c) (d)

Figure 3.3: Scalar-SIMD Operations for Various DSP Algorithms

shown as the StoV and VtoS units. The StoV network spreads a scalar value into a wide

vector, and VtoS network reduces a wide vector into a scalar value. The VtoS network is

a 32-to-1 reduction tree. It is pipelined into two stages.

From our benchmark analysis, we found four types of scalar-vector operations, shown

in Figure 3.3. Scalar-SIMD Operations – These operations spread one scalar variable into

a vector, and reduce a vector down to one scalar variable, as shown in Figure 3.3a. Filter,

Viterbi Decoder, and Turbo Decoder fall into this category.

ScalarStream-SIMD Operations – These operations transfer an array of scalar variables

directly into a vector, as shown in Figure 3.3b. If implemented directly through the scalar-

SIMD StoV network, the transfer operations would take up to 32 cycles, as each scalar

value is spread sequentially from the scalar to SIMD pipeline. However, with the AGU

unit, we can redirect our DMA to transfer data directly into the SIMD memory, bypassing

the scalar pipeline. The algorithms in this category include FFT and the RAKE receiver.

28

BitwiseScalar-SIMD Operations – These operations spread the bits of a scalar value

into a vector, as shown in Figure 3.3c. Vectors with 1bit elements are common in DSP.

One example is the searcher, which correlates vectors of individual bits that make up the

received signal stream. This special expansion/reduction functionality is supported in the

StoV and VtoS networks.

DisjointScalar-SIMD Operations – These operations support expansion/reduction op-

erations between multiple disjoint scalar values and wide SIMD vectors, as shown in

Figure 3.3d. This feature is useful for algorithms with native vector width less than the

SIMD’s width. An example is the Turbo decoder. It has a native vector width of 8 ele-

ments. Our SIMD datapath can operate on 32 elements at once. Running a sequential

version of the Turbo Decoder only utilizes 25% of the SIMD pipeline. Using the sliding

window technique, Turbo decoder can be parallelized to process 4 data streams in lock-

step SIMD-style execution. However, the 4 data streams require 4 separate scalar values.

In order to handle expansion and reduction of multiple disjoint scalar values, the StoV and

VtoS networks are modified to include a 4-wide 16bit disjoint scalar (DS) register. For

StoV expansion, four separate values are first read sequentially from the scalar pipeline

into the DS register, and then 4 8-wide expansions are performed. For VtoS reduction,

the SIMD vector is first reduced to 4 16bit values, stored in the DS register. The scalar

pipeline then processes these 4 values sequentially. Although the scalar operations are still

processed sequentially, because the majority of the computations are vector operations,

this scalar overhead has minimal effect on the overall performance.

3.4.6 Algorithm Specific Operations

Implementing customized complex instructions is very common in DSP processors. A

typical example of such an instruction is Multiply-Accumulate (MAC) or saturated arith-

29

Compare and Select

VCS Vd, Vn, Vm

DSP

Kernels

Viterbi,

Turbo

Shuffle

Description

t0 = (Vn[0,2,max], Vm[0,2,max]

t1 = (Vn[1,2,max], Vm[1,2,max]

Vd = (t0 > t1) ? t0 : t1

Instruction

Type
Mnemonics

Butterfly

BFLY Vd, Vn, #imm

FFT,

IFFT

Vd[i+j*imm*2] = Vn[i+j*imm*2+imm]

Vd[i+j*imm*2+imm] = Vn[i+j*imm*2]

Vector Sum

DOT Sd, Vm, Sn

Searcher

DespreaderVector to

Scalar

Sd = Sn + sum(Vm)

Vector Max

MAX Sd, Vm, Sn

Viterbi

Searcher
Sd = max(max(Vm), Sn)

Predicated Negation

ADD.p Vd, Vm, Vn

SUB.p Vd, Vm, Vn

Searcher

Descrambler
Predicated

Execution

Vd[i] = (1-2P0[i])*Vm[i] + (1-2P1[i])*Vn[i]

Vd[i] = (1-2P0[i])*Vm[i] - (1-2P1[i])*Vn[i]

P0,P1: 32 1-bit Pred. mask vector

Double Multiply

MUL2 Vd1,Vd2, Vm,Vn,Sn,Sm
FIR

Special

ALU

Vd1[i] = Sn*Vn[i]

Vd2[i] = Sm*Vm[i]

Figure 3.4: Special Intrinsic Operations

metic instructions. Figure 3.4 lists the operations commonly found in wireless protocols.

The first class of intrinsic operations includes special vector permutations supported by

the SSN. The Vector Compare & Select (VCS) operation, needed in Viterbi and Turbo

decoders, compares and selects between two adjacent vector elements. The butterfly op-

eration is implemented to enhance the FFT performance. The second type of special

instruction is used to convert a vector to a single scalar value. This instruction is heav-

ily used in the synchronization and modulation kernels. The Vector Max instruction is

crucial for Viterbi and Turbo since calculating the maximum value of a vector without

special hardware support is very inefficient. The last type of special instruction is the

predicated negation. This instruction uses two 1-bit vectors to control the sign of the

two ALU operands, and conditionally negates the operands before executing an addition

(subtraction). This instruction is equivalent to a multiplication of the operands with a

1bit number that can be either +1 or -1. It is used for auto-correlation and modulation

in W-CDMA.

30

3.4.7 Vector Alignment Through Programmable DMA.

The DMA controller is responsible for transferring data between memories. It is the

only component in the processor that can access the SIMD, scalar and global memories.

Traditional DMA controllers perform copies from one memory region to another, where

regions are either contiguous or have a simple strided access patterns. It is usually imple-

mented as a slave device, controlled through a set of DMA registers and synchronization

instructions that are executed on the master processor. In our processor, the DMA is

also implemented as a slave device controlled by the scalar pipeline. However, it has the

capability to execute its own instructions on its internal register file and ALU, similar to

the scalar pipeline. This gives the DMA the ability to access the memory in a wide variety

of application-specific patterns without assistance from the master processor. This ability

allows inherently scalar components of the Turbo decoder, such as the interleaver, to be

implemented efficiently on the DMA.

3.4.8 Embedded Low-power Design

In order to achieve the high computational requirements, while maintaining low power

requirements, SODA utilizes the following techniques:

Intrinsic Operations – Traditional DSP processors rely heavily on MAC operations to

achieve efficiency. We found that many of these multiplication operations are with 1 bit

values, and can be implemented by vector logic operations (Predicated Negation) that

consume significantly lower power.

Clustered Register Files with 2 Read Ports and 1 Write Port – Each PE’s register

file is a cluster of three separate files: an SIMD RF, scalar RF, and AGU RF. For a

32-way vector operation, each RF in our PEs requires only 2 ports. As shown in previous

31

studies [71], increasing the number of register file ports increases the register file’s power

consumption quadratically. By using less ports, our implementation saves register file

power.

Fewer Memory Read/Write Ports – Each PE’s local memory is a cluster of 2 memories—

4KB for the scalar memory and 8KB for the SIMD memory. In general, two memories

consume lower power than one unified memory. In addition, our SIMD memory requires

a 512bit read/write port, but our scalar memory only requires a 16bit read/write port.

Separate memories allow us to further optimize each for its intended use.

Smaller Instruction Fetch Logic – Our VLIW instructions use a fixed sized instruction

width of 64bits split into three fields—Scalar, AGU, and SIMD. Commercial DSP solutions

often have variable length instruction widths of 96-128bits. In addition, they do not

support SIMD instructions or a vector ISA that allows us to efficiently express long vector

operations, effectively reducing an algorithm’s code size.

3.5 SIMD Design Tradeoffs

To justify the SODA system configuration with wide SIMD pipelines, we have done a

study on the first-order power consumption trade-offs SIMD width and frequency. This

study was done using 180nm technology. We estimate that 40GOPS would be required

in order to meet the realtime computation requirements of W-CDMA and 802.11a. Fur-

thermore, we find that both W-CDMA and 802.11a can be partitioned into 4 major task

groups that are relatively balanced (see Figure 3.6c for the W-CDMA implementation).

So, in this thesis, we examine the power consumption of a 4 PE system. In a 4 PE system,

each PE will need to supply approximately 10GOPS. On one end of the spectrum, the PE

can be a 2-wide SIMD running at 5GHZ; and on the other end, it can be a 256-wide SIMD

32

0

1

2

3

4

5

6

2 4 8 16 32 64 128 256

SIMD width

N
o

rm
al

iz
ed

 P
o

w
er

F q(2) = 5GHZ
I(2) = 31

F q(4) = 2.5GHZ
I(4) = 18

F q(8) = 1.3GHZ
I(8) = 9

F q(16) = 690MHZ
I(16) = 7

F q(32) = 380MHZ
I(32) = 6

F q(64) = 240MHZ
I(64) = 5

F q(128) = 200MHZ
I(128) = 5

F q(256) = 180MHZ
I(256) = 5

Figure 3.5: Average normalized power of a 4-PE configuration for achieving the compu-
tational requirements of W-CDMA and 802.11a in 180nm technology

running at 180MHZ. Intuitively, the optimal SIMD configuration should lie within these

two extremes. Figure 3.5 summarizes our findings to determine the power consumption

of a PE.

The following is our methodology for calculating the first-order power consumption

P for a single PE with a workload requirement of T GOPS, and an SIMD width of

w. We assume a homogeneous system with PEs having the same SIMD configuration

and frequency. If N is the number of algorithms running on the SIMD pipeline, then

T =
∑N

i=1 Ti, where Ti is the workload of the ith algorithm in the protocol.

The required frequency of a PE, F (w), as a function of w, can be calculated by

summing up the frequencies of each individual algorithm.

F (w) =
N∑

i=1

(
Ti

Vi

⌈
Vi

w

⌉)
(3.1)

Where Vi is the native vector width of algorithm i. The first term in the summation,

33

Ti

Vi
, calculates the frequency for meeting the computational requirement of Ti GOPS in

terms of number of vector operations per second. The second term, dVi

w
e, calculates the

number of cycles to perform a vector operation of size Vi on a SIMD processor of width

w. In the case of w > Vi, the SIMD is under utilized since the vector is narrower than its

SIMD width. The exception is the Turbo decoder, where we can use the sliding window

technique to compute multiple windows in parallel and thereby exploit the wider SIMD

width. In our analysis, Ti and Vi are calculated based on the W-CDMA and 802.11a

protocol profiling results shown in Figure 3.7.

Given the limitation of silicon technology, there is an upper bound on the achievable

frequency. PEs with narrow SIMD width that require ultra high frequency will have to

implement deeper pipelines. In this study, we scale up the pipeline depth based on SODA’s

5 stage pipeline organization. There are four architectural components that contribute

to the overall SIMD pipeline depth: the register file (R), ALU (A), SIMD memory (M),

and SSN (S). We ignored the WtoS network, because it is not a part of the SIMD

pipeline. Equation 3.2 expresses the overall pipeline depth I, as the sum of the register

file pipelines(Ir), the ALU pipelines(Ia), and the maximum of the memory pipeline(Im)

and SSN pipeline(Is).

I(w) = 2Ir(w) + Ia(w) + max(Im(w), Is(w)) (3.2)

In Equation 3.2, Ir is scaled by 2 due to the two separate pipelines stages for register read

and write. Also the maximum of Im and Is is used because SSN and memory share the

same pipeline stage. The pipeline depth of each component is obtained from synthesized

Verilog, for frequency F (w).

Let E(w) be the energy consumption of one cycle of operation for one PE, and let

34

P (w) be PE’s power consumption.

E(w) = C + w(LeI + ReUr + AeUa) +

Me(w)Um + Se(w)Us + De(w)Ud (3.3)

P (w) = E(w) · F (w) (3.4)

In Equation 3.3, C is the constant power overhead, due to the scalar and AGU pipeline,

the instruction memory, and the DMA controller. Le is one 16bit datapath pipeline’s flip-

flop energy, Re is one 16bit register file’s energy, Ae is one 16bit ALU’s energy, Me is the

SIMD memory energy, Se is the SSN energy, and De is the WtoS reduction network energy.

All of the above energy results are for one cycle of operation. Because memory, SSN, and

reduction network do not scale linearly with the SIMD width, we model them empirically

by synthesizing each configuration in Verilog. Ux represents the average utilization factor

for component x, gathered from behavioral simulations on the SODA simulator.

Figure 3.5 shows the normalized power as a function of SIMD width for average W-

CDMA and 802.11a workloads. Each point is annotated with its operating frequency,

F (w), and the number of pipeline stages, I(w). We see that smaller SIMD width con-

figurations consume less power per cycle, but require unrealistically deep pipelines. For

example, the 4-wide SIMD configuration requires 18 pipeline stages. Wider SIMD con-

figurations have shorter pipelines with low operating frequencies, but suffer from under-

utilization. Figure 3.5 shows that the 32-wide SIMD consumes the lowest power. The 8,

16, and 64 wide SIMD also achieve similar power consumption, and would be acceptable

design points. The power numbers have been derived assuming that underutilized SIMD

processors still consume dynamic power for the unused SIMD units. However, we can em-

ploy simple clock-gating techniques to turn off the unused units, thereby reducing wide

35

SIMD’s power consumptions. In addition, frequency and voltage do not scale linearly

with nanometer CMOS technologies. In sub-90nm implementations, narrow width SIMD

will result in deeper pipelines. Consequently, the optimal power consumption point is

likely to shift to higher SIMD width in future technologies, if leakage can be contained.

3.6 Experimental Evaluation

SODA Behavioral Analysis. In addition to W-CDMA, we have also implemented

the 802.11a wireless protocol’s physical layer processing. In order to test the perfor-

mance of SODA, we first developed both W-CDMA and 802.11a physical layer system

implementations in C. This approach enables full system performance including memory

requirements, synchronization schemes, and non-parallelizable bottlenecks to be evalu-

ated. Next, we hand-coded the benchmarks into the SODA instruction set. To evaluate

intra-kernel synchronization and data flow characteristics, we built an inter-processor net-

work simulator based on our PE’s cycle-accurate processor simulator, and DMA transfers

and bus synchronization schemes.

SODA Area And Power Model. Area estimation of our architecture was calculated

using our RTL Verilog model of the SODA architecture. We synthesized our Verilog model

using Synopsys Physical Compiler and Cadence Silicon Ensemble for 400MHz using the

TSMC 180nm library. The memories were generated with the Artisan SRAM memory

generator. The estimated area for 90nm and 65nm processes were calculated using a

quadratic scaling factor.

Dynamic power was estimated using utilization factors of each PE derived from our

behavioral simulations of the W-CDMA and 802.11a protocols on our system simulator.

For each PE we then took the dynamic power results from Physical Compiler and used the

36

utilization factors to calculate the dynamic power of that PE. The dynamic power of the

memories were derived form the Artisan SRAM memory generator. Using the synthesized

model of the PE, we extracted the interconnect power and added it to the dynamic power

then summed up the PEs to calculate the total dynamic power of the system.

To scale to 90nm and 65nm, we used the Predictive Technology Models (PTM) [6]

and simulated in SPICE based on a delay of 20 F04 in 180nm at 1.8V, 90nm at 1V, and

65nm at 0.8V.

The leakage power was estimated at 30% of the total power. This is in accordance

with ITRS specifications for 90nm technology. We used the more conservative approach,

since the PTM leakage results were lower than industry trends.

3.6.1 Protocol System Implementations

For this discussion we will focus on W-CDMA instead of 802.11a, because its behav-

ior is more complex. Figure 3.6 shows the real-time W-CDMA 2Mbps DCH (Dedicate

CHannel) execution trace on SODA: Figure 3.6a shows the system execution of 1 frame of

data; Figure 3.6b shows one slot of execution using the macro-pipelining message passing

protocol; and Figure 3.6c shows the functional mapping of W-CDMA onto SODA. DCH

is a full duplex channel consisting of the DPDCH (Dedicated Physical Data CHannel)

for uplink and the DPCH (Dedicated Physical CHannel) for downlink. In the W-CDMA

specification, DCH also includes the uplink DPCCH (Dedicated Physical Control CHan-

nel), which is not modeled in this study. The uplink and downlink channels are mapped

onto their own PEs. This assignment achieves a relatively balanced workload across the

4 PEs.

To better understand W-CDMA execution, consider Figure 3.6a. The horizontal axis is

time, and the vertical axis lists the SODA’s PEs, and their real-time processing utilization.

37

2 LPF-Rx
182 Mops

Descrambler
23 Mops

Misc.
Control
1 Mops

Searcher
200 Mops

De-
interleaver

2 Mops

Power
Control

15 Kops

PN Code
TX/RX

31 Mops
Turbo

Decoder
540 Mops

Buffer
(1360 Bytes)

Buffer
(1280 Bytes) Buffer

(2560 Bytes)

Despreader
11 Mops

Combiner
3 Mops

FIFO Queue
(12.5 KBytes)

Buffer
(10 Bytes)

Buffer
(20 KBytes)

Buffer
(20 KBytes)

Buffer
(1024 Bytes)

ARM PE PE PE PE Global
Memory

4 LPF-Rx
307 Mops

Scrambler
9 Mops

Spreader
5 Mops

Encoder
2 Mops

Interleaver
2 Mops

Buffer
(1024 Bytes)

WCDMA Receiver WCDMA
Trasnmitter

SYNC
P1, ARM

P
N

FIR M

P
N

FIR M

P
N

FIR M

P
N

FIR M

Input
from A/D

PE1
FIR/Mod.

PE2
Searcher

PE3
Turbo

PE4
TX

1 slot

0.67 mSec

ARM:
PN/Power Ctrl.

P
C

SYNC
P1, ARM

SYNC
P1, P2, ARM

SYNC
P1, ARM

SYNC
P1, ARM

SYNC
P1, ARM

Searcher

P
N

(b) Macro-pipelined Message Passing* (c) Functional Mapping of W-CDMA onto PEs

(a) System Execution For W-CDMA 2Mbps DCH Data Channels*

ARM

PE1

PE2

PE3

PE4

Searcher
Real-Time Critical

Path (5 msec)

Power Control

Real-Time Critical
Path (0.67 msec)

1 W-CDMA frame (15 slots), 10 msec

F
I

R

M
O
D

F
I

R

M
O
D

F
I

R

M
O
D

F
I
R

M
O
D

F
I

R

M
O
D

F
I

R

M
O
D

F
I

R

M
O
D

F
I

R

M
O
D

F
I
R

M
O
D

F
I

R

M
O
D

F
I

R

M
O
D

F
I

R

M
O
D

F
I

R

M
O
D

F
I
R

M
O
D

E

N
C

I Modulation FIR

PN Code
<0.1 msec

Power Control
<0.1 msec

Deinterleaver
0.2 msec

Interleaver
0.2 msec

Turbo Encoder
0.2 msec

FIR(Tx)
8 msec

Modulation
1 msec

FIR(Rx)
0.3 msec

Demodulation
0.1 msec

Turbo Decoder
10 msec

Searcher
5 msec

Time

P

N

P

N

P

N

P

C

P

N

P

C

P

N

P

C

P

N

P

C

P

N

P

C

P

N

P

C

P

N

P

C

P

N

P

C

P

N

P

C

P

N

P

C

P

N

P

C

P

N

P

C

P

N

P

C
I

P

C

* Execution intervals are not drawn to scale

Figure 3.6: W-CDMA 2Mbps DCH data channel implementation. The kernel mapping is
shown with the algorithm mapping and memory allocation on the PEs, control processor,
and global memory. The execution trace is shown with two periodic real-time deadlines:
power control and searcher.

The utilization of PE1, PE2, PE3, and PE4 are 60%, 50%, 100% and 94% respectively.

One W-CDMA frame contains 15 slots. There are two hard real-time deadlines that have

to be met in W-CDMA. The first one is the power control critical path that controls

the transmission power based on received signal quality. It needs to update periodically

once per slot (0.67 msec). The critical path is the channel between the FIR Rx filter,

Demodulation and Power Control. This is a streaming channel with minimal memory

storage requirements. The other real-time critical path is the channel from the FIR filter

to the searcher. This needs to complete within 5 msec and requires a large amount of data

buffering. Figure 3.6b shows the multi-PE execution using our macro-pipelined message

passing protocol. Data is streamed from one PE to the next, synchronizing only on the

38

macro-clock boundary.

From the above analysis, we see that while throughput is essential, fast intra-processor

kernel switching, and efficient inter-processor communication are also essential. Because

wireless protocols have static run-time characteristics, compile-time scheduling of the ker-

nels is sufficient to reduce unnecessary context switching overhead. Our macro-pipelining

message passing technique reduces the inter-PE synchronization overhead by pipelining

data transfers, and exploiting the streaming nature of inter-kernel communication.

3.6.2 Performance and Power Results

Performance Results. Figure 3.7 provides a characterization of each kernel algo-

rithm in W-CDMA and 802.11a in terms of extent of vectorization, vector width, bit

width, etc. This characterization was used to define the SODA architecture. Figure 3.7

also lists the throughput and latency of each kernel algorithm when implemented on

SODA. The raw computations are measured in terms of number of execution cycles on

a general purpose Alpha processor. The SODA computation, on the other hand, is the

number of execution cycles required by the SODA vector ISA. It can be seen that large

speedups are possible in many cases. For instance, W-CDMA’s searcher algorithm, which

requires 26.5 Gops on a general purpose processor, is reduced to 200 Mops on SODA.

Part of the speedup is due to SODA’s wide SIMD execution, and part of it is due to the

fact that SODA assembly code is hand-optimized.

Because W-CDMA is designed to support mobile communications, its workload is

highly dependent on the environment conditions. In this study, the descrambler, de-

spreader, combiner, and searcher are benchmarked with the worst case environment con-

dition, because they include real-time deadlines that must be met under the heaviest

workload. The Turbo decoder is benchmarked with the average case workload because it

39

Defined in W-CDMA standard

Vector

Comp.

12 fingers, 3 base stations

Spreading factor = 4

12 fingers, 3 base stations

3 base stations

Defined in W-CDMA standard

2Mbps data rate

4 filters x 65 coeff x 3.84Msps

2 filters x 65 coeff x 7.68Msps

yes

yes

yes

yes

no

no

partial

yes

yes

Scrambler

Descrambler*

Spreader

Despreader*

PN Code (Rx)

PN Code (Tx)

Combiner*

FIR (Tx)

FIR (Rx)

3 base stations, 320 windows

1 frame

1 frame

K=4

K=4, 5 iterations

no

no

partial

yes

yes

Searcher*

Interleaver

Deinterleaver

Turbo Enc.

Turbo Dec.*

Vector

Length

2560

2560

512

512

1

1

12

64

64

320

1

1

3

8

Bit

Width

1,1

1,8

8

8

8

8

8

1,16

8,8

1,8

8

8

1,1

8,8

Comp.

Mcycles/sec

240

2,600

300

3,600

30

10

100

7,900

3,900

26,500

10

10

100

17,500

Algorithms Configurations

W-CDMA (2Mbps)

*These algorithms have dynamically changing workloads that are dependent on channel conditions

Comp.

Mcycles/sec

9

23

5

11

23

8

3

307

182

200

2

2

2

540

General Purpose Processor (Alpha) SODA

64 points

64 points

64 points

64 constellation points

64 constellation points

1 filter x 33 taps x 20Msps x 2

1 filter x 33 taps x 40Msps x 2

Defined in 802.11 standard

Defined in 802.11 standard

yes

yes

yes

no

no

yes

yes

partial

partial

FFT

IFFT

Equalizer

QAM

DQAM

FIR (Tx)

FIR (Rx)

Freq. Sync.

Time Sync.

Farrow structure cubic 8 taps

1 frame

1 frame

K = 7, Rate = 3/4

K = 7, Soft input

yes

no

no

partial

partial

Interpolator

Interleaver

Deinterleaver

Conv Enc.

Viterbi Dec.

64

64

54

1

1

33

33

16

16

2048

1

1

6

64

16

16

16

4

4

16

16

16

16

16

1

16

1

8

15,600

15,600

960

1

3

3,040

6,080

190

190

4,800

290

290

100

35,000

802.11a (24Mbps)

240

240

120

2

2

160

320

10

10

250

60

60

40

398

Defined in 802.11 standard

Defined in 802.11 standard

partial

partial

Scrambler

Descrambler

7

7

1

16

340

340

34

34

Figure 3.7: Kernel Algorithms in W-CDMA and 802.11a and their performance on a GPP
and SODA.

40

SIMD+scalar Data Mem (8KB+4KB)

Units

SIMD Register File (16x512bit)

SIMD ALUs and Multipliers

SIMD Pipeline+Clock+Routing

Intra-processor Interconnect

Scalar Pipeline+Inst Mem+Inst Fetch

ARM (Cortex-M3)

Global Scratchpad Memory (64KB)

Inter-processor Bus with DMA

4

4

4

4

4

4

1

1

1

PE

System

180nm (1.8V @ 400MHZ) Total

Area

mm
2

6.1

1.9

6.7

1.5

1.1

3.1

0.6

3.6

2.0

26.6

Area

%

23%

7%

25%

6%

4%

11%

3%

14%

7%

100%

Power

mW

87

1077

314

1127

53

274

5

10

3

2950

Components
Power

%

3%

37%

11%

38%

2%

9%

< 1%

< 1%

< 1%

100%

Area W-CDMA 2Mbps

Power

mW

67

874

609

1157

53

329

10

80

26

3206

Power

%

2%

27%

19%

36%

2%

10%

< 1%

2%

1%

100%

802.11a 24Mbps

90nm (1V @ 400MHZ)

65nm (0.8V @ 400MHZ)

Est.

6.7

3.5

447

236

486

257

Figure 3.8: System Area and Power Summary

has flexible deadlines that allow its inputs to be buffered. This is why it is acceptable for

the decoder to take 540Mcycles(1.35 seconds) to finish one second of computation.

Power and Area Results. Figure 3.8 lists the area and power breakdowns of the

SODA system. The wide SIMD design means the SIMD pipeline and clock logic con-

sumes the largest amount of power. The SIMD register file is also one of the major

power consumers (37% in W-CDMA and 27% in 802.11a), due to heavy utilizations dur-

ing vector computations. SIMD memory power is higher for W-CDMA (87mW) than

for 802.11a (67mW). This is because most 802.11a algorithms have vector width less or

equal to 64, so the SIMD register values do not spill into the memory. In contrast, W-

CDMA has more algorithms with long vectors that need to be buffered in memory. The

SIMD ALU power consumption is significantly higher for 802.11a than for W-CDMA,

because 802.11a’s FFTs requres many 16-bit multiplications, whereas the majority of the

W-CDMA computations are additions. In our synthesized design, a 16-bit multipliers

consumes approximately 10x more power than an 16-bit adder. This is the principal

reason why 802.11a consumes more power than W-CDMA. The intra-processor intercon-

nect consumes very little power for both 802.11a and W-CDMA. Finally, low inter-PE

41

communications implies that the bus power consumption is also not a concern (3mW for

W-CDMA and 26mW for 802.11a). Overall, the results show that a power efficient wide

SIMD multi-PE architecture can be designed using simple register files, partially con-

nected intra-processor interconnect, and a low power bus-based inter-processor network.

The area results, shown in Figure 3.8, indicate that the ALUs with multipliers and

the scratchpad memories take the largest area in the PE. In addition, the PE’s local

memories (48KB) occupy a larger area (6.1mm2) than the 64KB global memory (3.6mm2),

because the local memories are dual-ported, with one port dedicated to the DMA, whereas

the global memory is a 32bit single ported memory. The intra-processor interconnect,

including the SSN and the WtoS reduction network, is only 4% of the total area. This

means that the interconnect network is not a limitation for 32-wide SIMD systems. Of

course, if this number were scaled to hundreds, then the interconnect network may start

to become a limitation.

Technology Scaling and Power Optimizations. At 180nm, SODA’s power con-

sumption is 3W. This is too high for embedded mobile devices. A typical cellular phone’s

power budget for the physical layer is around 200mW [62]. To see if this constraint can be

met, we have estimated the power and area of SODA at state-of-the-art technology nodes

of 90nm and 65nm using the Predictive Technology Models. Designs in both technologies

fall within the range of acceptable power consumption — 450mW and 250mW respec-

tively. There are other factors that we have ignored that would further reduce power

consumption. These include a greater use of custom design, and the observation that

many of the W-CDMA algorithms need only 8bit arithmetic. Our studies were based on

unoptimized synthesis. In a volume production setting, much of the datapath would be

implemented with custom designs to significantly reduce space and power. We previously

synthesized an 8bit 32 wide version of SODA, and its power consumption in 90nm was

42

1 SODA PE

K = 5

Throughput

2Mb/s
Turbo

Decoder

Power

800mW

Algorithm Configuration

TI Turbo Coprocessor

K = 5
13.44Mb/s600mW

1 SODA PE

65 taps
200Msps

FIR Filter

489mW

ASIC

8 taps
550Msps36mW

Technology

180nm

130nm

180nm

180nm

Normalized Power

400 mW/Mbps

89.2 mW/Mbps

0.0376 mW/Msps/tap

0.0082 mW/Msps/tap

Figure 3.9: Power efficiency comparison between SODA-based and ASIC implementations
for FIR filter and Turbo decoder. The Turbo decoder ASIC data are taken from TI Turbo
Coprocessor [26], and FIR filter ASIC data are taken from [77].

about 300mW. However, 802.11 and many next generation protocols use 16bit algorithms,

thus an 8bit solution will not meet future demands. There are still many important 8bit

algorithms, such as Viterbi decoder. This means that power optimization techniques

such as clock-gating, dynamic precision and voltage scaling can be used to reduce power

consumption by dynamically adjusting between 8bit or 16bit computations and between

different SIMD widths. We are investigating these issues.

3.6.3 The Cost of Programmability

This section examines the cost of programmability by compare the power consumption

of SODA-based and ASIC DSP algorithm implementations. The results are shown for the

two algorithms with the highest workloads in W-CDMA – FIR filter and Turbo decoder.

Searcher also has very high workload requirement, but it is omitted in this study because

its operating behavior is similar to the FIR filter. As shown in Figure 3.9, ASICs achieve

higher throughput with lower power for both FIR filter and Turbo decoder. The difference

in energy efficiency is between 4-5x for both algorithms. There are several factors that

contribute to the difference. The most power-hungry components in SODA are the SIMD

register file and SIMD pipeline registers. For ASICs, the size and the number of ports for

43

these registers can be customized for better efficiency. In addition, it is common in these

DSP algorithms to perform vector permutation operations followed by vector arithmetic

operations. In SODA, this would require multiple operations with unnecessary accesses

to the register file for storing intermediate results. An ASIC design can build specialized

datapath by chaining the data permutation operations with the arithmetic operations,

which bypasses the register file. There are many potential architectural improvements

that can be applied to SODA to reduce the energy efficiency gap between SODA and

ASICs. Some of these optimizations, such as operation chaining, are implemented in the

Ardbeg processor. Details are discussed later in Chapter 5.

3.7 Summary

In this chapter, we describe and discuss architectural trade-offs for designing a domain

specific processor for Software Defined Radio. We describe and motivate our multipro-

cessor, programmable wide SIMD architecture. We show that our architecture is capable

of meeting the processing requirements of 3G wireless protocols (W-CDMA and 802.11a)

within acceptable power budgets when using a state-of-the-art technology node. Our

choice of these two dissimilar protocols was to stress the flexibility of our solution. Fur-

ther process scaling will enable the support of even more demanding protocols (such as

UWB) in a power-efficient manner.

44

CHAPTER 4

W-CDMA Algorithm Implementations

4.1 Introduction

Because SODA employs an ultra wide 32-lane SIMD pipeline, we cannot rely on ex-

isting compiler technology to automatically generate efficient SODA assembly code from

high-level C code. In this chapter, we will to present the design and assembly code im-

plementations of the key W-CDMA DSP algorithms on SODA. 802.11a algorithms are

similar to those found in W-CDMA, thus their implementations are omitted here. DSP

algorithms usually have multiple different implementations. Due to the wide-SIMD de-

sign, not all implementations can be mapped efficiently. This chapter describes a set of

DSP algorithm implementations that map well on the SODA architecture.

For this study, we first implemented the entire W-CDMA physical layer in C. The

C code is compiled with an Alpha gcc compiler and executed on the M5 architectural

simulator [16]. The workload profile is shown in Figure 4.1. As shown in the figure,

three key algorithms are responsible for the majority of the W-CDMA computations.

They are the Turbo decoder, the searcher, and the FIR filters. The rest of the algorithms

consumes relatively insignificant amount of computation. The rest of this chapter is going

45

0

5000

10000

15000

20000

25000

30000

Scr
am

ble
r

Des
cr

am
ble

r

Spr
ea

de
r

Des
pr

ea
de

r

PN C
od

e
(R

x)

PN C
od

e
(T

x)

Com
bin

er

FIR
 (T

x)

FIR
 (R

x)

Sea
rc

he
r

In
te

rle
av

er

Dein
te

rle
av

er

Tur
bo

 E
nc

od
er

Tur
bo

 D
ec

od
er

M
o

p
s

o
n

 G
P

P

Figure 4.1: 2Mbps W-CDMA workload profile in Mops on a general purpose processor
(GPP)

to explain the implementation of these algorithms on SODA. The searcher, descramblers,

and despreaders are parts of the rake receiver algorithm, which are all explained in the rake

receiver section. Because Turbo decoder requires convolutional decoders as its building

block, the implementation of convolutional decoder and Turbo decoders are explained in

two separate sections.

4.2 FIR Filter

W-CDMA FIR filters are used to filter out signal terms that exist outside of an allowed

frequency band in order to reduce the interference. Let x[n] be the input sequence to be

filtered, ci; ci be the filter coefficients; and N be the number of filter coefficients. The

output filtered sequence, y[n], is expressed as:

y[n] =
N−1∑
i=0

ci · x[n− i] (4.1)

Equation 4.1 is known as the direct form FIR filter, shown graphically in figure 4.2a.

46

z-1 z-1

c
0

x[n]

c
1

c
N-1

z-1

c
2

y[n]

x[n-1] x[n-2] x[n-N+1]

z-1 z-1

c
0

x[n]

cN-1

z-1 y[n]

cN-2

a) direct form FIR filter b) transposed form FIR filter

Figure 4.2: FIR filters expressed in direct form and transposed form. The two filter forms
are mathematically equivalent

In the figure, Z−1 are delay buffers that holds the previous N − 1 input signals. In direct

form FIR filter, the multiplication operations, ci · x[n− i], are independent of each other,

which naturally leads to SIMD parallelization. In W-CDMA filters, the number of filter

coefficients equals to 65. This means that all of the multiplication operations can be done

through two 32-wide SIMD operations and 1 scalar operation. 64 of the 65 filter coeffi-

cients are stored in 2 entries of the SIMD register file, with the last filter coefficient stored

in the scalar register file. The most recent 65 elements of input signals, x[n − 64] x[n],

are stored in the same format in the SIMD and scalar register files. The summation of

the multiplications are done through SODA PE’s SIMD-to-scalar summation operation.

The result y[n] is stored in the scalar pipeline. And finally, because each new y[n + 1]

only requires the most recent 65 input signals, the oldest input signal, x[n− 64], needs to

be deleted from the register, and the newest input signal, x[n + 1], needs to be added to

the register file. This can be done through a SIMD shift down operation, with the most

recent input element inserted in the top lane of the SIMD register file.

The bottleneck of the direct form filter implementation is the summation operation

because a 32-wide summation operation requires 3 cycles to complete. One alternative

is the transpose-form FIR filter, shown in figure 4.2b. The two filter forms are math-

ematically equivalent. The implementation of the transposed filter has both the input

and output signals stored in the scalar pipeline. Each input signal, x[n], is spread into a

47

Searcher

Descrambler+Despreader 1

Descrambler+Despreader 2

Descrambler+Despreader N

Combiner

Delay

Delay

Delay

r(t)

d
1
, d

2
, ... d

N
a

1
, a

2
, ... a

N

Figure 4.3: W-CDMA rake receiver. It consists of a searcher, despreader/descrambler
pairs, and a combiner. Due to multi-path fading effect, a searcher is used to find the
synchronization points for each delayed version of the same signal stream. Each de-
spread/descrambler pair correspond to one of the delayed signal stream. And the com-
biner combines the different paths together.

32-wide SIMD vector through the STV register. The SIMD multiplication and shift op-

erations are the same as the direct form filter’s implementation. The output signal, y[n],

is just the shifted out value from the SIMD pipeline. However, direct form’s summation

operation is replaced by a simpler SIMD add operation. This results in a faster FIR filter

implementation.

4.3 Rake Receiver

Modulation maps source information onto the transmitting signal waveform. Demodu-

lation extract the source information from the received signal. In the W-CDMA physical

layer, two sets of codes are used for modulation: channelization codes and scrambling

codes. Channelization codes are used so that the same radio medium can be used to

transmit multiple different signal streams. Scrambling codes are used to extract the

signal of a specific terminal among many transmitting terminals. On the receiver side,

48

despreader is used to decode the channelization codes and descrambler is used to decode

scrambling codes. Demodulation requires the transmitter and receiver to be perfectly

synchronized. However, radio transmission suffers from multi-path fading effect, where

multiple delayed versions of the same signal stream are received due to environment in-

terference. Therefore, a searcher is used to find the synchronization point of each one

of the delayed signal streams. And each of these delayed signal is decoded with its own

despreader and descrambler. These despreader/desrambler pairs are called rake fingers.

The decoded output of the rake fingers are then combined together as the output of de-

modulation. The searcher, despreaders, descramblers, and combiner are together called

rake receiver. More detailed explanations of rake receiver can be found in [52]. Figure 4.3

shows the overall diagram of the W-CDMA rake receiver. In the diagram, there are N

rake fingers. d1 dN are the delayed factors for the N rake fingers. a1 aN are the scaling

factors for the N rake fingers.

In W-CDMA, signal transmission rate is constant at 3.84M samples per second, where

each sample is a complex number consisting of two 4 6 bit values. It is also common

practice for the receiving ADC to oversample to improve signal quality, thereby producing

two complex values for each sample. W-CDMA transmissions are divided into frames.

Each frame is 10ms, containing 38,000 sample points. Each frame is further divided into

15 slots, each containing 2560 samples. In W-CDMA protocol standard, the receiver is not

fully specified. Its only requirement is to decode the signal correctly from a fully specified

transmitter. Therefore, many of the rake receiver’s parameters used in this study are

estimated by us, whereas commercial implementations may have different configurations.

The estimated parameters include the searcher’s window size, block size, peak searching

algorithm, and the oversampling factor. On the other hand, descrambling and despreading

codes are fully specified, as well as the despreading factor. The following two subsections

49

will discuss the implementation details of the search and the rake fingers.

4.3.1 Searcher

Searcher is called once per W-CDMA frame. There are two types of searchers — full

searcher and quick searcher. Full searcher is called for the first of every 8 frames, and the

quick searcher is called for the other 7 of every 8 frames. Both types of searchers consist

of four steps: correlation, filtering out high frequency noises, detecting peaks, and global

peak detection.

Correlation is the most computationally intensive operation in the searcher. If we

let r be the correlation input, and R be the correlation output, then it is defined as:

R[t] =
Lcor−1∑

i=0

Csc[i] · r[i + t], where0 ≤ t ≤ (Ls − 1) (4.2)

In equation 4.2, Csc are the correlation coefficients, Lcor is the correlation window size, and

Ls is the searcher window size. In the full searcher, 1 correlation is done with Ls = 5120.

In quick searcher, 4 correlations are done with Ls = 320. In both searchers, Lcor = 320.

Comparing equation 4.2 with equation 4.1, we notice that the correlation operation is

essentially a 320-tap filtering operation. Therefore, the same transposed form can be

applied to the correlation operation to replace the summation operation with cheaper

SIMD addition operations. The SIMD implementation of correlation is the same as that

of the FIR filter, except that it requires 10 SIMD registers to hold the coefficients for

320-tap coefficients.

50

Filtering out high frequency noises occurs once for each W-CDMA frame. If we

let R be the signal, then filtering equation is given as:

R[t] = R[t] · C1 + C2[i] (4.3)

C1 and C2 are both predefined constants ranging between 1 to 8. This is an inherently

parallel operation, where each element in the array can be calculated independently.

Detecting peak is implemented as a sequential loop over the searcher window to

find all of the peaks. Global peak detection selects the peaks with the maximum cor-

relation values. In our implementations, 4 peaks are selected. We did not spend any

effort parallelizing these two steps, because the computation requirements are very small

compared to the correlation operation. However, if more complex algorithms are used for

detecting peaks, then we may need to reevaluate these algorithms and examine different

parallelization options.

4.3.2 Rake Fingers and Combiner

The number of rake fingers is a design parameter, which also varies dynamically de-

pending on environment conditions. We designed our implementation to have a maximum

of 12 fingers, where the input for the each finger is the delayed input based on offsets cal-

culated by the searcher.

Because each input sample is a complex number, it is separated into two data streams.

If we let inR and inI be the real and imaginary input streams, outR and outI be the real

51

and imaginary output streams, then the descrambler operations is defined as following:

outR[i] = cR[i] · inR[i] + cI[i] · inI[i] (4.4)

outI[i] = cR[i] · inI[i]− cI[i] · inR[i] (4.5)

In equation 4.4 and equation 4.5, cR and cI are the predefined descrambling codes. The

operations are inherently parallel, and they can be implemented very easily with SIMD

operations. However, due to the delay buffering, the input for each descrambler can

potentially start for anywhere within one W-CDMA frame. Therefore, the difficulty here

is to align the input to the SIMD boundary. If the data is not aligned, then the first and

last SIMD operation may not utilize the full 32-wide SIMD lane. Because descrambler

operations on W-CDMA slots have 2560 sample points, the misalignment is tolerable in

terms of inefficiency.

Despreader down-samples is based on predefined channelization code. Possible down-

sampling rates are 4, 8, 16, 32, 64, 128, 256, 512. Because the W-CDMA transmission

rate is constant at 3.84M samples per second, despreader’s down-sample rate determines

the received data rate. To achieve 2Mbps data rate, 3 independent channels of despreader

are used, each with down-sample rate equals to 4. The down-sampling is performed by

multiplying each sample point with a predefined value of either 1 or -1. In the case of rate

4 down-sampling, every 4 data samples are added together for one output value. In terms

of SIMD implementation, because the multiplication operations are with either 1 or -1,

it can be implemented as predicated negation operations. The down-sampling operation

is implemented using SIMD summation operation. However, because every 4 values are

summed together, not all 32 SIMD lanes, SODA’s summation operation allows partial

summation, where a vector of size 1, 2, 4, 8,and 16 are produced as the output of the

52

summation. These vectors are buffers, and then read sequentially into the scalar pipeline.

The combiner sums up the data points from each of the rake fingers. Because its

computation is relatively small, we did not spend any effort parallelizing this algorithm.

Currently, it is implemented using the scalar pipeline only.

4.4 Convolutional Decoder

Convolutional decoders based on the MAP algorithm have superior performance than

Viterbi decoder. In our study, we implemented the MAX-Log-MAP algorithm, which is

an approximation of the MAP algorithm that operates in the log-domain, allowing mul-

tiplications in the original MAP algorithms to be implemented by additions. A complete

implementation study on every type of MAP algorithm is beyond the scope of this study.

However, the techniques explained in this thesis can be applied in the implementation of

other MAP algorithms.

Let sk be the trellis state values at time k, then the likelihood values at time k, Lk, is

defined by:

Lk = αk−1(sk−1) + γk(sk−1, sk) + βk(sk) (4.6)

The first term, αk−1(sk−1), is the alpha metric that calculates the probability of the

current state based on the input values before time k. The second term, γk(sk−1, sk),

is the branch metric that calculates the probability of the current state transition. The

third term is the beta metric that calculates the probability of the current state given the

future input values after time k. Alpha and beta calculations are defined recursively as

53

shown below:

αk(sk) = max(αk−1(sk−1) + γk(sk−1, sk)) (4.7)

βk(sk) = max(βk+1(sk+1) + γk+1(sk, sk+1)) (4.8)

As shown, the alpha computation is forward recursive and beta computation is backward

recursive. Let s1 and s0 be the 1-branch and 0-branch trellis state transitions. The soft

output value, log-likelihood calculation (LLC) at time k, is defined by subtracting the

maximum likelihood values of the 1-branch state transitions from the maximum likelihood

values of 0-branch state transitions.

LLCk = max
s1

(Lk)−max
s0

(Lk) (4.9)

Trellis Computation Implementation. The majority of the convolutional decoder

operations are spent on trellis state updates. In this section, we present an efficient

implementation of the trellis computation.

Figure 4.4a shows the two types of trellis computation for an 8-state trellis. The blue

and red edges correspond to 0- and 1-branch transitions. Figure 4.4b shows the SIMD

implementation of the alpha trellis computation. Beta trellis computation is not shown;

it follows the same sequence of operations. Trellis computation can be divided into two

steps, branch-metric calculation (BMC) and add-compare-select calculation (ACS). In

the BMC stage, the inputs are loaded as scalar values from the scalar local memory. The

scalar value is then duplicated into a vector using the STV registers. The input vector,

In, is correlated with constant metric values, m, to calculate the branch metric values for

0-branch and 1-branch. The correlation function, shown in the figure as M , is defined as

b[i] = In[0] ∗ m[i][0] + In[1] ∗ m[i][1], i : 0 − 7. Since the metric values m[i] are either 1

54

In

m0m1m2m3m4m5m6m7

b0b1b2b3b4b5b6b7

M

2 4-bit Inputs

MMMMMMM

m0m1m2m3m4m5m6m7

b0b1b2b3b4b5b6b7

MMMMMMMM

b0b1b2b3b4b5b6b7

++++++++

b0b1b2b3b4b5b6b7

++++++++

s0s1s2s3s4s5s6s7s0s1s2s3s4s5s6s7

s0s1s2s3s4s5s6s7

s0s1s2s3s4s5s6s7s0s1s2s3s4s5s6s7

s0s1s2s3s4s5s6s7

s0s1s2s3s4s5s6s7s0s1s2s3s4s5s6s7

>>>>>>>>

Branch metric calculations
(BMC)

Add-Compare-Select calculations
(ACS)

b) Vector Implementation of Trellis Computation

M : b[i] = In[0]*m[i][0] + In[1]*m[i][1]

Assembly code:
op1: perm<ftrs8a*> Vstate0, Vstate0
op2: perm<ftrs8b*> Vstate1, Vstate1

op3: max Vstate, Vstate0, Vstate1
*ftrs8a and ftrs8b are predefined
SSN shuffle patterns

s0s1s2s3s4s5s6s7

s0s2s4s6s1s3s5s7

s1s3s5s7s0s2s4s6

s0s1s2s3s4s5s6s7

s0s2s4s6s1s3s5s7

s1s3s5s7s0s2s4s6

>>>>>>>>

s0s1s2s3s4s5s6s7

op 1 op 2

op 3

ISE

EX

t t+1

Time

Beta trellis computationAlpha trellis computation

Time

trellis state 0-branch 1-branch

s0

s1

s2

s3

s4

s5

s6

s7

s0

s1

s2

s3

s4

s5

s6

s7

s

s0

s1

s2

s3

s4

s5

s6

s7

s0

s1

s2

s3
s4

s5

s6

s7

1357 0246

2637 0415

2637 0415

3726 1504

1357 0246

0246 1357

3726 1504

c) 8-wide Compare-Select using SSN

ISE

t t+1

a) 8-wide Trellis Computation

Figure 4.4: Trellis state computation, and SIMD implementation using the SSN

55

De-
Interleaver

SISO
decoder 1

Interleaver
SISO

decoder 2

Input

Output

Demux y
s
 & y

p1

y
s
 & y

p2

L1
ex L2

ex

Figure 4.5: Block Diagram of a Turbo Decoder

or -1,we can use predicated add/subtract instructions, where m is stored as a predicate

bitvector.

In the ACS step, the trellis state vector, st, adds both 0-branch and 1-branch metrics,

and compares each pair of values to select the next trellis state vector st+1. The SSN

network is used to rearrange the vectors between SIMD operations. The rearrangement

step and the assembly code are shown in Figure 4.4c. Before this compare-and-select step,

we first interleave the 0-branch and 1-branch metric values (not shown in the figure). Then

two SIMD permutation operations are performed using the SSN. The first permutation

operation (op1) takes one cycle, using the ISE (Inverse Shuffle Exchange) pattern. The

second permutation operation (op2) takes two cycles, with one additional EX (Exchange

only) permutation. Finally, a SIMD compare-and-select operation (op3) is performed to

choose the next trellis state values.

4.5 Turbo Decoder

Turbo Decoder Overview. Turbo decoder [14] consists of two component SISO

decoders with interleavers between them as shown in Figure 4.5. The observed input

sequence, y, is split into two streams and fed into the two component decoders. Both

component decoders receive the systematic input ys, and their respective parity inputs

56

LLC

beta metric
stored

alpha and beta
calculation

alpha and beta
dummy calculation

b
0
0

b
0
1

b02

time

b
1
0

b
1
1

b
1
2

b) Schedule B:
Parallel Sliding Window for SIMD

b0

b1

b2

b3

time

b4

b5

b6

a) Schedule A:
Sliding Window

b
2
0

b21

b
2
2

window
1

window
2

window
3

Figure 4.6: Parallel MAX-Log-MAP Scheduling

yp1 and yp2. In each iteration, data first goes through the de-interleaver, and is decoded by

the first component decoder. The result is then fed into the interleaver, and decoded by

the second component decoder, the result of which is fed back into the de-interleaver. The

extrinsic outputs from the two SISO decoders are labeled L1EX and L2EX . This iterative

process is repeated several times until the stopping criteria condition has been satisfied.

In this section, we present a software Turbo decoder implementation for W-CDMA: rate

1
3
, K=4 RSC encoder with block interleaving.

Parallel Window Trellis Implementation. In W-CDMA, Turbo decoder uses

K=4 MAX-Log-MAP decoder as its component SISO decoder. K=4 MAX-Log-MAP de-

coder’s trellis state size is 8, which under-utilizes the 32-lane SIMD unit. MAX-Log-MAP

decoder can be parallelized by dividing the decoding block into smaller sub-blocks, and

performing alpha-beta-LLC computations on each sub-block independently. To account

for the potential BER performance degradation, additional dummy calculations have to

be performed before the alpha and beta computations in each sub-block. Figure 4.6a

shows one possible schedule with the alpha, beta, and dummy beta calculations. For

57

simplicity, the length of the dummy calculations in Figure 4.6 is the same as the number

of alpha and beta calculations.

There have been many studies analyzing the trade-offs between different sliding-

window and parallel-window scheduling algorithms [58] [83] [18]. Most of these studies

assume ASIC architectures with one or more dedicated alpha and beta processors that

can execute concurrently. For a software implementation, concurrent execution requires

the alpha and beta calculations be expressed as two independent threads. If they are

implemented as a single thread, we would have to rely on the compiler to discover in-

dependent instructions that can execute in parallel. However, SIMD processors cannot

process multiple threads or multiple instructions at the same time. For instance, if the

schedule in Figure 4.6a is implemented on our DSP processor, the alpha and beta calcula-

tions would be serialized. The parallel sliding window schedule, shown in Figure 4.6b, is

better suited for a software implementation on SIMD-based processors. In this schedule,

one Turbo decoding block is broken up into N parallel windows. These multiple windows

are processed concurrently with the same instruction sequence. Within each window, al-

pha, beta, and dummy calculations are computed sequentially. Compared to the schedule

in Figure 4.6a, this schedule requires N-1 extra dummy alpha calculations to initialize the

starting alpha metric for all of the windows except the first one. For W-CDMA Turbo

coding, the trellis size is 8, and thus for the 32-wide SIMD processor, 4 windows can be

processed in parallel.

Interleaver Implementation. While the SISO decoder computations can be par-

allelized, interleaving is a data shuffling function that cannot utilize the processing power

of the SIMD pipeline. Figure 4.7 shows the computation time of 1 iteration of the Turbo

decoder for two processing scenarios. With SISO parallelization, the interleaver under-

utilizes the processor’s resources and limits the overall achievable throughput. In order

58

time

InterleavingParallel Interleaving

Interleaving

Parallel +
Overlap

Interleaving

Dummy+
Alpha+LLC

Dummy+
Beta

Dummy+
Alpha+LLC

Dummy+
Beta

Dummy+
Alpha+LLC

Dummy+
Beta

Dummy+
Alpha+LLC

Dummy+
Beta

Figure 4.7: Computation time of 1 iteration of Turbo decoding for parallel processing vs.
parallel processing with overlapping interleaving

to alleviate this sequential bottleneck, we propose a technique to overlap the interleaving

operation in the background of the SISO decoder. This is based on the observation that

in a MAX-Log-MAP decoder, output data is produced one element at a time during the

LLC computation.

In this method, the interleaving is done during the memory transfer. It requires

the DMA controller to be programmed to generate the source and destination addresses

for each memory transfer. If the memory transfer rate is faster than the output rate

of SISO decoder, then the latency of interleaving can be completely hidden behind the

computation.

In the block interleaving specified in W-CDMA, each block element’s address can be

calculated by adding the row offset and the column offset. In our implementation, this

requires 2 additions, 3 memory reads, and 1 memory write, which translates into 9 cycles.

The SISO decoder produces an output every 9.25 cycles, enabling us to completely overlap

the interleaving latency with the computation latency.

4.5.1 Performance Results

SISO Decoder Throughput Analysis. In this section, we examine the achievable

SISO decoding throughput as a function of algorithm specifications and architectural

59

configurations. Let K be the RSC encoder constraint length, then the size of trellis

state is defined as S = 2K−1. We assume that the SIMD width, W , is equal or greater

than trellis state width: W ≥ S. To fully utilize the SIMD pipeline, we implemented the

parallel sliding window schedule, where N windows are processed in parallel, and N = W
S

.

If we let M be the total number of sub-blocks for one block of Turbo decoding, then each

window computes M
N

sub-blocks. In the case where W < S, trellis computation can still

be implemented. The details are omitted due to space limitations.

Let Tblock be the average number of cycles to compute alpha, beta, LLC, and dummy

computations for one sub-block of size L. If we let Tα be the number of cycles to compute

one SIMD alpha trellis update, then the latency to compute one alpha trellis update is

Tα

N
+ 3CL, where CL is the number of cycles to load one scalar value from memory. The

SIMD alpha trellis latency is divided by N , because N windows of trellis are computed

at once. Three scalar loads are needed for loading two inputs (rate 1
2

decoding), and one

extrinsic value. The SIMD beta trellis updates, Tβ, follow the same set of operations

as the alpha computation, with three scalar loads. The SIMD LLC computation, TLLC ,

computes N decoded bits at once. The SIMD dummy trellis computations are also done

in groups of N windows, with each window requiring three scalar memory loads. For a

sub-block of size L, the dummy alpha and beta calculations have to be done on at least

5K (K equals 4 here) elements to stabilize the trellis states and not affect the overall

error correction performance. The overall latency Tblock is shown in Equation 4.10, where

Td is the total dummy computation latency for one sub-block.

Tblock = Td + L(
Tα + Tβ + TLLC

N
+ 6CL) (4.10)

Td = 5K(
Tdα + Tdβ

N
+ 6CL) (4.11)

60

As shown in Equation 4.11, Td is a function of dummy alpha and dummy beta compu-

tations. Let Tdα be the number of cycles for one SIMD dummy alpha trellis computation,

and Tdβ be the number of cycles for one SIMD dummy beta trellis computation. In our

implementation, Tdα = 10 and Tdβ = 10 N
M

. Dummy beta calculations are scaled by N
M

because the beta trellis states of the N sliding windows need to be initialized once for

every M sub-blocks. In W-CDMA, Turbo decoding block size = ML, and ranges from

320 bits to 5114 bits [41]. Given L = 100, the number of sub-blocks, M , varies from 4 to

52. In our throughput calculation, we assume the longest Tdβ latency with M = 4, and

the total Turbo decoding black size = 400.

In our implementation, Tβ = 11, Tα + TLLC = 25, Td = 220 and N , the number of

windows processed in parallel, is 4 . Alpha and LLC computations have been grouped

together because they are executed together. A scalar load takes 3 cycles, but if we use

prefetching instruction, we can shorten it to 1 cycle: CL = 1. Six scalar load operations

are required for alpha and beta. The length of one sub-block, L, is 100. Based on the

numbers shown above, the overall latency is Tblock = 1720.

Architectural Implications. As shown in Equation 4.10, increasing the number

of concurrent sub-blocks, N , decreases cycle count. This can be achieved by increasing

the SIMD width W . However, doubling W doubles the size of the processor, which also

doubles the power consumption. The other trade-off is the length of a sub-block, L, as

longer sub-blocks reduce the relative ratio of dummy calculations per decoded output.

However, longer sub-blocks also require more memory to store alpha metric values. The

constraint between SIMD memory and sub-block size is Ev ≥ 2WL, where Ev is the size

of local SIMD memory. This means that we should choose the largest sub-block size that

can fit in the SIMD memory. Our DSP processor has an 8KB SIMD memory, which holds

128 512-bit entries. With 28 entries reserved for holding spilled temporary register values,

61

the sub-block size L is chosen to be 100.

Throughput Results. The overall decoding throughput of the Turbo decoder is de-

termined by I times the combined latencies of the 2 SISO decoders and the 2 interleavers,

where I is the number of iterations. In our implementation, because the interleaver la-

tencies are hidden, the throughput is only dependent on the SISO decoders’ performance.

Equation 4.12 shows the Turbo decoder throughput, RTurbo, as a function of the proces-

sor’s clock speed Cp, the number of Turbo iterations I, the average latency for a SISO

decoder to produce one bit of decoding output T1bit, and additional computations for

extrinsic value scaling CM .

RTurbo =
Cp

2I(T1bit + CM)
(4.12)

Because the Turbo decoder is a block decoder, we define SISO decoder latency as T1bit =

Tblock

L
= 17.2, where Tblock is the latency for processing one data block of size L. With our

SDR processor running at 400MHZ, Cp = 400M , and CM = 2, we are able to achieve

1.73Mbps and 2.08Mbps, with I = 6 and I = 5 respectively. Note that W-CDMA’s DCH

(Data CHannel) requires a data rate of 2Mbps.

If we wish to achieve higher throughput, we will need to resort to other optimizations

techniques. We can scale up the frequency, increase the SIMD width, or map the algorithm

onto multiple processors. In particular, our SIMD pipeline has a 32-wide 16-bit datapath,

but most Turbo decoder computations only require 8-bit precision. With some extra

hardware logic, we can support two 8-bit computation on every 16-bit datapath, making

our SIMD pipeline a 64-wide 8-bit datapath. This can potentially double the overall

throughput of the SISO decoder. Compiler optimization techniques, such as software

pipelining, are also viable options. Finally, our previous study [56] has shown that our

62

DSP processor consumes approximately 800mW in 180nm technology. Scaling down to

90nm, the same throughput can be achieved with a power consumption of approximately

100mW.

4.5.2 Related Work

There have been numerous studies on parallelizing MAX-Log-MAP for ASICs [58],

[83]. Although these studies provide interesting insights into high performance Turbo

decoder design, most of these techniques cannot be applied to SDR. The existing software

implementations can be separated into two groups. The first group includes implementa-

tions on mainstream DSPs, such as TI’s C6X that achieves throughput of 286Kbps [26],

Motorola’s Starcore that achieves throughput of 1.8Mbps [44], and ST-Microelectronics’

ST120 that achieves throughput of 540Kbps [60]. The second group includes ASIC and

programmable FPGA accelerators for RISC processors. These include the XiRisc pro-

cessor implementation with a throughput of 270Kbps [73] and Tensilica’s Xtensa-based

microprocessor with a throughput of 1.48Mbps [32]. Our processor achieves a comparable

throughput of 2Mbps for W-CDMA. However, a detailed comparison with prior solutions

is difficult because of lack of implementation details.

4.6 Summary

In this chapter, we presented a study on SDR’s algorithm designs for SODA. The

Turbo decoder, the rake receiver, and the FIR filters are responsible for the majority of

the W-CDMA computations. Design and implementation of each algorithm is explained

in this chapter. We have shown that algorithm-level optimizations plays an important

role in designing an efficient SDR solution.

63

CHAPTER 5

The ARM Ardbeg SDR Processor

5.1 Introduction

In recent years, we have seen an increase in the number of wireless protocols that are

applicable to different types of communication networks. Traditionally, the physical layer

of these wireless protocols is implemented with fixed function ASICs. Software Defined

Radio (SDR) promises to deliver a cost effective and flexible solution by implementing

a wide variety of wireless protocols in software. With the tremendous benefits of SDR,

it is likely that many mobile communication devices are going to be supported by SDR

technologies in the foreseeable future. There have been tremendous interests in the SDR

technology within the high-tech industry. Recently, Samsung was the first to announce a

mobile phone that supports TD-SCDMA/HSDPA/GSM/GPRS/EDGE standards using

a SDR baseband processor [9].

SODA Processor Architecture. The SODA multi-core architecture was proposed

for supporting 3G wireless baseband processing. SODA consists of an ARM control

processor, 4 data processing elements (PEs), and a shared global scratchpad memory.

Designed for long vector arithmetic operations, each SODA PE includes a wide 512-bit

64

SIMD unit that is capable of operating on 32 16-bit elements concurrently. In addition,

each PE also has a scalar datapath, local scratchpad memories, address generation unit

(AGU) and direct memory access (DMA) support.

Ardbeg Processor Architecture. A commercial prototype, Ardbeg, based on

SODA has been developed. Ardbeg shares many features with SODA. It is a multi-core

architecture, with one control processor and multiple data PEs. Each data PE contains

a 512-bit wide SIMD datapath. However, compared with SODA, Ardbeg optimizes the

architecture specifically for wireless applications with the addition of algorithmic specific

hardware. SODA was designed to test the feasibility of a fully programmable wireless

baseband solution by purposely avoiding algorithm-specific designs. The Ardbeg archi-

tecture is optimized to achieve higher computational efficiency while maintaining enough

flexibility to support multiple protocols. While SODA was focused on supporting 3G

wireless protocols, Ardbeg is also designed to scale for future protocols. Overall, Ardbeg

achieves between 1.5-7x speedup over SODA for wireless protocols’ DSP algorithms while

operating at a lower clock frequency.

The evolution of the SODA to Ardbeg was a process with many design choices. Each

of the choices contributed to the superior performance of Ardbeg. The major design

decisions can be grouped into three categories:

1. Optimized Wide SIMD Design. SODA was originally designed in 180nm tech-
nology. With 90nm technology targeted for Ardbeg, the SIMD datapath choices
need to be re-examined. We re-evaluated the SIMD width, and found that SODA’s
original 32-lane 512-bit SIMD datapath is still the best SIMD design point in 90nm.
On the other hand, the SIMD shuffle network had to be redesigned to support faster
vector permutation operations. Compared with SODA’s two cycle SIMD multiplier,
90nm technology also allows us to design a single cycle SIMD multiplier, which pro-
vides significant speedup for several key SDR algorithms.

2. LIW Support for Wide SIMD. For W-CDMA and 802.11a, the SODA SIMD
ALU unit is utilized around 30% of the total execution cycles. LIW execution on
SODA SIMD pipeline was considered to increase the low utilized SIMD units, but
was abandoned due to the concern about the extra power and area costs of adding

65

more SIMD register file ports. We revisited this concern when designing Ardbeg in
order to improve the computational efficiency. The result was Ardbeg issuing two
SIMD operations each cycle. Not all combinations of SIMD instructions are allowed.
Ardbeg implements a restricted LIW designed to support SDR algorithms’ most
common parallel execution patterns with minimal hardware overhead. Our analysis
shows that having this restricted LIW support would provide better performance
and power efficiency over single-issue SIMD datapath, but also that having a multi-
issue VLIW does not provide any additional performance benefit over a simple
two-issue LIW.

3. Algorithm Specific Hardware Acceleration. A set of algorithm specific hard-
ware is also added to the Ardbeg architecture. These include an ASIC accelerator
for Turbo decoder; block floating point support; and fused permute and arithmetic
operations. This set of algorithm specific hardware was chosen to achieve higher
computational efficiency while maintaining enough flexibility to support multiple
protocols.

The rest of the chapter is organized as follows. Section 5.2 gives a brief description

of the overall architectures of SODA and Ardbeg. Section 5.3 presents the architectural

evolution from SODA to Ardbeg. We provide experimental results and analysis to explain

the rationale behind the major Ardbeg architectural design decisions. Section 5.4 presents

the performance results of the two architectures for various wireless protocols. Section 5.5

provides a survey of the current SDR processor solutions.

5.2 Architectural Overview

Because the majority of the SDR computations are based on vector arithmetics, our

previous work on SODA has demonstrated that having a wide SIMD datapath can achieve

significant speedup while maintaining low power consumption. With a 32-lane SIMD

datapath, SODA was able to achieve an average of 47x speedup for W-CDMA DSP

algorithms over a general purpose processor. However, as an initial research prototype,

many architectural optimizations were overlooked. Ardbeg has improved upon the base

SODA architecture, as will be illustrated in the subsequent sections. This section provides

66

an overview of the SODA and Ardbeg architectures and summarizes the differences.

5.2.1 SODA Architectural Overview

The SODA multicore system is shown on the left in Figure 5.1. It consists of four

data PEs, a scalar control processor, and a global L2 scratchpad memory, all connected

through a shared bus. Each SODA PE consists of five major components: 1) a SIMD

datapath for supporting vector operations; 2) a scalar datapath for sequential operations;

3) two local L1 scratchpad memories for the SIMD pipeline and the scalar pipeline; 4) an

AGU pipeline for providing the addresses for local memory access; and 5) a programmable

DMA unit to transfer data between memories. The SIMD, scalar and AGU datapaths

execute in lock-step, controlled with one program counter (PC).

The SIMD datapath consists of a 32-lane, 16-bit datapath, with 32 arithmetic units

working in lock-step. It is designed to handle computationally intensive DSP algorithms.

Each datapath includes a 2 read-port, 1 write-port 16 entry register file, and one 16-bit

ALU with multiplier. Synthesized in 180nm technology, the multiplier takes two exe-

cution cycles when running at the targeted 400MHZ. Intra-processor data movements

are supported through the SSN (SIMD Shuffle Network). The SSN consists of a shuf-

fle exchange (SE) network, an inverse shuffle exchange (ISE) network, and a feedback

path. Various SIMD permutation patterns require multiple iterations of the SSN net-

work. SIMD-to-scalar (VTS) and scalar-to-SIMD (STV) units are used to transfer data

between the SIMD and scalar datapath.

Shortcomings of SODA. Because SODA processor was originally designed in 180nm

technology, many SIMD datapath components were pipelined to achieve the target fre-

quency. These include multi-cycle SIMD multiply and permutation operations. Through

benchmarks, we found these two operations to be essential in many of the DSP compu-

67

512-bit
SIMD
Reg.
File

E
X

512-bit
SIMD
ALU+
Mult

SIMD
Shuffle

Net-
work
(SSN)

W
B

Scalar
ALU

W
B

E
X

Scalar
RF

L1
SIMD
Data

Memory

L1
Scalar
Data

Memory

S
T
V

AGU
RF

E
X

W
B

AGU
ALU

1. wide SIMD

2. Scalar

4. AGU

V
T
S

Pred.
Regs

W
B

SIMD
to

Scalar
(VtoS)

ALU

RF

DMA

SODA PE

5. DMA

3. Local
memory

SODA System

To
System

Bus

512-bit
SIMD
Reg.
File

512-bit
SIMD
Mult

SIMD
Shuffle

Net-
work

Scalar
ALU+
Mult

Scalar
RF+ACC

L1
Data

Memory

AGU
RF

AGU

1. wide SIMD

Pred.
RF

SIMD+
Scalar
Transf

Unit

Ardbeg PE

3. Memory

SIMD
Pred.
ALU

Scalar
wdata

1024-bit
SIMD

ACC RF

SIMD
wdata

512-bit
SIMD
ALU
with

shuffle

E
X

E
X

I
N
T
E
R
C
O
N
N
E
C
T
S

I
N
T
E
R
C
O
N
N
E
C
T
S

L2
Memory

2. Scalar & AGUL1
Program
Memory

Controller

Interconnect Bus

L2
Scratchpad

Memory
Control

Processor

L1
Memories

Execution
Unit

PE

L1
Memories

Execution
Unit

PE

L1
Memories

Execution
Unit

PE

L1
Memories

Execution
Unit

PE

 64-bit AMBA 3 AXI Interconnect

Turbo
Coprocessor

DMACPeripherals

L1
Mem

Control
Proc.

L1
Mem

Execution
Unit

PE

L1
Mem

Execution
Unit

PE
L2

Mem

51
2-

bi
t

 B

us

E
X

E
X

AGU

AGU

Ardbeg System

SODA Ardbeg

SIMD + scalar + AGU SIMD + scalar + AGU
SIMD/Scalar LIW SIMD/Scalar and SIMD/SIMD LIW
400MHz (180nm) 350MHz (90nm)

PE Architecture

single issue ALU + memory + SSN
512 bits 512 bits

16-bit FXP 8/16/32-bit FXP

SIMD Architecture

no yes
yes yes

2 cycles 1 cycle
32-lane 1-stage iterative perfect shuffle 128-lane 7-stage Banyan network

reduction tree pair-wise operation
2 read/1 write ports, 16 entries 3 read/2 write ports, 15 entries

8KB 16KB~64KB
64KB 256KB~1MB

no Turbo coprocessor
no software pipelining

Others

Organization
Execution Model

PE Frequency

SIMD Datapath
SIMD Width

Data Precision
Block Floating Point

SIMD Predication
SIMD Mult Latency

SIMD Shuffle Network
Reduction Network

SIMD Reg File
L1 Memory
L2 Memory

Coprocessor
Compiler Opti.

Comparison summary of the architectural features of SODA and Ardbeg

L1
Program
Memory

Controller

W
B

W
B

W
B

W
B

E
X

W
B

Figure 5.1: SODA and Ardbeg architectural diagrams, and a summary of the key archi-
tectural features of the two designs.

68

tations. Memory access latencies are also multi-cycle, but this still holds true in 90nm

technology. Because the SIMD datapath can only issue one instruction per cycle, these

memory operations stall the entire pipeline. The combination of these inefficiencies results

in a relatively poor 30% SIMD ALU utilization. Ardbeg has improved upon these areas

in the SODA design. The details are explained in Section 5.3.

5.2.2 Ardbeg Architecture

The Ardbeg system architecture is shown on the right in Figure 5.1. Similar to the

SODA architecture, it consists of multiple PEs, an ARM general purpose controller, and a

global scratchpad memory. The overall architecture of the Ardbeg PE is also very similar

to the SODA PE, with a 512-bit SIMD pipeline, scalar and AGU pipelines, and local mem-

ory. Ardbeg was designed using the OptimoDE framework [23]. The framework allowed

the creation of custom VLIW-style DSP architectures and evaluating many architectural

design trade-offs quickly. These trade-offs will be discussed in the next section. The in-

struction set for Ardbeg was derived from the NEON extensions [3]. The bottom portion

of figure 5.1 also provides a side-by-side comparison between the two architectures.

The Ardbeg system has two PEs, each running at 350MHz in 90nm technology. In

addition, it includes an accelerator dedicated to Turbo decoding. In comparison, in the

SODA system, Turbo decoding is allocated to one of the four PEs. Both the Ardbeg and

SODA PEs have three major functionalities: SIMD, scalar, and AGU.

The SODA and Ardbeg PEs both support 512-bit SIMD operations. The SODA

PE only supports 16-bit fixed point operations, whereas the Ardbeg PE also supports

8-, 32-bit fixed point, as well as 16-bit block floating point operations. One of the key

differences between Ardbeg and SODA is that the Ardbeg PE supports LIW execution

on its SIMD pipeline, allowing different SIMD units to execute in parallel. In the SODA

69

PE, only one SIMD operation can be issued per cycle. Also, SODA’s SIMD permutation

network is a single stage, multi-cycle perfect shuffle network, whereas Ardbeg’s SIMD

permutation network is a 7-stage, single-cycle Banyan network. In terms of number

of registers, the Ardbeg PE has additional SIMD and scalar accumulators to hold the

output of the multiplier. Ardbeg supports a 1-cycle multiplier, whereas SODA’s multiplier

requires 2 cycles. A write buffer to memory is also added to Ardbeg. Both Ardbeg’s local

and global memories are larger than the SODA’s memories. In addition, instead of the

separate scalar and SIMD memories in SODA, Ardbeg has one unified local scratchpad

memory. Because many DSP algorithms don’t have much scalar code, it is more efficient

to share the memory space between the SIMD and scalar datapath.

5.3 Architectural Evolution From SODA to Ardbeg

5.3.1 Optimized Wide SIMD Design

Since the majority of the SDR algorithms operate on very wide vectors, SODA used a

wide SIMD datapath namely, a 512-bit 32-lane SIMD datapath. Ardbeg has also adopted

the 512-bit SIMD datapath, and extended it to support 64-lane 8-bit and 16-lane 32-

bit SIMD arithmetics. The SIMD shuffle network (SSN) is redesigned to provide better

performance at lower power. With a target frequency of 350MHz, implementing Ardbeg

in 90nm also allows for a single-cycle SIMD multiplication unit. The rest of this section

explains our rationale for these architectural design decisions.

SIMD Width Analysis. The SODA architecture was designed using a 180nm pro-

cess technology. A 32-lane configuration was found to be the most energy efficient SIMD

configuration. One of the first Ardbeg design considerations is to determine if SODA’s

proposed 32-lane SIMD is still the best configuration in 90nm. In this study, we exam-

70

0

0.2

0.4

0.6

0.8

1

1.2

8 16 32 64

SIMD Width

N
or

m
al

iz
ed

 E
ne

rg
y

0

0.2

0.4

0.6

0.8

1

1.2

8 16 32 64

SIMD Width

N
or

m
al

iz
ed

 D
el

ay

a) b) c)

0

0.2

0.4

0.6

0.8

1

1.2

8 16 32 64

SIMD Width

En
er

gy
-D

el
ay

 P
ro

du
ct

0

2

4

6

8

10

12

A
re

a

Energy-Delay Area

Figure 5.2: Plots of normalized energy, delay, and energy-delay product versus area plots
for different Ardbeg SIMD width configurations running 3G Wireless algorithms. The
results are normalized to the 8-wide SIMD design.

ine SIMD configurations ranging from 8-lane to 64-lane. Figure 5.2a and b shows the

normalized energy and delay for different SIMD width Ardbeg processors synthesized for

350MHz in 90nm for various key SDR algorithms like FFT, FIR, W-CDMA Searcher, and

Viterbi. All values are normalized to the 8-wide SIMD configuration.

The figures show that as SIMD width increases, both delay and energy consumption

decreases. The delay result is expected as wider SIMD configurations can perform more

arithmetic operations per cycle. While power consumption of a wider SIMD is greater,

however, because wider SIMD takes less number of cycles to perform the same number of

arithmetic operations, the overall energy consumption is lower for wide SIMD. Figure 5.2c

shows the energy-delay product and the area of these SIMD configurations. A 32-lane

SIMD configuration has better energy and performance results compared to the 8-lane and

16-lane SIMD configurations. A 64-lane SIMD configuration has slightly better results

than the 32-lane SIMD configuration. If energy and delay are the only determining factors,

then implementing Ardbeg with a 64-lane SIMD configuration is probably the best design

choice. However, in a commercial product, area is also a major design factor. As SIMD

width increases, area increases at a higher rate than the decrease in either energy or

delay. Taking area into account, Ardbeg chose to keep SODA’s 32-lane SIMD datapath

71

16 wide Perfect
Shuffle+Exchange (SE)

16 wide Inverse Perfect
Shuffle+Exchange (ISE)

16 wide 1 stage iterative
SODA SSN with SE and ISE

Flip-flop 2-to-1 MUX

16 wide 4 stage Ardbeg SSN with
Banyan Network

16bit switch element

Figure 5.3: SIMD shuffle network for the SODA PE and the Ardbeg PE. For illustration
clarity, these examples show 16-wide shuffle networks. The SODA PE has a 32-wide 16-bit
1-stage iterative shuffle network, and the Ardbeg PE has a 128-lane 8-bit 7-stage Banyan
shuffle network.

configuration.

SIMD Permutation Support. It is very common for DSP algorithms to rearrange

the vector elements before vector computations. One of the central design challenges

in designing a wide SIMD architecture is the vector permutation support. A partially

connected SIMD shuffle network (SSN) was employed in SODA as shown in Figure 5.3.

It is a 32-lane single stage iterative shuffle network consisting of a perfect shuffle and

exchange (SE) pattern, a inverse perfect shuffle and exchange (ISE), and a feedback

path. The SODA SSN was designed in 180nm technology. Multi-stage networks were

considered, but the delay for the multi-stage network was more than one clock cycle

running at 400MHz. In addition, there were concerns that the area for a multi-stage

network may be too large. Therefore, a multi-cycle iterative shuffle network was chosen

for SODA. In designing Ardbeg’s shuffle network in 90nm, we evaluated several SIMD

configurations and network topologies.

We first examined the performance and energy trade-offs of a wider SSN. Figure 5.4a

72

0

0.2

0.4

0.6

0.8

1

1.2

64pt FFT
Radix-2

2048pt FFT
Radix-2

64pt FFT
Radix-4

2048pt FFT
Radix-4

Viterbi K9

No
rm

al
iz

ed
 E

ne
rg

y

32 Wide Perfect 64 Wide Perfect
64 Wide Banyan 64 Wide Crossbar

0

0.2

0.4

0.6

0.8

1

1.2

64pt FFT
Radix-2

2048pt FFT
Radix-2

64pt FFT
Radix-4

2048pt FFT
Radix-4

Viterbi K9

E
ne

rg
y-

De
la

y
P

ro
du

ct

32 Wide Perfect 64 Wide Perfect
64 Wide Banyan 64 Wide Crossbar

a) b)

Figure 5.4: Normalized energy and energy-delay product for key SDR algorithms running
on Ardbeg for different shuffle network topologies.

provides the normalized energy of key SDR algorithms for a 32-lane SODA SSN and a

64-lane SODA SSN. The SIMD datapath is still 32-lane for both SSN configurations. The

64-lane SSN operates on two 32-lane SIMD vectors by reading from two SIMD register file

ports. Filter algorithms are excluded from this study because their SIMD implementa-

tions do not use the SSN. Compared to the 32-lane network, a 64-lane network consumes

approximately 20% less energy across all benchmarks, despite the fact that the 64-lane

network consumes more power than the 32-lane network. This is because these DSP algo-

rithms operate on long vectors, where the vector width is greater than the SIMD width.

Because many long vector permutations require extra instructions to store intermediate

permutation results, the number of instructions required to perform long vector permuta-

tions does not always scale linearly with the width of SSN. A smaller SSN requires higher

number of extra instructions than a larger SSN, which results in more frequent SIMD

register file accesses and other execution overhead.

We then examined the performance and energy trade-offs of different network topolo-

gies. In addition to SODA SSN’s iterative SE/ISE network, we also examined 64-lane

Banyan network and full crossbar. The SE/ISE and the Banyan networks are shown in

73

Figure 5.3. The Banyan network is a flattened 7-stage network that can perform 64-lane

16-bit vector permutations in a single cycle. Energy and energy-delay products of these

three networks are shown in Figure 5.4. For radix-2 FFT, a 64-lane iterative SE/ISE net-

work is slightly better than a 64-lane Banyan network, because there exists an implemen-

tation of this algorithm that is optimized specifically for the SE/ISE network. However, if

an algorithm requires more complex permutation patterns, such as the radix-4 FFT and

Viterbi algorithms, the single-cycle Banyan network has shorter delays than the multi-

cycle iterative shuffle network. Though the difference in energy consumption between the

iterative SE/ISE network and 64-lane Banyan is not very large, Figure 5.4b shows that the

single-cycle Banyan network has better energy-delay product than the iterative SE/ISE

network. Overall, the Banyan network performs as well as the full crossbar, and with

1̃7x area saving compared to the crossbar. Therefore, Ardbeg’s SSN is implemented with

the Banyan network. In addition to supporting 16-bit permutations, Ardbeg’s Banyan

network can also support 32-lane 32-bit and 128-lane 8-bit vector permutations.

Reduced Latency Functional Units. In SODA, the 180nm process technology put

a constraint on the latency of the functional units. Because SODA’s target frequency was

set to 400 Mhz, the multiplier had to be designed with a 2-cycle latency. For Ardbeg,

the target frequency is set at 350 Mhz due to the control latency for controlling the

LIW pipeline. With 90nm process technology, Ardbeg implements power efficient SIMD

multipliers with single cycle latency. Because many DSP algorithms require large number

of multiplication operations, the single-cycle SIMD multiplication results in up to 2x

performance improvements.

74

of SIMD RF Ports RequiredArdbeg Function Units
1 read / 1 write
2 read / 1 write

2 read / No write (ACC RF)
2 read / 2 write
1 read / 1 write
1 read / 2 write

2 read / 1 write (Pred. RF)

Memory Load/Store
SIMD Arithmetic

SIMD Multiply
SIMD Shuffle

SIMD+Scalar Transfer Unit
ACC-to-SIMD Move
SIMD Comparison

Mem.
Arith.
Mult.

Shuffle
Trans.
Move

Comp.

Mem.
NA

High
High
Low
High
Low
Low

Arith.
--

NA
Mid
High
Mid
Low
Low

Mult.
--
--

NA
Mid
High
High
Low

Shuffle
--
--
--

NA
Mid
Low
Low

Trans.
--
--
--
--

NA
Low
Low

Move
--
--
--
--
--

NA
Low

Comp.
--
--
--
--
--
--

NA
b) Shaded box means Ardbeg can issue instructions on these two function units in
the same cycle. “High/Mid/Low” represent the relative usage frequency for each pair
of function units within wireless protocols.

a) This table lists the function units in Ardbeg, and the number of
SIMD register file ports required for each unit. At most two SIMD
operations can be issued every cycle.

c) Normalized delay for various key SDR kernels running on
Ardbeg with different VLIW configurations.

d) Normalized energy-delay product for various key SDR kernels
running on Ardbeg with different VLIW configurations

0

0.2

0.4

0.6

0.8

1

1.2

FIR CFIR FFT Rx2 FFT Rx4 Viterbi K7 Viterbi K9 Average

N
or

m
al

iz
ed

 D
el

ay

2 Read/ 2 Write (Single Issue) 3 Read/ 2 Write (Ardbeg)
4 Read/ 4 Write (Any two SIMD ops) 6 Read/ 5 Write (Any three SIMD ops)

0

0.2

0.4

0.6

0.8

1

1.2

FIR CFIR FFT Rx2 FFT Rx4 Viterbi K7 Viterbi K9 Average

En
er

gy
-D

el
ay

 P
ro

du
ct

2 Read/ 2 Write (Single Issue) 3 Read/ 2 Write (Ardbeg)
4 Read/ 4 Write (Any two SIMD ops) 6 Read/ 5 Write (Any three SIMD ops)

Figure 5.5: Ardbeg VLIW support. Ardbeg has 7 different function units, as listed in
sub-figure a. These seven function units share 3 SIMD register file read and 2 write ports.
At most two SIMD operations can be issued per cycles, and not all combinations of SIMD
operations are supported. Different LIW configurations are evaluated in terms of delay
and energy-delay product, as shown in sub-figure c and d. The results are shown for
software pipelined Ardbeg assembly code.

5.3.2 LIW SIMD Execution

For W-CDMA and 802.11a, the SODA SIMD ALU unit is utilized around 30% of the

total time. The poor utilization is mainly due to the fact that SODA’s SIMD datapath is

shared with the memory access unit and the SSN. Not being able to utilize the functional

units increase register file accesses and also execution time. LIW execution on the SIMD

pipeline was considered for the SODA architecture to reduce these problems, but was

abandoned due to the concern about the extra power and area costs of adding more

SIMD register file ports. In SODA, the SIMD register file was the largest power consumer,

accounting for approximately 30% of the total power. When designing Ardbeg, we re-

evaluated LIW execution to decrease execution time. We investigated the possibility of

including LIW execution as a mechanism to reduce register file power.

75

To determine the effectiveness of LIW we analyzed different kernels within the set

of wireless protocols and found how often functional units could be scheduled together.

There are 7 SIMD function units in Ardbeg’s SIMD datapath as listed in Figure 5.5a,

along with their register port requirements. The values listed in Figure 5.5b represent the

frequency that the functional units could be scheduled together. We can see that there

are few instruction combinations that occur in high frequency in the algorithms. This

suggests that we could implement LIW and potentially reduce the number of register file

ports in order to save power while increasing throughput.

We have studied the performance and energy efficiency trade-offs for supporting var-

ious LIW configurations in Ardbeg. We examined configurations with different different

number of SIMD register file read and write ports: single issue with 2 read and 2 write

ports, restricted 2-issue LIW support with 3 read and 2 write ports, full 2-issue LIW sup-

port with 4 read and 4 write ports, and full 3-issue instruction LIW support with 6 read

and 5 write ports. The performance and energy efficiency results are shown in Figure 5.5c

and d. The results are shown for software pipelined scheduled code. The performance is

normalized to the cycle count for the single issue Ardbeg. We found that LIW support is

beneficial for many key SDR algorithms. This indicates that there is still instruction-level

parallelism within SIMDized Ardbeg assembly code. However, we also find that a 2-issue

LIW configuration is enough to capture the majority of the instruction-level parallelism,

as a 2-issue configuration results in a similar speedup as 3-issue configuration. This is be-

cause a significant portion of the instruction-level parallelism is already exploited through

SIMD execution. Also, many SIMD operations cannot execute in parallel simply because

of data dependencies between these operations.

LIW execution is supported in Ardbeg, but with restrictions on the combinations of

instructions that can be issued in a cycle. This results in slower speedup than a full 2-issue

76

LIW, but provide better energy-delay product due to lesser number of SIMD register file

ports. The set of valid Ardbeg LIW instruction combinations are shown in Figure 5.5b as

shaded boxes. Among these LIW combinations, overlapping memory accesses with SIMD

computation is the most beneficial because most DSP algorithms are streaming. The

SIMD arithmetic/multiplication with SIMD-scalar transfer combination is most benefi-

cial for filter-based algorithms. And, the SIMD multiply with move combination is most

beneficial for FFT-based algorithms. The responsibility is left to the compiler to produce

valid instruction schedules that can utilize this capability. Overall, Ardbeg’s SIMD data-

path can achieve an average of 60% SIMD ALU utilization while supporting only a subset

of LIW execution.

5.3.3 Application Specific Hardware Acceleration

Designing an application specific processor for SDR is a balancing act between pro-

grammability and performance. A processor must be flexible enough to support a mul-

titude of wireless protocols. However, too much flexibility results in an inefficient archi-

tecture that is unable to meet the stringent performance and power requirements. SODA

was designed to meet the throughput requirements of 3G wireless protocols, such as W-

CDMA and 802.11a. In addition to these 3G protocols, Ardbeg also designed with future

wireless protocols in mind. Therefore, hardware accelerators were added to Ardbeg to

increase computational and energy efficiency.

Turbo Coprocessor. Turbo decoding is one of the error correction algorithms used

in the W-CDMA wireless protocol for the 2 Mbps data communication channel. It is

the most computationally intensive W-CDMA DSP algorithm. In addition, it is the

most difficult algorithm to vectorize. Unlike the wide vector arithmetics of other SDR

algorithms, W-CDMA Turbo decoder operates on narrow 8-wide vectors. Parallelization

77

techniques can be applied to utilize the 32-lane SIMD datapath by processing four 8-

wide vectors concurrently [55]. However, this requires concurrent memory accesses for

the 4 vectors. Because the SODA and Ardbeg PEs only have one memory port, serialized

memory accesses become the bottleneck of the algorithm. Software pipelining cannot help,

because the main loop in the decoder has data dependencies between consecutive loop

iterations. The combination of these factors makes Turbo decoder the slowest algorithm

on the SODA and Ardbeg PEs. The SODA and Ardbeg PEs can sustain 50-400 Mbps of

data throughput for various FIR and FFT algorithms, but only 2 Mbps for Turbo decoder.

The SODA PE was targeted at 400 MHz because of the computational requirements of

the Turbo decoder. Offloading the Turbo decoder to a coprocessor allows the Ardbeg PE

to lower the target frequency to 350 MHz.

Because of the high computational requirements, one SODA PE is dedicated solely for

Turbo decoding, accounting for roughly 25% of the total power consumption. In 90nm

implementation, a SODA PE would be able to maintain 2 Mbps while consuming an esti-

mated power of 111mW. In contrast, in 130nm, an ASIC Turbo decoder is able to support

13.44 Mbps while consuming 262 mW [75]. In 90nm technology, this roughly translates

to 21 mW for sustaining 2 Mbps throughput. Therefore, in the case of Turbo decoder,

the cost of programmability is approximately 5x in terms of power consumption. Fur-

thermore, since 2 Mbps is the maximum throughput for a SODA PE running at 400 Mhz,

higher decoding throughput, as required by 3.9G, would require either higher frequencies

or multiple PEs. Both these considerations led Ardbeg to offload Turbo decoding on a

coprocessor. Other DSP systems aimed at wireless communications, such as the Phillips’

EVP, have also taken a similar approach.

78

5.3.3.1 Application Specific Instruction Set Extensions

Many wireless protocols can share the same error correction ASIC accelerator, but the

approach of using more ASIC accelerators is not viable due to the inherent differences in

the protocols. However, while the algorithms are different, they share many commonal-

ities within their basic computational blocks. This allows us to increase computational

efficiency by adding algorithm-specific instructions common to many algorithms.

Block Floating Point Support. Large point FFTs are used in many wireless

protocols. Even though the input and output data are 16-bit numbers, the intermediate

results often require higher precision. Block floating point (BFP) provides near floating

point precision without its high power and area costs. In floating point, each number

has its own mantissa and the exponent. In BFP, each number has its own mantissa, but

the exponent is shared between a block of numbers. BFP is commonly used in ASIC

design, but very few programmable processors have provided direct hardware support. A

key operation in BFP is finding the maximum value among the block of numbers. Most

DSP processors support this operation in software. However, for the 32-lane Ardbeg

SIMD datapath, this is very inefficient in software, as all lane values must be compared.

In Ardbeg, a special instruction is implemented that finds the maximum value in a 32-

lane 16-bit SIMD vector. BFP support allows the Ardbeg PE to operate in the 16-bit

SIMD datapath mode for FFT computations, instead of the 32-bit SIMD datapath mode

that would have been required to satisfy precision requirements. Though FFT is where

BFP is currently used, any algorithm which requires higher precision can utilize the BFP

instruction extensions.

Fused Permute-and-ALU Operations. It is common in many DSP algorithms

to first permute the vectors before performing arithmetic operations. An example is the

butterfly operation in FFT, where vectors are first shuffled in a butterfly pattern before

79

SIMD operand vIn0

i3 i2 i1 i0i31 i30 i29 i28j3 j2 j1 j0j31 j30 j29 j28

r1 r0r15 r14r17 r16r31 r30

SIMD operand vIn1

result vector vRes

SIMD shuffle
SIMD add

op: vpadd_s16 vRes,vIn0,vIn1, #1

Figure 5.6: Ardbeg’s pair-wise butterfly SIMD operation implemented using a fused per-
mute and ALU operation. The figure shows pairs of 2-element butterfly. Ardbeg supports
pairs of 1-,2-,4-,8-,and 16-element butterfly of 8- and 16-bits. This butterfly uses the in-
verse perfect shuffle pattern because the input to each SIMD ALU lane must come from
the 2 inputs of the same SIMD lane.

vector adds and subtracts are performed. In an earlier design of the SODA PE, the SSN

was placed in front of the SIMD ALU, so that permute-and-arithmetic operations could

be performed in one instruction. However, arithmetic operations that do not require

permutations always go through the SSN, increasing the number of pipeline stages and

power consumption. So in the final SODA PE design, the SSN was taken out of the

arithmetic pipeline, and placed as a separate unit, as shown in Figure 5.1. To support the

permute-and-arithmetic operations, a separate permutation operation was needed. The

result of this permutation operation is written back to the SIMD register file, only to be

read out in the next cycle for the arithmetic operation, thereby increasing register file

access power in SODA.

The Ardbeg PE addresses this problem by including two shuffle networks. The 128-

lane SSN is a separate unit that can support many different permutation patterns. In

addition, a smaller 1024-bit 1-stage shuffle network is included in the same pipeline stage

in front of the SIMD ALU. This 1-stage shuffle network only supports inverse perfect

shuffle patterns between different groups of lanes. This shuffle pattern implements the

various pair-wise butterfly operations shown in Figure 5.6. In the figure, the shuffle and

80

b8 b7 b6 b5 b4 b3 b2 b1 a8 a7 a6 a5 a4 a3 a2 a1

b8 a8 b7 a7 b6 a6 b5 a5 b4 a4 b3 a3 b2 a2 b1 a1

zip(1) -- inverse perfect shuffle

b8 b7 b6 b5 b4 b3 b2 b1 a8 a7 a6 a5 a4 a3 a2 a1

b7 b8 b5 b6 b3 b4 b1 b2 a7 a8 a5 a6 a3 a4 a1 a2

transpose(1)

b8 b7 b6 b5 b4 b3 b2 b1 a8 a7 a6 a5 a4 a3 a2 a1

b5 b4 b3 b2 b1 a8 a7 a6 a5 a4 a3 a2 a1 b8 b7 b6

rotate(3)

b8 b7 b6 b5 b4 b3 b2 b1 a8 a7 a6 a5 a4 a3 a2 a1

b3 b2 b1 a8 a7 a6 a5 a4

extract(3)

Figure 5.7: SSN shuffling patterns used for matrix transpose.

add operations are performed in the same cycle. This shuffle network is used to accelerate

FFT and various other algorithms that use butterfly-and-addition operations. Because

these fused butterfly operations are the majority of the permute-and-arithmetic patterns,

Ardbeg is able to benefit from the best of both designs. A 2048-Point FFT is able to gain

25% speedup using fused butterfly operations.

SIMD Support for Interleaving. Interleavers are very common in wireless pro-

tocols. They are used to protect the transmission against burst errors by rearranging

the data sequence. Unlike most other DSP algorithms, there is no data processing or

computations involved in interleaving; interleavers simply rearrange the data sequence in

different patterns to account for varying types of transmission environments.

Interleaving is essentially a long vector permutation operation, where the vector width

is far greater than the SIMD width. This is a challenge because the SODA and Ardbeg’s

SSN can only permute vector patterns of SIMD width. If we let N be the size of the

vector, then a general purpose permutation algorithm would take O(N) time. However,

for certain permutation patterns, different types of SIMD shuffle patterns can be utilized

to speed up the permutation latency. The Ardbeg SSN supports a set of predefined

permutation patterns for efficient implementation of certain interleaving patterns. For

example, one commonly used interleaver is the matrix transpose operation, where the

81

input vector is organized in a M × N matrix, and the output vector is transposed into

a N × M matrix. A O(log(N)) algorithm exists that uses the zip, transpose, extract,

and rotate shuffling patterns [2] as shown in Figure 5.7. Using these predefined patterns,

a 192 element vector can be transposed in just 37 cycles. This translates to an average

speedup of 4x for interleaving kernels for Ardbeg in comparison with SODA.

5.3.4 Hardware Support for Multi-core Scheduling

Interrupt handling in DSP systems can have long interrupt latencies. Interrupt latency

is the time from when an interrupt is triggered to when device generating the interrupt is

serviced. The reason typical DSP systems have long latencies is because the time it takes

for the control processor to see the interrupt and also the time to allow the pipeline and

all requests to finish before the interrupt can be handled. In DSP systems where a control

processor is present there is not only interrupt latency overhead but also the overhead to

determine the next activity to process. This control processor not only has to react to

the interrupt but also determine what next to run in the scheduler.

To implement wireless DSP systems we used a simple co-operating multitasking thread

model. This model consists of two priority level of threads: High priority threads from

interrupts and Deferred Procedure Calls (DPC). High priority threads run until they are

blocked or finish and are called from interrupts. DPCs are long running background

tasks and can be pre-empted. The problem is that all these are running on the control

processor. When a thread blocks or finishes or a DE task completes, the control processor

will be interrupted and the time it takes to determine what to do can be a large overhead.

If we consider the interrupt frequency of a DVB system due to interrupts from ADC and

DE execution completion, the majority of interrupts occur within 8192 cycles and almost

35% of all interrupts occur under 2048 cycles. For DVB, the interrupt overhead is almost

82

Throughput

Filtering

Modulation

Synchronization

Error Correction

W-CDMA

Voice: 12Kbps

Data: 384Kbps/2Mbps

Complex FIR 65-taps

Scrambler/Descrambler

Spreader/Despreader

Combiner

Searcher

Interleaver

Viterbi K=9

Turbo Decoder K=4

802.11a

24Mbps, 54Mbps

FIR 33-taps

FFT/IFFT 64 points

QAM/IQAM 64 points

Interpolator

Interleaver

Viterbi K=7

DVB

5Mbps, 15Mbps

FIR 16-taps

FFT 2048 points

Scrambler/Descrambler

QAM/IQAM 4/16/64 points

Equalizer

Channel Est.

Bit Interleaver

Viterbi K=7

Figure 5.8: DSP algorithms that are used in W-CDMA, 802.11a and DVB wireless pro-
tocols.

250 cycle. This means that the DE units are wasting anywhere from 3-10% of it’s possible

utilization just waiting for a signal to start the next task. In Ardbeg there are 2 DE’s so

that is a potential of 6-20% performance reduction.

To reduce this overhead and provide faster interrupt response a simple hardware se-

quencer is added. The function of this hardware sequencer is to handle task queuing,

where simple activity can happen without control processor intervention. This will allow

for dramatically lower latencies. The control processor loads the event data of the next

event that the DE will perform into the DE’s task buffer. When the DE interrupts be-

cause of completion it will also check the task buffer to see if it can start the next task. If

there is data it will start without a response from the control processor. This allows the

DE to start the next task and allow the control processor to handle the interrupt without

wasting the DE’s processing time.

5.4 Results and Analysis

For the overall protocol performance evaluations, we have implemented three different

wireless communication protocols which represent a wide spectrum of wireless communi-

83

cation applications. These are W-CDMA [41], 802.11a [1], and DVB-H [5]. W-CDMA

is a widely used in 3G cellular protocols. 802.11a is chosen to represent the workload of

a typical WiFi wireless protocol. DVB-H (Digital Video Broadcasting - Handheld) is a

standard used for digital television broadcasting for handheld receivers. These protocols

are chosen to stress the flexibility of the SODA and Ardbeg systems. Both SODA and

Ardbeg are able to support real-time computations for these protocols.

The characteristics of these three protocols are listed in Figure 5.8. These protocols

consist of the following four major algorithm categories: filtering, modulation, synchro-

nization, and error correction. Filtering is used to suppress signals transmitted outside

of the allowed frequency band so that interference with other frequency bands are mini-

mized. Modulation algorithms translate digital signals into analog wave patterns consist-

ing of orthogonal signals. Synchronization algorithms synchronize the two communicating

terminals to ensure lock-step communication between the sender and the receiver. Error

correction algorithms are used to recover data from noisy communication channels.

The RTL Verilog model of the SODA processor was synthesized in TSMC 180nm tech-

nology. The estimated power and area results for 90nm technology were calculated using

a quadratic scaling factor based on Predictive Technology Model (PTM) [6]. The Ard-

beg processor was developed as part of the OptimoDE framework [23]. The architectural

model is written in OptimoDE’s hardware description language. A Verilog RTL model, a

cycle-accurate simulator, and a compiler are generated by OptimoDE. The Ardbeg pro-

cessor was synthesized using Synopsys physical compiler to place and Cadence Encounter

to route with clock tree insertion. Ardbeg’s PE area is 75% larger than SODA’s estimated

90nm PE area. The total system area is comparable between the two systems because

SODA contains 4 PE’s compared to Ardbeg’s 2 PE’s. Ardbeg was targeted for 350 MHz

while SODA was targeted for 400 MHz.

84

W-CDMA voice

W-CDMA data

802.11a

DVB

DVB-H

3.9G

180nm W-CDMA 2Mbps
W-CDMA 2Mbps

180nm 802.11a802.11a

802.11a

W-CDMA voice

W-CDMA data

W-CDMA 2Mbps

W-CDMA data

W-CDMA 2Mbps

802.11a

0.01

0.1

1

10

100

0.01 0.1 1 10 100 1000

Power (Watts)

A
ch

ie
ve

d
 T

h
ro

u
g

h
p

u
t

(M
b

p
s)

Ardbeg

SODA

ASIC

Sandblaster

TigerSHARC

7 Pentium M

Figure 5.9: Throughput and power achieved for SODA and Ardbeg for W-CDMA, 802.11a
and DVB. ASIC 802.11a, Pentium M, Sandblaster, and ADI TigerSharc results are also
included for comparison purposes. Results are shown for processors implemented in 90nm,
unless stated otherwise.

5.4.1 Wireless Protocols Results

Evaluation results show that an Ardbeg multicore system synthesized in 90nm technol-

ogy is able to support 3G wireless processing within the 500 mW power budget of a mobile

device [62]. Figure 5.9 shows the power consumption required to achieve the throughput

requirement of W-CDMA, 802.11a, and DVB. The graph includes the numbers for the

SODA and Ardbeg systems, as well as an ASIC implementation for 802.11a, Sandbridge’s

Sandblaster, Analog Devices TigerSHARC, and Pentium M implementations. General

purpose processors, such as Pentium M, require a power consumption two orders of mag-

nitude greater than the 500 mW power budget. On the other end of the spectrum, an

ASIC solution is still 5x more power efficient than any SDR solution. Overall, Ardbeg is

more power efficient than SODA for all three wireless protocols. Because Ardbeg is de-

signed to handle high-throughput wireless protocols, its performance for low-throughput

85

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

FIR
 16

-ta
ps

FIR
 33

-ta
ps

FIR
 65

-ta
ps

CFIR 16
-ta

ps

CFIR 33
-ta

ps

CFIR 65
-ta

ps

Avera
ge

FFT R
x2

 64
pt

FFT R
x2

 20
48p

t

FFT R
x4

 64
pt

FFT R
x4

 20
48p

t

QAM4

QAM16

QAM64

Desp
rea

der

Desc
ram

bler

Combiner

Avera
ge

W-C
DMA Sea

rc
her

80
2.1

1a
 In

ter
polator

DVB E
quali

ze
r

DVB Chan. E
st.

Avera
ge

Vite
rb

i K
7

Vite
rb

i K
9

Bit I
ntlv

 3

Bit I
ntlv

 6

Inter
lea

ver

Avera
ge

A
rd

be
g

Sp
ee

du
p

O
ve

r S
O

D
A Baseline SODA SIMD ALU SIMD Shuffle VLIW Compiler Optimization

Filtering Modulation Synchronization
Error

Correction7x

Figure 5.10: Ardbeg speedup over SODA for the key DSP algorithms used in our wire-
less protocol benchmarks. The speedup is broken down into the different architectural
optimizations. These include optimized SIMD ALU, wider 1-cycle SIMD shuffle network,
reduced SIMD memory latencies through LIW execution, and compiler optimizations with
software pipelining.

W-CDMA voice channels is not as efficient. Both SODA and Ardbeg are very competi-

tive compared to other SDR processors, including Sandbridge’s Sandblaster and Analog

Devices’ TigerSHARC. The major sources of Ardbeg’s efficiency are: the restricted LIW

execution, application specific instruction set extensions, and larger shuffle network.

5.4.2 Wireless Algorithms Analysis

In this section, we present a performance analysis of the key DSP algorithms in each of

the four algorithm categories: filtering, modulation, synchronization, and error correction.

Details of the kernels can be found in [52].The speedups are consolidated in Figure 5.10.

The speedup analysis is further broken up into the Ardbeg architectural improvements

that were highlighted in the Section 5.3. These improvements include: optimized SIMD

ALU, wider single cycle SIMD shuffle network, and LIW execution. The OptimoDE

framework used to design Ardbeg generates a compiler which performs optimizations like

software pipelining and other compiler optimizations which we also report.

Filtering. Finite Impulse Response (FIR) filters are widely used in wireless com-

munication protocols. Both the SODA and Ardbeg PEs can support the computation

86

requirements of filters for real-time 3G wireless protocol processing. Figure 5.10 shows

the Ardbeg PE’s speedup over the SODA PE for various filter configurations. On average,

Ardbeg achieved a 3.4x speedup over SODA.

Multiply-and-accumulate (MAC) operations are the central arithmetic operation for

filtering. For complex filter arithmetics, multiplications are even more important as every

complex multiplication requires four MAC operations. The SODA PE has a two cycle

multiplier (180nm), whereas the Ardbeg PE has a single cycle multiplier (90nm). A

significant portion of Ardbeg’s speedup is due to the faster multiplier.

In this analysis, both SODA and Ardbeg implement a vectorized version that requires

one 64-wide SIMD vector permutation operation for processing each sample point. The

SODA PE only has a 32-wide SIMD permutation network, compared to the Ardbeg’s

64-wide network. The permutation operation takes 3 cycles on SODA, but only one cycle

on Ardbeg. Because memory is accessed for each sample, LIW support on the Ardbeg PE

is able to hide the multi-cycle memory latencies. Finally, software pipelining and other

compiler optimizations help better utilize the Ardbeg’s LIW datapath.

Modulation. Fast Fourier Transform (FFT) is widely used in OFDM protocols like

802.11a/g and DVB. Figure 5.10 shows the Ardbeg PE’s speedup over the SODA PE for

various FFT configurations. On average, Ardbeg achieves a 2.5x speedup over SODA.

Like the filters, there is about a 50% speedup attributed to single cycle multiplies. This

speedup is less for a Radix-4 implementation because multiplications are reduced by 25%.

Another 50-100% speedup is attributed to the fused operations. The butterfly operation is

implemented efficiently by fusing multiplication with add or subtract operations. Another

benefit is that Ardbeg allows specialized shuffle operations, followed by ALU operations to

be computed in one cycle. Finally, the LIW scheduling provides the remaining speedup.

By allowing overlapped memory operations, Ardbeg can overlap the memory loads of the

87

next butterfly with the current butterfly’s operation.

Modulation in W-CDMA consists of three kernels: descrambler, despreader, and com-

biner. The despreader gains significant speedup (almost half) by utilizing Ardbeg’s wide

shuffle network. The descrambler implementation on Ardbeg is a direct translation of

the SODA version. Ardbeg gains, because in every cycle, it can overlap the memory and

ALU operations. The combiner, like the despreader and descrambler, benefits from the

LIW scheduling as well as the 1 cycle multiplication. All three kernels benefit greatly

from LIW scheduling because each iteration of the inter-loop of these kernels are small

and independent. This allows the overlap of memory loads and stores, shuffle operations,

and ALU operations in the same cycle.

Synchronization. Synchronization in W-CDMA is accomplished by the searcher,

which achieves almost 1.5x speedup on Ardbeg versus SODA. The gain in performance

due to Ardbeg’s pipelined memories and LIW scheduling is offset by performance loss

due to its SIMD predicate support. The number of instructions needed to calculate the

predicate values on the Ardbeg PE is 4 cycles, whereas the SODA PE can perform the

same task in 2 cycles. This is because SODA’s predicate values are stored in the SIMD

register file, whereas Ardbeg’s predicate values are stored in a dedicated register file.

Although Ardbeg’s dedicated register file is able to compute different predicate patterns

more quickly, it takes longer to load the predicate values into the SIMD datapath. Because

all of searcher’s predicate patterns can be pre-computed, SODA’s faster predicate read

latency proves to be more beneficial. This accounts for a 20% cycle difference. The major

benefit of Ardbeg’s LIW scheduling is hiding the memory’s multi-cycle access latencies.

Because half of every loop iteration can be overlapped, the Ardbeg searcher still results

in almost 2X speedup despite its inefficient predication support.

802.11a interpolator, DVB equalizer, and DVB channel estimation are all similar to the

88

FIR operations, and their speedup rationales are similar to those of the FIR. The only

difference is that these algorithms have intra-iteration data dependencies that cannot

exploit the LIW datapath. Software pipelining is beneficial by scheduling different loop

iterations onto the LIW datapath.

Error Correction. There are two commonly used error correction algorithms in

wireless communication – Viterbi and Turbo decoders. As mentioned in the previous

section, the Turbo decoder in Ardbeg is offloaded to an accelerator. However, the Viterbi

decoder is still implemented by the Ardbeg PE. As shown in Figure 5.10, Ardbeg’s Viterbi

implementation does not gain significant speedup over the SODA Viterbi implementation,

ranging from 1.2x to 1.6x. The reason is because the Viterbi computation does not

have multiplication operations, so the optimized SIMD ALU does not help. In addition,

there are data dependencies between consecutive loop iterations, so software pipelining

techniques do not help. The majority of the speedup comes from hiding the memory

access latency through LIW execution on the SIMD pipeline.

Interleavers are also widely used in many wireless protocols. As mentioned in the last

section, a few SIMD shuffle patterns are added to accelerate these algorithms. As shown

in Figure 5.10, the Ardbeg interleaver implementations gain a significant speedup, up to

7x speedup over SODA’s implementation. The speedup is solely due to the Ardbeg’s SSN.

Because the majority of the interleaver instructions are SIMD permutation operations,

Ardbeg’s single cycle 64-wide SSN has a significant advantage over SODA’s multi-cycle

32-wide SSN.

5.4.3 Wireless Algorithm Power Breakdown

Figure 5.11 shows the power breakdown on Ardbeg and SODA for the key kernels in

each wireless kernel category. Because SODA was synthesized in 180nm, and Ardbeg was

89

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Filter Modulation Sync Error Corr.

P
ow

er
 B

re
ak

do
w

n
of

 S
O

D
A

Inst+Data Memory SIMD ALU SIMD Mult
SIMD SSN SIMD Reg File Scalar + AGU

(a) SODA algorithm power consumption break-
down

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Filter Modulation Sync Error Corr.

P
ow

er
 B

re
ak

do
w

n
of

 A
rd

be
g

Inst+Data Memory SIMD ALU SIMD Mult
SIMD SSN SIMD Reg File Scalar + AGU

(b) Ardbeg algorithm power consumption break-
down

Figure 5.11: SODA and Ardbeg power consumption breakdown for the four key kernel
algorithms. The power consumptions are normalized to their respective total.

synthesized in 90nm, a direct comparison is not possible. Instead, the power consumption

values are normalized with respect to each kernel’s total power, and a comparison of the

normalized power consumption of each architectural component is presented.

Comparing Figures 5.11(a) and (b) leads to several important observations. First,

many filtering and modulation algorithms have a large number of multiply operations.

The results show that a smaller percentage of Ardbeg’s power is spent on SIMD multiply

than SODA. Ardbeg’s multiplier is custom designed for 90nm running at 350MHz, whereas

SODA used a library generated multiplier in 180nm. Second, a higher percentage of

Ardbeg’s power is generally spent on memory because it has a larger memory than SODA.

SODA has a decoupled scalar and SIMD memory structure. It reads values from both

the SIMD and scalar memories, relieving the stress on the SIMD memory, but allocating

more power the scalar memory. Third, a higher percentage of Ardbeg’s power is spent

on SIMD ALU power. This is due to the more complex SIMD ALU with support for

the permute-and-ALU operations. These fused permute-and-ALU operations speed up

the computation, and also reduce the number of SIMD register file accesses. Fourth,

the fused permute-and-ALU operations are also the reason why Ardbeg and SODA have

90

comparable SIMD register file power utilizations for most of the algorithms, even though

the Ardbeg PE has more read and write ports. The exception is the synchronization

algorithms where fused permute-and-ALU operations are not used and so the register

power is comparatively higher.

Filter on SODA shows a much larger power contribution due to the multiplier. This

is because the multiplier in Ardbeg was custom built to optimize power and performance.

Also, the scalar power is more significant in filter on SODA because of the implementation

trades SIMD ALU operations with more scalar operations. In Modulation, there is also

a major benefit from the optimized multiplier. In FFT, the majority of operations are

multiply which is why an optimized multiplier in Ardbeg allocates less power to the

multiplier and more the the ALU. In Synchronization, the code itself in SODA is very

similar to Ardbeg. The only difference is on SODA we use the ALU to generate predicates,

while Ardbeg loads them from memory. In Error Correction, we see that SODA uses more

power in the shuffle network than Ardbeg and the difference is allocated to the Register

File Power. This is mainly due to the wide shuffle network in Ardbeg which allows

it to perform less shuffle operations than SODA for the interleaver kernel. Viterbi on

both implementations are fairly similar, which is why the interleaver dictates the power

breakdown.

5.5 DSP Processor Architecture Survey

There has been tremendous interest in SDR in the industry, resulting in a wide range

of proposed architectural solutions from many leading semiconductor companies. The

proposed SDR solutions can be categorized into two different design philosophies – SIMD-

based and reconfigurable architectures, as explained in [68]. SIMD-based architectures

91

DSPs

Sandbridge

Sandblaster

ARM

Ardbeg SODA

Infineon

MuSIC

ADI

TigerSharc

Icera

DXP

Phillips

EVP

PE frequency (MHz)

16-bit SIMD lanes

VLIW support on SIMD

Max # of EX stages

Scalar datapath

Hardware coprocessor

Scratchpad memory

Shared global memory

2 4 4 8 NA* 1 4

350 400 300 250 1000 300 600

32 32 4 2x4 4 16 4

restricted no yes yes yes yes yes

1 2 4 2 20 NA* 2

yes yes no no no yes no

yes no yes no no yes no

yes yes yes yes yes yes yes

yes yes yes no NA* no no

Figure 5.12: Architectural comparison summary between proposed SIMD-based SDR
processors. *For the Icera DXP and the Phillips EVP, some of the architectural details
are not released to the public at this time.

usually consist of one or few high-performance DSP processors. The DSP processors are

usually connected together through a shared bus, and managed through a general purpose

control processor. Some SIMD-based architectures also have a shared global memory

connected to the bus. Both Ardbeg and SODA fall under the SIMD-based architecture

category. Reconfigurable architectures are usually made up of many simpler processing

elements (PEs). Depending on the particular design, these PEs range from the fine-grain

ALU units to the coarse-grain ASICs. The PEs are usually connected together through

a reconfigurable fabric. The rest of this section will present existing design solutions in

these two categories.

5.5.1 SIMD-based SDR Processor Architecture

In addition to Ardbeg and SODA, there are several other SIMD-based SDR architec-

tures. These include Infineon’s MuSIC [17], Analog Device’s TigerSHARC [31], Icera’s

DXP [45], Phillips’s EVP [81], and Sandbridge’s Sandblaster [33]. A comparison between

these architectures, SODA, and Ardbeg are listed in Figure 5.12. These are all embedded

systems that consist of 1 to 8 high performance DSP processors. Because data are accessed

92

in a regular pattern, all of the processors use software-managed scratchpad data memories

instead of caches to reduce power. Even though most of these processors are designed

in 90nm technology, they operate at relatively low frequencies to reduce power. The ex-

ception is the Icera DXP, which chose to implement a deeply pipelined high frequency

design. Its SIMD ALUs are chained so that a sequence of vector arithmetic operations are

performed before the data are written back to the register file. This has the advantage of

saving register file access power at the cost of a less flexible SIMD datapath.

Most SIMD-based SDR processors support VLIW execution by allowing concurrent

memory and SIMD arithmetic operations. Analog Device’s TigerSHARC goes one step

further, and provides concurrent SIMD arithmetic operations by having two 4-lane SIMD

ALU units that are controlled with two instructions. With 32 lanes, Ardbeg and SODA

have the widest SIMD design. Wider SIMD datapaths have higher power efficiency,

but also require higher levels of data-level parallelism within the software applications.

Because the majority of SDR’s computation are on wide vector arithmetics, the 32-lane

SIMD can be utilized fairly well. In addition, Ardbeg’s execution stage is optimized so

that any arithmetic operation can finish in one cycle. As we showed in the algorithm

analysis, having single cycle ALU provides significant speedup for SDR algorithms. And

finally, like Ardbeg, some other commercial solutions also chose to incorporate accelerators

for error correction algorithms, including Viterbi and Turbo decoders.

5.5.2 Reconfigurable SDR Processor Architectures

Reconfigurable array based SDR Solutions. Wireless protocols can be broken

down into key computational patterns, which can be as fine-grained as a sequence of

arithmetic operations, or as coarse-grained as DSP kernels. There have been numerous

SDR solutions based on fine-grained computation fabrics. Examples of such solutions

93

include picoArray [13], and the XiSystem’s XiRisc [57]. The XiRisc, also includes a

scalar/VLIW processor, with the reconfigurable logic acting as an accelerator. One of

the major drawbacks of the fine-grain computation fabrics is the high communication

cost of data shuffling within the computation fabrics. The coarse-grained reconfigurable

architectures contain a system of heterogeneous coarse-grained processing elements, with

each type of PE tailored to a specific DSP algorithm group. Examples include Intel

RCA [22], QuickSilver [7] and IMEC ADRES [59]. Both RCA and QuickSilver have 3

or 4 different types of PEs, ranging from simple scalar processors to Application Specific

Instruction Processors to serve as Viterbi and Turbo accelerators. These heterogeneous

SDR systems provide a trade-off between overall system flexibility and individual kernel

computational efficiency. Different wireless protocols require very different types of DSP

algorithms and a heterogeneous systems is more-likely to under-utilize their hardware,

resulting in less efficient overall system operation.

Heterogeneous MIMD based SDR Solutions. These MIMD styled architectures

contain a system of heterogeneous coarse-grained processing elements, with each type of

PE tailored to a specific DSP algorithm group. Examples include Intel RCA [22], and

QuickSilver [7]. Both RCA and QuickSilver have 3 or 4 different types of PEs, ranging from

simple scalar processors to ASIP(Application Specific IP) Viterbi/Turbo accelerators.

These heterogeneous SDR systems provide a trade-off between overall system flexibility

and individual kernel computational efficiency. While a homogeneous processor system

can distribute the system workload among PEs, a heterogeneous processor system must

provide enough units for the worst case workloads of each type of PE. W-CDMA and

802.11 require very different types of DSP algorithms. Therefore, heterogeneous systems

are more-likely to under-utilize their hardware, resulting in less efficient overall system

operations.

94

5.5.3 VLIW-based DSP Architectures

The TI TMS320C64x DSP processors [4] are highly parallel VLIW machines, that can

achieve high performance. However, because data level parallelism is much more prevalent

than instruction level parallelism, the benefits offered by VLIW are not utilized in wireless

applications. The instruction execution power consumption is relatively higher than other

solutions, and thus the overall computational efficiency is lower. These solutions typically

cannot meet the SDR performance and power requirements by themselves. Therefore,

they often include ASICs accelerators for performance enhancements.

5.5.4 Vector/SIMD based Multi-media Solutions

Vector and SIMD embedded processors have been very popular in the multi-media

domain. Among them are the IBM Cell Processor [40], VIRAM Project [46], and Imagine

Project [10]. IBM’s Cell processor is architecturally similar to our design at the system-

level, with a controller (PPE) and multiple SIMD processors (SPE). However, the SPE is a

generic SIMD-based processor, whereas ours is a domain-specific VLIW+SIMD processor

targeted at SDR. Although the Cell processor has higher overall computational through-

put than our processor, it was never designed to be a mobile solution, and its power

consumption is 100x greater than the budget for a wireless protocol. Imagine [10] uses

SIMD-based execution, where each instruction is a VLIW operation. The VIRAM [46]

design is an improved vector processor designed for multi-media workload. Again, these

processors were not designed specifically for wireless applications, but instead for gen-

eral multimedia applications. The SODA architecture is designed specifically for wireless

protocols and, as a result, can execute them much more efficiently.

95

5.6 Summary

Software defined radio promises to revolutionize the wireless communication industry

by delivering a low-cost multi-mode baseband processing solution. Ardbeg is a commercial

prototype based on SODA. Aspects of the SODA design are kept intact, such as the wide

512-bit SIMD datapath and the coupled scalar and SIMD datapath. Application-specific

design trade-offs are made to achieve higher computational efficiency while maintaining

enough flexibility to support multiple protocols. The evolution of SODA to Ardbeg fo-

cused on three main categories: optimized wide SIMD design, LIW support for wide

SIMD and algorithm specific hardware acceleration. The results show that Ardbeg’s ar-

chitectural optimizations allow it to achieve between 1.5-7x speedup over SODA across

multiple wireless algorithms.

96

CHAPTER 6

Language Extensions for Software Defined Radio

6.1 Introduction

Some of the key advantages of Software Defined Radio include flexibility and lower

cost. These advantages are based on the assumption that software solutions are easier

and more flexible than hardware solution. However, if the users are forced to program

SDR processors in machine code, then implementing a software solution is not easier nor

more flexible than a hardware solution. Therefore, software tool support is a first-order

design consideration in providing a viable SDR solution.

Software development for uniprocessor DSPs is hard, and SoC DSP architectures,

such as SODA and Ardbeg processors, make this hard problem even harder. There is

a clear need for better language support to help manage the complexity of mapping

DSP systems onto DSP hardware. SPEX (Signal Processing EXtension) is a language

extension designed to address these problems for embedded streaming DSP systems. It has

two design objectives: allowing programmers to express the inherent parallelism within

streaming DSP systems, and providing an efficient interface for the compiler to generate

code for embedded DSP hardware. It is designed to support all aspects of embedded DSP

97

computations. This includes dataflow constructs to describe streaming computations,

vector arithmetic operations to describe DSP computations, and real-time constructs to

describe real-time operations and deadlines. The focus of this chapter is on the dataflow

constructs to describe streaming computations. The contribution of this work is the

application of using the dataflow constructs to bridge the gap between wireless protocol

descriptions and SoC DSP architectures. There has been many existing languages that

provide support for vector DSP and real-time operations. These language constructs are

summarized at the end of this chapter.

Parameterized Dataflow Computation Model. Dataflow computation models

have been proposed to describe streaming computations. However, many streaming DSP

systems also have critical control flow operations. In between long episodes of streaming

computation, DSP systems intermittently reconfigure their streaming patterns to account

for changes from the users and the environments. SPEX is based on the parameterized

dataflow (PDF) computation model, where the dataflow is described with a set of pa-

rameters. Each parameter is a variable with a finite set of possible values, describing

a set of possible dataflow configurations. We propose a three-stage run-time execution

model to provide efficient computation on embedded multi-core hardware. During the

first stage, a static dataflow is initialized by assigning a constant value to each parameter

variable. The second stage is the stream computation using a compiler-generated static

synchronous dataflow schedule. The third stage finalizes the stream computation with

updates to the dataflow variables and states.

Streaming Communication Model. Although parameterized dataflow model is

good for describing reconfigurable streaming computation, its First-In First-Out (FIFO)

communication pattern is inadequate for describing DSP system’s complex streaming

communication patterns. Therefore, we propose a modified pseudo-dataflow computation

98

model where data can be shared among dataflow actors. Complex streaming patterns can

be constructed using these actors as basic building blocks.

SPEX Language Extension. Parameterized computation models have been pro-

posed before for modeling DSP systems [15]. However, given the popularity of existing

languages such as C and C++, it is challenging for programmers to adopt a completely

new concurrent programming paradigm. SPEX aims to reduce this challenge by imple-

menting the parameterized dataflow model as a language extension to the familiar C

language syntax. To provide efficient code generation for embedded DSP architectures,

we also find that some of C’s language features cannot be supported or must adopt differ-

ent semantic meanings consequently. Even though SPEX is applied to C in this study, it

is general enough to be applied to any programming language. In fact, we also have pre-

viously published a paper on applying SPEX onto the C++ programming language [54].

The dataflow extension consists of two parts: a set of language primitives and constructs

for describing the parameterized dataflow model and a set of language restrictions to limit

the expressiveness of the host language.

The remainder of this chapter is organized as follows. Section 6.2 provides our analysis

of the operation characteristics of DSP systems, our rationale for using the parameterized

dataflow computation model, and our modifications to the dataflow model for supporting

streaming communication patterns. Section 6.3 describes SPEX’s modified parameterized

dataflow computation model for supporting stream computations.

6.2 Modeling Wireless Protocols

In this section, we first describe our rationale for using the parameterized dataflow

model for streaming computation. We then describe our rationale for modifying the

99

F
ro

n
te

n
d

FIR-Tx scrambler spreader Interleaver
Channel

encoder

FIR-Rx

searcher

descr. desp. c
o

m
b

.

descr. desp.

modulator

Rake receiver

de-

inteleaver
Channel

decoder

U
p

p
e

r la
y

e
rs

Transmitter

Receiver

b) DSP System’s Run-time Streaming Computation Pattern

Stream ComputationStream Computation Stream Computation

F B

S

R

R

P

P C T

F B

S

R

R

R

P

P

P

C V

R P

a) W-CDMA System Diagram

F B

S

R

R

R

P

P

P

C V

Figure 6.1: Part a: W-CDMA System Level Diagram. W-CDMA is used as the on-going
example for SPEX in this study. Part b: DSP system run-time streaming computation
pattern. The receiver may use different number of rake fingers (denoted by the R and
P nodes) and different channel decoding algorithms (denoted by the T and V nodes).
Shaded B nodes are memory buffers.

dataflow model for streaming communication. We illustrate the features of SPEX through

the W-CDMA wireless protocol’s physical layer processing [41]. Figure 6.1a shows the

system-level diagram of W-CDMA. The receiver consists of a FIR filter, rake receiver,

interleaver, and channel decoder. These algorithm kernels are connected in a feed-forward

pipeline.

6.2.1 Streaming Computation in Wireless Protocols

In wireless protocols, DSP algorithm kernels are organized in pipeline-like computa-

tion chains, and data is streamed through the pipeline in a sequential order. In between

long episodes of streaming computation, DSP systems intermittently reconfigure their

100

streaming patterns to account for changes from the users, the environment, and received

inputs. Most DSP systems support multiple operation modes that are optimized for dif-

ferent services. These include changes in streaming rates, dataflow configurations, and

algorithm kernels. For example, W-CDMA supports multiple data transmission rates

ranging from 15Kbps to 2Mbps. The lower data rates are used for voice communications,

and the 2Mbps is used for high-speed data communications. These different data commu-

nication rates also require different DSP algorithms and different stream configurations.

Figure 6.1b describes this periodic reconfiguration in the streaming computation. During

run-time streaming computation, the receiver may use different numbers of rake fingers

(denoted in the figures by the R and P nodes) and different channel decoding algorithms

(denoted in the figure by the T and V nodes).

6.2.2 Parameterized Dataflow Model (PDF)

The concurrent dataflow model has been used to describe streaming computations.

A dataflow graph consists of a set of actors (or nodes) interconnected together with

edges. Each edge contains both input and output stream rates for the source and des-

tination actors. An actor’s stream rates correspond to the amount of data consumed

and produced per invocation. In particular, synchronous dataflow (SDF) has received

considerable attention as the computation model for compilation onto multi-core archi-

tectures [34]. SDF is a type of dataflow model where the dataflow properties are defined

statically. This allows the run-time execution schedule to be generated statically during

compile-time [51]. Embedded systems usually have tight performance constraints and lim-

ited run-time scheduling support. Many of these embedded systems also use scratchpad

memories instead of cache, where memory management is a software problem. Compiler-

generated execution schedules are favorable because they require less run-time scheduling

101

SPEX Parameterized Dataflow Run-time Execution ModelF B

S

R

R

P

P
C IF

T

V

IF

Cond

F B

S

R

R

R

P

P

P

C T F B

S

R

R

R

P

P

P

C TInput Output

Cond

F B

S

R

R

P

P
C IF

T

V

IF

Stage 1: Dataflow Initialization Stage 2: Synchronous Dataflow Ex. Stage 3: Dataflow Finalization

Figure 6.2: PDF execution model consists of three steps. Step 1, the parameterized
dataflow graph is constrained into a synchronous dataflow graph. Step 2, the dataflow is
executed following a static compile-time schedule. Step 3, PDF graph’s data and states
are updated with the most recent computed values.

and memory management overhead. However, because of its statically defined dataflow

properties, SDF is too restrictive to describe the run-time reconfigurations of complex

DSP systems. An ideal computation model for embedded systems should have the run-

time efficiency of the SDF, while also providing enough flexibility to describe run-time

reconfigurations.

SPEX is based on a more dynamic dataflow, namely the parameterized dataflow (PDF)

computation model [15]. In PDF, dataflow attributes are described with parameters

instead of constants. A parameter is a variable with a finite set of discrete values. Our

choice of using the PDF is motivated by the fact that most DSP systems only have a finite

set of discrete operating modes. These configurations in the dataflow can be adequately

captured by a set of parameters with discrete values. We find that the following set of

four dataflow properties should be parameterized to describe DSP systems’ streaming

computation.

• Variable Dataflow Rates: The input and output stream rates of dataflow actors
may take on a range of values.

• Conditional Dataflow: Conditional dataflow is supported by using parameters to
describe the branching conditions.

• Number of Dataflow Actors: Parameters can be used to fire a subset of the
actors in a dataflow graph during run-time.

102

• Streaming Size: The number of data elements streamed per invocation should
also be defined with parameters.

Run-time Execution Model and Compilation Support. Dataflow graphs are

executed on hardware through run-time schedules. The schedule may be statically deter-

mined by a compiler or dynamically generated by a run-time scheduler. As mentioned

before, SDF is good for embedded architectures because compiler-generated execution

schedules require less run-time resources. With SPEX’s PDF computation model, we

propose a three stage run-time execution model: 1) dataflow initialization, 2) dataflow

execution, and 3) dataflow finalization, as shown in Figure 6.2. These three stages are

executed for every PDF graph invocation. During the initialization stage, the parame-

ters are set to constant values, effectively constraining a PDF graph into a SDF graph.

The dataflow execution stage follows a compiler-generated schedule for this SDF graph.

The finalization stage updates the dataflow variables and states with the results of the

dataflow computation. This three stage PDF execution model provides the best of both

worlds; it still maintains the efficiency of SDF execution schedules, while also provides

the flexibility to reconfigure the dataflow through initialization and finalization stages.

6.2.3 Modeling Streaming Communications

Even though the parameterized dataflow model is good at describing streaming compu-

tation, many DSP systems have complex streaming communication patterns that cannot

be accurately described with the dataflow graph’s one-dimensional FIFO communication

edges. The following is a list of communication patterns that are needed.

• Multi-dimensional Streaming Patterns: Many DSP systems operate on vec-
tors and matrices, which require memory buffers with multi-dimensional streaming
patterns. For example, a vector FIFO buffer may have two different streaming
attributes: the streaming pattern within each vector element and the streaming
pattern among the buffer vector elements.

103

• Non-sequential Streaming Patterns: Many DSP algorithms do not follow strict
FIFO streaming order. For example, a complex filter may access the real or the
imaginary components of an array of complex numbers in strided sequential order.
An interleaver may access an array in pre-computed random order.

• Decoupled Streaming: Many DSP systems consist of multiple decoupled dataflow
computations. These decoupled dataflow computations may still be connected
through buffers, but they may operate asynchronously from each other. For ex-
ample, in a W-CDMA receiver, the front-end filter must operate under the periodic
real-time deadline. The data gets down-converted into a lower data rate ranging
from 15Kbps for voice communication up to 2Mbps for data communication. The
output is then run through a backend error decoder that does not have strict real-
time deadline requirements. Many decoder implementations do not operate in sync
with the front-end filter.

• Shared Memory Buffers: DSP systems have memory buffers that are shared be-
tween multiple readers and writers. Dataflow edges are FIFO queues that support
queue push and pop. Push and pop couple two separate operations for each data
element: memory allocation/deallocation and memory read/write. Shared mem-
ory buffers requires decoupled operations for memory allocation/deallocation and
memory read/write.

Previous works have attempted to address these different streaming patterns by propos-

ing different dataflow computation models. For example, multi-dimensional dataflow was

proposed for supporting streaming vectors and matrices [61]. Cyclo-static dataflow can

be used to model strided streaming patterns [64]. However, these are point solutions

that only address a specific streaming pattern. In SPEX, we propose a different design

approach: relax the dataflow computation model to let the programmers construct the

appropriate streaming patterns. Instead of attempting to describe a streaming pattern

with one dataflow actor or edge, SPEX allows the programmer to use a set of dataflow

actors and non-dataflow functions. This set of actors and functions are not explicitly

connected, but are allowed to share the same data. The dataflow actors are used to

describe dataflow streaming patterns, non-dataflow functions are used for infrequent vari-

able updates. In SPEX, these special dataflow actors are called memory actors, and these

non-dataflow functions are called memory functions. This is different from a traditional

104

buf

W buf

R1
push

pop

W write R1

data

read

alloc

pop

With dataflow actor

With SPEX memory actor

R2

pop

R2read

C

C

read

addr
read

addr

push

pdf init.

pdf final.

pdf init.

pdf final.

pdf exe.pdf exe.

Figure 6.3: Example of a vector stream buffer with 1 writer and 2 readers. This buffer’s
communication pattern has all four streaming properties. This is a vector buffer, which
requires multi-dimensional streaming patterns. Its has non-sequential streaming patterns
because its readers must periodically reconfigure their streaming addresses. The writer
and readers are decoupled because they have different real-time deadlines. This is also
a shared memory buffer because the readers share the same data, but have different
streaming patterns.

dataflow model where actors cannot share data. By sharing data, each memory actor or

function can be used as a building block to model one aspect of the streaming pattern.

The combination of a set of actors can be used to model complex stream patterns. The

disadvantage for our approach is the data consistency problem. Traditional dataflow com-

putation models do not have to deal with this problem because there is no shared data

between the actors. In our PDF model, programmers must use locking mechanisms to

access shared data. However, because our execution model enforces static SDF run-time

execution schedules, the compiler has complete knowledge of the data access pattern for

all actors and functions. Implementing locking mechanisms for a static schedule is more

deterministic than for a multi-threading run-time environment.

The four streaming patterns listed previously can all be described using multiple mem-

ory actors and functions. A W-CDMA vector stream buffer is shown in Figure 6.3 with 2

readers and 1 writer. This buffer requires all four streaming patterns. 1) This is a vector

105

buffer, which requires multi-dimensional streaming pattern. Read and write operations

access scalar data elements within a vector element. Push and pop operations manage

the vector queue by accessing across vector elements. 2) This buffer has a non-sequential

streaming pattern because its readers’ streaming address must be periodically reconfig-

ured. This is implemented with a memory function that sets up the reading address

during the PDF initialization stage. 3) The writer and reader of this buffer are decoupled

because they operate with different real-time deadlines. 4) This is also a shared buffer

because there are two readers with different streaming patterns. The buffer is allowed to

pop the data only after the data is read by both readers. Pop can be implemented as a

memory function that runs during the PDF finalization stage. In comparison, a tradi-

tional dataflow actor can only define this complex streaming communication with vector

push and pop.

6.3 SPEX Extensions for Streaming Computation

SPEX is a concurrent language extension designed for modeling streaming computa-

tion. It is based on the parameterized dataflow (PDF) model, described previously in

Section 6.2. This language extension includes a set of additional variable and function

types and program constructs, as well as a set of language semantic rules and restrictions.

In this study, it is applied onto the C programming language, due to its popularity and

large user base in the embedded DSP community. SPEX language syntax is mostly the

same as the C language syntax. It contains a set of keywords for declaring stream-related

variables, functions, and scopes. It also contains a set of restrictions that limits the set of

C expressions that may be used under the various SPEX scopes and functions.

The rest of this section is organized as follows: Section 6.3.1 provides an overview of the

106

SPEX language extension, and our rationale for its language additions and restrictions.

Section 6.3.2 describes the details of SPEX’s variable types. Section 6.3.3 describes the

details of SPEX’s function types that are required for describing dataflow. Section 6.3.4

describes the languages constructs that are required for describing dataflow. In each

of the section, both the SPEX keywords and restrictions are described. Section 6.3.5,

section 6.3.6, and section 6.3.7 shows code example of implementing DSP algorithm ker-

nels, memory buffers, and DSP systems in SPEX. In each section, we also discuss the

implications of SPEX coding style on the overall performance of the software system.

6.3.1 Overview

The SPEX extension for the C programming language consists of two main compo-

nents: a set of language keywords and a set of language restrictions. It is designed to

support the description of a parameterized dataflow in C. The challenge in designing a

C language extension comes from the fundamental differences between the underlying

computation model between C and PDF. C is an imperative language with a sequential

computation model, whereas PDF is a concurrent computation model. Because dataflow

computation models are different from sequential computation model, there are opera-

tions that are allowed in a sequential computation model that are not allowed in dataflow

computation models.

C is still a very popular programming language for embedded applications. Compare

with modern programming languages, it exposes more of the underlying hardware com-

plexity to the programmers. Therefore, it requires higher software engineering effort, but

provides more efficient and deterministic code behaviors. Because performance efficiency

is still the first order constraint on embedded devices, C’s approach is still a valid one in the

embedded domain. SPEXC aims to provide the efficiency of C by preserving C’s syntax as

107

much as possible. This leads SPEX to support two computation models: sequential and

dataflow computation models. Dataflow actors are written in the sequential computation

models, and dataflow graphs are constructed with the concurrent computation model.

SPEX’s keywords provide programmers a guideline for writing C programs with valid

underlying computation models. These keywords, along with the language restrictions,

also provide directives for the SPEX compiler to enforce the correct C syntax for dataflow

computation, and enable better C-to-dataflow translations. SPEX keywords include new

variable and function types to distinguish the descriptions of different dataflow graph

components. For example, parameter variables are integers with a discrete set of values.

A special param keyword is provided to distinguish parameter variables from normal

variables. Both dataflow actors and graphs are written as C functions. Special keywords

stream kernel and stream system are provided to distinguish these two types of C

functions. Due to the difference in the underlying computation model between these two

types of functions, SPEX restrictions are created to restrict the allowable C syntax within

each type of function.

6.3.2 SPEX Streaming Types

Parameters. Parameters, denoted by the keyword param, are variables that may only

take on a finite set of discrete values specified by the programmer. Parameters are used

to describe various parameterized dataflow properties of a PDF graph. One may declare

a parameter variable with the following syntax: param base type var name. Currently,

only integer-based parameter subtypes are supported in SPEX. The behavior of a param-

eter variable is similar to that of a C variable declared with the static modifier: the value

of a parameterized variable are kept across function calls. This is because parameter vari-

ables are used to control dataflow configurations and represent the dataflow system states.

108

Therefore, the behavior of a parameter variable is similar to a static variable rather than

a typical local variable. Arithmetic and comparison operations are supported for param-

eter variables. The range of a parameter variable can be defined using the following two

functions: void param range(T min, T max) and void param values(int num vals,

T val1, ...). The two functions are used to declare either a range of values or a set

of discrete values for each parameter. Programmers are not required to use these two

functions to define the values of a parameter. Compiler analysis can be used to deduce

the possible values for these variables. If the functions are not used and the compiler

analysis cannot deduce a set of values for a parameter variable, then the compiler is going

to issue a compilation warning, and the subsequent compiler optimizations assume that

this parameter variable can take on the full range of an integer variable.

Channels. SPEX channels, denoted by the keyword channel, are used to model

dataflow edges. The channel keyword is used as a modifier for declaring an array in

C. This modifier can be used with both integer and floating-point arrays. In a dataflow

graph, each dataflow edge represents a FIFO buffer with associated input and output

rates. Arrays declared with the channel keyword indicate to the compiler that the size

of these arrays are dataflow rates, not absolute sizes. The compiler is allowed to optimize

the dataflow execution by increase these arrays’ sizes to a multiple of their original sizes.

The upper bounds of these arrays’ sizes are determined by the context of which these

channel variables are used. If upper bounds cannot be deduced from their usage context,

then the default is to assume that the declared array sizes are the only size that is allowed.

A set of language restrictions are enforced on the usage of these channel arrays to

properly model the behaviors of these arrays as dataflow edges. Channel arrays must be

declared as local variables. There are two types of special functions in SPEX: functions

for modeling PDF actors and PDF graphs. Only PDF graph functions are allowed to

109

declare channel arrays as local variables. Further details with regard to these special

PDF functions are explained in the following section. Channel arrays must also be used

only as function arguments for functions calls. Passing a channel array either as a function

argument requires the callee function to use this array either as a read-only input array

or write-only output array, not both. Furthermore, within a function body, each channel

array can have multiple reader callee functions, but only one writer callee function.

Shared Variables. Dataflow computation models typically do not allow shared vari-

ables between actors. Data are only exchanged through message passing communication

channels between actors. In C language syntax, this implies that global variables should

not be allowed. However, as mentioned in the previous section, SPEX adopts a modified

dataflow model, PDF, that allows shared variables between actors. In PDF, only memory

dataflow actors are allowed to access these shared variables. However, in C, all globally

declared variables are shared variables. Therefore, SPEX propose a set of rules that re-

stricts the declaration and access to these shared variables as follows. Shared variables

are variables declared with shared keyword. Since global variables are implicitly shared

variables in the C semantics, they do not have to explicitly use the shared keyword.

Shared variables may be integer scalar or array variables. Only PDF actor functions may

access and modify shared variables, and only PDF graph functions may declare shared

local variables. Local variables are only visible to the functions calls within their declared

PDF graph function. Global shared variables may be accessed by all PDF actor functions,

and local shared variables can only be used as function call arguments.

6.3.3 SPEX Streaming Functions

SPEX PDF functions are used to construct parameterized dataflow graphs. Both PDF

actors and graphs are described with the C function syntax. The stream kernel key-

110

word must be used for functions describing PDF actors, and the stream system keyword

must be used for functions describing PDF graphs. Code examples of these two types

of functions are given in the following sections. In addition to PDF functions, normal C

functions are also supported in SPEX.

The Two Computation Models in SPEX. Unlike many other programming lan-

guages, SPEX contains two very different computation models. PDF graph functions

are based on the concurrent dataflow computation model, whereas PDF actor functions

are based on the sequential execution model. Furthermore, because PDF actor functions

are meant to model dataflow actors, they also must take on a restricted subset of the C

syntax. This the main reason why these two special function types are created in SPEX.

They serve as guidelines for the programmers to write sequential C-based code that can be

converted into concurrent dataflow graphs. They also serve as directives for the compile

to create concurrent intermediate representations from SPEX.

Function Call Restrictions. Recursive function calls are not supported in SPEX

because they cannot be properly translated into dataflow graphs. PDF graph functions

may call other PDF graph functions, PDF actor functions, and C functions. Allowing

PDF graph functions to call other PDF graph functions enables hierarchical dataflow

descriptions, where each dataflow node may contain an entire dataflow graph. PDF actor

functions may call C functions, but not PDF graph functions or PDF actor functions.

This restriction is enforce because of the different computation models that exists within

SPEX-C. C functions may only call other C functions.

Static Language Semantics. In SPEX, all variables and functions must be statically

declared. This means that C’s dynamic language features, such as run-time memory

allocations and function pointers, are not supported. Because the dynamism in DSP

systems is described through parameters, dynamic language features do not add any

111

benefits in describing these systems. Static variable and function declarations also produce

more efficient code because they require less run-time management.

Function Arguments. In dataflow computation model, each dataflow edge must

either be an input or an output edge. These edges are described in SPEX as C function

arguments. Therefore, SPEX requires that each PDF function argument to be either

read-only or write-only. The only exception is the shared variables, which can be both

read and written by the same PDF actor or graph. There is also no explicit return

values for these PDF functions. PDF computation model allowed dataflow edges, shared

memories, and parameters as input and output dataflow edges for the actors and graphs.

Therefore, PDF C function arguments must be one of the follow four variable types:

channel array variables, shared array variables, shared scalar variables, and parameter

scalar variables. Both read-only and write-only array variables follow the pass-by-pointer

syntax in C: func(arg type * arg val). Read-only channel variables may use type

modifier inchannel, and write-only channel variables may use type modifier outchannel.

These modifier keywords are not mandatory. They serve as reminders to the programmers

of these variables’ access restrictions. It is the compiler’s responsibility to ensure that

channel variables are never read and written within the same function. Shared variables

must use type modifier shared. For scalar variables, read-only arguments follow the

pass-by-value syntax in C: func(arg type arg val), and write-only variables follow the

pass-by-pointer syntax: func(arg type * arg val).

Accessing Shared Variables. In SPEX, shared variables may be declared globally

or locally within PDF graph functions. Global shared variables can be used directly by

any PDF actor function, whereas local shared variables must be passed explicitly by their

caller PDF graph function. Because SPEX is based on a concurrent dataflow model,

multiple PDF actor functions and PDF graph functions may be scheduled to execute in

112

SPEX concurrent language constructs Explanations

A PDF graph construct. It must contain only

one for-loop construct for describing the

dataflow. While and do-while loops are not

allowed in pdf construct.

Parallel for-loop construct. The different

iterations of the loop body are executed in

parallel. There can not be data dependencies

across loop iterations.

stream {
 … // code for PDF initialization
 for (...) {…} // PDF dataflow
 … // code for PDF finalization
}

ll_for (init;cond;incr)
{
 ... // loop body
}

Figure 6.4: SPEX language constructs for describing dataflow operations.

parallel. To enforce data consistency, SPEX requires that any PDF actor function that

accesses a certain shared variable cannot be scheduled to execute in parallel with any

other PDF actor function that also accesses the same shared variable. This is similar

to transactional memory’s transactional region – a PDF actor’s function body is atomic

with respect to other PDF functions that access the same shared variable. PDF actor

functions that operates on different shared variables are allowed to execute in parallel.

This responsibility is left to the compiler to determine the order of execution, and preserve

the data consistency of all of the shared variables.

6.3.4 SPEX Streaming Constructs

A special language construct, stream scope, is provided in SPEX for describing pa-

rameterized dataflow (PDF) computations. Since SPEX supports both sequential and

concurrent dataflow computation models, it must provide language syntax for distin-

guishing code written under these two different computation models. SPEX assumes that

all code follows C’s sequential execution model unless it is written within a stream scope.

Code written within a stream scope assumes the PDF execution model, as outlined in Sec-

tion 6.2.2. Figure 6.4 lists the syntax for this stream construct, a stream scope is declared

with the keyword stream. Each stream scope contains three sections: dataflow initializa-

tion, static dataflow computation, and dataflow finalization. Static dataflow computation

113

requires that the control flow of the computation does not change during run-time. In

order to support run-time reconfigurations of DSP system, the PDF execution model

was proposed. In PDF execution model, the initialization and finalization stages are

responsible for setting up the control flow before and after dataflow computation. The

basic concept of the PDF execution model is similar to the constructor and destructor

in a C++ object class, where these two functions are used to initialize and finalize the

run-time behavior of objects.

Stream Scope Syntax. Stream scope can be viewed as a special for-loop construct

with additional sections for loop initialization and finalization. It must contain only one

for-loop construct within its scope, and may also contain optional code before or after the

for-loop. The for-loop corresponds to the static dataflow computation, and the optional

code before and after the for-loop correspond to the dataflow initialization and finalization.

While and do-while loops are not allowed within the stream scope. Dataflow initialization

is performed to setup the dataflow before computation, and finalization is performed

after computation to update the dataflow computation results. In a stream scope, these

two sections must be sequential code that does not contain any loop structures. The

initialization section is the sequence of code before the static dataflow’s for-loop structure,

and the finalization section is the sequence of code after the static dataflow’s for-loop

structure.

Stream Scope’s For-loop Construct. A set of syntax restrictions are enforced

within stream scope’s for-loop construct. If and switch statements are allowed within the

for-loop constructs. Break and continue are not allowed, unless they are used within the

context of a switch statement. Nested stream descriptions are allowed. Loop constructs

are not allowed, unless they are defined as a parallel loop construct or as part of a nested

stream scope. The description of the parallel loop construct is listed in the following

114

paragraph. C function calls are not supported, unless they are PDF functions calls. In

last sections, we explained that PDF functions are used to describe dataflow actors and

graphs. In SPEX, PDF function calls take on a different language semantic than in

traditional imperative languages: each PDF function call creates an explicit PDF actor

or graph. For example, multiple function calls to the same stream kernel function

create multiple copies of the same PDF actor. All of the actors are created during the

initialization stage, and they are destroyed during the finalization stage. This is very

different from the C language semantics, where multiple function calls indicate that the

function is executed sequentially multiple times. This is one of the key differences between

the sequential computation model versus the concurrent dataflow computation model.

Parallel Loop Language Construct. PDF function calls create explicit actors or

graphs. Parallel loop construct is used as a method to create multiple actors or graphs

from the same PDF function. The syntax of this construct is summarized in Figure 6.4.

The construct follows the for-loop syntax, but uses keyword ll for keyword instead of

the for keyword. This loop construct can only be used within a stream scope’s for-

loop construct. The syntax is also similar to the for-loop syntax with a few restrictions.

The loop-body must only contain PDF function calls. There must be no inter-loop data

dependencies. Furthermore, this loop’s upper bound, lower bound and increment must all

be either constants or variables that are defined in its stream scope’s initialization section.

Programmers must understand that this is not a typical software loop, but a shorthand

for creating multiple dataflow actors and graphs.

6.3.5 Implementing DSP Algorithm Kernels

In this section, we demonstrate code example of implementing a DSP algorithm kernel

in SPEX with the stream kernel function. The code in Figure 6.5 shows a SPEX imple-

115

01 stream_kernel(fir)(inchannel int* in, outchannel int* out) {

02 ...

03 for (j = 0; j < channel_size; j++) {

04 z[0] = in[j];

05 sum = 0;

06 for (i = 0; i < TAPS; i++) {

07 sum += z[i] * coeff[i];

08 }

09 out[j] = sum;

10 ...

11 }

12 }

13

14 stream_graph(fir_graph)() {

15 channel int fir_in[100];

16 channel int fir_out[100];

17 ...

18 fir(fir_in, fir_out);

19 ...

20 }

Read-only input

channel

Write-only output

channel

FIR’s dataflow input. Input channel

arrays cannot be written to.

FIR’s dataflow output. Output channel

arrays cannot be read from.

Figure 6.5: DSP algorithm kernel example – FIR filter. The keyword stream kernel is
on line 1 to indicate that this is a PDF actor function.

mentation of FIR filter. In this example, there is one input channel array variable and one

output array variable, denoted with keyword inchannel and outchannel. As shown on

line 4 and 9, input channel variable can only be read from, and output channel variable

can only be written to. If this restriction is violated, then the SPEX compiler should re-

turn an error message. This restriction of the read-only and write-only nature of function

arguments is the biggest syntactical difference between a stream kernel function and a

normal C function. The function body of this function follows the same language syntax

as C.

In this example, there are two function arguments – in and out. The first array

is the input and the second array is the output of this stream kernel function. The

input and output array each contains 100 elements. However, during the execution of

this function, the SPEX kernel compiler does not make the guarantee that each time fir

function is called, only 100 elements will be access from the input and output pointer

locations. Because both of these variables are channel variables, the size of the array

116

indicates dataflow rates, not dataflow sizes. Therefore, a multiple of 100 elements maybe

used as part of compiler optimizations as the actual sizes for both the input and output

variables. However, SPEX requires that only a multiple of the declared array size can

be used, and the ratio of the actual array sizes across all channel variables must be the

same as the declared array sizes. For example, this means that an array size of 250 is

not allowed in this case for either input or output array. Setting the input and output

array sizes to 200 and 300 is also not allowed, as the ratio of the input and output array

is 1-to-1.

Shown on line 2 in Figure 6.5, static variables are allowed as local variables. In the

dataflow computation model, this means that SPEX allows both stateful and stateless

dataflow actors. Although this does not make a difference in the execution, having static

local variables requires the compiler to perform more memory book keeping for DSP

processors with only scratch-pad memory. Each static variable must be allocated its own

memory location in the local memory of the DSP processor that execute the dataflow

actor. This requires extra work for the compiler if DSP processor’s local memory does

not have the space to fit the entire array. In addition, having stateful dataflow actors

may also make other compiler optimizations more difficult. One such optimization is

the dataflow actor fission, where a dataflow actor is duplicated into multiple copies in

order to expose more kernel-level parallelism. Data consistency must be kept between

duplicated actors that share the same data. In general, it is more efficient to avoid static

local variable if possible.

6.3.6 Implementing Memory Buffers

In addition to DSP algorithm kernels, memory buffers also are essential elements in

constructing wireless protocol systems. Implementing a memory buffer requires two parts

117

01 shared int mac[1000];

02 shared int read_addr[2];

03 ...

04 stream_kernel(read)(outchannel int* out, int id) {

05 ...

06 for (i = 0; i < 100; i++) {

07 dat = mac[read_addr[id]];

08 out[i] = dat;

09 read_addr[id]++;

10 }

11 }

12 ...

13 stream_graph(fir_graph)() {

14 channel int fir1_in[100];

15 channel int fir2_in[100];

16 ...

17 stream {

18 read(fir1_in, 1);

19 read(fir2_in, 2);

20 fir(fir1_in, fir1_out);

21 fir(fir2_in, fir2_out);

22 }

23 }

Because this function

accesses shared variables,

instances of this function

cannot execute concurrently

with other functions that

access the same shared

variables

Declared shared

variables

SPEX compiler cannot

schedule these two

functions concurrently

SPEX compiler are

allowed to schedule

these two functions

concurrently

Figure 6.6: A vector stream buffer with 2 readers and 1 writer. Data objects are declared
with the keyword spex memory (on line 2). This example implements the same buffer
shown in Figure 6.3

– declaring the memory storage space for a buffer, and defining the access functions that

manipulate this memory storage space. Like C, memory storage spaces are declared as

array variables in SPEX. Access functions can be implemented as PDF actor functions

using the stream kernel keyword. In this section, we elaborate on the implementation

issues of memory buffers, and present an example memory buffer implementation. The

code example is shown in Figure 6.6.

In SPEX, memory storage space for buffers can be implemented as array variables.

They can be declared either as global variables or local variables declared with the shared

keyword. In the example shown in Figure 6.6, the memory storage space is statically

declared as global array variable mac on line 1. This particular buffer has two readers,

reader array variable is declared to hold the reading index for the two readers. Both array

variables are declared with static array sizes, this is because SPEX does not allow dynamic

memory allocations. This means that malloc function is not supported. Arrays must be

118

declared with known array sizes. Pointers can only be used to pass memory addresses

for these array variables. The main reason for this restriction is due to the underlying

processor hardware. SDR processors such as the SODA and Ardbeg processors consist of

one ARM control processor and multiple DSP processing elements (PEs). Because the

PEs do not support operating systems, supporting dynamic memory allocation requires

each processor to keep a set of book-keeping information on the memory usage of the

processor. Because these processors have software-managed scratchpad memories, explicit

DMA operations are required to transfer data between memories. Handling memory

management during run-time requires each array access to check its memory address, and

dynamically issue DMA operations if neccessary. This is more complex and less efficient

than compile-time memory allocations. Furthermore, compile-time memory management

is also able to use more sophiscated algorithms than the run-time systems. Because

wireless protocols have very predictable run-time behavior, the extra flexibility of the

run-time memory management also does not add any programming benefits.

For illustration purposes, only the buffer reader is shown in the code example shown in

Figure 6.6. As mentioned in the previous section, the operations within a PDF function is

atomic. This means that programmers do not have to use specific locks or mutex to ensure

data consistency. As shown on line 7 and 9, shared variables can be access the same way

as local variables. The compiler must provide this guarantee by never schedule two PDF

functions that accesses the same global variable at the same time. This also means that

it is generally not a good idea to write a long PDF function that access multiple global

variables, as this will force the compile to generate more sequentialized schedule.

119

desp

desp

descr

descr

comb write

read

read

addr

pop

alloc

push

pdf_graph_init

pdf_graph_final

inB

outB

pdf_graph

Rake.run()

01 shared int inb[2000];

02 shared int outb[2000];

03 shared int readers[MAX_FINGERS];

04 ...

05 stream_kernel(rake_init)(param int r, param int fingers,

06 param int * stream_size) {

07 ...

08 if (r == 4) stream_size = 1000;

09 else if (r == 8) stream_size = 2000;

10 for (i = 0; i < fingers; i++)

11 addr(i, peak[i]);

12 alloc(250);

13 }

14

15 stream_kernel(rake_final)(param int r) {

16 ...

17 if (r == 4) pop(1000);

18 else if (r == 8) pop(2000);

19 push(250);

20 }

21 ...

22 stream_system(rake)(param int r, param int fingers) {

23 channel int chan1[MAX_FINGERS][100];

24 channel int chan2[MAX_FINGERS][100];

25 channel int chan3[MAX_FINGERS][100];

26 channel int chan4;

27 param int stream_size;

28 ...

29 stream {

30 rake_init(r, fingers, stream_size);

31 for (j = 0; j < stream_size; j++) {

32 ll_for(i = 0; i < fingers; i++) {

33 read(chan1[i]);

34 despreader(chan1[i], chan2[i]);

35 descrambler(chan2[i], chan3[i]);

36 }

37 combiner(chan3, chan4);

38 write(chan4);

39 }

40 rake_final(r);

41 }

42 }

a) Rake receiver PDF diagram

b) Rake receiver SPEX implementation

Figure 6.7: Rake receiver implemented with PDF graph functions: pdf graph init,
pdf graph, and pdf graph final. These three PDF functions are used to describe the
three stages in a PDF’s run-time execution. pdf graph init is used to describe the
PDF graph initialization; pdf graph is used to describe the PDF graph execution; and
pdf graph final is used to describe the PDF graph finalization.

120

6.3.7 Implementing DSP Systems

In this section, we illustrate examples of using implementing DSP systems with SPEX.

Figure 6.7 shows the W-CDMA rake receiver implementation using a stream system

function. As mentioned in Section 6.2, we propose a three stage PDF run-time execution

model. These three stages must be described as three sections of a stream scope. These

three sections are described starting from line 30, 31, and 40. Both the intialization and

finalization section are described as stream kernel functions. Rake receiver is composed

of three DSP algorithms: despreader, descrambler, and combiner. Each despreader and

descrambler pair is called a rake finger. Most DSP systems have run-time reconfigurations.

There are three run-time reconfigurations modeled in this simplified version of the rake

receiver: 1) the number of rake fingers; 2) the number of elements streamed per function

invocation; 3) the streaming read address for each rake finger. Because the number of rake

fingers and the number of streaming elements both affect the dataflow configuration, they

are described with parameter variables fingers and stream size. The streaming read

address is determined by initializing the input stream buffer during the PDF initialization

stage, shown on line 11.

Initialization & Finalization. In SPEX, DSP systems are modelled as PDF graphs.

The purpose of the initialization stage is to setup the PDF graph for execution. Because

the dataflow computation must use a synchronous dataflow schedule, the initialization

stage is responsible for setting all of the parameter variables to constant values. Setting

up the stream communication patterns is also done in this step. In the rake receive

example shown in Figure 6.7, the initialization function for the rake receiver is shown

between line 5 and line 13. Line 8 and 9 set the parameter variable stream size to a

constant value based on the input spreading factor. The input stream buffer is initialized

for each finger by setting the starting memory read address for each finger on line 10 and

121

11. To setup the streaming write buffer, we allocate memory space for the output on line

12.

The purpose of the PDF finalization stage is to update the PDF graph’s internal states

with the computed dataflow results. It is also used to perform memory management

operations for the input and output buffers, as shown in Figure 6.7 on lines 17, 18, and

19. After the data is read out of the input buffer by all of the rake fingers, its memory

is deallocated. The output buffer performs a push operation to make the written output

visible to other PDF actors that are reading or writing to this buffer.

Stream Construct. Figure 6.4 lists the set of parallel language constructs that

are supported in SPEX for describing a concurrent dataflow graph. stream construct is

used to describe a PDF graph. SPEX requires each dataflow to be described as a for-

loop construct. Therefore, each PDF construct must contain one for-loop. Because rake

receiver uses multiple despreaders and descramblers. These algorithms are declared using

the ll for construct, as shown from lines 32 to 36.

Parameter Variable Restrictions. Parameter variables must be declared as local

variables within the PDF function. The value of parameter variables must be defined

before the for-loop construct in stream. And they are not allowed to be redefined in the

stream for-loop body. In addition, they are the only type of variables that are allowed to

use as part of if-statements’ conditional expression.

W-CDMA Receiver Implementation. Figure 6.8 shows a simplified W-CDMA

receiver implementation, in both C and SPEX. SPEX implementation requires larger code

size than the C implementation. The stream computation itself requires 27 lines of SPEX

code and 15 lines of C code. However, all of the streaming characteristics are lost in the

C implementation. Because the algorithms are executed in sequential order, large buffers

are allocated to pass entire streams of intermediate results. It is possible to reduce the

122

FIR

01 shared int AtoD[2000];

02 shared int mac[2000];

03 ...

04 stream_kernel(wcdma_init)() { ... }

05 stream_kernel(wcdma_final)() { ... }

06 ...

07 stream_system(wcdma)(param int mode) {

08 ...

09 stream {

10 wcdma_init();

11 for (j = 0; j < 15; j++) {

12 stream {

13 AtoD_read_addr(0);

14 delay_buf_alloc(slot_size);

15

16 for (i = 0; i < slot_size; i++) {

17 AtoD_read(chan1);

18 fir(chan1, chan2);

19 delay_buf_write(chan2);

20 }

21

22 AtoD_pop(slot_size);

23 delay_buf_push(slot_size);

24 }

25 sync(delay_buf, fingers);

26 rake(delay_buf, itlv_buf, rate, fingers);

27 interleaver(itlv_buf, ec_buf);

28 if (mode == voice)

29 viterbi(ec_buf, mac);

30 else

31 turbo(ec_buf, mac);

32 }

33 wcdma_final();

34 }

35 }

a) W-CDMA receiver PDF diagram

c) W-CDMA receiver SPEX implementation

Rake

Sync

Intlv

Vit.

Tur.

IF IF

AtoD
delay

buf

AtoD

buf

ec

bufmac

vv

01 void WCDMA_Receiver(int* AtoD, int* mac)

02 {

03 int delay_buf[slot_size];

04 int itlv_buf[slot_size];

05 int ec_buf[slot_size];

06

07 for (int i=0; i<15; i++) {

08 addr = 0;

09 for (int j=0; j<slot_size; j++) {

10 int data = AtoD[addr];

11 data = fir_run(data);

12 delay_buf[addr++] = data;

13 }

14 fingers = sync_run(delay_buf);

15 rake_run(delay_buf, itlv_buf, fingers);

16 interleaver_run(itlv_buf, ec_buf);

17 if (mode == voice)

18 viterbi_run(ec_buf, mac);

19 else if (mode == data)

20 turbo_run(ec_buf, mac);

21 }

22 }

b) W-CDMA receiver C implementation

Must allocate large

buffers for the entire

stream

Imperative

computation

descriptions

Nested PDF graph

description with

inlined initialization

and finalization

Inlined

PDF

initialization

Inlined

PDF

finalization

Figure 6.8: W-CDMA receiver implementation. The example shows both C and SPEX
implementations of the receiver.

buffer size by manually rewriting the C code. However, because optimal buffer sizes are

dependent on the size of hardware’s physical memory, programmers are forced to write

machine-dependent code. In SPEX, because the streaming patterns are exposed in the

language, the compiler can automatically pick the optimal buffer size. Programmers do

not have to be aware of the underlying hardware.

The W-CDMA standard divides the receiving data into TTI (Transmission Time Inter-

val) blocks. Each TTI block contains a maximum of 5 W-CDMA frames, and each frame

is further divided into 15 W-CDMA slots. Dataflow reconfigurations occur at multiple

data block granularity. Because each reconfiguration requires its own PDF initialization

and finalization stages, the W-CDMA receiver is implemented with nested stream scopes,

as shown in Figure 6.8c from line 12 to 24.

123

6.4 Related Work

Dataflow Computation Models. There has been considerable work in reconfig-

urable dataflow models. These include less restrictive dataflow models, hybrid SDF with

finite-state-machines(FSMs) [78], and parameterized SDF (PSDF) [15]. Examples of less

restrictive dataflow models include the cyclo-static dataflow model (CSDF) [64], Boolean

dataflow model (BDF) [20], and Synchronous piggybacked dataflow (SPDF) [63]. CSDF

supports cyclic dataflow rates, where the rates are described as a periodic set of num-

bers. BDF includes conditional split and merge actors on top of the SDF. SPDF supports

reconfigurations by coupling infrequent control updates with the synchronous dataflow.

In the hybrid SDF+FSM models, the different dataflow configurations are expressed as

the different states of the FSM. SPEX’s PDF model is very similar to the PSDF model.

One noticeable difference is that our model supports memory actors that share data.

Hierarchical dataflow models have also been proposed before to model multi-rate DSP

applications with constraints [21].

Dataflow Languages. There have been many dataflow languages proposed for mod-

eling DSP systems. Some of these are frameworks that are designed for a wide range of

application by supporting multiple dataflow models, such as the Ptolemy project [49], the

DIF format [42], and the PeaCE design flow [36]. There also have been languages that are

designed explicitly for a processor architecture. StreamIt [79] was proposed for mapping

streaming computations onto tiled processor architectures. The original StreamIt was

designed based on the SDF computation model. Recent updates have also introduced

parameterized variables, allowing the description of variable rate dataflow. StreamIt sup-

ports stream reconfigurations and updates through teleporting messages [80], which has

similar functionality to the SPDF model. Instead of SPEX’s explicit memory class for

streaming buffers, StreamIt couple the memory with the communication through peak op-

124

erations. Peaking allows the programmers to look ahead into the channel without popping

the data. However, peaking cannot describe a buffer with multiple readers or writers, as

each reader requires its own channel. Because peaking implicitly allocates physical mem-

ory, shared vector or matrix buffers may require significant duplication overhead.

Other Streaming Languages. There are also other streaming languages that are

not based on dataflow computation models, such as Brook [19] and Sequoia [30]. Both

are imperative languages with explicit constructs for streaming array structures. Sequoia

is also designed to expose an application’s memory hierarchy to the programmers.

6.5 Summary

In this chapter, we describe SPEX, a set of language extensions for describing wireless

protocols. SPEX’s streaming semantics are based on a parameterized dataflow computa-

tion model. We have modified this dataflow model to introduce special dataflow actors

that are allowed to share data. This allows complex streaming communication patterns

to be described with a set of dataflow actors. SPEX is applied onto the C++ program-

ming language. It consists of a set of language constructs for describing the semantics of

parameterized dataflow computations, and a set of language restrictions for helping the

embedded compilation process.

125

CHAPTER 7

Compilation Support for the Ardbeg processor

7.1 Introduction

Some of the greatest advantages of Software Defined Radio (SDR) are based on the

”software” aspect of the implementations. SDR promises greater flexibility, multi-mode

operation, lower engineering efforts and costs, and shorter time-to-market. These are all

based on the assumption that software development is easier than hardware development.

Therefore, it is a first-order design consideration to provide the tool-support for map-

ping software implementations of wireless protocols onto SDR processor hardware. In

Chapter 6, a programming language extension, SPEX, is proposed for describing wireless

protocols. This chapter describes a compilation system, the SPIR compiler, that auto-

matically maps SPEX-based C code to multi-core system-on-chip (MPSoC) architectures,

because many of the proposed SDR processor solutions, including the SODA and Ardbeg,

fall under this architecture category. The current SPIR compiler only targets the Ard-

beg processor, but the proposed compilation techniques are applicable to a wide range

of MPSoC processors. We choose to target the Ardbeg processor instead of the SODA

processor because of its commercial tool support.

126

Interconnect Bus

Data
Processor

Global
Memory

DMA

Control
Processor

Data
Processor

Local
Memory

Local
Memory

Figure 7.1: SDR control-data decoupled MPSoC architecture consisting of one general-
purpose control processor, multiple data processors, and a hierarchical scratchpad memory
system that are all interconnected with a bus.

MPSoC Architecture. MPSoC architectures, shown in Figure 7.1, typical have two

groups of processors – the control and data processors. Control processors are general-

purpose processors (e.g., ARM) that are capable of handling control-intensive code and are

best suited for protocol scheduling and memory management. Conversely, data processors

are specialized DSP processors that can perform heavy-duty data-intensive computations.

Single-instruction multiple-data (SIMD) or vector processing is typically employed in the

data processors. The system has a non-uniform memory architecture, with both a global

memory and local memories on each data processor. Many systems use scratchpad mem-

ories instead of caches for local memories, which makes memory management the respon-

sibility of the software. In many systems, one control processor is capable of supporting

multiple data processors.

Two-Tier Compilation Approach. MPSoC compilers are a difference challenge

due to the heterogeneous nature of the hardware. For example, VLIW processors require

instruction scheduling support, and SIMD-based processors benefit from automatic vec-

torization support. For processors with scratchpad memories, efficient memory allocation

must also be provided. Compiling for the SODA and Ardbeg architectures must deal

127

Interconnect Bus

Data

Processor

Global

Memory
DMA

Control

Processor

Data

Processor

Local

Memory
Local

Memory

F
ro

n
te

n
d

FIR-Tx scrambler spreader Interleaver
Channel

encoder

FIR-Rx

searcher

descr. desp. c
o

m
b

.

descr. desp.

modulator

Rake receiver

de-

inteleaver
Channel

decoder

U
p

p
e

r la
y

e
rs

Transmitter

Receiver

W-CDMA System Diagram

SIMD

RF E

X

SIMD

ALU+

Mult

SSN W

B

Scalar

ALU

W

B

E

X

Scalar

RF

SIMD

MEM

Scalar

MEM

S

T

V

AGU RF
E

X

W

B
AGU ALU

1. SIMD pipeline

2. Scalar pipeline

4. AGU pipeline

V

T

S

Pred.

Regs

W

B

VTOS

ALU

RF

SODA/Ardbeg

5. DMA

3. Local

memory

 void Turbo()

 {

 for (…)

 {

 ...

 }

 }

System-level

Compilation

Kernel-level

Compilation

DSP Algorithm Kernel

Figure 7.2: Two-tier compilation approach for SODA and Ardbeg processors. On
the system-level, the compiler deal with coarse-grained compilation challenges, such as
function-to-processor assignments and DMA operations. On the kernel-level, the compiler
deal with fine-grained compilation challenges, such as VLIW scheduling and vectorization
for SIMD processors. The SPIR compiler is a system-level compiler that only address the
coarse-grained compilation challenges.

with these challenges, as well as additional challenges associated with multi-core systems.

These include automatic multi-thread parallelization, synchronization, and DMA opera-

tions for communicating processors. Addressing all of these challenges at once can quickly

become unmanageable. Therefore, this thesis proposes a two-tier compilation approach,

as shown in Figure 7.2. The compilation process is broken into two parts: system-level

and kernel-level compilation. On the system-level, the compiler deals with coarse-grain

compilation challenges, such as function-to-processor assignments and DMA operations.

On the kernel-level, the compiler deals with fine-grained compilation challenges, such as

VLIW scheduling and vectorization for SIMD processors. The SPIR compiler is a system-

128

level compiler that only address the coarse-grained compilation challenges. The input of

the compiler is sequential C-SPEX code. The output of the compiler is multi-threaded C

code that includes processor assignments, inter-processor synchronization, and DMA com-

munication operations. The multi-threaded C code is then feed into kernel-level compiler

and linker to generate the final machine code.

Function-level Compilation. The SPIR compiler is a function-level compiler, which

means that the granularity of an atomic execution unit is a function, not an instruction.

A traditional compiler’s intermediate representation (IR) models instruction-level inter-

actions. A different IR is needed to model inter-function behavior. In Chapter 6, we

proposed describing wireless protocols’ system-level computation with a modified param-

eterized dataflow (PDF) model. This computation model, named the SPIR computation

model, is use as the IR for this system compiler. The compiler is divided into the fron-

tend and backend compilation. The frontend translates from C-SPEX extension into

SPIR. And the backend then translates from SPIR into multi-threaded C code.

As part of this study, we also examined function-level compiler optimization. We find

that some instruction-level optimizations can be adopted for function-level. In this study,

we studied software pipelining. Function-level software pipelining is an adaptation of an

existing instruction-level compilation technique.

Chapter Contribution and Organization. The contribution of this chapter is

presenting a compilation infrastructure for automatically mapping wireless protocols onto

the Ardbeg processor architecture. In Section 7.2, we give an overview of the compiler

infrastructure. In Section 7.3, we describe the compiler frontend for translating C-SPEX

code into SPIR format. In Section 7.4, we describe one function-level compiler optimiza-

tions for code written in SPIR format. And in Section 7.5, we describe the code generation

process of translating SPIR code into multi-threading C code.

129

7.2 The SPIR Compiler

This section discusses the motivation and the overall infrastructure of the SPIR com-

piler system. It first provides our rationale for building a function-level compiler. It

then goes over the overall SPIR compiler infrastructure. It then goes over the three lan-

guage formats that are used in this compiler: SPEX, SPIR, and SocC. SPEX is the input

language, SPIR is the compiler’s intermediate representation, and SocC is the output

language. Both SPEX and SocC [70] are high-level programming language extensions of

C.

7.2.1 Rationales for Function-level Compilation

In modern computer systems, the task of executing a software program is divided

between the compiler and the operating system. Typically, the compiler is responsible for

instruction-level scheduling and management, and the operating system is responsible for

thread-level scheduling and management. This division of labor makes sense for general

purpose computer systems, as it combines the efficiency of the compile-time algorithms

with the flexibility of the run-time systems. However, in a MPSoC system, we have a

range of heterogeneous processors, each designed with a different purpose. For example,

in the Ardbeg system, the ARM control processor is used for overall protocol management

and interface, whereas the Ardbeg data processors are used for heavy duty DSP process-

ing. Running an operating system on the ARM control processor makes sense, as it is

designed to support many of the general purpose computing components, such as caching

and virtual memory support. However, the Ardbeg PEs are designed to support DSP

computations with the highest power efficiency. Without many of the general purpose

computing components, they are not designed to run operating systems.

130

Ardbeg PEs do not support operating system, but thread-level scheduling is still re-

quired for executing software programs on Ardbeg PEs. This is one of the key challenges

in providing tool support for MPSoC architectures. Currently, it is still common practice

in the industry for this task to be manually performed by the programmers. The key

contribution of the SPIR compiler is its attempt to address this key challenge with a com-

piler. The SPIR compiler raises the compilation abstraction from assembly instruction

to functions by assuming each function to be an atomic operation. It is a function-level

compiler that performs scheduling and management for functions on the Ardbeg PEs. It

assumes that the task management of the ARM control processor and the instruction-level

scheduling of each individual Ardbeg PE are handled by traditional embedded operating

systems and compilers.

7.2.2 Overall Compiler Infrastructure

The overall SPIR compilation flow is shown in Figure 7.3. The input is written in

C with SPEX language extensions. The frontend translates the input into SPIR’s PDF

graph format. The focus here is to translate the sequential C semantics into the concurrent

dataflow computation model. This is followed by dataflow scheduling and compiler opti-

mization. In this step, kernel-to-processor assignments are done, execution scheduling is

generated, and compiler optimizations are performed. The scheduling and optimizations

annotate the results onto the SPIR graph, and make appropriate alterations to the graph

itself. In the final step of the compilation flow, the compiler translates the SPIR graph

back into SocC code. SocC programm language is a programming language extension of

C, that is internally developed by ARM. In SocC, the code is explicitly parallelized into

multiple threads. Processor assignments, memory allocations, and inter-process synchro-

nization must be explicitly defined. The ARM SocC compiler then takes the SocC code,

131

W-CDMA System Diagram

F B

S

R

R

P

P
C IF

T

V

IF

CondSPIR

SPEX

@

P1

@

M1

@

P2

@

P1

@

P1

@

P1

@

P1

@

P1

@

P3

@

P3

@

P3

@

P3

Pred1

SPIR

 void w_cdma() {

 parallel {

 section {

 ...

 }

 section {

 ...

 }

 }

 }

Frontend

Scheduling &

Optimization

Code

Generation

F
ro

n
te

n
d

FIR-Tx scrambler spreader Interleaver
Channel

encoder

FIR-Rx

searcher

descr. desp. c
o

m
b

.

descr. desp.

modulator

Rake receiver

de-

inteleaver
Channel

decoder

U
p

p
e

r la
y

e
rs

Transmitter

Receiver

SocC

Figure 7.3: The overall SPIR compilation flow. The input is written in C with SPEX lan-
guage extensions. The frontend translates the input into a SPIR dataflow graph. Dataflow
scheduling and optimizations are applied to the SPIR dataflow graph by annotating the
dataflow actors with processor assignments and memory allocations. The code generation
then translate the SPIR graph into SocC multi-threading C code.

132

and compiles them into machine code for the Ardbeg MPSoC processor.

7.2.3 SPIR Intermediate Representation

The SPIR intermediate representation is one of the important contributions of this

thesis. Traditional compiler IRs are designed to model instruction-level behaviors and

interactions. They are ill-suited to described the inter-function interactions that are

needed in a function-level compiler. The challenge is to choose a computation model that

can capture the concurrent system-level operations in wireless protocols. In Chapter 6,

section 6.2, we have proposed using a parameterized dataflow (PDF) computation model

to describe wireless protocols. The SPIR intermediate representation is an implementation

of this PDF model. The goal of the SPIR frontend is to translate the function-level

parallelism in the source code into SPIR’s PDF format. The goal of the SPIR backend is

to exploit the function-level parallelism, and generate a multi-threaded C implementation

of the dataflow graph.

7.2.4 Input and Output Language Formats

The SPIR compiler is a C-to-C compiler. It takes in SPEX code, and generates SocC

code as output. Both SPEX and SocC are language extensions to C. The key difference is

that SPEX is a sequential language extension, whereas SocC is a multi-threaded language

extension. The key contribution of the SPIR compiler is that it automatically parallelizes

sequential code into multi-threaded code for MPSoC architectures. In this section, we

will describe SPEX and SocC in greater detail.

The SPEX Programming Language. SPEX is a programming language extension

of C. Detail language semantics of the SPEX is described in Chapter 6. The dataflow

computation model is more restrictive than the C programming language. Many of the

133

01 extern void simple_graph()

02 {

03 int aout[100]@{DMEM0};

04 int bout[100]@{DMEM0, DMEM1};

05 int cout[100]@{DMEM1};

06 int din[100]@{DMEM2};

07 int dout[100]@{DMEM2};

08

09 PARALLEL {

10 SECTION {

11 func_a(aout@DMEM0)@PE0;

12 func_b(bout@DMEM0, aout@DMEM0)@PE0;

13 }

14 SECTION {

15 func_c(cout@DMEM1, bout@DMEM1)@PE1;

16 }

17 SECTION {

18 memcpy(din@DMEM2, cout@DMEM1)@dma1;

19 func_d(dout@DMEM2, din@DMEM2)@PE2;

20 }

21 }

22 }

Each SECTION in the PARALLEL

construct is translated into one or

more threads. Functions in different

SECTION constructs will be mapped

into different threads.

Explicit memory

allocations for array

variables

Explicit processor

assignments for function

calls

Explicit DMA transfer

operation

Implicit DMA transfer

operation

Figure 7.4: SocC programming example. SocC allows programmers to explicitly paral-
lelize a program without the complexity of writing the code for explicit thread manage-
ment. PE0-PE2 refer to the Ardbeg data processors. DMEM0-DMEM2 refer to Ardbeg
data processors’ local memories.

C language features cannot be translated into dataflow format. For example, variable

pointers can be used as function arguments. C does not provide restrictions on the access

pattern of pointers’ memory locations. However, if we treat each function as a dataflow

actor, then each function may only have either read-only or write-only function arguments.

Therefore, only a subset of C semantics can be translated into dataflow – dataflow-safe

C code. The purpose of SPEX is to provide a guidelines for the programmers to write

dataflow-safe C code that can be translated into dataflow graphs.

SocC Language. The SocC programming language is a C extension developed by

ARM for the Ardbeg processor [70]. It is a set of annotations that allows the program-

mers to explicitly parallelize a program without the complexity of writing the code for

explicit thread management. It allows the programmers to define function-to-processor

134

assignments, assign physical memory locations for arrays, and specify synchronization

buffers between communicating functions. Figure 7.4 shows an example of SocC code.

On lines 3 to 7, the array variables are shown with the additional annotation @{DMEMx}.

These annotations indicate to the compiler that these array variables should be allocated

to the Ardbeg data processors’ local memories. For example, line 3 has the code int

aout[100]@DMEM0; This means that the aout variable is to be mapped onto the local

memory of Ardbeg data processor 0. Line 9 to 21 are encapsulated in a PARALLEL con-

struct, where there are multiple SECTION constructs. Each SECTION construct represents

one or more threads that are executed on the Ardbeg ARM control processor. Different

SECTION constructs are translated into different threads. Code within the same SECTION

construct may also be broken into multiple threads, depending on the compiler imple-

mentation. Each function call is annotated with @PEx. For example, line 11 has the code

func a(aout@DMEM0)@PE0. This means that the function call func a is to be executed

on Ardbeg data processor 0. When the ARM control processor executes the thread that

corresponds to this SECTION, it issues a Remote-Procedure-Call (RPC) to Ardbeg data

processor 0 to execute function func a. For data dependent producer-consumer functions

that are mapped onto different processors, DMA operations can be either explicitly de-

fined, as shown on line 18. DMA operations can also be implicitly defined by assigning

the data dependent variable with two different memory locations, as shown on lines 4,

12, and 15. Synchronization directives are not shown in this example, but they are also

supported in SocC.

The SocC compiler can automatically generate multiple threads that run on the Ard-

beg ARM control processor that manages the execution of the data processors. However,

it cannot automatically parallelize the code and generate the annotations. The responsi-

bility of writing correct parallel code is still on the programmers. For wireless protocols

135

with complex streaming communication patterns, it becomes difficult for the programmers

to determine the optimal processor assignment, and memory allocation. It is also difficult

to insert the proper synchronization directives to ensure correct parallel execution. The

SPIR compiler can be viewed as a frontend to the SocC compiler in the sense that it

automatically generates correct parallelized SocC code based on programmers’ sequential

implementation. The goal of the SPIR compiler optimization and code generation is to

generate correct and efficient SocC code from SPIR’s dataflow representation.

7.2.5 Experimentation Infrastructure

The SPIR compiler is implemented within the SUIF compiler framework [37]. It is

an instruction-level compiler that aims to parallelize sequential programs through array

dependence analysis. Because the SPIR compiler is a function-level compiler, many of

the SUIF optimizations are not used during the implementation. The relevant feature

of the SUIF compiler is that it contains an open-source C-to-C compilation path. With

our own modifications, we use the SUIF compiler to parse the SPEX input, and generate

SocC output. The SUIF compiler uses its own proprietary intermediate representation –

the SUIF IR. It has a translation path that converts C code into SUIF IR, as well as a

translation path that converts SUIF IR into C code. The SPIR compiler interfaces with

the SUIF compiler through the SUIF IR. The SPIR frontend converts SUIF code into

SPIR format. And the SPIR code generation converts SPIR format back into SUIF code.

7.3 From SPEX to SPIR: Frontend Compilation

This section describes the frontend compilation process. The goal of the frontend is

to translate sequential programs written in SPEX into concurrent PDF representations.

136

01 stream_system(rake)()

02 {

03 channel int fir_out[100];

04 channel int desp_out1[100];

05 channel int desp_out2[100];

06 channel int descr_out1[100];

07 channel int descr_out2[100];

08 ...

09 stream {

10 for (i=0; i<100; i++) {

11 fir(fir_out);

12 desp(fir_out, desp_out1);

13 desp(fir_out, desp_out2);

14 descr(desp_out1, descr_out1);

15 descr(desp_out2, descr_out2);

16 comb(descr_out1, descr_out2);

17 }

18 }

19 }

dataflow size = 100

SPEX SPIR

fir

despdesp

descrdescr

comb

fir_out fir_out

desp_out1 desp_out2

descr_out1 descr_out2

Figure 7.5: This diagram describes a simple stream construct written in SPEX, and its
corresponding SPIR PDF representation.

Because many of the C language semantics cannot be translated into dataflow, SPEX can

be viewed as a guideline for writing stylized C code that is dataflow-safe. This section

describes the SPEX-to-SPIR translation process. It also provides rationales for the design

decisions for the SPEX programming language.

The Stream Scope. The most important language feature in SPEX is the stream

scope. This construct may only be declared within stream system functions. It must

contain one for-loop construct, with optional non-loop code before and after the loop

construct. The for-loop construct must only contain function calls to stream kernel

functions. The SPIR frontend only compiles the code within the stream scope. It assumes

the rest to be executed sequentially on the ARM control processor.

7.3.1 Basic Dataflow

Function Calls. In the simplest stream construct, it contains a counted for-loop on

top of a list of stream kernel function calls. Figure 7.5 shows an example of a simple

137

SPEX stream construct, and its corresponding SPIR dataflow representation. Unlike

traditional C code, each function call within the stream scope creates its own dataflow

actor. This is shown in the example with the desp and descr functions. Multiple function

calls to the same function will result in multiple copies of that function. The frontend will

not only duplicate the instruction code for each of the function calls, but also the data

memory spaces as well. This is the reason why recursion for stream system functions are

not allowed.

Function Call Arguments. Only array variables that are declared with the channel

keyword can be used as function arguments for these stream kernel functions. As men-

tioned in Chapter 6, stream kernel’s function arguments must be either read-only or

write-only. This must be enforced by performing array access analysis of the function ar-

guments within each stream kernel function. Because each channel array corresponds

to one dataflow edge, the frontend compilation must ensure that each channel array has

only one producer function call.

Loops. The for-loop in the stream construct must be a counted loop with no side

exits. Side exits, such as a break statement, do not have an equivalent representation in

the PDF model. The restriction for the counted for-loop is meant for the compiler to be

able to generate a loop iteration count during compile time. C allows the implementation

of uncounted loops where the number of loop iterations is dependent on the computation

within the loop body. There is no also no equivalent for this type of computation in the

dataflow model. Because wireless protocols are streaming DSP applications, restricting

the programmers to only write counted-loops does not restrict the expressiveness of the

programming language.

138

7.3.2 Parameterized Dataflow

Parameter Variables. In SPEX, parameters are variables with a finite discrete set of

run-time values. They are declared in SPEX with the param keyword. One of the jobs of

the compiler frontend is to identify the set of possible values that each parameter may have

during the run-time. Some of the values can be deduced through classic data dependency

analysis of value assignments, comparison operations, and arithmetic operations. Special

functions are also provided for the users to list the set of values for each parameter variable.

If the compiler fails to identify a discrete set of values for a parameter, then a compilation

flag will be raised.

Dataflow Initiation and Finalization. In SPIR’s PDF model, each dataflow graph

may have an optional dataflow init and dataflow final section. They correspond to the

dataflow initialization and finalization stages of the SPIR’s PDF model. In the SPEX

code, they are the sequential code before and after the for-loop in the stream scope. They

are akin to the C++’s constructor and destructor functions. Every time a dataflow graph

is executed, it will first go through its dataflow initiation code, and then the finalization

code. Parameter variables may only be modified in the initialization and finalization

sections of the stream scope.

If-else Constructs. If-else constructs are allowed in the stream scope’s for-loop

structure. An example of this is shown in Figure 7.6. The frontend compilation inserts

a pair of dataflow split and merge actors around each if-else construct. Nested if-else

constructs are also supported. channel array variables are not allowed to have multiple

producers in the stream scope. The only exception are the array variables declared within

the if-else constructs. They are allowed to have two producers if the producers come from

separate if and else paths. The frontend compiler must also check the usage pattern of

variables used in the branch conditional statements. These conditional variables can only

139

01 stream_system(decoder)()

02 {

03 channel int rake_out[100];

04 channel int dec_out[100];

05 param int mode;

06 ...

07 stream {

08 minit(&mode);

09 for (i=0; i<100; i++) {

10 rake(rake_out);

11 if (mode == data)

12 turbo(rake_out, dec_out);

13 else

14 viterbi(rake_out, dec_out);

15 mac(dec_out);

16 }

17 }

18 }

dataflow size = 100

SPEX SPIR

If

split

viterbiturbo

rake

If

split

mac

rake_out

rake_out rake_out

dec_out dec_out

dec_out

minit

mode

dataflow

init

dataflow

final

Figure 7.6: This diagram describes a stream construct with the if-else construct, and its
corresponding SPIR boolean dataflow representation.

be modified in the dataflow initialization or finalization portion of the stream scope. In

the example shown in Figure 7.6, the branch conditional variable is mode. It is modified on

line 8 before the for-loop, but not within the for-loop. This is a restriction within SPIR’s

PDF model. In SPIR, the boolean dataflow’s branch direction must be known before

dataflow computation. This restriction has greater implication on the backend scheduling.

A static dataflow schedule cannot be guaranteed if the branch condition is unknown. If

we let the conditional variables to be defined anywhere within the for-loop, then the

backend compilation path will have to provide a complex run-time system to propagate

the conditional variables along with the data. By forcing the branch condition to be

determined before or after the dataflow, the backend compilation can be greatly simplified

by propagate the conditional variables only once before the dataflow computation.

ll-for Construct. As mentioned before, each function call within the stream scope

creates a new dataflow actor. The ll for construct allows the programmers to create

multiple dataflow actors from the same stream kernel function. An example is shown

140

01 stream_system(rake)()

02 {

03 channel int fir_out[100];

04 channel int desp_out[MAX_SIZE][100];

05 channel int descr_out[MAX_SIZE[100];

06 param int rsize;

07 ...

08 stream {

09 rinit(&rsize);

10 for (i=0; i<100; i++) {

11 fir(fir_out);

12 ll_for (j = 0; j < rsize; j++) {

13 desp(fir_out, desp_out[j]);

14 descr(desp_out[j], descr_out[j]);

15 }

16 comb(descr_out);

17 }

18 }

19 }

dataflow size = 100

SPEX SPIR

fir

despdesp

descrdescr

comb

fir_out fir_out

desp_out[0] desp_out[rsize-1]

descr_out[0] descr_out[rsize-1]

rinit

dataflow

init

dataflow

final

rsize

Figure 7.7: This diagram describes a stream construct with the ll-for construct, and its
corresponding SPIR reconfigurable dataflow representation.

in Figure 7.7. The ll for loop must be a counted loop. Its loop bounds must be either

constant, or a parameter variable declared during the dataflow initiation or finalization

stages. The compiler frontend must make sure that there are no data dependencies across

loop iterations.

Parameterized Loop Bounds. As mentioned before, the stream scope must con-

tain only counted for-loop. In SPEX, the loop bound can be also be described with a

parameter variable. Like all parameter variables, loop bound variables must be defined in

the dataflow initialization or finalization section. And they are not allowed to be modified

within the loop.

7.4 Function-level Scheduling and Optimizations

In this section, we present the overall implementation considerations for scheduling

functions. In addition, we present a function-level compiler optimization: function-level

software pipelining is an adaptation of an existing instruction-level compilation technique.

141

7.4.1 Scheduling Overview

Previous work [50] has shown that the multi-processor scheduling problem can be di-

vided into three major tasks: 1) processor assignment and memory allocation; 2) kernel

execution ordering; and 3) kernel execution timing. All three tasks can be handled either

statically by the compiler or dynamically by the run-time scheduler. In wireless commu-

nication protocols, the execution behavior is relatively static with limited run-time execu-

tion variation. The scheduling process needs to consider the inter-kernel communications,

meet the real-time deadlines, and manage the scratchpad memories. This combination of

factors favors a compile-time solution. Because of the run-time variations, it is impossible

to completely determine the kernel execution timing during compile-time. Thus, we focus

on designing a scheduler for the first two tasks. Coarse-grained function-level scheduling

under strict memory constraints presents new challenges that have not been fully explored

in previous compilation studies.

Kernel Profiling. Kernels form the building blocks for the SDR protocol dataflow

graph. To make coarse-grained scheduling decisions, execution information about each

kernel is required. Kernels are compiled and profiled individually on each of the processor

types available on the MPSoC. Kernel profiles are entered in a queryable format, so that

later scheduling stages can easily access the information.

Dataflow Rate Matching. The dataflow computation model allows unmatched

rates on the dataflow edges. There exists a large body of previous work for dataflow rate

matching algorithms [51]. However, as a side-effect of the SPEX programming language,

the IR generated by the frontend has matched rates. These rates correspond to the sizes

of channel array variables. Therefore, dataflow rate matching is currently not required

in the SPIR compilation flow. This does not mean that dataflow rate matching is useless.

As a part of our future work, we envision SPIR to support other high level languages that

142

may produce unmatched dataflow rates.

7.4.2 Coarse-grained Software Pipelining

Coarse-grained compilation requires function-level parallelism to utilize a MPSoC’s

resources. Wireless communication protocols do not have many kernels that execute con-

currently. They are streaming applications with coarse-grained pipeline-level parallelism.

Software pipelining was proposed as a method to exploit the instruction-level parallelism

by overlapping consecutive loop iterations. Stream computation can be viewed as a loop

that iterates through each streaming data input, where the computation for successive

data inputs can also be overlapped. The coarse-grained scheduling process is similar

to instruction-level software pipelining, except that kernels and bulk memory transfers

are scheduled onto processors and DMA engines, instead of scheduling instructions onto

ALUs and memory units. Modulo scheduling [69] is a well-known software pipelining al-

gorithm that can achieve very good solutions. In this section, we present a coarse-grained

modulo scheduling algorithm used to schedule a rate matched hierarchical dataflow graph

on to a MPSoC. Similar to instruction-level modulo scheduling, coarse-grained modulo

scheduling has to honor resource and dependency constraints between dataflow actors.

However, coarse-grained modulo scheduling differs from traditional modulo scheduling in

the following ways.

Storage assignment. In traditional modulo scheduling, allocation of storage (e.g.,

rotating registers) used for carrying values between operations is performed as a post-

processing step. Enough storage is assumed to be available during the scheduling phase,

while the register allocation phase does the actual storage allocation. In coarse-grained

modulo scheduling, memory buffers must be allocated on the processors where dataflow

actors are scheduled. Typically, the local memory available on processors is limited. Also,

143

MPSoCs can have processing elements with varying memory capacities. This limited

non-uniform distribution of memories makes the storage assignment a first-class schedul-

ing constraint. Postponing storage assignment to a later phase results in the scheduler

making aggressive decisions about actor placements on processors. Consequently, stor-

age assignment fails in many cases. Therefore, in the coarse-grained modulo scheduling

method presented, scheduling and storage assignment are performed in a single phase.

Scheduling data movement. Traditional modulo scheduling assumes that the

value written to the register by an operation is available to dependent operations in the

very next cycle. This is because the register file is connected to all function units. However,

in a MPSoC, processors have their own local memories and the data is transported between

processors. DMA operations used for moving the data between processors take significant

amount of time, and dependent operations must wait for the DMAs to complete before

they can begin execution. Thus, unlike traditional modulo scheduling, the coarse-grained

modulo scheduler must explicitly schedule the DMA operations used for moving data

between processors.

II Selection. In modulo scheduling, II (initiation interval) is the interval between

the start of successive iterations. The minimum initiation interval (MII) is defined as

MII = Max(ResMII, RecMII), where ResMII is the resource constrained MII, and

RecMII is the recurrence constrained MII. In coarse-grained modulo scheduling, ResMII is

defined by the total latency of all actors in the graph divided by the number of processors

allocated to the graph. RecMII is defined by the maximum latency of each feedback

path. Since SDR protocols are real-time applications, the scheduler must also take timing

constraints into consideration. In W-CDMA, the timing constraint is defined by the

overall data throughput, which is 2Mbps as the output rate of the receiving data channel.

If we use W-CDMA as an example, then the maximum II must be 610K clock cycles on

144

a MPSoC with 400MHz data processors as an example. Like instruction-level modulo

scheduling, the II selection process starts at MII, and is iteratively increased until all of

the actors are scheduled or the maximum II is reached. If the maximum II is reached and

no valid schedule is found, then a failure message is returned.

Kernel-To-Processor Assignment. For each II, the modulo scheduler assigns ac-

tors to processors and allocates DMA buffers for producer/consumer actor pairs that are

assigned to different processors. We use a greedy heuristic which naively assigns actors to

processors based only on execution latencies and II. One of the key challenges is scheduling

the conditional dataflow actors. Because the if-branch and else-branch are never executed

at the same time, the scheduler should assign the same hardware resources for these two

paths. In our scheduler, we first schedule the dataflow path with the longest execution

latency. We then schedule other dataflow paths with the same hardware resources that

we assigned for the longest path.

In scheduling the longest execution latency path, its actors are first sorted into a

linear list that is ordered by the data dependencies between the actors. For any pair

of producer/consumer datalow actors, the producer actor is always placed into the list

in front of the consumer actor. Actors with the same producer are ordered arbitrarily

in the list. The list is then scheduled onto the processors using a greedy bin-packing

algorithms. In this algorithm, the list of actors is broken into N sub-lists, where N is the

dataflow path’s execution latency divide by II. Each sub-list is assigned sequentially to the

processor with the lightest workload, with consecutive software pipeline stage numbers.

Actors that are not scheduled from the longest execution path scheduling must be

part of an if-else branch. They are assigned based on the scheduling results of the longest

latency dataflow path. The goal is to assign the same set of processors and software

pipeline stages for both paths of the same branch. This requires that one of the two paths

145

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
o

rm
a
li
z
e
d

 s
p

e
e
d

u
p

Number of processors

Uplink DPDCH

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
o

rm
a
li
z
e
d

 s
p

e
e
d

u
p

Number of processors

Uplink DPCCH

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
o

rm
a
li
z
e
d

 s
p

e
e
d

u
p

Number of processors

Downlink DPCH

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
o

rm
a
li
z
e
d

 s
p

e
e
d

u
p

Number of processors

Downlink DPCH + Turbo

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
o

rm
a
li
z
e
d

 s
p

e
e
d

u
p

Number of processors

CPICH

Greedy Scheduling

Figure 7.8: Execution speedup for W-CDMA benchmarks compiled by greedy modulo
scheduler running on 1 to 16 data processors.

to be scheduled first. Therefore, the scheduling first starts from if-else branches where

one of the two paths is scheduled as a part of the longest execution latency path. It then

iteratively scheduled the rest of the if-else branches if there are nested branches. After all

of the actors are scheduled, DMA operations are assigned to each SPIR edge where the

source and destination actors have different processor assignments or software pipeline

stages.

Experimental Results W-CDMA protocol specifications [41] define multiple trans-

mission modes for different purposes, ranging from data and voice transmissions to syn-

146

chronization. In this study, we picked five operating modes that cover the essential

W-CDMA operations, and handcoded them in SPIR. These five modes are: downlink

DPCH(Dedicated Physical CHannel); uplink DPCCH(Dedicated Physical Control CHan-

nel); uplink DPDCH (Dedicated Physical Data CHannel); and CPICH (Common Pilot

CHannel). Downlink DPCH is the main data receiver channel, it is time-multiplexed be-

tween receiving protocol control and user data. We included two versions of the downlink

DPCH, one with the Turbo decoder and one without. This is because many proposed

SDR solutions still use Turbo ASIC accelerators [81] due to its high computation require-

ments. Uplink DPCCH and DPDCH are the transmitter counter-parts of the downlink

DPCH. And finally, CPICH is the synchronization channel, which is used to measure

signal strength and synchronize data transmission.

Figure 7.8 shows the overall execution speedup for the W-CDMA benchmarks compiled

with the greedy modulo scheduler, running on 1 to 16 data processors with 1 control

processor. The execution speedup is normalized to the execution time of the benchmarks

running on 1 data processor. For all of the benchmarks, the modulo scheduler achieves

near-linear speedup up to 4 processors. However, it cannot efficiently utilize more than

5 processors, even though there are many more kernels in the benchmarks. The reason

is because there are a few bottleneck algorithms, such as filter, searcher, and Turbo

decoder, that require much more computational resources then the rest of the algorithms.

Therefore, even though there are many processors available, the majority of the time are

spend waiting for the bottleneck algorithms to finish.

147

7.5 From SPIR to SocC: Code Generation

The final step in the SPIR compiler is the SocC code generation. In this step, the

SPIR PDF format is converted back into C with the SocC language extensions. This is

done with the aid of the SUIF compiler’s C code generation path. The SPIR compiler

produces code in SUIF intermediate format, which is then converted back into C using

SUIF. Through the function-level scheduling and software pipelining optimizations, each

dataflow actor is annotated with a Ardbeg PE number and the software pipeline stage

count. The main focus of the code generation step is to translate these annotations

into multi-threaded format. In the rest of the section, we are going to talk about the

two major components of the translation process: predication generation for conditional

dataflow and DMA operation generations.

7.5.1 Predicated Execution

SPIR’s PDF model supports conditional dataflow with if-else split and merge actors.

The code generation must insert proper control code to make sure the correct path ex-

ecutes during run-time. This is similar to instruction-level predicated execution, where

predicated instructions execute only if its predicate is true during the run-time. Even

though the granularity is a function in the SPIR compiler, the basic technique for gener-

ating predicates can be adopted with very little modification. In this compiler, we use an

algorithm first proposed in [29]. This particular algorithm is used because it minimizes

the number of predicates used. The predicates are converted into if-statements in the

output SocC code.

The predicate value itself is always stored in the ARM control processor, and is sent

to the PEs through explicit DMA operations. Because the SPEX language does not allow

148

the values of if conditions to be modified within the for-loop of the stream scope, the

SPIR compiler does not have to handle inter-PE predicate propagation. The results of

the dataflow are always send back from the data PEs to the control processor, and the

predicates are updated atomically on the control processor.

7.5.2 Memory Buffers and DMA Operations

With the software pipeline scheduler, each dataflow actor in the SPIR graph is as-

signed a processor and a stage number. The stage number is the pipeline stage that the

dataflow actor executes. If a pair of producer-consumer actors are assigned to different

stages or different processors, then memory buffers must be inserted to ensure correct

pipeline execution. Different processor assignments also need explicit DMA operations.

For function-level software pipelining, the double-buffering technique is used between

pipeline stages. In the double-buffering technique, each pipeline buffer duplicated into

two buffers. While the function is writing or reading from one buffer, the content of the

other buffer is accessed by the DMA for inter-processor data transfer. Both the pro-

ducer and the consumer are required to have double-buffering. Therefore, four buffers

are required for two functions that are separated by one pipeline stage. If the functions

are separated by more than one stage, each additional stage only requires one additional

buffer. Currently, we put these additional buffers in the local memory of the consumer

function. Naturally, compiler optimizations can be applied for better buffer-to-memory

allocation. We intend to investigate this as a part of our future work.

7.5.3 SocC Output Example

Figure 7.9 is the implementation of a simple feedforward dataflow containing two

actors. This dataflow is implemented with SPEX, SPIR, and SocC. The SPEX imple-

149

 #define __sp_mod(x,y) (((x%y)<0) ? ((y<0) ? ((x%y)-y) : ((x%y)+y)) : (x%y))

 void simple() {

 ...

 int ain[SIZE]@{DTCM_PE0};

 int (bout[1][SIZE])@{DTCM_PE1};

 int (aout1[2][SIZE])@{DTCM_PE0};

 int (aout2[1][SIZE])@{DTCM_PE1};

 ...

 PARALLEL {

SECTION {

 int stage[2];

 for (int i0 = 0; i0 <= 2 - 1; i0++) { stage[i0] = 0; }

 stage[0] = 1;

 for (int i = 0; i <= 1000 + 2 - 2; i++) {

 if (stage[0]) {

 func_a(aout1[__sp_mod(i, 2)], ain)@PE0;

 }

 if (i < 2 - 1) { stage[i + 1] = stage[i]; }

 if (5 <= i) { stage[i + 1 - 5] = stage[i - 5]; }

 if (i == 5 - 1) { stage[0] = 0; }

 fifou_Put(&f, 4); //barrier

 fifou_Get(&f_back, 4); //barrier

 }

}

SECTION {

 int stage[2];

 for (int i0 = 0; i0 <= 2 - 1; i0++) { stage[i0] = 0; }

 stage[0] = 1;

 for (int i = 0; i <= 1000 + 2 - 2; i++) {

 if (stage[1]) {

 memcpy(aout2[__sp_mod(i - 1, 1)], aout1[__sp_mod(i - 1, 2)], 4)@DMA0;

 func_b(bout, aout2[__sp_mod(i - 1, 1)])@PE1;

 }

 if (i < 2 - 1) { stage[i + 1] = stage[i]; }

 if (5 <= i) { stage[i + 1 - 5] = stage[i - 5]; }

 if (i == 5 - 1) { stage[0] = 0; }

 fifou_Get(&f, 4); //barrier

 fifou_Put(&f_back, 4); //barrier

 }

}

 }

 } // end of void simple()

stream_system(simple)()

{

 channel int ain[SIZE];

 channel int aout[SIZE];

 channel int bout[SIZE];

 int i;

 ...

 stream {

 for (i = 0; i < 1000; i++) {

 func_a(aout, ain);

 func_b(bout, aout);

 }

 }

}

SPEX Implementation SocC Implementation

dataflow size = 1000

func_a

@PE0

stage=0

a_out

@{DTCM_PE0,DTCM_PE1}

SPIR Representation

func_b

@PE1

stage=1

b_out@DTCM_PE1

a_in@DTCM_PE0

Figure 7.9: SPEX, SPIR, and SocC implementation of a simple feedforward dataflow
containing two actors. The SPEX implementation is the input of the SPIR compiler, and
the SocC implementation is the output of the SPIR compiler. In the SocC implementation,
the dataflow is mapped onto two Ardbeg PEs, and is software pipelined into two stages.

mentation is the input of the compiler, the SPIR implementation is in the IR format,

and the SocC implementation is the output of the compiler. In the SocC implementa-

tion, the dataflow is mapped onto two Ardbeg PEs, and is software pipelined into two

stages. func a is mapped onto PE0, executing in the first software pipeline stage. func b

is mapped onto PE1, executing in the second software pipeline stage. As shown in the

figure, the SocC code is divided into two sections. Each section corresponds to one thread

of execution. DMA operations and synchronization primitives are added to the SocC

code. This example demonstrates the importance of the SPIR compiler. Even for a sim-

ple dataflow, the resulting multi-threading SocC code contains non-trivial implementation

150

details. For complex dataflow graphs, the SocC code can quickly become unmanageable.

7.6 Related Work

Dataflow Scheduling. There has been numerous compilation projects on mapping

dataflow graphs onto multi-core processors. Depending on the underlying dataflow model,

some requires run-time system support, while others can generate compile-time schedules.

In the MIT StreamIt compiler [34], the underlying model is based on the Synchronous

Dataflow (SDF) model. They have examined the different static dataflow scheduling algo-

rithms in [43], and their impacts on the run-time execution. There are other projects, such

as the Ptolemy [66], PeaCE [36], and DIF [67], that support multiple different dataflow

models. This means that they cannot generate fully static run-time schedules, and have

to provide run-time scheduler for run-time execution of dataflow actors.

Compilation Support for Multi-core DSP Processor. There has been numerous

compilers for other multi-core DSP processors. The IBM Cell compiler is the most relevant

to this study because its architecture [40] is the most similar to the Ardbeg processor

architecture. Most of the IBM Cell compilation effort is focused on provided efficient

single PE performance through various data-level parallelization techniques [27]. [74]

advocates a multi-tier programming approach, which is similar to this thesis’s proposed

two-tiered compilation approach. However, it does not provide a compilation system

that supports automatic code generations. More recent effort [47] has started to examine

the function-level compilation methodology. There are other multi-core compilers that

are not based on compiling dataflow models. These include the compiling the Brook

streaming language onto multi-core processors [53], loop-centric parallelizing compiler for

Vector-thread architecture [38], and basic-block level parallelization for the TRIP EDGE

151

architecture [76].

Software Pipelining. In the compiler domain, modulo scheduling is a well known

software pipelining technique [69]. There has been previous work purposing constraint-

based modulo scheduling, including [28], and [11]. But all of these techniques are geared

toward instruction-level modulo scheduling. [72] extends the modulo scheduling to soft-

ware pipeline any loop nest in a multi-dimensional loop, which conceptually is similar

to coarse-grained modulo scheduling. To our knowledge, there have not been any previ-

ous work exploring coarse-grained modulo scheduling for MPSoC architectures. However,

the idea of coarse-grained software pipelining has been explored before. [25] has pro-

posed an algorithm that automatically breaks up nested loops, function calls, and control

code into sets of coarse-grain filters based on a cost model. And, these sets of filters are

then generated for parallel execution. [24] has proposed of using function-level software

pipelining to stream data on the Imagine Stream Architecture. [35] also explored the

idea of coarse-grained software pipelining on a tiled architecture.

7.7 Summary

In this section, we present the SPIR compiler infrastructure. SPIR translates sequen-

tial SPEX code into concurrent PDF format. It performs function-level software pipelin-

ing on the dataflow, and generates multi-threaded SocC code as output. This chapter

demonstrates the feasibility of building a two-tier compilation approach for automatically

mapping sequential programs onto a multi-core DSP architecture.

152

CHAPTER 8

Conclusion

From 3G wireless communications to high definition videos, digital signal process-

ing(DSP) has already become an integral part of our everyday lives. Within the past

twenty years, engineers have designed increasingly complex DSP systems in order to sat-

isfy our growing appetites for faster and better multimedia content. The up-and-coming

multimedia applications pose a new design challenge for computer engineers. They have

computation requirements beyond existing desktop computers, while also requiring the

power efficiency of hand-held devices. We label these applications as mobile supercom-

puting.

8.1 Summary

This thesis presents a case study for designing a solution for realizing one such mobile

supercomputing application — Software Defined Radio (SDR). In recent years, we have

seen an increase in the number of wireless protocols that are applicable to different types

of communication networks. Traditionally, the physical layer of these wireless protocols

is implemented with fixed function ASICs. SDR promises to deliver a cost effective and

153

flexible solution by implementing a wide variety of wireless protocols in software. Such

solutions have many potential advantages: 1) Multiple protocols can be supported simul-

taneously on the same hardware, allowing users to automatically adapt to the available

wireless networks; 2) Lower engineering and verification efforts are required for software

solutions over hardware solutions; 3) Higher chip volumes because the same chip can

be used for multiple protocols, which lowers the cost; and 4) Better support for future

protocol changes. With the tremendous benefits of SDR, it is likely that many mobile

communication devices are going to be supported by SDR technologies in the foreseeable

future.

Because SDR is an interdisciplinary research topic, this thesis examines multiple re-

search subjects under the overall objective of realizing SDR: computer architecture, DSP

algorithm optimizations, programming language design, and compiler construction. The

detailed contributions are listed as follows:

1. Processor Design. This thesis proposes a multi-core DSP architecture, SODA,
for supporting SDR. SODA consists of one control processor, four data processors,
and a shared global memory. The control processor is an embedded general pur-
pose processor that is capable of handling the control-intensive code that is used to
manage the overall baseband processing system. The data processors are specialized
DSP processors that can perform data-intensive computations. A commercial SDR
processor based on the SODA processor architecture has been developed by ARM
Ltd. The Ardbeg processor is also a multi-core DSP processor consists of 32-lane
SIMD data processors. This thesis provides an detailed comparison study between
the SODA and Ardbeg processors. This study reconfirms many of the SODA archi-
tectural decisions. It also reveals many design shortcomings of SODA, and explains
the subsequent design improvements in Ardbeg.

2. Algorithm Implementations. Each DSP algorithm in W-CDMA is hand coded
and optimized for the SODA data processor. The majority of wireless protocols’
algorithms operate on large vectors, and are therefore a good fit for the wide-SIMD
design. This thesis validates this claim by demonstrates the implementation of key
DSP algorithms on SODA. DSP algorithms usually have multiple different imple-
mentations. Not all implementations can be mapped efficiently due to the wide
SIMD design. This thesis describes a set of DSP algorithm implementations that
map well on the SODA architecture.

154

3. Language and Compiler Support. This thesis also proposes a programming
language and compilation flow for mapping wireless protocols onto the Ardbeg pro-
cessor. The programming language, SPEX, is based on the parameterized dataflow
computation model. And the compiler, the SPIR compiler, is a function-level com-
piler, where the granularity of an atomic execution unit is a function, not an in-
struction. The SPIR compiler takes sequential code written in SPEX, and generates
multi-threaded C code as output. The multi-threaded C code is then compiled onto
the Ardbeg processor using ARM’s internal compiler system.

8.2 Future Work

The following topics are potential future research directions to extend this work.

Mobile Supercomputing. This thesis has demonstrated the feasibility of support-

ing one mobile supercomputing application with the SODA processor. There are other

mobile supercomputing applications that may also benefit from SODA processor’s high

computational efficiency. These include high definition video, 3D graphic processing, and

physics simulation for gaming. We have studied the H264 video coding application. Our

initial analysis finds that it shares many of the same computation characteristics as wire-

less communications. Many of its algorithms can benefit from SODA’s wide SIMD design.

However, there are also some key differences. The computation patterns in video coding

are 2D matrix operations, as compared to wireless communication algorithms’ 1D vec-

tor operations. This requires better support for complex data permutations and higher

memory bandwidth. The challenge is to provide support for these operations while still

operate within the power budget of a mobile device.

Function-level Compilation. The work on the SPIR compiler is just our first at-

tempt at designing a function-level compiler for multi-core DSP processors. There are

many areas of the compilation process that can be improved. The frontend compilation

process can be made more intelligent to parse more generic C code instead of the stylized

155

SPEX code. It is also possible to provide frontend support for other popular program-

ming languages, such as Matlab/Simulink, Verilog and SystemC. SPIR currently only

provides limited backend function-level optimizations. There are many other interesting

optimizations that are not implemented. Some of these optimizations include function

fusion or fission for better load balancing, and an intelligent scheduler for dealing with

run-time execution variations. Finally, we are also interested in providing compilation

support for other multi-core processors beyond Ardbeg, such as the IBM Cell processor

and programmable graphics processors.

156

BIBLIOGRAPHY

157

BIBLIOGRAPHY

[1] ANSI/IEEE Std 802.11, 1999 Edition, Part 11: Wireless LAN Medium Access Con-
trol (MAC) and Physical Layer (PHY) Specifications.

[2] ARM Cortex-M3. http://www.arm.com/products/CPUs/ARM-Cortex-M3.html.

[3] ARM Neon Technology. http://www.arm.com/products/CPUs/NEON.html.

[4] DSP Developers’ Village, Texas Instruments. http://dspvillage.ti.com.

[5] ETSI TR 101 190: Digital Video Broadcasting(DVB); Transmission System for Hand-
held Terminals(DVB-H).

[6] Predictive Technology Model. http://www.eas.asu.edu/~ptm/.

[7] QuickSilver Technology. http://www.qstech.com/.

[8] Global Cellphone Penetration Reaches 50 Pct. Reuter, Nov. 2007.

[9] Samsung, NXP, and T3G Showcase World’s First TD-SCDMA HSDPA/GSM Multi-
mode Mobile Phone. Oct 2007.

[10] Jung Ho Ahn et al. Evaluating the Imagine Stream Architecture. In Proceedings of
the 31st Annual International Symposium on Computer Architecture, June 2004.

[11] E.R. Altman and G.A. Gao. Optimal Modulo Scheduling Through Enumeration. In
International Journal of Parallel Programming, pages 313–344, 1998.

[12] Todd Austin, David Blaauw, Scott Mahlke, Trevor Mudge, C. Chakrabati, and
Wayne Wolf. Mobile supercomputers. Communications of the ACM, May 2004.

[13] Rupert Baines and Doug Pulley. Software defined baseband processing for 3G base
stations. In 4th International Conference on 3G Mobile Communication Technologies
(Conf. Publ. No. 494), pages 123–127, June 2003.

[14] C. Berrou and A. Glavieux. Near Optimum Error Correcting Coding and Decoding:
Turbo-codes. In IEEE Transactions on Communications, volume 44, no. 10, pages
1261–1271, Oct. 1996.

158

[15] B. Bhattacharya and S. S. Bhattacharyya. Parameterized Dataflow Modeling for
DSP Systems. pages 2408–2421. IEEE Transactions on Signal Processing, Oct. 2001.

[16] N.L. Binkert, R.G. Dreslinski, L.R. Hsu, K.T. Lim, A.G. Saidi, and S.K. Reinhardt.
The M5 Simulator: Modeling Networked Systems. In IEEE Micro, volume 26, no. 4,
pages 52–60, Jul/Aug 2006.

[17] H. Bluethgen et al. A Programmable Baseband Platform for Software Defined Radio.
In Proc. of the 2004 SDR Technical Conference, Nov.

[18] E. Boutillon, W. Gross, and P. G. Gulak. VLSI Architectures for the MAP Algorithm.
In IEEE Trans. on Communications, volume 51, no. 2, pages 175–185, Feb. 2003.

[19] I. Buck. Brook Language Specification. In http://merrimac.stanford.edu/brook, Oct.
2003.

[20] J. T. Buck and E. A. Lee. Scheduling Dynamic Dataflow Graphs With Bounded
Memory Using the Token Flow Model. Proc. Int. Conf. Acoust., Speech, Signal
Processing, April 1993.

[21] N. Chandrachoodan and S. S. Bhattacharyya. The Hierarchical Timing Pair Model
for Multirate DSP Applications. In IEEE Transactions on Signal Processing, volume
52, no. 5, May 2004.

[22] Inching Chen, Anthony Chun, Ernest Tsui, Hooman Honary, and Vicki Tsai.
Overview of Intel’s Reconfigurable Communication Architecture. In 3rd Workshop
on Application Specific Processors, pages 95–102, Sept. 2004.

[23] N. Clark et al. OptimoDE: Programmable Accelerator Engines Through Retargetable
Customization. In Proc. Hot Chips 6, Aug 2004.

[24] A. Das, W. Dally, and P. Mattson. Compiling for Stream Processing. In Parallel
Architectures and Compilation Techniques (PACT), Sept. 2006.

[25] W. Du, R. Ferreira, and G. Agrawal. Compiler Support for Exploiting Coarse-
Grained Pipelined Parallelism. In Supercomputing Conference (SC), Nov. 2003.

[26] W.J. Ebel. Turbo-Code Implementation on C6x. In Tech. Report, Alexandria Re-
search Inst., Virginia Polytechnic Inst. State Univ., 1999.

[27] A. E. Eichenberger et al. Using Advanced Compiler Technology to Exploit the Perfor-
mance of the Cell Broadband Engine Architecture. In IBM System Journal, volume
45, No. 1, pages 59–84, 2006.

[28] A.E. Eichenberger and E. Davidson. Efficient Formulation For Optimal Modulo
Schedulers. In Proc. of Programming Language Design and Implementation, pages
194–205, June 1997.

[29] J. Z. Fang. Compiler Algorithms on If-Conversion, Speculative Predicates Assign-
ment and Predicated Code Optimization.

159

[30] K. Fatahalian et al. Sequoia: Programming the Memory Hierarchy. In Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing, Nov. 2006.

[31] J. Fridman and Z. Greenfield. The TigerSharc DSP architecture. In IEEE Micro,
pages 66–76, Jan. 2000.

[32] F. Gilbert, M. J. Thul, and N. Wehn. Communication Centric Architectures for
Turbo-Decoding on Embedded Multiprocessors. In Proc. Design, Automation and
Test Europe, pages 356–461, Mar. 2003.

[33] John Glossner, Erdem Hokenek, and Mayan Moudgill. The Sandbridge Sandblaster
Communications Processor. In 3rd Workshop on Application Specific Processors,
pages 53–58, Sept. 2004.

[34] M. Gordon et al. A Stream Compiler for Communication-Exposed Architecture.
In Architectural Support for Programming Languages and Operating Systems (ASP-
LOS), Oct. 2004.

[35] M. Gordon, W. Thies, and S. Amarasinghe. Exploiting Coarse-Grained Task, Data,
and Pipeline Parallelism in Stream Programs. In Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), Oct. 2006.

[36] S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon, and Y. Joo. PeaCE: A Hardware-Software
Codesign Environment for Multimedia Embedded Systems. In ACM Transactions
on Design Automation of Electronic Systems, Aug. 2007.

[37] M.W. Hall et al. Maximizing Multiprocessor Performance with the SUIF Compiler.
In IEEE Computer, Dec. 1996.

[38] M. Hampton and K. Asanovic. Compiling for Vector-Thread Architectures. In
Proceedings of the International Symposium on Code Generation and Optimization
(CGO), 2008.

[39] Kenichi Higuchi and Hidekazu Taoka. Field Experiments of 2.5 Gbits/s High-Speed
Packet Transmission Using MIMO OFDM Broadband Packet Radio Access.

[40] Peter H Hofstee. All About the Cell Processor. In IEEE Symposium on Low-Power
and High-Speed Chips(COOL Chips VIII), April 2005.

[41] Harri Holma and Antti Toskala. WCDMA for UMTS: Radio Access For Third Gen-
eration Mobile Communications. John Wiley and Sons, LTD, New York, New York,
2001.

[42] C. Hsu, I. Corretjer, M. Ko, W. Plishker, and S. S. Bhattacharyya. Dataflow in-
terchange format: Language reference for DIF language version 1.0, users guide for
DIF package version 1.0. In Technical Report UMIACS-TR-2007-32, Institute for
Advanced Computer Studies, University of Maryland at College Park, June 2007.

160

[43] M. Karczmarek, W. Thies, and S. Amarasinghe. Phased Scheduling of Stream Pro-
grams. In Proceedings of the 2003 Conference on Languages, Compilers, and Tools
for Embedded Systems, June 2003.

[44] F. Kienle, H. Michel, F. Gilbert, and N. Wehn. Efficient MAP-algorithm Implemen-
tation on Programmable Architectures. In Advances in Radio Science, volume 1,
pages 259–263, 2003.

[45] S. Knowles. Ths SoC Future is Soft: http://www.iee-
cambridge.org.uk/arc/seminar05/slides/SimonKnowles.pdf.

[46] Christoforos Kozyrakis and David Patterson. Vector Vs. Superscalar and VLIW
Architectures for Embedded Multimedia Benchmarks. In Proceedings of the 35th
Annual ACM/IEEE International Symposium on Microarchitecture, pages 283–293,
Nov. 2002.

[47] M. Kudlur and S. Mahlke. Orchestrating the Execution of Stream Programs on
Multicore Platforms. In 2008 Conference on Programming Language Design and
Implementation (PLDI), 2008.

[48] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and Communicatons Systems. In
Proceedings of the 30th Annual ACM/IEEE International Symposium on Microar-
chitecture, pages 330–335, 1997.

[49] E. A Lee. Overview of the Ptolemy Project. In Technical Memorandum No.
UCB/ERL M03/25, University of California, Berkeley, July 2003.

[50] E. A Lee and S. Ha. Scheduling Strategies for Multiprocessor Real-time DSP. In
Global Telecommunications Conference, pages 1279–1283, Nov. 1989.

[51] E.A. Lee and D.G. Messerschmidt. Synchronous Data Flow. In Proc IEEE, 75,
1235-1245 1987.

[52] Hyunseok Lee et al. Software Defined Radio - A High Performance Embedded Chal-
lenge. In Proc. 2005 Intl. Conference on High Performance Embedded Architectures
and Compilers (HiPEAC), Nov. 2005.

[53] S. Liao, Z. Du, G. Wu, and G.Y. Lueh. Data and Computation Transformations for
Brook Streaming Applications on Multiprocessors. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO), 2006.

[54] Y. Lin, Yoonseo Choi, Scott Mahlke, Trevor Mudge, and Chaitali Chakrabarti. A
Parameterized Dataflow Language Extension for Embedded Streaming Systems. In
Proceedings of IC-SAMOS VIII, July 2008.

[55] Y. Lin et al. Design and Implementation of Turbo Decoders for Software Defined
Radio. In Proc. IEEE 2006 Workshop on Signal Processing Systems (SiPS).

161

[56] Y. Lin et al. SODA: A Low-power Architecture For Software Radio. In Proceedings
of the 33rd Annual International Symposium on Computer Architecture, 2006.

[57] A. Lodi et al. XiSystem: A XiRisc-Based SoC With Reconfigurable IO Module. In
IEEE Journal of Solid-State Circuits, volume 41, No. 1, pages 85–96, Jan. 2006.

[58] M. Mansour and N. Shanbhag. VLSI Architectures for SISO-APP Decoders. In
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, volume 11, no.
4, pages 627–650, Aug. 2003.

[59] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins. ADRES: an ar-
chitecture with tightly coupled VLIW processor and coarse-grained reconfigurable
Matrix. In 13th International Conference on Field-Programmable Logic and Appli-
cations, Jan. 2003.

[60] H. Michel, A. Worm, M. Munch, and N. Wehn. Hardware/Software Trade-offs for
Advanced 3G Channel Coding. In Proc. Design, Automation and Test Europe, pages
396–401, Mar. 2002.

[61] P.K. Murthy and E. A. Lee. Multidimensional Synchronous Dataflow. In IEEE
Transactions on Signal Processing, August 2002.

[62] Y. Neuvo. Cellular Phones as Embedded Systems. In IEEE International Solid-State
Circuits Conference, 2004.

[63] C. Park, J. Chung, and S. Ha. Extended Synchronous Dataflow for Efficient DSP
System Prototyping. pages 295–322. Design Automation for Embedded Systems,
Kluwer Academic Publishers, March 2002.

[64] T. M Parks, J. Luis Pino, and E. A. Lee. A Comparison of Synchronous and Cyclo-
Static Dataflow. In Asiolmar Conference on Signals, Systems and Computers, Octo-
ber 1995.

[65] A. Peleg and U. Weiser. MMX Technology Extension to the Intel Architecture. In
IEEE Micro, volume 16, no. 4, Aug. 1996.

[66] J. L. Pino, S. Bhattacharyya, and E. Lee. A Hierarchical Multiprocessor Scheduling
System for DSP Applications. In Twenty-Ninth Annual Asilomar Conference on
Signals, Systems, and Computers, Oct 1995.

[67] W. Plishker, N. Sane, M. Kiemb, and S. S. Bhattacharyya. Heterogeneous design
in functional DIF. In In Proceedings of the International Workshop on Systems,
Architectures, Modeling, and Simulation, pages 157–166, July 2008.

[68] U. Ramacher. Software-Defined Radio Prospects for Multistandard Mobile Phones.
Computer, 40(10):62–69, 2007.

[69] B. R. Rau. Iterative Modulo Scheduling: An Algorithm for Software Pipelined Loops.
In Proc. of 27th Annual International Symposium on Microarchitecture, pages 63–74,
Nov. 1994.

162

[70] A. Reid, Y. Lin, K. Flautner, and E. Grimley-Evans. SoC-C: Efficient Programming
Abstractions for Heterogeneous Multicore Systems on Chip. International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems (CASES), Oct.
2008.

[71] Scott Rixner et al. Register Organization for Media Processing. In Proceedings of the
Sixth International Symposium on High-Performance Computer Architecture, pages
375–386, Jan. 2000.

[72] H. Rong et al. Single-Dimension Software Pipelining for Multi-Dimensional Loops. In
Proc. of the International Symposium on Code Generation and Optimization, March
2004.

[73] A. La Rosa, L. Lavagno, and C. Passerone. Implementation of a UMTS Turbo
Decoder on a Dynamically Reconfigurable Platform. In IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, volume 21, no. 1, pages
100–106, Jan. 2005.

[74] R. Sakai et al. Programming and Performance Evaluation of the Cell Processor. In
Hotchip 17, August 2005.

[75] M. Schneider, H. Blume, and T.G. Noll. Power Estimation on Functional Level for
Programmable Processors. In Advance in Radio Science, volume 2.

[76] A. Smith et al. Compiling for EDGE Architectures. In Proceedings of the Interna-
tional Symposium on Code Generation and Optimization (CGO), 2006.

[77] R. Staszewki, K. Muhammad, and P. Balsara. A 550MSamples 8-tap FIR Digital
Filter for Magnetic Recording Read Channels. In IEEE International Solid-State
Circuits Conference (ISSCC), 2000.

[78] L. Thiele, K. Strehl, D. Ziegenbein, R. Ernst, and J. Teich. FunState — An Internal
Representation for Codesign. Proc. International Conference on Computer Aided
Design, Nov. 1999.

[79] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A Language for Streaming
Applications. In Proc. of the 2002 International Conference on Compiler Construc-
tion, June 2002.

[80] W. Thies, M. Karczmarek, J. Sermulins, R. Rabbah, and S. Amarasinghe. Tele-
port Messaging for Distributed Stream Programs. In Symposium on Principles and
Practice of Parallel Programming, June 2005.

[81] C.H. van Berkel et al. Vector Processing as an Enabler for Software-Defined Ra-
dio in Handsets From 3G+WLAN Onwards. In Proc. 2004 Software Defined Radio
Technical Conference, Nov. 2004.

[82] A. Waksman. A Permutation Network. In Journal of the ACM, volume 15, No. 1,
pages 159–163, Jan. 1968.

163

[83] Z. Wang, Z. Chi, and K. Parhi. Area-Efficient High-Speed Decoding Schemes for
Turbo Decoders. In IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, volume 10, no. 6, pages 902–912, Dec. 2002.

[84] M. Woh et al. The Next Generation Challenge for Software Defined Radio. In Inter-
national Symposium on Systems, Architecture, Modeling and Simulation (SAMOS),
July 2007.

164

