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CHAPTER 1

INTRODUCTION

The continuing advances in VLSI technology are making possible the construction of
highly parallel multiprocessor systems that are capable of delivering high performance
computing at relatively low costs. These systems are based on a large ensemble of rela-
tively simple and relatively inexpensive processors connected together by a message pass-
ing network. There is no globally shared memory in these systems; rather, each pro-
cessor has its own private memory. The processors communicate to share data and/or
synchronize by passing messages to one another over the network. Consequently, these
multiprocessors are known as Distributed Memory Multiprocessors (DMMs), or Message
Passing Multiprocessors (MPMs). Examples include the hypercubes of Intel [Inte85],
Ametek [Amet85], and NCUBE [NCUBS5], and the mesh-connected systems of Ame-

tek [Amet88] and Goodyear [Pott85].

In contrast to more conventional high-performance supercomputers, which rely on
pipelined and vectored processing, DMMs achieve their high performance potential through
the use of a large number of processors cooperating in parallel to perform a particular
computation. This approach is referred to as parallel processing and is becoming an in-
creasingly attractive alternative to achieving high performance computing. The eflective
use of a large number of processors, however, relies on the extent to which a computa-
tion can be mapped onto the multiprocessor, i.e., divided into smaller components which

can be assigned to, and independently executed by, individual processors. There are no




general techniques for mapping applications onto multiprocessors; rather, the mapping of
applications is studied on a case by case basis. This study deals with the mapping of a
class of heuristic search problems that can be described by the Branch and Bound (BB)

algorithm onto DMMs.

1.1 Motivations and Objectives

DMMs have been successfully applied to a large number of problems from many
application areas of science and engineering (see [FJLO88] for a survey). Examples include:
image processing, computer vision, matrix computations, simulation of particle transport,
and computer-aided design. The results obtained often reflect substantial improvements
over the performance of a single processor. A notable example is the use of a 1024-processor
hypercube at Sandia National Labs to solve large scale problems in fluid dynamics and
structural analysis [GuMB88]. Experimentally obtained results indicate an impressive
gain in performance, not only over a single processor, but also over supercomputers of

higher cost.

However, the success of a DMM in improving the performance of a particular com-

putation depends to a large extent on the nature of that computation. In many cases

; a computation lends itself to parallelism and substantial performance improvements are
possible. In some other computations, however, this is not the case, and special care must
be taken with the mapping of that computation onto the DMM if any improvements in
performance are to be obtained. Therefore, it is safe to say that the performance gains
obtained by applying a DMM to a computation depends not only on the performance

potential of the DMM, but also on the nature of that computation. Hence, to obtain a

valid view of the true potential of DMMs as high performance computers, applications
of diverse computational nature must be studied. The majority of applications to which

DMMs have been applied to date tend to have common properties which lend them to




parallel processors in general, and to DMMs in particular. The applications tend to have
regular and homogeneous data sets, typically consisting of arrays of data elements of the
same type. Operations are usually applied to the elements of the data sets almost inde-
pendently of each other, implying large degrees of inherent parallelism. The computations
are also structured in such a way that a static load-balancing strategy can be employed
to generate uniform workloads across the processors. This is usually accomplished by
dividing the data sets equally among the processors. Therefore, it seems that only a re-
stricted set of computation have been considered to reflect performance gains that can be
obtained from DMMs. A key motivation behind this study was to extend the scope of the
computations to which DMMs have been applied by considering the parallel processing of

the BB algorithm on this class of multiprocessors.

The BB algorithm generates a data set that is highly irregular and dynamic. This
data set, referred to as the BB tree, will be described later in Chapter 3. The structure of
this data set cannot be predicted in advance and hence, dynamic balancing of workloads
must be employed. Furthermore, the BB algorithm, as will be seen later, requires global
knowledge of some attributes of this data set in order to maintain its computational
efficiency. This global knowledge requirement can pose problems in a distributed memory
environment and presents a challenge for DMMs. Therefore, an objective of this study
is to investigate the suitability of a distributed memory architecture when both global

knowledge and dynamic load balancing are required.

There are other factors that motivate us to study the parallel processing of BB algo-
rithms on DMMs and make this study significant. The BB algorithm is an interesting algo-
rithm in its own right. It is used to solve a large number of fundamental problems in science
and engineering that otherwise would have no efficient solution methods [L.aWo66, Nils80).
Examples of such problems include the well-known traveling salesman problem, the inte-

ger programming problem, and state-space search. BB techniques have also been used in




heuristic search algorithms [KuKa83], floor planning of VLS integrated circuits [WiKC88],
placement of electronic components [BrKa88] and robot path planning [KaNa85]. The use
of BB to solve many of the above problems generally results in intensive computations
that can benefit from the high performance potential of DMMs. One objective of this

research is to find out the extent to which BB can benefit from these multiprocessors.

In most scientific and engineering applications that have been successfully parallelized
to date, the amount of computations performed by the parallel algorithm to complete the
solution of a particular problem instance has not been influenced by the introduction of
parallelism. That is, the number of computational steps needed to obtain a solution to
a given problem instance is independent of, and hence, is not affected by the parallelism
introduced through the use of parallel processors. Parallelism affects the performance
of the application only through overheads incurred by the processors in communicating
data and/or synchronizing. This is not actual in the case of parallel BB algorithms.
The introduction of parallelism to BB can, and indeed often does, change the amount of
computations needed to obtain a solution to a given problems instance. This can have
considerable effects on the performance of the parallel BB algorithm when compared to
the performance of the sequential one. One objective of this study is to investigate the
effect of this change in the computational characteristics introduced by parallelism on the
performance of the parallel BB algorithm. This will, in effect, lead to the design of a more

efficient mapping of BB onto DMMs.

1.2 Research Overview

The mapping of BB algorithms on DMMs will be investigated in this study. This
will be done by identifying the factors that affect the performance of this class of algo-
rithms on DMMs. These factors will be shown to give rise to three types of overhead

that degrade the performance of the algorithm. The first is communication-overhead that




results from the need to exchange information about the search among the processors.
The second is computation-overhead that results as a consequence of the expansion of
non-essential subproblems; i.e, subproblems not expanded by the sequential algorithm.
The third is imbalance-overhead that results as processors idle due to load imbalance.
A computation-communication tradeoff exists between the first type of overhead on one
hand and the other two types of overhead on the other. In order to reduce the expansion
of non-essential subproblems and obtain a more balanced workload, more exchange of
information is needed, which gives rise to more communication-overhead. On the other
hand, communication-overhead can be minimized by eliminating communications among
the processors, which can be done only at the expense of expanding non-essential sub-

problems and an imbalanced workload, giving rise to more computation-overhead.

Analytical modeling and algorithm analysis techniques are limited in predicting the
extent to which these types of overhead affect performance, and in further characterizing
the tradeoff among them. While these techniques are successful in predicting the per-
formance of sequential BB algorithms [Smit84, WaYu85], their applicability to parallel
BB algorithms is limited by the change in computational characteristics of BB algorithms
which caused by the introduction of parallelism. This change is dependent not only on the
problem instance to be solved, but also on the nature of the parallel algorithm and the
characteristics of the DMM, making it difficult to model without unrealistic simplifying

assumptions.

Consequently, the extent to which the factors described above, the three types of
overhead, and the computation-communication tradeoff affect the performance of parallel
BB algorithms will be demonstrated for actual applications using three parallel algorithms
that map the sequential BB algorithm on a hypercube multiprocessor. The third algorithm
also demonstrates the performance of a new load balancing strategy that utilizes the

computation-communication tradeoff to obtain good performance.




1.3 Thesis Organization

This remainder of this thesis is organized as follows:

e In Chapter 2 the key features of DMMs are reviewed.

o In Chapter 3 a formulation of the BB algorithm outlining its main components is
presented. Examples illustrating the application of the algorithm to mathematical

programming and artificial intelligence are given.

e In Chapter 4 the mapping of the BB algorithm on DMMs is examined. The factors
that affect the performance of a parallel BB algorithm on this class of multiprocessors
are presented. The tradeoff among the three types of overhead these factors give
rise to is described, and a simple model that captures how this tradeoff affects
performance is presented. A review of past work on parallel BB algorithms is also

given in this chapter.

e In Chapter 5 the three parallel algorithms used to illustrate the effect of the fac-
tors identified in Chapter 4 are described. The third algorithm uses the new load

balancing strategy.

e In Chapter 6 experimental results obtained by implementing the algorithms on a

commercial hypercube multiprocessor are presented and discussed.

e In Chapter 7 acceleration anomalies that can occur in the execution of parallel BB

algorithms are described.
o In Chapter 8 concluding remarks and future research are presented.

¢ In Appendix A the NCUBE/ten hypercube multiprocessor used to obtain experi-

mental results is described.

¢ In Appendix B the test problems used in the experimental runs are described.




e In Appendix C implementation details of the experiments are described.




CHAPTER 2

DISTRIBUTED MEMORY MULTIPROCESSORS

In this chapter an overview is presented of distributed memory multiprocessors (DMMs).
In section 2.1 the general organization of this class of multiprocessors is reviewed and the
key elements of their architecture are discussed. In section 2.2 examples of DMMs are

presented.

2.1 The Architecture of DMMs

A DMM consists of N processing elements or nodes that are interconnected together
using an interconnection network. There exists no globally shared memory in a DMM;
instead, each node contains its own local memory. The nodes communicate to each other

through the interconnection network. A block diagram of a DMM is shown in figure 2.1.

The interconnection network consists of a set of dedicated communication links. Each
communication link is used to connect a pair of processing elements to each other. In
general, the communication links interconnect the nodes so that each node is directly

connected to only a subset, referred to as its neighbors, of the other nodes in the system.

The nodes and the communication links interconnecting them can be represented by
a graph G = (N, E) that consists of a set of vertices N and a set of edges E. The vertices
of the graph represent the processing elements in the system, and the edges of the graph

represent the communication links. The overall configuration in which the processors and




INTERCONNECTION NETWORK

PE PE PE

Figure 2.1. A distributed memory multiprocessor system.

the communication links are interconnected is referred to as the interconnection topology.

A processing element or node consists of four major components: a processor P, a
local memory M, an 1/O module, and a communication module CM. These components
interface to a local bus as shown in figure 2.2. P is a general purpose instruction set
processor, and the local memory is used to store both programs and data for P. The I/0O
module provides an interface to external devices and peripherals. The communication
module connects the node to the communication links, which in turn connects the node

to its neighbors in the DMM.

The processing elements communicate by passing messages to one another over the
communication links. This is facilitated by a Message Transfer System (MTS) which
operates in each node [HwBr84]; this is depicted in figure 2.3. A process in node A
makes a call to the MTS when it wants to send a message to another process in node B.
The MTS receives the request, determines the destination, computes the route if needed,

and initiates the transmission of the message. When the message arrives at B, the MTS
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Communication

Links
CM /0
Local Bus
P M

Figure 2.2. The architecture of a node.

interrupts the process on B to inform it that the message has arrived. Such communication

protocol also is referred to as the mail boz communication protocol [PTLP85].

DMMs generally support the loosely coupled model of computation. In this model,
concurrent processes in the computation are assumed to be independent of one another.
The degree of interaction among the processes is small. Each process executes its own
code operating on its own data set. Processes communicate by passing messages to each

other. Hence, DMMs are also referred to as loosely coupled multiprocessors.

The architecture of DMMs offers a number of advantages over other architectures for
interconnecting processors to processors as well as processors to memory. First, the con-
tention for memory as a shared resource is avoided by distributing the memory resources
across the nodes. Second, since there is no contention for memory, the latency in memory
access is reduced to a minimum. This is an important factor since memory access is a
significant part of any computation. Finally, with a properly designed interconnection

network, the number of nodes can be increased to several times that which is possible in
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MTS
CALL
TO ROUTE
MTS
CHANNEL
TRANSMIT
—
PROCESS A PROCESS B
PROCESSING PROCESSING
ELEMENT A ELEMENT B

Figure 2.3. The Message Transfer System.

alternative architectures based on shared-buses or multistage interconnection networks.

This provides the potential for massive parallelism and very high performance computing.

The architecture of DMMs can be characterized by three main elements: the multi-
plicity of instruction and data streams, the interconnection topology, and the granularity

of the node.

2.1.1 Multiplicity of Instructions and Data Streams

Following Flynn’s classification scheme [Flyn66], DMM systems can be split into two
groups with respect to the multiplicity of instruction and data streams: Single Instruction
Multiple Data streams, or SIMD multiprocessors and Multiple Instruction Multiple Data,

streams, or MIMD multiprocessors.

In SIMD multiprocessors, there is a single instruction stream to all the processing
elements, or nodes, in the system. A global control unit broadcasts the instructions to all

nodes, and each node executes the instructions using the data in its local memory. The
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nodes are synchronized and execute in lock-step, and each node can be optionally activated
or deactivated. Only activated nodes execute the broadcasted instructions allowing the

conditional execution of instructions.

In MIMD multiprocessors, there is a separate instruction stream in each node of the
system. Each node has a control unit which issues instructions allowing the node to execute
asynchronously with respect to other nodes on the data in its local memory. In general,
MIMD multiprocessors offer the potential for more flexibility and performance over SIMD
multiprocessors for a wide range of applications. Furthermore, MIMD multiprocessors
can efficiently emulate SIMD multiprocessors by executing the same instructions in each
node. This mode of operation is referred to as Single Code Multiple Data execution

(SCMD) [Buzz88], or sometimes as Single Program Multiple Data (SPMD) [Karp87].

2.1.2 Interconnection Topology

The interconnection network is used to transfer messages from one node in the system
to another. The topology of the interconnection network plays an important role in the
efficiency with which the network can achieve that goal. Topologies for interconnecting

processors in a DMM system can be characterized by a number of properties [AgJa86].

1. Diameter. The diameter D of an interconnection topology is defined as the maximum
of the minimum distances between any two nodes in the topology. The distance is

measured by the number of links. That is,
D = maz{dnin(i,j) Vi,j € V},

where dpin(?,7) is the minimum distance between any two nodes ¢ and j. The
diameter can be used as a measure of the communication distance between pairs of
nodes in a given interconnection topology. The smaller the diameter, the shorter the

communication distance and, consequently, the closer the nodes are to each other.
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Hence, it is desirable to interconnect the nodes in a topology that has as small a

diameter as possible.

. Degree. The degree § of a node in a topology is defined as the number of edges that
are connected to that node. A topology in which all nodes have the same degree
§ is referred to as a regular topology of degree §. The degree of the node can be
used as a measure of the number of wires that fanout from a node. The smaller the
degree, the smaller the fanout of the node, simplifying its design and increasing its
fault tolerance. Furthermore, a regular topology implies that all the nodes can be
identical. Hence, it is desirable to interconnect the nodes in a regular topology that
has as small a degree as possible. However, it is important to realize that minimizing
the degree of the topology is typically in conflict with minimizing the diameter of
the topology. In order to get the nodes closer together by minimizing the diameter,
the number of connections from each node must be increased. Therefore, it is not

possible to minimize both the degree and the diameter independently.

. Ezpandability. The expandability of a topology is a measure of the ability of that
topology to accommodate more nodes and links. A distributed memory multipro-
cessor system with an expandable topology requires little or no modification to the
topology to add new nodes to the system. Topologies that have borders are gener-
ally hard to expand since border processors are usually connected to I/0O. It is often

desirable to have a system with an expandable topology.

. Scalability. The scalability of a topology refers to the extent to which it is possible
to scale the topology to systems containing a large number of nodes without serious
performance degradation. It is desirable to have a topology that is scalable. Topolo-
gies that have small node degrees can normally be expanded more easily than those

with large degrees. However, since topologies with small degrees typically tend to
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have larger diameters, the data communication time becomes large and the topology

becomes unusable.

5. Fault tolerance. The fault tolerance of a topology refers to its ability to tolerate
faulty nodes or links. Some topologies can map out faulty nodes and /or links without
affecting the basic operation of the topology. These topologies are fault tolerant and

are also desirable for a DMM system.

Examples of topologies that have been, or are being used in DMM systems include: rings,
multi-dimensional grids or meshes, trees, completely connected arrays, pyramids and hy-

percubes. The more common ones are reviewed briefly below.

2-D Grids. In this topology, the nodes are interconnected together to form a two-
dimensional grid. Each node is directly connected to only four neighbors in the grid;
this is depicted in figure 2.4. This topology has a small degree, 4, which is constant
and independent of the number of PEs in the system. This results in simple and regular
interconnections. However, the diameter of the topology is relatively large, 0(\/17 ). Data

movements beyond the four neighbors can become time consuming.

Completely Connected Arrays. In this topology, every node is connected to every
other node. An example is shown in figure 2.5. Each node is exactly one edge away from
any other node. The advantage of this topology is the high connectivity of its nodes. The
diameter of the topology is the minimum possible diameter. The major disadvantages of
this topology are the large degree of the topology and the fact that the number of links

grows quadratically with respect to the number of the nodes.

Pyramids. In this topology the nodes are interconnected together to form a pyramid, as
shown in figure 2.6. Each node is connected to four neighbors, a parent and four children
nodes (some boundary nodes have fewer connections). The advantage of this topology is

that the degree of each node is small (< 9) and that no two nodes are more than O(log, N)
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Figure 2.4. The 2-D grid topology.
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steps apart. The disadvantage is congestion in the upper levels during system wide data

transfers.

Hypercubes. In this topology, N = 2", identical processing elements are interconnected
together using n2"~! communication links to form an n-dimensional hypercube graph. An
n-dimensional hypercube array of nodes, or an n-cube, can be constructed and its nodes
uniquely labeled using the following recursive procedure. First, a 1-cube is formed by
connecting two nodes with a single communication link. One of the nodes is labeled with
a 0 and the other is labeled with a 1. This is the basis step of the procedure. An n-cube
is formed from two (n — 1)-cubes using the general step of the procedure as follows: node
labels in one of the (n — 1)-cubes are prefixed with a 0 so they are of the form Ozz...zz.
Similarly, node labels in the other (n — 1)-cube are prefixed with a 1 so they are of the
form lzz...zz. Finally, the two (n — 1)-cubes are connected with communication links
between nodes that have labels differing only in their most significant bit. This labeling
scheme results in a unique n-bit binary address for each node in the resulting hypercube

array. The address for each node differs in exactly one bit position from that of any of its
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Figure 2.5. The completely connected topology.

neighbors. Since there are n such neighbors, each bit in the address can be thought of as
corresponding to one dimension in the hypercube array. The hypercube array topology
is illustrated in figure 2.7 for n < 4. The zero-dimensional hypercube is the conventional

single processor computer.

The hypercube topology for interconnecting nodes has a number of features that

makes it an attractive topology for DMMs.

1. The hypercube topology offers a unique balance between the diameter and the degree
of the topology. The nodes of the hypercube topology are no more than log, N
steps apart. Consequently, any two nodes in the hypercube array can communicate
efficiently even if they are not directly connected to each other. At the same time,
the degree of each node in the graph is relatively small— log, N. This balance makes
the hypercube topology compare favorably with other topologies such as grids and
completely connected arrays. It also allows the topology to be scalable to a large

number of processors.
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Figure 2.6. The pyramid topology.

2. The hypercube topology results in a regular and homogeneous array of nodes. All
of the processors are identical and have the same view of the array. There are no
special nodes that must be designated as the “borders” of the topology, as is the case
in most other topologies (two-dimensional grids for example). Homogeneity makes

it natural to attach an I/O channel to each node, providing the potential for high

1/0 bandwidth.

3. A large dimension hypercube array can be divided into smaller dimension hypercube
arrays, or subcubes. Each subcube is completely independent of the other subcubes.
This feature of the hypercube topology facilitates multiprogramming in which each
user can be assigned a dedicated subcube [NCUBS85]. It also increases the fault
tolerance of the hypercube array since a faulty node can be mapped out by mapping
out a subcube that contains it. Furthermore, a user program can be developed and
debugged on a small size hypercube while production runs can be made on larger

dimension hypercubes.




18

4. Finally, the hypercube topology can efficiently embed other regular topologies such
that neighboring processors in those topologies are also neighboring, or at least close,
in the hypercube topology. Examples include: multi-dimensional grids [ChSa86],
trees [BCLR86] and pyramids [Stou86]. Since many of these regular topologies are
used in a variety of applications, this feature makes the hypercube topology a good

candidate for a general purpose parallel architecture.

2.1.3 Granularity of Processing Elements

The granularity of a DMM refers to the number of nodes it contains and the char-
acteristics of their main features. It is generally difficult to quantify granularity, so the

concept will be described qualitatively here.

At one end of the spectrum there are fine-grained DMMs which are characterized by
a very large number of nodes. Each node is a relatively simple processor consisting of a
CPU and a limited size local memory. The ratio of communication to computation tends
to be large in fine-grained multiprocessors. Therefore, this granularity of multiprocessors
is generally suitable for data parallel applications, in which sequences of simple operations
are applied across very large sets of data (SIMD). Examples of fine-grained multiprocessors

include the MPP [Batc80] and the Connection Machine [Hill85].

At the other end of the spectrum there are coarse-grained multiprocessors which are
characterized by a small number of very powerful nodes. Each node contains a large
memory and a sophisticated CPU that may even support vector operations. The ra-
tio of communication to computation in coarse-grained multiprocessors is generally low.
Coarse-grained multiprocessors are usually suitable for control parallel applications, in
which different segments of the code execute simultaneously (MIMD). Such applications
appear frequently in many areas of science and engineering. Examples of coarse-grained

multiprocessors include the Mark III hypercube [PTLP85] and the Intel iPSC-VX hyper-
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cube multiprocessor which incorporates vector co-processors with each node [Inte86].

In the middle of the spectrum lie medium-grained multiprocessors, which offer a com-
promise between the two extremes. Medium-grained multiprocessors are characterized by
a moderate number of nodes, in the range 100-1000, each a reasonably sized CPU and
memory. This configuration has the potential of efficiently handling applications that are
either data or control parallel. Furthermore, with the current technology, such granularity
provides the maximum possible performance. Applications for medium-grained multipro-
cessors range from Al to scientific applications. Examples of this granularity include the

Intel iPSC [Inte85] and the NCUBE/ten [NCUBS85], both hypercube DMMs.

2.2 Examples of DMMs

In this section three examples of DMM systems are presented. The examples represent
existing multiprocessor systems, and an overview of each system is given emphasizing the

key architectural features described above.

2.2.1 The Connection Machine

The Connection Machine is a very-fine-grained DMM [Hill85]. It consists of up to
65,536 nodes that contain a bit-serial processor with 4096 bits of memory. The nodes
are interconnected using a dual network topology. Groups of 16 nodes are interconnected
in a two-dimensional grid topology. These groups are then connected by a 12-cube in-
terconnection topology. The bit-serial processors execute instructions that are broadcast
from a set of four control processors. Each control processor is connected to a subset of
16,384 processors in the system. The control processors are asynchronous, and each can

broadcast a different set of instruction streams. The system is hence an MSIMD (Multiple

SIMD) system.

The connection machine is designed for AI applications and is particularly well-suited
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for low-level vision applications, and for searching databases in parallel [HiSt86].

2.2.2 The Massively Parallel Processor (MPP)

The MPP is a fine-grained DMM that consists of 16,384 bit serial processors that are
interconnected in a two dimensional grid topology. Each processor has 4096 bits of local
memory. The processors execute instructions that are broadcast from a single control
unit. A global 320 Mbytes/sec I/O channel is used to transfer programs and data to and
from the MPP. The MPP is designed for real-time, low-level image processing and scene

analysis. These and other applications are discussed in [Pott85].

2.2.3 The Mark II1

The Mark III is a coarse-grained distributed memory multiprocessor. It consists of
up to 1024 nodes that are interconnected in a 10-dimensional hypercube topology. The
nodes operate asynchronously, making the Mark III an MIMD system. Each node consists
of a 16 MHz Motorola 68020 microprocessor with an associated 68881 floating point co-
processor. A separate 68020 is used for inter-node communication support. Each node
can include up to 4 Mbytes of memory and can use special function units such as vector

Pprocessors.

Two types of message transfer systems are available for the Mark III. The first is
the Crystalline Operating System (CrOS-III), which provides synchronous communica-
tion between the nodes; the second is the Mercury operating system, which supports

asynchronous communication between nodes.
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Figure 2.7. The hypercube topology.




CHAPTER 3

THE BRANCH AND BOUND ALGORITHM

There is a large class of problems in the fields of Operations Research (OR) and Artificial

Intelligence (AI) for which there exist no “direct” methods of solution or only inefficient
ones. Techniques for solving such problems generally involve the search for solutions in

a large problem space. Examples include the traveling salesman problem [LMSK63] and

heuristic search problems [Nils80)].

Unguided search through the problem space is usually inefficient and impractical.
This is particularly true since many of these problems are NP-hard, and the size of the
problem space increases exponentially with the size of the problem. Several techniques
have been developed to improve the average efficiency of the search. The most general of

these techniques is the Branch and Bound (BB) algorithm [LaWo66].

The BB algorithm, as its name suggests, consists of two processes: a branching process
and a bounding process. The branching process partitions the problem space, or subspaces
of it, into smaller subspaces until the subspaces are small enough to be searched exhaus-
tively for the desired solution. The bounding process of the algorithm acts to reduce

the number of subspaces partitioned by the branching process. A subspace is examined

by the bounding process before it is partitioned. If it can be proved that the subspace
does not contain the desired solution, the subspace is pruned or eliminated from further

consideration from the branching process.
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The combined action of the branching and bounding processes reduces the extent of
the search and improves the average efficiency of the BB algorithm. The branching process
guides the search towards a solution by partitioning subspaces that are a more likely to
contain a solution before subspaces that are less likely to contain it. The bounding process
assists the search by eliminating subspaces that cannot lead to a solution before they are

actually partitioned.

The branching process applied to the problem space of a given problem is performed
by building a search tree, called the BB tree, over the problem space. The root of the
tree represents the complete problem space. The nodes of the tree represent subspaces
of the problem space. The branching process proceeds from the root of the tree to its
leaves, partitioning subspaces into smaller and smaller subspaces. The leaf nodes represent

subspaces that are small enough to be completely searched for solutions.

Subspaces of the problem space represent partial solutions to the problem. Conse-
quently, a node of the BB tree represents a partial solution to the original problem. The
branching process proceeds from the root of the tree to its leaves extending partial solu-
tions towards more complete solutions. Each child node represents one possible way of

extending its parent’s partial solution towards a more complete one.

In most problems, it is impractical, if not impossible, to explicitly represent the
problem space or its subspaces. A more practical representation is to use a problem
specific data structure that implicitly represents the problem space. This data structure
representation is referred to as a subproblem. Hence, a subproblem is a representation of
a problem subspace or equivalently, a partial solution to the problem. The BB algorithm
is generally expressed and formulated in terms of subproblems rather than in terms of

problem subspaces.

The above process of building a BB tree is illustrated in figure 3.1. The figure shows

the BB tree for a simple example. The original problem P, is at the root of the tree.
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Figure 3.1. BB tree of a simple example.

Py is then partitioned into three smaller subproblems Py, P, and P3. These subproblems
are represented as the three children of Py. Each one of the three subproblems is further
partitioned into yet smaller subproblems, as shown in the figure. In general, a subproblem
P; is partitioned into k smaller subproblems Pj,,..., P;, which are represented as the k
children of P;. The process of partitioning a subproblem into smaller subproblems and

adding the new subproblems to the BB tree is referred to as expanding that subproblem.

The remainder of this chapter is devoted to the formulation of the BB algorithm and
its use in a number of application problems. In the next section a more formal description
of the BB algorithm is presented, and in section 3.2 the use of the BB to solve four

application problems is given.
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3.1 Formulation of the BB Algorithm

The general class of problems that are solved by the BB algorithm can be divided into
two subclasses: decision problems and optimization problems. In decision problems the
objective is to determine the existence of one solution that satisfies a set of constraints.
Examples of decision problems include: theorem proving, game playing and rule-based
expert systems. In optimization problems, on the other hand, it is desired to optimize
an objective function subject to a number of given constraints. Examples of optimization
problems include: the traveling salesman problem, integer programming and job-shop

scheduling.

A problem instance can be equivalently represented in the form of a decision problem
or an optimization problem [{GaJo79]. Hence, we represent our problem instances in
the generic form of constrained optimization problems without any loss of generality.
Furthermore, for the consistency of presentation, the minimization form of the problem is

assumed. Hence, the constrained optimization problem takes the form:

Minimize Co(x)
subject to Gi(x)>0 1=1,2,...,m
and x € X

where X is the permissible domain of optimization, often the Euclidean n-space, and x
denotes a vector (21, Z2,...,Z,). A solution vector x that satisfies the constraints and lies
within the domain of optimization X is called a feasible solution. A feasible solution for
which the objective function C,(x) is a minimum is called an optimal solution. In general,

there may be more than one optimal solution.

The formulation of the BB algorithm consists of five major components: the BB tree,
which is the basic data structure used by the algorithm, and four procedures that are used
to implement the branching and bounding processes of the algorithm: the selection proce-

dure, the branching procedure, the elimination procedure, and the termination procedure.
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The first two procedures implement the branching process while the last two implement

the bounding process.

3.1.1 The BB Tree

The branching process in a BB algorithm can be represented by a rooted tree B =
(P,€). The tree consists of a set of nodes P and a set of edges £. The nodes represent
partitioned subproblems that are generated by the branching process. The edges represent
the action of the branching process on the subproblems. The original problem, denoted
by Fo, is at the root of the tree B. For any two subproblems P; and P; € P, the directed
arc (P;, P;) € £ if and only if P; is directly generated from P; by the branching process.
P; is called the parent of P;, and P; is, hence, called a child of P;. A subproblem P; is
said to be a descendant of a subproblem P; (or equivalently, P; is said to be the ancestor
of P;) if there exists a sequence of § subproblems P;,, P,,,..., P;; such that (P, P;) €€,
(P, Py,) €&, ..., and (Pig, Pj) € £. A set of subproblems is said to be independent if no

subproblem is a descendant of any other subproblems in the set.

The level of a subproblem P;, denoted by L(F;), is defined as the length of the path,
measured by the number of arcs, from the root Py to P; in B. Py is defined to be at level 1.

The set of leaf nodes in the BB tree is denoted by 7.

The set of subproblems that has been generated by the branching process but not
yet examined by that process nor deleted by the bounding process is referred to as the
set of active subproblems and is denoted by .A. The branching process examines that set,
removes a subproblem and expands it, adding new subproblems back to the set. The set

of active subproblems is, therefore, an independent set of subproblems.

The real valued cost function f : P — EU{oc}, where E is the set of non-negative real

numbers, denotes the value of the best solution that can be obtained from any subproblem
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P; € P. The function f can be defined recursively as follows:

f(Pz) = Il'lin{f(P,'j), j:17'-'7k}7

where P;; denotes the j** subproblem partitioned directly from FP;, and k is the total

number of these subproblems. That is,
k= |{(P,z2)|(P,z) € £ Vz}|.

The value of f is computed at the leaf subproblems by directly evaluating the solutions
represented by these subproblems. Consequently, the value of the function f for any
subproblem P; is not known until all leaf subproblems in the subtree rooted at P; have
been evaluated. The value of f at the root node in the BB tree, therefore, denotes the
value of the objective function at the optimal solution vector. That is, f(Py) = Co(x).

The function f(P;) takes the value co when there are no feasible solutions from P;.

Each subproblem P; is also characterized by a value that is computed from a lower
bound function g : P — E U {c0}. The lower bound function must have the following

properties:
1. g(P) < f(B) forall P, € P,
2. g(P) = f(P) for P, € 7, and
3. g(P;) > g(P;) for (P, P;) € &
In other words, the function g is a lower bound estimate of the cost function f, is

exact when a subproblem is terminal (i.e., the subproblem represents a feasible solution or

the subproblem can never lead to one), and never decreases for descendant subproblems.

The function g can be used to guide the search of the BB algorithm by providing an
estimate of f, as will be described in the following section. Hence, it is desired to make

g as close an estimate to f as possible so as to guide the search to a solution as quickly
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as possible; the more accurate g is, the smaller is the number of subproblems expanded
by the BB algorithm [Pear84]. However, making g more accurate usually implies that
it becomes more difficult to evaluate. Clearly the evaluation of g should not amount to
the complete evaluation of f, or even be close to it. However, g should provide a good
estimate of f to guide the search effectively. There is a tradeoff between the accuracy of

g and its evaluation difficulty [Pear84].

3.1.2 The Selection Procedure

The selection procedure examines the set of active subproblems A and selects one
subproblem from that set for expansion. The procedure selects the subproblem that is
most likely to lead to the optimal solution among those that belong to the set of active

subproblems.

The selection procedure is defined in terms of a selection function s;, : * — P such
that s5(A) € A, where 7 denotes the family of all independent sets in 7. The selection
function is based on the heuristic function & : P — E U {co} which assigns a figure of
merit to each subproblem in P. The selection function s;, always selects the subproblem

with the smallest value of h. That is,
h(sp(A)) = min{h(P;) | P, € A}.
The heuristic function h is assumed to be monotone. That is,
h(P;) > h(F;) if P; is a descendant of P;. (3.1)
The heuristic function is also assumed to be unambiguous. That is,

h(Pi) # h(Pj) for P, # pP; and P, P; € A. (3.2)

The selection function determines the order in which the subproblems are selected for

expansion from the set of active subproblems. In other words, it determines the order in
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which the nodes of the BB tree are expanded. Therefore, the selection function is in effect
a search strategy for the BB algorithm. Three search strategies are generally used in BB

algorithms: best-first search, depth-first search and breadth-first search.

In best-first search, the heuristic function h is the same as the lower bound function
g. That is,
sg(A)={h € A | g(P) =min{g(P;) | P; € A}}.
Therefore, in this search strategy, subproblems with smaller lower bounds are selected

before subproblems with larger lower bounds. In depth-first search, the selection function

is defined such that
sa(A)={P; € A | L(P)=max{L(P;) | P; € A}}.

That is, subproblems that are deeper in the tree are selected before subproblems that are
closer to the root of the tree. Finally, in breadth-first search, the selection function is

defined such that
ss(A)={P € A | L(P)=min{L(P;)| P; € A}}.

That is, subproblems with smaller level numbers (subproblems that are closer to the root)

are selected before subproblems that are deeper in the tree.

The above three strategies are illustrated using the BB tree shown in figure 3.2. The
number inside each subproblem in the tree designates the number of that subproblem. The
number to the right of each subproblem denotes the value of the lower bound function for
that subproblem. The optimal solution is obtained at subproblem 6. If depth-first strategy
is used, then the order of subproblems expandedis0 -1 —-4 —+ 9 - 11 -5 — 10 — 2. If
breadth-first strategy is used, then the order of subproblems expanded is 0 — 1 — 2 — 4.

Finally, if best-first strategy is used, then the order becomes 0 — 1 — 4 — 2.

It is generally the case that equation 3.2 does not hold for the above search strategies,

and more than one active subproblem may have the same lower bound or the same level

—xan
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Figure 3.2. A BB tree.

number. Therefore, a tie-breaking mechanism must be be employed. A path number is
defined to uniquely identify each subproblem in the set of active subproblems [Li85]. The
path number, eje; ... eq, of a subproblem P;, denoted by p(F;), is a sequence of d integers
representing the path from the root to P;, where d is the maximum level in the BB tree.

The path number for a subproblem in the BB tree is defined recursively as follows:

1. The root Py, which is at level 1, has a path number p(FP) = 00...0.

2. If a subproblem P; at level I has a path number p(P;) = eje2...¢0...0, then F;,,
the 5% child of P; counting from the left, has a path number p(FB;) = erez...e(j —

1)0...0.

A path number p(P;) = eje}...e} can be compared to a path number p(P;) = e?e?. .. ¢>

using the relations ‘<’ and ‘=’ as follows:
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Figure 3.3. A BB tree with path numbers.

L. p(P)=p(P;)ifel =e? for 1 <i<d.
2. p(P1) < p(P,) if there exits j, 1 < j < d such that el = e, 1<i< jand e} < el

An example showing a BB tree with its nodes labeled by path numbers is depicted in fig-
ure 3.3. Subproblems can have equal path numbers only if they have ancestor-descendant
relationship. Since these subproblems cannot coexist in the set of active subproblems,
each active subproblem will have its own unique path number.

The path number can be included in the definition of the heuristic function A in order

for h to become unambiguous. In the case of depth-first, the heuristic function & becomes
hP;) = p(P).
In the case of breadth-first,

h(P;) = (L(F;), p(F;)).
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In this case, subproblems that are at the same level in the tree will be searched left to

right. Finally, in the case of best-first,

h(P;) = (9(F:), L(F;), p(F;)). (3.3)

In this case, subproblems that have the same lower bound are searched in a breadth-first

fashion. Alternatively, the heuristic function for the case of best-first can be defined as

h(P:) = (9(Py), p(P), (3.4)

in which case subproblems that have the same lower bound are searched in a depth-first

fashion.

It is often convenient to view the set of active subproblems as being arranged in a
list £ referred to as the list of active subproblems. Different search strategies of the BB
algorithm can then be viewed as different ways of maintaining that list. For breadth-first
search, the list is maintained in a first-in-first-out order. For depth-first search, the list
is maintained in a last-in-first-out order. For best-first strategy, the list is maintained in
increasing order of lower bounds. In the general heuristic search, the list can be viewed as
being maintained in increasing order of the heuristic function h. Therefore, the subproblem
that is selected by the selection procedure is always the first subproblem on the list of

active subproblems.

3.1.3 The Branching Procedure

The branching procedure is used by the BB algorithm to decompose problem sub-
spaces into smaller subspaces. The branching procedure examines the subproblem selected
for expansion by the selection procedure and creates new subproblems from it. The pro-
cedure performs this function by heuristically selecting some unassigned parameters in

the subproblem representation and then assigning alternative values for these parameters.
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In general, the branching procedure is highly problem dependent and is critical to the

performance of the BB algorithm.

3.1.4 The Elimination Procedure

The elimination procedure is used by the BB algorithm to bound the number of sub-
problems examined by the branching process of the algorithm. It achieves this goal by
eliminating subproblems that cannot lead to better optimal solutions than ones already
known. This is accomplished by employing one or more bounding tests. These tests gen-

erally can be divided into three types: lower bound tests, dominance tests, and equivalence

tests.

Lower Bound Tests

A lower bound test employs a special subproblem which is referred to as the incum-
bent, and which will be denoted by 2. The incumbent is used to store the best feasible

solution discovered during the search process at any point in time.

The lower bound test examines the lower bound of a new subproblem generated by the
branching procedure, and compares it to the value of the best solution of the incumbent.
If the lower bound of that subproblem exceeds that of the incumbent, this subproblem can
be eliminated from further consideration, as it can never lead to a better solution than

the one already found. That is, a subproblem P; is eliminated if
9(F;) z 9(2), P, € A

When a new subproblem represents a feasible solution, the value of that feasible
solution is compared to that of the incumbent. If the new subproblem represents a better

solution, then the incumbent is replaced by the new subproblem.

It is possible to obtain a suboptimal solution with some guaranteed accuracy by

sassen  —3hA D
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relaxing the above lower bound test [Ibar76a]. BB algorithms with such relaxed lower
bound tests are referred to as approzimate BB algorithms. The lower bound test is relaxed

as follows: a subproblem P; is eliminated from further consideration if
g(l)z) > g(Z) - €(‘?")a

where €(z) : R — R (R is the set of real numbers) is referred to as the allowance function,

and it must satisfy the following conditions,
1. ¢(2) > 0.
2. g(21) < g(22) = g(21) — €(21) < g(22) — e(22).

The allowance function specifies the allowable deviation of the suboptimal solution value
from the optimal solution value. In fact, the suboptimal solution z4 obtained using ap-
proximate BB algorithms can be shown to deviate from the exact optimal solution z,
by:

9(za) — €(24) < g(2,) < g(24).

Examples of allowance functions include:

1. Absolute error deviation allowance function: €(2) = ¢, ¢ > 0. The suboptimal

solution is guaranteed to deviate at most by ¢ from the exact one.

2. Relative error deviation allowance function: ¢(z) = w9l o> 0, 2z > 0. This

guarantees a relative deviation of e

Dominance Tests

A dominance test is performed to eliminate subproblems that cannot lead to better
optimal solutions compared to other subproblems already examined. More formally, a

subproblem P is said to dominate a subproblem P; if P; is known not to provide a better

PR Y = hars % S S
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feasible solution than the one that can be obtained from P;. This binary relation between
F; and P; is called a dominance relation and is denoted by P,DP;. A test based on
the dominance relation eliminates a subproblem P; from further consideration from the
selection process if there exists a subproblem P; such that P,DP;. A dominance relation

must satisfly the following conditions [Ibar77):

1. P,DP; implies that f(F;) < f(P;) and that P; is not a proper descendant of P;.
2. D is a partial ordering. (i.e., reflexive, antisymmetric, and transitive).

3. DP; and P; # P; imply that there exists a descendant Pil (including P;) of P
such that P;DPJ{ for any proper descendant P; of P;. That is, if P;,DP;, then there
exists a subproblem in the subtree rooted at P; that dominates all subproblems in

the subtree rooted at p;.

Since a dominance relation is only a partial ordering, it is possible that neither the P,DP;
nor the P;DP,; holds. In this case P; and P; are said to be incomparable. A subproblem
P; is said to be a current dominating subproblem if it has been generated but has not
been dominated so far. It then follows that all current dominating subproblems are in-
comparable to each other. In order to apply dominance tests, a set of current dominating
subproblems (denoted by D) has to be maintained. When a subproblem P; is generated,
it is compared against the subproblems in D. If it is incomparable to each one of them,
then it is added to D. If it is dominated by P; € D, then it is deleted. Finally, if it

dominates P; € D, then P; is deleted from D and P; is added to D.

Dominance tests can greatly reduce the number of subproblems expanded, and hence
the execution time of a BB algorithm. This is accomplished by storing more information,
the set D, and represents a typical time-space tradeoff. This tradeoff must be taken into
consideration when dominance tests are employed, particularly if the dominance relation

is weak and, hence, most of the subproblems are incomparable. Furthermore, in NP-hard
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problems, the size of D can be exponentially large [Li85]. In this study, dominance tests

are assumed to be inactive.

Equivalence Tests

Equivalence tests are special cases of dominance tests that are frequently used in
Al applications [Ibar78a]. An equivalence test eliminates a subproblem P; from further
consideration of the branching process if there exists a subproblem P; that is equivalent to
P; and has already been examined by the branching process. That is, P; is deleted if it is
equivalent to P; which has already been expanded by the BB algorithm. The equivalence

of two subproblems is determined by the equivalence of their representation.

3.1.5 The Termination Procedure

The termination procedure is used by the BB algorithm to eliminate subproblems
that will not eventually lead to any feasible solutions. The termination procedure employs
techniques that are highly problem dependent and require considerable knowledge about
the problem domain. This knowledge is used to determine if a subproblem represents a

partial solution that can be extended to a complete feasible solution.

3.1.6 Outline of the BB Algorithm

The following is an outline of how the algorithm uses the selection, branching, elimi-

nation and termination procedures to obtain the optimal solution to a problem.

1. Initialization.

(a) The set of active subproblems is initialized to contain the original problem.

(b) The lower bound of the incumbent is initialized to co. The subproblem defined

by the incumbent is initially undefined.
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2. Selection.

(a) The subproblem with the smallest value of the heuristic function h is selected

from the set of active subproblems.

(b) The subproblem is removed from the set.

3. Branching.

The branching procedure is used to generate new smaller subproblems from the

one selected in (2). The lower bounds of the new subproblems are calculated.

Steps 4 to 7 are repeated for each of the new subproblems generated by the branching

procedure above.
4. Termination test.

The subproblem is evaluated to determine if it can lead to a feasible solution. If

not, it is deleted.
5. Feasibility.

(a) The subproblem is evaluated to determine if it is a feasible solution. If it is, and
its lower bound is smaller than that of the incumbent, it replaces the incumbent.

Otherwise, it is deleted.

(b) If the incumbent is updated in 5(a), then all the subproblems in the set of
active subproblems .A whose lower bounds are greater than that of the new

incambent are deleted from the set of active subproblems.

6. Lower bound test.

If the lower bound of a new subproblem is greater than the lower bound of the
incumbent, the subproblem is deleted. Otherwise it is added to A if dominance

tests are not being employed.
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7. Dominance test.

(a) If a new subproblem is dominated by a subproblem in D, then the subproblem

is deleted.

(b) If a new subproblem dominates a subproblem P; € D, then P; is deleted. The

subproblem is added to D and A.

(c) If a new subproblem is incomparable, it is added to D and .A.

8. Algorithm termination.

If the set of active subproblems is not empty, steps (2)-(7) are repeated. Otherwise

the algorithm terminates. The optimal solution is stored in the incumbent.

A number of researchers have examined BB algorithms and their properties. Theo-
retical comparisons of search strategies in BB algorithms and their effects on the average
performance of BB algorithms are developed in [Ibar76b]. Various search strategies are
shown to be special cases of the general heuristic search. It is also shown that when the
value of the lower bound function of a subproblem is unique (i.e., the lower bound function
is one-to-one), then the performance of a BB algorithm under a best-first search strategy
is better than the performance of the same algorithm under breadth-first or depth-first

strategies.

The effect of the accuracy of the lower bound function on the average performance
of some BB algorithms for decision problems was conducted by Pearl in [Pear84]. The
analysis shows that linear errors in the lower bound function cause the number of nodes

generated by the BB algorithm to grow exponentially.

The computational efficiency of approximate BB algorithms is studied in [Ibar76a).
It is shown that under proper conditions the number of subproblems examined using the

approximate algorithm is smaller than the number of nodes examined using the exact
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one. In [WaYu85] it is shown that a linear reduction in the accuracy of the solution can
result in an exponential reduction in the total number of subproblems examined by the
BB algorithm. This result seems to be consistent with Pearl’s result in [Pear84], since

changes in the accuracy of the solution can be modeled as changes in the accuracy of the

lower bound function and vice versa.

Dominance tests in BB algorithms and their effect on the performance of the BB
algorithm are discussed in [Ibar77]. It is shown that under certain conditions dominance
tests can enhance the performance of BB algorithms. In fact, a stronger dominance relation

implies improved performance.

The above formulation of BB algorithms is also recognized as a general formulation
for many heuristic procedures for searching AND/OR graphs, game trees and state-space

representations in the area of AI [KuKa83].

Approximate stochastic models of BB algorithms under best-first and depth-first
search strategies are developed in [WaYu82, WaYu85]. The models allow the estima-
tion of the average number of subproblems examined by the BB algorithm as well as
the average memory space required. The results are used to evaluate the performance of
BB algorithms in virtual memory environments and to aid the design of virtual memory

support for BB algorithms in [YuWa83, YuWa84].

3.2 Examples of the BB Algorithm

The BB algorithm has been used to solve a variety of problems in many application
areas. A survey of BB techniques and their applications in the area of mathematical pro-
gramming is given in [LaWo66], and BB algorithms for solving a variety of AI problems
are described in [Nils80]. The BB algorithm has been used to solve the traveling salesman
problem [LMSK®63], integer linear programming problems [GeMa72], the knapsack prob-

lem {InKo77], the facility allocation problem [EfRa66], and scheduling problems [Lens76],
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to cite just a few examples.

In this section, four examples of BB algorithms are described; three examples from the
Mathematical Programming area, and one example from the Artificial Intelligence area.
The BB algorithm used to solve each problem is described with its basic components
illustrated using the general formulation given in the previous section. Emphasis is given

to illustrating these basic components rather than problem specific details.

3.2.1 The 0-1 Integer Linear Programming (ILP) Problem

The 0-1 ILP problem is an optimization problem in which it is desired to minimize
the value of a linear objective function f(z1,22,...,2,) subject to a set of constraints.
The variables (z1,%2,...,%,), which are referred to as the decision variables, can take

only the values 0 or 1. The problem can be more formally stated as follows:

n
Minimize f= E C;T;
j=1

n
subject to Zaijlvj > b; r=1,2,...,m
i=1
z; € {0,1} i=12,...,n.
It can be assumed, with no loss of generality, that the coefficients ¢, J=12,...,n are

non-negative.

The BB algorithm used to solve the 0-1 ILP problem is known as implicit enumera-
tion [Taha75, WuCo80]. There are n binary variables and the problem could, conceivably,
be solved by enumerating all of the 2" possible solutions. The bounding process of the BB
algorithm can, however, discard many of these 2" solutions and not explicitly enumerate

them; hence the name “implicit enumeration.”

The implicit enumeration algorithm can be described using the following simple ter-

minology: the assignment of a 0 or 1 value to each one of the decision variables gives one
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of the 2" possible solutions; the assignment of values to some but not all of the decision
variables gives a partial solution. A partial solution represents a subspace of the solution
space or a subproblem of the original problem. The decision variables that are assigned
values in a partial solution are said to be fired. In contrast, the decision variables with no

assigned values are said to be free. A completion is made by assigning a value of 0 or 1 to

one of the free variables.

Since ¢; > 0 for all j, a lower bound f7, on the value of the objective function for any

subproblem can be computed by assigning the value of 0 to each free variable. Hence,

fL= Z c;T;. (3.5)
fized

variables

Furthermore, a constraint can be satisfied if and only if

Z max(aij,O) >b; — Z ai;T; t=1,2,...,m. (3.6)
free fized
variables variables

Therefore, it is possible to check the infeasibility of any subproblem by applying
equation 3.6 to the constraints of the problem. Assigning the value of 0 to each free
variable in a subproblem makes a special completion that is referred to as the lower

bound completion. The feasibility of the lower bound completion can be checked using

equation 3.6, which reduces to:

Z a;;T; Zb, 1= 1,2,...,m. (3.7)
fized
variables

The implicit enumeration BB algorithm for the 0-1 ILP problem can be formulated

in the following steps:

Step 1 The incumbent, denoted by z, is created to contain the best feasible solution
found during the search. The lower bound of z, denoted here by f,, is initialized to
oo. The initial subproblem, in which all the variables are free, is created. A list of

active subproblems is created, and the initial subproblem is inserted on it.
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Step 2 The subproblem whose lower bound is the smallest among all subproblems on the

list of active subproblems is selected.

Step 3 A free variable zj in the selected subproblem is chosen and is used to generate
two new subproblems. The first subproblem is generated by making the completion
z) = 0. The second is generated by making the completion z; = 1. The variable zj

is now fixed. The variable selected is the free variable with the smallest index k.

Step 4 The lower bound of each new subproblem is calculated using equation 3.5. The
possibility of leading to a feasible solution for each subproblem is checked using

equation 3.6. The feasibility of the lower bound completion also is checked using

equation 3.7.

Step 5 A subproblem is deleted if any one of the following conditions is true:

a. fr > f..

b. The subproblem cannot lead to a feasible solution.

c. There are no remaining free variables.

d. The lower bound completion is feasible. In this case, the incumbent is replaced by

the lower bound completion if f;, < f,, and all subproblems on the list of active

subproblems with fr, > f, are deleted. This is done to speed the discovery of

feasible solutions.

A subproblem that is not deleted is added to the list of active subproblems.

Step 6 Steps 2-5 are repeated as long as there are subproblems on the list of active sub-

problems. When the list is empty, the algorithm terminates. The optimal solution

is the current incumbent.

The implicit enumeration algorithm illustrates the steps of the general BB formu-

lation. Step 1 of the algorithm implements the initialization step. Step 2 implements
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selection. The lower bound of a subproblem is used as the selection heuristic function
making the search strategy of the algorithm best-first. Steps 3 and 4 implement branch-
ing. Step 5.a implements the lower bound test. Steps 5.b and 5.c implement the termina-
tion test. Step 5.d implements the feasibility test. Finally, step 6 implements algorithm

termination.

3.2.2 The Integer Linear Programming (ILP) Problem

The ILP problem is an optimization problem in which it is desired to minimize the
value of an objective function subject to a set of constraints, where the variables of opti-

mization can take only integer values. The problem can be formulated as follows:

Minimize 2 i=1 G
subject to D G=1i5T5 > b; 1=1,2,...,m
where z; are non—negative integers j=1,2,...,n.

The problem is similar to the ordinary Linear Programming (LP) problem except that
the variables are restricted to have non-negative integer values. The LP problem obtained
by dropping the integrality constraints from the ILP problem is referred to as the cor-

responding LP problem. The dropping of the integrality constraints is referred to as a

relazation.

The BB algorithm for solving the ILP problem is described in [GeMa72, Taha75].
The algorithm is a modification of the Land-Doig algorithm and is referred to here as
the relazation algorithm because of its technique of relaxing the integrality constraints
on the variables of optimization and then of solving the corresponding LP problem using
the simplez method [Dant63]. If the resulting solution is integral, then it is feasible.
Otherwise, a variable z; that has a non-integral value a is selected and is used to partition
the problem into two new subproblems. In the first subproblem, the variable z; is restricted

to the next lower integral value (i.e., ; < |a] is added to the set of constraints of the
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parent subproblem). In the second subproblem, the same variable z; is restricted to the
next higher integral value (i.e., z; > [a] is added to the set of constraints of the parent
subproblem). The lower bound for any subproblem is the value of the optimal simplex

solution to its corresponding LP problem.

The relaxation BB algorithm for the ILP can be outlined as follows:

1. Initialization. The set of active subproblems is initialized to contain the original

ILP problem. The lower bound of the incumbent is initialized to co.

2. Selection. The subproblem with the smallest lower bound in the set of active

subproblems is selected.
3. Termination.

(a) The corresponding LP is solved using the simplex method.

(b) If there is no feasible solution to the corresponding LP subproblem, the sub-

problem is deleted.
4. Feasibility.

(a) If the simplex solution of the LP subproblem is integral, then it is feasible. If
the value of the integral solution is smaller than that of the incumbent, then

the incumbent is replaced by the new feasible solution.

(b) If the incumbent is updated, then all subproblems on the list of active subprob-

lems with the lower bounds greater than or equal to the new incumbent are

deleted.

5. Branching. If the simplex solution of the LP subproblem is not integral, a non-
integer variable is used to generate two new subproblems, as described above. The

lower bounds of the new subproblems are calculated.
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6. Bounding. For each newly generated subproblem, if the lower bound of the sub-
problem is less than the incumbent, the subproblem is inserted on the list of active

subproblems. Otherwise, the subproblem is deleted.

Steps 2-6 are repeated until the list of active subproblems is empty. The optimal solution

is stored in the incumbent.

A number of methods exist for the selection of the non-integer variable to branch
from. These methods have been reviewed in [Taha75] and will not be described here. In

this implementation of integer programming, the non-integer variable with the smallest

index is selected to branch from.

The relaxation BB algorithm can be illustrated using the following simple ILP problem:

Minimize 6z1 + Sx9
subject to —321+ 322> 6
3z1 4+ 222> 10
where z1 and z2 non—negative integers.

The result of applying the relaxation algorithm to that example is shown in figure 3.4.

3.2.3 The Traveling Salesman Problem (TSP)

The TSP can be described as follows. A salesman takes a tour traveling through n
cities, visiting each city once and only once, and returning to his starting city. He incurs

a cost ¢;; in traveling from city ¢ to city j. He is required to minimize the total cost of his

entire tour.

The problem can be more formally defined in terms of a weighted graph G = (V, E).
The graph consists of a set of n vertices V', which correspond to the n cities, and a set of
arcs F, which correspond to the routes between various pairs of cities. Associated with

each arc (v;,v;) € E is the non-negative cost ¢;; for traveling between the cities v; and
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S1 | 23.20
X1 = 1.20
X2 = 3.20
X1>=2 X1 <=1
S2 | 32.00 S3 | 23.50
X1 = 2.00 X1 = 1.00
X2 = 4.00 X2 = 3.50
FEASIBLE X2 >=4 X2 <=3
(UPDATE)
S4 | 24.00 S5 o
X1 = 0.67
X2 = 4.00
X1=0 X1 >=1 INFEASIBLE
(DELETED)
S6 25.00 S7 | 31.00
X1 = 0.00 X1 = 1.00
X2 = 5.00 X2 = 5.00
FEASIBLE FEASIBLE
(UPDATE) (NO UPDATE)

Figure 3.4. BB tree for the ILP example.

v;. The objective is to find a minimal cost tour ¢ consisting of a sequence of arcs, or
equivalently, a sequence of ordered city pairs, which forms a closed path going through

each vertex in the graph once and only once. That is, the objective is to find a tour

t= [(ilv i2)7 (i27i3)7 oo a(in—-l’ in)’(ina z1)] )

H
*
!
\




47

that minimizes the total cost of the tour, given by
cost = Z Cij-
(t.)€et

The costs of traveling between various pairs of cities can be represented by a cost
matriz C = [c;;]. The entry in row ¢ and column j of the matrix is the cost of traveling
from city ¢ to city j. The cost of a tour ¢ under a matrix C is the sum of the matrix
elements picked out by t. That is,

cost = Z C(i,7).
(i.5)€t

Since t can include a city once and only once, ¢ picks out one and only one cost in each

row and in each column of the cost matrix.

A cost matrix that has non-negative elements and has at least one zero in each row
and each column is referred to as a reduced matrix. Given any cost matrix C, there is a
corresponding reduced matrix C,. The process of subtracting the smallest element of a
row from each element in that row is called reducing that row. Similarly, the process of
subtracting the smallest element of a column from each element in that column is called
reducing that column. A matrix C can be reduced by first reducing its rows and then
reducing its columns. It should be pointed out that it is possible to obtain more than one

reduced matrix depending on the order in which the rows and columns are reduced.

To illustrate the reduction process, the cost matrix C

oo 27 43 16
7 o0 16 1
20 13 oo 35
5 13 24

is reduced by reducing its rows first to get

co 11 27 0
6 o0 15 0
7 0 oo 22 |°
0 8 19 o
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and then by reducing its columns to obtain a reduced matrix C,

oo 11 12 0
6 o 0 0
7 0 o 22
0 8 4 o

When a constant k is subtracted from each element in a row or a column of a cost
matrix, the cost of any tour under the new matrix is k less than the cost of the same tour
under the old one. This is true since any tour must contain one and only one element in
each row and each column. It follows then that the relative costs of tours are unchanged
and that an optimal tour under the new matrix is also optimal under the old one. In fact,
if 21 is the optimal tour cost under the old cost matrix and 2, is the optimal tour cost
under the new one, then

21 =k + 2.

Consequently, if & is the sum of all the values used in reducing a given cost matrix C,
then h can be regarded as a lower bound on the optimal tour cost of C. This will always

be true since C' contains only non-negative elements.

An efficient BB algorithm for solving the TSP is given by Little et al. [LMSK63]. It
will be referred to here as the LMSK algorithm. It uses the process of reduction described
above to calculate the lower bounds on subproblems. In the algorithm, if a problem cannot
be solved directly, it is broken down into two subproblems. An arc is selected, according to
the heuristic rule below, and two subproblems are created. The first subproblem represents
all tours that include the arc. The second subproblem represents all tours that ezclude

the arc.

A heuristic rule is used to select an arc to decompose a subproblem. The arc selected
is the one whose exclusion causes the maximum increase in the cost of the tour. That is,
the heuristic rule examines each possible arc that can be excluded in a subproblem. It

then evaluates the increase in the tour length when that arc is excluded and then selects
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the arc whose exclusion will cause the maximum increase.

The algorithm can be outlined as follows:

1. Initialization. The list of active subproblems is initialized to contain the original

problem. The incumbent is initialized to oo.
2. Selection. The subproblem with the smallest lower bound is selected.

3. Feasibility. If the subproblem is small enough to be solved directly, it is. The

incumbent is updated accordingly.

4. Branching. An arc whose exclusion causes the largest increase in the tour length
is selected as described above. That is, the possible arcs that can be selected in
the partial tour are excluded one arc at a time, and the resulting matrix is reduced
to determine the increase in the tour length caused by the exclusion. The arc that
causes the maximum increase in the tour length is the one used to create the two
new subproblems are created as described above. The lower bounds of the two

subproblems are calculated.

5. Lower bound test. A subproblem is deleted if its lower bound is larger than that

of the incumbent.

The cost matrix of a 6-city TSP is shown below:

[0 27 43 16 30 26
7 00 16 1 30 25
20 13 o0 35 5 0
21 16 25 oo 18 18
12 46 27 48 o0 5
22 5 5 9 5

The LMSK algorithm is used to solve that problem, and the resulting BB tree problem

is shown in figure 3.5. A node containing (¢, ) represents a subproblem that includes the

arc (v;,vj). A node containing (4, 7) represents all tours that do not include that arc. The
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Figure 3.5. The BB tree for the TSP example.

lower bound for each subproblem is shown next to it. After 7 subproblem expansions, the
optimal tour 1 - 4 — 3 — 5 — 6 — 2 — 1 is found costing 63. The last subproblem at
which the optimal solution is found includes two arcs, (4,3) and (6,2). This is because the
subproblem at this point becomes small enough to be solved directly, or in other words,

all possible tours can be investigated exhaustively.
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3.2.4 The A* Algorithm

State space search forms the basis of many AI applications. A state space repre-
sentation of a problem consists of two basic components: the state and the operators.
The state is a data structure that defines all conditions of the problem at any instant
during the search process. The operators define the set of rules by which one state can
be transformed into another. Associated with each operator is a measure of the cost of
applying that operator to a state. Given an initial starting state of the problem and a
final goal state, a state space search is conducted by repeatedly applying one or more of

the operators to the state of the problem to transform it from the initial state to the goal

state.

State space searches have been recognized as being BB algorithms in [KuKa83,
Ibar78a). In this section, we illustrate this by the A* algorithm. The objective of the
algorithm is to find a goal state G' from an initial starting state S while minimizing the

cost incurred in using the operators.

The A* algorithm is usually used to solve decision problems in which it is desired
to determine the existence of at least one solution (the goal state) in the presence of
constraints (implied by the operators). However, the algorithm may also be viewed as an
optimization algorithm. The objective function in this case is the sum of the costs of the

operators used to reach the goal state from the initial state.
The A* algorithm uses a function f to measure the merit of each state in the state
space. Hence, the function f is defined as the sum of two components g and h. That is,

f=g9+h

The function g is a measure of the cost of getting from the initial state to the current state.
The value of g is computed as the sum of the costs along the path from the starting state

to the current one. The function h is a heuristic function that estimates the additional
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cost of getting from the current node to the goal state.

The A* algorithm is described in [Nils80] and is only outlined here. Two lists are
maintained by the algorithm. The first is called OPEN that contains unexamined nodes
or subproblems, and the second is called CLOSED that contains examined subproblems.
Initially, OPEN contains the starting state while CLOSED is empty. The following steps
are then repeated. If there are no nodes on OPEN, then there is no goal state and the
algorithm terminates with failure. Otherwise, the node with the smallest value of the
function f is selected and is called BESTNODE. The node is removed from OPEN and
placed on CLOSED. If BESTNODE is the goal state, then the algorithm terminates in
success. Otherwise, all successors of BESTNODE are generated by applying all possible
operators to BESTNODE. For each successor, compute the sum of g(successor) and the
estimate of the cost of getting from the successor to the goal state. If the successor is not
already on OPEN or CLOSED, then it is placed on OPEN, otherwise it is deleted. The

value of the function f of successor is computed as

f(successor) = g(successor) + h(successor).

The A* formulated as a BB algorithm can be outlined as follows:

1. Initialization.

(a) The OPEN list is initialized to contain the starting state 5.
(b) The CLOSED list is initialized to be empty.
(c) The incumbent z is initialized to oo.
2. Selection. The subproblem with the smallest value of the function f is selected.

This node is referred to as BESTNODE. It is removed from the OPEN list and

placed on the CLOSED list.

|
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3. Feasibility. If BESTNODE is the same as the goal state G, then a solution is found.

The incumbent is updated.

4. Branching. If BESTNODE is not the goal state, the set of operators are used to
generate the successors of that subproblem. The function f is calculated for each

successor as described above.

5. Equivalence test. For each successor generated, if the successor is on CLOSED or

on OPEN, then it is deleted.

6. Lower Bound test. For each successor, if the value of f is less than that of the

incumbent, it is inserted on OPEN, otherwise, the successor is deleted.

The A* algorithm illustrates the basic constituents of a BB algorithm. The function f
can be treated as the lower bound function of the BB algorithm. The search strategy of the
algorithm is best-first since the algorithm always selects a node with the smallest value of
f- A branching procedure is used to generate the successors of a node. However, since the
first solution discovered by the algorithm is the optimal one, the lower bound elimination
test can be considered to be inactive. The algorithm, however, uses an equivalence test
to delete subproblems that have been already examined by the algorithm (the set of
equivalent subproblems is OPEN plus CLOSED). The termination procedure is inactive

in the algorithm.

To illustrate the A* algorithm, the 8-puzzle problem is used as an example. The 8-
puzzle is a square tray in which are placed eight square tiles. The remaining ninth square
is left uncovered. Each tile has a number from 1 to 8 on it. A tile that is adjacent to
the blank space can be slid into the space. The objective is to slide the tiles around to

transform an initial arrangement of tiles into a final one.

The state of the problem may be defined as a 3 X 3 matrix that contains numbers

representing the tiles. The blank space is denoted by a 0. Each move of a numbered tile
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2 8 3 1 2 3
1 6 4 _.’ 8 4
7 5 7 6 5
START STATE GOAL STATE

Figure 3.6. An 8-puzzle example.

into the space can be viewed as a move of the space into one of four possible directions:

up (U), down (D), left (L) and right (R). Hence, the set of operators can be defined in

terms of the movement of the space as
{U,D,L,R}.

In some states, only some of the above 4 operators are allowed. For example, if the empty
space is in the left lower corner of the puzzle, only U and R are allowed. A unit cost may
be assigned to each operator since the cost of applying any of them is the same. In this

case, the first component of the merit function (i.e., g) becomes equivalent to the depth d

of the node in the BB tree.

The branching rule generates successors of a subproblem by applying all the allowed
operators to the state of the subproblem. The heuristic function 2 may be defined as W,

the number of misplaced tiles from the goal state. Hence, the lower bound function f is
f=d+W.

The heuristic function in this case is monotone (as defined by 3.2 [Nils80]), and

therefore, the use of the equivalence test is not necessary. Consequently, there is no need

to use the CLOSED list [Pear84).
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An example of the problem is shown in figure 3.6. The resulting BB tree using the A*

algorithms is shown in figure 3.7. The number shown to the right of each node in the tree
represents the iteration of the BB algorithm in which this node is expanded. The number

shown to the left of each node inside a circle represents the lower bound of that node.
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Figure 3.7. The BB tree for the 8-puzzle example.




CHAPTER 4

MAPPING THE BB ALGORITHM ONTO DMMs

In this chapter the mapping of the sequential BB algorithm onto DMMs is examined.
Parallelism that exists in the sequential BB algorithm, and that can be exploited by a
multiprocessor is described in section 4.1. An algorithm that illustrates how this par-
allelism can be exploited with no particular assumptions about the architecture of the
multiprocessor is described in section 4.2. The algorithm represents an abstract frame-
work that has been used by researchers in the past to study many of the properties of
parallel BB algorithms, particularly on shared memory multiprocessors. However, since
this algorithm and the framework it represents are not adequate to describe parallel BB
algorithms on DMMs nor to identify the factors that affect their performance, we present a
distributed model algorithm in section 4.3. The algorithm is used to explain and illustrate
the factors that degrade the performance of parallel BB algorithms on DMMs, as well as
the tradeoffs among these factors. A simple model is used to identify the extent to which
these factors affect the performance of this algorithm. A critical review of previous work

on parallel BB algorithms in light of the two models is then given in section 4.4.
4.1 Parallelism in BB Algorithms
A parallel BB algorithm employs multiple processors in order to perform the compu-

tations of the sequential BB algorithm and obtain performance gains that are proportional

to the number of processors used. This performance gain can only be realized by exploiting
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parallelism that exists in the sequential BB algorithm. A parallel BB algorithm can make

use of the multiple processors to exploit two main sources of such parallelism [Trie86].

A parallel algorithm can exploit parallelism in the computations performed on a
subproblem by the sequential BB algorithm. That is, a parallel algorithm can employ
the multiple processors to evaluate a subproblem, calculate its lower bound, determine it
feasibility, and decompose it into smaller subproblems. In other works, all processors work
on one subproblem at a time. Consequently, this source of parallelism in the sequential

BB algorithm is referred to as subproblem-level parallelism.

The overall execution of a parallel BB algorithm that exploits subproblem-level paral-
lelism is essentially the same as the overall execution of the sequential algorithm, with the
exception that the computations performed on a subproblem are performed in parallel.
Therefore, the general algorithmic characteristics of the sequential algorithm are not al-
tered. For example, the set of subproblems expanded by the parallel algorithm is the same
as the set of subproblems expanded by the sequential one, and furthermore, the order in
which these subproblems are expanded is the same for both algorithms. Consequently,
the performance gain that can be realized by the parallel algorithm is only that which can
be obtained by performing the computations on a subproblem in parallel. The amount of
this performance gain depends on the exact nature of these computations, and therefore,
is highly problem dependent. Furthermore, since the amount of those computations may
be limited in some cases, as in the case of the 8-puzzle problem, for example, it may not
be possible for a parallel BB algorithm to employ a large number of processors to exploit

this source of parallelism and obtain scaling performance.

A parallel BB algorithm can also employ multiple processors to exploit parallelism in
the set of subproblems expanded by the sequential algorithm. The set of active subprob-
lems during any iteration of the sequential algorithm contains other subproblems that will

be expanded in the subsequent iterations of the algorithm. Therefore, a parallel algorithm
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can expand multiple subproblems from the set of active subproblems during each iteration

rather than a single subproblem as in the sequential algorithm. This source of parallelism

is referred to as algorithm-level parallelism.

The overall behavior of a parallel BB algorithm that exploits algorithm-level paral-
lelism can change from that of the sequential one since there is no guarantee that the
multiple subproblems expanded during an iteration of the parallel algorithm all belong to
the set of subproblems expanded by the sequential algorithm. Consequently, unnecessary
expansion of subproblems may result. Furthermore, the order of the expansion of sub-
problems by the parallel algorithm may be different from the order of their expansion by

the sequential one, which can lead to anomalies [LaSa83].

However, the performance gain that can be realized by a parallel BB algorithm ex-
ploiting algorithm-level parallelism is not directly affected by the computations performed
on a subproblem, and is, consequently, less problem dependent. The performance gain is
limited only by factors that will be discussed later in this chapter, and it is possible to

obtain performance that scales to a large number of processors.

Consequently, only parallel BB algorithms that exploit algorithm-level parallelism are
considered in this study. Parallel algorithms that exploit subproblem-level parallelism, and
parallel algorithms that exploit both sources of parallelism combined can be considered as

an extension to this research.

4.2 The Logical Model Algorithm

In this section a parallel algorithm that exploits algorithm-level parallelism is pre-
sented. The algorithm is referred to as the Logical Model (LM) algorithm, and it is so
called because it assumes no model for the architecture of the multiprocessor used to ex-
ecute the algorithm. It serves only to describe a framework of operation that illustrates

how algorithm-level parallelism can be exploited by a parallel BB algorithm. This frame-
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work has been used by many researchers to study performance aspects of parallel BB

algorithms, particularly for shared memory multiprocessors.

In the LM algorithm, a global data set is maintained, and P processors are used
to execute the algorithm as will be described below. The global data set contains a list
of active subproblems and a single incumbent. The list is maintained in an increasing
order of values of the selection heuristic function h in order to implement a best-first
search strategy as described in Chapter 3. The P processors are assumed to have an

overhead-free access to the global data set. This model is diagramed in figure 4.1.

The set of subproblems S, is defined to be a subset of the set of active subproblems
that contains the P subproblems with the smallest values of h among all subproblems in
the set of active subproblems. These subproblems are also the first P subproblems on this
list of active subproblems due to the order in which the list is maintained. This set of

subproblems is expanded by the processors of the LM algorithm.

The P processors are assumed to be synchronized into cycles that are referred to

as iterations. In any iteration, a processor executes the steps that implement the LM

algorithm:

1. A subproblem from the list of active subproblems is removed. The subproblem is one
of the subproblems that belong to the set S described above. It is not important
which subproblem is selected by the processor, as long as it belongs to that set.
Therefore, collectively, the processors select the P subproblems with the globally

best values of h. This step is referred to as the parallel selection of subproblems.

2. The subproblem is decomposed into new smaller subproblems by applying the branch-
ing procedure. A processor applies the branching procedure to decompose the sub-

problem independently from other processors. This step is referred to as parallel

branching of subproblem:s.
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Figure 4.1. The Logical Model.

3. The termination procedure is applied to new subproblems in order to delete ones
that can never lead to feasible solutions. Similar to parallel branching, a processor
applies the termination procedure independently from other processors. This step

is referred to as parallel termination of subproblems.

4. Feasible solutions among the new subproblems generated are checked for. A sub-
problem representing a feasible solution whose lower bound is less than that of the
global incumbent is used to replace that incumbent, making the new solution avail-
able to all other processors for the next step of the iteration. In the event that more
than one feasible solution is discovered by a processor, or by multiple processors,

only the one with the smallest lower bound becomes the candidate to update the

incumbent in the manner described above.

5. The lower bound elimination test is used to delete subproblems that cannot lead
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to better feasible solutions than the incumbent. This step is referred to as parallel

elimination of subproblems.

6. The remaining subproblems are then inserted on the list of active subproblems, endig

the iteration.

The iterations of the LM algorithm are repeated until the global list of active sub-
problem is empty at the end of an iteration. This terminates the operation of the LM

algorithm. The optimal solution is stored in the incumbent.

The above strategy in selecting subproblems that belong to the set S during each
iteration of the LM algorithm is based on the premise that this set of subproblems con-
tains ones that are most likely to be expanded by the sequential algorithm. That is, a
subproblem that belongs to the set S in an iteration of the LM algorithm is more likely
to belong to the set of subproblems that would have been selected and expanded by the
sequential algorithm in its subsequent iterations. In fact, as will be described below, the
selection of this set of subproblems is sufficient to select subproblems that are expanded
by the sequential algorithm before subproblems that are not in any iteration of the LM

algorithm.

The strategy is also a natural extension to the best-first strategy that is used by the
sequential algorithm. If the subproblem with the smallest value of h in any iteration of
the sequential algorithm is the subproblem most likely to lead to the optimal solution,
then the P subproblems with the smallest values of h in any given iteration of the LM
algorithm are the subproblems most likely to lead to the optimal solution. Hence, this

strategy for search is referred to as a parallel-best-first search strategy [WaLY85].

The performance of the LM algorithm is measured by the number of iterations the
algorithm takes to obtain the optimal solution. The speedup of the LM algorithm reflects

the overall gain in performance of the algorithm that is obtained by using P processors.
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It is defined as the ratio of the number of iterations taken by the algorithm using one

processor (i.e., the sequential algorithm) to the number of iterations taken by the algorithm

using P processors. That is,

_ 1(1)
= 1Py

where I( P) denotes the number of iterations of the LM algorithm using P processors. The

factors that affect the performance of the LM algorithm are described next.

The set of subproblems expanded by the sequential algorithm is referred to as the set
of essential subproblems, and a subproblem that belongs to this set is referred to as an
essential subproblem. All other subproblems that are generated, but are not expanded
by the sequential algorithm are referred to as non-essential subproblems. In its quest
for the optimal solution, the LM algorithm must expand all essential subproblems before
terminating. Therefore, the set of essential subproblems represents the workload that
must be executed by the algorithm before it terminates. Furthermore, when the selection
heuristic function is defined by equation 3.3, or equation 3.4, the LM algorithm during any
of its iterations selects all essential subproblems available on the list of active subproblems
(up to P). That is, the LM algorithm does not select a non-essential subproblem for
expansion in an iteration unless there are no enough essential subproblems to expand in
that iteration. This is a consequence of the parallel-best-first search strategy used by the

LM algorithm. Formal proofs of the above statements can be found in [LaSp85, Li85,

QuDe85}, and are not presented here.

Consequently, the performance of the LM algorithm is affected by the number of
essential subproblems expanded by the algorithm during each of its iterations. In an
iteration in which the LM algorithm expands only essential subproblems, the speedup of
the algorithm during that iteration is P, and in this case the iteration is said to be perfect.
However, in an iteration in which the number of essential subproblems expanded by the

algorithm is less than P, the speedup of the algorithm during that iteration is less than
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P, and the iteration is said to be imperfect.

The possible lack of essential subproblems in an iteration is referred to as lack of
parallelism in the BB tree since it reflects a lack of workload that can be performed by
the processors. Although a processor can be active expanding a non-essential subproblem
in an imperfect iteration, the effort of the processor is wasted since the expansion of this

non-essential subproblem is not performed by the sequential algorithm, and is not needed

to obtain the optimal solution.

This effect of lack of parallelism in degrading the speedup of the LM algorithm is
illustrated using the example in figure 4.2, which shows a BB tree generated by the se-
quential algorithm. The sequential algorithm expands the root into subproblems 2 and
3 during its first iteration. The algorithm expands subproblem 2 during the second iter-
ation into subproblems 4 and 5. The algorithm then expands subproblem 5 during the
third iteration to find a feasible solution at subproblem 6. The feasible solution updates
the incumbent and terminates the algorithm by eliminating all remaining subproblems.
Therefore, three iterations are needed to find the optimal solution, and subproblems 1, 2,
and 5 are the essential subproblems in this example, while subproblems 3 and 4 are the

non-essential subproblems.

The BB tree generated by the LM algorithm for the same example using two proces-
sors is shown in figure 4.3. The algorithm expands the root during its first iteration to
generate subproblems 2 and 3. This iteration is imperfect since only one essential sub-
problem (subproblem 1) is expanded. The LM algorithm then expands subproblems 2 and
3 during its second iteration to generate subproblems 4, 5, 8 and 9. This iteration is again
imperfect since only one essential subproblem (subproblem 2) is expanded. During the
third iteration, the algorithm expands subproblems 4 and 5 to find the feasible solution
and terminate the algorithm, as in the case of the sequential algorithm. This iteration is

also imperfect since only one essential subproblem is expanded (subproblem 5). The LM
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solution

Figure 4.2. The BB tree generated by the sequential BB algorithm.

algorithm also takes three iterations to complete the problems resulting in no speedup
(i.e. speedup = 1.0). This loss of speedup is a result of the lack of essential subproblems
during the iterations of the algorithm, or equivalently due to the lack of parallelism in the

BB tree.

The LM algorithm has been used by many researchers to study the execution of
parallel BB algorithms in the context described by the framework of that algorithm.
Quinn and Deo [QuDe85], Li [Li85], and Lai and Sprague [LaSp85] have studied the effect
of the structure of the BB tree on lack of parallelism, and hence, on performance, and
have derived theoretical bounds on the speedup of the LM algorithm. They suggest that if
a problem generates a “large enough” tree, then the speedup of the LM algorithm is near
linear (i.e., close to P when P processors are used). Lai and Sahni [LaSa83], Li [Li85], and

Li and Wah [L.iWa84a, LiWa84b, LiWa86] have used the LM algorithm to study the effect
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solution

Figure 4.3. The BB tree generated by the LM algorithm using two processors.

of anomalies on performance and to derive conditions needed to limit their occurrence.

4.3 The Distributed Model Algorithm

The LM algorithm discussed in the previous section is suitable for studying parallel
BB algorithms and the factors that affect their performance on shared memory multi-
processors. The global shared memory of the multiprocessor can be used to maintain
the global data set while its processors can assume the role of the processors in the LM
algorithm. However, the LM algorithm is not adequate to study a parallel BB and the
factors that affect its performance on a DMM. The lack of a global shared memory in a
DMM makes it difficult to efficiently maintain a global data set that is accessible to all the
processors. The global data set must, therefore, be divided into smaller components that

are maintained by the individual processors. This is also necessary to efficiently utilize
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the memory resources of the DMM. A processor must access the components of the data

set that are not maintained locally by it using message passing.

Accordingly, we propose an algorithm that is more suitable to describe the operation
of a parallel BB algorithm and to study the factors that affect its performance on DMMs.
Similar to the LM algorithm, this algorithm represents only a framework of operation and
does not assume any particular architecture for parallel processor used by the algorithm,
except its distributed memory nature, and the use of message passing to accomplish com-
munication among processors. This algorithm is referred to as the Distributed Model (DM)

algorithm. The operation of the algorithm is first presented followed by a description of

the factors that affect its performance.

A processor in the DM algorithm maintains its own list of active subproblems and its
own incumbent; this is depicted in figure 4.4. The local list of each processor maintains
the subproblems of the set of active subproblems in an increasing order of the selection
heuristic function h, similar to a sequential BB algorithm with a best-first search strategy.
The processors operate asynchronously, and therefore, there is no concrete concept of
an iteration similar to that of the LM algorithm; instead, each processor operates in its

own iterations. An iteration consists of two components: a compute component and a

load-balance component.

In the compute component of its iteration, a processor selects and expands the sub-
problem with the smallest value of h from its local list of active subproblems in a manner
similar to the sequential BB algorithm. That is, the subproblem is decomposed into smaller
subproblems using the branching procedure. Subproblems that can never lead to feasible
solutions are deleted using the termination procedure. The lower bounds of subproblems
that represent feasible solutions are compared to the lower bound of the local incumbent,
and a feasible solution that has a smaller lower bound than that of the local incumbent

replaces that incumbent. All subproblems on the local list of active subproblems whose
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Figure 4.4. The Distributed Model.

lower bounds are larger than or equal to that of the new local incumbent are deleted. The
local incumbent is then used to perform the lower bound elimination test on subproblems,

and all remaining subproblems are inserted on the local list of active subproblems.

In the load-balance component of its iteration, a processor employs a strategy of
communication with other processors in order to perform three functions. The first is to
broadcast any feasible solution that updated the incumbent during the compute compo-
nent of the iteration; this is referred to as communication of pruning information. The
second is to exchange information regarding values of h of the subproblems on its local list
of active subproblems with other processors; this is referred to as communication of se-
lection information. The third function of the load-balance component is to perform load
balancing of subproblems among the processors; i.e., to move subproblems from processors

with more workload of subproblems to processors with less workload of subproblems. The
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processor must use message passing in order to perform these functions.

The processors repeat their iterations until all local lists become empty At that point
in time, the algorithm terminates and the optimal solution is the minimum of all the local

incumbents in the processors.

The performance of the DM algorithm is measured by its speedup S(P), which re-
flects the gain obtained by using P processors relative to a single one (i.e., the sequential
algorithm). It is defined as the ratio of the execution time of the DM algorithm using
a single processor, denoted by T(1) to the execution time of the DM algorithm using P

processors, denoted by T'(P). That is

The performance of the DM algorithm is degraded by amounts of time that a processor
spends performing an activity that is not performed by the sequential BB algorithm. These
amounts of time are referred to as overhead, and there are three types of overhead that
a processor can incur: computation-overhead, communication-overhead, and imbalance-

overhead.

Computation-overhead refers to amounts of time a processor spends in expanding non-
essential subproblems. These subproblems are not expanded by the sequential algorithm
and, therefore, represent additional and unnecessary computations. Communication-
overhead refers to the amounts of time a processor spends in the process of communication
with other processors during the load-balance component of an iteration. These amounts
of time are not incurred by the sequential algorithm and, hence, degrade performance.
Finally, imbalance-overhead refers to amounts of time a processor spends idle due to the
lack of subproblems on its local list, which is caused by possible load imbalance among

the processors.

The factors that give rise to these three types of overhead are described in detail in
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the following three sections. A tradeoff between computation-overhead and imbalance-

overhead on one hand and communication-overhead on the other is then described in

section 4.3.4

4.3.1 Computation-Overhead

Computation-overhead reflects wasted computational effort performed by a processor
in expanding non-essential subproblems. In the LM algorithm, overhead of a similar
nature arise due to lack of parallelism. However, in the DM algorithm two additional
factors contribute to the expansion of non-essential subproblems by a processor: the first

is lack of selection information; the second is lack of pruning information.

Lack of selection information refers to the lack of complete knowledge by a processor
about the values of the selection heuristic function A of subproblems in other processors.
A processor expands the subproblem with the smallest values of & on its local list, which
may or may not be essential. It is possible, due to the lack of knowledge described above,
that a processor expands a non-essential subproblem while another processor has multiple
subproblems on its local list. In this case, the first processor incurs a computation-overhead

that is caused by lack of selection information.

The effect of lack of selection information is illustrated using figure 4.5, which shows
the BB tree of a hypothetical problem that has been expanded using two processors. In the
case of the LM algorithm, the root is expanded during the first iteration to give subprob-
lems 2 and 3. These two subproblems are then expanded by the two processors during the
next iteration to generate subproblems 4, 5, 6, and 7. Since the two processors have global
knowledge about lower bounds, subproblems 4 and 5 are selected for expansion during the
third iteration, resulting in the optimal solution at subproblem 9, which terminates the
algorithm by eliminating all subproblems from the list of active subproblems. Therefore,

three iterations are needed to obtain the optimal solution.
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Figure 4.5. Example of computation-overhead caused by lack of selection information.

In the case of the DM algorithm, it is assumed that the two processors do not com-
municate selection information. (Partial communication has the same effect but requires
a larger example to illustrate.) Global knowledge about pruning information is assumed.
The root of the BB tree is expanded into subproblems 2 and 3. Subproblem 2 is inserted
on the local list of processor 1, and subproblem 3 is inserted on the local list of processor 2.
Concurrently the two processors expand subproblems 2 and 3 to generate subproblems 4,
5, 6 and 7 as before. However, in this case, subproblems 4 and 5 are inserted on the local
list of processor 1, while subproblems 6 and 7 are inserted on the local list of processor 2.

Each processor executes the next iteration by selecting the subproblem with the smallest
lower bound on its own local list. Processor 1 selects subproblem 4 while processor 2, lack-
ing knowledge about the existence of 5, selects subproblem 6 for expansion. This results

in the generation of subproblem 8 in processor 1 and subproblem 10 in processor 2. The
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two subproblems are inserted back on the local lists of the respective processors. Proces-
sor 1 expands subproblem 5, and processor 2 expands subproblem 7 during their fourth
iteration. This generates the optimal solution and terminates the algorithm. Therefore,
for the distributed list algorithm each processor expands four subproblems (or executes
four iterations) to find the optimal solution. This additional expansion of a subproblem
by each processor is computational overhead that results from the lack of knowledge by

processor 2 about the lower bounds of subproblems in processor 1.

The lack of pruning information is the second contributor to computation-overhead.
This refers to the lack of global knowledge about the information that is used to eliminate
subproblems that cannot lead to better optimal solutions than any already found. That is,
it refers to the lack of knowledge by one processor about the values of other incumbents in
other processors. If a processor does not have knowledge about the incumbent in another
processor that is better than its own, then an additional expansion of subproblems that

should be pruned or deleted will occur.

Computation-overhead caused by the lack of pruning information can be illustrated
using figure 4.6, which shows the BB tree of a problem expanded by the distributed
model algorithm using two processors. The processors are assumed not to communicate
any pruning information. Initially, the root is expanded and subproblem 2 is inserted on
the local list of processor 1, and subproblem 3 is inserted on the local list of processor 2.
Processor 1 expands subproblem 2 finding the optimal solution and making the local list of
active subproblems for this processor empty. Processor 2 expands subproblem 3 resulting
in subproblem 5. This subproblem should be pruned since its lower bound is larger than
that of the optimal solution discovered by processor 1. However, the lack of knowledge
about the existence of that solution by processor 2 causes it to expand this subproblem
to generate two new subproblems. These are subsequently eliminated by the termination

test, making the local list of active subproblems in processor 2 empty. Therefore, an
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infeasible

Figure 4.6. Example of computation-overhead caused by lack of pruning information.

additional iteration is needed in order for this algorithm to terminate, resulting in a

computational-overhead.

In summary, the lack of global selection information and global pruning information
by the processors can result in additional computations for the DM algorithm in the form
of non-essential subproblem expansions. This overhead reflects computations in excess of
those performed by the sequential BB algorithm or by the LM algorithm, and hence causes
the performance of the algorithm to degrade. These overheads are not present in the LM
since that model assumes global knowledge of the entire data set. Lack of parallelism

overhead can contribute to the computation-overhead incurred by the DM algorithm, as

is the case in the LM algorithm.

-

PR

TR 3

TAIFTGS




74

4.3.2 Communication-Overhead

Communication-overhead reflects the costs incurred by the processors to communicate
selection and pruning information, and to perform load balancing. Each processor must
send and receive this type of information, and since all communications must be performed
by message passing, a time penalty is incurred by each processor. This results in what is

referred to as communication-overhead.

It is possible to distinguish between two types of strategies a processor can use in its
load-balance component. The first type can be described as synchronous, while the second
can be described as asynchronous. In a synchronous load-balance strategy, a processor
does not proceed with its next iteration, until the communication with the other processors
is complete. In an asynchronous strategy, a processor may proceed with the next iteration
without waiting for its communication with the other processors to complete. For example,
a processor can start the exchange of selection information with another processor, and
proceed with its next iteration, without waiting to receive a response to the exchange.
The idle time spent by a processor in synchronization during the load-balance component

is the second contributor to communication-overhead.

4.3.3 Imbalance-Overhead

Imbalance-overhead reflects the amount of idle time spent by a processor due to the
lack of subproblems on its local list of active subproblems. This idle time is not incurred

by the sequential algorithm, and hence, degrades the performance of the DM algorithm.

The lack of subproblems on the local list of active subproblems of a processor is
caused by the action of the load-balance component of an iteration in the DM algorithm,
coupled with the irregular nature of the BB tree generated by the BB algorithm. This is

illustrated in the example shown in figure 4.7 which shows a BB tree generated by the DM
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algorithm using two processors. The root of the BB tree is expanded into subproblems
2 and 3 as shown in the figure. Subsequently, subproblem 2 is expanded by processor 1
and generates no subproblems that can be inserted on the local list of active subproblems
of that processor. Similarly, subproblem 3 is expanded by processor 2 and generates
subproblems 4 and 5. In the case of lack of communication between the two processors,
processor 1 remains idle, while processor 2 continues to expand subproblems on its local
list of active subproblems. The lack of communication between the two processors causes
one processor to idle, which leads to imbalance-overhead. It is the irregular structure of
the BB tree in this case that makes the lack of communication lead to imbalance-overhead
rather than the computation-overhead, which would have occurred had subproblem 2

generated non-essential subproblems.

The effect of the load imbalance generated by the irregular structure of the BB tree
on the performance of a parallel BB algorithm for solving the 0-1 integer programming

problem is demonstrated in [AbMu88].

4.3.4 Computation-Communication Tradeoff

The amounts of computation-overhead and imbalance-overhead incurred by the DM
algorithm can be minimized by perfectly communicating selection and pruning informa-
tion among the processors. This, for instance, can be performed by broadcasting such
information from each processor to all other processors in the DMM. Therefore, a proces-
sor can have a global knowledge about the values of 4 and incumbents in other processors
before selecting and expanding a subproblem. This consequently enables the processors
to expand subproblems that belong to the set S and reduce the amount of computation-
overhead and communication-overhead. However, this global broadcasting of information
in a DMM can be expensive in terms of communication and synchronization costs, and

can lead to considerable communication-overhead, which degrades the performance of the
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infeasible

Figure 4.7. Example illustrating possible load imbalance.

DM algorithm.

On the other hand, the amount of communication-overhead can be minimized by
eliminating all communication and synchronization among the processors. This, how-
ever, implies that no selection and pruning information can be communicated among the
processors, and that no load balancing can be performed. This can lead to considerable

computation-overhead and imbalance-overhead as illustrated above, and consequently de-

grade the performance of the DM algorithm.

Therefore there exists a tradeoff between the amounts of computation-overhead and
imbalance-overhead on one hand, and the amount of communication-overhead that affects
the overall performance of the DM algorithm as shown in figure 4.8. The figure depicts the
amounts of the three types of overhead and the total execution time for the algorithm as

a function of the amount of selection and pruning information communicated between the
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processors. At one end of the spectrum, computation-overhead and imbalance-overhead
are minimal with complete knowledge of selection and pruning information. However, this
is achieved at a high cost of communication, resulting in high communication-overhead.
This makes the total execution time taken by the algorithm to find the optimal solution
high. At the other end of the spectrum, communication-overhead is minimal since the
number of communication steps used to communicate selection and pruning information is
small. This, however, results in high computation-overhead and high imbalance-overhead
that increases the execution time of the DM algorithm. In the middle of the spectrum, a
point exists at which the execution time of the algorithm is minimal. This point is referred

to as the the point of optimal tradeoff. It represents a tradeoff that results in the best

possible performance for the DM algorithm.

The point of optimal tradeoff depends on a number of factors, including the charac-
teristics of the problems being solved, the characteristics of the DMM, and the method
that is used to communicate the selection and pruning information. This makes it dif-
ficult, if not impossible to analytically determine this point, especially with the highly
non-deterministic nature of the BB algorithm that depends to a large extent on the exact

problem instance being solved [Trie86].

This tradeoff between computation-overhead and imbalance-overhead on one hand
and communication-overhead on the other is referred to as the computation-communication
tradeoff since it represents a tradeoff between the amount of time spent by a processor in
communication and the amount of time spent by the processor either performing additional

computations due to non-essential subproblems, or idle performing no computations due

to the lack of subproblems on its local list.
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Figure 4.8. The computation-communication tradeoff.

4.3.5 The Model

In order to further characterize the factors that affect the performance of the dis-
tributed model algorithm, a simple model for the performance of the algorithm has been
developed. The objective of the model is not to quantitatively estimate the performance
of the algorithm, but rather to gain insight into the factors that affect its performance in
a qualitative manner. A quantitative analysis of the performance of the DM algorithm is
difficult to conduct due to the irregular nature of the BB tree that cannot be predicted in
advance, to the dependence of the performance of the algorithm on the problem instance to

be solved, and to the change in computational characteristics caused by the introduction

of parallelism.

In order to simplify the model, the processors in the distributed model are assumed

to be synchronized. Although this assumption represents only an approximate picture of
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the operation of the model, it is adequate for the objectives of the model.

The average time taken by a processor to expand a subproblem is denoted by t., and
the average time taken by a processor to perform a single communication step such as
sending or receiving a message is denoted by t.omm. The number of such communication
steps performed by a processor during one of its iterations is denoted by C. The number of
subproblems expanded by the sequential BB algorithm is denoted by .S, which is also the
number of essential subproblems. The number of subproblems expanded by processor 7 in
the DM algorithm is denoted by S;, and it reflects both essential and non-essential sub-
problems expanded by that processor. The execution time of the sequential BB algorithm
can, therefore, be expressed as

T(1) =S t.. (4.1)

The execution time of the DM algorithm using P processors can be expressed as
T(P) = max{Si} [tc +C tcomm] . (42)

Therefore, the speedup of the DM algorithm using P processors is

Ts S tc
Py=—= P 4.
S( ) Tp max{Sz} X tc +C tcomm x5 ( 3)
or, equivalently,
S(P) = S/P L x P. (4.4)

max{S;} *1 +C 1‘*‘;‘:@-

The factor ijn: is referred to as the granularity of computation, and is denoted by
g. Therefore, the granularity of computation is a measure of the amount of computations
per subproblem performed by the BB algorithm per “unit” communication time. The
granularity of computation is coarse {large) when the time taken to expand a subproblem
is large compared to the time taken to perform a single communication step, and is fine

(small) when the time taken to expand a subproblem is small compared to the time taken

to perform a communication step.

ui
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The factor m—;—iﬁ% is referred to as the selection ratio of the distributed model algo-
rithm, and is denoted by 7. Therefore, the speedup of the algorithm can be expressed

as

S(P) = ﬁp. (4.5)

The factors that affect the performance of the DM algorithm can be seen from equa-

tion 4.5. The speedup of the algorithm is reduced from the perfect value of P by the

selection ratio, and by the factor 1—;}/7;.

The selection ratio of the algorithm reflects computational-overhead and imbalance-
overhead incurred by the DM algorithm. Since the number of essential subproblems is
S, and these subproblems must be expanded by the algorithm before it terminates, a
lower bound on the number of iterations is S/P. The number of iterations taken by the
DM algorithm is max{S;}. Both essential and non-essential subproblems are expanded
during these iterations. When the communication of selection and pruning information
is complete, and the workload is balanced, only essential subproblems are expanded by
the algorithm, and the selection ratio of the algorithm is at its maximum value of one.
In this case, max{S;} is close to Y, S;/P, which is also close to S/P. However, when
the communication of selection and pruning information is not complete, the number of
non-essential subproblems expanded by the algorithm increases, and the load becomes

more imbalanced, and therefore, the selection ratio of the algorithm drops.

The factor FIOTg' reflects the effect of communication-overhead on performance. The
number of communication steps performed by the algorithm per subproblem to communi-
cate selection and pruning information, and to perform load balancing causes this factor
to be larger than one, which reduces the speedup. However, it can be seen that the effect
of the communication-overhead is limited by the granularity of computation. The coarser
the granularity, the smaller the factor C'//¢g and the smaller the effect of the factor —L—~

1+C/g

is on performance.
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4.4 Relevant Work on Parallel BB

A number of researchers have studied parallel BB algorithms, and in this section,

their relevant work on the subject is reviewed.

An early attempt to parallelize BB algorithms is that made by Imai, Fukumura and
Yoshida [ImFY79]. They studied the parallelization of a depth-first BB algorithm on a
shared memory multiprocessor architecture. The objective of their study was twofold: (1)
to examine the computational efficiency of parallel BB on a shared memory architecture,
and (2) to show that it is possible to obtain acceleration anomalies in which the number of
subproblems expanded by the parallel algorithm using P processors is less than the num-
ber of subproblems expanded by the sequential one (see Chapter 7 for detailed description
of acceleration anomalies). The global memory of the multiprocessor is used to store the
incumbent and a shared list of active subproblems, maintained in a last-in-first-out order
to implement depth-first search. All processors execute the same algorithm and operate
asynchronously. A processor executes the same set of steps executed by a processor in
the LM algorithm. A processor that is accessing the shared list is given exclusive access
to that list through the use of semaphores. The processor then expands the subprob-
lem and inserts the results back on the shared list. The algorithm was not implemented,
however, and a simulation was used to study its performance. The simulation, however,
ignores all possible overhead due to contention for the shared memory. The simulated
parallel depth-first algorithm was used to solve two problems. The first was the minimum
covering problem, used to study the performance of the parallel algorithm for a real ap-
plication. The second was a synthetic minimization problem with n k-valued variables in
which the lower bounds of subproblems were generated using an exponentially distributed
random distribution. This second problem primarily was used to study possible accelera-
tion anomalies in the execution of the parallel algorithm. The simulation results do not

show that the execution time of the parallel algorithm for the two problems considered




82

and only show the number of subproblems expanded in order to determine the existence
of anomalies. The simulation results indicate that it is possible for the parallel algorithm
to display an acceleration anomaly for both the minimum covering problem and the syn-
thetic problem. That is, the simulation indicates that the number of subproblems that are
expanded by the parallel depth-first algorithm can be less in some problem instances than
the number of subproblems expanded by the sequential one. An analysis is also given that
estimates that the memory requirements of the parallel algorithm increases linearly with

the number of processors used by the multiprocessor.

Boehning [Boeh85] implements three parallel algorithms that employ a depth-first
search strategy to solve integer linear programming problems on the HEP shared mem-
ory multiprocessor [Smit78]. The algorithms are similar to the LM algorithm in that the
incumbent and the list of active subproblems are maintained globally in the shared mem-
ory of the HEP. The processors operate asynchronously, but execute the same steps the
processors in the LM algorithm execute. Each processor selects a subproblem from the
list of active subproblems in the shared memory. The processor expands the subproblem
it selected and inserts the results back on the list of active subproblems. The three algo-
rithms differ in the action taken by the processors to insert the results back on the list.
In the first algorithm, a processor selects a subproblem, expands it, and inserts the two
new subproblems after both subproblems have been evaluated using the simplex method
(see [Dant63]). Therefore, results of expanding subproblems are not made available to
other processors until both new subproblems are evaluated. In the second algorithm, a
processor inserts the first of the two new problems on the list once it is evaluated and
continues to evaluate the second problem. In this case, the results of expanding a sub-
problem are made available to other processors one subproblem at a time. Finally, in the
third algorithm, a processor expands a subproblem and partially evaluates the new sub-

problems before inserting them back on the list of active subproblems. Another processor
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can continue to evaluate the subproblem when it removes that subproblem from the list.
It is not clear from the description of the algorithm the extent to which a subproblem is

partially evaluated before it is inserted back on the list.

The performance of each of the three algorithms was reported using 7 to 16 processors.
Results were given for a set of standard benchmarks for the ILP problem known as the IBM
and HALDI problems [Taha75]. All three algorithms show almost the same performance
with the second algorithm showing slightly better performance than the other two. This
is attributed to a reduced overhead in synchronizing the processors. It is shown that
acceleration anomalies happen in which the number of operations performed by the parallel
algorithm is less than the number of operations performed by the sequential algorithm.
The metrics used to report the performance of the algorithms, however, are not indicative
of the true performance of the parallel algorithms. The number of subproblems expanded
by the parallel algorithms and the number of pivoting operations performed by the simplex
algorithm (see [Dant63]) were the only two metrics used to measure the performance of the
algorithms. While they are indicative of some aspects of the performance of the parallel
algorithms, they do not reflect overheads in memory access and contention nor do they

reflect the actual speedup, or overall performance of the algorithms.

Marz and Seward [MaSe87] implement a parallel depth-first BB algorithm for solv-
ing the N-queens problem on the Intel iPSC hypercube multiprocessor [Inte85]. Their
research had three main objectives: to exercise an object-oriented approach to writing
programs for the iPSC, to measure the performance of a parallel BB algorithm on a par-
allel computer, and to investigate the suitability of the hypercube architecture for parallel
search. Their implementation is object-oriented and uses processing node 0 of the hy-
percube multiprocessor to execute a Control process and each of the remaining P — 1
processing nodes to execute a Worker process. The Control process monitors the execu-

tion of the Worker processes and maintains a global incumbent and a global list of active
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subproblems. Each Worker process maintains its own local list of active subproblems and
its own local incumbent. The Control process initially creates a set of subproblems using
a depth-first sequential BB algorithm and inserts them on its global list. It then sends
one subproblem from its list to each Worker. (It is not clear how many subproblems
are initially created by the Control process nor how the subproblems are assigned to the
Workers. A possible assumption, however, is that the number of subproblems is larger
than the number of Workers, and that their assignment to the processors is irrelevant).
Upon receiving a subproblem, the Worker uses its local list of active subproblems and
its local incumbent to apply a depth-first sequential BB algorithm to find the required
solution(s) in the subtree rooted at the received subproblem. The Worker reports the
results to the Control process when it is done, and requests another subproblem. The
Control process updates its incumbent and sends another subproblem to the Worker if
one is available on the list. The Control process continues to monitor the execution of the
Worker processes until there are no more subproblems on its own list and all the Workers
are done, at which point the execution of the algorithm terminates. The performance of
the parallel algorithm was reported for the case in which the first solution to the N-queens
problem is required and for the case in which all solutions to the problem are required.
The results are reported in terms of the performance gain over a VAX 11/780 executing
the sequential depth-first algorithm. The results indicate that the performance gain is
not significant for the case in which only one solution is required. This is attributed to
the communication-overhead incurred by the parallel algorithm and to the small amount
computations needed to obtain the first solution. The performance gain increases, how-
ever, when all solutions to the problem are required as a result of the increased amount of
computation involved, but no scaling performance could be obtained. It is concluded that
a more tightly coupled architecture is more suitable for the parallel processing of search

problems. This conclusion, however, is based only on the N-queens problem which has
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a very small granularity, making the communication time between the Control process
and the Worker processes significant. Furthermore, since the Worker processes do not
communicate, a large number of subproblems that are not expanded by the sequential
algorithm are expanded by the parallel algorithm, leading to computation-overhead. This
is particularly true in the case where only the first solution to the problem is required.
This explains why the performance is better in the case where all solution to the N-queens
problem are needed; the number of subproblems expanded by the sequential algorithm is
large which makes the effect of the additional subproblems expanded by the parallel algo-

rithm small, hence improving the speedup, which is a measure of the performance of the

parallel algorithm relative to the sequential one.

Mohan [Moha83] presents experimental results of two best-first parallel algorithms
for solving the traveling salesman problem on the Cm* multiprocessor [GeSS87]. The first
algorithm uses a master process to maintain a global list of active subproblems and a global
incumbent. The master process controls the operation of P slave processes that perform
the computations necessary to evaluate lower bounds of subproblems. The master operates
in synchronized iterations with the slaves. At the beginning of an iteration the master
selects the subproblems with the smallest lower bound in the list of active subproblems. It
then selects log, P edges in that subproblem to generate P subproblems that correspond
to all possible combinations of edge inclusion and exclusion (see chapter 3 for a description
of the traveling salesman problem). The master then assigns one subproblem to each of
the P slaves which computes its lower bound. The slaves return the results back to the
master, which inserts the subproblems on the global list. The master process repeats
its iteration until there are no subproblems on its list, at which point the algorithm
terminates. The speedup of this algorithm was reported to be reasonable for a small
number of processors. However, as the number of processors is increased, the speedup

degrades and eventually remains constant. This is attributed to the increasing number

jif ¥ assa s

=
e




86

of non-essential subproblem expanded, which increases the amount of work performed
by the parallel algorithm compared to the sequential one, and to the saturation of the
communication resources of the Cm*. It is important to note that this algorithm does not
exploit algorithm-level parallelism in the sequential BB algorithm for solving the traveling

salesman problem. The algorithm performs a parallel branching of a subproblem rather

than parallel selection of subproblems.

The second algorithm uses P independent asynchronous processes to implement a
parallel asynchronous BB algorithm. Each process maintains its own list of active sub-
problems and its own incumbent. A process operates in iterations, and during each of
these iterations: the process selects the subproblem with the smallest lower bound from
its own local list of active subproblems, selects one edge in that subproblem, and then
expands the subproblem into two new subproblems; one corresponding to the inclusion of
the edge and the other corresponding to the exclusion of the edge. The new subproblems
are inserted on the local list of active subproblems. That is, each processor executes the
sequential algorithm for solving the traveling salesman problem using its local list and its
local incumbent. The processes do not interact in any way during the execution of the
algorithm, which terminates when an optimal tour is found. The results, in the form of
the speedup of the parallel algorithm, indicate a performance that is close to linear for
a small number of processors but degrades as the number of processors is increased. At
16 processors, the speedup is 8. The results also indicate that the performance of the
second algorithm is better that the first one. This is attributed mainly to the smaller
number of non-essential subproblems expanded by the second algorithm compared with

the first. That is, the second algorithm expanded less subproblems than the first, leading

to improved performance.

Quinn [Quin86] proposes a number of parallel BB algorithms that use a best-first

search strategy for solving the traveling salesman problem on hypercube multiprocessors.
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The algorithms attempt to meet two conflicting goals. The first is to keep the processors
evaluating essential subproblems, i.e., subproblems that would have been expanded by
the sequential algorithm; the second is to minimize the communication overhead along
the critical path from the root of the BB tree to the solution node. This communication
overhead is incurred when a subproblem on that path is generated by one processor and
then later examined by another. The two goals are conflicting because the first requires
the redistribution of subproblems over the processors, thereby introducing communica-
tion overheads, while the second requires keeping subproblems in one processor, thereby
minimizing communication overheads. Four algorithms are proposed that are specific to
both the traveling salesman problem and the hypercube architecture. The four algorithms

illustrate different approaches for balancing the two goals.

The first algorithm is similar to the LM algorithm and it maintains a global list of
active subproblems and a global incumbent in processor 0 of the hypercube. The remaining
P — 1 processors act like slaves to processor 0 and execute the steps of the LM algorithm.
Processor 0 initially executes a sequential best-first BB algorithm to generate subproblems
for the slaves. When there are as many unexamined subproblems as processors, processor
0 begins each iteration of the parallel algorithm by sending P — 1 unexamined subproblems
such that each processor receives a unique subproblem. Processor 0 then completes the

iteration by collecting two newly created subproblems from each of the remaining P — 1

processors.

In the second algorithm, a list of active subproblems is maintained by each of the
processors, and the processors are synchronized in iterations. In each iteration, a processor
expands the subproblem with the smallest lower bound in its local list. However, rather
than inserting both newly created subproblems on its local list of active subproblems, the
processor sends the subproblem with the excluded edge to one of its neighboring processors

in the hypercube, and inserts the subproblem with the included edge on its local list. The
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third algorithm is similar to second, except that when a processor expands a subproblem,
it keeps the one with the smaller lower bound and sends the one with the higher lower
bound to one of its neighbors. In the fourth algorithm, a processor expands a subproblems
and then keeps the two newly created subproblems on its local list. It sends the active

subproblem with the second lowest lower bound to one of its neighbors.

The performance of these algorithms was compared using simulation. The results
indicate that the least promising algorithm is the first and that the most promising is
the fourth. The poor performance of the first algorithm is attributed to the excessive
communication between processor 0 and the remaining P — 1 processors. The promising
performance of the fourth algorithm is attributed to its ability to distribute essential

subproblems across the processors and to strike a balance between the two goals.

However, as should be clear from the discussion of the factors that affect the per-
formance of parallel BB algorithms on DMMs described in the previous sections, the
attempt to achieve the first of the two goals described above is unnecessary. A parallel
BB algorithm does not terminate until all essential subproblems are expanded. Therefore,
minimizing the communication cost along the critical path from the root of the BB tree to
the optimal solution can lead to a faster discovery of that solution, but the algorithm must
continue to expand all other essential subproblems to verify that the solution is indeed the
optimal one. Therefore, attempting to achieve that goal can only lead to additional unnec-
essary effort. The promising performance of the fourth algorithm should be attributed to
its ability to distribute essential subproblems more evenly than the first three algorithms,

rather than to its ability to strike a balance between the two conflicting goals.

Anderson and Chen [AnCh86] propose a parallel BB algorithm for a hypercube mul-
tiprocessor. The algorithm implements a distributed strategy in which each processor
maintains its own list of active subproblems and its own incumbent. Each processor ex-

pands subproblems from its local list and inserts new subproblems back on that list. A
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load balancing strategy is employed to minimize the expansion of non-essential subprob-
lems that would not have been expanded by the sequential algorithm. A figure of merit
reflecting the goodness of the subproblems in each processor is computed based on the
lower bound values of subproblems in that processor and all subproblems in the neigh-
bors of the processor. This figure of goodness defines a goodness gradient that is used
to offload subproblems from processors with a high figure of goodness to processors with
a low figure of goodness. The values of the local incumbents in each processor are also
exchanged with neighboring processors to update the local incumbents with the minimum
value of all incumbents. The process of load balancing, which includes the exchange of
lower bounds, the computation of goodness measures, the offloading of subproblems among
neighbors and the exchange of incumbents, is performed in an interleaved fashion with
the expansion of subproblems. The termination of the algorithm is detected using a set of
completion messages. When all subproblems in the subtree rooted at a given subproblem
are expanded, the subproblem is said to be terminated. When a subproblem is terminated
in a processor, the processor sends a completion message to the processor containing the
parent of the terminated subproblem. When a parent receives completion messages from
all its children, it becomes terminated itself and sends a completion message to its own
parent. When the root of the BB tree receives completion messages from all its children,

the algorithm terminates.

There were no performance results reported for the above algorithm; in fact, the steps
of the algorithm as described in [AnCh86] were not specified to the extent that allows its
implementation. However, it can be seen that the algorithm is not expected to result
in scaling performance due to the excessive communication and synchronization of the
processors during the load balancing process. The amount of effort spent in performing the
load balancing process can easily overweigh any gains in performance due to a balanced

load. Furthermore, the method used for detecting the termination of the algorithm is
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inefficient and consumes considerable memory space to maintain a list of all expanded
subproblems that are not terminated yet. The method can also lead to considerable
communication as a completion message may have to travel to several processors before
finding the needed parent since subproblems often move from one processor to another

due to load balancing.

Wah et al. [WaMa84, WaLY84] propose the design of a special purpose multiprocessor
system for the parallel processing of combinatorial optimization problems, including BB
problems. It is referred to as MANIP, and its general architecture is depicted in figure 4.9.
It consists of five major components: M subproblem memory controllers (SMCs); each
of which is connected to N general purpose processors; a selection and redistribution
network; a global data register; and a secondary storage subsystem that connects to the
SMCs through a secondary storage redistribution network. Each of the M SMCs maintains
a list of active subproblems (ordered by ascending lower bounds of subproblems) and
communicates with one another through the selection and redistribution network. The
system operates synchronized in iterations. At the beginning of an iteration the SMCs
select M X N subproblems with the minimum lower bounds and assign one subproblem to
each processor. The processors expand and evaluate the M x N subproblems and insert
the results back on the local lists of their SMCs. The processors use a global incumbent
that is stored in the global data register to perform elimination tests. Feasible solutions
that are found during the iteration are used to update the global incumbent. Concurrent

access to the incumbent is facilitated by special hardware associated with the register.

The selection and redistribution network is used to select subproblems for expansion.
The network is a unidirectional ring network that connects each SMC to two neighbors,
allowing each SMC to send information to one neighbor and receive information from the
other. To select the subproblems with the minimum lower bounds, N subproblems with

the minimum lower bounds are selected from the local list in each controller and are sent
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to the neighboring controller. The subproblems received from the neighboring controller
are inserted into the local list. This is referred to as shifting subproblems. The shifting of
subproblems is repeated M — 1 times. It is shown that each SMC will have N subproblems
of the M X N with the minimal bounds after this number of shifts. This shifting process
forms the basis of one of the parallel algorithms that is discussed in Chapter 5. It will be
described in greater detail later. However, the use of a special purpose architecture for the
parallel processing of the special class of BB algorithms may be impractical; the hardware
of MANIP has not be built. Furthermore, there are a number of architectural inefficiencies
in MANIP that will become more clear as the its operation is described in Chapter 5. The
synchronized operation of the processors can be a major source of inefficiency since the
amounts of time taken to expand subproblems vary in many applications. This, as will
be seen later, can be a major source of inefficiency. The use of a global data register that
facilitates access to the incumbent is impractical, especially that the processors operate
in synchronized iterations, and require both read and write access to the contents of that

register simultaneously.

Finkel and Manber [FiMa85, FiMa87] describe a distributed implementation of back-
tracking (DIB) on the crystal multicomputer that consists of a small number of VAX-like
workstations connected by a ring network [DeFS87]. They implement a general-purpose
package that allows a wide range of problems that employ backtracking and depth-first
search to be implemented on a multicomputer. A main objective of the implementation
Is to make the distributed algorithm transparent to the application programmer by hid-
ing the details of the implementation and providing the application programmer with a

well-defined interface.

In the implementation, each machine in the network maintains its own list of active
subproblems (represented as a stack) to implement depth-first search. Initially, the prob-

lem to be solved is given to one of the machines, and the rest of the machines are idle. The
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machines expand subproblems independently from one another until a machine runs out
of subproblems and becomes idle. The idle machine generates a request for subproblems
from another machine in the system. A machine that receives the request examines it own
stack of subproblems and sends the requesting machine a portion of its subproblems. This
portion always consists of one half the list of active subproblems. Two strategies were used
to decide on a machine to request subproblems from. The first is to request subproblems
from the successor of the idle machine on the ring. That is, if machine i becomes idle,
then work is requested from machine j = (i + 1) mod P, where P is the total number
of machines on the ring. If machine j cannot grant subproblems to machine i, then the
request is forwarded to the successor of j. The second strategy is to send a fixed number
of requests randomly to other machines on the ring. Experimental results are reported
using three problems. The first is the N-queens problem seeking all solution to a problem,
which results in excellent performance in terms of both the speedup and the load balance.
This excellent performance can be attributed to the large number of N-queens subprob-
lems generated by the sequential algorithm in its search for all solutions which allows the
processors to expand the tree without generating many non-essential subproblems (similar
to the implementation of Marz and Seward described above). The second problem is the
traveling salesman problem. The sequential algorithm used, however, is not an efficient
algorithm for solving that problem and generates a large number of unnecessary subprob-
lems. The performance of the parallel implementation is reported as good, which can also
be attributed to the generation of many unnecessary subproblems by the sequential algo-
rithm. The third problem is an alpha-beta game tree search for the NIM game for which
moderate performance is reported. The performance for the alpha-beta game tree is poor
because of better performance of that algorithm in the sequential case which causes the
parallel algorithm to expand a larger number of non-essential subproblems compared to

the first two cases the performance is reported for.
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Kumar, Rao and Ramesh [KuRR88] extend the work of Finkel and Manber [FiMa87]
by introducing a modified strategy to determine which machines to request subproblems
from. They implement their strategy on an Intel iPSC hypercube multiprocessor [Inte85],
which was used to embed a ring, for iterative deepening depth-first search. However,
only the last iteration of the algorithm is implemented and a search for all solutions is
made. The strategy assigns a special machine as a coordinator to which idle machines
send their requests for subproblems. The coordinator maintains a counter I which is
used to indicate the number, or identity of the machine to request work from. When the
coordinator receives a request for subproblems from an idle machine, it returns the value
of I to the requesting machine and increments that value of I. The requesting machine
then re-submits its request to machine I. Theoretical analysis and experimental results
for the traveling salesman problem indicate that their modified strategy results in better
performance than the one presented in [FiMa87]. The performance of the algorithm,
however, is biased by the fact that only the last iteration of the algorithm is implemented,
which practically makes the value of the optimal solution is known while the search is
conducted, and hence little or no computation-overhead is incurred by the algorithm. The

search for all solutions also causes the performance of the algorithm to look good when

compared to the performance of the sequential one as described earlier.

Schwan, Gawkowski and Blake [ScGB88] discuss a similar scheme for solving the
traveling salesman problem on the Intel iPSC hypercube. They employ best-first search,
however, and investigate a number of issues relating to their implementation which is
similar to that of Kumar et al. They employ one processor as a coordinator that initially
decomposes the original problem into subproblems and assigns one subproblem to each
processor. The coordinator is also responsible for receiving and broadcasting feasible so-
lutions, load balancing and determining the termination of the algorithm. The processors

expand their subproblems independently. A processor that becomes idle after exhausting
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its subproblems sends a signal to the coordinator, which determines a busy processor and
instructs it to send subproblems to the idle one. When all of the processors become idle,
the algorithm terminates. Results are reported for the traveling salesman problem for up
to 20 processors. The performance of the algorithm degrades after a few processors even
though it is given only for the best case problems: this was attributed to the contention
for the coordinator. The work is extended to include two level coordinators. The mas-
ter coordinator assigns subproblems to the coordinators which in turn assigns problems
to the remainder of the processors. The performance results reported indicate that the
use of this multi-level coordination further degrades the performance of the algorithm.
Although the reported poor performance was attributed to the contention for the coor-
dinator, the independent operation of the processors without any exchange of selection
information can lead to significant computation-overhead, which also can account for the

poor performance.
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CHAPTER 5

THE PARALLEL ALGORITHMS

In this chapter three parallel algorithms that map the sequential BB algorithm on hyper-
cubes are described. The algorithms employ different strategies for mapping the algorithm
on multiprocessors with no shared memory. In particular, the three algorithms reflect dif-

ferent computation-communication tradeoffs.

The first algorithm is referred to as the Central List (CL) algorithm. It is an asyn-
chronous master-slave algorithm that employs a centralized strategy similar to that used
by the LM algorithm, which, as noted before, has been used by most researchers for
parallel BB in the past. The algorithm reflects a computation-communication tradeoff
in which computation-overhead and imbalance-overhead are minimized at a cost of high
communication-overhead. The algorithm represents a common strategy that has been used

to map BB algorithms onto multiprocessors [ImFY79, Boeh85, MaSe87, Moha83, ScGBS8S].

The second algorithm is referred to as the SHIFT algorithm, and it employs a load
balancing strategy that is based on the operation of MANIP (see previous chapter), a
proposed special purpose multiprocessor architecture for the parallel processing of com-
binatorial optimization problems. The load balancing strategy aims to expand subprob-
lems with the globally best values of the selection heuristic function h, and hence to
reduce computation-overhead and imbalance-overhead. This is achieved using a high

degree of communication and processor synchronization, which both lead to consider-
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able communication-overhead. Consequently, the algorithm represents a computation-
communication tradeoff in which computation-overhead and imbalance-overhead are re-
duced at a cost of high communication-overhead, similar to the CL algorithm. The strategy
of the algorithm is a representative of many strategies used in the past to map the BB

algorithm onto DMMs [WaMa84, AnCh86, Quin86, PaWo88].

Finally, the third algorithm is referred to as the Distributed List (DL) algorithm
and it uses a new load balancing strategy that attempts to improve performance by re-
ducing communication-overhead in two aspects of the operation of the algorithm. First,
the load balancing strategy aims to select and expand essential subproblems rather than
subproblems with the globally best values of h, requiring less communication of selection
information. Second, the load balancing strategy allows the processors of the hypercube
to operate completely asynchronously, eliminating communication-overhead due to pro-
cessor synchronization. This reduction in communication-overhead increases the amounts
of computation-overhead and imbalance-overhead incurred by the DL algorithm in com-
parison to the first two algorithms. Hence, the DL algorithm represents a computation-
communication tradeoff in which communication-overhead is reduced at the cost of higher

computation-overhead and higher imbalance-overhead.

The three algorithms are presented in the following three sections. In each section,
the operation of one algorithm is first described followed by a discussion of the factors
that lead to computation-overhead, imbalance-overhead, and communication-overhead in

that algorithm.

5.1 The CL Algorithm

In the CL algorithm, the P processors of the hypercube are used such that processor 0
is a master and the remaining P — 1 processors are slaves. The master controls the

operation of the slaves, and maintains a global list of active subproblems and a global

]
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incumbent. In addition, the master maintains the status of the individual slaves. A slave
is busy if it is active computing, or idle if it is not. A slave does not maintain a local list

of active subproblems, but does maintain a local incumbent.

The master operates in iterations examining the list of active subproblems and the
status of the slaves in the beginning of each iteration. The master removes the subprob-
lem with the smallest value of the selection heuristic function A from the list of active
subproblems and sends it to an idle slave. The status of that slave changes from idle to
busy. The master then re-examines the list of active subproblems and the status of the
slaves, and repeats sending subproblems to idle slaves until all slaves are busy or the list
of active subproblems becomes empty. The master then idles until new subproblems are

returned by a slave.

The subproblem received by a slave from the master is decomposed into smaller sub-
problems using the branching procedure of the BB algorithm. The termination procedure
is then applied to delete new subproblems that can never lead to feasible solutions. The
new subproblems are then examined and the lower bound of a new subproblem repre-
senting a feasible solution is compared to that of the local incumbent. If smaller, the
local incumbent is replaced by the new feasible solution. Similar to the sequential BB
algorithm, a subproblem that represents a feasible solution but does not update the in-
cumbent is discarded. The local incumbent of the slave is then used to perform the lower
bound elimination test on the new subproblems. All remaining new subproblems and a
copy of the best feasible solution that updated the local incumbent are sent back to the

master.

The master receives the new subproblems and any feasible solutions from the slave
and changes the status of that slave back to idle. The lower bound of a feasible solution
that updated the local incumbent of the slave is compared to that of the global incum-

bent and if smaller, the feasible solution updates the global incumbent. Similar to the
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sequential BB algorithm when the incumbent is updated, all subproblems on the list of
active subproblems whose lower bounds are greater than or equal to that of the new global
incumbent are deleted. The master uses the global incumbent to perform the lower bound
elimination test on the new subproblems. The remaining subproblems are then inserted

on the list of active subproblems.

The iteration of the master is completed after the new subproblems are inserted on
the global list of active subproblems. A new iteration immediately begins. It is important
to note that the master can start an iteration by sending a subproblem to an idle slave,
but ends that same iteration by inserting on its list subproblems that have been received

from another slave.

The master continues its iterations until the list of active subproblems is empty and
all the slaves are idle, at which time the algorithm terminates. The optimal solution is
stored in the global incumbent of the master. An outline of the major steps of the CL

algorithm is depicted in figure 5.1.

The use of the global incumbent by the master to perform the lower bound elimination
test on new subproblems received from a slave is necessary and is not duplicative of that
performed by the slave using its local incumbent. The incumbent maintained by the slave is
updated only by feasible solutions discovered by that slave, and hence, represents the best
feasible solution in a local sense and not in a global sense. On the other hand, the global
incumbent maintained by the master is updated by feasible solutions discovered by all
slaves and, therefore, represents the best feasible solution in the global sense. Accordingly,
a subproblem that escapes deletion by the slave may be deleted by the master if the global
incumbent of the master represents a better feasible solution than that represented by
the local incumbent of the slave. Therefore, it is necessary to perform the lower bound
elimination test using the global incumbent to avoid the insertion of such a subproblem

on the list of active subproblems.




100

Master
1. Examine list of active subproblems and the status of the slaves.
2. Repeat until the list is empty or all slaves are busy:
send to an idle slave the subproblem with the smallest
value of the selection heuristic function.
3. Idle until a slave returns its results.
4. Check for feasible solutions and update global incumbent
if necessary.
5. Perform lower bound elimination test on new subproblems using
the global incumbent and insert remaining subproblems on list.
6. Repeat steps 2-5 until list is empty and all slaves are idle.

A slave

1. Idle until a subproblem is received from master.

2. Apply branching procedure.

3. Apply termination procedure

4. Check for feasible solutions and update local incumbent

if necessary.
- Perform lower bound elimination procedure using local incumbent.
Send results back to master, including any feasible solutions
that updated the local incumbent.
7. Repeat steps 1-6.

(o) ¢y

Figure 5.1. Outline of the CL algorithm.

The use of the local incumbent by a slave to perform the lower bound elimination
test is strictly unnecessary since any subproblem that is deleted by that test using the
local incumbent of the slave can be deleted by the same test using the global incum-
bent of the master. Nevertheless, the test is performed using local incumbents to reduce
communication-overhead between the master and the slaves. The deletion by the slave of
subproblems that will be deleted when sent back to the master reduces the length of the
communication messages between the master and the slaves. This can lead to a reduction

in overhead due to communication, particularly when the size of a subproblem is large.

The operation of the CL algorithm is more similar to the operation of the LM algo-

rithm than to the operation of the DM algorithm. In the CL algorithm a global list of




101

active subproblems and a global incumbent are maintained by the master, similar to the
LM algorithm. Moreover, the master operates in iterations also similar, but not identi-
cal, to those of the LM algorithm. Nevertheless, the performance of the CL algorithm
is affected by the same factors that affect the performance of the DM algorithm. These
factors are described below using a simple model for the performance of the CL algorithm.
The model is similar in nature and scope to the one described in section 4.3.5 for the DM
algorithm, but is more specific to the CL algorithm. Although the model is similar to that
of the DM algorithm, it is presented here in the context of the CL algorithm to clarify the

factors that affect the performance of this algorithm.

The sequential BB algorithm is assumed to expand S; subproblems. The CL algo-
rithm using P processors is assumed to expand Sp > S; subproblems. The subproblems
are assumed to be equally expanded by the P — 1 slaves. That is, a uniform and a well
balanced workload is assumed. The average time taken to expand a subproblem is denoted

by Tr. The execution time of the sequential algorithm is given by

T(1) = $; x T. (5.1)

The execution time and speedup of the CL algorithm using P processors can be expressed

as
S
T(P) = 5= [To(P) + Tsl, (5:2)
and
51 1
S(P)= |—= T P-1 5.3
( ) Sp * 1+ TTEP } ( )

respectively.

The number of subproblems expanded by each slave is ?s.%. The maximum speedup
that can be attained by the algorithm is P — 1. This is due to the use of processor 0 as
the master, which only controls the operation of the slaves but does not participate in

the expansion of subproblems. The speedup of the algorithm is degraded by two factors.
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The first is represented in equation 5.3 by the term @, which reflects the effect of
communication-overhead incurred by the algorithm. The term To(P) denotes the average
amount of overhead incurred per subproblem by a slave to receive a subproblem from
the master, to send new subproblems to the master, and to wait idle for the master to
send the next subproblem to expand. This overhead reflects the time spent in sending
and receiving subproblems, and the time spent in performing the lower bound elimination
test using the global incumbent by the master. That is, To(P) reflects overhead due to
communication of subproblems between the master and the slaves, as well as overhead

due to serial processing by the master.

The amount of overhead due to communication is affected by the number of the slaves
used. This is due to possible contention for the communication resources of the master
by the slaves. This contention affects the time taken to send or receive a subproblem to
or from a slave. When the number of slaves is small, the contention for the master is
negligible, and has little or no effect on the time to communicate a subproblem. However,
when the number of slaves is large, the contention for the master is high and the time
taken to send or receive a subproblem increases. This, in turn, increases the amount of

overhead due to communication of subproblems.

The extent of the effect of communication-overhead on the overall performance of the
CL algorithm is influenced by the average time for expanding a subproblem 7Tz. The term
@ indicates that it is the ratio of the To(P) to Tg that directly affects the overall
performance of the algorithm rather than the absolute amount of To(P). Therefore,
when T is large compared to To(P), the effect of To(P) is reduced and the effect of
communication-overhead on overall performance also is reduced. However, when Tf is
small compared to To(P), the effect of communication-overhead on overall performance

is more significant.

The second factor that affects the performance of the CL algorithm is computation-
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overhead and is indicated by the term % in equation 5.3 above. This term reflects the
expansion of non-essential subproblems by the CL algorithm due to lack of parallelism
as well as lack of selection and lack of pruning information. Although a global list of
active subproblems and a global incumbent are maintained by the master, there is lack
of selection and lack of pruning information in the CL algorithm, due to the lack of
knowledge on part of the master about selection and pruning information in the slaves.
This lack of knowledge is caused by the asynchronous operation of the slaves coupled
with communication delays between the master and the slaves, which is illustrated by the

following two situations.

In the first, it is possible that a non-essential subproblem be removed from the list of
active subproblems and be sent to an idle slave even though a new incumbent has been
generated by another slave, but has not been received by the master due to communication
delays. This subproblem would have been deleted by the master had it not been for the
delay in receiving the incumbent. This subproblem is also deleted by the LM algorithm
since the processors in that algorithm operate in synchronized iterations and subproblems
are not selected for a new iteration until the computations of the previous iteration in
all processors are completed. Therefore, a computation-overhead is introduced due to the

lack of pruning information on part of the master.

In the second situation, it is possible that a non-essential subproblem be removed
from the list of active subproblems and be sent to an idle slave even though an essential
subproblem has been generated by another slave, but also has not been received by the
master due to communication delays. Therefore, a computation-overhead is introduced
due to the lack of knowledge on part of the master about selection information in the

second slave.

The master in the CL algorithm maintains the workloads of subproblems balanced

across the processors using a self-scheduling load balancing technique. The master main-
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tains the status of all the slaves, and assigns a new subproblem to a slave as soon as
that slave returns the results of its previous computation and becomes idle. Therefore,
subproblems are assigned to slaves based on the demand by the slaves for subproblems
and the availability of the subproblems, which keeps all the slaves as busy as possible
and results in an even workload across the processors [Poly88]. Consequently, little or no

imbalance-overhead is incurred by the CL algorithm.

It is important to note that the CL algorithm has a serious disadvantage; it requires
a large memory on the master to maintain the global list of active subproblems. This
can be limiting to the size of problems that can be solved by this algorithm when the
size of memory on the master processor is limited, and no support for virtual memory
is provided. Furthermore, the algorithm poorly utilizes the memory resources of the
hypercube multiprocessor. While the memory of processor 0 is well utilized, the memories

of the remaining processors are not.

5.2 The SHIFT Algorithm

The SHIFT algorithm is based on the operation of MANIP— the special purpose
multiprocessor proposed by Wah and Ma for the solution of combinatorial optimization
problems using the BB algorithm [WaMa84, Wal.Y84)]. The general architecture of MANIP
has already been described in Chapter 4. In this section the operation of MANIP and the

algorithm it uses are reviewed before the SHIFT algorithm is described.

The architecture of MANIP is diagramed in figure 4.9. Central to that architecture
are the M subproblem memory controllers that are used to maintain M independent lists
of active subproblems, one in each controller. The memory controllers are connected by
the selection and redistribution network, which connects each controller to two others in
a ring topology. There are N processors attached to each memory controller. The N

processors expand subproblems from the list of active subproblems maintained by the




105

controller they are attached to. A global data register is used to store the incumbent,

making it accessible to all processors.

The operation of MANIP is described here for the special configuration in which only
one processor is attached to each memory controller (i.e., N = 1). This configuration is
suggested to be the most cost-effective for the architecture, especially when the number
of controllers is large [WaMa84]. Moreover, this is the configuration upon which the
SHIFT algorithm is based. A complete description of the operation of MANIP for general

configurations can be found in [WaMa84, WalY84].

The subproblem memory controllers are synchronized and operate in iterations. All
the controllers perform the same set of operations in an iteration, which consists of two
main phases. In the first phase, M — 1 shifts are performed in order to redistribute
subproblems in the memory controllers. The subproblems are redistributed such that
each controller contains one subproblem from the set S consisting of the M subproblems
with the globally smallest values of the selection heuristic function h. This is referred to
as a complete disiribution of subproblems. In the second phase of an iteration, a memory
controller removes the subproblem with the smallest value of A from its local list of active
subproblems, and assigns the subproblem to its associated processor for expansion. The
subproblem removed by the controller is also the one that belongs to the set S in that
controller. The subproblem is expanded by the processor and the results are returned
to the memory controller, where they are inserted on the local list of active subproblems

maintained by the controller.

In a shift a subproblem memory controller removes from its local list of active sub-
problems the subproblem with the smallest value of A and sends it to its right neighboring
controller on the ring. The subproblem memory controller also receives a subproblem from
its left neighbor and inserts it on its local list. This shift is repeated M — 1 times in each

iteration to achieve a complete distribution.
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The complete distribution of subproblems in the memory controllers by repeated
shifts is illustrated in figure 5.2 for M = 4. The four memory controllers are represented
by the rectangular boxes and are connected by the ring as shown in the figure. The four
subproblems that belong to the set S are shown as black dots inside the boxes. The
remaining subproblems in each memory controller are not shown in the figure since their
existence will not affect the redistribution of the four subproblems. The initial distribution
of the subproblems in the controllers is shown in figure 5.2(a). There are three subproblems
in processor 2 and one subproblem in processor 4. The distribution of the four subproblems
in the processors after each of the three shifts needed for a complete distribution is shown
in figure 5.2(b), (c) and (d) respectively. The shifts are performed in a counter clockwise

direction.

The M — 1 shifts performed in each iteration by the memory controllers represent
the maximum number of shifts that are needed to achieve a complete distribution of
subproblems (the M — 1 shifts are needed when the M subproblems that belong to the
set § are all in one memory controller). That is, this number of shifts is sufficient but is
not necessary to achieve a complete distribution. Indeed, it is possible to have a complete
distribution with a smaller number of shifts, depending on the initial distribution of the M
subproblems that belong to the set S in the memory controllers. Furthermore, a number
of shifts that is less than P — 1 can be used in each iteration to achieve a close to complete
distribution of subproblems. That is, a redistribution of subproblems in which most of the
controllers receive one of the subproblems that belong to the set S. This is important since
performing M —1 shifts in each iteration can be expensive in terms of communication costs.
Theoretical analysis and simulation of MANIP were used in [WaMa84] to determine the
effect of the number of shifts per iteration on performance. The performance was measured
in terms of the number of iterations needed to solve a given problem. The simulation used

the vertex covering problem to obtain the performance results. The results indicated that
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Figure 5.2. The process of shifting subproblems to achieve complete distribution.

only a small number of shifts per iteration is sufficient to achieve a very close to complete
distribution. Therefore, in the operation of MANIP, only one shift in each iteration is
performed. It is important to note that the simulation conducted by Wah and Ma used a
mixed best-first /depth-first search strategy due to memory limitations of the machine the

simulation was conducted on [WaMa84]. The search strategy is best-first until memory
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is exhausted, at which time the search strategy is switched to depth-first to conserve
memory. The details of that change were not described in [WaMa84], nor was its effect

on performance.

The expansion of a subproblem by a processor during the second phase of an iteration
proceeds in a manner similar to that of a sequential BB algorithm. The subproblem is
decomposed into smaller subproblems using the branching procedure. New subproblems
that can never lead to feasible solutions are deleted by the termination procedure. The
lower bounds of subproblems that represent feasible solutions are compared to the lower
bound of the global incumbent maintained in the global data register. If the lower bound
of a new feasible solution is smaller than that of the incumbent, the incumbent is replaced
by the new feasible solution, and all subproblems on the local list of active subproblems
that have lower bounds greater than or equal to that of the new incumbent are deleted.
The incumbent is used to perform the lower bound elimination test and the remaining
subproblems are sent to the subproblem memory controller, where they are inserted on

the list maintained by that controller.

The processors have a contention-free access to the contents of the global data register
that is facilitated by the hardware of MANIP. Since it is possible for multiple feasible
solutions to be discovered by multiple processors and to update the incumbent in the same
iteration, only the one with the smallest lower bound is used to update the incumbent and
to become immediately available to all processors to perform their lower bound elimination
tests. This mechanism for updating the incumbent is also overhead-free and is facilitated
by the hardware of MANIP. The architectural design that facilitates this type of access
was not described in [WaMa84, Wal.Y84)]. However, as indicated earlier in Chapter 4, the

cost of realizing this access can be expensive and impractical.

The iterations of the subproblem memory controllers continue until there are no

subproblems to be expanded in all the processors. The detection of this condition is not
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described in [WaMa84] and is assumed to be performed by the hardware of MANIP.

In the SHIFT algorithm, the role of a subproblem memory controller and its attached
processor is assumed by a processor in the hypercube array. There are P independent
lists of active subproblems maintained by the P processors of the hypercube, one in each
processor. There is no global incumbent due to the lack of global memory; rather, a local
incumbent is maintained by each processor. This is unlike MANIP in which a single in-
cumbent is maintained in the global data register. The processors operate asynchronously,
again unlike the operation of the subproblem memory controllers of MANIP. A processor
operates in iterations and all processors perform the same set of operations in an iteration.
There are two phases in an iteration. In the first phase subproblems are redistributed by a
process of repeated shifts similar to that used in MANIP. In the second phase a processor

removes the subproblem with the smallest value of A from its local list and expands it.

The shifts are performed by the processors over a ring that is embedded in the hyper-
cube array. The embedding of rings into hypercubes is described in Appendix A. In each
of its iterations, a processor performs s < P — 1 shifts over the embedded ring. In each
shift, the processor removes the subproblem with the smallest value of A from its local list
and sends it to its right neighbor on the embedded ring. The processor then receives a
subproblem from the left neighbor on the embedded ring and inserts it on the local list.
It is possible that a processor has an empty list of active subproblems. In this case, the
processor also participates in the shift, but rather than sending a subproblem it sends a

special null message indicating that no subproblems are available on its local list.

A processor expands subproblems from its local list in a manner similar to a sequen-
tial BB algorithm. The subproblem with the smallest value of A is selected from the local
list of active subproblems. The subproblem is decomposed using the branching procedure.
Subproblems that can never lead to feasible solutions are deleted using the termination

procedure. The lower bounds of subproblems that represent feasible solutions are com-
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pared to the lower bound of the local incumbent, and a feasible solution that has a lower
bound smaller than that of the local incumbent replaces that incumbent. All subproblems
on the local list of active subproblems whose lower bounds are larger than that of the
new local incumbent are deleted. The local incumbent is used to perform the lower bound
elimination test on subproblems. The remaining subproblems are finally inserted on the

local list of active subproblems.

A {feasible solution that updates the local incumbent of a processor is broadcast to
all other processors in the hypercube. The broadcast is performed using a spanning
tree algorithm that is described in detail in Appendix A. When a processor receives the
feasible solution, it compares the lower bound of the solution to the lower bound of its
local incumbent. If the lower bound of the feasible solution is less than that of the local
incumbent, the feasible solution replaces the incumbent; otherwise the feasible solution
is discarded. That is, a received feasible solution does not automatically update the
local incumbent of a processor. This is necessary since multiple feasible solutions can be
discovered by different processors, and it is possible for a processor receiving the feasible
solution discovered by another processor to have discovered a better one and updated its

own incumbent accordingly.

The termination of the SHIFT algorithm is detected by performing P — 1 shifts in
a special iteration. At regular intervals, a processor executes a special iteration in which
P — 1 shifts are performed instead of the s shifts performed in regular iterations. A
sufficient condition for the processors to terminate is that a processor i with an empty
local list of active subproblems receives no subproblems from its left neighbor on the ring
during all of the P — 1 shifts. This is easily deduced since a subproblem in any processor
takes at most P — 1 shifts to reach processor i. Therefore, not receiving any subproblems
for that many shifts implies that all the remaining lists of active subproblems are also

empty. It is possible that other methods for detecting the termination of the algorithm be
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1. Repeat s < P times the process of shifting subproblems
- remove the subproblem with the smallest value of the selection
heuristic function from the local list of active subproblems.
- send the subproblem to the right neighbor in the ring.
- receive a subproblem from the left neighbor in the ring and
insert on the local list of active subproblems.
2. Remove the subproblem with the smallest value of the selection
heuristic function from the local list of active subproblems.
3. Apply the branching procedure.
4. Apply the termination procedure.
5. Check for feasible solutions, and update incumbent if necessary.
If incumbent is updated, the new incumbent is broadcasted to
all processors.
6. Apply the elimination procedure using local incumbent.
7. Repeat steps 1-7 until all lists of active subproblems are empty.

Figure 5.3. Outline of the SHIFT algorithm.

employed, as will be described in the following section. However, this method, although
expensive, is used as it also contributes to the redistribution of subproblems among the

processors. An outline of the operation of the SHIFT algorithm is depicted in figure 5.3.

The processors in the SHIFT algorithm execute using the Single Code Multiple Data
(SCMD) model of operation (see [Buzz88]), and do not synchronize at the end of each
iteration. Therefore, the processors can operate in an out-of-phase fashion with respect
to each other in their jterations. For instance, a processor can be starting a new iteration
while another processor is still in the middle of its current one. This out-of-phase execution
results from the unequal amounts of time taken to expand different subproblems coupled
with the asynchronicity of the processors. A processor that takes a shorter period of
time to expand its subproblem proceeds with its next iteration, leaving the remaining

processors behind in their iterations, and becoming out-of-phase with them.

It is important to realize, however, that although the processors operate asynchronously

and do not explicitly synchronize at the end of each iteration, they effectively synchronize
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through their action of repeated shifts. A processor in the SHIFT algorithm does not start
a new shift until the current one is complete. Therefore, while a processor can send the
subproblem with the smallest value of h from its local list to its right neighbor without syn-
chronization, the processor must idle if necessary until its receives a subproblem from its
left neighbor. In other words, each processor is synchronized with its left neighbor during
the shift and is forced not to proceed with the rest of its iteration until the subproblem sent
by that neighbor is received. This synchronization “ripples” through the ring and causes
the P processors to indirectly synchronize, and imposes the restriction that the same set
of subproblems that are shifted in a synchronous iteration of MANIP also be shifted by
the processors in the SHIFT algorithm. Furthermore, since a processor does not expand
a subproblem until the process of repeated shifts is complete, the processor must idle if
necessary until it receives the subproblem it would have received had the operation of the
processors been synchronized in iterations. Therefore, the SHIFT algorithm expands the
same set of subproblems expanded by MANIP, albeit in an out-of-phase fashion due to the
asynchronicity of the processors. Consequently, when the number of shifts in each iteration
are P — 1, the processors in the SHIFT algorithm expand subproblems with the globally
smallest values of h, which is the desired set of subproblems to be expanded. However,

this synchronization, as well be seen later, is a major source of communication-overhead.

The above mechanism for synchronizing the processors in the SHIFT algorithm has
the advantage of reducing the amount of idle time spent by the processors compared with a
synchronization mechanism in which all the processors are synchronized at the end of each
iteration. In the SHIFT algorithm, a processor is allowed to proceed as much as possible
into its iteration until it becomes necessary for it to wait for other processors. Although a
processor must wait until its left neighbor finishs its iteration and sends it a subproblem
before proceeding with its own iteration, the processor may send a subproblem to its right

neighbor in the beginning of a new iteration without having to wait for its left neighbor,
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which may still be in the middle of its iteration. In contrast, in a mechanism that requires
all the processors to synchronize at the end of each iteration, a processor that completes
its computation must wait for the remaining processors to complete their iterations before
it can proceed with a new one, although, as described above, part of that new iteration
can be performed without having to wait for the rest of the processors, which can cause

mode idle time for the processors.

There are two main factors that can lead to computation-overhead in the SHIFT
algorithm in addition to possible lack of parallelism in problems. The lack of a global
incumbent and the existence of multiple local incumbents in the processors is the first.
A feasible solution that updates the local incumbent of a processor cannot immediately
update the local incumbents of other processors. This is due to the number of communi-
cation steps needed to broadcast the feasible solution from the processor that discovered it
to another processor in the hypercube (O(log, P) on the average, see Appendix A). These
communication steps take a measurable amount of time, leading to time delays in incum-
bent updates. Consequently, a processor that receives the new feasible solution delayed in
time may expand a non-essential subproblem that would have been deleted had the fea-
sible solution been received with no time delay. This gives rise to computation-overhead

caused by lack of pruning information.

The second factor that can lead to computation-overhead in the SHIFT algorithm
is the number of shifts performed by a processor in each iteration. The use of P — 1
shifts in each iteration guarantees a complete distribution, which in turn guarantees that
a processor selects one of the P subproblems with the globally smallest values of h in any
of its iterations. Such a selection of subproblems is sufficient for the selection of essential
subproblems (as has been described in section 4.3). Therefore, no computation-overhead
caused by lack of selection information can occur when P — 1 shifts are used. However,

when the number of shifts is less than P — 1, a complete distribution of subproblems is not

e
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guaranteed and a processor may select and expand a non-essential subproblem although
multiple essential subproblems exist in another processor. This gives rise to computation-

overhead due to lack of selection information.

The number of shifts used by the SHIFT algorithm can also lead to load imbalance,
and consequently, to imbalance-overhead. The use of P — 1 shifts to achieve a complete
distribution also guarantees that each processor receives a subproblem to expand when
at least P subproblems exist. However, when a smaller number of shifts is used, there is
no guarantee that an idle processor receives a subproblem to expand after the shifts are

performed. This causes the workload across the processors to be imbalanced and leads to

imbalance-overhead.

There are two factors that lead to communication-overhead in the SHIFT algorithm.
The first is the time spent by the processors in sending and receiving subproblems to and
from neighbors over the ring. This communication time leads to communication-overhead.
The amount of the communication time increases with the number of shifts since more
subproblems must be communicated when the number of shifts is increased. Hence, the
contribution of this factor to communication-overhead is small when the number of shifts

is small, and is large when the number of shifts is large.

The second factor that leads to communication-overhead is the idle time spent by the
processors due to synchronization. The processors in the SHIFT algorithm operate asyn-
chronously, but effectively synchronize in the manner described above while distributing
subproblems. The idle time is incurred by a processor waiting to receive a subproblem

from its left neighbor during a shift.

The amount of idle time spent by the processors is particularly affected by the uneve-
ness in the amounts of time taken to expand subproblems. This uneveness causes some
processors to finish the expansion of their subproblems before others, and hence, to idle

waiting to participate in the shifts as described above. When the subproblems expanded
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take the same amount of time, the amount of idle time is negligible. However, when dif-
ferent subproblems take different times to expand, many processors idle during the shifts

and the effect of the idle time can be significant.

The amount of idle time is also affected by the number of processors used by the
algorithm. The larger the number of processors P, the graeter the potential for uneveness

in the time to expand P subproblems, and consequently, the larger the potential of idle

time and the more significant is the effect of synchronization delays.

A tradeoff between computation-overhead and imbalance-overhead on one hand, and
communication-overhead on the other, can be seen in the operation of the SHIFT algo-
rithm, and is caused by the number of shifts s. A complete distribution of subproblems,
which eliminates any computation-overhead due to lack of selection information and any
imbalance-overhead, is possible using P — 1 shifts in each iteration. However, the com-
munication and synchronization time needed to perform the P — 1 shifts can be high and
can severely degrade the overall performance of the algorithm. On the other hand, this
communication-overhead can be reduced by using only a small number of shifts in each
iteration. This, however, is at the expense of an increage in computation-overhead due to
lack of selection information resulting from the small number of shifts, and at the expense
of higher imbalance-overhead. The computation-overhead and imbalance-overhead also
can severly degrade the overall performance of the algorithm. Therefore, there is a trade-
off between the two types of overhead that is caused by the number of shifts. The effect
of the number of shifts on the performance of the SHIFT algorithm will be demonstrated
experimentally in Chapter 6. This tradeoff has not been identified by Wah and Ma in the
design of MANIP since performance has been measured only in terms of the number of
iterations needed to obtain a solution with no regard to the time taken by each iteration.
Hence, the reported performance did not degrade by increasing the number of shifts from

one or two towards P — 1, and while the advantage of a small number of shifts was recog-

S
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nized, the disadvantage of the large number of shifts was not reflected in the performance

measure they used.

5.3 The DL Algorithm

In both the CL and SHIFT algorithms, a strategy has been used that attempts to
select and expand a set that contains subproblems with the globally best values of the
selection heuristic function k. This strategy reduces the amount of computation-overhead
to a minimum, and is implemented by maintaining a global list of active subproblems and a
global incumbent in case of the CL algorithm, and by a process of repeated shifts in case of
the SHIFT algorithm. However, the selection of this desired set of subproblems is achieved
at the expense of high communication-overhead due to communication and contention in
the case of the CL algorithm, and due to communication and synchronization in the case
of the SHIFT algorithm. The overall performance of the two algorithms can be severly

degraded by that overhead.

In contrast, the DL algorithm employs a strategy that cuts down on the amount of
communication-overhead by reducing the amount of communication and by eliminating
synchronization. This, however, introduces a lack of selection and pruning information
which leads to higher computation-overhead. Therefore, the DI, algorithm represents a
computation-communication tradeoff in which communication-overhead is reduced at the

expense of higher computation-overhead and imbalance-overhead.

In the DL algorithm, the P processors of the hypercube array are used to maintain P
independent lists of active subproblems, one in each processor. There is no global incum-
bent; rather, a local incumbent is maintained in each processor. A number of variables
and flags (whose use will be described below) are also maintained in each processor. The

processors operate asynchronously, each performing its own iterations. All the processors

execute the same set of operations in an iteration.
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There are two main components to the iteration of a processor. In the first component,
the processor removes from its local list of active subproblems the one with the smallest
value of & and expands it. This, similar to the DM algorithm, is referred to as the compute
component of the iteration. In the second component, the processor communicates with
one of its neighbors in the hypercube array in order to exchange values of A as will be
described below. This is referred to as the load-balance component of the iteration. These

two components are described in details below.

In the compute component of the iteration, the processor selects and expands the
subproblem with the smallest value of A from its local list of active subproblems in a
manner similar to the sequential BB algorithm, and similar to a processor in the SHIFT
algorithm during the second phase of its iteration. That is, the subproblem is decomposed
into smaller subproblems using the branching procedure. Subproblems that can never
lead to feasible solutions are deleted using the termination procedure. The lower bounds
of subproblems that represent feasible solutions are compared to the lower bound of the
local incumbent, and a feasible solution that has a smaller lower bound than that of the
local incumbent replaces that incumbent. All subproblems on the local list of active sub-
problems whose lower bounds are larger than or equal to that of the new local incumbent
are deleted. The local incumbent is then used to perform the lower bound elimination
test on subproblems, and all remining subproblems are inserted on the local list of active

subproblems.

Again similar to the SHIFT algorithm, a feasible solution that updates the local
incumbent of a processor is broadcast to all other processors in the hypercube array. The
same procedure used by the processors in the SHIFT algorithm to receive the broadcast
feasible solution and to update their local incumbents is also used by the processors in the

DL algorithm. This procedure has been described in the previous section.

In the load-balance component of its iteration, a processor communicates with one
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its n = log, P neighbors in the hypercube array. For convenience we will assume these
neighbors are numbered 0 to n — 1, such that neighbor ¢ is the processor’s neighbor along
dimension ¢ of the hypercube topology (see Chapter 2). A variable NEIGHBOR is maintained
by each processor to indicate the neighbor the processor is communicating with during its
current iteration. The variable takes values from 0 to n — 1 and is initialized to 0 in the
first iteration. The processor interacts with one of its neighbors by sending it a request for
subproblems. The neighbor receives that request and responds by sending back a subset

of its subproblems to the requesting processor.

When a processor sends a request for subproblems to its neighbor, it includes with
that request the lower bound of the subproblem expanded during the compute component
of its current iteration. The processor sends the request to the neighbor whose number
is indicated by NEIGHBOR and then increments (modulo n) the value of NEIGHBOR by
one. The processor then continues with the remainder of the load-balance component
of its iteration, and starts a new iteration without waiting for a response to its request.
However, the processor can have only one request pending at any given point of time. That
is, a processor does not send a new request except after a response to the previous one
has been received. A flag PENDING is maintained by each processor and is used to indicate
the status of the previous request made by the processor. This flag is set to TRUE when
the processor sends a request and is set to FALSE only when a response to that request
has been received. A processor cannot send a new request while the PENDING flag is TRUE.
When the processor sends requests and receives responses to these requests to and from
all its neighbors in the hypercube array (i.e., a total of n requests and n responses), a
cycle of requests is said to be complete. That is, the processor interacts with its neighbors

in cycles, once a neighbor in each cycle.

The processor can send two types of requests in the load-balance component of its

iteration. In the first type, which is referred to as ESSENTIAL, the request is made for sub-
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problems whose lower bounds are less than the lower bound of the subproblem expanded
during the compute component of the same iteration. In the second type, which is referred

to as ANY, the request is made for any subproblems regardless of their lower bounds.

A processor also checks for requests for subproblems from other processors during
its load-balance component. The processor may receive requests for subproblems from
several processors (limited to one request per processors, however, since a processor may
have only one request pending at any time), and the processor responds to all requests
during the current load-balance component. The processor, however, handles each request
one at a time independently, and without consideration to other requests. The processor
responds to a request either by sending subproblems to the requesting processor, or by
sending a special message indicating that no subproblems are available. In the first case,

the request is said to be granted. In the second case the request is said to be denied.

A processor send requests of the type ESSENTIAL in order to balance essential sub-
problems as will be described below. A processor that has all its ESSENTIAL requests

denied for a complete cycle, changes the type of its request to ANY.

A processor responds to a received request for subproblems after examining the type
of the request, the lower bound received with the request, and its local list of active
subproblems. The processor responds differently depending on the type of the received
request. If the request is of the type ESSENTIAL, the processor responds by sending to
the requesting processor one half of the subproblems on its local list whose lower bounds
are less than the lower bound received with the request. If no such subproblems exist,
the processor responds by sending the requesting processor the special message indicating

that the request is denied.

If the request is of the type ANY, the processor responds by sending to the requesting
processor one half of all the subproblems on its local list of active subproblems. In the

response to both types of requests, a threshold is used to avoid a thrashing situation
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on which subproblems are continually exchanged between processors. If the number of
subproblems to be sent to the requesting processor is less than the value of the threshold,

the subproblems are not sent, and the special message is sent indicating that the request

is denied.

The processor also checks for a response to a previous request in the load-balance
component of its iteration. If the response indicates that the request has been granted,
the processor inserts the received subproblems on its local list of active subproblems. In
this case a new request is not generated until the next iteration of the processor. This
is performed to allow the processor to expand a new subproblem before issuing a new
request, hence, updating the lower bound to be sent with the request. However, if the
received response indicates that the request is denied, the processor sends a new request

during the same load-balance component to another processor as described above.

The iterations of the processor continue until the termination of the algorithm is
detected, at which point the processors forward their incumbents to processor 0 and stop.
Processor 0 reports the optimal solution as the the incumbent with the smallest lower
bound among the received incumbents and its own. The method used to detect the
termination of the algorithm is described later in this section. An outline of the DL

algorithm is shown in figure 5.4.

The detection of termination of the DL algorithm is more complex than the detection
of termination of the CL and SHIFT algorithms. A necessary and sufficient condition
for the DL algorithm to terminate is that all local lists of active subproblems in the P
processors be empty and no messages from load-balance be in transit among the processors.
This condition is difficult to detect due to the asynchronous nature of the communication
among the processors coupled with the lack of any global knowledge about the status of

the processors at any given point in time.

The detection of termination of distributed algorithms in general is non-trivial and
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A. Compute Component
1. Remove the subproblem with the smallest value of the selection
heuristic function from the local list of active subproblems.
2. Apply the branching procedure.
3. Apply the termination procedure.
4. Check for feasible solutions, and update incumbent if necessary.
If incumbent is updated, the new incumbent is broadcasted to
all processors.
5. Apply the elimination procedure using local incumbent.
B. Load~balance Component
6. If PENDING is FALSE then send a request including the lower
bound of the subproblem removed in step 1.
7. Else if PENDING is TRUE then check for response to previous
request. Insert received subproblems, if any, on local list.
8. Check for requests from other processors and respond to each
one (see text).
C. Repeat steps A and B until the termination of the algorithm is
detected (see text).

Figure 5.4. Outline of the DL algorithm.

has been studied extensively in distributed computing literature. A partial survey can be
found in [Rayn88]. The majority of these methods for detecting termination usually re-
quire the processors to perform a special detection of termination cycle in which a “probe”
message is initiated by a designated processor and is forwarded from one processor to the
next (usually using a ring topology) recording the status of the processors. That status
varies from one method to the other, and can include time stamps, processor activity, and
message counts. Finally, when the probe message is received by the initiating processors,
it becomes possible to determine if the distributed algorithm has terminated. These meth-
ods are suitable for general distributed algorithms and not only parallel BB algorithms
such as the DL algorithm, and may involve elaborate communications that can degrade
performance. Consequently, a method is used in the DL algorithm that is specific to the
BB algorithm, and is integrated into the load-balance component of the iteration to re-

duce any overhead due to special probe messages. The method is heuristic in the sense
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that it does not guarantee that a processor will not terminate before the condition for
termination described above becomes true. The time taken by the algorithm to detect its
termination, however, is small compared to the total time taken by the algorithm to find
the optimal solution to a problem. This is particularly true when the problem size is large.
Therefore, it is unlikely that the method used for detecting the termination will affect the
overall performance of the algorithm. The problem of detecting termination in the case of
the DL algorithm becomes a problem of insuring that the algorithm terminates correctly

rather than a problem of efficiency.

The method used by the DL algorithm to detect its termination is motivated by the
pattern in which the number of subproblems on a list of active subproblems grows or
shrinks during the execution of the BB algorithm. There are three phases in that pattern:
the startup phase, the steady state phase and the wind-down phase. These phases are
shown in figure 5.5 which depicts the growth of the number of subproblems with the num-
ber of iterations. There is only one subproblem on the list of active subproblems initially
(the root of the BB tree). The number of subproblems the list then grows rapidly during
the startup phase. The number of subproblems then peaks and remains fairly constant
during the steady state phase. Finally, due to the discovery of feasible solutions, the
number of subproblems declines and eventually reaches zero, at which point the algorithm
terminates. The rate by which the number of subproblems declines during the wind-down
phase is usually high and only but a few iterations are executed during that phase. In
most BB applications, including the 8-puzzle and the traveling salesman problems, the
first solution discovered by the algorithm is usually the optimal one, and all subproblems
on the list of active subproblems are deleted during the iteration in which the solution
is discovered. In other cases, including the integer programming and 0-1 integer pro-

gramming problems, when the first feasible solution is discovered, the optimal solution is

discovered shortly after. Hence, only a relatively few iterations are executed during the
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wind-down phase. This pattern is also observed by [WaYu82].

Therefore, when the optimal solution is discovered in a processor the number of
subproblems in the processors declines rapidly as that solution is broadcast to all the pro-
cessors in the hypercube array. Consequently, a processor whose local list of active sub-
problems is empty and whose load-balance component cannot obtain subproblems from
the processor’s neighbors for two consecutive cycles, assumes that the number of subprob-
lems in the processors is declining rapidly, and that the BB algorithm is in its wind-down
phase. Therefore, the processor terminates its iterations sending its local incumbent to
processor 0. The processor continues to participate in feasible solution broadcast originat-
ing in other processors and responds to a request for subproblems from other processors
by sending the special message indicating that no subproblems are available in its local
list. When all other P — 1 incumbents are received by processor 0, a message is sent to

stop all processors, at which point the algorithm terminates.

It is important to note, then, that there is no guarantee that a processor does not
terminate before all the lists of active subproblems in the processors are empty. Indeed,
it is likely that a processor would terminate before such a condition occurs since the
information a processor bases it decision to terminate on is only local to its neighbors.
However, since the duration of the wind-down phase is small, and since the neighbors
of the processor interact with their own neighbors as well, the effect of this process in

terminating is not significant on performance.

It is possible to combine some of the more formal methods for detecting the termi-
nation of the algorithm with the above observation of the phases of execution of the BB
algorithm to obtain a detection of termination mechanism that is guaranteed to detect
the termination of the algorithm only after the condition described above for termina-
tion becomes true. For example, a probe message can be sent to the processors in the

manner described above after a processor has not received any subproblems for two con-
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Figure 5.5. The phases of execution of a BB algorithm.

secutive loops. The probe message. This method, however is not implemented by the DL

algorithm.

There are a number of features that distinguish the load-balance mechanism used
by the DL algorithm from other mechanisms used by parallel BB algorithms that have
been proposed in the past. The load-balance used by the DL algorithm is completely
asynchronous and does not requires the processors to synchronize in their iterations. This
is unlike the proposed algorithms of [Quin86, AnCh86, PaWo88] in which mechanisms
that require full synchronization of the processors are employed. This synchronization
can result in considerable communication-overhead as has been described for the SHIFT

algorithm.

The load-balance mechanism used by the DL algorithm communicates selection in-
formation among the processors. This is unlike the algorithms of [AbMu88, MaTMS88] in

which the load-balance is used only when a processor exhausts its local list of active sub-
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problems and becomes idle. This approach has the disadvantage of permitting a processor
that is not idle to expand non-essential subproblems without sharing selection information

with other processors, leading to considerable computation-overhead.

In communicating selection information, the load-balance strategy used by the DL
algorithm attempts to distribute essential subproblems to the P processors rather than
the P subproblems with the globally best values of h. A processor sends the value of
the selection heuristic function for the last subproblem it expanded to its neighbor. The
neighbor responds by sending back on half of the subproblems that can be called “more
essential” than that subproblem since they all have values of A that are less than the
lower bound received with the request. This allows the two processors to share the “more
essential” subproblems. The strategy uses less communication information that reduces
communication-overhead. This is unlike the asynchronous strategy used by [Felt88] in
which a random communication strategy is used that does not necessarily distribute es-

sential subproblems.

The use of a hypercube to implement the DL algorithm has the advantage of increasing
the number of neighbors of a processor as the total number of processor are increased (see
Chapter 2). This offers the potential of a scaling performance, since as the number of
processors are increased, a processor performs load balancing with a larger number of

processors.

The main factor that leads to communication-overhead in the DL algorithm is the
time spent by a processor in performing the load-balance component of its iteration. This
time is consumed in sending and receiving requests as well as the removal and insertion
of subproblems on the local list. There is no communication-overhead in the DL algo-
rithm due idle time as a result of synchronization, since the processors operate completely
asynchronously, as described earlier. Furthermore, the amount of communication effort

performed by a processor is independent from the number of subproblems expanded by
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that processor. In the CL and SHIFT algorithms, the number of communication steps
performed by a processor depend on the number of subproblems expanded by that pro-
cessor. In the CL algorithm, two steps are needed; one to send a subproblem to a slave,
and another to receive results from the slave. Similarly, in the SHIFT algorithm, 2s
communication steps are needed to perform the s shifts before a subproblem can be ex-
panded. In contrast, in the DL algorithm, the number of communication steps depends
on the number of processors used by the algorithm. This in effect reduces the number of
communication steps per subproblem expanded and, hence, reduces the total amount of

communication-overhead in the DL algorithm compared to the first two algorithms.

There two main factors that lead to computation-overhead in the DL algorithm. The
first is the lack of a global incumbent and the existence of multiple incumbents that leads
to lack of pruning information, that in turn leads to computation-overhead. This effect of

this factor has been described in the previous section for the SHIFT algorithm.

The second factor that leads to computation-overhead in the DL algorithm is the lack
of selection information due to the asynchronousity of the processors. A processor in the
DL algorithm sends a request for subproblems to one of its neighbors in the hypercube
array, and then proceeds to expand subproblems from its local list. However, there is no
guarantee that the subproblems expanded from that local list are essential. Furthermore,
the strategy implemented by the load-balance component of the algorithm communicates
selection information between the processor and only one of its neighbors during an iter-
ation. This does not guarantee that the set of subproblems selected by the P processors
belongs to the set S that contains subproblems with the globally best values of A. There-
fore, a processor in the DL algorithm expands non-essential subproblems, which leads to

computation-overhead.

It is possible for load imbalance to occur in the DL algorithm. This is again due to

the asynchronicity of the processors and the action of the load-balance component of the
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algorithm. A processor that is idle may send a request for subproblems to a number of its
neighbors before that request is granted. Hence, the processor remains idle for a number

of iterations, which leads to imbalance-overhead.




CHAPTER 6

EXPERIMENTAL RESULTS

The parallel algorithms presented in the previous chapter have been implemented on a
commercial hypercube multiprocessor in an effort to determine the extent to which the
factors discussed in Chapter 4 affect the performance of the parallel algorithms for realistic
applications, and to compare the performance of the third algorithm which employs the
new load balancing strategy to the performance of the first two. The comparison of the
performance of the three algorithms also shows the extent to which the computation-

communication tradeoff can be effectively used to obtain performance gains.

The four applications described earlier in Chapter 3 were implemented using the
three parallel algorithms. The applications are: the 8-puzzle problem, the 0-1 integer
programming problem, the traveling salesman problem, and the integer programming
problem. The applications represent BB problems with diverse characteristics, especially

their granularity of computation g.

The algorithms have been implemented on an NCUBE/ten hypercube multiproces-
sor with 64 processors. Experimental performance measurements have been performed
using the standard hardware and software of the system. The NCUBE/ten is briefly de-
scribed in Appendix A, and a more detailed description of its architecture, software, and

programming environment appears in [NCUB85, HMSP86].

The performance results have been obtained by executing the algorithms on the
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NCUBE/ten using a number of test problems for each application. The test problems
have been selected from among standard benchmark problems for each application or,
when such problems were not available, randomly generated. The test problems for the
four applications are described in Appendix B. The performance measures that we present
for an algorithm applied to a given application are average over all test problems for that
application. Furthermore, the size of each test problem has been chosen so that the prob-
lem generates the largest number of subproblems possible under the memory limitation
constraint of a single processor of the NCUBE/ten. The size of the test problem is not

increased as the number of processors is increased in the hypercube.

The experimental results are presented using a number of metrics that reflect different
aspects of the performance of the algorithms. The speedup of the parallel algorithm,
denoted by S(P), is used to measure the overall gain in performance obtained by using
P processors relative to a single processor. The speedup is defined as the ratio of the
execution time of the algorithm using a single processor, T(1), to the execution time of

the algorithm using P processors, T(P). That is,

S(P) = %%.

The speedup is said to be linear when the gain in performance using P processors is equal
to P (i.e. when the speedup is equal to P). The speedup is normally sublinear (i-e., less
than P) due to the various types of overhead incurred by the algorithm. However, in
the case of a parallel BB algorithm, it is possible for the speedup to be superlinear (ie.,

greater then P) due to an acceleration anomaly that occurs in the execution of the parallel

BB algorithm [LiWa86].

The computation ratio of the parallel algorithm, denoted by C,(P), is used to in-
dicate the extent of the computation-overhead incurred by the parallel algorithm at P
processors. It is defined as the ratio of the number of subproblems expanded by the se-

quential algorithm to the number of subproblems expanded by the parallel algorithm using
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P processors. That is,

C,(P)= > (6.1)
25
i=1
where S denotes the number of subproblems expanded by the sequential algorithm, and 5;
denotes the number of subproblems expanded by processor i. The value of C, is equal to
1 when no computation-overhead is incurred by the algorithm, and declines to 0 as more
computation-overhead is incurred. The value of C, normally cannot exceed 1 since the
number of subproblems expanded by the sequential algorithm is less than or equal to the
number of subproblems expanded by the parallel algorithm. However, it is possible for C,
to exceed 1 when an acceleration anomaly occurs. In this case, the number of subproblems

expanded by the parallel algorithm is less than the number of subproblems expanded by

the sequential one, and hence C, becomes greater than one.

The communication ratio of the parallel algorithm, denoted by CM,(P), is used to
indicate the amount of communication effort spent by a processor in performing load
balancing and communication of selection information. It is defined as the ratio of the
time spent by a processor in communication to the total execution time of that processor,

averaged over all processors. That is,
P
CM;
CM(P) = Z T (6.2)
where CM; and T; are respectively the communication time and total execution time spent

by processor 1.

Finally, the load imbalance factor, denoted by £(P), is used to indicate the extent by
which the workload (measured by the number of subproblems expanded) is imbalanced

across the P processors. It is defined as

U(P)=2 x100%, (6.3)

s
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where y5 is the mean of the number of subproblems expanded by the P processors, i.e.,

1 P
Hs = -_ﬁ Z S,‘, (64)
=1 :

and o, is the standard deviation of the number of subproblems expanded from their mean,

ie.,

1 P
Os = P—:T Z (Sz — }LS)2. (65)
i=1

The load imbalance factor has the value of 0 when the workload is perfectly balanced and
all processors expand exactly the same number of subproblems, and increases as the load

becomes more imbalanced.

It is important to note that the speedup is the only metric that reflects the overall
performance of the parallel algorithm. The other metrics reflect aspects, but are not in-
dicative, of that performance. For instance, the load imbalance factor can be 0, indicating
a perfectly balanced workload, but the overall performance of the algo‘rithm can be poor
due to considerable communication-overhead. Similarly, the computation ratio can be 1,

indicating that the parallel algorithm does not incur any computation-overhead, yet the

overall performance of the algorithm can be poor due to severe load imbalance.

The granularity of computation g affects the performance of the parallel algorithms as
indicated by the model presented in section 4.3.5; the effect of communication-overhead on
performance is influenced by g. The applications used in the experiments exhibit a wide
range of values of g, and hence, the performance of the three parallel algorithms for the
four applications can be used to illustrate the effect of the granularity on performance,
and on the computation-communication tradeoff. The average time taken to expand a
subproblem for each of the four applications on a single NCUBE/ten processor has been
experimentally measured and is shown in Table 6.1. This time can be used as an indication
of the granularity of each application assuming that the time taken to perform a single

communication step is the same for all applications (recall the definition of granularity
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Application Time (milliseconds)
8-puzzle 2.48
0-1 integer programming 25.89
Traveling salesman 289.60
Integer programming 2627.00

Table 6.1. The average time to expand a subproblem in the four applications.

from section 4.3.5; it is the ratio of the average time taken to expand a subproblem to
the average time taken to perform a unit communication step, such as send or receive a,
subproblem). This is only an approximation, however, since the time taken to perform the
single communication step depends on the size of a subproblem (i.e., the number of words
used to represent the subproblem), which affects the time to communicate the subproblem
from one processor to the other, and is not the same for the four applications. However,
the approximation is acceptable since the time to perform a communication step between
two processors in the NCUBE/ten is dominated by the initial latency of establishing the
communication (see [Buzz88]), and since the size of a subproblem in all four applications
is relatively small. Consequently, the application with the finest (smallest) granularity
is the 8-puzzle problem, and the application with the coarsest (largest) granularity is
the integer programming problem. The granularity, hence, increases from fine (small) to

coarse (large) as shown in the table.

The remainder of this chapter is devoted to the presentation and discussion of the
performance of the three parallel algorithms presented in Chapter 5. The performance of
the Logical Model (LM) algorithm, obtained by means of simulation, is first presented in
section 6.1 to indicate the effect of lack of parallelism on performance. The performance of
the CL algorithm is then presented in section 6.2. The performance results for the SHIFT

and DL algorithms are given in sections 6.3 and 6.4 respectively. The performance of the
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three algorithms is then compared in section 6.5 to show the effect of the computation-

communication tradeoff on performance. Finally, summary and highlights of the results

are given in section 6.6.

6.1 The LM Algorithm

The operation of the LM algorithm is described in section 4.3. Its performance is
affected only by lack of parallelism, and is not affected by lack of selection and lack
of pruning information, by load imbalance, nor by any overhead due to communication.
Therefore, the performance of the LM algorithm can be used to reflect the extent by which
lack of parallelism exists in the test problems, and consequently, the extent by which it
can affect the performance of the three parallel algorithms to be discussed. Therefore,

as a preliminary to our experimental work, the performance of the LM algorithm was

measured using simulation. The results are presented in this section.

The speedup of the LM algorithm is shown in figure 6.1 for the four applications. The
speedup is close to linear for all values of P in the cases of the 8-puzzle problem and the
0-1 integer programming problem. The speedup of the algorithm is close to linear up to
32 processors in the cases of the traveling salesman problem and the integer programming
problem, but drops slightly at 64 processors. This indicates that sufficient parallelism
exists in the first two applications for all values of P, while sufficient parallelism exist in
the latter two only up to 32 processors. Lack of parallelism exits at 64 processors for the

traveling salesman problem and the integer programming problem.

Therefore, the performance of any of the three parallel algorithms to be discussed is
not affected by lack of parallelism for the 8-puzzle problem and the 0-1 integer program-
ming problem. Consequently, the only two factors that can lead to computation-overhead
become lack of selection and lack of pruning information. The computation ratio for that

algorithm can be used to reflect the effect of these two factors alone on performance.
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Figure 6.1. The speedup of the logical model algorithm.

The effect of lack of parallelism on the performance of a parallel BB in the case of the
traveling salesman problem and the integer programming problem is more apparent than in
the case of the other two problems, particularly at 64 processors. Hence, the computation
ratio of the three parallel algorithms reflects overhead due to lack of parallelism in addition
to lack of selection and lack of pruning information. This lack of parallelism must be
taken into consideration when examining the performance of the three parallel algorithm

for these two applications.

It is important to note that the results shown above for the traveling salesman problem
and the integer programming problems reflect lack of parallelism in the test problems used
and for the number of processors indicated, and do not reflect lack of parallelism in the
these two problems in general. This lack of parallelism exists only because of the memory
constraint of an NCUBE/ten processor which does not permit “sufficiently” large test

problems to be solves for these two applications.
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Figure 6.2. Computation ratio of the CL algorithm.

6.2 The CL Algorithm

The performance of the CL algorithm for the four applications is presented and is
discussed in this section. The computation ratio of the algorithm is shown in figure 6.2.
The load balance factor and the communication ratio of the algorithm are shown in fig-
ures 6.3 and 6.4 respectively. The speedup of the algorithm is depicted in figure 6.5. The
performance of the algorithm is shown in the figures for values of P greater than 1 since
at least two processors must be used to execute the algorithm; processor 0 being used as
the master. The figures indicate the overall performance of the algorithm, the factors that

degrade it, and how it is affected by the granularity of computation.

The computation ratio of the algorithm is close to 1 for the 8-puzzle problem and the
0-1 integer programming problem for all values of P. This indicates that no computation-

overhead is incurred by the algorithm for these two applications. The same is observed for
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the traveling salesman problem and the integer programming problem up to 32 processors.
The computation ratio of the algorithm is close to that of the LM algorithm for these two
applications at 64 processors. This indicates that no overhead is incurred by the algorithm
beyond that which is caused by lack of parallelism in the test problems. Therefore, it can
be concluded that for all four applications, lack of selection and lack of pruning information
are non-significant and result in no significant computation-overhead, and that the effect
of this type of overhead on performance is negligible. This is a result of the use of a
global list of active subproblems and a global incumbent by the master, which allow the

expansion of a set of subproblems close to that expanded by the LM algorithm.

The load imbalance factor of the CL algorithm indicates that the algorithm maintains
a well balanced workload across all the processors for all values of P. In other words, all
processors expand almost the same number of subproblems. Therefore, the performance

of the CL algorithm is not significantly affected by any imbalance-overhead. This well
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balanced load is a result of the self-scheduled strategy used by the master for distributing
subproblems to the slaves. The load imbalance factor indicates that a slight load imbalance

exists at 64 processors, which is explained later in this section.

The factor that has a significant effect the performance of the CL algorithm is
communication-overhead. The average amount of communication-overhead incurred by
a processor is indicated by the communication ratio, which is shown in figure 6.4 for the
four applications. The amount of this overhead is the highest in the cases of the 8-puzzle
problem and the 0-1 integer programming problem, indicating that performance is sig-
nificantly affected by this factor for these two applications. The amount of this overhead
is less for the traveling salesman and integer programming problems, but is still a major
source of overhead. The model presented in section 5.2 for the performance of the CL
algorithm indicates that the effect of communication-overhead is influenced by the gran-
ularity of computation. This effect can be seen from the communication ratio and from

the overall performance of the algorithm, which is measured by its speedup.

The speedup of the CL algorithm for the 8-puzzle problem remains negligible as the
number of processors is increased. This poor performance, as will be shown below, is
attributed to the very fine granularity of the 8-puzzle problem. The amount of time taken
to expand a subproblem in that application is small compared to the amount of time
incurred in overhead due to communication and contention for the master. This can be
seen from figure 6.4. The communication ratio shown in the figure is large making any

gains in performance impossible.

The speedup of the algorithm for the 0-1 integer programming problems shows an
improvement over that of the 8-puzzle problem. The speedup increases with the number
of processors but shows no gain in performance after 16 processors. The improvement
in performance is attributed, for the most part, to the coarser granularity of of the 0-1

integer programming problem, which is almost one order of magnitude larger than that of
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the 8-puzzle problem (see Table 6.1). However, when the number of processors becomes
large, the amount of communication-overhead increases and becomes dominant, limiting

further gains in performance.

The speedup of the traveling salesman problem shows further improvements as the
granularity of that problem increases by almost another order of magnitude. The speedup
is not only higher, due to the coarser granularity, but also keeps increasing up to 32
processors. The speedup at 64 processors was not possible to obtain due to lack of memory
on processor 0, the master. The number of subproblems on the global list of active
subproblems increased due to computation-overhead such that the memory on processor

0 became insufficient to maintain it.

The speedup of the algorithm for the integer programming problem is almost linear
with the number of processors used. This is mainly attributed to the very coarse gran-
ularity of this application which makes the amount communication-overhead incurred by

the algorithm almost negligible compared to the time taken to expand a subproblem.

The small load imbalance incurred by the CL algorithm at 64 processors can be
attributed to the unequal amounts of communication time between the master (processor
0) and different slaves. The distance, measured by the number of communication links,
between processor 0 and each of the remaining P — 1 processors in the hypercube array is
not the same for all processors, and consequently some slaves are at a further distance of
communication from the master than others. Therefore, a longer amount of time is taken
to send and receive a subproblem to and from a slave that is further away from the master.
Consequently, a slave that is closer to the master receives subproblems more frequently
during the execution of the algorithm, and therefore expands more subproblems. This

leads to the slight load imbalance reflected by the load imbalance factor.

The effect of this unequal distance of communication between the master and the

slaves on the load balance of the CL algorithm for a typical problem can be more clearly
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Figure 6.6. The effect of communication distance on load balance.

seen in figure 6.6. The ratio of the average number of subproblems per processor expanded
by the processors at distance 4 from the master to the total number of subproblems ex-
panded is shown for the possible values of ¢ in a 64 processor (6-dimensional) hypercube.
The number of subproblems steadily declines as the distance between the master and
the slaves increases, indicating the load imbalance. The difference in the number of sub-
problems expanded by processors at distance 1 and the processor at distance 6 is small,

however, and the effect of this load imbalance on performance is not significant.

In summary, the performance of the CL algorithm is not significantly affected by
computation-overhead, as indicated by the computation ratio. The performance of the
algorithm also is not significantly affected by imbalance-overhead, as indicated by the
load imbalance factor. The performance of the CL algorithm is affected, however, by
the communication-overhead that results from communication to and contention for the

master. The effect of this overhead on performance is significant when the granularity of
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computation is small, and is negligible when the granularity is large.

6.3 The SHIFT Algorithm

The performance of the SHIFT algorithm for the four applications on the NCUBE/ten
is presented in this section. The computation-communication tradeoff caused by the num-
ber of shifts used by the algorithm is first demonstrated. The overall performance of the
algorithm is then discussed to indicate the factors that cause it to degrade, and the effect

of the granularity of computation on it.

The effect of the number of shifts s used by a processor in the SHIFT algorithm
in each of its iterations can be seen from the speedup, the computation ratio and the
load balance factor, and the communication ratio of the algorithm, which are all shown
for possible values of s for the 0-1 integer programming problem using 32 processors in
figures 6.7, 6.8, and 6.9 respectively. The effect of the number of shifts on the remainder

of the applications is similar, but is not shown here.

The computation ratio and the load imbalance factor both indicate that the amount
of computation-overhead and the imbalance-overhead incurred by the algorithm are large
when the number of shifts is small (e.g. 1). This is due to the unability of the algorithm to
achieve a close to complete distribution of subproblems with this small number of shifts,
as described earlier in section 5.3. The amount of communication-overhead is small as
indicated by the communication ratio. The overall performance of the algorithm is poor,
as indicated by its small speedup, due to the large amount of computation-overhead and

imbalance-overhead.

The computation ratio and the load imbalance factor of the algorithm improve when
the number of shifts per iteration is increased and a closer to complete distribution of
subproblems is achieved. The overall performance improves as indicated by the increase

in the speedup of the algorithm shown in figure 6.7. The amount of communication-
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Figure 6.9. The communication ratio of the SHIFT algorithm versus s.

overhead increases, but not significantly to cause the performance to degrade. However,
when the number of shifts is increased beyond 4, the load balance and the computation
ratio further improve, but the speedup of the algorithm decreases indicating that the
overall performance of the algorithm degrades. This is due to the communication-overhead

incurred by the algorithm which keeps increasing as the number of shifts is increased.

Therefore, while increasing the number of shifts improves the performance of the
algorithm initially by reducing computation-overhead and improving its load balance,
communication-overhead becomes large as the number of shifts is further increased and
causes the performance to degrade again. Consequently, the tradeoff caused by the number
of shifts, that has been described in section 5.3, between computation-overhead and load
imbalance on one hand, and communication-overhead on the other can be seen in the
overall performance of the SHIFT algorithm. A number of shifts exists that causes the

overall performance of the algorithm to become optimal. This number has been obtained
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Application Problem # of shifts
8-puzzle 3
0-1 integer programming 4
Traveling salesman 4
integer programming 3

Table 6.2. Observed optimal number of shifts.

experimentally, and is shown in table 6.2 for the four applications. This number of shifts is
observed to be unaffected by the number of processors used when the number of processors

is larger than 4.

The number of shifts shown is larger in all cases than the single shift suggested
by [WaMa84] for the operation of MANIP. This discrepancy can be caused by two factors.
The first is the different application used in the simulation of MANIP (the vertex covering
problem). This problem can have special characteristics that causes the number of shifts
needed to obtain a nearly complete distribution to be smaller than those observed above
for the four applications. The second is the fact the simulation used a combined best-
first /depth-first search strategy to reduce the amount of memory needed for the simulation.
The search strategy is best-first until memory is exhausted, at which time it is changed
to depth-first. This change from a search strategy that is sensitive to the values of % to a
one which is less sensitive can also cause the number of shifts needed to achieve a nearly

complete distribution of subproblems to become smaller.

Furthermore, the effect of the number of shifts on the performance of the SHIFT
algorithm is consistent with that on the performance of MANIP only in that a small
number of shifts is necessary to achieve good performance [WaMa84]. The performance
of MANIP is obtained by simulation and does not take into consideration the overhead

of communication incurred in shifting subproblems. The overall performance of MANIP
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Figure 6.10. The computation ratio of the SHIFT algorithm.

is presented only in terms of the total number of iterations, and not in terms of the total
execution time. This does not reflect the increase in the execution time of each iteration
that can occur when the number of shifts is increased, and therefore, does not account for

the existence of an optimal number of shifts for the operation of MANIP.

The experimental performance results presented for the SHIFT algorithm in the re-
mainder of this section are measured using the above observed optimal number of shifts
per iteration for each application. The number of shifts used is P — 1 when the number
of processors is less than 4. Therefore, these results represent the best performance that

can be obtained by the SHIFT algorithm for each application.

The computation ratio of the algorithm is shown in figure 6.10. The load imbalance
factor and the communication ratio are shown in figures 6.11 and 6.12 respectively. The
speedup of the algorithm indicating its overall performance is shown in figure 6.13. The

figures reflect the various aspects of the performance of the algorithm for the values of P
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used.

The computation ratio indicates that no considerable computation-overhead is in-
curred by the algorithm when the number of processors is small. However, when the
number of processors is increased, the amount of computation-overhead increases. This is
a result of the number of shifts used by the algorithm, which at a small number of pro-
cessors are sufficient to achieve almost a complete distribution of subproblems. However,
as the number of processors increases, the small number of shifts becomes insufficient to
achieve a close to complete distribution. This number of shifts, however, is the one that

achieves the best overall performance as indicated above.

The load imbalance factor of the algorithm indicates a similar behavior to that of the
computation ratio. A well balanced load is maintained by the algorithm when the number
of processors is small, but more load imbalance is introduced as the number of processors

is increased. This is also due to the small number of shifts which has a similar effect
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on the load imbalance as it has on the computation ratio. The load imbalance becomes

significant when 64 processors is used.

The communication ratio indicates that the amount of communication-overhead is
small when the number of processors is small, and increases as the number of processors
is increased. This is expected since the time spent by a processor in communication
and synchronization increases as the number of processors is increased (as described in
section 5.3). This is particularly clear in the case of the integer programming problem,
which shows a large amount of communication-overhead despite its large granularity. This
is attributed to the large variance in the amounts of time taken to expand subproblems in
this application, which causes processors to spend considerable amounts of time idle due

to synchronization.

It is important to note again, that although the SHIFT algorithm incurs the amounts
of overhead shown above due to the small number of shifts used in each iteration, this
number of shifts causes the overall performance of the algorithm to be its best due to
the balance between the amounts of computation-overhead and communication-overhead

incurred.

The speedup of the algorithm for the four applications shows a sublinear performance
that increases as the number of processors is increased. The gain in performance decreases,
however, as the number of processors in increased. This can be attributed to the overhead

that increases as the number of processors is increased as described earlier.

The effect of the applications granularity on performance can be seen from the speedup
of the algorithm. With one exception, the 8-puzzle problem which has the finest granular-
ity exhibits the poorest overall performance. Again, with one exception, the speedup of
the algorithm increases as the granularity of the application increases. This is consistent
with the model of section 4.3.5, which indicates that the extent by which communication-

overhead affects performance is limited by the granularity. The coarser the granularity
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of computation is, the smaller becomes the effect of communication-overhead on overall
performance. The effect of the granularity becomes less apparent as the number of pro-
cessors increase. This is because of the increase in the computation-overhead, which when

the granularity is coarser becomes more significant in affecting the performance.

The exception to the general effect of granularity on performance can be observed
on the speedup curve for the 8-puzzle problem, where the performance of the algorithm
at 64 processors shows an improvement which is not consistent with the performance of
the algorithm for smaller values of P, nor with the performance of the algorithm for the
other three applications. The number of 8-puzzle subproblems examined by the parallel
algorithm at 64 processors is actually less than the number of subproblems expanded
by the sequential one. This reduction in the amount of computation performed by the
parallel algorithm improves its performance. This phenomena is known as an acceleration
anomaly. The effect of this anomaly can also be seen from the computation ratio of the
algorithm, which indicates a value of C, that is larger then 1 at 64 processors for the
8-puzzle problem, implying that the number of subproblems expanded by the parallel
algorithm is less than the number of subproblems expanded by the sequential one. The
phenomena of acceleration anomalies in general and an explanation for why it occurs in
the case of the SHIFT algorithm for the 8-puzzle problem in particular are described in

Chapter 7.

A similar behavior can be seen in the computation-ratio of the algorithm for the
traveling salesman problem. The value of the computation-ratio of the algorithm for that
application at 64 processors is equal to 1.0, and is not consistent with the its values for
other values of P. Furthermore, although the test problems for that application indicate
lack of parallelism at 64 processors, the value of C, for that application is 1.0, which may
suggest the non-existence of any computation-overhead. This is attributed, however, to

an acceleration anomaly that causes the number of subproblems that are expanded by
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the SHIFT algorithm to be roughly equal to the number of subproblems expanded by the
sequential one, and makes C, = 1.0. The effect of this anomaly on the overall performance
of the SHIFT algorithm is not as evident as its effect for the 8-puzzle problem. This is
attributed to the smaller extent of the anomaly in the traveling salesman problem, as will

be explained in Chapter 7.

6.4 The DL Algorithm

The performance of the DL algorithm is presented in this section. The overall per-
formance, the factors that affect it, and the effect of the granularity of computation on
that performance are discussed. The computation ratio, load balance factor, communi-
cation ratio and speedup of the algorithm are shown in figures 6.14, 6.15, 6.16, and 6.17

respectively.

The computation ratio of the algorithm indicates that the computation-overhead
incurred by the algorithm increases as the number of processors increases. The load
imbalance of the algorithm also increases as the number of processors increases as indicated

by the load imbalance factor.

The amount of communication-overhead incurred by the algorithm also increases
with the number of processors as evident by the communication ratio. The amount of this
communication overhead is small compared with the amounts incurred by the CL and

SHIFT algorithms as will be illustrated in the following section.

The speedup of the DL algorithm indicates that the overall performance of the al-
gorithm is nearly linear up to 16 processors, after which the speedup degrades. This is
attributed to load imbalance, communication-overhead, and computation overhead, which

all affect the overall performance.

The performance of the traveling salesman problem at 64 processors shows more

degradation than the other three applications. This is due to the lack of parallelism,
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Figure 6.14. The computation ratio of the DL algorithm.

noted in section 6.1, which causes the performance of the DL algorithm to degrade as in

the case of the SHIFT algorithm.

The processors in the DL algorithm operate in repeated iterations, as has been de-
scribed in section 5.4. A processors responds to requests for subproblems during the
load-balance component of its iteration. This is performed on the NCUBE/ten using the
message passing run-time system VERTEX (described in Appendix A). The sender proces-
sor cannot send another request until a response to the one currently pending is received.
Since the receiving processor operates asynchronously with the sender, it is possible for
the receiving processor to be in the middle of its compute component of its iteration, and
therefore not be able to respond the request as soon as it is received. This is also mandated
by VERTEX which does not allow the arrival of a message to interrupt an application
program. The program must check for the arrival of messages at intervals in order to de-

termine if a message exits. Therefore a processor in the middle of its compute component
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Figure 6.17. The speedup of the DL algorithm.

is unable to detect the arrival of a request for subproblems, and therefore, a response to
that request is delayed until the load balance component. This can cause ineficiencies
due to increased computation-overhead and due to increased idle time. A processor that
is waiting for a response to its request either can be expanding subproblems, which may

be non-essential, or can be idle performing no computations.

The effect of the scheme of operation on performance is demonstrated using the integer
programming problem, which has the largest granularity among the four applications. The
computations performed on a subproblem in the case of the integer programming problem
is sliced into smaller components. At the end of each component, the presence of requests
for subproblems is checked for, and if requests exist, they are handled at that point of
time. The effect of this computation slicing on the performance is shown in tables 6.3
below. The table gives the improvement in the speedup of the DL algorithm with slicing

relative to its speedup without the slicing. An improvement of about 10% can be achieved.
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P | %improvement
2 0.0%
4 0.0%
8 3.5%

16 9.9%

32 7.3%

64 4.8%

Table 6.3. The improvement in the speedup of the DL algorithm due to slicing.

6.5 Comparison of Performance

In this section the performance of the three algorithms is compared in order to demon-
strate that the performance of the DL algorithm is better than the performance of the
CL and SHIFT algorithms, and to illustrate the effect of the computation-communication

tradeoff on performance.

The speedups of the three parallel algorithms for the 8-puzzle problem is shown in
figure 6.18. The speedups indicate that the overall performance of the DL algorithm
is consistently better than the overall performance of the two other algorithms, which
is a result of the reduction in communication-overhead of the algorithm, albeit at the
expense of higher computation-overhead and more load imbalance, as can be seen from
figures 6.20, 6.19, and 6.21. The load imbalance factors of the algorithm indicate that
more load imbalance is incurred by the DL algorithm than the other two. Similarly, more
computation-overhead is incurred by the DL algorithm as can be seen from the compu-
tation ratio of the three algorithms. However, the amount of communication-overhead
incurred is less than that incurred by the CL and SHIFT algorithms. This makes the
overall performance of the DL algorithm better than that of the first two, as indicated by

the speedups.

The performance of the three algorithms for the 0-1 integer programming problem
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shows a similar behavior. The speedup of the three algorithms for that application is
shown in figure 6.22. The performance of the DL algorithm is consistently higher than the
performance of the CL and SHIFT algorithms. This is due to the same factors discussed
above for the 8-puzzle problem. This can be seen from the computation ratios, commu-
nication ratios, and load imbalance factors of the three algorithms, which are not shown
compared to each other in this section, but are shown in the previous sections for the indi-
vidual algorithms. They display similar behavior as the ones shown above for computation

ratio, communication ratio and load imbalance factor of the 8-puzzle problem.

The performance of the three algorithms for the traveling salesman problem problem
is shown in figure 6.23. The figures lead to similar conclusions as those of the previous
two applications. The DL algorithm displays a better performance than the other two
algorithms. The effect of lack of parallelism of the problem can be seen on the performance

of the SHIFT and DL algorithm. The performance of both algorithms is significantly
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Figure 6.23. The speedup of the traveling salesman problem.

degraded by this lack of parallelism and the performance of the DL algorithm is only

slightly better than that of the SHIFT algorithm.

The performance of the three algorithms for the integer programming problem is
shown in figure 6.24. The DL algorithm displays a better performance than the first two
up to 32 processors. This again, is attributed to the same factors as in the case of the
first three applications, and the computation ratio, communication ratio and load balance
factors are shown for the algorithms in the respective sections in which their performance

is discussed.

However the CL algorithm displays a better speedup at 64 processors than the SHIFT
and DL algorithm. This is attributed to the large amount of computation-overhead in-

curred by the two algorithms (as can be seen from the computation ratio in figure 6.14)

coupled with the coarse granularity of the integer programming problem.
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Figure 6.24. The speedup of the integer programming problem.

Although this seems to be an advantage for the CL algorithm over the DL algorithm,
consideration must be given to the limitations of the CL algorithm that contribute to
this result. The CL algorithm maintains all the list of active subproblems on a single
processor, the master. The size of the memory on a single NCUBE/ten processor allows
the solution of problems only of moderate size (the number of subproblems on the list
of active subproblems is on the order of 2000). For more practical problems, a larger
number of subproblems is generated, implying that the CL algorithm cannot be used, and

an algorithm that uses a distributed strategy must be employed.

6.6 Summary of Results

The performance of the Logical Model algorithm has been measured using simulation,
and has been used to reflect the effect of lack of parallelism in the test problems used on

performance. The results indicated that lack of parallelism has a non-significant effect on
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the performance of the 8-puzzle problem and the 0-1 integer programming problem. How-
ever, slight lack of parallelism affects the performance of the traveling salesman problem

and the integer programming problem.

The performance of the CL algorithm indicated that it is possible to obtain a speedup
that is close to linear only when the granularity of computation of the algorithm is very
large. In the case of medium to small granularity, the speedup is close to linear only for
a small number of processors, but shows no gain in performance beyond 16 to 32 proces-
sors. This is mainly due to the large amount of communication-overhead that becomes
significant as the contention for the master increases when the number of processors is
increased. However, the amount of computation-overhead is minimal as a global list of

active subproblems is maintained.

The performance of the SHIFT algorithm showed significant improvements in per-
formance compared to the CL algorithm. This is due to a reduction in the amount of
communication-overhead. However, the amount of this overhead is still significant due
to the communication of subproblems and the synchronization of the processors. The

algorithm incurs small amounts of computation-overhead.

The performance of the DL algorithms showed further improvements over the perfor-
mance of the CL and SHIFT algorithms. This is attributed to the asynchronous strategy
used by the algorithm which further reduces the amount of communication-overhead. This
is done, however, at the expense of higher computation-overhead and more load imbal-
ance compared to the CL and SHIFT algorithms. The algorithm, hence, reflects a better

computation-communication tradeoff that leads to a better overall performance.

The performance of the three algorithms on systems with larger numbers of processors
can be predicted from their performance which has been described in the previous sections.
The CL algorithm, whose performance is mainly affected by communication-overhead,

can only exhibit more diminishing gains in performance as the number of processors is




161

increased. This is due to the increasing contention for the master, which can be seen from
figure 6.4. The amount of communication-overhead incurred by the algorithm due to that

contention is expected to continue to increase when the number of Processors is increased

beyond 64.

The performance of the SHIFT algorithm, which is less affected by communication-
overhead, is also affected by computation-overhead and imbalance-overhead. The amounts
of these two types of overhead increase as the number of processors are increased, as can be
seen from figures 6.10 and 6.11, when the number of processors is increased beyond 64. The
combined effect of these two types of overhead can cause the gains that can be obtained
from the algorithm to be diminishing. In fact, the diminishing gain in performance of the
SHIFT algorithm can be seen from its speedup (figure 6.13) as the number of processors
approaches 64. Hence, more diminishing gains can be expected when the number of

Processors is increased significantly beyond 64 Processors.

The performance of the DI, algorithm is the least affected by communication-overhead
among the three algorithms. Although the amount of computation-overhead and load
imbalance increase when the number of processors is increased, their effect on perfor-
mance is small which causes the performance of the algorithm to scale to a large number
of processors, as described above. However, when the number of processor is signifi-
cantly increased, the amount of computation-overhead and imbalance-overhead cause the
gains in the performance of the algorithm to diminish as the advantage of reducing the
amount of communication-overhead js overweighed by the disadvantage of large amounts

of computation-overhead and imbalance-overhead.

The performance of the three algorithms for larger numbers of processors, however,
can be severly degraded due to lack of parallelism in the problems solved when the size
of the a problem is not increased when the number of processors is increased. Therefore,

for systems with much larger number of processors, the sizes of the problems must also be
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increased to avoid performance loss by lack of parallelism. In system with larger numbers

of processors, the size of memory per processor can be larger, which allows the solution of

large problems.




CHAPTER 7

ACCELERATION ANOMALIES

An acceleration anomaly occurs in the execution of a parallel BB algorithm when one or
more of the essential subproblems expanded by the sequential algorithm are not expanded
by the parallel algorithm. An acceleration anomaly can cause the speedup of the parallel
algorithm to be superlinear, i.e., greater than P when P processors are used to execute

the algorithm.

Acceleration anomalies have been studied by researchers in the past using the frame-
work described by the LM algorithm. Acceleration anomalies have been studied by Lai
and Sahni [L.aSa83], by Lai and Sprague [LaSp85, LaSp86], by Li [Li85], and by Li and
Wah [LiWa84a, LiWa84b, LiWa86]. However, acceleration anomalies in BB algorithms
with best-first search have not been studied in the context of the framework described by
the DM algorithm. In this chapter the occurrence of anomalies in parallel BB algorithms
and the anomalous behavior of the speedup curve of the SHIFT algorithm for the 8-puzzle

problem are explained.

An acceleration anomaly can occur during the execution of a parallel BB algorithm
when the selection heuristic function h is inconsistent with the lower bound function
g [Li85, LiWa86]. The heuristic selection function A is said to be consistent with the lower

bound function g if
h(P;) < h(P;) => g(P;) < g(Pj) VP, P; € A, (7.1)
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otherwise, h is said to be inconsistent with g. It has been shown by [Li85, LiWa86] that
for an acceleration anomaly to occur it is necessary for & to be inconsistent with g. This
condition has been shown by [Trie86] to hold in the case where the processors operate
asynchronously. Therefore, an acceleration anomaly cannot occur if 4 is consistent with

g and may only occur if k is inconsistent with g.

The selection heuristic function h defined by equation 3.4 can often be inconsistent
with the lower bound function g. (Recall that h(P;) = (g(P;),p(P;)), i.e., subproblems
with smaller lower bounds are selected first, and if there is a tie, then subproblems that are
deeper and to the left of the tree are selected first). This is because in most applications,
the lower bound function is not one-to-one, and many subproblems that have equal lower
bounds are expanded by the sequential algorithm before the optimal solution is discovered.
The values of h for these subproblems are not equal and less than the value of k for the
subproblem that generates the feasible solution, yet their lower bound values are all the

same, which makes h inconsistent with g.

This possible inconsistency of k with g is illustrated in figure 7.1, which shows a hypo-
thetical BB tree generated by the sequential algorithm. There are six essential subproblems
expanded by the algorithm before the optimal solution is discovered (subproblems 1, 2,
4, 6, 5, and 8). However, both subproblems 5 and 6 have equal lower bounds (that are
also equal to the value of the optimal solution in this example). Although the value of A
for subproblem 6 is less than the value of h for subproblem 5, the two subproblems have

equal lower bounds, which makes h inconsistent with g in that example.

A subproblem whose value of & is inconsistent with its lower bound, and whose lower
bound is equal to the value of the optimal solution becomes a candidate for deletion by the
lower bound elimination test should the optimal solution (or any other feasible solution
whose value is equal to that of the optimal solution) be discovered before the subproblem

is expanded. This is illustrated using the example of figure 7.2. The subproblem P; is
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Optimal
Solution

Figure 7.1. Example showing the possible inconsistency of h with g.

the subproblem whose expansion does not lead to a feasible solution, but whose lower
bound g¢(F;) is equal to the value of the optimal solution Jopt- The subproblem P; is the
subproblem whose expansion generates the optimal solution P,,;. An acceleration anomaly
occurs if the subproblem P; is expanded before the subproblem P; during the execution
of a parallel BB algorithm. The optimal solution P, is generated and the incumbent is
updated. Consequently, all subproblems whose lower bounds are greater than or equal to
that of the new incumbent are deleted. Those include the subproblem P;. Consequently,
the essential subproblem P; and any other essential subproblems in the subtree rooted at

P; are not expanded by the parallel algorithm, which leads to an acceleration anomaly.
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Non solution subproblems Optimal Solution

Figure 7.2. The occurrence of an anomaly.

(The anomaly can also occur when subproblems have lower bounds that are equal to the
value of a suboptimal solution that is discovered during the search. However, we restrict

the discussion below to the case where the solution is the optimal one).

The subproblem P;, whose expansion causes the anomaly, can be a non-essential
subproblem. In this case, P; is not the subproblem that generates the feasible solution in
the sequential algorithm, but is generated and expanded by the parallel algorithm as it
incurs computation-overhead. It is possible for a non-essential subproblem to lead to the
optimal solution since multiple optimal solutions can exist, and only one be discovered
by the sequential algorithm. The acceleration anomaly occurs when this subproblem is
expanded before P;, as described above. This is illustrated by figure 7.3 which shows a
hypothetical BB tree. It can be seen that h is inconsistent with g since subproblem 4 has
a value of h that is smaller than that of subproblem 3, yet both subproblems have the
same value of g. The sequential algorithm expands subproblem 1 into subproblems 2 and
3. The algorithm then expands subproblem 2 into subproblems 4 and 5. The algorithm

expands subproblem 4 into subproblems 7 and 8. Finally, the sequential algorithm expands
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subproblem 7 to generate the optimal solution, which eliminates subproblems 3, 5 and 8,
and terminates the algorithm. Therefore, subproblems 1, 2, 4 and 7 are the essential
subproblems. A parallel BB algorithm employing two processors expands subproblem 1
into subproblems 2 and 3. Subsequently, subproblems 2 and 3 are expanded by the two
processors, and the optimal solution is generated by expanding subproblem 3; subproblems
4 and 5 are deleted by the lower bound test, and the algorithm is terminated. Therefore,
essential subproblems 4 and 7 are not expanded by the parallel algorithm, resulting in
an acceleration anomaly. The expansion of the non-essential subproblem 3 caused that

anomaly.

The expansion of non-essential subproblems that generate feasible solution occurs as
the parallel BB incurs computation-overhead due to the factors described in Chapter 4.
The LM algorithm, whose framework has been used to study acceleration anomalies, incurs
computation-overhead due to lack of parallelism. However, a parallel BB algorithm on a
DMM incurs computation-overhead due to other factors as well. Hence, the likehood that
a parallel BB algorithm will incur an anomaly due to the expansion of a non-essential

subproblems is higher than that of the LM algorithm.

The subproblem P;, whose expansion causes the anomaly, can also be an essential
subproblem. Therefore, P; is the subproblem that generates the optimal solution in the
case of the sequential algorithm. Consequently, for the acceleration anomaly to occur, P;
must coexist with P;, and a change in the order of expansion of subproblems from that of
the sequential one must occur in order for P; to be selected before P; and, hence, cause
the anomaly. The change in the order of expansion of subproblems can happen due to the
action of the load-balance component which leads to the selection of a set of subproblems
other than the set S selected by the LM algorithm. The load imbalance incurred by the

algorithm can also cause subproblems to be expanded in a different order.

We define the set S, to be the set of subproblems whose expansion by the sequential
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Figure 7.3. Example illustrating an acceleration anomaly.

algorithm does not lead to the optimal solution, but whose lower bound values are equal
to the value of the optimal solution. The subproblems that belong to this set are all
candidates for deletion in the event of an acceleration anomaly as described above. We
define the extent of the acceleration anomaly to be the number of essential subproblems
that are deleted by the lower bound elimination test due to the anomaly. The maximum
extent of the anomaly is |.S.| since only subproblems belonging to the set S, can be deleted
in case of an anomaly. However, the extent of the anomaly is generally less than |Se|. The
structure of the BB tree can cause some subproblems belonging to S, be expanded before

the optimal solution is discovered, and hence, before the anomaly can occur. This can




169

be seen in the example of figure 7.1. The parallel algorithm must expand subproblem 5
before the subproblem leading to the optimal solution can be expanded. Furthermore, the
change in order necessary to cause an anomaly, as described above, may only happen after
a number of the subproblems that belong to S, have been expanded, which also makes

the extent of the anomaly less than |S]|.

The existence of an acceleration anomaly in the execution of the parallel BB algo-
rithm does not necessarily imply that the speedup of the algorithm is superlinear. This
is due to other factors that degrade the performance of the parallel BB algorithm, and
have been described earlier in Chapter 4. The first factor is computation-overhead. It
is possible for the parallel algorithm to experience an acceleration anomaly, yet, due to
computation-overhead, have the total number of subproblems expanded by the parallel al-
gorithm be larger than the number of subproblems expanded by the sequential algorithm,
hence preventing the speedup from becoming superlinear. In other, words, computation-
overhead can make the total number of subproblems expanded by the parallel algorithm
larger than the number of subproblems expanded by the sequential one, although the
number of essential subproblems expanded by the parallel algorithm is less than the num-
ber of essential subproblems expanded by the sequential algorithm. The second factor is
communication-overhead. It is possible for the parallel algorithm to incur large amounts
of communication-overhead whose effect in degrading the performance of the parallel al-
gorithm overweighs any gains in performance due to the reduction in the number of sub-
problems expanded by the parallel algorithm, also preventing the speedup from becoming
superliner. The third factor is imbalance-overhead, which has a similar effect on overall
performance to that of communication-overhead; the speedup of the algorithm becomes
sublinear due to imbalance-overhead although the number of subproblems expanded by
the parallel algorithm is less than the number of subproblems expanded by the sequential

one.




170

However, the existence of an acceleration anomaly can be seen as an unexpected
improvement in the overall performance of the parallel algorithm, as that seen in the
speedup curve of the SHIFT algorithm for the 8-puzzle problem (see figure 6.13). The
deletion of a number of essential subproblems in the case of the parallel algorithm that
is caused by the anomaly reduces the overall number of subproblems expanded by the
parallel algorithm compared to the number of subproblems that would have expanded
had the anomaly not occurred. This in turn reduces the effect of computation-overhead
on the overall performance and causes the speedup to improve. The extent of the anomaly
determines the amount of this improvement in the speedup; the larger the extent of the
anomaly, the more visible the effect of the anomaly is on overall performance. Indeed, if
the extent of the anomaly is large enough, it is possible for the speedup to be superlinear,

in spite of other factors that degrade performance.

It is possible to explain the anomalous behavior of the speedup curve of the SHIFT
algorithm for the 8-puzzle problem based on the understanding of how acceleration anoma-
lies occur, and based on some characteristics of the applications. The ratio of |S,| to the
total number of subproblems expanded by the sequential algorithm is shown in table 7.1
for each of the four applications (averaged only for the test problems that showed the
anomaly). The table indicates that this ratio is negligible in the case of the integer pro-
gramming problem and the 0-1 integer programming problem. Hence, the possible extent
of any acceleration anomaly is small and is unlikely to affect the overall performance of
a parallel algorithm. The ratio is larger for the traveling salesman problem and for the
8-puzzle problem, as can be seen from the table. Therefore, the possible extent of an
acceleration anomaly in these two applications is large. The larger ratio for the 8-puzzle
problem indicates that the performance of this application problem is more likely to be
affected by an acceleration anomaly than the traveling salesman problem. Hence, while

acceleration anomalies occur in the case of the traveling salesman problem, as evident from
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Application Problem Ratio
8-puzzle 32%

0-1 integer programming 2%
Traveling salesman 20%
Integer programming 0%

Table 7.1. The ratio of |S,| to the total number of subproblems.

the computation ratio curves of the SHIFT algorithm for that application (see figure 6.10),
the effect of these anomalies is significant only in the case of the 8-puzzle problem due to

the large value of |S|.

However, it is not sufficient for |S.| to be large in order for an acceleration anomaly
to happen; considerable expansion of non-essential subproblems and a change in the order
of expansion of subproblems must also be present if the anomaly is to occur. The load
imbalance factor of the three parallel algorithms for the 8-puzzle problem is shown in
figure 6.20. The load imbalance factors of the three algorithms is relatively small for all
values of P except for the SHIFT algorithm at 64 processors; the load imbalance factors
indicate significant load imbalance. This load imbalance for the SHIFT algorithm coupled
with the large ratio of | S| for the 8-puzzle problem explain why the acceleration anomaly
occurs for the 8-puzzle problem in the SHIFT algorithm but not in the other two algorithms
and for the other three applications. The number of non-essential subproblems expanded
by the algorithm, and the possible change in the order of expanding subproblems both
caused by the load imbalance enhances the chances for an acceleration anomaly to occur

in the case of the SHIFT algorithm compared to the other two algorithms.

The above explanation for the occurrence of acceleration anomalies in the SHIFT
algorithm for the 8-puzzle problem is based on the observed behavior of the algorithms.

However, it is important to note that the occurrence of anomalies is influenced by many
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other factors such as the structure of the BB tree, the nature of the generation of optimal
solutions from non-essential subproblems, as well as the nature of the communication of
information among the processors. The effect of these factors is not investigated in this

study, but can be pursued in future research.




CHAPTER 8

CONCLUSIONS

8.1 Summary and Contributions

The BB algorithm is a heuristic search algorithm used to solve many problems in
science and engineering that have no direct methods of solution or only inefficient ones.
Although considerably more efficient than exhaustive search, the BB algorithm is a com-
putationally intensive algorithm that can benefit from the high performance potential
of DMMs. However, the non-deterministic and irregular nature of the data set gener-
ated by the algorithm, as well as the need for global information make the mapping of
this algorithm onto multiprocessors without shared memory a challenge. This study has
investigated the mapping of the BB algorithm onto DMMs and has shown that good per-
formance gains are possible even when a large number of processors is employed, and when

inherent parallelism exists.

The factors that affect the performance of a parallel BB algorithm on DMMs have
been identified in this study. These factors give rise to three types of overhead that degrade
performance: computation-overhead, imbalance-overhead, and communication-overhead.
Computation-overhead reflects the expansion of subproblems that are not expanded by
the sequential algorithm. Imbalance-overhead reflects idle time spent the processors due
to load imbalance. Communication-overhead reflects the cost of inter-processor commu-

nications. The performance of a parallel BB algorithm is affected not only by the three
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types of overhead, but is also affected by a tradeoff among them. This tradeoff, which is
referred to as the computation-communication tradeoff, has been effectively used to obtain

good performance gains, particularly when the number of processors is large.

The limitations of analytical modeling and algorithm analysis techniques in predict-
ing the performance of parallel BB algorithms on DMMs suggested the use of experi-
mental approach. The extent to which the three types of overhead and the computation-
communication tradeoff affect the performance of a parallel BB algorithm for actual appli-
cations has been demonstrated experimently using three parallel algorithms for BB that
solve four applications. The three algorithms have been implemented on a hypercube mul-
tiprocessor to obtain experimental results. The third algorithm (the DL algorithm) also
demonstrates the performance of a new load balancing strategy that, in general, leads to

superior scalable performance compared to the strategies used by the first two algorithms.

The major contributions of this study are:

o The factors that affect the performance of parallel BB algorithms on DMMs have

been described.

¢ The effects of these factors and a possible tradeoff between their effects on perfor-

mance for actual applications have been demonstrated.

e The effective use of the computation-communication tradeoff embodied in the DI,
algorithm through its load balancing strategy is shown to lead to an overall perfor-

mance that is generally better than previously reported approaches.

e Acceleration anomalies have been shown to occur in the execution of a parallel
BB algorithm for one of the applications implemented. An explanation for the

occurrence of these anomalies has been provided.
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8.2 Future Research

A number of research directions can be explored that extend the scope and results of

this thesis. They include:

o Further characterization of the computation-communication tradeoff, in particular
the effect of other problems characteristics, such as the structure of the BB tree, on

this tradeoff.

e Design of parallel algorithms that exploit other levels of parallelism in the sequential
BB algorithm, in particular combining subproblem-level parallelism with algorithm-

level parallelism for application problems with high granularity.

¢ Investigating the possible superlinear behavior of BB algorithms in particular, and
the larger class of heuristic search algorithms in general. In some of the experiments
conducted in this study, evidence of such anomalous behavior has been observed.
While the results do not explicitly reflect superlinear speedups, they indicate the
possibility of such speedups occurring for larger problems and at larger numbers of

processors.

e Investigating the mapping of BB algorithms on shared memory multiprocessors. The
presense of shared memory can considerably reduce the amount of computation-
overhead since access to a globally shared list and a globally shared incumbent is
possible. However, the contention for this shared data is likely to introduce an
overhead that is similar in nature to communication-overhead present in DMMs.
This overhead can potentially degrade the performance of the parallel algorithm,
and a distributed strategy in which multiple lists exists in shared memory may be

feasible.
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e Examining the mapping of other classes of search algorithms on parallel processors.

Examples include AND/OR tree search, alpha-beta search and Iterative Deepening

A*.




APPENDICES

177




178

APPENDIX A

The NCUBE /ten

This appendix briefly describes the architecture and the programming of the NCUBE/ten
multiprocessor. A more detailed description of the multiprocessor and its use can be
found in [NCUB85, HMSC86, HMSP86]. This appendix also describes the embedding of
rings into the hypercube topology, and the use of minimal spanning trees to perform the

broadcast of feasible solutions.

The NCUBE/ten is a commercial hypercube multiprocessor system that is made by
the NCUBE Corporation. The system can host up to 1024 processing nodes connected as
a 10-dimensional hypercube array. The system used in our experiments had 64 processing

nodes connected as a 6-dimensional hypercube array.

A processing node consists of a custom 32-bit processor chip and 512 K-bytes of
high speed memory. The processor chip is a general purpose processor which is capable
of executing non-floating point instructions at about 2 MIPS, single precision floating
point instructions at about 0.5 MFLOPS and double precision floating point instructions
at about 0.3 MFLOPS. The processor has a two-address instruction set that is similar
to that of the VAX-11 series. The instruction set has special instructions that facilitate

message communication.

Communication with other nodes in the hypercube array is done asynchronously

through 22 bit-serial links, which are paired into 11 bidirectional channels. Ten of these
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bidirectional channels are used to form the 10-dimensional hypercube array. The eleventh
channel provides a channel to I/O processors, as will be described below. The channels
operate at 7.5 MHz with parity check, which results in a data transfer rate of about
750 K-byte per second in each direction. Each channel has two 32-bit write-only registers
associated with it. One is the address register which contains the location, in the node
memory, of the first byte in the message. The other is the count register which indicates
the number of bytes left to send or receive in the message. Send or receive operations are
initiated by the processor by writing the address of the first byte in the message to the
address register and the size, in bytes, of the message to the count register (a non-zero
count actually triggers the DMA action). The processor then continues with its operations
while the DMA channels complete the communication operation. Interrupts are used to

signal the processor when the channel is ready for a new transfer.

The hypercube array is connected via the I/O channels described above to as many as
8 1/0 processors that provide an interface between the array and the external world. The
I/0 structure allows data transfers with the cube array over separate bit-serial links to and
from each node (the eleventh channel). These links can support a total data rate as high
as 90 M-bytes per second into or out of the cube array. At least one of the I/0 processors
must be a host processor, and there can be as many as eight. The host processor supports
user terminals, disk drives, and a number of otllér peripherals. The host processor which

also runs the operating system, is used for program development.

Programs on the NCUBE can be developed in host and node assembly language or
in one of two high level languages: FORTRAN 77 and C. All our implementations were

coded using the C programming language.

The C programming language is augmented by a number of library calls to facilitate
message passing, which is accomplished through the node operating system VERTEX.

VERTEX is a small nucleus that resides in each node, and basically provides communi-
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cation between the nodes via a set of send and recejve functions that facilitates message
transfer between any two nodes in the hypercube array. The send function has the follow-

ing general form:
nwrite(length, message, dest, type, status, error)

where length is the length of the outgoing message (the length of a message can be up
to 64 K-byte), message is the name of the buffer that contains the message, dest is the
logical number of the node that is to receive the message, type is the type of the message,
an attribute that is used to distinguish messages, status indicates when the message has
left the buffer message to the VERTEX buffer area and erroris an error code. The receive

function has a similar general form:
nread(length, message, source, type, status, error).

nread looks for the first message from source of type type and copies it into the buffer

message. It is possible to specify do not care conditions for source and type to receive a

message regardless of it source or type.

Common topologies such as rings, grids, trees, and pyramids can be embedded effi-
ciently into the hypercube topology. (see [Buzz88] for a brief description of the embedding
of some common topologies). In the following two sections the embedding of rings and
of spanning trees is described. An embedded ring is used in the SHIFT algorithm to ac-
complish the shifting of subproblems among processors; and an embedded spanning tree
is used to broadcast a feasible solution from where it is discovered to all other processors

in the hypercube array.

A.1 Embedding of Rings

The embedding of rings in the hypercube topology can be easily described using

Gray codes. A Gray code G(z) is a one-to-one mapping between integers such that for
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i GQ)
000 000
001 001
010 011
011 010
100 110
101 111
110 101
111 100

Table A.1. A Gray code for three bit integers

any two consecutive integers in the domain, the binary representation of their values in
the range differs in exactly one bit position. It is assumed that the domain is finite and
that the smallest and largest integers in the domain are consecutive. The inverse Gray
code function is denoted by F(z). An example of a Gray code for three bit integers is

shown in Table A.1.

It is possible to have many distinct Gray codes. The one shown in the Table A.1 is
obtained using the following rule: let j be the logical right shift of an integer ¢ by one bit

position; G(7) is then the exclusive OR of ¢ and j.

An N-processor ring consists of N processors connected in such a way that each
processor has one predecessor and one successor. This is shown in figure A.1(a). The
predecessor of a processor ¢ is given by G(F(:) — 1), and the successor of a processor i is
given by G(F(z)+1). The embedding of the 8-processor ring in a 3-dimensional hypercube

is shown in figure A.1(b). The darkened links are those used to form the ring.

A.2 Incumbent Broadcast

In both the SHIFT and the DL algorithms, a feasible solution is broadcast from

the processor where it is discovered to all other processors in the hypercube array. An




182

100

—
o
—
—h
—
—,
—
—
o

’

000

o
o
—
o
—
-k

010

000 001

(a) (b)

Figure A.1. Embedding of a ring in a 3-dimensional hypercube.

efficient strategy to accomplish this broadcast is based on the embedding of a minimal
spanning tree in the hypercube, rooted at the source of the broadcast (i.e., the processor
that discovered the feasible solution). The root processor sends the feasible solution to
all of its neighbors, who in turn send it to their neighbors who have not received the
solution. In n steps (where n is the dimension of the hypercube), all processors receive
the broadcast feasible solution. Therefore, the use of the minimal spanning tree to perform
the broadcast takes O(n) steps. This compares favorably to the O(2") steps it would take

if an embedded ring was used to perform the broadcast.

The embedding of a spanning tree in a 3-dimensional hypercube is illustrated in
figure A.2. The spanning tree is shown embedded in the hypercube in figure A.2(a), and
is shown rearranged according to the steps of the broadcast in figure A.2(b); in both cases
processor 0 is assumed to be the root of the broadcast. In the first step of the broadcast,
processor 0 sends the feasible solution to processors 1, 2, and 4. In the second step of
the broadcast, processor 1 send the feasible solution to processors 3 and 5; processor 2

sends the solution to processor 6. In the third and final step of the broadcast, processor 3
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Figure A.2. Embedding of a spanning tree in a 3-dimensional hypercube.

sends the feasible solution to processor 7. The pseudocode of the implementation of the

broadcast using the C programming language is shown in figure A.3.
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broadcast(root,nodeid,dim,data)

{

int i,nid,ptwo,to;

nid=nodeid"root;
ptwo=1;
for (i=0 ; i < dim ; ++i) {
if (ptwo > nid) {
to=(nid+ptwo) “root;
send(data,to);
}
ptwo=2*ptwo;

Figure A.3. The implementation of broadcast using a spanning tree.
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APPENDIX B

The Test Problems

A number of test problems have been used to obtain performance results for the parallel
algorithms on the NCUBE/ten multiprocessor. In this appendix these test problems are

described.

The test problems are instances of the four applications: the traveling salesman prob-
lem, the 8-puzzle problem, the integer programming problem, and the 0-1 integer pro-
gramming problem. The test problems for each application have been selected from among
standard benchmark problems for that application to obtain realistic performance. How-
ever, since benchmark problems are not available for all applications, some of the test

problems have been randomly generated as will be described.

It is important to note that the size of a test problem has been selected such that
the test problem can be solved on a single NCUBE/ten processor and at the same time
generate the largest possible number of subproblems, subject to the memory limits of the
single processor. The size of a test problem is not increased as the number of processors

is increased. This is done in order to obtain true speedups for each application.

B.1 The Traveling Salesman Test Problems

A test problem for an N-city traveling salesman problem consists of an N x N matrix

which represents the cost of traveling between pairs of cities. The number of cities (i.e.,
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the value of N) is 30. The cost of traveling between any two cities is randomly generated
using a uniform number generator between 1 and 99. The cost of traveling from city ¢ to
city j is not necessarily the same as the cost of traveling from city j to city 4, which makes
the test problems asymmetric. Twelve test problems were used generating a maximum of
1200 subproblems. It was possible to solve some problems with N ranging from 35 to 40
on a single processor, but those were not used as test problems since only a small number

of them were possible to obtain.

B.2 The 8-puzzle Test Problems

A test problem for the 8-puzzle consists of two parts: an initial state and a goal state.
The state of the 8-puzzle is represented as a 3x3 matrix whose elements correspond to the
tile positions on the 8-puzzle board. The value of each element in the matrix represents
the number of each tile on the board. The number 0 is used to represent the empty slot

on the board.

The goal state in our test problems is always the same and is given by:

1
4
7

oo O N
S S W

The initial state for a test problem is generated from the goal state using the following
simple procedure. Two elements from the goal matrix are selected at random. The two
elements are then exchanged. This is repeated on the resulting matrix a large number of

times to obtain an initial state.

The solution space of the 8-puzzle problem is divided into two separate halves [Nils80].
That is, an initial state from one half of the space can never yield to a goal state in the
other half. In this case, the 8-puzzle problem is said to be not solvable. The above
procedure for generating the initial state for a test problem does not guarantee that the

8-puzzle test problem is solvable. The procedure given in [Scho67] is used to insure that




The number of test problems used for the 8-puzzle is five. The problems generated

9000 subproblems on the average,

B.3 The Integer Programming Test Problems

The integer programming test problems are selected from a standard benchmark for
integer pProgramming problems suggested by Halidi [TrWo69]. These problems are referred
to as IBM-0 to IBM-9. The problems are considered simple yet difficult to solve [TrWo69].
The size of some of the test problems is too small for the purpose of the experiments,
generating only a few subproblems to discover the optimal solution. Therefore, only one
problem (IBM-9) was used from the complete set of problems, generating about 1800
subproblems. The number of variables is 15 and the number of constraints is 35. A

complete description of the problems and their solutions can be found in [TrWo69).

B.4 The 0-1 Integer Programming Test Problems

The same set of benchmark problems used for the integer pProgramming problem are
used for the 0-1 integer programming problem. The integer pProgramming problems are
converted to 0-1 integer programming problems using the method described in [WuCo80).
Two binary variables were used to represent each integer variable. Only four of the

benchmark problems generated a sufficient number of subproblem, and were used (IBM-1,

IBM-2, IBM-3 and IBM-9). The average number of subproblems generated is 2500.
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APPENDIX C

IMPLEMENTATION DETAILS

There are two major components to the implementation: the Control Program (CP) and
the User Program (UP). The UP provides the definition of the specific problem to be
solved. It basically defines the procedure by which new subproblems are generated from
a subproblem. Therefore, the UP is a sequential program which does not express any
parallelism. The CP provides the parallel implementation of a generic BB program which
can solve any problem specified by the user program. This approach facilitates experimen-
tation with different applications. The UP can be written for a number of problems with
ease since it represents only sequential code. Different UP’s can be then used with the
same CP to implement different problems [FiMa85, F iMa87]. However, the approach can
be less efficient than that in which the implementation is specific to a particular problem

only.

The two components of the implementation interface through a defined set of proce-
dures. The two components and their interface are described below for a sequential BB

algorithm.

C.1 The Control Program

The CP program starts by initializing its variables and creating the lists: a list of
active subproblems and a child list. The list of active subproblems is implemented as a

Heap since that data structure is more efficient for maintaining large priority queues in
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the case of BB algorithms (see [YuWa83] for a discussion of various data structures for
implementing the list of active subproblems, including the Heap). The key used to insert
and remove subproblems from the Heap can be user defined. This allows the implemen-
tation of various search strategies. The child list is implemented as a linked list since the

number of child nodes generated when expanding a subproblem is relatively small.

The initial problem is then read from the user through the user defined function
read_problem. The initial subproblem is created using that problem and is inserted on

the active subproblems list.

The first subproblem on the list of active subproblems is removed. A call is made
to the user defined function expand, which returns the children of the subproblem on
the child list. The CP performs the termination procedure, checks for the feasibility, and
performs the lower bound test for each of the subproblems on that list and inserts those
that pass the tests on the list of active subproblems. This process is repeated until the
list of active subproblems is empty, at which point the algorithm terminates. The user

defined function print_solution is used to print the solution stored in the incumbent.

The representation of a subproblem consists of the following:

1. The subproblem ID.

2. The subproblem level number.

3. The subproblem path number.

4. The lower bound of the subproblem.

5. A flag to indicate when the subproblem represents a feasible solution.
6. A flag to indicate when a problem cannot lead to a feasible solution.

7. A data structure which is specific to a particular problem which represents the partial

solution represented by the subproblem.
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A special subproblem, referred to as the constant subproblem, is also used. This
subproblem is similar to the regular subproblems described above but is used to store
the description of the part of the subproblem that does not change when a subproblem is
expanded. That is, the data structures that are constant through out the computation,
but are still needed for the computation of lower bounds and partial solutions. Examples
of such structures include the goal state in the 8-puzzle problem, the cost matrix in the
traveling salesman problem, and the constraint matrix in the 0-1 integer programming
problem. This serves two purposes. First, it saves memory space since constant parts of
the structure are not duplicated in each subproblem. Second, the constant subproblem
is also broadcasted to all processors at the beginning of the program, therefore, saving

communication time during the algorithm.

C.2 The User Program

The user program implements the function needed to decompose a subproblem into
smaller subproblems, determine feasibility of new subproblems, and determine whether a
subproblem can lead to a feasible solution or not. The UP interfaces to the CP through

a set of defined procedures and termination. These procedures are:

1. print_solution: prints the final solution.
2. print_subproblem: prints a subproblem.
3. read_problem: reads the initial problem description on the host.

4. expand: takes a subproblem, branches it into smaller subproblems and returns the
resulting subproblems on the child list. This procedure also sets the appropriate
flags in the subproblem to indicate if it is a feasible solution, or if it is can lead to

one.
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