
ARCHITECTING ENERGY EFFICIENT

SERVERS

by

Tae Ho Kgil

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2007

Doctoral Committee:

Professor Trevor N. Mudge, Chairperson
Associate Professor Scott Mahlke
Associate Professor Steven K. Reinhardt
Associate Professor Dennis Michael Sylvester

Tae Ho Kgil
c© 2007

All rights reserved.

ACKNOWLEDGEMENTS

I started my graduate program in Michigan with the hope of gaining some experi-

ence in architecting computing platforms. To this end, I have gained a lot more than

I expected. I would like to first acknowledge my Research Advisor Trevor Mudge for

providing me with excellent direction and advice. He has introduced me to interesting

problems that need to be solved by today’s system architects. My defense committee

members have also helped me improve my research abilities. Dennis, I remember the

first time we met when I was a fresh graduate student asking for guidance in respect

to course work. I recall taking a class you taught in the first semester. That class

has inspired me and lead me to believe that I made the right decision coming to

graduate school. Steve, your collaboration and guidance in research, especially with

system level simulation, has helped me realize issues that I could not identify before.

I sincerely appreciate your efforts. And finally Scott, your comments on my work in

many aspects have definitely helped me rethink the problem and look at it at a new

angle.

I would like to acknowledge my colleagues, Sangwon Yoon, Jisoo Yang, Mark Woh,

HyunSeok Lee, Geoff Blake, Nate Binkert, Ali Saidi, Ron Dreslinski and Yuan Lin.

The interesting discussions and debates we had, helped me in many ways and will be

missed. They have truly made my life better. I wish everyone the very best and hope

to work with them in the future. I acknowledge my parents who have gone through a

lot to put me through school and raising me. I am a stubborn person who is difficult

to persuade yet they somehow guided me this far. I truly appreciate their love.

ii

Finally, I am grateful to my wife Young Bin Baek. She has gone through my

highs and lows which I could not even imagine tolerating. Your constant attention

and support has made my life a lot better and allowed me to pursue a PhD. Young

Bin, I couldn’t have finished graduate school without you.

iii

CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vii

LIST OF TABLES . xi

ABSTRACT . xiii

CHAPTER
I. INTRODUCTION . 1

II. BACKGROUND . 6
2.1 Server platforms . 6

2.1.1 3 Tier Server Architecture 6
2.1.2 Server workload characteristics 7
2.1.3 Conventional Server power breakdown 9

2.2 3D stacking technology . 10
2.3 Memory Technology . 12

2.3.1 DRAM . 12
2.3.2 Flash memory . 15

III. METHODOLOGY . 19
3.1 Simulation Studies . 21

3.1.1 Full system architectural simulator 21
3.1.2 Server Benchmarks 21
3.1.3 Server Disk Traces 23

3.2 Modeling the system level components—estimating timing, power
and area . 24

3.2.1 Processors . 24
3.2.2 Interconnect considering 3D stacking technology . . 25
3.2.3 Modeling DRAM and Flash memory 26
3.2.4 Modeling the disk drive 27
3.2.5 Network Interface Controller—NIC 27

IV. OVERVIEW OF A PICOSERVER ARCHITECTURE 29
V. DETAILED DESCRIPTION OF PICOSERVER 33

5.1 Logic architecture of PicoServer 33
5.1.1 Using simple cores 33

iv

5.1.2 Impact of multi-threading 35
5.1.3 Wide shared bus architecture 38
5.1.4 The need for Multiple NICs on a CMP architecture 41
5.1.5 The need for Multiple Disk Controllers on a CMP

architecture . 42
5.2 On-chip memory architecture of PicoServer 43

5.2.1 Role of on-chip DRAM 43
5.2.2 On-chip DRAM interface 47
5.2.3 Impact of on-chip DRAM refresh on throughput . . 48

5.3 Thermal concerns in 3D stacking 49
5.4 Customizing Energy Efficient Servers in a Datacenter 52
5.5 Evaluation . 54

5.5.1 Server Throughput for various configurations—overall
performance . 54

5.5.2 Breakdown in overall power consumption 59
5.5.3 Energy efficiency, Throughput Pareto Chart 60

VI. INTEGRATING FLASH ONTO THE SYSTEM MEMORY
ARCHITECTURE . 64

6.1 Off-chip DRAM . 64
6.1.1 Off-chip DRAM in conventional platforms 65
6.1.2 Off-chip DRAM in PicoServer 65
6.1.3 A case for non-uniform memory architectures to re-

duce power . 66
6.2 Integrating Flash memory onto a server platform 69

6.2.1 The FlashCache architecture 69
6.2.2 Architecting a programmable Flash memory controller 76
6.2.3 Function and location of Flash memory—Why it is

a non-volatile disk cache 92
6.2.4 Impact on storage device power 96

6.3 Evaluation . 96
6.3.1 Server Throughput with Flash memory 96
6.3.2 Overall system memory power 97
6.3.3 Behavior of Programmable Flash memory controller 101
6.3.4 Overall Flash memory access latency 106
6.3.5 Wear level aware behavior 106

VII. RELATED WORKS . 110
7.1 Chip Multiprocessor Architectures 110
7.2 3D Stacking Technology . 111
7.3 Non-uniform Memory Architecture 111
7.4 Investigating the impact of emerging memory technology devices111

VIII. CONCLUSIONS AND FUTURE WORKS 113
8.1 Thesis Summary . 113
8.2 Future Work . 114

8.2.1 Managing datacenter energy efficiency at the rack level114

v

8.2.2 Improving on-chip interconnect bandwidth with op-
toelectronic devices 114

8.2.3 Delivering single threaded performance in server work-
loads . 115

8.2.4 Identifying a usage model for upcoming new memory
devices . 115

8.2.5 Architectural support for future server workloads . . 115

BIBLIOGRAPHY . 117

vi

LIST OF FIGURES

2.1 A Typical 3 Tier Server Architecture. Tier 1—Web Server, Tier 2—
Application Server, Tier 3—Database Server 7

2.2 Power breakdown of T2000 UltraSPARC executing SpecJBB 9
2.3 Example of a 3 layer 3D IC . 11
2.4 (a) Flash threshold voltage behavior as Flash wears out (b) Flash

wear-out behavior for varying oxide thickness [73] 18

3.1 Processor power versus frequency plot generated from calibrating the
well-known cubic law and voltage, frequency plot for 24FO4 using
PTM 90nm process technology[16] 25

4.1 A diagram depicting the PicoServer: a CMP architecture connected
to a conventional DRAM using 3D stacking technology with an on-
chip NIC to provide low-latency high-bandwidth networking. 30

4.2 Breakdown in DRAM latency for DEC:decode, WL:wordline, SA:sense
amplifier, SA I/O:sense amplifier I/O and DR I/O: driver I/O. Clearly
shows a reduction in DRAM latency bringing DRAM on-chip. . . . 30

4.3 Block diagram of two conventional platforms and PicoServer. (a)
general purpose processor platform, (b) conventional CMP platform
without 3D stacking, (c) PicoServer platform using 3D stacking . . . 31

5.1 Impact of multi-threading for varying memory latency on SURGE
for varying 4 way set associative cache sizes(8KB, 16KB, 32KB) and
varying number of threads. We assume the core is clocked at 500MHz 36

5.2 Impact of multi-threading for Mbps/mm2 when varying memory la-
tency on SURGE. The same setup and assumptions in 5.1 are applied. 37

5.3 Interconnect traffic measured for 4 way 16KB 128 byte L1 cache . . 38
5.4 Network performance for various shared bus architectures based on

our L1 cache size—16KB on SURGE. We assumed a CPU clock fre-
quency of 500MHz for these experiments. Our bus architecture must
be able to handle high bandwidths as the number of processors increase. 39

5.5 Maximum interconnect clock frequency roadmap for global and local
wires with wire lengths of 10mm . 40

5.6 Virtualized NIC architecture . 41
5.7 Adding multiple disk controllers to improve overall throughput . . . 42

vii

5.8 Breakdown in memory for server benchmarks (SURGE, SPECWeb99,
Fenice, dbench) . 44

5.9 Breakdown in memory for server benchmarks (SPECWeb2005, TPC-
C) TPC-H is excluded because it displayed similar memory usage as
TPC-C. 45

5.10 on-chip DRAM read timing diagram 47
5.11 A diagram depicting the thermal analysis performed on architectures

using 3D stacking technology. 49
5.12 Maximum junction temperature for sensitivity experiments on Hotspot.

(a)varying the number of layers, (b)varying 3D interface thickness,
(c)varying location of logic die. A core clock frequency of 500MHz is
assumed in calculating power density. We varied the size of on-chip
memory based on the number of layers stacked. 1 layer assumes no
on-chip memory at all. 50

5.13 Maximum junction temperature for heatsink quality analysis. 51
5.14 System architecture of datacenter using PicoServers, (a) 3D stacking

block diagram of PicoServers, (b) Platform level block diagram of
PicoServers . 53

5.15 Throughput measured for varying processor frequency and processor
type. For PicoServer CMPs, we fixed the on-chip data bus width to
1024bits and bus frequency to 250MHz. For a Pentium 4-like config-
uration, we placed the NIC on the PCI bus and assumed the memory
bus frequency to be 400MHz. For a MP4, MP8 without 3D stacking
configuration, to be fair we assumed no support for multithreading
and a L2 cache size of 2MB. The external memory bus frequency was
assumed to be 250MHz. (SURGE, SPECweb99, Fenice) 55

5.16 Throughput measured for varying processor frequency and processor
type. (SPECweb2005), we applied the same assumptions used in
Figure 5.15 . 56

5.17 Throughput measured for varying processor frequency and processor
type. (dbench, TPC-C, TPC-H), we applied the same assumptions
used in Figure 5.15. For TPC-H, out-of-order core performance was
measured on a real machine because the simulation time would be
weeks. 57

5.18 Breakdown of average power for 4, 8, 12 PicoServer architectures us-
ing 3D stacking technology for 90nm process technology. Estimated
power per workload does not vary by a lot because the cores con-
tribute to a significant portion of power. We expect 2 ∼ 3W to be
consumed at 90nm. An MP8 without 3D stacking operating at 1GHz
is estimated to consume 8W at 90nm.) 59

5.19 Energy efficiency, Performance pareto chart generated for 90nm pro-
cess technology. 3D stacking technology enables new CMP architec-
tures that are significantly energy efficient. (SURGE, SPECWeb99,
Fenice) . 61

viii

5.20 Energy efficiency, Performance pareto chart generated for 90nm pro-
cess technology. (SPECWeb2005) 62

5.21 Energy efficiency, Performance pareto chart generated for 90nm pro-
cess technology. 3D stacking technology enables new CMP architec-
tures that are significantly energy efficient. (dbench, TPC-C,TPC-H) 63

6.1 (a) Disk cache access behavior on the server side for client requests.
We measured for 4, 8, 12 multicore configurations and varied the
DRAM size. (b) A typical cumulative distribution function of a client
request behavior. 90% of requests are for 20% of the web content files. 67

6.2 Measured network bandwidth for full system simulation while vary-
ing access latency to a secondary disk cache. We assumed a 128MB
DRAM with a slower memory of 1GB. We measured bandwidth for 4,
8, 12 multicore configurations. The secondary disk cache can tolerate
access latencies of hundreds of microseconds while providing equal
network bandwidth. 68

6.3 We show an example of a 1GB DRAM replaced with a smaller 128MB
DRAM and 1GB NAND Flash memory. Additional components are
added to control the Flash memory. The total die area required in
our multichip memory is 60% the size of a conventional DRAM-only
architecture. 70

6.4 Splitting FlashCache into a read optimized and write optimized cache. 74
6.5 A miss rate comparison for a unified FlashCache and a read, write

separated FlashCache. Based on the observed write behavior, 90%
of Flash is dedicated as a read optimized cache and 10% of Flash is
dedicated as a write optimized cache 75

6.6 High-level block diagram of a programmable Flash memory controller 78
6.7 High-level block diagram of a BCH and CRC encoder/decoder inter-

facing with NAND Flash memory. 78
6.8 BCH decode execution time on (a) x86 assuming page size of 2KB,

(b) shows the execution time for varying block size on a 2 error cor-
recting BCH decode executed on a x86. (c) embedded processor (in-
order 100MHz) with highly parallelized modular arithmetic support,
Berlekamp acceleration engine and highly parallelized Chien search
engine. Figures clearly suggest there should be an accelerator for ECC. 80

6.9 Maximum tolerable Flash P/E cycles for varying code strength. Lin-
ear and exponential analytical models are considered. We assume
Flash page size to be 2KB and first point of failure to occur at 100,000
P/E cycles. 84

6.10 Available Flash page versus Flash P/E cycles. Linear and exponential
analytical models are considered,We assume Flash page size to be 2KB
and first point of failure to occur at 100,000 P/E cycles. 85

6.11 Dual mode Flash memories are possible for MLC by controlling the
program voltage level . 85

ix

6.12 Simplified schematic diagram of sense and latch buffer with single-
bit-per-cell option transistor[35]. The circled transistor is the single-
bit-per-cell option transistor . 86

6.13 Optimal FlashCache access latency and partition 86
6.14 Program/Erase time control to mitigate Flash wear-out [73] 88
6.15 Block diagram of how Flash is accessed based on the filesystem mapped

to Flash or role of Flash (FlashCache) 93
6.16 Garbage collection (GC) overhead in time versus occupied Flash space

in a 2GB Flash, GC overhead in time is a product of GC frequency
and GC latency. It is normalized to the overhead at 10% 94

6.17 A throughput comparison for various system memory configurations
using the FlashCache. The rightmost points are for a DRAM-only
system.(SURGE, SPECWeb99, Fenice) 98

6.18 A throughput comparison for various system memory configurations
using the FlashCache.(SPECWeb2005-bank, ecommerce, support) . 99

6.19 A throughput comparison for various System memory configurations
using the FlashCache. (dbench, TPC-C) 100

6.20 Die area . 101
6.21 Overall memory power consumption breakdown. Our FlashCache ar-

chitecture reduces idle power by several orders of magnitude. For
powerdown mode in DRAM, we assume an oracle powerdown algo-
rithm. (SURGE, SPECWeb99, Fenice) 102

6.22 Overall memory power consumption breakdown. Identical assump-
tions from 6.21 applied. (SPECWeb2005-bank, ecommerce, support) 103

6.23 Overall memory power consumption breakdown. Identical assump-
tions from 6.21 applied. (dbench, TPC-C, TPC-H) 104

6.24 Breakdown of configuration changes due to wear-out 105
6.25 Normalized comparison of overall average access latency to Flash . . 107
6.26 Flash memory endurance while varying the Flash memory size in

the FlashCache architecture. Temporal endurance in years, assuming
Flash memory endurance of 1,000,000 cycles 108

6.27 Normalized expected lifetime given the access rate and tolerable wear-
out . 109

x

LIST OF TABLES

2.1 Behavior of Commercial Workloads adapted from [59] 8
2.2 ITRS projection [27] for 3D stacking technology, memory array cells

and maximum power budget for power aware platforms. ITRS pro-
jections suggest DRAM density exceeds SRAM density by 15 ∼ 18×
entailing large capacity of DRAM can be integrated on-chip using 3D
stacking technology as compared to SRAM. 11

2.3 3D stacking technology parameters[44][29][68] 12
2.4 Cost and power consumption for conventional DRAM, NOR, NAND

Flash memory. NAND Flash is the most cost-effective while consum-
ing the least amount of power.[78][62] 12

2.5 ITRS 2005 roadmap for Flash memory technology. NAND Flash is
projected to be upto 7∼8× as dense as DRAM. Flash memory en-
durance improves by an order of magnitude approximately every 5∼6
years. Data retention is over 10 years which is a long time for server
platforms.[27] . 13

3.1 Commonly used simulation configurations. System memory latencies
are generated from DDR2 DRAM models. L2 cache unloaded latency
for single core and multicore configurations differ due to longer global
interconnect lengths in multicore platforms[60]. 20

3.2 Flash memory and hard disk drive configurations in our studies. . . 20

4.1 Bandwidth and latency suggest on-chip DRAM can easily provide
enough memory bandwidth compared to an L2 cache noted in [60][85].
Average access latency for DRAM is estimated to be tRCD+tCAS

where tRCD denotes RAS to CAS delay and tCAS denotes CAS de-
lay. For, XDRAM tRAC−R is used where tRAC−R denotes the read
access time. 29

5.1 Branch Prediction Rates for various server workloads 33
5.2 Published and synthesized power consumption and die size for various

microprocessors[36][2][15][12][9][83][84] 34
5.3 Parasitic interconnect capacitance for on-chip 2D,3D and off-chip 2D

for a 1024 bit bus . 38
5.4 DRAM die size from various vendors noted in Semiconductor Sour-

ceInsight 2005 [69] . 43

xi

5.5 Projected on-chip DRAM size for varying process technologies. Area
estimates are generated based on Table 5.4. 80mm2 of die size is
similar to that of a Pentium M at 90nm. 46

5.6 Thermal parameters for commonly found materials in silicon devices 48

6.1 The fields of the FlashCache tag structure which are entries to the
FCHT . 71

6.2 The fields of the flash block status structure which are entries to the
FBST . 72

6.3 The fields of the flash page status structure which are entries to the
FPST . 89

6.4 The fields of the flash global status structure which are entries to the
FGST . 89

xii

ABSTRACT

ARCHITECTING ENERGY EFFICIENT SERVERS

by

Tae Ho Kgil

Chairperson: Professor Trevor N. Mudge

This dissertation investigates how energy efficient servers can be architected using

current and future technology. We leverage recent trends in packaging and device

technology to deliver low power and high throughput. Specifically at the package

level, this dissertation looks at 3D stacking technology that has emerged as a promis-

ing solution in achieving energy efficiency by delivering high throughput at a low cost.

It shows how one would leverage this new technology into a datacenter. 3D stacking

technology can be used to implement a simple, low-power, high-performance chip

multiprocessor suitable for throughput processing. Our proposed architecture lever-

aging this technology, PicoServer, employs 3D technology to bond one die containing

several simple slow processing cores to multiple memory dies sufficient for a primary

memory. The multiple memory dies are composed of DRAM. 3D stacking technology

also enables wide low-latency buses between processors and memory. These remove

the need for an L2 cache allowing its area to be re-allocated to additional simple

cores. The additional cores allow the clock frequency to be lowered without im-

pairing throughput. Lower clock frequency along with the integration of non-volatile

memory in turn reduces power and means that thermal constraints, a concern with 3D

stacking, are easily satisfied. The PicoServer architecture targets server applications,

xiii

which exhibit a high degree of thread level parallelism. An architecture targeted to

efficient throughput is ideal for this application domain.

At the memory device level, this dissertation investigates how the system memory

could be re-architected to reduce the rising power consumption of system memory

and disk drives. Flash memory has emerged as a strong candidate to reduce system

memory power while remaining cost effective than conventional system memory. This

dissertation discusses how Flash could be integrated at the system level and provides

insights on the architectural support for Flash in servers. Our architecture uses a two

level disk cache composed of a relatively small DRAM, which includes a primary disk

cache, and a Flash based secondary disk cache. Further, based on our observations,

we found that the Flash based disk caches should be split into a read optimized disk

cache and write optimized disk cache.

xiv

CHAPTER I

INTRODUCTION

Datacenters are an integral part of today’s computing platforms. It has received

much attention by embracing the Internet and successfully connecting today’s end

users to the World Wide Web. With the growing importance of servers found in

internet service providers like Google and AOL, energy efficiency has become a critical

task. Low power systems such as blade servers have been introduced to reduce power

in conventional power hungry server farms. Server farms based on off-the-shelf general

purpose processors are unnecessarily power hungry, require expensive cooling systems

and occupy a large space. It has been shown that 25% of the operating costs for

these ”server farms” can be directly or indirectly attributed to power consumption

[74]. This figure has the potential to grow rapidly along with the continuing growth

in web services.

Naturally much effort should be invested in reducing power costs and introducing

new architectures that are energy efficient in datacenters. Unfortunately, this cannot

be achieved using conventional techniques that primarily focussed on the micropro-

cessor. With current advances in technology, it is apparent that performance and

power should be handled at the system level. Today’s system architects should rec-

ognize this trend and focus their attention in improving energy efficiency. Starting

from the system memory to the I/O peripheral, an architect should re-consider the

cost and benefit of integrating and building platforms that scale well and provide high

throughput.

There are many technological solutions that enable us to provide high throughput

and possibly provide a better organized interconnection network. The recent intro-

duction of new memory technology may also result in a drastic change in the system

memory hierarchy. This dissertation intends to provide several insights that shows

how a system architect could build computing platforms for energy efficient datacen-

ters. We will show how advances in packaging technology (3D stacking technology)

benefit the datacenter and how recent advances in memory devices could impact the

1

overall organization of the system memory as well as the storage hierarchy while

reducing overall system memory power consumption.

3D stacking technology has emerged as a driving force enabling new chip multipro-

cessor (CMP) architectures that significantly improve energy efficiency. Our proposed

architecture using 3D stacking technology called PicoServer, employs 3D technology

to bond one die containing several simple slow processor cores to multiple memory

dies that form the primary memory. In addition, 3D stacking enables a memory to

processor interconnect that is both very high bandwidth and low latency. As a result

the need for complex cache hierarchies is reduced. The die area normally spent on a

L2 is better spent on additional processor cores. For example, in our experiments we

show that an L2 cache can be replaced by 4 extra cores. The additional cores means

that they can be run slower without affecting throughput. Slower cores also allow us

to reduce power dissipation and with it thermal constraints, a potential roadblock to

3D stacking.

In addition, because many server workloads require a modest amount of compu-

tation power, a large amount of their performance depends heavily on memory, I/O

bandwidth along with their access latency. To mitigate I/O latency and bandwidth,

especially latency in hard disk drives, server farms typically use large system mem-

ories that try to map the entire fileset onto memory, by caching the whole fileset

onto DRAM. Unfortunately, as the filesets grow in size and they require a substantial

amount of DRAM. Furthermore, large amounts of DRAM consumes a large portion

of overall system power. Today’s typical servers come with large quantities of main

memory—4∼32GB and have been reported to consume as much as 45W in DRAM

idle power[23]. If we consider that the Niagara core inside the Sun T2000, a typical

server, consumes about 63W, we can clearly see that DRAM idle power contributes

to a large portion of overall system power.

With the availability of low power memory devices like non-volatile Flash, there is

an opportunity to reduce overall system power consumption while improving memory

throughput. Flash has generally been found to scale well and provide more storage

density due to the cell dimensions. With the wide-spread adoption of multi-level cell

technology, it is expected to be more than 4 times denser than DRAM. The cost-

effectiveness and low power consumption of Flash has introduced many interesting

ways of leveraging this on today’s datacenters. A good example would be the memory

access behavior in system memory found in a web server workload. It shows an access

latency of tens to hundreds of microseconds can be tolerated when accessing a large

part of a disk cache without affecting throughput. This is due to the multi-threaded

2

nature of server applications that allows modest access latency of microseconds to

be hidden. The resulting non-uniform memory hierarchy consumes less power while

performing equally well as a flat DRAM-only system memory. These characteristics

make a strong case for using Flash as a secondary disk cache. Their continued rapid

improvement is supported by their growing usage in a wide variety of high volume

commercial products. Flash consumes orders of magnitude less idle power and are

cheaper than DRAM, especially NAND Flash, making them an excellent component

used for energy-efficient computing.

By combining innovative packaging technologies like 3D stacking technology and

innovative memory devices like Flash we will show that it is possible to cut power

requirements further. They enable the following key improvements:

• 3D stacking

– High bandwidth buses between system memory and L1 caches

that support multiple cores—1000’s of low latency connections

with marginal area overhead between dies are possible.

Because much of the memory to processor interconnect traffic using 3D

stacking technology is on-chip and able to sustain high traffic at a low

cost, we are able to implement scalable wide buses with a relatively lower

power budget compared to inter-chip implementations. Implementations

not using 3D stacking technology rely on narrower processor to memory

interfaces. High memory bandwidth is achieved by customized I/O inter-

faces that use complex and power hungry drivers.

– Modification in the memory hierarchy due to the integration of

large capacity on-chip DRAM.

It is possible to remove the L2 cache and replace it with more processing

cores. The access latency for the on-chip DRAM is also reduced because

address multiplexing and off-chip I/O pad drivers [71] are not required.

Recent trends in DRAM interfaces have shown that it is becoming more

power consuming and time consuming to achieve high frequency for off-

chip DRAM interfaces.

– Overall reduction in system power primarily due to the reduc-

tion in core clock frequency and integrating commonly accessed

peripherals

The benefits of 3D stacking stated in items 1 and 2 allow us to integrate

more cores clocked at a modest frequency—in our work 500-1000MHz—

3

on chip while providing high throughput. Reduced core clock frequency

allows their architecture to be simplified; for example, by using shorter

pipelines with reduced forwarding logic. Additional components could also

be integrated on-chip. The interface to these components can also be

simplified and implemented to be less power hungry compared to off-chip

I/O interfaces.

• Integrating Flash onto system memory

– Overall cost reduction in system memory.

Using a hybrid system memory (DRAM + Flash) is a much more cost-

effective solution than a DRAM-only based solution. The density of Flash

exceeds DRAM by more than 2×, which is reflected in the reduced cost

per bit of Flash. Therefore, the total cost of system memory is much less

costly than a DRAM-only solution.

– Reducing system memory power and disk power The physical char-

acteristics of Flash significantly reduces idle power in system memory. The

storage density of Flash enables more files to be cached on Flash than

DRAM. It also results in a reduction in disk power consumption because

disks are likely to spin down more often with bigger disk caches.

– Quicker startup time compared to conventional DRAM-only plat-

forms.

The nonvolatile property in Flash implies disk cache warm up is not nec-

essary after boot up. For database applications, that may potentially use

Flash as a log file, it enables quicker recovery time when databases crash.

Of course, there are potential drawbacks in applying these solutions. The potential

drawback for 3D stacking, now that the technology has been shown to be feasible, is

thermal containment. However, this is not a limitation for the type of simple, low

power, cores that we are proposing, as we show in section 5.3. In fact the ITRS

projections of Table 2.2 predicts that systems consuming just a few watts do not even

require a heat sink. The drawback of Flash is guaranteeing endurance and reliability.

However, these problems have existed in disk drives for several decades and many of

the techniques used in disk drives can be adopted and applied in Flash.

The dissertation is organized as follows. In the next Chapter we provide back-

ground for this dissertation by describing the current state and behavior of servers,

a brief overview of 3D stacking technology and advances in memory technology. In

4

Chapter III, we outline our methodology for the design space exploration. In Chap-

ter IV and V, we provide an overview and details of the PicoServer architecture.

Chapter VI shows how we integrate Flash onto system memory to reduce overall

system memory power. In Chapter VII, we discuss previous work explored in the

areas of 3D stacking, chip multiprocessors, non-uniform memory architectures and

investigating the impact of emerging memory devices. A summary and concluding

remarks are given in Chapter VIII.

5

CHAPTER II

BACKGROUND

This chapter discusses in detail the current state of server platforms, 3D stacking

technology and memory technology. We first show how servers are currently deployed

in datacenters and analyze the behavior of current server workloads. Next, we explain

the state of 3D stacking technology and how it is applied in this dissertation. Finally,

we show the advances in memory technology. We explain the current and future

trends in DRAM that is typically used as system memory. We describe the strengths

and weaknesses of Flash.

2.1 Server platforms

2.1.1 3 Tier Server Architecture

Today’s datacenters are commonly built following a 3 Tier Server Architecture. Fig-

ure 2.1 shows a 3 Tier server farm and how it might handle a request for service. The

first tier handles the bulk of the requests from the client. Tier 1 server applications

handle events on a per-client basis, which are independent and display high levels of

thread level parallelism. Tier 1 servers handle web requests and forwards requests

that require intensive computation or database accesses to Tier 2. Tier 2 servers that

are commonly known to be computationally intensive, execute user applications that

interpret script languages and primarily makes decisions on what objects (typically

database objects) should be accessed. Tier 2 servers generates database requests to

Tier 3 servers. Tier 3 servers receive database queries and sends the results back to

Tier 2 servers.

For example, when a client request comes in for a Java Servlet Page, it is first

received by the front end server—Tier 1. Tier 1 recognizes a Java Servlet Page that

must be handled and initiates a request to Tier 2 typically using Remote Message

Interfaces (RMI). Tier 2 initiates a database query on the Tier 3 servers, which in

6

IP Services
Frontend

Application
Services

Data
Backup
Services

Internet

TIER 1 TIER 2 TIER 3
HTTP Response

HTTP Request Invoke Component

Response Return Results

Invoke Query

Execute
Query

Web Server Application
Server

Database Server

Figure 2.1: A Typical 3 Tier Server Architecture. Tier 1—Web Server, Tier 2—Application Server,
Tier 3—Database Server

turn generate the results and send the relevant information up the chain all the way

to Tier 1. Finally, Tier 1 sends the generated content to the client.

Another excellent example of a 3 Tier Server Architecture can be found in Google’s

platform. Google adopts a 3 Tier Architecture to enable quick search response time.

The Google Web Server (GWS) acts as a Tier 1 server that directly connects with

the client. A load balancer sits in between the GWS and the client to evenly balance

and effectively utilize each GWS in Google’s datacenter. The GWS is responsible for

forwarding client requests to Tier 2, 3 servers and later generating the HTML web

page that is delivered to the client. Google’s Tier 2 server called an ’Index Server’

generates document IDs that are relevant to the search text submitted by the user.

It is the most computationally intensive server that is essentially a decision support

system in Google’s datacenter. Document IDs that are generated from Google’s

Index Server are sent to Google’s Tier 3 ’Document Server’ that generates document

summaries by looking up the database. These results are sent back to the Tier 1

GWS which delivers the HTML result page to the client.

3 Tier Server Architectures are commonly deployed in today’s server farm because

it is able to optimize each distinctive workload characteristic and provide better en-

ergy efficiency by optimizing platforms to meet these characteristics.

2.1.2 Server workload characteristics

This section describes the individual workload behavior of applications commonly

found in server farms. It is well-known that server workloads display a high degree

of thread-level parallelism (TLP) since connection level parallelism through client

7

Attribute Web99 JBOB
(JBB) TPC-C SAP 2T SAP 3T

DB TPC-H

Application
Category

Web
Server

Server
Java OLTP ERP ERP DSS

Instruction Level
Parallelism low low low med low high

Thread Level
Parallelism high high high high high high

Instruction/Data
working-set large large large med large large

Data Sharing low med high med high med

I/O Bandwidth high
(network) low high

(disk)
med

(disk)
high
(disk)

med
(disk)

Table 2.1: Behavior of Commercial Workloads adapted from [59]

connections can be easily translated into thread level parallelism (TLP). Table 2.1

shows the behavior of commercial server workloads. Most of the commercial work-

loads display high TLP and low instruction-level parallelism (ILP) with the exception

of decision support systems. Conventional general-purpose processors, however, are

typically optimized to exploit ILP. These workloads suffer from a high cache miss rate

regularly stalling the machine. This leads to a low instructions per cycle (IPC) and

poor utilization of processor resources. Our studies have shown that except for com-

putation intensive like PHP application servers, video streaming servers and decision

support systems, out-of-order processors have an IPC between 0.21 ∼ 0.54 for typical

server workloads requiring modest computation even with a large L2 cache of 2MB.

These workloads do not perform well because much of the requested data has been

recently DMAed from the disk to main memory, invalidating cached data at that ad-

dress and initiating a cache miss. Therefore, we can generally say that single-thread

optimized out-of-order processors do not perform well on server workloads. Another

interesting property of most server workloads including these is the vast amount of

time spent in kernel code. Unlike SPECCPU benchmarks, server workloads spend an

appreciable amount of time in kernel mode. This section of code is largely comprised

of interrupt handling in the NIC or disk driver, packet transmission, network stack

processing and disk cache processing.

Finally, a large portion of requests are centered around the same group of files.

These file accesses translate into memory and I/O accesses. Due to the modest com-

putation, memory and I/O latency are critical to high performance. Therefore, disk

caching in the system memory plays a critical part in providing sufficient throughput.

Without a disk cache, the performance degradation due to the hard disk drive latency

8

SunFire T2000 Power running SpecJBB

Processor
16GB memory
I/O
Disk
Service Processor
Fans
AC/DC conversion

Total Power 271W

Figure 2.2: Power breakdown of T2000 UltraSPARC executing SpecJBB

would be unacceptable.

To perform well in these types of workloads an architecture must have a great

deal of TLP run multiple threads as well as the large amount of processing to decode

and encode the requested data. Thus a CMP or SMT architecture should be able to

better utilize the processor die area.

2.1.3 Conventional Server power breakdown

Figure 2.2 shows the power breakdown of a server platform available today. This

server uses a chip multiprocessor implemented with many simple in-order cores re-

sulting in less power consumption by the processor. The power breakdown shows that

1/4 is consumed by the processor, 1/4 is consumed by the system memory, 1/4 is con-

sumed by the power supply and 1/5 is consumed by the I/O interface. Immediately,

we can see that a large amount of system memory consumes a substantial amount of

power. This is expected to increase as the system memory clock frequency increases

to improve memory bandwidth along with increased system memory size. We also

find that despite using simpler cores that are energy efficient, a processor would still

consume a noticeable amount of power due to the delivered clock frequency. The

I/O interface consumes a large amount of power due to the high I/O supply voltage

required in off-chip interfaces. The I/O supply voltage is likely to reduce as we scale

9

in the future but won’t scale as much as the core supply voltage. This implies that

system level integration could further reduce power. And finally, we find that the

power supply displays some in-efficiency. This is due to the multiple levels of volt-

age it has to support and the over-provisioning of power supplies that results in less

efficient power supplies.

2.2 3D stacking technology

This section provides an overview of 3D stacking technology. In the past there

have been numerous efforts in academia and industry to implement 3D stacking

technology[33][63][57][68][87]. They have met with mix success. This is due to the

many potential challenges that need to be addressed in 3D stacking technology: 1)

Achieving high yield in bonding die stacks, 2) delivering power to each stack and

3) managing thermal hotspots due to the silicon dioxide 3D interface. However, the

large scale and competition typical of mobile untethered systems have re-initiated a

demand for small form factors with very low power. In response, several commercial

enterprizes have begun offering reliable low-cost die-to-die 3D stacking technologies.

In 3D stacking technology, dies are typically bonded as face to face or face to back.

Face to face bonds provide higher die to die via density and lower area overhead than

face to back bonds. The lower via density for face to back bonds attribute to through

silicon vias—TSVs that punch through silicon bulk. Using the bonding techniques

in 3D stacking technology, we can achieve a synergistic effect of stacking heteroge-

neous dies together. For example, architectures that stack conventional DRAM and

logic manufactured from different process steps. Furthermore, with the added third

dimension from the vertical axis, the overall wire interconnect length can be reduced

and wider bus width can be achieved at lower area costs. The parasitic capacitance

and resistance for 3D vias are negligible compared to global interconnect. We also

note that the dimensions and pitches of 3D vias add a modest area overhead. 3D via

pitches are equivalent to 22λ for 90nm technology, which is equivalent size of an 6T

SRAM cell. They are also expected to reduce as this technology becomes mature.

The ITRS roadmap in Table 2.2 predicts deeper stacks being practical in the

near future. The connections are by vias that run perpendicular to the dies. The

dimensions for a 3D interconnect via varies from 1 ∼ 3µm with a separation of

1 ∼ 6µm. Current commercial offerings can support 1,000,000 vias per cm2 [44].

Overall yield using 3D stacking technology is a product of the yield of each indi-

vidual die layer. Therefore, much effort must be put in achieving high yield per die.

10

2005 2007 2009 2011 2013
Low-cost/handheld #die/stack 6 7 9 11 13
SRAM density Mbits/cm2 84 138 225 365 589
DRAM density Mbits/cm2 at
production 1,220 1,940 3,660 5,820 9,230

NAND Flash density (SLC/MLC)
Mbits/cm2 at production

2,714/

5,706

4,835/

9,243

6,913/

13,568

10,745/

41,635

17,306/

69,225

Max. Power Budget for
cost-performance systems(W) 91 104 116 119 137

Max. Power Budget for
low-cost/handheld systems with
battery(W)

2.8 3.0 3.0 3.0 3.0

Table 2.2: ITRS projection [27] for 3D stacking technology, memory array cells and maximum
power budget for power aware platforms. ITRS projections suggest DRAM density exceeds SRAM
density by 15 ∼ 18× entailing large capacity of DRAM can be integrated on-chip using 3D
stacking technology as compared to SRAM.

Bulk Si

Active Si

Active Si

Bulk Si

Active Si

Bulk Si

Face to
Back
Bond

Face to
Face
Bond

Die to die
vias

Through
silicon vias

Figure 2.3: Example of a 3 layer 3D IC

11

Face-to-Back Face-to-Face RPI MIT 3D
FPGA

Size 1.2µ× 1.2µ 1.7µ× 1.7µ 2µ× 2µ 1µ× 1µ
Minimum Pitch < 4µ 2.4µ N/A N/A
Feed Through
Capacitance 2 ∼ 3fF ≈ 0 N/A 2.7fF

Series Resistance < 0.35Ω ≈ 0 ≈ 0 ≈ 0

Table 2.3: 3D stacking technology parameters[44][29][68]

This implies logic to memory stacking is a better choice than logic to logic stacking.

Memory devices are known to produce higher yield through many well-known tech-

niques. For example, refusing extra bitlines to compensate for defect cells, applying

single bit error correction logic to memory to compensate poor yield. Several studies

including [75] claim that DRAM yields are extremely high suggesting chips built with

a single logic layer and several DRAM layers generate yield close to the logic die.

2.3 Memory Technology

This section discusses the technological advances in memory technology. Advances in

memory technology potentially produces drastic changes in the overall platform archi-

tecture. In particular, we discuss advances in DRAM and Flash memory technology

in the next subsections.

2.3.1 DRAM

DRAM technology has improved side by side with logic technology. DRAM today

is offered in numerous types, often determined by the application space. For typical

desktop and server platforms, DDR2 DRAM has emerged as the primary solution for

system memory. FBDIMM DRAM that delivers higher throughput than DDR2 is

also emerging as a alternative solution. For graphics workloads, XDRAM, GDDR3

Density–
Gb/cm2 $/Gb

Active
Power∗

Idle
Power∗

Read
Latency

Write
Latency

Erase
Latency

Built-in ECC
support

DDR2 DRAM 0.7 48 878mW 80mW† 55ns 55ns N/A No

NOR 0.57 96 86mW 16µW 200ns 200µs 1.2s No

NAND 1.42 21 27mW 6µW 15µs 200µs 1.5ms Yes

∗ Power consumed for 1Gbit of memory
† DRAM Idle power in active mode. Idle power in powerdown mode is 18mW

Table 2.4: Cost and power consumption for conventional DRAM, NOR, NAND Flash memory.
NAND Flash is the most cost-effective while consuming the least amount of power.[78][62]

12

2005 2007 2009 2011 2013 2016
Flash NAND Cell size
–SLC/MLC∗(µm2)

0.0231/0.0116 0.0130/0.0065 0.0081/0.0041 0.0052/0.0013 0.0031/0.0008 0.0016/0.0004

Flash NOR Cell
size(µm2)†

0.0520 0.0293 0.0204 0.0117 0.0078 0.0040

DRAM Cell size(µm2) 0.0514 0.0324 0.0153 0.0096 0.0061 0.0030

Flash program/erase
cycles

1E+05 1E+05 1E+05 1E+06 1E+06 1E+07

Flash data retention 10-20 10-20 10-20 10-20 20 20

∗ SLC - Single level Cell, MLC - Multi Level Cell
† We assume a single level cell with smallest area size of 9F2 stated in the ITRS roadmap

Table 2.5: ITRS 2005 roadmap for Flash memory technology. NAND Flash is projected to be upto
7∼8× as dense as DRAM. Flash memory endurance improves by an order of magnitude
approximately every 5∼6 years. Data retention is over 10 years which is a long time for server
platforms.[27]

DRAM that can provide ultra high bandwidth are suitable solutions in this domain.

Finally, RLDRAM, NetRAM[3][18] that is appropriate for network workloads is gain-

ing strong acceptance in network applications as well as being used as an L3 cache.

Like its logic counterpart, DRAM technology will likely meet steep challenges in the

nanometer regime. However, they are expected to be resolved through enhancements

in process technology and the adoption of new transistor types like double gate tran-

sistors(FinFETs).

Looking ahead, with Flash memory emerging as a niche market for memory,

DRAM is likely to be 1∼2 generations behind Flash memory in terms of process

technology. Supply voltage is likely to scale with process technology and fitting the

pass gate transistor in DRAM will always remain a challenge. Recently, an alterna-

tive DRAM cell structure using SOI technology has received much attention. SOI

DRAM[47] uses the floating body effect in SOI to store the state of memory. SOI

DRAM is an appealing technology since 1) it can be built on a logic process and 2)

the cell dimensions are known to be smaller than than conventional DRAM cells. SOI

DRAM has shown strong promise in the IP block sector with companies like AMD

announcing to license this technology and use it in their future processors.

In summary, DRAM is still likely to scale and still has a strong case for achieving

high storage capacity at relatively acceptable access latency. The following subsec-

tions will provide an overview of current and near-future offerings of DRAM.

DDR2 DRAM

Double Data Rate 2 DRAM (DDR2 DRAM) improves DRAM bandwidth by trans-

ferring data at the positive and negative edge of a system clock. It has been widely

adopted in common desktop platforms. It has reached a point where the data rate has

13

reached GHz frequencies and raises issues with implementing high frequency off-chip

I/O interfaces.

XDR DRAM

XDR DRAM delivers ultra high bandwidth by implementing an aggressive analog

based high speed interface. It competes directly with DDR2 and other derivatives

of SDRAM. It uses a sensitive differential driver that is able to detect 200mV. This

driver enable transfer rates of several GHz. These high speed analog interfaces are

known to consume more power.

Fully Buffered DIMM (FB-DIMM) DRAM

FB-DIMM DRAM is a DRAM solution that enables DRAM to scale in bandwidth

and size while maintaining an acceptable signal integrity. Conventional memory con-

trollers directly connect to every DRAM module. As we increase the DRAM memory

width and the number of memory modules, the quality of the signal degrades sub-

stantially limiting the speed and the memory density. With FB-DIMM DRAM, the

memory controller does not connect to the memory module directly. Instead, the

memory controller connects to the Advanced Memory Buffer (AMB) with a serial

interface. Each memory module has a AMB that is either connected to another AMB

from another memory module or connected to the memory controller. The AMB can

compensate signal deterioration by buffering or resending the signal to the next AMB

or memory controller. The drawback however, is an increase in memory access latency

and high power consumption. Some applications may display dramatic performance

degradation due to the increased memory access latency.

RLDRAM

Reduced Latency DRAM (RLDRAM) reduces the random access latency of DRAM by

using a large number of banks and early writebacks to rows[3][18]. The large number

of banks enables bank interleaving reducing the wait time to access DRAM. Row

writebacks occur immediately after a DRAM read. DRAM reads are destructive and

must be accompanied with writeback. Other types of DRAM only writeback when

a row is closed. Rows are commonly closed when trying to access another DRAM

row. RLDRAM immediately performs a row writeback even when the current row

is being accessed. There is a power overhead in applying this aggressive writeback

scheme and an area overhead by using large number of banks. The area overhead

14

of RLDRAM is known to be approximately 10%. RLDRAM is commonly found in

routers and switches. It is also considered as a L3 cache in enterprize platforms.

Z-RAM

Z-RAM is a new DRAM cell promoted by Innovative Silicon Technologies [47] [41] [76].

It is built on top of a SOI silicon wafer and takes advantage of the Floating Body effect

in SOI. Theoretically, Z-RAM cells have a smaller cell dimension than conventional

DRAM cells but have not yet been implemented with this density. Innovative Sili-

con currently offers them with a storage density of 400Mbits/mm2 at 65nm process

technology[47]. The access latency to Z-RAM is found to be of several nanoseconds.

It is a promising technology and will add more density than SRAM. DRAM ven-

dors are also introducing similar DRAM cells and call it Floating Body Gate RAM

(FBRAM) at the research level. Successful implementations have been presented in

with similar characteristics [79] [75].

2.3.2 Flash memory

Flash memory has emerged as a storage device for mobile and embedded systems.

It has also recently been introduced as a way to mitigate disk drive latency. Hybrid

disk drives and Robson technology are a good example in showing the potential

of Flash as solid state storage devices. There are two types of Flash memory—

NAND and NOR—that are commonly used today. Each type of memory has been

developed for a particular purpose and has its own pros and cons. Table 2.4 and

Table 2.5 summarizes the properties of NAND and NOR along with DRAM. The

biggest difference, compared to DRAM, is when writing to a Flash. Flash memories

require a preceding erase operation to perform a write operation. The ITRS roadmap

projects single-level cell NAND Flash cell sizes to be 2∼4× smaller than DRAM cell

sizes and NOR Flash memory cell sizes to be similar or slightly bigger than DRAM cell

sizes. With the potential to support for multi-level cells, storage density is expected

to improve even more as shown in the ITRS roadmap. The following subsections

explain in detail the types of Flash memory currently available and discuss the wear-

out behavior of Flash.

Flash memory type

NOR NOR Flash memory was introduced early in the 1990’s. It was primarily used to

replace Read Only Memory (ROM) and intended to store critical code in a platform.

15

The memory is organized in a NOR like structure which enables relatively low read

latencies. However, due to the organization, writes and erases take a long time. The

read, write and erase latencies make a NOR Flash useful to directly executed code

for embedded battery power platforms. It is commonly found in cell phones that

typically require a tight power constraint to support long battery operation time. A

NOR Flash has a random read access time that is as fast as SDRAM. Since NOR

Flash performs relatively well for random read accesses, it is commonly used for

applications requiring fast access to code and data. Accordingly, NOR Flash has

typically been used to store code and data on handheld devices, PDAs, laptops, cell

phones, etc.

NAND As Flash emerged as a storage device, much effort was invested in im-

proving storage density. Due to the compactness of a NAND structure, NAND Flash

started to be widely adopted by trading in performance for storage density. For se-

quential digital content NAND Flash was an attractive solution and became widely

deployed with the proliferation of digital media. Compared to a NOR Flash, a ran-

dom read latency in a NAND Flash takes 10’s of microseconds. However, the write

and erase latency is less than a NOR Flash. NAND Flashes were originally built using

single-level cell technology. With the ability to implement multi-level cells with ac-

ceptable reliability, NAND Flash is able to deliver several GBytes storage today at a

low cost. In addition to lengthy random access time, NAND Flash also has issues with

reliability. NAND Flash is likely to be manufactured with faulty cells. Furthermore,

wear-out may cause good cells to become bad cells. NAND Flash comes with built-in

error correction code support to maintain reliability and extend the lifespan of Flash

memory. There have been implementations of file systems that extend the endurance

of NAND Flash memory to more than 5,000,000 cycles using BCH (Bose,Chaudhuri

and Hocquenghem) block codes[24].

A page in a NAND Flash is typically 2KB in size and used as a basic unit in

reading and writing. A block in a NAND Flash is composed of multiple pages—

typically 128 to 256 pages. The size of a block varies based on the cell type, where

MLC Flash has 256 pages per block whereas SLC Flash has 128 pages.

OneNAND To mitigate the lengthy random read latency in a NAND Flash, many

vendors came up with solutions integrating SRAM on-die with Flash to improve over-

all throughput and average access latency. Samsung’s OneNAND is a representative

solution for this effort. OneNAND uses a large SRAM cache to temporarily store

multiple Flash pages. This SRAM enables NAND Flash to reach access latencies

similar to or better than NOR Flash for many code intensive applications.

16

Flash wear-out behavior

Flash wear-out has remained a problem since it was introduced in the early 90’s.

Wear-outs occur because of program (write) and erase activities to Flash. The error

behavior of Flash cells due to wear-out has been well understood and published in

several papers. [53] compares a simplified analytical model with empirical results.

[73] presents empirical studies on the deterioration of Flash memory cells with pro-

gram and erase cycles. They have shown empirically that the primary cause of Flash

memory wear-out is due to the gradual increase in electrons getting trapped in the

floating gate. Figure 2.4(a) shows the change in threshold voltage as we increase the

number of program and erase cycles. Due to the gradual increase in trapped electrons,

the threshold voltage achieved after erase and program shifts to a different voltage

level and as a result the threshold voltage window gap decreases. The decrease in this

gap makes it difficult for the sense amplifier to differentiate between memory states.

[73] has stated that the degree of decrease in the threshold window gap is depen-

dent on the oxide thickness of the floating gate. Further, the 100,000 cycles guaranteed

by the manufacturers comes from the endurance a Flash memory cell with minimum

oxide thickness can achieve. Figure 2.4 (b) shows the relationship between oxide

thickness and wear-out. The y-axis shows the amount of time it takes to achieve

a certain tailed threshold voltage distribution which directly correlates to wear-out

when applying constant program and erase operations. The amount of time can be

viewed as the number of program and erase cycles. It shows an exponential relation-

ship with oxide thickness and wear-out. Thus, improving the quality and thickness

of oxide directly results in improving Flash endurance.

17

0
1
2
3
4
5
6
7
8
9

1 10 100 1,000 10,000 100,000

P/E cycles

Th
re

sh
ol

d
vo

lta
ge

"0" threshold voltage "1" threshold voltage

(a)

1

10

100

1,000

10,000

8 9 10 11

Oxide Thickness (nm)

Ti
m

e(
a.

u.
)

(b)

Figure 2.4: (a) Flash threshold voltage behavior as Flash wears out (b) Flash wear-out behavior
for varying oxide thickness [73]

18

CHAPTER III

METHODOLOGY

This chapter explains the methodology applied in modeling and simulating our

findings in this dissertation. We relied on a full system simulator to evaluate through-

put and analytical and empirical results generated from well-known models, publi-

cations and CAD tools for estimating power consumption and die area. They were

derived from data published by industry and academia [27][44][82][4][29][33]. Specif-

ically, timing and power for DRAM and Flash were obtained from IBM and Micron

technology datasheets [11]. Core, peripheral power is estimated using the well-known

cubic law and publications of real implementations. The architectural aspects of our

studies were obtained from a full system simulator called M5 [32] that is able to run

Linux and evaluate full system-level performance. A server connected to multiple

clients is modeled. The client requests are generated from user level network ap-

plications. A detailed description of our methodology is described in the following

subsections.

19

OO4-(small/large)
baseline/
w. 3D stacking

Conventional CMP
MP(4/8/12) w.o. 3D

stacking

PicoMP(4/8/12)-
(500MHz/1000MHz)∗

Clock Frequency 4GHz 1GHz 500MHz/1GHz
Number of
Processors 1 4/8 4/8/12

Processor Type out-of-order in-order in-order
Issue Width 4 1 1

L1 cache 2 way 16/128KB 4 way 16KB
per core

4 way 16KB
per core

L2 cache 8 way 256KB/2MB
7.5ns unloaded latency

8 way 2MB 16ns
unloaded latency N/A

Memory Bus Width 64bit at 400MHz/
1024bit at 250MHz 64bit at 250MHz 1024bit at 250MHz

System Memory 512MB DDR2 512MB DDR2 128/192/256MB
DRAM

∗ PicoServer platform using 3D stacking technology. The core clock frequency of PicoServer is
typically 500MHz. PicoServer configurations with 1GHz core clock frequency are later used to
show the impact of 3D stacking technology.

Table 3.1: Commonly used simulation configurations. System memory latencies are generated from
DDR2 DRAM models. L2 cache unloaded latency for single core and multicore configurations
differ due to longer global interconnect lengths in multicore platforms[60].

Server configuration parameters

NAND Flash
Memory

256MB/512MB/1GB/2GB/4GB
fully associative 128KB logical block size
random read latency 25µs
write latency 200µs
erase latency 1.5ms
bandwidth 50MB/s

IDE disk average access latency 6ms
bandwidth 300MB/s

Table 3.2: Flash memory and hard disk drive configurations in our studies.

20

3.1 Simulation Studies

3.1.1 Full system architectural simulator

To evaluate the performance of our platform, we used the M5 full system simulator.

M5 boots an unmodified Linux kernel on a configurable architecture[32]. Multiple sys-

tems are created in the simulator to model the clients and server, and connected via

an ethernet link model. Peripheral devices (Flash, network interface card) that exist

on these systems can also be modeled in M5. The server side executes a server appli-

cation. The client side executes benchmarks that generate representative requests for

Tier 1, 2, 3 servers respectively. For comparison purposes we defined a Pentium 4-like

class system [84], and a chip multiprocessor-like system similar to [56]. We also looked

at configurations using 3D stacking technology on these platforms to investigate in

general the usefulness of this technology. Table 3.1 and Table 3.2 shows commonly

used configurations in our simulations.

3.1.2 Server Benchmarks

We use several benchmarks that directly interact with client requests. We used two

web content handling benchmarks SURGE[30] and SPECweb99[22] to measure web

server performance. Both benchmarks request filesets of more than a 1GB. A web

script handling benchmark SPECweb2005[21] using PHP is selected to represent

script workloads. A video streaming benchmark—Fenice[17] that uses the RTSP

protocol along with the UDP protocol is chosen to measure behavior for on-demand

workloads. For a file sharing benchmark we use an NFS server and stressed it with

dbench. Finally, we executed two database benchmarks to measure database perfor-

mance for Tier 2, 3 workloads.

SURGE The SURGE benchmark represents client requests for static web con-

tent. SURGE is a multi-threaded, multi-process workload. We modified the SURGE

fileset and used a zipf distribution to generate reasonable client requests. Based on

the zipf distribution a static web page which is approximately 12KB in file size is

requested 50% of the time in our client requests. We configured the SURGE client

to have 20 outstanding client requests. It has been shown in [37] that the number

of requests handled per second is consistent after 10 concurrent connections implying

20 concurrent connections is more than enough to fully utilize the server.

SPECweb99 To evaluate a mixture of static web content and simple dynamic

web content, we used a modified version of SURGE to request SPECweb99 filesets.

We used the default configuration for SPECweb99 to generate client requests. 70%

21

of client requests are for static web content and 30% are for dynamic web contents.

We also fixed the client request of SPECweb99 to have 20 outstanding requests with

the same principle applied from [37].

SPECweb2005 Scripting languages are a popular way to describe web pages.

SPECweb2005 offers 3 types of benchmarks. A Banking benchmark that emulates the

online banking activity of a user. A E-commerce benchmark that emulates the online

purchase activity. A Support benchmark that emulates the online stream activity. All

benchmarks require a dynamic web page to be generated from a script interpreter. We

use a PHP interpreter to measure the behavior of Tier 2 Servers. We used the simplest

version of the Zend optimizing cache[26] that caches interpreted PHP bytecode. The

client requests are generated from methods described for SPECweb99 and SURGE

clients.

Fenice On-demand video serving is also an important workload for Tier 1 servers.

For copyright protection and live broadcasts, the RTSP protocol is commonly used for

real-time video playback. Fenice is an open source streaming project [17] that provides

workloads supporting the RTSP protocol. We modified it to support multithreading.

Client requests were generated with a modified version of ’nemesi’, a RTSP supporting

MPEG player. ’nemesi’ is also from the open source streaming project. Unlike event

driven HTTP requests seen in SPECweb99 or SURGE, video streaming servers require

timing driven real-time packets to be constantly scheduled such that MPEG video

frames are delivered precisely to the client side. Therefore, it is reasonable to assume

the number of concurrent connections to be equal to the number of requests handled.

We generated multiple client requests that fully utilized the server CPUs for a high

quality 16Mbps frame rate, 720× 480 resolution MPEG2 standard file.

dbench This benchmark is commonly used to stress NFS daemons. In our tests

we used the in-kernel NFS daemon which is multithreaded and available in standard

Linux kernels. We generated NFS traffic using dbench on the client side that stressed

the file server. dbench generates workloads that both read and write to the file server

while locking these files so that a different client could not access it simultaneously.

OLTP On-line transaction processing is a typical workload executed on Tier 2,

3 Servers. The TPC council has described in detail benchmarks for OLTP. We have

used a modified version of TPC-C made available by the Open Source Development

Lab—OSDL— called DBT2 [14]. DBT2 generates transaction orders. Our database

server is MySQL 5.0. MySQL is a widely adopted DB Server. We use the InnoDB

storage engine that is known to support transactions and provide a reasonable amount

of scalability with multicores. We generated a 1GB warehouse which is commonly

22

used for small-scale computation intensive databases. We chose a small working-set

size due to the limitations in simulation. We selected a buffer pool size accordingly.

The query cache is disabled to prevent speedup in query time due to caching.

DSS Decision support is another typical workload used to evaluate Tier 2,3

Servers. We used TPC-H, the current version of a DSS workload. Again a mod-

ified version of TPC-H available by OSDL (DBT3) [14] is used in this study. We

loaded the TPC-H database onto mySQL and used the defined TPC-H queries to

measure performance. The query cache is disabled to prevent speedup in query time

due to caching. To reduce our simulation time to a reasonable amount, we only per-

formed multiple Q22 queries out of the many TPC-H queries and measured query

time.

3.1.3 Server Disk Traces

Much of our simulations can only capture a small fraction in time. The M5 simulator

typically is able to only process 20 seconds of execution time for 1 days simulation.

Because many of our simulation benchmarks displayed repetitive behavior, we believe

our throughput results were representative. However, when it came to long term disk

accesses, this would not be the case. 20 seconds in simulation time may not be

representative in disk access behavior because disk accesses occur very infrequently.

We overcame this problem by reducing the disk access latency but still found it

difficult to generate enough disk accesses. Therefore, we had to resort to publicly

available disk traces for server workloads. We found these workloads to be useful when

comparing our disk access patterns on M5 with these traces. These disk traces were

used extensively when conducting system memory and storage hierarchy analysis.

These disk trace are shown as follows:

Microbenchmarks Microbenchmarks are a quick and effective way in under-

standing how an architecture would behave in different usage models. In many in-

stances, real world benchmarks can later be identified to behave similar to a mi-

crobenchmark. We generated I/O traces for microbenchmarks that access files fol-

lowing an 1) exponential access probability distribution function, 2) zipf access prob-

ability distribution function and 3) uniform probability distribution function.

WebSearch Three I/O traces from several web search engines. These web search

traces are strictly read-only due to the nature of the workload itself. They were

measured for intervals of 50 minutes, 4 hours and 3.5 days. The UMass storage

repository provides these traces that profile time, logical block address, request size

read or write.

23

Financial Two I/O traces from different Financial institutes. These traces show

a notable amount of disk write behavior. They were measured for approximately 0.5

days. They are provided in a similar file format found in WebSearch.

3.2 Modeling the system level components—estimating

timing, power and area

Timing, power and die area estimation at the architectural level is difficult to do

with great accuracy. To make a reasonable estimation and show general trends, we

resorted to industry and academia publications on die area and we compared our

initial analytical power models with real implementations and widely used estimates

generated from CAD tools. We discuss how each component is modeled in the next

subsections.

3.2.1 Processors

We relied to a large extent on figures reported in [36][2][83] for an ARM processor to

estimate processor power and die area. The ARM is representative of a simple in-

order 32 bit processor. We extrapolated the die area and power consumption for our

cores at 500MHz from published data in [36][2][83][15][12][9]. For power consumption

at other core clock frequencies, for example 1GHz, we generated a power versus

frequency plot by calibrating the well-known cubic law [42] and frequency, voltage

plot for 24 FO4—fan out of 4 inverter chain using PTM 90nm process technology.

We assumed the logic depth of our PicoServer core to be 24FO4 from [83]. Figure 3.1

shows our plot.

64 bit support for a core used for servers seems inevitable in the future for address

sizes above 4GB. We expect the additional area and power overhead for 64 bit support

in a core to be modest when we look at the additional area and power overhead for

64 bit support in commercially available cores like MIPS and Xeon. As for the L2

cache, because we noticed numerous problems in power, area models in nanometer

technology for caches, we referred to [85] and scaled the area, power number generated

from real measurements. We assumed the power numbers in [85] were generated when

the cache access rate was 100%. Therefore, we scaled the L2 cache power by size and

access rate while assuming leakage power would consume 30% of the total L2 cache

power.

24

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

0 250 500 750 1000 1250
core frequency (MHz)

Po
w

er
 (W

)

90nm

Figure 3.1: Processor power versus frequency plot generated from calibrating the well-known cubic
law and voltage, frequency plot for 24FO4 using PTM 90nm process technology[16]

3.2.2 Interconnect considering 3D stacking technology

For the purposes of this study, we have adopted the data published in [27][44][82] as

typical of 3D stacking interconnects. In general, we found wafer to wafer—3D via,

interconnect capacitance to be below 3fF. We also verified this with extracted parasitic

capacitance values from 3D Magic, a tool recently developed at MIT. The extracted

capacitance was found to be 2.7fF, which agrees with the results presented in [44]. By

comparison with a 2D on-chip interconnect, based on [49], a global interconnect wire

was estimated to have capacitance of 400fF per millimeter. Therefore, we can assume

that the additional interconnect capacitance in 3D stacking vias are negligible. As for

the number of connections that are possible between dies a figure of 10,000 connects

per square millimeter is reported. Our needs are much less. From our studies, we

just need 1056 connections: 32 bits for our address bus and 1024 bits for the data

bus. For estimating the interconnect capacitance on our processor and peripheral

layer, we referred to [49] to generate analytical and projected values. We selected

a wire length of 12mm to account for 1.3 times the width/height of a 80mm2 die

and scaled the wire length accordingly for smaller die sizes. We assumed we would

gain a 33% reduction in wire capacitance compared to a 2D on-chip implementation

from projections on interconnect wire length reduction shown in [38]. Based on these

initial values, we calculated the number of repeaters required to drive the interconnect

range from 250 ∼ 400MHz from hspice simulations. We found we needed only a

25

maximum of 2 ∼ 3 repeaters to drive this bus since the frequency of this on-chip

wide bus was relatively slow. We measured the toggle rate and access rate of these

wires and calculated power using the well-known dynamic power equation to calculate

interconnect power.

3.2.3 Modeling DRAM and Flash memory

Timing, power, and die area estimation at the architectural level is difficult to esti-

mate with great accuracy. To make a reasonable estimation and show general trends,

we relied on industry and academia publications on die size area, power and perfor-

mance. We used published datasheets found in [19][11] to estimate timing and power

consumption. For die area estimation, we used published data found in [48][69] and

projections found in the executive summary of the ITRS roadmap [27]. We discuss

this further in the next subsections.

DRAM

The timing model for DRAM is generated from the Micron datasheets in [10]. Our

timing model also considers the DRAM command interfaces including address mul-

tiplexing, DRAM precharge, etc. This timing model is integrated onto the M5 simu-

lator. The Micron DRAM spreadsheet calculator generates DRAM power based on

inputs of reads, writes, and page hit rates [11]. From the platform simulator, we

profile the number of cycles spent on DRAM reads and writes, and page hit rates to

obtain average power. Our power estimates correlate well with numbers from [23].

For die area estimation, we used numbers generated from industry products found in

[69].

We made DRAM area estimates for the PicoServer using the data in [69]. Cur-

rently, it is reasonable to say that 80mm2 of chip area is required for 64MB of DRAM

in 90nm technology.

Conventional DRAM is packaged separately from the processor and is accessed

through I/O pad pins and wires on a PCB. However, for our architecture, DRAM

exists on-chip and connects to the processor and peripheral through a 3D stacking

via. Therefore, the pad power consumed by the packages, necessary for driving signals

off-chip across the PCB, should not be added in our design. Using the Micron DRAM

spreadsheet calculator[11], modified to not include pad power, and profile data from

M5 including the number of cycles spent on DRAM reads, writes and page hit rates,

we generated an average power for DRAM. We compared the estimated power from

references on DRAM and especially with the DRAM power values generated from the

26

SunFire T2000 Server Power Calculator[23]. The Micron spreadsheet uses actual cur-

rent measurements for each DRAM operation—read, write, refresh, bank precharge

etc. We assumed a design with a 1.8V voltage supply.

Flash memory

To understand the timing and power model for NAND Flash, we used several publi-

cations found in [19]. We assumed a multiple bit cell in this study and expect density

and bandwidth to continue to improve due to the high demand of Flash memory

in many commercial sectors. Our die area estimates that are used to compare with

DRAM are from [48] and we performed comparisons on similar process technologies.

Flash memory has begun to outpace DRAM in process technology resulting in Flash

to be 1 generation ahead of DRAM. To estimate the power consumption of Flash,

we used measurements from datasheets. Published numbers in datasheets represent

maximum power consumption. Therefore, our estimates are expected to be conserva-

tive compared to real implementations. The idle power of Flash memory is typically

3 orders of magnitude less than that of DRAM.

3.2.4 Modeling the disk drive

Disk drives are off-chip components that are connected using cables. The power con-

sumption of a disk drive can be measured empirically and modeled onto a simulator.

This method is well-known and prior work [45] has used it to show it agreed with

real measurements. We relied on datasheets commonly found in [20] to estimate disk

drive power at idle, active and standby mode and measured time spent in idle, active

and standby mode when simulating a platform on M5.

3.2.5 Network Interface Controller—NIC

Network Interface Controller power was difficult to model analytically due to lack

of information on the architecture of NICs. For our simulations, we looked at the

National Semiconductor 82830 gigabit ethernet controller. This chip implements the

MAC layer of the ethernet card and interfaces with the physical layer—PHY using the

Gigabit Media Independent Interface—GMII interface. For power, we analyzed the

datasheet and found the maximum power consumed by this chip to be 743mW[13].

This power number is for 180nm technology. Because much of our work is based

on 90nm process technology, we had to estimate power for 90nm. Fortunately, [1]

datasheet listed power values for 90nm technology. We used this value to estimate NIC

27

power. Although, our functional simulations are based on a different NIC, we believe

[1] would generate similar throughput. We assumed maximum power is consumed

when all the input and output pins were active. By doing so, we calculated the

number of bytes written and read from the chip and normalized it to the maximum

case. We assumed static power consumed 30% of the maximum chip power.

When estimating die area, we synthesized an open source version of a gigabit

ethernet controller. Our synthesized results using physical compiler showed that

1.2mm2 at 0.13µm process technology. We compared these results to scaled numbers

from [66] and found them to agree.

28

CHAPTER IV

OVERVIEW OF A PICOSERVER

ARCHITECTURE

This chapter and the next chapter provides the architecture of a system using

3D stacking technology. We will discuss in detail how 3D stacking can be leveraged

to implement extreme levels of integration and how the vast amount of throughput

between the processor and much of the memory and the I/O devices can produce an

energy efficient architecture. Our resulting architecture is called PicoServer.

Figure 4.1 shows the overall architecture of a platform leveraging 3D stacking

technology. For the purpose of our study we called this platform PicoServer. It is

composed of a single logic die stacked to 4, 8 layers of system memory. Our PicoServer

architecture uses face to face bonds for the logic die to memory die and face to back

bonds for memory to memory die stacking. The 3D vias function as interconnect

and thermal pipes. For our studies, we assume that the logic-based components—the

microprocessor cores, the network interface controllers (NICs), disk controllers and

peripherals—are on the bottom layer and conventional capacity-oriented DRAMs.

We are conservative in what we assume about stacking depth. For the purposes

of this study we assume a stack of 5, 9 dies. To understand the design space and

potential benefits of this new technology, we explored the trade-offs of different bus

widths, number of cores, frequencies, and the memory hierarchy in our simulations.

SDRAM DDR2
DRAM

XDR
DRAM

L2 Cache
at 1.2GHz

On-chip DRAM
3D IC

Bandwidth (GB/sec) 1.0 5.2 31.3 21.9 31.3
Average access

latency(ns) 30ns 25ns 28ns 16ns 25ns

Table 4.1: Bandwidth and latency suggest on-chip DRAM can easily provide enough memory
bandwidth compared to an L2 cache noted in [60][85]. Average access latency for DRAM is
estimated to be tRCD+tCAS where tRCD denotes RAS to CAS delay and tCAS denotes CAS delay.
For, XDRAM tRAC−R is used where tRAC−R denotes the read access time.

29

DRAM 4

DRAM 3

DRAM die #2
DRAM die #3

DRAM die #4
DRAM die #5

CPU11

NIC IO
CTRL

logic die #1

Logic

DRAM 1

DRAM 2

DRAM 3

DRAM 4

Heat sink

...
CPU0

MEM
CTRL

MEM
CTRL

Figure 4.1: A diagram depicting the PicoServer: a CMP architecture connected to a conventional
DRAM using 3D stacking technology with an on-chip NIC to provide low-latency high-bandwidth
networking.

0 5 10 15 20 25 30

Standard DRAM

Standard DRAM
w/o IO

Standard DRAM
w/o address
multiplexing

on-chip DRAM

DEC
WL
SA
SA I/O
DR I/O

10ns

17ns

18.6ns

26ns

Figure 4.2: Breakdown in DRAM latency for DEC:decode, WL:wordline, SA:sense amplifier, SA
I/O:sense amplifier I/O and DR I/O: driver I/O. Clearly shows a reduction in DRAM latency
bringing DRAM on-chip.

30

L2 cache

Out-of-
Order
Core

North
Bridge

DRAM
(Main

memory)

South
Bridge

Disk
Device NIC

(a)

L2 cache

Inorder
Core0

DRAM
(Main

memory)

Inorder
Core7…...

Disk
Device

NIC

(b)

On-chip
DRAM

Inorder
Core0

(Optional)
Off-chip

Main
memory
- Flash,
DRAM

etc.

Disk
Device

Inorder
Core11

NIC Off-chip
Bridge

…...

(c)

Figure 4.3: Block diagram of two conventional platforms and PicoServer. (a) general purpose
processor platform, (b) conventional CMP platform without 3D stacking, (c) PicoServer platform
using 3D stacking

We found bus widths of 1024 bits with a latency of 2 clock cycles at 250 MHz to

be reasonable in our architecture. In addition, we aim for a reasonable area budget

constraining the die size area to be below 80mm2 at 90nm process technology. Our

12 core PicoServer configuration which occupies the largest die area is conservatively

estimated to be approximately 80mm2. The die areas for our 4, 8 core PicoServer

configurations are respectively 40mm2 and 60mm2.

To understand the impact of bringing DRAM on-chip, Table 4.1 shows the latency

and bandwidth achieved for conventional DRAM, XDR DRAM, L2 cache and on-chip

DRAM using 3D stacking technology. Conventional DRAM and high throughput off-

chip DRAM uses high frequency to deliver bandwidth due to the limited amount of

externals pins available off-chip. But with 3D stacking using a 1024 bit wide bus, the

memory latency and bandwidth achieved in an on-chip DRAM can be comparable

to an L2 cache and XDR DRAM. This is primarily due to the wide bus width and

additional performance optimizing efforts that could be applied when removing the

die area invested in I/O related circuitry. This suggests an L2 cache is not needed if

stacking is used. Furthermore, the removal of off-chip drivers in conventional DRAM

reduces access latency by more than 50% [71] shown in Figure 4.2. This strengthens

our argument that on-chip DRAM can be as effective as an L2 cache. Therefore,

our PicoServer architecture does not have an L2 cache and the on-chip DRAM is

connected through a shared bus architecture to the L1 caches of each core. The role

of this on-chip DRAM is a primary system memory.

The commonly held belief of memory walls existing in DRAM, is a result of

DRAM vendors making more effort in delivering high bandwidth and high storage

31

density while neglecting to implement architectural techniques that reduce overall

access latency. We note that the access latency to DRAMs could be reduced when

applying well-known techniques in SRAMs that reduce latency. One example is the

reduced access latency found in RLDRAMs. As we have discussed in Chapter II,

it uses well-known architectural techniques such as subbanking to reduce the overall

access latency.

The PicoServer architecture is comprised of single issue in-order processors that

together create a chip multiprocessor which is a natural match to applications with a

high level of TLP [56]. Each PicoServer CPU core is typically clocked at 500MHz and

has an instruction and data cache, with the data caches using a MESI cache coherence

protocol. Our studies showed the majority of bus traffic is generated from cache miss

traffic, not cache coherence. This is due to the properties of the target application

space and the small cache—16KB size per core. With current densities, the capacity

of the on-chip memory stack in PicoServer is between hundreds of megabytes to

several gigabytes. In the near future this will rise to tens of gigabytes as noted in the

Table 2.2. Other components such as the Network Interface Controller (NIC), DMA

controller, and additional peripherals that are required in implementing a full system

are integrated on the CPU die.

The next chapter discusses in detail the architecture of PicoServer. It provides

data supporting our design decisions.

32

CHAPTER V

DETAILED DESCRIPTION OF PICOSERVER

This chapter describes in detail, the rational in architecting PicoServer which

leverages 3D stacking technology. Our design space exploration was conducted using

the M5 simulation environment. We first describe the architectural details of the logic

components and later describe the on-chip memory architecture.

5.1 Logic architecture of PicoServer

There are many logic components in PicoServer. The processing cores that are a

critical element in processing client requests and execute the operating system, I/O

peripherals like the Network Interface Card (NIC), Disk Controller that are critical

in delivering the content to system memory and the interconnect network that must

be able to handle the interactions between the cores, peripherals and memory. We

discuss them in the next subsections.

5.1.1 Using simple cores

PicoServer is made up of simple scalar in-order cores. A 32bit machine is assumed

for each core. Although, we expect it to increase to a 64bit machine in the near

Workload Branch Prediction Rate
SURGE 98.70%

SpecWeb99 97.06%
fenice 99.42%
dbench 97.92%

SpecWeb2005-bank 95.13%
SpecWeb2005-ecommerce 95.04%

SpecWeb2005-support 95.81%
dbt2-TPCC 96.16%
dbt3-TPCH 96.71%

Table 5.1: Branch Prediction Rates for various server workloads

33

L1 cache L2 cache clock frequency total power
total die

area(mm2)
Pentium 4 90nm 16KB 1MB 3.4GHz 89-103W 112

ARM11 MP core 90nm 16KB N/A 620MHz 267mW 2-3
Xscale 90nm 32KB N/A 1.5GHz 850mW 6-7∗

MIPS32 34K 90nm† 16KB N/A 500MHz 310mW 2-3

PowerPC405 90nm 16KB N/A 400MHz 76mW 2

Leon3 MP core 130nm‡ 16KB N/A 400MHz N/A 8-9

OpenRISC 130nm‡ 16KB N/A 154MHz N/A 4-5

PicoServer MP core 90nm§ 16KB N/A 500MHz 190mW 4-5

∗ Die area for a 90nm Xscale excludes L2 cache[83]
† MIPS32 34K supports multi-threading (2 kernel threads, 4 user threads)
‡ Values generated from Synopsys physical compiler
§ For the PicoServer core, we estimated our power to be in the range of an ARM11, Xscale

Table 5.2: Published and synthesized power consumption and die size for various
microprocessors[36][2][15][12][9][83][84]

future, 32bit machines seemed to work well with our simulation environment and

power/area estimates. Branch prediction is still useful in a server workload. The

processor has a typical hybrid branch predictor with a 1KB history table. Our studies

found in 5.1 showed the accuracy of the branch predictor for server workloads over

95%. We assume no support for multithreading. We will later describe the impact of

multithreading in later sections.

Each core also includes architectural support for a shared memory protocol and

a memory controller that is directly connected to DRAM. The memory controller re-

sponds to shared bus snoops and cache misses. On a request to system memory, the

memory controller delivers the address, data—for memory writes—and cpu ID—for

memory reads—which is used later for routing where the data should go on memory

reads. A die area analysis on the expected die area per core was conducted. We

collected several die area numbers available from ARM, MIPS, PowerPC and other

comparable scalar in-order processors. Table 5.2 lists these estimates along with val-

ues listed in [2][83][15][12][9] and a Pentium 4 core for comparison. We also synthe-

sized several 32bit open source cores that are computationally comparable to a single

PicoServer cores. We synthesized them using the Synopsys Physical compiler toolset.

Unfortunately, we did not have access to 90nm and below standard cell libraries. We

apply well-known scaling rules to estimate die area and power consumption. The

power values listed in Table 5.2 include static power. Our estimates for a 500MHz

PicoServer core are conservative compared to the ARM core values, especially with

respect to [83]. Considering 850mW is consumed at 1.5GHz and 1.3V for the Xscale

core, a power consumption of 190mW at 500MHz for our 90nm PicoServer core is

conservative when applying the 3× reduction in clock frequency and the additional

34

opportunities to scale voltage. From our synthesized results and related publication

survey, we believe a single PicoServer core would occupy a die area of 5mm2 and

consume less than 200mW at 500MHz.

5.1.2 Impact of multi-threading

Multithreading improves overall throughput by switching thread contexts during

lengthy stalls to memory. To study the impact of multithreading in PicoServer,

we assume multithreading support that includes an entire thread context—register

file, store buffer and interrupt trap unit. An additional pipeline stage is required to

support multithreading. The added stage schedules threads to be executed. In the

study conducted, we varied the number of threads supported and the unloaded access

latency to memory in a single core and measured the network bandwidth (a metric for

throughput) delivered by this core. We did our analysis running SURGE because the

simulation time of SURGE is relatively shorter than other workloads and it displayed

the highest L1 cache miss rate which implies SURGE would benefit the most from

multithreading. Our metrics used in this study are total network bandwidth and

network bandwidth/mm2. We varied the cache size to see the impact of threading.

Figure 5.1, 5.2 shows our simulated results. From our studies, we are able to

conclude threading indeed helps improve overall throughput, however only to a limited

extent when considering the area overhead and the impact of 3D stacking. 3D stacking

reduces the access latency to memory by simplifying the core to memory interface

and reducing the transfer latency. This implies 3D stacked memory to be accessed in

10’s of cycles which corresponds to plots shown in Figure 5.1(b), 5.2(b). It shows in

respect to area efficiency and throughput, limiting it to only support 2 threads may

be best. [60] predicted a 20% die area overhead for a single core in their architecture.

Considering the size of a single Niagara core—16mm2, we believe the area overhead

for our PicoServer cores would be more than 20%. We also find that an increase

in throughput stresses the interconnection network suggesting that for conventional

CMPs to scale would require high throughput low latency interconnection networks

or a drastic increase in cache size per core. A system must be able to deliver sufficient

I/O bandwidth, memory bandwidth to accommodate the additional threads. If any of

the above is not scalable, then the impact of threading is detrimental to overall system

throughput. I/O bandwidth impacts processor utilization and memory bandwidth.

Another support required in fully utilizing threaded cores is system software sup-

port. Making the operating system scalable to the number of cores has been known to

be challenging due to conventional OSes written to be optimized for single threaded

35

0

50

100

150

200

250

300

1 2 4 8

Number of threads

To
ta

l N
et

w
or

k
B

an
dw

id
th

 -
M

bp
s

8KB 16KB 32KB

(a) memory latency = 1

0

50

100

150

200

250

300

1 2 4 8

Number of threads

To
ta

l N
et

w
or

k
B

an
dw

id
th

 -
M

bp
s

8KB 16KB 32KB

(b) memory latency = 10

0

50

100

150

200

250

1 2 4 8

Number of threads

To
ta

l N
et

w
or

k
B

an
dw

id
th

 -
M

bp
s

8KB 16KB 32KB

(c) memory latency = 100

Figure 5.1: Impact of multi-threading for varying memory latency on SURGE for varying 4 way
set associative cache sizes(8KB, 16KB, 32KB) and varying number of threads. We assume the core
is clocked at 500MHz

36

0

10

20

30

40

50

60

70

1 2 4 8

Number of threads

M
bp

s/
m

m
2

8KB 16KB 32KB

(a) memory latency = 1

0

10

20

30

40

50

60

1 2 4 8

Number of threads

M
bp

s/
m

m
2

8KB 16KB 32KB

(b) memory latency = 10

0

5

10

15

20

25

30

35

40

1 2 4 8

Number of threads

M
bp

s/
m

m
2

8KB 16KB 32KB

(c) memory latency = 100

Figure 5.2: Impact of multi-threading for Mbps/mm2 when varying memory latency on SURGE.
The same setup and assumptions in 5.1 are applied.

37

0

20

40

60

80

100

120

140

SURGE SPECweb99 SPECweb2005-
bank

SPECweb2005-
ecommerce

SPECweb2005-
support

Fenice dbench TPC-C TPC-H

In
te

rc
on

ne
ct

 T
ra

ffi
c

(M
ill

io
ns

 o
f R

eq
ue

st
s)

cache miss DMA cache coherence

Figure 5.3: Interconnect traffic measured for 4 way 16KB 128 byte L1 cache

130nm 90nm
on-chip 2D 12mm 5.6nF 5.4nF
on-chip 3D 8mm 3.7nF 3.6nF
off-chip 2D 16.6nF 16.6nF

Table 5.3: Parasitic interconnect capacitance for on-chip 2D,3D and off-chip 2D for a 1024 bit bus

performance and single core platforms. Threading requires code modification to al-

low each core to be fully utilized and not remain idle. This has been presented as a

challenge in many aspects and is an area that is beyond the scope of this dissertation.

5.1.3 Wide shared bus architecture

PicoServer adopts a wide shared bus architecture that provides high memory band-

width and fully utilizes the benefits of 3D stacking technology. Interconnect architec-

tures are dependant on the traffic pattern injected. From our simulation studies, we

found that our static web server benchmark—SURGE—generated high cache traffic

as well as high I/O traffic shown in Figure 5.3 and displayed modest simulation time.

Our static web server benchmark generated a high cache miss rate per core. Our bus

architecture was determined from static web server benchmark runs.

To explore the design space of our bus architecture, we first ran simulations for

varying the bus width on a single shared bus—ranging from 128 bits to 2048 bits.

Network performance is measured to determine the impact of bus width on the Pi-

coServer. As shown in Figure 5.4(a), a relatively wide data bus is necessary to achieve

scalable network performance to satisfy the outstanding cache miss requests. This

38

0

200

400

600

800

1,000

1,200

1,400

1,600

16 32 64 128 256

Bus width (bytes)

To
ta

l N
et

w
or

k
B

an
dw

id
th

 -
M

bp
s Pico MP4 Pico MP8 Pico MP12

(a) Network bandwidth vs. Bus width

0

20

40

60

80

100

120

140

160

16 32 64 128 256

Bus width (bytes)

La
te

nc
y

- c
yc

le
s

Pico MP4 Pico MP8 Pico MP12

(b) Overall loaded latency vs. Bus width

0%

20%

40%

60%

80%

100%

16 32 64 128 256
Bus width (bytes)

B
us

 U
til

iz
at

io
n

Pico MP4 Pico MP8 Pico MP12

(c) Bus utilization vs. Bus width

Figure 5.4: Network performance for various shared bus architectures based on our L1 cache
size—16KB on SURGE. We assumed a CPU clock frequency of 500MHz for these experiments.
Our bus architecture must be able to handle high bandwidths as the number of processors increase.

39

1

10

100

1,000

10,000

0 20 40 60 80 100 120 140

process technology (nm)

fr
eq

ue
nc

y
(M

H
z)

global w.o. repeater intermediate w.o. repeater

global w. repeater intermediate w. repeater

Figure 5.5: Maximum interconnect clock frequency roadmap for global and local wires with wire
lengths of 10mm

is because of the high bus contention on the shared data bus for high bus traffic

that is generated for narrow bus widths as shown in Figure 5.4(b) and Figure 5.4(c).

As we decrease the bus width, the bus traffic increases resulting in superlinear in-

crease in latency. Reducing bus utilization implies reduced bus arbitration latency,

thus improving network bandwidth. Wide bus widths also help speedup NIC DMA

transfers by allowing a large chunk of data be copied in one transaction. A 1024 bit

bus width seems reasonable for our typical PicoServer configurations—4, 8, 12 multi-

processors, since network performance saturated after that point. We also looked at

interleaved bus architectures but found with our given L1 cache miss rates, a 1024 bit

bus is sufficient enough to handle the bus requests. For architectures and workloads

that generate higher bus requests by increasing the number of cores to 16 or more

with higher L1 cache miss rates—more than 10%—then interleaving the bus is more

effective.

Using our analytical models described in Chapter III, Table 5.3 shows the ex-

pected interconnect capacitance for 1024bits in the case of 2D on-chip, 3D stacking,

and 2D off-chip implementations. Roughly speaking, on-chip implementations have at

most 33% capacitance of an off-chip implementation. Furthermore, since the supply

voltages in IO pads—typically 1.8 ∼ 2.5V, are generally higher than the core supply

voltage, we find the overall maximum power for an off-chip implementation consumes

an order of magnitude more power than an on-chip and off-chip average interconnect

40

NIC Context 3
NIC Context 2

NIC Context 1
NIC Context 0

Rx
FIFO

Tx
FIFO

Virtualized NIC Device Driver - SW

Host OS

User Application0 User Application1

Figure 5.6: Virtualized NIC architecture

power. With modest toggle rates, small to modest access rates for typical configu-

rations found in our benchmarks and modest bus frequency—250MHz, we conclude

that on-chip interconnect power contributes very little to overall power consumption.

As we can see in Figure 5.5, a wire length of 10mm of global wires without

repeaters can easily be clocked at 500MHz.

5.1.4 The need for Multiple NICs on a CMP architecture

A common problem of servers with large network pipes is handling the hundreds

of thousands of packets that might arrive each second. Interrupt coalescing is one

method of dealing this problem. This method works by starting a timer when a non-

critical event occurs. Any other non-critical events that occur before the timer expires

are coalesced into one interrupt and thus the number of interrupts can be reduced.

Even with this technique however the number of interrupts received by a relatively

low frequency processor, such as one of the PicoServer cores, can overwhelm it. In our

simulations we get around this difficulty by having multiple NICs each having their

interrupt lines routed to a different processor. Although this method would be valid,

a smarter single NIC that could route interrupts to multiple CPUs, each with separate

DMA descriptors and TX/RX queues, could be built. For an 8 chip-multiprocessor

architecture with 1 NIC and an on-chip DRAM integrated by using 3D stacking

technology, we found the average utilization per processor to be below 60% as one

processor could not manage the NIC by itself. To fully utilize each processor in our

multiple processor architecture, we inserted 1 NIC for 2 processors. For example, a 4

41

0

50

100

150

200

250

1 2 4

Number of Disk Controllers

A
vg

. T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

Pico MP4 Pico MP8 Pico MP12

Figure 5.7: Adding multiple disk controllers to improve overall throughput

CMP architecture would have 2 NICs, a 8 CMP architecture would have 4 NICs and

so forth. However, as mentioned above, this could be one NIC either with multiple

interface IP addresses or an intelligent method of load balancing packets to multiple

processors. Such a NIC would need to keep track of network protocol states at the

session level. We present an example diagram in Figure 5.6. There have been previous

studies of intelligent workload balancing on NICs to achieve optimal throughput on

platforms[37]. TCP splicing and handoff are also good examples of intelligent load

balancing at higher network layers[70].

5.1.5 The need for Multiple Disk Controllers on a CMP ar-
chitecture

Similar to what is observed in NICs, multiple disk controllers may be required for

chip multiprocessor based platforms executing disk intensive server workloads. Tier

3 servers that generate lots of disk I/O requests fall into this category of workloads.

The disk pipes that depend on the disk access latency and the disk interface must

be able to provide enough requests to fully utilize all the cores. We found in our

simulations that a 12 core system with a single disk controller could not keep up with

the disk requests generated per core. Because the OS views a hard disk drive as a

block device, it transfers large blocks that are several kilobytes in size using DMA.

In addition the OS tries to reduce the amount of disk access latency by aggregating

requests that are adjacent into a single request. As a result, I/O requests typically

occur asynchronously and in large chunks which may block threads from executing.

The effect of thread blocking is evident in server workloads because many of the

42

disk requests in server workloads are random accesses. By observing the average

bytes transferred per disk request and considering the read ahead window size, we

found this behavior to be true for most of our server workloads. Aside from video

streaming workloads that are spatially contiguous, other server workloads randomly

accessed disk resulting in finding no benefit in aggregating disk requests. By using

multiple disk controllers the I/O bottleneck can be reduced since multiple requests

to disk can occur simultaneously thus improving I/O throughput. Figure 5.7 shows

how much improvement we see from adding additional disk controllers and disks to a

12 multicore conventional CMP. We see an 15% improvement in overall throughput.

This not only improves the throughput but indirectly leads to a reduction in energy

due to the reduction in idle time.

5.2 On-chip memory architecture of PicoServer

PicoServer stacks multiple DRAM dies on top of the logic die. We describe the role

of this on-chip DRAM memory in the following subsections.

5.2.1 Role of on-chip DRAM

Based on the logic die area estimates, we projected the DRAM die size for a 12 way

PicoServer to be a die size of 80mm2 and respectively, 40mm2, 60mm2 for a 4 way,

8 way PicoServer. Table 5.5 shows the projected amount of on-chip memory for our

PicoServers. For example, to obtain a total DRAM size of 256 MB, we assume DRAM

is made up of 4 layers of the final die allowing us to integrate aggressive capacity for

on-chip stacked DRAM. 8 layers of DRAM die is assumed for Tier 3 servers which

rely heavily on system memory size. With current technology—90nm, it is feasible

to create a 4 layer stack containing 256MB of physical memory for a die area of

80mm2. Although a large amount of physical memory is typical in server farms (4

to 16GB), with the short sample time of a simulator, it is difficult for a benchmark

Density Area(mm2) Process
Samsung 64MB 49 80nm
Samsung 64MB 71 90nm
Infineon - A∗ 64MB 87 110nm
Infineon - B 128MB 176 N/A
Micron 128MB 180 110nm
∗ Infineon A, B are 2 different types of DRAM chips

Table 5.4: DRAM die size from various vendors noted in Semiconductor SourceInsight 2005 [69]

43

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MP4-
128MB

MP8-
192MB

MP12-
256MB

m
em

or
y

us
ag

e(
%

)

Free
Cached
Buffered
Used
Kernel / Reserved

(a) SURGE

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MP4-
128MB

MP8-
192MB

MP12-
256MB

m
em

or
y

us
ag

e(
%

)

Free
Cached
Buffered
Used
Kernel / Reserved

(b) SPECWeb99

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MP4-
128MB

MP8-
192MB

MP12-
256MB

m
em

or
y

us
ag

e(
%

)

Free
Cached
Buffered
Used
Kernel / Reserved

(c) Fenice

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MP4-
128MB

MP8-
192MB

MP12-
256MB

m
em

or
y

us
ag

e(
%

)

Free
Cached
Buffered
Used
Kernel / Reserved

(d) dbench

Figure 5.8: Breakdown in memory for server benchmarks (SURGE, SPECWeb99, Fenice, dbench)

44

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MP4-
128MB

MP8-
192MB

MP12-
256MB

m
em

or
y

us
ag

e(
%

)

Free
Cached
Buffered
Used
Kernel / Reserved

(a) SPECWeb2005-bank

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MP4-
128MB

MP8-
192MB

MP12-
256MB

m
em

or
y

us
ag

e(
%

)

Free
Cached
Buffered
Used
Kernel / Reserved

(b) SPECWeb2005-ecommerce

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MP4-
128MB

MP8-
192MB

MP12-
256MB

m
em

or
y

us
ag

e(
%

)

Free
Cached
Buffered
Used
Kernel / Reserved

(c) SPECWeb2005-support

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MP4-
256MB

MP8-
384MB

MP12-
512MB

m
em

or
y

us
ag

e(
%

)

Free
Cached
Buffered
Used
Kernel / Reserved

(d) TPC-C

Figure 5.9: Breakdown in memory for server benchmarks (SPECWeb2005, TPC-C) TPC-H is
excluded because it displayed similar memory usage as TPC-C.

45

130nm 110nm 90nm 80nm
DRAM stack 4 layer

each layer 40mm2 64MB 96MB 128MB 192MB

DRAM stack 8 layer
each layer 40mm2 128MB 192MB 256MB 384MB

DRAM stack 4 layer
each layer 60mm2 96MB 144MB 192MB 288MB

DRAM stack 8 layer
each layer 60mm2 192MB 288MB 384MB 576MB

DRAM stack 4 layer
each layer 80mm2 128MB 192MB 256MB 384MB

DRAM stack 8 layer
each layer 80mm2 256MB 384MB 512MB 768MB

Table 5.5: Projected on-chip DRAM size for varying process technologies. Area estimates are
generated based on Table 5.4. 80mm2 of die size is similar to that of a Pentium M at 90nm.

to touch such a large memory space. Depending on the workload of each PicoServer,

the estimated physical memory may be enough. From our measurements on memory

usage for server applications shown in Figure 5.8 and 5.9, we found a modest

amount—around 64MB—of system memory is occupied by the user application, data

and the kernel OS code. The remainder of the memory is either free or used as a disk

cache. Considering the fact that 256MB can be integrated on-chip for 4 die layers,

we project a large portion of on-chip DRAM to be used as a disk cache. Therefore,

for applications that require small/medium filesets, a on-chip DRAM of 256MB is

enough to effectively handle client requests.

For large filesets, there are several options to choose from. First, we could add ad-

ditional on-chip DRAM by stacking additional DRAM dies. From the ITRS roadmap

in Table 2.2, we recall that the number of stacked dies we assume is conservative. With

aggressive die stacking, we could add more die stacks to improve on-chip DRAM

capacity—ITRS projects more than 11 layers to be possible in the next 2 ∼ 4 years.

This is possible because our power density in the logic layer is extremely small—less

than 5W/cm2. Another alternative is to add a secondary system memory which func-

tions as a disk cache. From our simulations, we found that the access latency of this

secondary system memory could be as slow as hundreds of µs and still generate equal

network bandwidth. The multithreaded nature of server applications hide thread

stalls due to the long access latency to memory through interleaved thread execution.

An access latency as slow as hundreds of µs implies that Flash memory that consumes

less active/standby power can be used as secondary system memory. Therefore, for

workloads requiring large filesets, we could build a non-uniform memory architecture

with fast on-chip DRAM and relatively slower off-chip secondary system memory.

46

tRC = 5 cycles

RD RD RD RD RD RD RD RD RD RD

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

Q0 Q1 Q2DQ

VLD

ADDR

CMD

CK

ID0 ID1 ID2CPU_ID

Figure 5.10: on-chip DRAM read timing diagram

The fast on-chip DRAM would primarily hold code, data and a small disk cache and

the slow system memory would function as a large disk cache device.

5.2.2 On-chip DRAM interface

To maximize the benefits of 3D stacking technology, the conventional DRAM inter-

face needs to be modified for PicoServer’s 3D stacked on-chip DRAM. Conventional

DDR2 DRAMs are designed assuming a small pin count and use address multiplexing

and burst mode transfer to make up for the limited number of pins. With 3D stacking

technology, there is no need to use narrow interfaces and furthermore address mul-

tiplexing which requires multi-phase commands such as a RAS followed by a CAS.

Instead, the additional logic required in latching and muxing narrow address/data

can be removed. The requested addresses can be sent as a single command while

data can be driven out in large chunks. Further, conventional off-chip DRAMs are of-

fered as DIMMs made up of multiple DDR2 DRAM chips. The conventional off-chip

DIMM interface accesses multiple DDR2 DRAM chips per request. For 3D stacked

on-chip DRAM, only one subbank needs to be accessed per request. As a result 3D

stacked on-chip DRAM consumes much less power per request than off-chip DRAM.

Figure 5.10 shows an example of a read operation. DRAM vendors already provide

interfaces that do not require address multiplexing such as Reduced Latency DRAM

from Micron [18] and NetDRAM[3] from Samsung. This suggests the interface for

3D stacked on-chip DRAM can be tailored with minor tweaks. Additional die area

made available through the simplification of the interface can be used to speed up

47

the access latency to on-chip DRAM. By investing more die area on subbanking the

on-chip DRAM, DRAM latencies that are approximately 10ns can be achieved.

5.2.3 Impact of on-chip DRAM refresh on throughput

DRAM periodically requires each cell to be refreshed. Each individual cell has a

retention time of 64ms in an industry standard temperature and decreases to 32ms

in harsh environments. But refresh circuits incur an additional area overhead forcing

a DRAM bank to share the refresh circuit. This results in frequent refresh circuit

activity. When we assume we share a refresh circuit per bank, the average DRAM

refresh interval is approximately 7.8125µs and requires approximately 200ns to com-

plete. This implies a DRAM bank cannot be accessed for a duration of 100’s of CPU

clock cycles every 1000’s of CPU clock cycles. To measure the impact of this effect,

we modeled the refresh activity of DRAM on M5 and observed the CPI overhead.

The access frequency to on-chip DRAM is directly correlated to the amount of L1

cache misses observed. We found for a 5% L1 cache miss rate and 12 cores clocked

at 500MHz, this would incur a CPI overhead of 0.03 CPI due to refresh. This is

because many of the L1 cache misses do not occur when a refresh command is exe-

cuted resulting in a marginal performance overhead. For many core (more than 16)

PicoServers, we believe the L1 cache size that impacts the L1 cache miss rate should

be sized such that many L1 cache misses don’t overlap with a DRAM refresh cycle.

Careful provisioning of the number of DRAM banks along with the L1 cache size

and the number of cores should be performed to marginalize the impact of DRAM

refresh. The overhead of DRAM refresh time would only become significant if the

interconnect between DRAM and the cores is a bottleneck. Interconnect interfaces

that are near saturated states are very sensitive to small changes in latency.

Thermal Conductivity (W/m·K) Heat Capacity (J/m3·K)
Si 148 1.75×106

SiO2 1.36 1.86×106

Cu 385 3.86×106

Air at 0Co 0.024 1.25×103

Table 5.6: Thermal parameters for commonly found materials in silicon devices

48

Heat Sink

baseline M = 3, 5, 7, 9 layer stack -
logic at top layer

5 layer stack - logic
at bottom layer

5 layer stack -
logic at top layer
with thick SiO2

Dielectric - SiO2

Logic

Logic

DRAM M
DRAM 4

DRAM 3

DRAM 2

DRAM 1

Logic

Logic

DRAM 4

DRAM 3

DRAM 2

DRAM 1

Heat Sink

Heat Sink

Heat Sink

DRAM 2

DRAM 1

DRAM M - 1

...

Figure 5.11: A diagram depicting the thermal analysis performed on architectures using 3D
stacking technology.

5.3 Thermal concerns in 3D stacking

A potential concern with 3D stacking technology is heat containment. To address

this concern, we investigated the thermal impact of 3D stacking on the PicoServer

architecture. Since we could not measure temperature directly on a real 3D stacked

platform, we modeled the 3D stack onto the grid model in Hotspot [52]. Mechanical

thermal simulators such as FLOWTHERM and ANSYS were not considered in our

studies due to the limited information we could obtain from the 3D stacking process.

We believe Hotspot’s RC equivalent heat flow model is adequate to show trends

and potential concern in 3D stacking. Because this work describes the usefulness of

integrating 3D stacking into the server space, instead of describing the details in heat

transfer, we present general trends. We leave detailed studies to future work and

published references that cover heat in 3D stacking as a primary topic.

The primary thermal issue in devices utilizing 3D stacking is heat containment

due to the interface material—SiO2—and the free air interface between silicon and air

as can be seen in Table 5.6. Silicon and metal conduct heat much more efficiently.

We first configured our PicoServer architecture for various scenarios by 1) varying

the amount of stacked dies, 2) varying the location of the primary heat generating

die—the logic die on our platform, 3) varying the thickness of the SiO2 insulator that

is typically used in between stacked dies. Figure 5.11 shows the configurations used

in this study. Our baseline configuration assumes a logic die directly connected to

a heat sink assuming 27C◦ room temperature. We assumed a naive floorplan of our

PicoServer architecture and varied the number of processors. Hotspot requires input

49

0
5

10
15
20
25
30
35
40
45
50
55

MP4 MP8 MP12

te
m

pe
ra

tu
re

 (C
°)

1 layer 3 layer 5 layer 7 layer 9 layer

(a)

0
5

10
15
20
25
30
35
40
45
50
55

MP4 MP8 MP12

te
m

pe
ra

tu
re

 (C
°)

5 layer thin-10µm 5 layer thick-80µm

(b)

0

5

10

15

20

25

30

35

40

45

50

MP4 MP8 MP12

te
m

pe
ra

tu
re

 (C
°)

5 layer logic bottom 5 layer logic top

(c)

Figure 5.12: Maximum junction temperature for sensitivity experiments on Hotspot. (a)varying
the number of layers, (b)varying 3D interface thickness, (c)varying location of logic die. A core
clock frequency of 500MHz is assumed in calculating power density. We varied the size of on-chip
memory based on the number of layers stacked. 1 layer assumes no on-chip memory at all.

50

0

10

20

30

40

50

60

70

80

MP12-3 layer MP12-5 layer MP12-7 layer MP8 w. L2
2x freq.-1

layer

m
ax

. t
em

pe
ra

tu
re

 (
C

°)

heatsink 1 heatsink 2

Figure 5.13: Maximum junction temperature for heatsink quality analysis.

for properties in material and power density to generate steady state temperature

throughout the platform. We extracted 3D stacking properties from [57][68][87] and

assigned power density at the component level based on area and power projections

for each component. Components were modeled at the platform-level—processor, pe-

ripheral, global bus interconnect, etc. We generated maximum junction temperature

in our PicoServer architecture shown in Figure 5.12.

Figure 5.12(a) shows the sensitivity to the number of stacked layers. We find

roughly a 2 ∼ 3C◦ increase in maximum junction temperature for each additional layer

stacked. Figure 5.12(b) shows the sensitivity to the 3D stacking dielectric interface.

We compared the effect of the SiO2 thickness (the interface material) for 10µm and

80µm. In [33][57][68][87] we find the maximum thickness of the interface material

does not exceed 10µm for 3D stacking. The 80µm point is selected to show the

impact of heat containment as the thickness is increased substantially. It results in a

6 degree increase in junction temperature. While notable this is not a great change

given the dramatic change in material thickness. Figure 5.12(c) shows the sensitivity

to placement in the stack—top or bottom layer. We find the primary heat generating

die is not sensitive to the geographic location of the heat sink.

We also conducted an analysis on the impact of heatsink quality. We varied

the heatsink configuration to model a high cost heatsink (heatsink 1) and a low cost

heatsink (heatsink 2). Figure 5.13 shows the impact of 3D stacking technology has on

heatsink quality. It clearly suggests that a low cost heatsink can be used on platforms

using 3D stacking technology.

We believe heat containment for having multiple stacked layers is not a major

limitation in the PicoServer platform. The power density is relatively low for our

51

architecture. It does not exceed 5W/cm2. As a result, the maximum junction tem-

perature does not exceed 50C◦. 3D vias can also act as heat pipes, which we didn’t

take into account in our analysis, however this is expected to improve the situation.

An intelligent placement would assign the heat generating layer (the processor layer)

adjacent to the heat sink resulting in a majority of the heat being transferred to the

heat sink. There is independent support for our conclusions in [34][43].

5.4 Customizing Energy Efficient Servers in a Dat-

acenter

As we had shown in Chapter II, in a 3 Tier Server architecture, the workload charac-

teristics of each Tier varies quite a bit resulting in different requirements for each Tier.

All workloads in common have an abundance of thread level parallelism. However,

Tier 1 stresses the network I/O, Tier 2 requires a decent amount of single threaded

performance and Tier 3 stresses the disk I/O. To architect an energy efficient datacen-

ter, one should architect each platform by satisfying the different requirements. Some

server workloads are CPU bound, others are NIC bound and finally they could also

be disk bound. Based on these properties, it suggests servers should be architected

to satisfy the specific needs of the application. For example, Tier 2 and 3 servers that

are not network intensive should not spend much effort in providing intelligent load

balancing techniques for NICs and providing high speed NICs. In fact, a 100Mbps or

10Mbps may be enough for NICs used in Tier 2,3 servers.

With respect to an architecture like PicoServer, the number of layers invested

in on-chip DRAM and the die area invested in logic functionality will have to vary

slightly depending the Tier PicoServer is targeted for.

Tier 1 servers require intelligent built-in NIC load balancers that interface with

the high level global load balancers(Layer 7 switches) should be included in the overall

platform. Disk I/O is less of a concern for Tier 1 servers suggesting off-chip system

memory may not be required at all. This is possible since web page requests display

a short-tailed zipf like distribution.

In contrast, much effort must be invested in improving disk I/O throughput for

Tier 3 servers. Tier 3 servers do not generate a large network bandwidth implying less

efforts could be invested in improving overall network bandwidth. In fact, it would be

wise to support lower network throughput to reduce overall NIC power. Because the

size of a database gradually grows and the access behavior to database systems are

known to be long-tailed, much effort must be put in provisioning memory requirements

52

DRAM 4DRAM 5

DRAM 4DRAM 6

DRAM 4DRAM 7

DRAM 4DRAM 8

DRAM 4

DRAM 3

Logic die with support for
NIC scalability

DRAM 1

DRAM 2

DRAM 3

DRAM 4

Heat sink

DRAM 4

DRAM 3

Logic die with cores providing
decent single threaded perf.

DRAM 1

DRAM 2

DRAM 3 (Optional)

DRAM 4 (Optional)

Heat sink

DRAM 4

DRAM 3

Logic

DRAM 1

DRAM 2

DRAM 3

DRAM 4

Heat sink

Tier 1 Tier 2 Tier 3

(a)

On-chip
DRAM

100'sMB

Inorder
Core0

(Optional)
Off-chip

Main
memory
- Flash,
DRAM

etc.

Disk
Device

Inorder
Core11

RSS
NIC

1Gbps

Off-chip
Bridge

…...

On-chip
DRAM

10's~100'sMB

Core0
superscalar /

high clock freq.

Disk
Device

NIC
10~100Mbps

Off-chip
Bridge

…...
Core11

superscalar /
high clock freq.

(Optional)
Off-chip

Main
memory
- Flash,
DRAM

etc.

On-chip
DRAM
1'sGB

Inorder
Core0

(Optional)
Off-chip

Main
memory
- Flash,
DRAM

etc.

Disk
Device0Inorder

Core11

NIC
100Mbps

Off-chip
Bridge

…...

Tier 1 Tier 2 Tier 3

Disk
Device4

…
...

(b)

Figure 5.14: System architecture of datacenter using PicoServers, (a) 3D stacking block diagram of
PicoServers, (b) Platform level block diagram of PicoServers

53

that mitigates disk I/O. It is highly likely that Tier 3 PicoServers require several disk

controllers as well as stacking more layers of on-chip DRAM. Tier 3 PicoServers are

expected to require the most storage density.

Tier 2 servers require a substantial amount of computation power. The type

of computation required in Tier 2 workloads are decision support, interpretation of

scripting languages etc. These application display more ILP than TLP. Unless ILP

applications can be transformed into TLP applications using an ILP based superscalar

core is desirable for Tier 2 Servers. Since ILP based high performance superscalar

cores are known to be power hungry, software optimization techniques that cache pre-

vious computations are necessary when deploying superscalar cores on Tier 2 Servers.

Tier 2 servers though occupy a small memory footprint (If we choose to neglect the

heap size used in java applications)

5.5 Evaluation

To evaluate the PicoServer architecture two metrics are important—throughput and

power. Throughput is measured as network bandwidth, transactions per second and

queries per minute based on the server workload. This is a good indicator of overall

system performance because it is a measure of how many requests were serviced.

In this section, we compare various PicoServer configurations to other architectures

first in terms of achievable network bandwidth and then in terms of power. We

compare PicoServer to CMP architectures without 3D stacking and conventional high

performance desktop architectures which we call OO4—Pentium 4-like. Since the

PicoServer has not been implemented, we use a combination of analytical models and

published data to make a conservative estimate about the power dissipation of various

components. Finally we present a pareto chart showing the energy efficiency of the

PicoServer architecture.

5.5.1 Server Throughput for various configurations—overall
performance

Figure 5.15, 5.16, 5.15 shows the throughput for our Tier 1, 2, and 3 workload

runs. We breakdown the contribution to throughput with respect to a baseline with

no L2 cache and a narrow (64bit) bus width, having an L2 cache, and implementing

the benefits of 3D stacking technology. Due to the lengthy simulation time, TPC-H

was executed on a real machine for out-of-order configurations. For simple multicore

architectures, we recall in Table 4.1 the L2 cache unloaded latency is similar to the

54

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

OO4-small OO4-large Pico MP4 -
1000MHz

MP4 w/o 3D
1000MHz

Pico MP8 -
500MHz

Pico MP8 -
1000MHz

MP8 w/o 3D
1000MHz

Pico MP12 -
500MHz

To
ta

l N
et

w
or

k
B

an
dw

id
th

 -
M

bp
s

w/o L2 cache & w/o 3D stacking impact of L2 cache impact of 3D stacking

Similar die area Similar die area

(a) SURGE

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

OO4-small OO4-large Pico MP4 -
1000MHz

MP4 w/o 3D
1000MHz

Pico MP8 -
500MHz

Pico MP8 -
1000MHz

MP8 w/o 3D
1000MHz

Pico MP12 -
500MHz

To
ta

l N
et

w
or

k
B

an
dw

id
th

 -
M

bp
s

w/o L2 cache & w/o 3D stacking impact of L2 cache impact of 3D stacking

Similar die area
Similar die area

(b) SPECweb99

0

100

200

300

400

500

600

700

OO4-small OO4-large Pico MP4 -
1000MHz

MP4 w/o 3D
1000MHz

Pico MP8 -
500MHz

Pico MP8 -
1000MHz

MP8 w/o 3D
1000MHz

Pico MP12 -
750MHz

To
ta

l N
et

w
or

k
B

an
dw

id
th

 -
M

bp
s

w/o L2 cache & w/o 3D stacking impact of L2 cache impact of 3D stacking

Similar die area Similar die area

(c) Fenice

Figure 5.15: Throughput measured for varying processor frequency and processor type. For
PicoServer CMPs, we fixed the on-chip data bus width to 1024bits and bus frequency to 250MHz.
For a Pentium 4-like configuration, we placed the NIC on the PCI bus and assumed the memory
bus frequency to be 400MHz. For a MP4, MP8 without 3D stacking configuration, to be fair we
assumed no support for multithreading and a L2 cache size of 2MB. The external memory bus
frequency was assumed to be 250MHz. (SURGE, SPECweb99, Fenice)

55

0

3

6

9

12

15

18

21

24

27

OO4-small OO4-large Pico MP4 -
1000MHz

MP4 w/o 3D
1000MHz

Pico MP8 -
500MHz

Pico MP8 -
1000MHz

MP8 w/o 3D
1000MHz

Pico MP12 -
500MHz

To
ta

l N
et

w
or

k
B

an
dw

id
th

 -
M

bp
s

w/o L2 cache & w/o 3D stacking impact of L2 cache impact of 3D stacking

Similar die area Similar die area

(a) SPECweb2005-bank

0

30

60

90

120

150

OO4-small OO4-large Pico MP4 -
1000MHz

MP4 w/o 3D
1000MHz

Pico MP8 -
500MHz

Pico MP8 -
1000MHz

MP8 w/o 3D
1000MHz

Pico MP12 -
500MHz

To
ta

l N
et

w
or

k
B

an
dw

id
th

 -
M

bp
s

w/o L2 cache & w/o 3D stacking impact of L2 cache impact of 3D stacking

Similar die area Similar die area

(b) SPECweb2005-ecommerce

0

70

140

210

280

350

420

490

560

OO4-small OO4-large Pico MP4 -
1000MHz

MP4 w/o 3D
1000MHz

Pico MP8 -
500MHz

Pico MP8 -
1000MHz

MP8 w/o 3D
1000MHz

Pico MP12 -
500MHz

To
ta

l N
et

w
or

k
B

an
dw

id
th

 -
M

bp
s

w/o L2 cache & w/o 3D stacking impact of L2 cache impact of 3D stacking

Similar die area Similar die area

(c) SPECweb2005-support

Figure 5.16: Throughput measured for varying processor frequency and processor type.
(SPECweb2005), we applied the same assumptions used in Figure 5.15

56

0

500

1,000

1,500

2,000

2,500

OO4-small OO4-large Pico MP4 -
1000MHz

MP4 w/o 3D
1000MHz

Pico MP8 -
500MHz

Pico MP8 -
1000MHz

MP8 w/o 3D
1000MHz

Pico MP12 -
500MHz

To
ta

l N
et

w
or

k
B

an
dw

id
th

 -
M

bp
s

w/o L2 cache & w/o 3D stacking impact of L2 cache impact of 3D stacking

Similar die area
Similar die area

(a) dbench

0
50

100
150
200
250
300
350
400
450
500

OO4-small OO4-large Pico MP4 -
1000MHz
256MB

MP4 w/o 3D
1000MHz -

256MB

Pico MP8 -
500MHz
384MB

Pico MP8 -
1000MHz
384MB

MP8 w/o 3D
1000MHz
384MB

Pico MP12 -
500MHz
512MB

A
vg

. T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

w/o L2 cache & w/o 3D stacking impact of L2 cache impact of 3D stacking

Similar die area Similar die area

(b) TPC-C

0

50

100

150

200

250

300

350

Pentium4 L2
512KB

3.02GHz

Opteron L2
1MB 2.4GHz

Pico MP4 -
1000MHz

MP4 w/o 3D
1000MHz

Pico MP8 -
500MHz

Pico MP8 -
1000MHz

MP8 w/o 3D
1000MHz

Pico MP12 -
500MHz

A
vg

. q
ue

ry
 p

er
 m

in
ut

e

w/o L2 cache & w/o 3D stacking impact of L2 cache impact of 3D stacking

Similar die area Similar die area

(c) TPC-H

Figure 5.17: Throughput measured for varying processor frequency and processor type. (dbench,
TPC-C, TPC-H), we applied the same assumptions used in Figure 5.15. For TPC-H, out-of-order
core performance was measured on a real machine because the simulation time would be weeks.

57

DRAM access latency. Hence, we are able to make comparisons that differentiate the

impact of 3D stacking technology with the impact of having an L2 cache. We show in

separate bars the impact of having an L2 cache or adopting 3D stacking technology.

It shows that 3D stacking technology alone improves overall performance equal to or

more than having an L2 cache. A fair comparison for a fixed number of cores, for

example, would be a Pico MP4-1000MHz versus a conventional CMP MP4 without

3D-1000MHz. In general, workloads that generated modest to high cache miss rates

(SURGE, SPECweb99, SPECweb2005, TPC-C, TPC-H and dbench), showed dra-

matic improvement from adopting 3D stacking technology. Fenice that is bounded

by video stream computation, generated low cache miss rates resulting in marginal

improvement with adding an L2 cache or adopting 3D stacking technology. Since

video streaming workloads inherently support many client connections, we found TLP

friendly architectures perform well for this benchmark—the more cores you have, the

higher the network bandwidth. Surprisingly, the script language based Tier 2 like

benchmark—SPECweb2005 displayed fair performance compared to OO4 configura-

tions built for single threaded performance.

For OO4 configurations, we combine the impact of having an L2 cache and 3D

stacking since the unloaded L2 cache latency on a uniprocessor is likely to be smaller

than the access latency to a large capacity DRAM making it less appealing to only

have a high bandwidth on-chip DRAM implemented from 3D stacking. We find

that 3D stacking improves performance by 15% on OO4 configurations. When we

compare a OO4 architecture without 3D stacking with our PicoServer architecture, a

PicoServer MP8 operating at 500MHz performs better than a 4GHz OO4 processor

with a small L1 and L2 cache of 16KB and 256KB respectively. For a similar die area

comparison, we believe comparing PicoServer MP8 and a OO4-small architecture is

a fair comparison considering the additional die area required for a OO4-large that

has a L1 cache size of 128KB and a L2 cache size of 2MB.

When we assume that the area occupied by the L2 cache in our conventional

CMP MP4/8 without 3D stacking technology is replaced with additional processing

cores—a benefit made possible by using 3D stacking technology—a comparison in

network performance for similar die area can be conducted on Pico MP8-500MHz

versus a conventional MP4 without 3D-1000MHz and Pico MP12-500MHz versus

a conventional MP8 without 3D-1000MHz—for Fenice, compare with Pico MP12-

750MHz. Our results suggest that on average, additional processing elements and

reducing core clock frequency by half on our workloads improve throughput and

significantly save on power—shown in Section 5.5.2. Our estimated area for adding

58

0

2

4

6

8

10

12

14

16

MP4 w/o 3D
L2 2MB

1000MHz
90nm

Pico MP8-
500MHz

90nm

MP8 w/o 3D
L2 2MB

1000MHz
90nm

Pico MP12-
500MHz

90nm

Pentium 4
90nm

W
at
ts

Memory
IO pad
L2 cache
interconnect
Processor
NIC MAC

95W

Similar die area

Similar die area

Figure 5.18: Breakdown of average power for 4, 8, 12 PicoServer architectures using 3D stacking
technology for 90nm process technology. Estimated power per workload does not vary by a lot
because the cores contribute to a significant portion of power. We expect 2 ∼ 3W to be consumed
at 90nm. An MP8 without 3D stacking operating at 1GHz is estimated to consume 8W at 90nm.)

extra cores are extremely conservative suggesting more cores could be added thereby

resulting in even more improvement in throughput.

5.5.2 Breakdown in overall power consumption

Processor power still dominates overall power in PicoServer architectures. Figure 5.18

shows the average power consumption based on our power estimation techniques for

server application runs. We find PicoServer with a core clock frequency of 500MHz

is estimated to consume somewhere between 2 ∼ 3 Watts for 90nm process technol-

ogy depending on the design points (optimal power or network bandwidth). Overall

power is primarily used by the simple in-order cores. NIC power consumed a consid-

erable amount due to the increase in number of NICs when increasing the number

of processors, however as described in section 5.1.4 an intelligent NIC designed for

this architecture could be more power efficient as you would only need one. An ap-

preciable amount of DRAM power reduction is also observed due to 3D stacking.

The simplified on-chip DRAM interface enables less DRAM subbanks to be simul-

taneously accessed per request. Other components such as the interconnect make

marginal contributions to overall system power due to the modest access rates and

toggle rates of these components.

59

Comparing our PicoServer architecture with other architectures, we do very well.

For a similar die area comparison, we use less than half the power when we compare

Pico MP8/12-500MHz with a conventional MP4/8 without 3D stacking with an L2

cache at 1000MHz. We also recall in section 5.5.1 that performance-wise for a similar

die area, our PicoServer architectures perform on average 10 ∼ 20% better than

conventional CMP configurations. Furthermore, we use less than 10% of the power

of a Pentium4 processor and as in the previous section perform comparably. At

90nm technology, it can be projected that the power budget for a typical PicoServer

platform satisfies mobile/handheld power constraints noted in ITRS projections. This

suggests the potential of implementing server-type applications in ultra small form

factor platforms. We generally find that our PicoServer architecture provides excellent

performance while using energy efficiently.

5.5.3 Energy efficiency, Throughput Pareto Chart

In Figure 5.19, 5.20, 5.21, we present a pareto chart for PicoServer depicting the

energy efficiency and network performance. The points on this plot show the large

out-of-order cores and the conventional CMP MP4/8 without 3D stacking processors

we have described up to this point as well as our PicoServer with 4, 8, or 12 cores.

On the y-axis we present Mbps and on the x-axis we show Mb/J. From Figure 5.19,

5.20, 5.21, it is possible to find the optimal configuration of processor number and

frequency for a given energy efficiency/throughput constraint.

Additionally from Figure 5.19, 5.20, 5.21, we find our PicoServer architectures

clocked at modest core frequency—500MHz are 2 ∼ 4× energy efficient than conven-

tional chip-multiprocessor architectures without 3D stacking technology. The primary

powersavings can be attributed to 3D stacking technology that enables a reduction in

core clock frequency while providing high network bandwidth. A sweetspot in system-

level energy efficiency for our plotted datapoints can also be identified within our

PicoServer architectures when looking at Pico MP4/8/12-500MHz. These sweetspots

in energy efficiency come from diminishing return in throughput improvement for in-

creasing parallel processing width. The increase in parallel processing width—adding

additional cores, raises many issues related to inefficient interrupt balancing, kernel

process/thread scheduling and resource allocation that result in diminishing return.

60

Pico MP4 500MHz

Pico MP4 1000MHz

Pico MP8 500MHz

Pico MP12 500MHz

Pico MP12 750MHz
Pico MP8 1000MHz

OO4-small
4000MHz

OO4-large
4000MHz

MP8 w/o 3D
1000MHz

MP4 w/o 3D
1000MHz

0

400

800

1,200

1,600

2,000

0 50 100 150 200 250 300 350 400 450 500

Mb/J (energy efficiency)

M
bp

s
(th

ro
ug

hp
ut

)

Optimal

(a) SURGE

Pico MP4 500MHz

Pico MP4 1000MHz

Pico MP8 500MHz

Pico MP12 500MHz
Pico MP12 750MHz

Pico MP8 1000MHz

OO4-small
 4000MHz

OO4-large
4000MHz

MP8 w/o 3D
1000MHz

MP4 w/o 3D
1000MHz

0

300

600

900

1,200

0 50 100 150 200 250 300 350 400

Mb/J (energy efficiency)

M
bp

s
(th

ro
ug

hp
ut

)

Optimal

(b) SPECweb99

Pico MP4 500MHz

Pico MP4 1000MHz Pico MP8 500MHz

Pico MP12 500MHz

Pico MP12 750MHz

Pico MP8 1000MHz

OO4-small
4000MHz

OO4-large
4000MHz

MP8 w/o 3D
1000MHz

MP4 w/o 3D
1000MHz

0

150

300

450

600

750

0 20 40 60 80 100 120 140 160 180

Mb/J (energy efficiency)

M
bp

s
(th

ro
ug

hp
ut

)

Optimal

(c) Fenice

Figure 5.19: Energy efficiency, Performance pareto chart generated for 90nm process technology.
3D stacking technology enables new CMP architectures that are significantly energy efficient.
(SURGE, SPECWeb99, Fenice)

61

Pico MP12 750MHz

Pico MP4 500MHz

Pico MP4 1000MHz Pico MP8 500MHz

Pico MP12 500MHzPico MP8 1000MHz

OO4-small
 4000MHz

OO4-large
4000MHz

MP8 w/o 3D
1000MHz

MP4 w/o 3D
1000MHz

0

5

10

15

20

25

0 1 2 3 4 5 6 7

Mb/J (energy efficiency)

M
bp

s
(th

ro
ug

hp
ut

)

Optimal

(a) SPECweb2005-bank

Pico MP4 500MHzPico MP4 1000MHz

Pico MP8 500MHz

Pico MP12 500MHz

Pico MP8 1000MHzOO4-small
 4000MHz

OO4-large
4000MHz

MP8 w/o 3D
1000MHz

MP4 w/o 3D
1000MHz

Pico MP12 750MHz

0

40

80

120

160

0 5 10 15 20 25 30 35 40

Mb/J (energy efficiency)

M
bp

s
(th

ro
ug

hp
ut

)

Optimal

(b) SPECweb2005-ecommerce

Pico MP12 750MHz

Pico MP4 500MHz

Pico MP4 1000MHz

Pico MP8 500MHz

Pico MP12 500MHzPico MP8 1000MHz

OO4-small
 4000MHz

OO4-large
4000MHz

MP8 w/o 3D
1000MHz

MP4 w/o 3D
1000MHz

0

100

200

300

400

500

0 20 40 60 80 100 120 140 160

Mb/J (energy efficiency)

M
bp

s
(th

ro
ug

hp
ut

)

Optimal

(c) SPECweb2005-support

Figure 5.20: Energy efficiency, Performance pareto chart generated for 90nm process technology.
(SPECWeb2005)

62

Pico MP4 500MHz

Pico MP4 1000MHz
Pico MP8 500MHz

Pico MP12 500MHz

Pico MP8 1000MHz

Pico MP12 750MHz

MP4 w/o 3D
1000MHz

MP8 w/o 3D
1000MHz

OO4-small
4000MHz

OO4-large
4000MHz

0

300

600

900

1200

1500

1800

0 100 200 300 400 500 600 700

Mb/J (energy efficiency)

M
bp

s
(th

ro
ug

pu
t)

Optimal

(a) dbench

Pico MP4 500MHz

Pico MP4 1000MHz

Pico MP8 500MHz

Pico MP12 500MHz

Pico MP8 1000MHz

OO4-small
 4000MHz

OO4-large
4000MHz MP8 w/o 3D

1000MHz

MP4 w/o 3D
1000MHz

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120

Trans/J (energy efficiency)

Tr
an

s_
ps

 (t
hr

ou
gh

pu
t)

Optimal

(b) TPC-C

Pico MP4 500MHzPico MP4 1000MHz

Pico MP8 500MHz

Pico MP12 500MHz
Pico MP8 1000MHz

Pentium 4 L2
512KB 3.02GHz

Opteron L2
1MB 2.4GHz

MP8 w/o 3D
1000MHz

MP4 w/o 3D
1000MHz

0

100

200

300

400

0 10 20 30 40 50 60 70 80 90

Queries/J (energy efficiency)

Q
ue

rie
s_

ps
 (t

hr
ou

gh
pu

t)

Optimal

(c) TPC-H

Figure 5.21: Energy efficiency, Performance pareto chart generated for 90nm process technology.
3D stacking technology enables new CMP architectures that are significantly energy efficient.
(dbench, TPC-C,TPC-H)

63

CHAPTER VI

INTEGRATING FLASH ONTO THE SYSTEM

MEMORY ARCHITECTURE

In the previous chapter, we discussed how 3D stacking technology could reduce the

power consumption of logic components and I/O interfaces in a server. This chapter

discusses how the system memory hierarchy and disk drives can consume less power

while delivering similar throughput when leveraging emerging memory devices like

Flash. We discuss how the off-chip system memory could be architected to consume

a reasonable amount of power. Off-chip memory is especially important for Tier 3

workloads that display long-tailed access behaviors.

6.1 Off-chip DRAM

This section explains the off-chip system memory hierarchy of current server archi-

tectures and emphasizes the role of system memory as disk cache—also known as

page cache in Linux. Aside from storing code and data, server workloads use a large

amount of system memory as disk cacheto mitigate long disk access latencies. Disk

caches are an important way of fully utilizing a server and delivering high throughput.

We recall that the memory usage analysis in the previous chapter showed that a large

amount of system memory is used as disk cache in server workloads. For conventional

architectures that do not have a portion of system memory on-chip and use the on-

chip memory as a cache, the disk cache would occupy a significant amount of total

off-chip system memory. For platforms using 3D stacking technology like PicoServer

which have a large on-chip memory, off-chip system memory will function only as a

disk cache.

We start off by describing the uniform memory architecture (UMA) commonly

found in conventional memory systems. We discuss the problems with UMAs in

terms of power consumption. We then show the off-chip memory architecture in

PicoServer—it is a non-uniform memory architecture (NUMA). We introduce the

64

potential importance of NUMAs to build energy efficient architectures like PicoServer.

Finally we build a case for using NUMAs in general to reduce power consumed by

system memory. We show that Flash can potentially be used in NUMAs.

6.1.1 Off-chip DRAM in conventional platforms

Conventional platforms that use off-chip DRAM as system memory and on-chip

SRAM memory as caches primarily assume all accesses to off-chip DRAM is uni-

form (UMA). This is not entirely true but given a single platform is built on top

of a single socket processor, we can typically say in most cases it is a UMA. With

UMAs, it isn’t difficult to allocate and deallocate memory from the software’s per-

spective. Conventional UMA platforms spend much less time and effort in memory

management when writing software compared to a non-uniform memory architecture

(NUMA). In fact, many applications today are written on top of a UMA model and

require additional NUMA APIs to scale with NUMA platforms. UMA platforms also

don’t require memory to be allocated in a contiguous manner. This also applies to

memory allocated in a disk cache. Because the allocated memory in a disk cache

in a UMA is distributed, one drawback with UMAs is the difficulty in setting some

portions of memory in low power state. This is particularly important for servers

with 10’s∼100’s of gigabytes of system memory. System memory power in platforms

for these memory sizes consume an appreciable amount of overall system power. To

set a particular memory chip or module to low power state, the OS must be modi-

fied to allocate and deallocate memory contiguously and at times perform frequent

migration similar to garbage collection. Any request to allocate memory space would

result in power-aware memory management.

6.1.2 Off-chip DRAM in PicoServer

Because PicoServer stacks hundreds to thousands of megabytes of memory on-chip,

off-chip DRAM in PicoServer is likely to function only as a disk cache. Since the

on-chip DRAM comprises of code, data and a small amount of disk cache, adding

external memory to this platform would imply increasing the disk cache size. It

essentially becomes a NUMA platform, which will require a rewrite of the OS kernel

to properly utilize the off-chip DRAM. To minimize this effort, it would be desirable

to only fix code that manages the disk cache. As we had shown in Chapter V,

PicoServers are much more energy efficient than conventional platforms. To bring

out PicoServer’s full potential, NUMA platforms would definitely be a better choice.

65

It will increase the disk cache size of PicoServers a lot and enable us to fully utilize

the cores in PicoServer.

6.1.3 A case for non-uniform memory architectures to reduce
power

This section explains how NUMAs are more energy efficient than UMAs in respect

to recent trends in DRAM. Conventional system memory (DRAM) has improved its

storage density by scaling process technology. Throughput though has not improved

at a faster rate than density from generation to generation. With the introduc-

tion of the DDR interface and deviations of this interface, DRAM delivers higher

throughput— up to several gigabytes per second today. These improvements though

have not come at a cheap cost. Power consumption in DRAM with high throughput

has grown appreciably and in some cases require heat sinks. For system memories

that are built for servers, larger memory sizes must also be considered. For exam-

ple, future generations from the Ultrasparc T2000 series expect to be equipped with

100’s of gigabytes of memory. This translates into power budgets that easily exceed

100Watts. To reduce the operation costs of system memory and potentially leverage

alternative memory technologies, we look at how the off-chip system memory could

be rearchitected.

By analyzing how the OS fills and empties the disk cache, one could identify

potential slacks in access latency that the system memory could take advantage of

especially for server workloads. Figure 6.1 shows one example of how the disk cache

in system memory can be optimized. It shows that due to the access behavior to files

in web server workloads—they display a short tailed distribution—a large portion of

disk cache can tolerate access latencies of ten’s to hundreds of microseconds. The

lengthy access latency can be leveraged to look at other memory devices that display

lower power and are built with higher storage density. One way to take advantage of

this is to supply a lower clock frequency to the DRAM that is used as a disk cache.

It will require a change in the memory management policy by the OS and force some

sections in memory to be contiguously mapped. However, since lowering the clock

frequency brings significant powersavings, it is worth the effort.

Taking a step further, one can consider integrating Flash memory which has re-

cently caught much attention on server platforms—especially NAND Flash. NAND

Flash is likely to be a cost effective solution than DRAM because NAND Flash cell’s

are less than 1/2 the size of DRAM. In a server platform, this enables a server to

have much more system memory when integrating Flash onto a server. As we noted

66

60%
65%
70%
75%
80%
85%
90%
95%
100%

32MB 64MB 128MB 256MB

DRAM size

pa
ge

 c
ac

he
 h

it
ra

te

MP4 MP8 MP12

(a)

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

percentage of fileset

cu
m

ul
at

ed
 p

er
ce

nt
ag

e
of

re

qu
es

ts

(b)

Figure 6.1: (a) Disk cache access behavior on the server side for client requests. We measured for
4, 8, 12 multicore configurations and varied the DRAM size. (b) A typical cumulative distribution
function of a client request behavior. 90% of requests are for 20% of the web content files.

67

0

300

600

900

1,200

1,500

1,800

2,100

12µs 25µs 50µs 100µs 400µs 1600µs

access latency

N
et

w
or

k
B

an
dw

id
th

 -
M

bp
s

MP4 MP8 MP12

(a) SURGE

0

200

400

600

800

1,000

1,200

12µs 25µs 50µs 100µs 400µs 1600µs

access latency

N
et

w
or

k
B

an
dw

id
th

 -
M

bp
s

MP4 MP8 MP12

(b) SPECWeb99

Figure 6.2: Measured network bandwidth for full system simulation while varying access latency to
a secondary disk cache. We assumed a 128MB DRAM with a slower memory of 1GB. We
measured bandwidth for 4, 8, 12 multicore configurations. The secondary disk cache can tolerate
access latencies of hundreds of microseconds while providing equal network bandwidth.

68

bigger disk caches potentially allow disks to be spun down longer. Due to the low idle

power and high density, it is indeed a promising solution in reducing both disk and

system memory power consumption. We believe Flash’s are a better solution than

slower DRAM or software managed power-aware memory, because it is likely to be

cheaper and simpler to manage while maintaining a reasonable access latency. The

next section discusses how Flash could be integrated onto a server platform.

6.2 Integrating Flash memory onto a server plat-

form

Despite the benefits Flash can potentially have on a server platform, it requires ad-

ditional support to guarantee reliability. Unlike DRAM, error correction code (ECC)

is a mandatory requirement. We first describe how Flash memory is managed at the

system level and how it can reduce power consumption while remaining reliable. We

then, describe the architectural support for a programmable Flash memory controller

to improve average Flash access latency while extending the overall lifetime of Flash.

This is accomplished by observing the workload behavior and adopting dynamic ECC

support, SLC to MLC or MLC to SLC mode changes and increasing write, erase time.

Finally, we explain why a Flash based disk cache is more suitable than a Flash storage

device in a server platform.

6.2.1 The FlashCache architecture

As we described in Chapter II, Flash memory is much denser than DRAM and likely

to consume much less power. NAND Flash consumes less power due to lower clock

frequencies and the NAND device structure. By observing the system memory usage

behavior in server workloads, we realized a NUMA based system memory architecture

can be beneficiary and consumes much less power while delivering equal throughput

or even higher throughput.

Figure 6.3 shows an overview of how Flash could be used in a server platform.

Compared to a conventional DRAM-only architecture, Figure 6.3 shows a hybrid

system memory architecture composed of a relatively smaller DRAM and very dense

Flash. It is a non-uniform system memory architecture with DRAM functioning as a

level 1 disk cache and Flash functioning as a level 2 disk cache. A Flash controller is

required to interface with Flash. We will provide a detailed description of our Flash

controller in later sections. Additional data structures required to manage the Flash

memory are placed in DRAM. Our Flash memory is called FlashCache.

69

Processor

1GB DRAM

Hard Disk Drive

Main Memory

HDD ctrl

Processor

128MB DRAM

Hard Disk Drive

1GB Flash

System Memory

Secondary Disk
Cache

Flash ctrl

HDD ctrl

DMA

PPC FCHTFBST

PPC : Primary Page Cache
FCHT : FlashCache Hash Table
FBST : Flash Block Status Table
FPST : Flash Page Status Table
FGST : Flash Global Status Table

System memory with
Primary Disk Cache

Replaces

FPST FGST

Figure 6.3: We show an example of a 1GB DRAM replaced with a smaller 128MB DRAM and
1GB NAND Flash memory. Additional components are added to control the Flash memory. The
total die area required in our multichip memory is 60% the size of a conventional DRAM-only
architecture.

FlashCache uses a NAND Flash rather than a NOR Flash due to the compactness

and faster write latency found in NAND Flash. Write latency is critical for some server

workloads like OLTP. The random read access latency for a commercial NAND is 25µs

and the write latency is 200µs with an erase latency of 1.5ms per block [19]. A NAND

Flash is accessed in units of pages and blocks. A typical Flash page is 2KB in size

and a Flash block is made up of 64 Flash pages (128KB). Random Flash reads and

writes are performed on a page basis and Flash erasures are performed per block. A

Flash must perform an erase on a block before it can write to a page belonging to

that block. The fact that Flash erasures occur in blocks contributes to the high erase

latency.

We employ Flash as a disk cache rather than a generic system memory or a storage

device. Flash is unsuitable as a generic system memory, because of the frequent writes

and associated wear-out. It is unsuitable as a storage device, because of the large

memory overhead required in a file system where wear-out is a concern. The case for

using Flash as a disk cache and not as a storage device for servers will be made in

later sections in this chapter. A disk cache only requires cache tags for each Flash

page, suggesting a lower memory overhead than a file system. File systems require

70

Type Field Description
unsigned long long disk addr LBA location in disk drive
unsigned long long flash addr location in Flash

Table 6.1: The fields of the FlashCache tag structure which are entries to the FCHT

a tree structure filled with file location nodes. Data structures used in a FlashCache

block and page management are read from the hard disk drive and loaded to DRAM

to reduce access latency and mitigate wear-out.

In a conventional DRAM-only architecture that uses a single level DRAM for

disk caching, a fully associative page cache table is managed in software and probed

to check if a certain file is in DRAM. The search time is speed up by using tree

structures. A considerable amount of search time can still elapse, but is sustainable

because DRAM access latency for transferring file content is in nanoseconds. We

found the search time to be 300∼400 nanoseconds, which suggested, we could leave

the block management tables for Flash to be fully-associative. The next subsections

describe how Flash is managed.

FlashCache Hash Table(FCHT) for tag lookup

The FlashCache Hash Table (FCHT) is a memory structure that holds tags associated

with Flash pages. This table exists in DRAM. A tag is made up of a LBA field and a

Flash address field shown in Table 6.1. The LBA field points to the location in the

hard disk drive and is used for determining whether the Flash holds this particular

location in the hard disk drive. The corresponding Flash address field is used to

access Flash. If a hit occurs in the FCHT, the corresponding Flash address field is

used to access Flash. In many instances, a hit occurs in our FlashCache and the

Flash location containing the requested file is sent to the primary disk cache existing

in DRAM. If a miss occurs, the FlashCache management scheme determines which

block to evict based on a wear-level aware replacement algorithm and schedules that

block to be evicted.

The FCHT is partitioned into a fully associative table accessed quickly by per-

forming a hash. Wear-level awareness is managed at the block level. A Flash block

status table(FBST) is used to profile the number of writes and erases performed on

a particular block.

71

Type Field Description
unsigned long long erases number of block erases
unsigned int wear out degree of block wear-out
unsigned char erase time erase time of block

Table 6.2: The fields of the flash block status structure which are entries to the FBST

Flash block status table(FBST)

The Flash block status table(FBST) located in DRAM maintains the current status

of a Flash block. The fields existing in a single entry in the FBST is described in 6.2.

It holds the wear-out degree of a Flash block. It also stores the number of writes and

erases performed on this block as well as other metrics which are used by the Flash

controller. The degree of wear-out is a cost function generated from observing the

erase count as well as the overall status of a Flash page (stored in a Flash page status

table) belonging to a Flash block. In this study, we defined a degree of wear-out for

Flash block i as follows based on the studied behavior of a Flash cell due to wear-out.

wear out = Nerase,i + k1 × TotalECC + k2 × erase timei + k3 × TotalSLC MLC

where Nerase,i is the number of erases to block i, TotalECC is the total ECC code

strength of a block, which is the sum of ECC code strength for each page in a block,

erase timei is the erase time for block i, TotalSLC MLC is the total number of pages

in SLC mode due to wear-out not performance. k1, k2, k3 are positive weight factors.

The weight factors in this study were determined by observing the wear-out behavior

of Flash. k2 is the largest weight factor since erase time is the most sensitive to

wear-out which is shown in later sections. k3 is the second largest weight factor with

k1 being the smallest.

The number of erases and writes is related to the number of FlashCache evictions

and FlashCache writes. We will later explain how the FBST as well as other data

structures are applied to the Flash controller. Every time a block erase is performed

its Flash block status table entry located in DRAM is updated. There are other

instances when a FBST table is updated in respect to the Flash controller which is

described later. The FBST determines whether a block is hot or cold. The wear out

field of the block determines the temperature.

72

Wear-level aware cache replacement—managing FlashCache misses

The drawback of using Flash is wear-out. Compared to DRAM, Flash can only

be written a fixed amount of times. Table 2.5 shows the ITRS projection for Flash

endurance. A 10× improvement in endurance is expected every 5∼6 years. Endurance

improvement is attributed to the use of better material. Our FlashCache replacement

algorithm is wear-level aware. The Flash block status table(FBST) exists to assist in

wear-level management.

Wear-level management for the FlashCache is performed on FlashCache misses.

At the block level, we initially select a block to be evicted using an LRU policy.

However, if this block uses a temperature that exceeds that of the coldest block by

a predetermined threshold, then the block corresponding to the minimum wear-out

(coldest block) is evicted to balance the wear-level. Before we evict the coldest block,

its content is migrated to the hot block. The degree of wear-out of a Flash block is

determined by observing the entries in the Flash Block Status Table (FBST).

Splitting FlashCache into read optimized and write optimized—Isolating
FlashCache writes

Flash writes also need to be wear-level aware to guarantee reasonable Flash lifetime.

Due to this constraint, out-of-place writes are commonly used to mitigate wear-out.

Out-of-place writes treat Flash as a log and append writes to the end of the log.

However, naively managed out-of-place writes hurt the performance of a Flash based

disk cache. They tend to increase garbage collection(GC), incurring a significant

performance overhead. It also increases the overall Flash based disk cache miss rate

due to invalid Flash pages that are generated from out-of-place writes. Because the

read access latency to a Flash based disk cache is critical in utilizing the overall

system, it is desirable to limit GC and maintain a reasonable access latency to Flash.

To make this possible, it is apparent that dividing the Flash into a read-optimized

disk cache and a write-optimized disk cache seems vital in improving disk cache

performance. Splitting the disk cache into a read and write disk cache, means a read

cache is less susceptible to out-of-place writes, which reduce the read cache capacity

while increasing the risk of garbage collection. Read critical Flash blocks are located

in the read-optimized disk cache that only evict Flash blocks and pages on disk

cache misses. The write optimized disk cache captures writes to the Flash based disk

cache and supports out-of-place writes as well as garbage collection. Wear-leveling

is applied globally to all regions in the Flash based disk cache. Because writes in a

Flash are typically managed with a log-structure, it is also possible to use this write

73

Read Optimized
Page Cache

Write Optimized
Page Cache

Flash writes & erases
typically occurs on a

page cache miss

Flash writes & erases
occur on writes and

create, garbage
collection occurs

Before
Garbage
Collection

After
Garbage
Collection

SSS

SSS

SS S

Cache miss,
no more empty pages,

Flash block erase

Flash page write

Flash write to ‘S’ pages

Flash write to ‘S’ pages

Flash Read

Flash Write

Garbage Collection

S

Occupied valid Flash page

Written set of pages for
Flash write example

Invalid Flash page

Figure 6.4: Splitting FlashCache into a read optimized and write optimized cache.

74

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

128MB 256MB 384MB 512MB 640MB

Flash Memory Size

Fl
as

h
M

is
s

ra
te

RW unified : shared disk cache

RW separate : separate read and write disk cache

Figure 6.5: A miss rate comparison for a unified FlashCache and a read, write separated
FlashCache. Based on the observed write behavior, 90% of Flash is dedicated as a read optimized
cache and 10% of Flash is dedicated as a write optimized cache

optimized disk cache for fast recovery. This comes in handy for database workloads

that support a log file to reduce the update frequency to disk and allow recovery using

log files. Figure 6.5 shows the miss rate improvement obtained by splitting into a

read optimized and write optimized disk cache. The disk cache miss rate indirectly

shows the improvement in average access latency and indeed shows the benefit of

splitting the Flash based disk cache.

Accessing the FlashCache

In this section, we discuss how hits, misses and updates are handled in a Flash based

disk cache. When a file read is performed at the application level, the OS searches

for the file in the primary disk cache located in DRAM. On a primary disk cache

hit in DRAM, the file content is accessed directly from the primary disk cache (no

access to Flash related data structures). On a primary disk cache miss in DRAM, the

OS searches the FCHT to determine whether the requested file currently exists in the

secondary disk cache. If the requested file is found, then a Flash read is performed and

a DMA transaction is scheduled to transfer Flash content to DRAM. The requested

address to Flash is obtained from the FCHT.

If a read miss occurs in the FCHT search process, a block is selected for evic-

tion. The selection process considers wear-level at the block level. Wear-leveling is

75

performed based on section 6.2.1. Concurrently, a hard disk drive access is sched-

uled using the device driver interface. The hard disk drive content is copied to the

primary disk cache in DRAM. The corresponding tag in the FCHT belonging to the

read optimized disk cache is also updated.

File writes are more complicated. If we update a file, we update/access the page

in the primary page cache and this page is later scheduled to be written back to the

secondary disk cache and later to the disk drive. When writing back to Flash, we

first determine whether it exists on Flash by searching the FCHT. If it is found in

the write optimized cache, we update the page by doing an out-of-place write to the

write optimized cache. If it is found in the read optimized cache, then we invalidate

this page and allocate a page in the write optimized cache. If it is not found in the

Flash, we just allocate a page in the write optimized cache. The OS then determines

whether garbage collection (GC) of the write optimized Flash disk cache is necessary.

If GC is required, it is performed in the background. When erasing a block during

GC, wear-level management is performed on all blocks in a Flash based disk cache.

The disk is eventually updated by flushing the values on the write optimized disk

cache. By separating the Flash based disk cache into a read optimized and write

optimized disk cache, we are able to reduce the amount of blocks that have to be

considered when doing write triggered garbage collection.

6.2.2 Architecting a programmable Flash memory controller

The Flash controller handles the unique interface required in accessing Flash. The

Flash controller supports DMA transfers from DRAM to Flash and vice versa. The

procedure required in transferring Flash data is simple in principle—similar to ac-

cessing DRAM. However, there are two potential problems in performing reads and

writes in Flash. The first potential problem is bandwidth. Usually, a Flash can read

and write only a single byte or word per cycle. In addition, today’s NAND Flash

has a slow transfer clock—50MHz. A large amount of time is spent in reading and

writing data. This becomes a problem when we access the Flash frequently. The

limited bandwidth in Flash could potentially become a bottleneck in providing high

performance. The other potential problem is blocking writes. Today’s NAND Flash

suffer from blocking writes and do not support Read While Write (RWW). A NAND

Flash is busy during writes, blocking all other accesses that can occur. Without

RWW, a blocking Flash write could also become a potential bottleneck in providing

high performance.

76

Fortunately, these problems can currently be dealt with or are expected to be re-

solved through interleaving and improved interfaces. The blocking property of Flash

writes can be solved by distributing writes. We can schedule Flash reads to have

priority over writes, by using a lazy writeback scheme. By managing a writeback

buffer in DRAM that stores blocks that need to be updated in the Flash, we can

prevent a Flash write from occurring when Flash reads are requested. The lazy

writeback scheme allows writebacks to occur mostly when the Flash is not accessed

for reads. The bandwidth limitation is addressed through improved Flash clock fre-

quencies similar to that found in DRAM interfaces. In the long term we expect to

see more direct solutions—non-blocking features. Implementing multibanked Flash

memory that supports RWW are possible solutions. Flash vendors are making efforts

to support interleaving by banking Flash memory and introducing interface roadmaps

that are expected to satisfy the bandwidth requirements. For example, DDR2 inter-

face for Flash is projected to be available around 2011 based on roadmap projections

by Samsung[54]. 3D stacking technology[44] also reduces the transfer latency to one

bus cycle resulting in an improvement in Flash memory bandwidth.

In addition to providing acceptable throughput and latency, Flash controllers need

to be programmable. It is primarily due to wear-out. Flash memory wear-out can

be more directly visible to the user and software and hardware techniques must be

available to mitigate wear-out. We provide a solution that is programmable and

extends the lifetime of Flash significantly.

Figure 6.6 shows a high-level block diagram of a programmable Flash controller.

It is composed of 3 main components 1)an encoder and decoder for error correction

and detection; 2)a density controller; and 3)a Flash program/erase time controller.

Software based descriptors that exist in the Flash Block Status Table (FBST), Flash

Page Status Table (FPST) and Flash Global Status Table (FGST) (see section 6.2.1)

are used to program the Flash controller parameters. The cost function in determining

what parameters to use for the Flash memory controller is overall average access

latency. Overall access latency in a Flash memory can be written as follows:

taccess = thit × (1− pmiss) + tmiss × pmiss

where taccess is the Flash memory average access latency, thit is the average hit latency

of the Flash memory cell configuration and error correction code configuration, tmiss is

the miss latency depending on the access latency to the hard disk drive and the Flash

program/erase timing constraint, finally pmiss is the miss rate due to unrecoverable

errors or capacity misses in the Flash. pmiss is related to the density of a Flash

memory and the working set size of an application. In a nonprogrammable Flash

77

GF Field
Lookup Table

(memory)

BCH
Encode /
Decode

Flash
Density
Control

Flash Program /
Erase Control

NAND Flash
Memory

Density Descriptor

Flash P/E Descriptor

BCH configuration
Descriptor

External
Interface

I/O interface

Flash memory Address

Flash memory data (writes)

Progammable Flash memory controller

CRC
Encode /
Decode

Bit Error (Yes / No)

Flash memory data (reads)

Figure 6.6: High-level block diagram of a programmable Flash memory controller

Generate
Syndromes

Berklekamp
Algorithm

Chien
Search

If all
syndromes

are zero, then
no error
occurred

Generate
error location
polynomial

with
syndromes

Solve error
location

polynomial

NAND
Memory

BCH decode

Generate
Parity Bits

BCH encode

CRC32
CRC32 =

CRC error / no error

Figure 6.7: High-level block diagram of a BCH and CRC encoder/decoder interfacing with NAND
Flash memory.

memory controller thit, tmiss would be fixed and pmiss would gradually increase as

Flash memory wears out (faulty blocks are simply disabled).

Error Correction Code support

One way to recover from errors in Flash is to use error correction code. This section

describes the error correction and detection scheme used in a Flash controller. We

also show that a programmable Flash controller can control the error correction code

strength to improve overall access latency to Flash while extending overall Flash

lifetime.

Error correcting codes (ECC) are widely employed in digital storage devices to

mitigate the effects of hard (permanent) and soft (transient) errors in storage cells. It

has been a well-established area in disk drives and studied for several decades. Flash

uses linear block codes like Bose, Ray-Chaudhuri, Hocquenghem (BCH) code due

to the strong code strength and acceptable decode/encode latency. For example, a

78

recent paper [72] implements a 5-bit BCH error correcting code on words of size 2102

bytes. To effectively detect errors, CRC codes have been commonly used in addition

to BCH error correction. Our architecture shown in Figure 6.7 uses a BCH encoder

and decoder to perform error correction and a 32 bit CRC checker to perform error

detection. We provide a detailed description in the next subsections.

BCH encoder and decoder

BCH code is a well established coding technique to recover from random errors. Ham-

ming codes were found to be a special case for BCH code which corrects single errors,

Reed-Solomon codes have been recognized as a non-binary code for BCH code. There-

fore, much of the insight gained from BCH can be applied to implementing Hamming

or Reed-Solomon codes which are known alternative channel codes applied to mem-

ory devices. A t-error-correcting BCH code must agree with the following parameters:

Block length: n = 2m − 1,

Number of parity-check digits: n− k ≤ mt,

Minimum distance: dmin ≥ 2t + 1

For any positive integer m(m ≥ 3) and t (t < 2m−1)

For example, in a 2 error-correcting BCH code of length 255, 239 bits used as the

message bits (the actual data) and 16 bits are used as the parity check bits. Roughly

speaking, the number of parity check bits increase linearly for a fixed code length.

Figure 6.7 shows an implementation of our BCH encoder/decoder using well-

known algorithms. The Berlekamp and Chien Search algorithms in the decoder are

widely used due to their simplicity. These methods have been proven to be an effective

iterative technique in decoding BCH code [67]. We conducted a bottleneck analysis to

understand whether an accelerator is required to satisfy reasonable error correction

latency. We implemented the BCH encoder and decoder in C and measured the

amount of time spent encoding and decoding BCH code on a 3.4 GHz Pentium 4

system. Although not highly optimized, the source code was sufficient to determine

the approximate clock frequency necessary to provide a certain word access latency.

This delay is in addition to the intrinsic read or write delay of a Flash cell.

Figure 6.8 shows access latencies for a general-purpose CPU platform, plus that of

a projected general-purpose CPU with an accelerator. Our projected latencies were

based on the circuit design in [72]. Figure 6.8(b) also shows the impact of varying

block size to latency on a general-purpose CPU platform. It is clear that these penal-

79

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

2 3 4 5 6 7 8 9 10 11

number of correctable errors
de

co
de

 la
te

nc
y

- u
s

syndrome berlekamp chien misc

(a)

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

1 10 100 1,000 10,000 100,000
page size - bits

de
co

de
 la

te
nc

y
- u

s

(b)

0
20
40
60
80
100
120
140
160
180
200

2 3 4 5 6 7 8 9 10 11

number of correctable errors

de
co

de
 la

te
nc

y
- u

s

syndrome berlekamp chien misc

(c)

Figure 6.8: BCH decode execution time on (a) x86 assuming page size of 2KB, (b) shows the
execution time for varying block size on a 2 error correcting BCH decode executed on a x86. (c)
embedded processor (inorder 100MHz) with highly parallelized modular arithmetic support,
Berlekamp acceleration engine and highly parallelized Chien search engine. Figures clearly suggest
there should be an accelerator for ECC.

80

ties can severely compromise performance, thus an accelerator is necessary. These

accelerators primarily improve the modular arithmetic and memory alignment found

in BCH code. Fortunately, for BCH decoders can highly parallelized with ease result-

ing in accelerator engines to be multiple components simultaneously executing similar

operations. To support programmability and adaptive ECC strength, a combination

of a general-purpose CPU and a specialized functional unit for ECC acceleration is

required in our BCH encoder/decoder.

Our implementation uses a 215 entry finite field lookup table as well as 16 finite

field adders and multipliers as accelerators to implement the Berlekamp and Chien

Search algorithm (16 instances of Chien search engines). BCH code uses finite field

operators, which are sufficiently different from standard arithmetic operators that

they cause a bottleneck in a general purpose CPU without an accelerator. We limit

the programmability to a fixed block size (2KB) to avoid memory alignment with

different block sizes and limit the maximum number of correctable errors to 12. A

programmable BCH encoder/decoder that supports varying block size and varying

correctable number of errors requires careful memory alignment and additional finite

field lookup tables and reconfigurable multipliers. This suggests there is a large

design space to explore when investigating the trade-off between memory alignment

and BCH encode/decode efficiency. We leave this to future work that this area covers

a large space.

CRC checksum

One of the drawbacks of BCH code is the inability to perfectly detect more than

the correctable number of errors. In many cases, if the number of errors exceeds the

amount a BCH code can handle, the Chien search would generate no roots, implying

that more errors occurred. Unfortunately, false positives may occur, where the Chien’s

Search algorithm generates root results that cause a decoding error. As a result, CRC

codes are necessary to improve error detection capability.

Using CRC code with error correction codes is a common way of guaranteeing

reliability in many applications. CRC codes are found in applications such as Ether-

net 802.3, MPEG2 and ATM protocols. CRC codes are capable of covering a wide

range of error patterns. For example, CRC32 codes are able to detect up to 32bits

of bursty errors and even more distributed errors. Therefore, we found it unneces-

sary to architect a programmable CRC and instead use a well-optimized hardware

implementation of a CRC32 functional block. Our design compiler results showed it

occupied an insignificant amount of die area and performance overhead (unit in tens

81

of nanoseconds). This agrees with other implementations such as [50].

Impact of BCH code strength to Flash lifetime

Because ECC comes at such a high cost, we investigated the relationship between

ECC strength and Flash lifetime. This section provides an analytical analysis on the

impact of code strength versus Flash lifetime. As it was shown in Chapter II, Flash

lifetime depends on the thickness of oxide. We begin by assuming the probability

distribution function(pdf) ftox(X) of oxide thickness on a silicon die to follow a gaus-

sian distribution. This assumption has been commonly used in many studies related

to process variation and bases it’s principles on the central limit theorem.

ftox(X) =
1√

2πσox

e
− (x−mox)2

2σox2 (6.1)

where mox is the mean oxide thickness and σox is the oxide standard deviation,

Further, we assume the 3σox value of oxide is 15% of the mean oxide thickness.

Next, we identify a relationship between the Flash lifetime and oxide thickness.

In other words, represent Flash lifetime as a function of oxide thickness. From Figure

2.4(b) in Chapter II, we can see for a fixed portion of worn out cells, oxide thickness

tox displays an exponential relationship with Flash lifetime. Using this relationship

we can define Flash lifetime W as follows:

W = 10C1·tox (6.2)

where C1 is a constant. We will call this the exponential model. For comparison

reasons, we define a second model that assumes

W = C2 · tox (6.3)

where C2 is a constant. We call this the linear model.

Up to this point, spatial variation is not modeled. But, adding a spatial corre-

lation coefficient into the pdf function is difficult to analyze. Luckily, because error

correction is handled in pages (a group of horizontal bits) that are several kilobytes,

the horizontal variation can be excluded and we only need to consider vertical vari-

ation. Because we handle a Flash in units of pages, when analyzing the impact of

ECC, we are only concerned about the number of errors not where the errors occur

in a page. We introduce another random variable E that represents the number of

bad cells per Flash page at wear-out w. This variable allows us to capture the values

that are required in analyzing the impact of ECC. If there were no spatial variation

82

at all, the variation of random variable E would be 0. Thus, we can model the spatial

variation as the variation of random variable E. Further, random variable E can be

viewed as a random variable of mean Npage · pw denoted as mE, where Npage is the

Flash page size plus additional header bits and pw is the probability a cell can fail at

wear-out w. The spatial variation can be related to σE, the standard deviation of ran-

dom variable E. The probability pw can be expressed as pw = FW (w) = P (W ≤ w).

P (W ≤ w) is as follows:

linear model : P (W ≤ w) = P (C2 · tox ≤ w) = P (tox ≤ w
C2

)

exponential model : P (W ≤ w) = P (10C1·tox ≤ w) = P (tox ≤ log10(w)
C1

)

Variation of random variable E can vary based on the spatial correlation. Thus,

we used multiple variations that are products of the mean to model spatial correlation.

We selected standard deviations of 0, 5%,10%,20% of the mean.

Using the exponential model and linear model, we plotted the relationship ECC

strength versus Flash P/E cycles and available Flash pages versus Flash P/E cy-

cles. Figure 6.9, 6.10 plots these results. As we can see, in both models, ECC

strength extends lifetime and available number of Flash pages by quite a bit. When

directly relating ECC strength to wear-out, we find that the exponential model wears

out more gracefully. Spatial variation negatively impacts code strength because our

assumptions in plotting Figure 6.9 assumed all Flash pages had to be recoverable

for a certain ECC. As bad Flash cells display a higher spatial correlation, bad cells

are located in groups resulting in an increasing number of pages that cannot recover

using a weak ECC. Figure 6.10 shows the portion of available Flash pages for a

ECC strength of 4. In this case, we find spatial variation helping graceful wear-out

of storage capacity.

Density control

This section explains the need to provide dynamic density control in a Flash memory

controller to improve overall Flash memory latency and lifetime. With the intro-

duction of multi-level cells (MLC), Flash memory is able to improve storage density

without the help of process scaling. However, due to the added complexity of an

MLC Flash memory cell, it results in reduced read/write throughput and reduced

endurance. MLC Flash memory cells take longer to program and read. Because the

Flash memory state is stored using different threshold voltage levels, MLC Flash re-

quires multiple threshold voltage levels. Multiple threshold voltage levels imply that

the threshold gap between different logical values is reduced and is the main cause

of reduced endurance. To mitigate this drawback, there has been work on enabling

83

0

50,000

100,000

150,000

200,000

250,000

300,000

0 2 4 6 8 10 12

of correctable errors (code strength)

m
ax

. t
ol

er
ab

le
 P

/E
 c

yc
le

s
stdev = 0 stdev = 5% of mean stdev = 10% of mean stdev = 20% of mean

(a) linear

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

0 2 4 6 8 10 12

of correctable errors (code strength)

m
ax

. t
ol

er
ab

le
 P

/E
 c

yc
le

s

stdev = 0 stdev = 5% of mean stdev = 10% of mean stdev = 20% of mean

(b) exponential

Figure 6.9: Maximum tolerable Flash P/E cycles for varying code strength. Linear and
exponential analytical models are considered. We assume Flash page size to be 2KB and first point
of failure to occur at 100,000 P/E cycles.

84

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 100,000 200,000 300,000 400,000 500,000 600,000

P/E cycles

fr
ac

tio
n

of
 a

va
ila

bl
e

fla
sh

 p
ag

es

stdev = 0 stdev = 5% of mean stdev = 10% of mean stdev = 20% of mean

(a) linear

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.E+00 1.E+06 2.E+06 3.E+06 4.E+06 5.E+06 6.E+06

P/E cycles

fr
ac

tio
n

of
 a

va
ila

bl
e

fla
sh

 p
ag

es

stdev = 0 stdev = 5% of mean stdev = 10% of mean stdev = 20% of mean

(b) exponential

Figure 6.10: Available Flash page versus Flash P/E cycles. Linear and exponential analytical
models are considered,We assume Flash page size to be 2KB and first point of failure to occur at
100,000 P/E cycles.

“0” “1”

Vth

D/A
Converter Voltage

Pump

Vpgm

Vpgm

(a) Single Level Cell (SLC)

“00"

Vth

D/A
Converter Voltage

Pump

Vpgm

Vpgm “01" “10" “11"

(b) Multilevel Cell (MLC)

Figure 6.11: Dual mode Flash memories are possible for MLC by controlling the program voltage
level

85

… . … . … . … .

BLe1 BLe2BLo1 BLo2

SSL

W/L64
W/L63

W/L1
W/L0
CSL

SBLe1
SBLo1 SBLe2

SBLo2
IHBe1IHBo1 IHBe2IHBo2

REFp

REFn

SL2SL1

ΦL3 ΦL1
ΦL2

ΦP1 ΦP2Sopt

Figure 6.12: Simplified schematic diagram of sense and latch buffer with single-bit-per-cell option
transistor[35]. The circled transistor is the single-bit-per-cell option transistor

Financial2: working set 443.8MB

0

500

1,000

1,500

2,000

2,500

3,000

0 50 100 150 200 250 300 350 400 450 500

Flash cells (MB)

ov
er

al
l r

ea
d

la
te

nc
y

(u
s)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

SL
C

 p
er

ce
nt

ag
e

Latency (us) Optimal SLC fraction

(a) Financial2

Websearch1 working set size 5116.7MB

0

500

1,000

1,500

2,000

2,500

3,000

3,500

0 1,000 2,000 3,000 4,000 5,000

Flash cells(MB)

ov
er

al
l r

ea
d

la
te

nc
y

(u
s)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

SL
C

 p
er

ce
nt

ag
e

Latency (us) Optimal SLC fraction

(b) Websearch1

Figure 6.13: Optimal FlashCache access latency and partition

86

MLC to operate in SLC mode [35] [64] to improve Flash memory endurance. Our

programmable Flash memory controller assumes that one can dynamically control

the density of a Flash memory at the page level by slightly modifying the sense am-

plifier circuitry found in a MLC [35] [64] providing a density selection control signal.

Therefore, the primary role of a density controller is to indicate the mode of the re-

quested page. The density configuration of the requested page can be found in the

density descriptor, in the operating system software. Density control benefits Flash

memory performance and endurance, because we are able to reduce access latency for

frequently accessed pages and possibly improve endurance for aging Flash memory

pages by changing MLC pages into SLC pages on demand.

To show the potential improvement of Flash memory performance by controlling

density, we present a study using real disk traces. Using disk activity traces from

[25] for financial and web search applications, we analyzed the average access latency

for different SLC/MLC partitions, for several Flash cache sizes. Table 3.2 shows the

latencies we assumed. For minimum latency, the most frequently accessed data is

allocated to SLC storage. At this point, wear-out effects are ignored.

Because the higher density MLC cells exhibit a higher read and write latency

than SLC, simply using MLC is not the most effective solution. We show that a

hybrid allocation of SLC and MLC provides minimum access latency to files for equal

area (number of Flash cells). Figure 6.13 shows the optimal average access latencies

achieved for an optimal partition between SLC and MLC. As expected, when the

size of the cache approaches the working set size, latency reaches a minimum using

only SLC. Intuitively, this is because frequently accessed hotspots should reside in

low-latency but low density cells. The optimal partition is dependent on the nature

of the workload.

Program/Erase time control

This section shows the need to control the program and erase time using the pro-

gram/erase controller. As it was shown in Chapter II, Flash wear-out causes a

change in threshold voltage. Instead of using error correction code like BCH, to mit-

igate and improve Flash memory endurance one can increase the program and erase

time so that some of the trapped electrons can be removed. Figure 6.14 shows an

example of how this may be mitigated by increasing the erase and program time as

one writes more to Flash. Longer erase and write time enables the worn out cells to

be re-used again. After a certain point, we can see an exponential increase in program

and erase time.

87

0
1
2
3
4
5
6
7
8
9

0 200 400 600 800 1000

P/E cycles x 1,000

N
or

m
al

iz
ed

 ti
m

e

erase program

Figure 6.14: Program/Erase time control to mitigate Flash wear-out [73]

The erase time for a Flash memory block and the program time for a Flash

memory page can be increased to slow the gradual decrease in the threshold voltage

window gap. By configuring the program and erase time at the page and block level,

it is possible to slow wear-out. Therefore, the program/erase time controller receives

instructions through the program/erase descriptor to control this delay.

We only discuss the implications in Flash memory endurance due to program and

erase cycles. The other gradual degradation found with Flash memory wear-out is the

reduction in Flash memory retention time. The reason for retention time reduction

comes from damage to the potential wall between the body and the floating gate.

Retention time is less of a concern when viewing Flash as a disk cache. In later

sections, along with many other reasons, this supports the case for using Flash as a

disk cache for server applications.

Operating System support for Flash controllers

Operating System (OS) support for integrating the Flash controller must exist to

deliver the proper Flash descriptor. We revisit the FCHT and FBST described in

section 6.2.1. Two more data structures are introduced to assist in generating de-

scriptors for the Flash controller. The Flash page status table(FPST) and the Flash

global status table(FGST). They can be described in Table 6.3 and 6.4.

88

Type Field Description
unsigned int access counter access frequency of page
unsigned char valid validity of page
unsigned char ecc strength ECC code strength
unsigned char slc mlc SLC/MLC mode of page
unsigned char write time write time of page

Table 6.3: The fields of the flash page status structure which are entries to the FPST

Type Field Description
unsigned float access lat overall average access latency
unsigned float read lat overall average read latency
unsigned float write lat overall average write latency
unsigned float miss rate overall average miss rate

Table 6.4: The fields of the flash global status structure which are entries to the FGST

We will focus more on the fields found in the FPST and FGST entries. Block level

data structures in the FBST manage the degree of wear-out of blocks by factoring

the number of erases found in the FBST as well as overall page wear-out for pages

belonging to this block. It also maintains the erase time configuration of a block.

Page level data structures in the FPST includes the validity, bit error behavior and

access frequency of a page. The overall status of a Flash (FGST), which we define

as overall average access latency and disk cache miss rate, is also used in making

decisions on how to configure a Flash page. The end result of these status entries

is to generate a set of descriptors that are sent to the controller for reading, writing

or erasing a Flash page. Of course, to determine whether the requested content is

located inside Flash, the FCHT (a tag data structure) lookup must occur.

As we described in previous sections, wear-level management uses block wear-out

which contain varying error correction code strength, density and program timing

constraints. We discuss how the programmable Flash controller interfaces with the

Flash when performing wear-leveling. We take advantage of the fact that typical

manufacturer guaranteed erase cycle lifetimes of 10,000/100,000 are extremely con-

servative.

Wear-leveling is primarily performed at the block level as we described in the

previous sections and attempts to ensure that small groups of blocks are not worn

out quicker than others. For example, when the degree of wear out for block ’A’

selected for erase exceeds a threshold compared to that of the degree of the least

worn out block ’B’, blocks are swapped and the least worn out block ’B’ is chosen for

erase instead.

89

To consider density control, the Flash controller must use the following algorithm

when performing block replacement.

• Block ’A’ is erased and the contents of block ’B’ are migrated to block ’A’. Not

all page configuration settings (ECC strength, density and latency controls) are

migrated to block ’A’. Only page configurations from pages in block ’B’ that

have set the cell to SLC to improve performance are migrated to pages in block

’A’.

• Block ’B’ is erased and pages due to a FlashCache miss are loaded into ’B’ from

the hard disk.

There may be more effective techniques to estimate the wear-out of a block. How-

ever, many of these techniques are time consuming and may not be worthwhile.

Our philosophy behind wear-leveling is to equally wear-out each Flash block using

a low-complexity scheme and handle wear-out of individual Flash blocks using error

correction code strength, cell density and program/erase time.

How it works

This section describes how descriptors are generated for a programmable Flash con-

troller and how we choose configurations. Since we have outlined how a FlashCache

is accessed in section 6.2.1, we illustrate the sequence of events involved in interfac-

ing with the Flash controller. On a FCHT read hit, the descriptors for that page

are generated and sent to our programmable Flash memory controller to access the

Flash memory. On a FCHT read miss, empty pages are allocated on FlashCache

to cache data returning from disk. An empty page is a page which underwent an

erase operation and requires programming. Descriptors for these empty pages are

sent to the Flash controller when writing data. If there are no empty pages available,

a Flash block is erased using the LRU and the wear-leveling policy maintained in the

block-level data structures in FBST.

When accessing a Flash through the Flash controller,the page and block descrip-

tors existing in the FPST, FBST can be modified. Based on the observed behavior

of a Flash page, the descriptors can be updated to maximize overall performance and

reliability. If it is updated, the updated characteristics of a page are applied on the

next write access to that page and next erase to the block that the page belongs to.

There are two main events that trigger updates to descriptors for a Flash page

and block located in the FPST, FBST. One is Flash memory endurance, which can

90

be determined by looking at the bit error consistency and overall access latency. The

other is access frequency.

In regard to endurance, if page errors are observed and found to occur frequently

which implies it is a page error due to wear-out, we reconfigure the page. This is

achieved by enforcing a stronger error correction code, reducing cell density or con-

trolling the program/erase time. The setting is determined by observing the current

configuration and using a heuristic to calculate the expected cost. We note that

cell density reduction provides the best reliability improvement, but greater loss of

capacity than increased ECC strength.

To explain how the expected cost is calculated, we revisit the overall access la-

tency equation described in section 6.2.2. The three techniques affect the overall

access latency equation in different ways. Code strength controls the hit latency thit,

program/erase time controls the miss latency tmiss and cell density affects both thit

and pmiss. Specifically, a sensitivity analysis of the overall access latency equation

reveals the following costs:

Costcode strength = paccess,i ×∆code delay

Costprogram erase = pmiss × perased,i ×∆program erase

Costdensity = ∆miss× (tmiss − thit − paccess,i ×∆SLC)

where paccess,i is how frequently the i-th page is accessed and perased,i is how frequently

the i-th block is erased. The latency increase for enforcing a stronger error correction

code is (∆code delay), increasing program/erase time is (∆program erase), increas-

ing miss rate is (∆miss) and reducing hit latency is due to switching from MLC to

SLC is (∆SLC).

The technique with the minimum cost is selected and is influenced by workload,

Flash memory age and the current state of the Flash memory cell.

We favor modifying the code strength since it does not change Flash capacity.

To prevent unnecessary memory alignment complexity, we assumed that we are able

to correct up to 12 errors using BCH, causing a performance overhead of hundreds

of microseconds. The BCH check bit storage overhead is marginal considering the

high capacity of today’s Flash memories. Devices typically include 64 bytes for ECC

support bits. When we consider that 4 bytes are used for the CRC32 code, 60 bytes

are at our disposal. Support bits required for BCH are n × t where n is the degree

of the finite field and t is the number of correctable errors. Because we limited the

number of correctable errors to 12, a maximum of 23 bytes are used for parity, per

page.

If the above techniques do not perform well and result in a substantial increase

91

in overall access latency, cell density can be reduced to improve reliability. One may

not be able to reduce density at all if a page is already in SLC mode. In this case, the

block would have to be removed permanently and never considered when looking for

pages to allocate in a disk cache. Once a page transitions to single level cells, it is not

feasible to go back to multi-level cells if the transition was in response to wear-out.

Once a page is reconfigured, this page is marked as invalid and an empty page

is allocated while an access to the hard disk drive is scheduled. A descriptor for

this empty page is sent to the Flash memory controller when writing data. If there

is no empty page available, a Flash memory block is evicted and erased using the

block-level data structures for LRU.

Density reduction does come at a price since it increases the Flash cache miss

rate. By observing the access behavior for a fixed time interval, one can determine

whether this page is frequently accessed or not. If this page is found to be frequently

accessed, reducing the latency by allocating an SLC based empty page and migrating

the frequently accessed page to this location improves overall latency. Furthermore,

a small number of pages with reduced density can satisfy the majority of accesses

with low latency, because many accesses to files are spatially and temporally a tailed

distribution (zipf).

6.2.3 Function and location of Flash memory—Why it is a
non-volatile disk cache

One may think that because Flash is such a dense device and consumes much less

power than disk, it could be an excellent candidate to replace disk drives in servers.

This section explains why a Flash should be treated as a disk cache for servers.

This leads to discussing where the Flash should be integrated on a server considering

a programable Flash controller described in the previous sections. We explain these

issues by first explaining Flash based file systems that are currently available and then

describe how these filesystems don’t scale as Flash memory sizes increase. Finally,

we show how a disk cache is much simpler and requires less performance and storage

overhead.

Flash FileSystem

Due to the organization of a Flash and Flash endurance, conventional filesystems

have had to either be augmented (emulated) or built from scratch to cover the char-

acteristics of a Flash. Figure 6.15 shows how today’s Flash filesystem are accessed

92

User Program accesses through disk read(), write()

inode cache

page cache

EXT, NTFS, FAT32

HDD block driver *

NAND related code
executed on disk

controller

FlashCache code

NAND driver

EXT, NTFS, FAT32

HDD block driver

JFFS, JFFS2, JFFS3

NAND driver

EXT, NTFS, FAT32

MTD driver

Flash Translation Layer

NAND driver

user

kernel
Layer that performs
wear-leveling

Requires slight modification
in driver code

Hybrid Disk Drive Flash based Secondary
Disk Cache JFFS Flash Drive Conventional FS

emulated Flash Drive

Figure 6.15: Block diagram of how Flash is accessed based on the filesystem mapped to Flash or
role of Flash (FlashCache)

and where wear-leveling is performed. Each technique dedicates a specific software

layer to do Flash block management.

Flash Translation Layer (FTL) based filesystem To make Flash backward

compatible with conventional filesystems like FAT32 and EXT2, an additional Flash

translation layer (FTL) has been built to remap conventional disk requests into Flash

friendly requests. A gap exists due to conventional disk requests built to be block

friendly. Flash has been regarded neither as a char nor block device proving why

it requires a remapping of a disk request. FTL solutions are offered in typical USB

Flash drives. However, recent trends suggest that the code overhead in the FTL is

substantial and will likely require other techniques to reduce this overhead.

JFFS, JFFS2, JFFS3 filesystem In the open source community, Flash based

filesystems were built ground up to enable commodity operating systems to access and

utilize Flash. The continuous efforts through JFFS, JFFS2, JFFS3 have shown that

Flash can be mounted and used transparently on a commodity system. JFFSx is a log

structured file system optimized for Flash. It originally was built to support NOR

Flash, but later included support for NAND Flash. Due to the out-of-place write

updates, JFFSx is able to decouple writes and erases. Erases occur during Garbage

Collection and reclaims dead Flash pages. Several issues in regard to scalability are

mentioned and need to be addressed in the future. For Flash based solid state disks

to exist these solutions must be addressed at the system level.

93

0

10

20

30

40

50

60

0% 20% 40% 60% 80% 100%

Used Flash Space

N
or

m
al

iz
ed

 g
ar

ba
ge

 c
ol

le
ct

io
n

ov
er

he
ad

Figure 6.16: Garbage collection (GC) overhead in time versus occupied Flash space in a 2GB
Flash, GC overhead in time is a product of GC frequency and GC latency. It is normalized to the
overhead at 10%

How Flash based filesystems scale?

Filesystems store files along with headers and data structures that help find the file

and store the file header. This implies additional storage overhead to store headers.

Mount time for file systems is an important feature. One drawback we can clearly see

in Flash based filesystems is that they spend much time on mounting the filesystem

since it has to read the entire data structure used in the filesystem from Flash. This is

a way to reduce direct updates to frequently updated data structures in the filesystem

that may potentially wear-out a Flash quickly. The memory overhead in Flash based

filesystems has been noted to linearly increase in Flash memory size, which implies

it will exponentially increase annually because Flash sizes increase exponentially.

To reduce mount time and memory overhead, new techniques that try to reduce the

amount of filesystem updates and only stores a partial amount of the filesystem’s data

structure by caching it on system memory have been proposed [8]. This method is

similar to what we find in conventional filesystems or demand based paging. However,

it is still unclear that these methods are useful due to the performance overhead and

even potentially hurt Flash.

In addition, another concern in managing Flash based filesystem’s is garbage col-

lection. The overhead in garbage collection increases as we fill up the Flash with

94

files. This becomes a big problem because garbage collection generates un-necessary

writes and erases in Flash. Again, it hurts performance and endurance as the Flash is

occupied. Figure 6.16 shows how the time spent garbage collecting increases as more

Flash space is used. Because Flash is unlikely to be cheaper than disk drives, if used

as a storage device in servers they are likely to fill up quickly.

The logical and physical location of Flash based disk caches

This section discusses where a Flash should be located both logically and physically

in a server platform. Logically, for disk cache intensive applications which put more

emphasis on processor and system memory power, it would make more sense to put

Flash closer to the processor and treat it as part of the memory. As we showed in the

previous sections, there are many data structures involved in making Flash memory

reliable and programming the Flash controller. The size of these data structures

amount to 10’s of megabytes of to 100’s of megabytes. These data structures are also

tightly coupled to other data structures in the kernel.

With a reasonable memory requirement and tight correlation with the kernel, it

would be more efficient to place the Flash and Flash controller at the hands of the

processor instead of the disk controller. Another case for putting Flash closer to the

processor is due to the assumptions written for interfacing with the hard disk drive.

There are many assumptions in the disk interface code in the OS kernel, which is

intended only for hard disk drives. As a result, some requests to disk maybe geared

towards hard disk drives, making it less optimal for a Flash. We were able to measure

that approximately 10% of additional execution time was spent in running hard disk

drive friendly code. Qualitatively we believe for disk intensive applications, Flash

should exist closer to the processor and be governed by the processor.

The Microsoft hybrid disk drive protocol revisions strengthen our argument. Mi-

crosoft has gradually augmented additional disk drive protocol that enable the OS to

directly control the Flash than send messages to the disk drive controller and let it

manage the Flash. In fact, recent revisions outline a protocol allowing some parts of

the Flash to be pinned by the OS and disallowing the disk controller from evicting

block in Flash.

Despite the case for logically associating the Flash device with the processor and

the OS, Flash can physically exist virtually anywhere in a platform. As we had noted

in section 6.2.2, the measured bandwidth to Flash is easily satisfied with today’s

I/O bandwidth standards available in servers. We also note that a clear roadmap

is outlined for Flash to support higher bandwidths. One potential concern is the

95

relationship with stronger ECC code. As we had noted in 6.2.2, architectural support

for accelerating ECC encode and decode time is critical in satisfying read and write

throughputs to Flash.

6.2.4 Impact on storage device power

Integrating Flash memory as a part of system memory also affects the behavior of

storage devices—disk drives. To understand the impact, we briefly describe the cur-

rent trends in disk drive technology. According to [5], the price per bit and storage

density appears to scale well beyond 2010 and is expected to be orders of magnitude

more efficient than Flash. Internal data rates are also expected to increase at an

exponential rate, despite some concern due to thermal management [46] which has

been confirmed by [81]. However, what we do notice is the high power consumption

for fast internal data rate disk drives that display lower seek and rotation time to

deliver lower access latency. Integrating Flash memory as a secondary disk cache,

definitely increases opportunities to put disk drives into sleep mode and reduce the

required internal data rate. This translates into reducing the disk power consump-

tion by adopting disk drives with mediocre internal data rate and spinning down disks

when not accessed. Today’s disk drives at 15,000 rpm consume more than 15W when

active which is roughly equivalent to 8GB of DRAM and 100’s of gigabyte of Flash

in terms of power consumption.

6.3 Evaluation

We compare our results to conventional architectures that do not employ Flash and

instead use only DRAM. We assume a conventional chip multiprocessor configuration

(MP4/8/12) clocked at 1GHz with a 2MB L2 cache. To understand the endurance

of Flash, we present results on expected lifetime of the Flash memory.

6.3.1 Server Throughput with Flash memory

Figures 6.17, 6.18, 6.19 depicts the overall throughput as DRAM size is varied and

Flash memory is fixed at 1GB. Our baseline comparison is a configuration with no

Flash and 1GB of DRAM. Apart from the workloads generated from SPECWeb2005

(working set size is approximately 256MB), 1GB of DRAM does not capture the

entire working set size. Our optimal multichip configuration requires less die area

than our baseline configuration due to the compactness of Flash. From our early

96

observations that large portions of the page cache can tolerate access latencies of

tens to hundreds of microseconds, we find our optimal configuration to be 128MB of

DRAM and 1GB of Flash for workloads that display short tailed behavior. In terms of

area, this configuration requires 40% less die than our baseline of no Flash and 1GB of

DRAM as shown in Figure 6.20. For Tier 3 workloads like TPC-C that display long

tailed behavior, more DRAM memory in the primary page cache is required to see

marginal degradation in throughput. Further, the amount of memory is related to the

number of cores. As we increase the number of cores, Tier 3 workloads have a difficult

time fully utilizing each core. This is due to the way locks are conservatively used in

database servers (software). Hence, we see marginal improvement in throughput for

TPC-C benchmarks as we increase from 8 cores to 12 cores. In summary, our results

suggest using Flash memory as a secondary disk cache results in minimal degradation

in throughput.

6.3.2 Overall system memory power

With respect to overall power consumed in system memory, our primary power savings

come from the reduction in idle power from using Flash memory. It is several orders

of magnitude. We compare our multichip configuration with DRAM configurations

that have a) no power management—active mode and b) ideal power management—

powerdown mode. Intelligent power management reduces DRAM idle power. Our

ideal power management scheme assumes the DRAM is set to a powerdown mode

whenever possible. These modes were derived from [51][61]. Figure 6.21, 6.22, 6.23

shows our results. As shown in Figure 6.21, 6.22, 6.23, the FlashCache architecture

reduces overall system memory power by more than a factor of 2.5, even compared

to an oracle power management policy implemented in software and hardware for

DRAM. We assumed a hardware memory controller controlled through software puts

DRAM to sleep whenever it is not accessed. The memory power for an architecture

using a FlashCache includes the Flash memory controller power consumption along

with the extra DRAM accesses to manage the Flash memory. Since Flash memory

is accessed only thousands of times per second, the overall average contribution from

additional DRAM accesses and the Flash memory controller is negligible.

97

0

400

800

1,200

1,600

2,000

DRAM 32MB +
FLASH 1GB

DRAM 64MB +
FLASH 1GB

DRAM 128MB
+FLASH 1GB

DRAM 256MB
+FLASH 1GB

DRAM 512MB
+FLASH 1GB

DRAM 1GB

N
et

w
or

k
B

an
dw

id
th

 -
M

bp
s

MP4 MP8 MP12

(a) SURGE

0

200

400

600

800

1,000

1,200

DRAM 32MB +
FLASH 1GB

DRAM 64MB +
FLASH 1GB

DRAM 128MB
+FLASH 1GB

DRAM 256MB
+FLASH 1GB

DRAM 512MB
+FLASH 1GB

DRAM 1GB

N
et

w
or

k
B

an
dw

id
th

 -
M

bp
s

MP4 MP8 MP12

(b) SPECWeb99

0

100

200

300

400

500

600

700

800

DRAM 32MB +
FLASH 1GB

DRAM 64MB +
FLASH 1GB

DRAM 128MB
+FLASH 1GB

DRAM 256MB
+FLASH 1GB

DRAM 512MB
+FLASH 1GB

DRAM 1GB

N
et

w
or

k
B

an
dw

id
th

 (M
bp

s)

MP4 MP8 MP12

(c) Fenice

Figure 6.17: A throughput comparison for various system memory configurations using the
FlashCache. The rightmost points are for a DRAM-only system.(SURGE, SPECWeb99, Fenice)

98

0

5

10

15

20

25

30

DRAM 32MB +
FLASH 1GB

DRAM 64MB +
FLASH 1GB

DRAM 128MB
+FLASH 1GB

DRAM 256MB
+FLASH 1GB

DRAM 512MB
+FLASH 1GB

DRAM 1GB

 N
et

w
or

k
B

an
dw

id
th

 (M
bp

s)

MP4 MP8 MP12

(a) SPECWeb2005-bank

0

20

40

60

80

100

120

140

160

180

200

DRAM 32MB
+ FLASH 1GB

DRAM 64MB
+ FLASH 1GB

DRAM 128MB
+FLASH 1GB

DRAM 256MB
+FLASH 1GB

DRAM 512MB
+FLASH 1GB

DRAM 1GB

N
et

w
or

k
B

an
dw

id
th

 (M
bp

s)

MP4 MP8 MP12

(b) SPECWeb2005-ecommerce

0

100

200

300

400

500

600

700

800

DRAM 32MB +
FLASH 1GB

DRAM 64MB +
FLASH 1GB

DRAM 128MB
+FLASH 1GB

DRAM 256MB
+FLASH 1GB

DRAM 512MB
+FLASH 1GB

DRAM 1GB

N
et

w
or

k
B

an
dw

id
th

 (M
bp

s)

MP4 MP8 MP12

(c) SPECWeb2005-support

Figure 6.18: A throughput comparison for various system memory configurations using the
FlashCache.(SPECWeb2005-bank, ecommerce, support)

99

0

400

800

1,200

1,600

2,000

DRAM 32MB +
FLASH 1GB

DRAM 64MB +
FLASH 1GB

DRAM 128MB
+FLASH 1GB

DRAM 256MB
+FLASH 1GB

DRAM 512MB
+FLASH 1GB

DRAM 1GB

N
et

w
or

k
B

an
dw

id
th

 (M
bp

s)

MP4 MP8 MP12

(a) dbench

0

50

100

150

200

250

300

350

400

DRAM 128MB
+FLASH 1GB

DRAM 256MB
+FLASH 1GB

DRAM 384MB
+FLASH 1GB

DRAM 512MB
+FLASH 1GB

DRAM 640MB
+FLASH 1GB

DRAM 768MB
+FLASH 1GB

A
vg

. t
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

MP4 MP8 MP12

(b) TPC-C

Figure 6.19: A throughput comparison for various System memory configurations using the
FlashCache. (dbench, TPC-C)

100

0

200

400

600

800

1,000

1,200

DRAM 32MB +
FLASH 1GB

DRAM 64MB +
FLASH 1GB

DRAM 128MB
+FLASH 1GB

DRAM 256MB
+FLASH 1GB

DRAM 512MB
+FLASH 1GB

DRAM 1GB

to
ta

l d
ie

 a
re

a
(m

m
2)

SLC Flash 2x MLC Flash 4x MLC Flash

Figure 6.20: Die area

6.3.3 Behavior of Programmable Flash memory controller

Sensitivity Analysis of Flash controller configuration

Figure 6.24 shows the breakdown of page reconfiguration events which occur when

Flash blocks are read. This can either be a decision to increase ECC strength, pro-

gram/erase time or switch the block from MLC to SLC mode. The objective is to

minimize the latency cost function explained previously in section 6.2.2. The size of

Flash memory was set to half the working set size of the application. These simula-

tions were measured near the point where the Flash memory cells start to fail due to

programs and erases. Wear out measurements are difficult to simulate on a full system

simulator like M5. Thus, we used real disk traces and generated micro disk traces to

observe configuration change on a Flash controller. The results confirm the benefits

of a programmable Flash memory controller since the response to each benchmark is

significantly different. The figure also suggests that as the tail length of a workload

increases, we see less transitions from MLC to SLC since FlashCache capacity is more

important for long tailed distributions. In fact, for a uniform distribution which is

an extreme case of a long tailed distribution, we found 70% of descriptor updates are

changes in code strength but no transitions from MLC to SLC. For exponential distri-

butions, which are an extreme case of short tailed distributions, we see that MLC to

SLC changes (density) dominate, because the increased miss rate due to a reduction

in density is negligible. For the macro benchmarks, since they display tailed access

behavior, we clearly see similar behavior to the micro benchmarks.

101

0

0.5

1

1.5

2

2.5

3

DDR2 1GB
active

DDR2 1GB
powerdown

DDR2 128MB +
Flash 1GB

O
ve

ra
ll

Po
w

er
 -

W

read power write power idle power

2.7W

1.8W

0.7W

(a) SURGE

0

0.5

1

1.5

2

2.5

3

DDR2 1GB
active

DDR2 1GB
powerdown

DDR2 128MB +
Flash 1GB

O
ve

ra
ll

Po
w

er
 -

W

read power write power idle power

2.5W

1.6W

0.6W

(b) SPECWeb99

0

0.5

1

1.5

2

2.5

3

DDR2 1GB
active

DDR2 1GB
powerdown

DDR2 128MB +
Flash 1GB

O
ve

ra
ll

Po
w

er
 -

W

read power write power idle power

2.4W

1.4W

0.5W

(c) Fenice

Figure 6.21: Overall memory power consumption breakdown. Our FlashCache architecture reduces
idle power by several orders of magnitude. For powerdown mode in DRAM, we assume an oracle
powerdown algorithm. (SURGE, SPECWeb99, Fenice)

102

0

0.5

1

1.5

2

2.5

3

DDR2 1GB
active

DDR2 1GB
powerdown

DDR2 128MB +
Flash 1GB

O
ve

ra
ll

Po
w

er
 -

W

read power write power idle power

2.7W

1.9W

0.8W

(a) SPECWeb2005-bank

0

0.5

1

1.5

2

2.5

3

3.5

4

DDR2 1GB
active

DDR2 1GB
powerdown

DDR2 128MB +
Flash 1GB

O
ve

ra
ll

Po
w

er
 -

W

read power write power idle power

3.4W

2.6W

1.0W

(b) SPECWeb2005-ecommerce

0

0.5

1

1.5

2

2.5

3

3.5

4

DDR2 1GB
active

DDR2 1GB
powerdown

DDR2 128MB +
Flash 1GB

O
ve

ra
ll

Po
w

er
 -

W

read power write power idle power

3.2W

2.5W

1.0W

(c) SPECWeb2005-support

Figure 6.22: Overall memory power consumption breakdown. Identical assumptions from 6.21
applied. (SPECWeb2005-bank, ecommerce, support)

103

0

0.5

1

1.5

2

2.5

3

3.5

4

DDR2 1GB
active

DDR2 1GB
powerdown

DDR2 128MB +
Flash 1GB

O
ve

ra
ll

Po
w

er
 -

W

read power write power idle power

3.4W

2.6W

0.8W

(a) dbench

0

0.5

1

1.5

2

2.5

3

DDR2 1GB
active

DDR2 1GB
powerdown

DDR2 384MB +
Flash 1GB

O
ve

ra
ll

Po
w

er
 -

W

read power write power idle power

2.4W

1.5W
1.1W

(b) TPC-C

0

0.5

1

1.5

2

2.5

DDR2 1GB
active

DDR2 1GB
powerdown

DDR2 384MB +
Flash 1GB

O
ve

ra
ll

Po
w

er
 -

W

read power write power idle power

2.2W

1.2W
0.9W

(c) TPC-H

Figure 6.23: Overall memory power consumption breakdown. Identical assumptions from 6.21
applied. (dbench, TPC-C, TPC-H)

104

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

uniform alpha1 alpha2 alpha3 exp1 exp2

%
 o

f t
ot

al
 d

es
cr

ip
to

r u
pd

at
es

code strength program / erase time density

(a) microbenchmark

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

WebSearch1 WebSearch2 Financial1 Financial2

%
 o

f t
ot

al
 d

es
cr

ip
to

r u
pd

at
es

code strength program / erase time density

(b) macrobenchmark

Figure 6.24: Breakdown of configuration changes due to wear-out

105

6.3.4 Overall Flash memory access latency

This section shows a comparison of Flash memory access latency for our programmable

Flash memory controller versus two fixed Flash memory controllers. We compared

our programmable implementation with a fixed controller supporting BCH 1 error

correction and BCH 12 error correction at a point in time where we see marginal

failures due to wear-out. Figure 6.25 shows our results. Due to the programmability

and the ability to improve performance, our programmable memory controller does

10% ∼ 40% better than BCH 1 error correction and more than 3.5× better than BCH

12. This is primarily due to the fact that programmable controllers only increase code

strength for regions that require this code strength and result in reduced hit latency.

The ability to promote some pages from MLC to SLC also results in latency improve-

ment which accounts for much of the difference between a programmable and BCH

1 only controller. A programmable controller does require more OS management,

resulting in a performance overhead. However, the improvement in access latency

is several microseconds and measuring the time spent in executing additional man-

agement code is less than the latency improvement. As the Flash memory ages, we

found our programmable Flash memory controller greatly slowed down the increase

in overall access latency due to aging.

6.3.5 Wear level aware behavior

Flash memory lifetime without programmable Flash controller

Figure 6.26 shows the predicted lifetime for varying Flash memory sizes assuming

the lifecycle of a Flash memory to be a million cycles. These simulations assumed

a conventional MP8 configuration (MP8 w/o 3D stacking) and varying FlashCache

size that are a certain percent of the known working set size. For workloads that we

were able to simulate, we found our FlashCache is accessed less than 4000 times a

second. With ECC support for multiple error corrections, worst case lifetime can be

extended even more.

Improved Flash memory lifetime with programmable Flash controller

Figure 6.27 shows a comparison of the normalized number of accesses required to

reach the point of total Flash failure where none of the Flash memory pages can be

recovered. We compare our programmable Flash memory controller with a BCH 1

error correcting controller. We expect a BCH 12 error correcting controller to have

much better lifetime than a BCH 1 error controller, but because it requires a signif-

106

0

1

2

3

4

5

6

uniform alpha1 alpha2 alpha3 exp1 exp2

no
rm

. a
vg

. a
cc

es
s

la
te

nc
y

programmable flash fixed flash BCH1 fixed flash BCH12

(a) microbenchmark

0

1

2

3

4

5

6

WebSearch1 WebSearch2 Financial1 Financial2

no
rm

. a
vg

. a
cc

es
s

la
te

nc
y

programmable flash fixed flash BCH1 fixed flash BCH12

(b) macrobenchmark

Figure 6.25: Normalized comparison of overall average access latency to Flash

107

0.01

0.10

1.00

10.00

100.00

1000.00

0% 20% 40% 60% 80% 100%
Flash memory size (percentage of working set size)

Li
fe

tim
e

- y
ea

rs

SURGE SPECWeb99 Financial1 WebSearch1

Figure 6.26: Flash memory endurance while varying the Flash memory size in the FlashCache
architecture. Temporal endurance in years, assuming Flash memory endurance of 1,000,000 cycles

icantly higher access latency, it is not comparable to our high-speed programmable

Flash memory controller. Our studies show that for typical workloads, our pro-

grammable Flash memory controller extends lifetime by a factor of 20 on average

(see Figure 6.27). For a workload that would previously limit Flash memory lifetime

to 6 months, we show it operates for more than 10 years using our programmable

Flash memory controller.

108

0.00001

0.0001

0.001

0.01

0.1

1

uniform alpha1 alpha2 alpha3 exp1

no
rm

. l
ife

tim
e

programmable flash controller fixed flash BCH1

(a) microbenchmark

0.00001

0.0001

0.001

0.01

0.1

1

WebSearch1 WebSearch2 Financial1 Financial2

no
rm

. l
ife

tim
e

programmable flash controller fixed flash BCH1

(b) macrobenchmark

Figure 6.27: Normalized expected lifetime given the access rate and tolerable wear-out

109

CHAPTER VII

RELATED WORKS

Our work leverages emerging technology and applies it to server workloads exe-

cuted on a chip multiprocessor architecture. We present previous work on chip mul-

tiprocessors, 3D stacking technology, non-uniform memory architectures and work

investigating the impact of new memory devices.

7.1 Chip Multiprocessor Architectures

Olkuton et. al[77] initially presented the possibility of building a simple multipro-

cessor architecture that were friendly to heavily threaded applications. In doing so

they looked at SPLASH benchmarks along with highly parallel media benchmarks.

However, the working set of these benchmarks was not large and the overall plat-

form level evaluation of a chip multiprocessor was not presented in this work. Li

and Martinez[65] looked at the power reduction in parallel architectures. They pre-

sented an analytical power estimation model for multiprocessor architectures and

evaluated this model on SPLASH2 benchmarks. An optimal power, thermal point

was presented due to the diminishing return for increasing parallel processing width.

As parallel processing width is increased, leakage power increases linearly. Barroso

et. al[31] presented a chip multiprocessor architecture to support server applications.

A simple 8 in-order multiprocessor architecture was presented with a shared L2 cache.

However, this work did not investigate the impact of network bandwidth in the ar-

chitecture. The estimated power consumption was not mentioned in this work either.

Additionally, the benchmarks presented in this paper focussed on Tier 2, 3 server

applications. Kozyrakis et. al[58] applied the embedded DRAM technology to DSP

applications. Specialized vector engines which existed adjacent to the embedded

DRAM, contributed to the speedup in computation for vector friendly applications.

This work performed extremely well for multimedia and matrix-oriented vector ap-

plications. Compared to previous work on chip multiprocessors, our work extends

110

the benefits of chip multiprocessors by leveraging 3D stacking technology that allows

us to add more cores and reduce core clock frequency in conventional simple in-order

cores. We also modify the memory hierarchy exploiting the reduced access latency to

large capacity on-chip DRAM, so the L1 caches in a chip multiprocessor architecture

access on-chip DRAM directly and treat it as a part of main memory.

7.2 3D Stacking Technology

Black et. al[33] have presented circuit-level potential in this technology. They ap-

plied 3D stacking on an x86 core by implementing the floating point unit on the top

layer and putting the rest of the execution units on the bottom layer. Their prelimi-

nary studies showed a 20% improvement in performance was achieved for SPEC2000

benchmarks and 3D stacking reduced the number of repeaters traditionally required

for long global interconnects. With respect to work on 3D stacking technology alone,

we have not seen any work that identifies a good application space for this technology

and provides a thorough analysis.

7.3 Non-uniform Memory Architecture

In the case of non-uniform main memory, Ekman et. al[40] showed the potential

of having a non-uniform main memory architecture. They examined using a slow

secondary main memory as a swap cache and measured the performance overhead.

The overhead was shown to be negligible. Huang et. al[51] and Lebeck et. al[61]

showed that a considerable amount of system memory power can be reduced with

power aware page allocation. Our work extends the work from [40][6] and integrates

flash memory as a secondary file buffer cache for web server applications. By adapting

and simplifying the methods in [7] and incorporating them onto a cache replacement

algorithm, we mitigate any wear-out problems.

7.4 Investigating the impact of emerging memory

technology devices

Whenever a new memory technology device is introduced with potential, a study

investigating the impact of adopting this new device has been presented. Unfortu-

nately, most of the findings presented in papers are limited to the particular memory

or storage device and cannot be universally applied to other memory devices.

111

Baker et. al[28] and Wu et. al[86] looked at integrating NOR Flash into the storage

hierarchy. While their initial work is similar to our efforts in integrating NAND Flash

onto a system, many breakthroughs in device technology and stronger understanding

in erratic behavior in Flash cells suggest that NAND Flashes should be treated in a

different manner. For example, when NOR Flash was first introduced it was believed

to be less cost effective than DRAM and display similar access latencies. In addition,

the storage density of NOR Flash was believed to be less than DRAM. In contrast,

as we have shown in this dissertation, NAND Flash is much more denser and cost-

effective while having a access latency of microseconds which is more than 3 orders

of magnitude slower than DRAM.

In Park et. al[78], it was shown that Flash memory could be used directly for

high performance code execution by adding an SRAM. In [6], the authors proposed

to integrate Flash memory into hard disk drives to improve their access latencies in

mobile laptops. The prototype used the Flash memory as a boot buffer to speedup

boot time and as a write buffer to hide write latencies to the hard disk drive. The

issue of wear-level awareness has also been studied. For example, wear-level aware file

systems have been outlined in [7] to extend Flash memory endurance. [24] has shown

error correction codes extend the lifespan of Flash memory with marginal overhead.

Other types of memory devices that use a different technique in storing informa-

tion have been found to be non-applicable to server platforms that require a high

storage density. Patterson et. al[80] and Desikan et. al[39] use a different method

to store information but have displayed lower storage densities. The cell sizes for

these memory cells are projected to be much larger than Flash and even conventional

DRAM.

112

CHAPTER VIII

CONCLUSIONS AND FUTURE WORKS

8.1 Thesis Summary

This dissertation presented the impact of technological advances in packaging technol-

ogy (3D stacking) and memory devices (Flash) to server platforms that are an integral

part of today’s datacenters. The resulting systems have significantly improved energy

efficiency potentially enabling ultra small form factor servers.

Specifically, we have found that due to 3D stacking technology a 12-way PicoServer

running at 500MHz can deliver up to 1.4Gbps of network bandwidth within a 3.5W

power budget in a 90nm process technology. These power results are 2 ∼ 3× better

than a multicore architecture without 3D stacking technology and an order of magni-

tude better than what can be achieved using a general purpose processor. The ability

to tightly couple large amounts of memory to the cores through wide and low-latency

interconnect pays dividends by reducing system complexity and creates opportunities

to implement system memory with non-uniform access latency. With the access la-

tency of on-chip DRAM being comparable to the L2 cache, we found the L2 cache die

area can be replaced with additional cores resulting in core clock frequency reduction

while achieving higher throughput. For an area-equivalent PicoServer configuration

using 12 processors at 500MHz without an L2 cache yields a substantial improvement

in throughput while reducing power consumption by more than 50% compared to a

conventional 8-way 1GHz chip multiprocessor with a 2MB L2 cache.

When integrating Flash memory onto a server platform, we found that our Flash-

Cache architecture reduces idle power by several orders of magnitude while maintain-

ing cost effectiveness over conventional DRAM-only architectures both in terms of

cost and energy efficiency. We also found that due to the limitation in endurance for

Flash, we found that a Flash based disk cache should be organized as a read-optimized

and write optimized disk cache to better improve disk cache hit rate and extend the

lifetime of a Flash based disk cache. A programmable Flash memory controller is re-

113

quired to deliver optimal Flash access latency and reliability which varies in workload

behavior. From our observations, a typical server architecture can sustain a file access

latency in the tens to hundreds of microseconds without noticeable loss in through-

put. For Tier 3 workloads, we observe the write optimized Flash based disk cache is

an excellent feature for quick database recovery and find that more DRAM and Flash

may be required in system memory to appropriately cache the large databases.

8.2 Future Work

8.2.1 Managing datacenter energy efficiency at the rack level

There is still more work to do in terms of architecting an energy efficient datacenter

at the rack level. Identifying the key elements in implementing a scalable and reliable

management controller used to manage an entire farm of servers is an important

aspect of research in this area. Prior work introduces control theory that adjusts

the controller to the client load. However, prior work only tackles some aspects of

this problem. It is still unclear how to build a scalable controller that satisfies many

of these objectives while considering the many platform parameters one can take

advantage of. These controllers must consider multiple objective functions like energy

efficiency, heat and reliability. With the introduction of virtual machine consolidation

and many core architectures, it will become an interesting problem to solve. Naive

worst case provisioning or typical case provisioning will not always guarantee an

optimal result.

8.2.2 Improving on-chip interconnect bandwidth with opto-
electronic devices

Aside from 3D stacking technology, using on-chip optoelectronic devices may be an-

other solution to delivering ultra high bandwidth at a low cost. Optoelectronic devices

enable multiple transactions to be multiplexed simultaneously using wavelength divi-

sion multiplexing (WDM). Interconnection networks built using this device consumes

much less power than a interconnection network built with electrical wires. Early

work on how it may be leveraged on-chip has been proposed in [55], but it is still

unclear how it may be applied to server platforms. A detailed analysis of how these

devices may be leveraged in the future to build scalable datacenters should be an

interesting area of research we would like to pursue.

114

8.2.3 Delivering single threaded performance in server work-
loads

Some server workloads require a decent amount of single threaded performance. It

is however difficult to deliver high single threaded performance while consuming low

power which is necessary in today’s computing platforms. In the short term, un-

derstanding the energy efficiency of conventional techniques like increasing the clock

frequency, increasing the scalar issue width, out of order execution may be helpful

in proposing incremental techniques that provide single threaded performance while

consuming low power. In the long term, investigating a new microarchitecture that

can provide both single threaded performance and multithreading will be a challenge.

8.2.4 Identifying a usage model for upcoming new memory
devices

Associating how new memory devices could be introduced and integrated onto a server

platform may be critical in building energy efficient servers. Like Flash, phase change

memory (PCRAM) is emerging as a promising solution. It displays better write

throughput than Flash and scales fairly well. Projecting the roadmap and behavior

of phase change memory and understanding the potential value it may generate in

the server space is definitely an interesting area of research. PCRAM is expected to

replace NOR Flash in the near future and may even replace NAND Flash.

Understanding the potential usage of Floating Body DRAM (FBRAM) is another

area of research. FBRAM is a promising solution for implementing L2, L3 caches

on-die. It is also expected to directly compete with conventional DRAM since it can

solve the scalability issues with DRAM.

8.2.5 Architectural support for future server workloads

It is highly likely that datacenters will support additional applications like image

recognition to provide better quality of service and better user experience. For exam-

ple, searching a image or video clip based on a given search phrase or image is a likely

usage model. These workloads are known to display data level parallelism as well as

thread level parallelism. To deliver high throughput and quality for these datamin-

ing, recognition workloads, more work should be done in understanding the commonly

used kernels and how it may be realized in software and hardware. Moreover, it may

be apparent to add instruction level support and acceleration engines for these work-

loads. In our video streaming workload Fenice, we observed a substantial portion of

115

time in processor spent on regular expression matching. In many instances, it may

make sense to use the available silicon area in implementing acceleration engines for

these new applications.

116

BIBLIOGRAPHY

[1] 82563EB/82564EB Gigabit Platform LAN Connect Networking Silicon
Datasheet.

[2] ARM 11 MPcore. http://www.arm.com/products/CPUs/

ARM11MPCoreMultiprocessor.html.

[3] Evolution of network memory. http://www.jedex.org/images/pdf/jack_

troung_samsung.pdf.

[4] FaStack 3D RISC super-8051 microcontroller. http://www.tachyonsemi.com/

OtherICs/datasheets/TSCR8051Lx_1_5Web.pdf.

[5] HDD technology 2003. http://www.hitachigst.com/hdd/hddpdf/tech/hdd_

technology2003.pdf.

[6] Hybrid Hard Drives with Non-Volatile Flash and Longhorn. http:

//www.samsung.com/Products/HardDiskDrive/news/HardDiskDrive_

200504%25_0000117556.htm.

[7] JFFS: The Journalling Flash File System. http://sources.redhat.com/

jffs2/jffs2.pdf.

[8] JFFS3 (Journalling Flash File System Version 3). http://www.linux-mtd.

infradead.org/doc/jffs3.html.

[9] Leon3 Processor. http://www.gaisler.com/cms4_5_3/index.php?option=

com_content&task=view&%id=13&Itemid=53.

[10] Micron DDR2 DRAM. http://www.micron.com/products/dram/ddr2/.

[11] The Micron system-power calculator. http://www.micron.com/products/

dram/syscalc.html.

[12] MIPS32 34K family. http://www.mips.com/products/cores/32-bit_cores/

MIPS32_34K_Family.php#f%eatures.

[13] National semiconductor DP83820 10 / 100 / 1000 Mb/s PCI ethernet network
interface controller.

117

[14] OSDL DataBase Test Suite. http://www.osdl.net/lab_activities/kernel_

testing/osdl_database_test_su%ite/.

[15] PowerPC 405 embedded core. http://www-306.ibm.com/chips/techlib/

techlib.nsf/techdocs/852569B20050F%F778525699300651D97.

[16] Predictive technology model. http://www.eas.asu.edu/~ptm.

[17] (LS)3-libre streaming, libre software, libre standards an open multimedia stream-
ing project. http://streaming.polito.it/.

[18] RLDRAM memory. http://www.micron.com/products/dram/rldram/.

[19] Samsung NAND Flash memory datasheet. http://www.samsung.com/

products/semiconductor/NANDFlash/SLC_LargeBlock/%8Gbit/K9K8G08U0A/

K9K8G08U0A.htm.

[20] Seagate Barracuda. http://www.seagate.com/products/personal/index.

html.

[21] SPECweb2005 benchmark. http://www.spec.org/web2005/.

[22] SPECweb99 benchmark. http://www.spec.org/osg/web99/.

[23] Sun Fire T2000 Server Power Calculator. http://www.sun.com/servers/

coolthreads/t2000/calc/index.jsp.

[24] TrueFFS. http://www.m-systems.com/site/en-US/Support/

DeveloperZone/Software/Life%spanCalc.htm.

[25] University of Massachusetts Trace Repository. http://traces.cs.umass.edu/
index.php/Storage/Storage.

[26] Zend platform. http://www.zend.com/store/products/zend-platform/zps.
php.

[27] ITRS roadmap. Technical report, 2005.

[28] M. Baker, S. Asami, E. Deprit, J. Ouseterhout, and M. Seltzer. Non-volatile
memory for fast, reliable file systems. In Proc. of Int’l Conf. on Arch. support
for prog. languages and operating systems, Oct. 1992.

[29] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat. 3-D ICs: A novel chip
design for improving deep-submicrometer interconnect performance and systems-
on-chip integration. Proc. of IEEE, 89(5):602–533, May 2001.

[30] P. Barford and M. Crovella. Generating representative web workloads for network
and server performance evaluation. In Measurement and Modeling of Computer
Systems, pages 151–160, 1998.

118

[31] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano,
S. Smith, R. Stets, and B. Verghese. Piranha: A scalable architecture based
on single-chip multiprocessing. In Proc. Int’l Symp. on Computer Architecture,
June 2000.

[32] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K. Rein-
hardt. The M5 simulator: Modeling networked systems. IEEE Micro, 26(4):52–
60, Jul/Aug 2006.

[33] B. Black, D. Nelson, C. Webb, and N. Samra. 3D processing technology and its
impact on iA32 microprocessors. In Proc. Int’l Conf. of Computer Design, pages
316–318, 2004.

[34] T.-Y. Chiang, S. J. Souri, C. O. Chui, and K. C. Saraswat. Thermal analysis
of heterogeneous 3-D ICs with various integration scenario. In IEDM Technical
Digest, pages 681 – 684, Dec. 2001.

[35] T. Cho, Y. Lee, E. Kim, J. Lee, S. Choi, S. Lee, D. Kim, W. Han, Y. Lim,
J. Lee, J. Choi, and K. Suh. A dual-mode NAND flash memory: 1-Gb multilevel
and high-performance 512-mb single-level modes. IEEE Journal of Solid State
Circuits, 36(11), Nov 2001.

[36] L. T. Clark, E. J. Hoffman, J. Miller, M. Biyani, Y. Liao, S. Strazdus, M. Morrow,
K. E. Verlarde, and M. A. Yarch. An embedded 32-b microprocessor core for low-
power and high-performance applications. IEEE Journal of Solid State Circuits,
36(11):1599–1608, Nov. 2001.

[37] E. L. Congduc. Packet classification in the NIC for improved SMP-based internet
servers. In Proc. Int’l Conf. on Networking, Feb. 2004.

[38] W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer,
and P. D. Franzon. Demystifying 3D ICs: The pros and cons of going vertical.
IEEE Design & Test of Computers, 22(6):498–510, 2005.

[39] R. Desikan, C. Lefurgy, S. Keckler, and D. Burger. On-chip MRAM as a High-
Bandwidth, Low-Latency Replacement for DRAM Physical Memories. In IBM
Austin Center for Advanced Studies Conference, Feb. 2003.

[40] M. Ekman and P. Stenstr. A cost-effective main memory organization for future
servers. In Proc. of the Int’l Parallel and Distributed Processing Symp., Apr 2005.

[41] P. Fazan, S. Okhonin, and M. Nagoga. A New Block Refresh Concept for SOI
Floating Body Memories. In IEEE Int’l SOI Conference, Sept. 2003.

[42] M. J. Flynn and P. Hung. Computer architecture and technology: Some thoughts
on the road ahead. In Proc. Int’l Conf. on Engineering of Reconfigurable Systems
and Algorithms, pages 3–16, 2004.

119

[43] B. Goplen and S. S. Sapatnekar. Thermal via placement in 3D ICs. In Proc.
Int’l Symp. on Physical Design, pages 167–174, Apr. 2005.

[44] S. Gupta, M. Hilbert, S. Hong, and R. Patti. Techniques for producing 3D ICs
with high-density interconnect. www.tezzaron.com/about/papers/ieee_vmic_
2004_finalsecure.pdf.

[45] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Franke. DRPM: dy-
namic speed control for power management in server class disks. In IEEE/ACM
Proc. Int’l Symp. on Comp. Arch., June 2003.

[46] S. Gurumurthi, A. Sivasubramaniam, and V. K. Natarajan. Disk Drive Roadmap
from the Thermal Perspective: A Case for Dynamic Thermal Management. In
Proc. Int’l Symp. on Computer Architecture, June 2005.

[47] T. R. Halfhill. Z-RAM shrinks embedded memory. www.innovativesilicon.

com/en/pdf/z-ram.pdf.

[48] T. Hara, K. Fukuda, K. Kanazawa, N. Shibata, K. Hosono, H. Maejima, M. Nak-
agawa, T. Abe, M. Kojima, M. Fujiu, Y. Takeuchi, K. Amemiya, M. Morooka,
T. Kamei, H. Nasu, K. Kawano, C.-M. Wang, K. Sakurai, N. Tokiwa, H. Waki,
T. Maruyama, S. Yoshikawa, M. Higashitani, T. D. Pham, and T. Watanabe.
A 146mm2 8Gb NAND Flash Memory with 70nm CMOS Technology. In Proc.
Int’l Solid-State Circuits Conference, Feb. 2005.

[49] R. Ho and M. Horowitz. The future of wires. Proc. of the IEEE, 89(4), Apr.
2001.

[50] R. F. Hobson and K. L. Cheung. A High-Performance CMOS 32-Bit Parallel
CRC Engine. IEEE Journal of Solid State Circuits, 34(2), Feb 1999.

[51] H. Huang, P. Pillai, and K. G. Shin. Design and Implementation of Power-Aware
Virtual Memory. In USENIX Annual Technical Conference, pages 57–70, 2003.

[52] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, S. Ghosh, and
S. Velusam. Compact thermal modeling for temperature-aware design. In Proc.
Design Automation Conf., June 2004.

[53] D. Ielminia, A. Spinelli, A. Lacaita, and M. van Duuren. A Comparative Study
of Characterization Techniques for Oxide Reliability in Flash Memories. IEEE
Trans. on Device and Materials Reliability, 4, Sep 2004.

[54] K. Kim and J. Choi. Future Outlook of NAND Flash Technology for 40nm Node
and Beyond. In Workshop on Non-Volatile Semiconductor Memory, pages 9–11,
Feb 2006.

[55] N. Kirman, M. Kirman, R. K. Dokania, J. F. Martnez, A. B. Apsel, M. A.
Watkins, and D. H. Albonesi. Leveraging Optical Technology in Future Bus-
based Chip Multiprocessors. In International Symposium on Microarchitecture,
Dec. 2006.

120

[56] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multithreaded
Sparc processor. IEEE Micro, 25(2):21–29, Mar. 2005.

[57] M. Koyanagi. Different approaches to 3D chips. http://asia.stanford.edu/

events/Spring05/slides/051205-Koyanagi.pdf.

[58] C. Kozyrakis, J. Gebis, D. Martin, S. Williams, I. Mavroidis, S. Pope, D. Jones,
D. Patterson, and K. Yelick. Vector IRAM: A media-oriented vector processor
with embedded DRAM. In Hotchips, Aug. 2000.

[59] S. R. Kunkel, R. J. Eickemeyer, M. H. Lipasti, T. J. Mullins, B. O’Krafka,
H. Rosenberg, S. P. VanderWiel, P. L. Vitale, and L. D. Whitley. A performance
methodology for commercial servers. IBM Journal of Research and Development,
44(6), 2000.

[60] J. Laudon. Performance/watt: the new server focus. SIGARCH Computer Ar-
chitecture News, 33(4):5–13, 2005.

[61] A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power aware page allocation. In
Proc. Int’l Conf. on Arch. Support for Programming Languages and Operating
Systems, pages 105–116, 2000.

[62] J. Lee, S.-S. Lee, O.-S. Kwon, K.-H. Lee, D.-S. Byeon, I.-Y. Kim, K.-H. Lee,
Y.-H. Lim, B.-S. Choi, J.-S. Lee, W.-C. Shin, J.-H. Choi, and K.-D. Suh. A
90-nm CMOS 1.8-V 2-Gb NAND Flash Memory for Mass Storage Applications.
IEEE Journal of solid-state circuits, 38(11), Nov 2003.

[63] K. Lee, T. Nakamura, T. Ono, Y. Yamada, T. Mizukusa, H. Hashimoto, K. Park,
H. Kurino, and M. Koyanagi. Three-dimensional shared memory fabricated using
wafer stacking technology. In IEDM Technical Digest., pages 165–168, Dec 2000.

[64] S. Lee, Y.-T. Lee, W.-K. Han, D.-H. Kim, M.-S. Kim, S.-H. Moon, H. C. Cho,
J.-W. Lee, D.-S. Byeon, Y.-H. Lim, H.-S. Kim, S.-H. Hur, and K.-D. Suh. A
3.3V 4Gb Four-Level NAND Flash Memory with 90nm CMOS Technology. In
Proc. Int’l Solid-State Circuits Conference, pages 52–53, 2004.

[65] J. Li and J. F.Martinez. Power-performance implications of thread-level paral-
lelism in chip multiprocessors. In Proc. Int’l Symp. on Performance Analysis of
Systems and Software, Mar. 2005.

[66] H.-K. Lim, D. K. Jeong, K. Kim, J. Park, and H. gyoo Kim. A single-chip storage
LSI for home networks. IEEE Communications Magazine, 43(5):141–148, May
2005.

[67] S. Lin and J. Daniel J. Costello. Error Control Coding, Second Edition. 2004.

[68] J. Lu. Wafer-level 3D hyper-integration technology platform. www.rpi.edu/

~luj/RPI_3D_Research_0504.pdf.

121

[69] G. MacGillivray. Process vs. density in DRAMs. http://www.eetasia.com/

ARTICLES/2005SEP/B/2005SEP01_STOR_TA.pdf.

[70] D. A. Maltz and P. Bhagwat. TCP splicing for application layer proxy perfor-
mance. Research Report RC 21139, IBM, Mar. 1998.

[71] R. E. Matick and S. E. Schuster. Logic-based eDRAM: origins and rationale for
use. IBM Journal of Research and Development, 49(1), Jan. 2005.

[72] R. Micheloni, R. Ravasio, A. Marelli, E. Alice, V. Altieri, A. Bovino, L. Crippa,
E. D. Martino, L. D. Onofrio, A. Gambardella, E. Grillea, G. Guerra, D. Kim,
C. Missiroli, I. Motta, A. Prisco, G. Ragone, M. Romano, M. Sangalli, P. Sauro,
M. Scotti, and S. Won. A 4Gb 2b/cell NAND Flash Memory with Embedded
5b BCH ECC for 36MB/s System Read Throughput. In Proc. Int’l Solid-State
Circuits Conference, pages 497–506, Feb 2006.

[73] A. Modelli, A. Visconti, and R. Bez. Advanced flash memory reliability. In Int’l
Conf. on Integrated Circuit Design and Technology, pages 211–218, Oct 2004.

[74] T. Mudge. Power: A first-class architectural design constraint. IEEE Computer,
34(4), Apr. 2001.

[75] T. Ohsawa, K. Fujita, K. Hatsuda, T. Higashi, T. Shino, Y. Minami, H. Naka-
jima, M. Morikado, K. Inoh, T. Hamamoto, S. Watanabe, S. Fujii, and T. Fu-
ruyama. Design of a 128-Mb SOI DRAM Using the Floating Body Cell (FBC).
IEEE Journal of Solid State Circuits, 41(1), Jan 2006.

[76] S. Okhonin, M. Nagoga, P. Fazan, L. Mathew, B. Nguen, H. Chen, and
T. Stephens. FinFET based Zero-capacitor DRAM (Z-RAM) Cell for sub 45
nm Memory. In IEEE Int’l Conference on Memory Technology and Design, May
2005.

[77] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case
for a single-chip multiprocessor. In Proc. Int’l Conf. on Arch. Support for Prog.
Lang. and Oper. Sys., Oct. 1996.

[78] C. Park, J. Seo, S. Bae, H. Kim, S. Kim, and B. Kim. A low-cost memory
architecture with nand xip for mobile embedded systems. In Proc. Int’l Conf.
on HW-SW Codesign and System Synthesis(CODES+ISSS), Oct 2003.

[79] J.-W. Park, Y.-G. Kim, I.-K. Kim, K.-C. Park, K.-C. Lee, and T.-S. Jung.
Performance Characteristics of SOI DRAM for Low-Power Application. IEEE
Journal of Solid State Circuits, 34(12), Dec 1999.

[80] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, and K. Yelick. A Case for Intelligent RAM: IRAM. IEEE Micro,
17(2), Apr 1997.

122

[81] E. Pinheiro, W.-D. Weber, and L. A. Barroson. Failure Trends in a Large Disk
Drive Population. In USENIX Conf. on File and Storage Technologies, Feb.
2007.

[82] A. Rahman and R. Reif. System-level performance evaluation of three-
dimensional integrated circuits. IEEE Trans. on VLSI, 8, Dec. 2000.

[83] F. Ricci, L. T. Clark, T. Beatty, W. Yu, A. Bashmakov, S. Demmons, E. Fox,
J. Miller, M. Biyani, and J. Haigh. A 1.5GHz 90nm embedded microprocessor
core. In Proc. Symp. on VLSI Circuits, June 2005.

[84] J. Schutz and C. Webb. A scalable X86 CPU design for 90 nm process. In Proc.
Int’l Solid-State Circuits Conference, Feb. 2004.

[85] D. Wendell, J. Lin, P. Kaushik, S. Seshadri, A. Wang, V. Sundararaman,
P. Wang, H. McIntyre, S. Kim, W. Hsu, H. Park, G. Levinsky, J. Lu, M. Chi-
rania, R. Heald, and P. Lazar. A 4MB on-chip l2 cache for a 90nm 1.6GHz
64b SPARC microprocessor. In Proc. Int’l Solid-State Circuits Conference, Feb.
2004.

[86] M. Wu and W. Zwaenepoel. eNVy: a non-volatile, main memory storage system.
In Proc. of Int’l Conf. on Arch. support for prog. languages and operating systems,
Oct. 1994.

[87] L. Xue, C. C. Liu, H.-S. Kim, S. Kim, and S. Tiwari. Three-dimensional inte-
gration: Technology, use, and issues for mixed-signal applications. IEEE Trans.
on Electron Devices, 50:601–609, May 2003.

123

