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It was midnight, midnight at noon
Everyone talked in rhyme

Everyone saw the big clock ticking
Nobody knew, nobody knew the time

Elegant debutantes smiled
Everyone fought for dimes
Newspapers screamed for blood

It was the best of times

Every place around the world it seems the same
Can't hear the rhythm for the drums
Everybody wants to look the other way

When something wicked this way comes

Sometimes they tie a thief to the tree
Sometimes I stare

Sometimes it's me

Everyone told the truth
All that we heard were lies

A pope claimed that he’ d been wrong in the past

- This was a big surprise

Everyone fell in love
A cardinal’s wife was jailed
The government saved a dying planet

When popular icons failed

Every place around the world it seems the same
Can't hear the rhythm for the drums
Everybody wants to look the other way

When something wicked this way comes

Sometimes they tie a thief to the tree
Sometimes I stare
Sometimes it's me
Sometimes I stare

Sometimes it's me

-Sting
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CHAPTER1

INTRODUCTION

The advent of the microprocessor has encouraged computer architects to design multiple
processor computers. These machines, called multiprocessors, increase system throughput
by running multiple programs simultaneously, or by decreasing the running time of each
program by employing parallel processing. In order to improve the applicability of parallel
processing, computer scientists have developed languages and compilers for parallel pro-
gramming. However, practical parallel programming systems are still in a state of infancy,
and their performance leaves considerable room for improvement. Many commercial sys-
tems incorporate ad hoc techniques for expressing parallelism, most involving machine
dependencies [81, 19, 82, 80]. Programming languages for parallel systems have ranged
from adapting sequential languages for parallel execution to the use of explicitly parallel
concurrent languages such as Ada. Some success has been achieved in implementing pro-
cedural or imperative languages on shared-memory multiprocessors. However, in many

cases, the difficulty of the problem has led to inefficient implementations.
1.1 Run-Time Support

Run-time support code includes both the operating system (OS) and the language specific
run-time system. The run-time system is the code which supports the scheduling, syn-
chronization, and communication needs of a parallel program which can be met without

invoking the operating system kernel. Because the OS kernel is not invoked, the run-time

1



2
system code executes in user mode. When the OS kernel is invoked, a privileged state is
entered, and execution is said to occur in kernel mode. Because a large amount of state
information must be saved whenever a transition to kernel mode occurs, it is more efficient
to manage the run-time support needs of a parallel program in user mode.

The fact that low-level and ad hoc techniques for implementing parallelism have sur-
faced at the language level is a symptom of the inadequacy of current run-time support
software. Although gains are being made in OS design for shared-memory multiprocessors
[26, 2, 61,23, 116, 127, 36), there is still no widely accepted standard for OS level support
of parallel programs. Furthermore, even with the support for parallelism provided directly
by the operating system, there is still a need for language specific run-time systems to
support the execution of parallel programs. Because OS calls are relatively expensive as
stated above, it is inefficient to invoke the operating system at every opportunity to exploit
parallelism in a program. Instead, a user-level language run-time system should be called
to manage the spawning and merging of program parallelism. Because this system may be
invoked with very low overhead, it allows parallelism of both fine and coarse grains to be
profitably exploited.

Run-time efficiency is a key factor in the design of a parallel processing system because
itis the amount of run-time overhead that limits the degree to which the parallelism inherent
in a program can be realized. In a simplified model where there is a constant sequential
overhead involved in initiating a parallel execution thread and a program may be broken up
into any number of parallel threads, it has been shown that there is a limit on the number
of parallel threads that should be used in order to achieve maximum speedup® [106). This
model implies that the granularity, the number of executed instructions that comprise a
parallel thread, decreases as the program is divided up into more and more threads. If the

program is divided to the point where the time necessary to execute one parallel thread is

! Speedup is the ratio of a task’s fastest sequential execution time to its parallel execution
time.
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equal to the overhead required to initiate it, then the program’s running time is the same as
it is in the uniprocessor case, and any further reduction in the granularity will result in a
speedup of less than 1. Clearly, lower overhead results in more potential parallelism and
thus higher performance.

Anefficientimplementation of a parallel language should also allow parallel programs to
execute on a single processor without a significant penalty from excess run-time overhead.
In addition to enhancing portability and allowing development on single processor systems,
this ability also provides reasonable efficiency when the program is run on one processor
in a multiprocessor system. While this may not seem significant at first, it is important
to note that most shared memory multiprocessors used in a commercial setting today are
multiprogrammed as time-shared systems that allocate one processor per user program.
This mode of operation has been termed as multistream execution [92]. In a situation where
there are more parallel jobs than there are processors in the system, it may be desirable to
restrict all jobs to a single processor. In this case, the speed of the program when run on a
single processor should not be compromised by parallelism.

In addition to handling the case of a fixed number of processors with which to run
a parallel program, the run-time support must also be able to cope with, and efficiently
implement, the case where multiple parallel programs may be concurrently sharing a single
multiprocessor system. This is essentially a multiprogramming model where each program
is parallel and may be able to utilize multiple separate processors. This model has already
been introduced on a commercial system [36], and we expect it to become more prevalent
in the future [108, 65, 26]. Consequently, the run-time support must be flexible enough
to provide a dynamic scheduling service to map program parallelism onto a number of
processors that may fluctuate during the lifetime of the program. Of course, this run-time

support must also be efficient to be of any practical value.



1.2 Research Goals

The purpose of the research described in this dissertation is to design, develop, implement,
and evaluate run-time support structures appropriate for an efficient language specific
run-time system. This run-time support code is designed in a manner consistent with
the multiprogramming model described above and is intended for execution on shared-
memory multiprocessor computers. Given our objectives and intentions, we limit this
work to consider language models of parallelism consistent with procedural languages, €.g.

FORTRAN and C, which enjoy widespread use in commercially available systems.

1.2.1 Design

The design of run-time support structures involves careful consideration of the model of
parallelism provided at the language level. Much has been published regarding language
models of parallelism that are consistent with the overall programming model considered
in this dissertation [133, 134, 84, 7, 109, 73, 87, 106, 124, 97, 120, 77, 66, 93, 74, 27].
The majority of the work in this area is concerned with compiler detected parallelism in
sequential languages or the explicit denotation of parallelism using loops, blocks, proce-
dures, or processes as described in Chap. 2 below. For the most part, this work does not
provide implementation detail, nor does it provide detailed performance analysis based on
experimental testing. Our goal in this area is to build on this previous work in defining
a set of constructs that provide useful models of program parallelism. Additionally, we
are motivated by performance considerations to define our constructs so that their run-time
support may be efficient. We demonstrate this efficiency in the other areas of our work

discussed below.



1.2.2 Development

In this phase of our work, we aim to develop efficient run-time support structures for the
language models of parallelism supported in our study. As a consequence of this goal,
we must also define a reasonable division of labor between operating system and run-time
system, and provide an interface between the two. Other work has been done in this area, but
much of it has concentrated on extensive OS support or system libraries [23, 26, 116, 131]
(or see [82] for a survey). Some research has focused on specifically tailored run-time
support [107, 110, 124, 95, 54, 86, 32, 97, 36, 99, 44], but in most cases the detailed
design of the implementation is either not provided or is proprietary. The other work that
does provide implementation detail is primarily concerned with programming models not
addressed in this dissertation. A more detailed survey of previous research is given in Chap.

3 below.

1.2.3 Implementation

With the designs for programming models and their associated run-time support code
developed in the first two phases of our work, the next step is to implement them on a target
multiprocessor system. This implementation is coded in assembly language to provide
for maximum efficiency. Also, in order to: 1) compensate for the lack of privileged-level
access to existing machines with the latest multiprocessor operating systems; 2) perform
experimentation in a controlled environment with highly-accurate measurement capability;
and 3) study the impact of architectural modification on the software, we target our code
to the Astronautics ZS series multiprocessor, for which we possess an interpreter-driven
register-transfer-level simulator. With this approach and a large amount of computing time
atour disposal, we are able to investigate both parallel program fragments, or kernels, as well
as complete programs. Also, this system allows us to support code with our optimized run-

time system, which is not impacted by incompatible operating system code or convention.
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Other work in this aren using similar programming modols and run-time designs has either
been simulated ut o much higher and potontially loss accurate lovel [110, 37], or has been
implemented by vendors on spocific machines where only comploto programs are studied

and detailed performance data is not provided [32, 70, 36].

1.2.4 Evaluation

Given our design and implomentation on u target systom, this phase of the work is intended
to provide an evaluation of the performance of our system. This ovaluation is based on
experimental testing using the purallel codo and simulator described above, As another
variable in our study, we modify the hardware archltecture to gauge the impact of different
memory system configurations which provide u cache for ench processor in the system. The
modified systems provide cacha consistenc, 3 1n hardware, Wo use this testbed to provide
detailed timing and cache porformanco statistles In order to factor out the various sources
of overheud due to parallolization, 'This ovorhead s broken down into three categories:
1) Static Lond Imbalance, 2) Run-"Hine Scheduling and Synchronization, and 3) Cache
Consistency Overhend, Our tosty mensurs tho rolutlve impuct of ench of these overhead
sources for n varloty of hardware and run-time system configurations, With our run-
time system and sultable language somantlos, our tosts demonstrate that cache consistency
overhead is a performance bottloneck for fino-gralned parallel programs executing on a
shared-memory multiprocessor systom,

Other resenrch has beon done to ovaluate the porformance of shared-memory multipro-
cessor systems, For the most puet, this work haw been Intended to ald computer architects in
improving multiprocossor dosign, As rowult, the primary areas for research have been the
design and performance of conslstont cnchos, o, 162, 63, 118, 101, 132, 4, 35, 40, 98, 72]

and hardware techniques for synchronlzation, e.g., 171, 10, 12}, The results of these efforts

2 The cacho conslstency problom I Introducod In the following chapler,
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are typically reported in terms of program data sharing levels, the number of operations
needed to support cache consistency, cache miss rates, or time needed to synchronize pro-
cessors. What is typically not analyzed is the speedup of the parallel program, and how its
performance is correlated to the factors mentioned above. Many studies have relied on the
same set of parallel codes, which have typically been developed using the current state-of-
the-art in parallel programming environments, that, as mentioned previously, has several
shortcomings. This approach results in a programming model vastly different from the one
used in this dissertation. While other studies report results based on experimentation with
coarse-grain parallel programs, we report our experience with finer grains of parallelism.

Another major difference in the approach used in these other studies has been their
reliance on address trace-based simulation. By tracing the execution of these programs
and then later feeding it to a multiprocessor simulator, a significant amount of information
about the program is lost. While the simulator may be able to model the actions of the
memory subsystem, the notion of time is compromised, and itis difficult to accurately model
synchronization or shared resource contention [25]. Our approach is centered on execution-
driven simulation, where a register-transfer-level model of the entire multiprocessor system
is implemented and instructions are interi:reted as they are issued in order to accurately

reflect run-time data and timing dependencies.
1.3 Summary and Outline

The “top-to-bottom’ approach of our work is aimed at incorporating the desirable aspects of
other related research in the areas of design, development, implementation, and evaluation
into a single cohesive system. The main objective is to discover the most appropriate
form and function of run-time support structures for fine-grained general-purpose parallel
programs. This objective is met through the design and implementation of efficient run-time
support code for useful models of program parallelism, and the evaluation of this system

with detailed interpreter-based simulation for a multiprocessor system incorporating an
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existing processor. A comprehensive literature review and the details of this research are
provided in the following chapters.

The work presented in this dissertation represents the first quantitative study of run-
time support structures for shared-memory parallel programs. This study identifies three
major performance barriers which impede the speedup of parallel programs, and quantifies
their impact on the performance of a multiprocessor system. Our research also quantifies
tradeoffs between parallel language semantics and implementation requirements, and uses
results from the study of performance barriers to direct a new design for a parallel language
model. By performing this research in the context of a complete system for parallel
programming, we ensure that our results are relevant to a multiuser parallel processing
system.

The remainder of this dissertation is organized as follows. Chapter 2 provides some
background information and defines the terminology used. The following chapter reviews
other research and states the scope of our study. Chapter 4 describes the evaluation
methodology and the testbed used in our work. Chapters 5 and 6 describe the language
model, run-time support design and implementation, and the experimental results for loop-
based and procedure-based parallel language models respectively. Chapter 7 then describes
the compiler and operating system issues concerned with merging these programming
models into a cohesive parallel programming system. Finally, Chap. 8 provides a summary

and the overall conclusions that we have drawn from this work.



CHAPTER 2

BACKGROUND

2.1 Introduction

In this chapter we present background information and definitions of relevant concepts per-
taining to the implementation of an efficient parallel programming execution environment.
The major areas covered are parallel language models, their run-time support, operating

systems, and hardware architecture.

2.2 Parallel Language Models

The units of parallelism available in a program vary greatly depending on the language
being considered. As stated above, we are considering parallel processing of programs
written in procedural languages such as FORTRAN, C, and Ada. The wide range of language
possibilities provides a corresponding range of parallel program units of execution. We
can classify these units as: 1) loop iterates, 2) blocks, 3) procedures, 4) Ada-like tasks, and
5) OS-level processes. Each of these levels has been used as the basic unit of parallelism
for several implementations. Loop level parallelism occurs when multiple iterations of a
do or for loop may be executed simultaneously. This parallelism can be detected by a
compiler, e.g., Kuck & Associates’ KAP, Pacific Sierra Research’s VAST, the University

of Illinois’ Parafrase-2, or PFC from Rice University, or expressed using parallel loop

9
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constructs such as doall or doacross [73, 87]. Parallel blocks are typically expressed
using “parallel sections” where all statements in the section may execute in parallel [124].
Procedure parallelism occurs when multiple procedure instantiations can be executed in
parallel. This parallelism can also be detected by a compiler, but this is usually too difficult,
and system calls, compiler directives, or language extensions are used instead [82]. Program
parallelism can also be explicitly stated using language level tasks or processes. Language
examples include the zasks of Ada [21] and the processes of Concurrent C [66]. Operating
systems such as Unix also provide processes that are managed by the OS kernel. Both
language-level and OS-level processes are usually provided with mechanisms fo; process

communication and synchronization.

2.2.1 Loops

Parallel loops are essentially do loops where the multiple iterations may be executed in
parallel. The two basic categories of parallel loops are the doall loop and the doacross
loop [106). The parallelism is typically detected through data dependency analysis by
compilers [84, 7, 109]. However, several languages and language extensions have been
proposed that contain doall and doacross style loops, which explicitly state the parts
of the loop that may be executed in parallel [73,87,95]. Inadoall loop, there are no data
dependencies between the iterations of the loop, so they can be executed in any order and in
parallel. The doacross loop, on the other hand, has one or more dependencies between
jterations which impose an order of execution. The iterations may still be overlapped, how-
ever, provided that appropriate synchronization and shared memory updating is provided
to ensure data integrity. Because doal1 loops are free from the restrictions placed on the
parallel execution of doacross loops, they provide the greatest opportunity for speedup
in the execution of an otherwise serial program. For this reason, our experiments have

focused on the execution of doal1l loops.
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doall 100 i = 1, n (shared (n,A,B,C), private(i))
A(i) = B(i) * C(i)
100 continue

Figure 2.1. Example doall loop.

doacross 100 i = 2, n (shared (n,3,B), private(i))
A(i) = A(i-1) * B(i)
100 continue

Figure 2.2. Example doacross loop.

Figures 2.1 and 2.2 show simple examplesof doall and doacross loops respectively.
These examples use a syntax similar to that generated by the VAST preprocessor, which
explicitly states which variables are to be shared, and which are to be replicated and kept
private within each iteration. An alternative form of the doacross example shown in
Fig. 2.2 would be to use a doall and denote the amount of overlap between iterations
explicitly using synchronization statements expressed as a function of i. In the above
example, we use the keyword doacross coupled with the loop index i to imply an order
of execution of the iterations.

The advantages of loop parallelism include its familiarity and simplicity. By using loops,
parallelism may be expressed in a sequential language. This allows a large base of programs
and programmers to benefit from parallelism without switching to a new language. The
simplicity of loops makes them easy to support efficiently. However, there are two main
disadvantages to using loops for parallelism. First, there are many algorithms containing
parallelism that cannot be effectively expressed using loops. Second, the parallelism of
loops tends to be fine-grained, so that the overhead of parallelization becomes a major
factor. If the number of instructions in a loop is not significantly greater than the number
required to set up its parallel execution, simultancous execution of the iterations is not
profitable.

One way to avoid much of the overhead of parallelization is to use static data partitioning
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and loop scheduling, e.g., [75]. Static scheduling reduces overhead by simplifying the run-
time support code and enabling the programmer to specify the highest levels of data locality
and static load balance. Disadvantages include an inability to cope with load imbalance
caused by dynamic effects. While the static approach may provide the best performance by
providing the programmer with ultimate control over parallel execution, it also removes the
flexibility present with a dynamic scheduling approach. As stated above, we are focusing
on dynamically scheduled systems. Dynamic scheduling approaches for parallel loops are

discussed in Sec. 2.3 below.

2.2.2 Blocks

Parallel blocks are supported by a parallel section construct, whose semantics allow the
execution of each of its statements to proceed simultaneously. Figure 2.3 shows an example!
parallel section. In order to support parallel blocks of larger granularity, the statements
within the parallel section may themselves consist of several statements [97, 87, 124].
In Fig. 2.3, this could be implemented by replacing each statement with a block which
would, for example, be surrounded by the keywords BEGIN and END. The parallel blocks
mechanism allows the programmer to specify heterogeneous fine-grained parallelism, as

opposed to the homogeneous parallelism of loops. The implementation of parallel blocks is

very similar to parallel loops, but is slightly more complicated as we show in Sec. 2.3.1.3.

do parallel (shared (X1,Y1,n,4,B,C,3,k))

X1 = A(l1) * B(l)
Yl = A(1) * C(1)
n =3 + k;

end do parallel

Figure 2.3. Example parallel section.

While the parallel section construct is simple and straightforward, it has the disad-

vantages associated with parallel loops. The work of each block in a parallel section is
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fine-grained, especially if each block is only a single statement, ¢.g., the programmer spec-
ifies several independent calculations. This raises the issue of parallelization overhead,
especially because the support of this type of parallelism is more complex than parallel
doall loops. In order to overcome a problem with grain size, it may be necessary to
serialize and coalesce multiple parallel blocks into larger code sections. Of course, this

approach reduces parallelism and may diminish the usefulness of the construct.

2.2.3 Procedures

As with loops, procedures provide a familiar construct that can be used as a unit of
parallelization. This parallelism can be either implicit or explicit. Implicit procedural
parallelism is detected at compile time through inter-procedural dependency analysis [90].
Explicit parallelism is denoted by using compiler directives [82], language extensions [68]
orrun-time library calls [131, 8] that designate procedures as “tasks”. Another approachisto
use a parallel programming tool which encapsulates a user’s sequential code in procedures,
and provides a language level interlacing of run-time support code which is transparent to
the user [123, 29, 89, 135). Of course, it is also possible to use parallel language primitives
that allow expression of parallel procedures [97, 120, 49].

Figure 2.4 shows an example of what a parallel procedure call might look like. In
this example, n instances of MUNGE are created, each being passed the parameter DATA.
Depending on the type of DATA and the specifics of the language, a wide variety of
parameter passing semantics are possible. This will be evident in the discussions that
follow in Chaps. 3 and 6. Consequently, a declaration of a parallel procedure may be as
simple as a sequential procedure, or may require special keywords to identify its instantiation
index, or, if applicable, its subset of DATA.

Procedures, like do loops, have the advantages of familiarity and simplicity. Also,
the granularity of procedures is in general greater than that of loops, and may enable a

greater efficiency in parallel processing. However, there are also some disadvantages.
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parallel CALL [n] MUNGE (DATA)

Figure 2.4. Example parallel procedure call.

Although some success has been achieved, automatic detection of procedure parallelism is
difficult, and in some cases may be impossible. If the program is written in a sequential
language, chances for parallel execution may be lost because of the language’s lack of
expressiveness. In order to exploit larger amounts of parallelism, it is usually necessary for
the programmer to restructure the code so that parallel calls of a procedure are explicitly
stated and provided with different data sets. However, compiler directives and run-time
library calls are somewhat clumsy, error prone, and difficult to debug [19]. Parallelizing
overhead also tends to be greater in this case, because procedures require some local
environment separate from the main program. This situation again raises the question of

what is the minimum granularity needed to profitably exploit parallelism.

2.2.4 Language Processes

Processes are units of parallel execution that can be expressed at the language level. They
may be scheduled independently from each other, but are usually provided with mechanisms
for synchronization and communication. Examples include the tasks of Ada [57] and the
processes of Concurrent C [66]. While the concept of language-level processes may have
roots in earlier languages for systems programming [74] or distributed programming [27],
they are also suitable for general purpose programming on shared-memory systems. In fact,
the shared-memory model presented by the Ada language suggests that it is best suited for
implementation on parallel systems rather than distributed systems.

Figure 2.5 shows an example of a language-level process using the syntax of an Ada
task. In this example, the task executes a loop in which a message is accepted from

another task. The sending task is blocked until the end statement following the accept is



15

task RECEIVER is
entry MSG (DATUM: in INTEGER) ;
end;

task body RECEIVER is
BUFFER: array(l..N) of INTEGER;

begin
for I in 1..N loop
accept MSG (DATUM: INTEGER) do
BUFFER(I) = DATUM;
end;
end loop;
end;

Figure 2.5. Example of language-level processes: An Ada task.

executed. This allows synchronization to be specified at the language level as a side effect
of the task cominunication mechanism.

The main advantage of using processes for parallel programming is their expressiveness.
Because of the number of flexible primitives typically provided, processes may be coded to
communicate and cooperate in a multitude of forms that allow the expression of a very large
number of parallel algorithms. However, because of this flexibility, the run-time support
for processes is more complex, and thus requires more overhead. Because they may be
preempted by the run-time system scheduler, processes must maintain state, which includes
structures such as communication queues and a working register set. This extra overhead

requires that the grain size of a process be quite large in order to ensure efficiency.
2.2.5 OS Processes

Another form of process that can be used to exploit parallelism is not defined at the language-
level, but is instead defined by the operating system. In its basic form, each user program,
or job, is executed by a different operating system process. However, in Unix systems,

it is possible for a process to execute a fork, which clones its address space and context
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for use by a new process. The fork returns a value which the code then uses to determine
whether it is the child or parent process. Thus, although two identical processes are created,
each has its own context, and may proceed to execute different paths through the same
code. These OS-level processes may also communicate with each other using the message
passing primitives provided directly by the operating system. This feature gives OS-level
processes the same functionality that most concurrent languages provide. However, the
run-time support for OS-level processes is provided by the operating system kernel.

The main advantage in using OS-level processes for parallel programming is that their
run-time support is already provided by the OS kernel. The main disadvantages are that
the model is implementation dependent on the operating system, it is difficult to use for
programming large amounts of parallelism, and the overhead of forking a process is very
high. However, there are applications where implementation dependencies are necessary,
such as managing a set of physical resources. The overhead of a fork can also be worthwhile

is the child process will execute for a very long time, e.g., until the next system reboot.

2.3 Run-Time Support

Because there are many forms of parallelism possible, there are many forms of run-time
system support mechanisms for parallel programs. We can classify run-time system designs
into two broad categories: 1) microtasking, and 2) multitasking. In various forms, micro-
tasking can be used to support loops, blocks, and procedures. Multitasking can be used to
support any of the parallel constructs, but its increased overhead makes it best suited for
procedures and tasks. When multiple OS-level processes are used to implement a parallel
algorithm, the run-time support is provided completely by the operating system kernel, and

we will refer to this run-time support as multiprogramming.
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2.3.1 Microtasking

A microtask is “created” when a processor allocates some subset of parallel work via
execution of the run-time system code. This work is typically some number of loop
iterations, a block, or a procedure. The run-time support for a microtask is provided as both
code generated by the compiler backend and as lightweight routines linked together with
the parallel program. This run-time support executes in user mode, thereby avoiding costly
operating system calls which require expensive context-switching overhead. In the case of
microtasking then, the concept of a task is defined at the run-time system level, as opposed
to multitasking systems where the task is defined at the language level.

In a typical microtasking implementation, summarized in Fig. 2.6, all processors begin
by executing some initialization code to acquire an individual stack area for “scratch pad”
use. All processors then execute the scheduling code, which performs synchronization and
arbitrarily assigns the mainline of the program to one processor. This processor begins
execution while the others remain blocked or busy waiting. When a parallel construct
is encountered, the running processor executes run-time support code to “set up™’ global
information that the other processors will use to acquire their own subset of the parallel
work. This global information includes the starting address of the code and the number
of iterations to be executed, if necessary. It may also contain stack, argument, and frame
pointers if any of these areas are to be shared, and it may contain a count of available
processors. This global information, which is shown in Fig. 2.6, may be thought of as a
record entry in a global work queue. After queue initialization, a synchronization operation
is performed enabling the other processors to begin accessing the queue. Each processor
acquires some amount of work (according to the scheduling algorithm, discussed below)
and modifies the queue record to indicate this fact. When all work has been scheduled, one
processor acquires the code following the parallel construct and executes it and/or the set up
code for the next parallel section. Data dependencies, which are accounted for at compile

time, determine at what point this last processor synchronizes with the others executing the
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previous parallel section. Any processors left over that do not schedule any of the parallel

work, or any of the code that follows, will continue to busy-wait or be blocked waiting for

more work to be entered into the queue.
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Figure 2.6. Global information and execution flow for a parallel loop.

2.3.1.1 Self-Scheduling

Allocating each processor’s work by using the general scheme described above is referred

to as self-scheduling [120, 110, 106]. This term is used because each processor enters

the run-time system to allocate work without making a supervisor call into the operating

system. Depending on the exact semantics of the parallel work to be scheduled, variations

of self-scheduling which employ alternate techniques for partitioning work into microtasks

are possible. In the case of parallel loops, these alternate scheduling techniques include
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chunk scheduling and guided self-scheduling. With chunk scheduling, the run-time code
that sets up the execution of the parallel loop calculates an “optimal chunk size” by dividing
the total number of iterations by the number of available processors. When processors
perform a schedule operation, they allocate a number of iterations equal to the chunk size.
If the number of iterations does not divide the number of processors evenly, one additional
scheduling point is required to assign the “leftover” iterations!.

If the scheduling times of different processors vary greatly, or if the different iterations
of a doall loop execute a variable number of instructions, the simple self-scheduling
approach tends to provide the best load balancing by evenly distributing many small mi-
crotasks. On the other hand, if the scheduling operation tends to have a high overhead
relative to the number of instructions in each loop iteration, and/or the number of iterations
is much greater than the number of processors, chunk scheduling reduces scheduling over-
head by requiring fewer scheduling points. Guided self-scheduling is a technique designed
to provide better overall performance by compromising between the extremes of best load
balancing and fewest number of scheduling points. With guided self-scheduling, each pro-
cessor computes its chunk size using the formula [%i] where R; is the number of iterations

remaining to be scheduled at step ¢ and p is the number of processors [106, 110].
2.3.1.2 Scheduling Semantics

In the simplest case, microtasks are scheduled using run-to-completion semantics, which
enable them to be schéduled only once before they complete. In the case where microtasks
must synchronize due to data dependencies, e.g., doacross loops, they simply busy-
wait until the synchronization allows them to continue. In order to avoid deadlock, these

synchronization requests should be generated by the compiler instead of coded directly by

the programmer.

1 An altemative would be to allow slight variation in the chunk size so as to avoid the extra
scheduling point. Either approach may be the most efficient, depending on run-time overhead
and the effects of load balancing.



20

As a consequence of run-to-completion semantics, simple microtasks are, in general,
unable to create additional parallel work themselves. Such a capability would require the
creating microtask to become blocked while the newly created work was being executed.
The only way to avoid blocking the “parent” microtask would be to alter the semantics of
the parallel construct so that newly created work would not be scheduled until completion
of all previously created work, including the parent microtask. This approach would result
in a situation were work is created but is not executable until some future synchronization
point is reached. While this change in semantics may be acceptable for some algorithms,
it is inconsistent with implicit parallelism which is extracted from sequential programs. It
also complicates the run-time system design by forcing it to filter out the work that can be
scheduled from the work that has been created but is not yet ready to be scheduled.

As a result, most existing microtasking systems do not allow parallel constructs to be
nested. This is not a serious restriction, however, since compile-time restructuring can
coalesce loops and blocks to enable the creation of many more microtasks of a larger grain
size [134, 106]. A benefit of this approach is that, in the case of parallel loops, the run-queue
is required to hold only one record of parallel work at a time, providing fora very simple and
efficient implementation. This allows the queue information to be stored at “well-known”
locations, and avoids costly memory allocation and pointer chasing by the run-time system.
Furthermore, these well-known locations need not reside in main memory and may be
quickly accessed in the shared registers present in several multiprocessor supercomputers.

In a more complex form of microtasking, run-until-block semantics can be supported.
By using a variable length run-queue and allowing the nesting of parallel constructs,
microtasks may block either on synchronization variables or to create more parallel work.
In either case, lightweight context switching will have to be supported as well as techniques
for managing separate data areas for microtasks. This style of microtasking is more flexible,
e.g., it allows recursion, but it requires a more complex implementation which may result

in additional execution overhead. We refer to this type of run-time support as extended
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microtasking.

2.3.1.3 Heterogeneous Parallelism

The above discussion of microtasking is primarily aimed at the homogeneous parallelism
found in loops or multiple calls to the same procedure. As mentioned above, the support
for the heterogeneous parallelism of blocks is more complex. If each block is treated as
a parallel loop of one iteration, the simple length one run-queue cannot be used, or the
benefits of parallel blocks will be lost altogether. An alternate strategy is needed, where
each “iteration” value assigned via self-scheduling is used to compute a unique starting
address. A table look up technique can be inserted into the generated code at the beginning
of the parallel section.

If extended microtasking is being supported, the alternate to the table look up technique
of supporting parallel blocks can be used, where each block is treated as a single iteration
loop. Also, because extended microtasking allows nesting of parallel constructs, there are
more opportunities for the exploitation of heterogeneous parallelism by the programmer.
This capability can be exercised in the form of nested parallel loops and/or nested parallel

procedure creations in addition to simple parallel blocks.

2.3.2 Multitasking

Multitasking run-time systems support the execution of language tasks or processes as well
as procedures that can be thought of as restricted forms of tasks. In addition to support for
run-until-block semantics, multitasking run-time systems must also support more complex
forms of context switching brought about by preemption semantics, where one task may
block another running task in order to begin or resume execution. Furthermore, mechanisms
must be provided to support intertask communication. Because of the need for preemptive

scheduling, task control blocks (TCB’s) must be kept for each task to hold its state and
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data [43]. These TCB’s are then linked in the run-queue or communication queues. These
requirements make the run-time system more complex, and overhead is higher than in the
microtasking cases. However, the semantics of language-level tasks or processes allow the
expression of many different parallel algorithms including those that require heterogeneity,
recursion, or complex synchronization models associated with simulation or real-time
systems.

Parallel languages which provide a process or task model that requires multitasking
support are referred to as concurrent languages. When compared to microtasking systems,
concurrent languages require additional run-time services. In addition to the scheduling
and communication requirements listed above, some languages, e.g., Ada and Concurrent
C, also require support for dynamic memory allocation, time-of-day clock, time controlled
events, implementation of complex create/terminate semantics, handling and propagation
of exceptional conditions up multiple call stacks, and handling of interrupt signals. While
some of these services may be supplied to a microtasking system as library service routines,
e.g., timing support and dynamic memory allocation, concurrent languages usually have
explicit semantics regarding these services incorporated into the language definition. An
analysis of the run-time system requirements for Ada can be found in [43], and the scaled
down requirements for a simpler concurrent language intended for distributed-memory

systems and based on C can be found in [45].

2.3.3 Multiprogramming

As mentioned above, multiprogramming refers to run-time support provided by the oper-
ating system kernel for multiple OS-level processes. This name is derived from it main
application, where each OS-level process represents a different user program. However,
multiple OS-level processes may be created by a single user program using the fork sys-
tem call. In either case, the scheduling, synchronization and communication support for

processes is provided directly by the operating system kernel.
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Even though complete run-time support can be provided by the OS kernel, the semantics
of an OS-level process and the overhead in creating and scheduling it has made it of limited
use for implementing parallel algorithms. Other problems with the OS-level process include
its inherent implementation dependencies, which make portability difficult. Despite these
shortcomings, OS-level processes are still a necessary component in the support of parallel
programs. They provide the interface to the resources of the hardware and operating system,
e.g., disk drives and virtual memory. The role of the run-time system then is to provide as
much user-level support as possible for scheduling, communication, and synchronization
to the parallel program. This limits invocation of the OS and thus reduces system overhead.

This layering approach to run-time support software is discussed further in Sec. 2.4 below.
2.3.4 Interprocess Communication

In each of the language models and run-time support approaches discussed above, there
is some form of communication that occurs between different threads of execution, e.g.,
microtasks, tasks, processes, etc. This communication is referred to interprocess .commu-
nication or simply IPC. For parallel loops or blocks, IPC is handled by the run-time system
through shared global data used for providing microtask context as shown in Fig. 2.6. If
procedures are supported as language units of parallelism, the exchange of parameters be-
tween the caller and callee of the procedure is another form of IPC. Concurrent languages
typically provide language-level support for explicit message passing or rendezvous, which
defines IPC between language-level processes. Finally, operating systems such as Unix
provide IPC mechanisms, e.g., sockets and streams, which enable data to be exchanged

between processes.
2.3.5 Summary

Table 2.1 classifies the main characteristics of the language models of parallelism and

the associated run-time support mechanisms described above. The association between
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Language | Run-Time | Scheduling | Interprocess Grain Size
Model Support Semantics | Communication (instructions)
Loops, Run-until- Global
Blocks | Microtasking | completion data <10,000

Extended Run-until-

Procedures | microtasking block Parameters 10,000

Language ) Messages,

Processes | Multitasking | Preemptive | Rendezvous >10,000

OS-level Mutti-

Processes | programming | Preemptive Messages >>10,000

Table 2.1. Typical language model/run-time support combinations.

the language models and their run-time support is provided for typical implementations
and those described in this dissertation. That is, variations are possible that allow extended
microtasking support for parallel loops or even multitasking support for OS-level processes.
Also, the run-time support for microtasking, extended microtasking, and multitasking still
requires a layer of support provided by the OS kernel. This is discussed in more detail in
Sec. 2.4 below.

In Table 2.1, the language models and run-time support mechanisms list near the top
have the lowest overhead and are the easiest to implement. However, they are also the least
flexible in terms of expressing parallel algorithms. The last two rows in the table represent
programming models with greater flexibility, but this comes at the price of increased
overhead and implementation complexity.

The TPC mechanisms required by the different language models similarly vary in flex-
ibility, expressiveness, and implementation complexity. In each case, the IPC mechanism
required is consistent with the scheduling semantics provided and the expected grain size
of the execution thread. For example, the simple scheduling semantics and small grain size
of a microtasking run-time system for parallel loops is consistent with the shared global
data form of IPC provided. It is inappropriate to include a complex IPC mechanism that

requires blocking for a communication request if there is no mechanism provided to block
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the execution thread. Also, requirements for fair servicing of IPC requests for multitasking
and multiprogramming systems is consistent with preemptive scheduling, which interrupts

execution threads and reallocates processors to waiting threads at regular intervals.

2.4 Operating System

The main role of the operating system is to allocate resources. In a parallel processing
environment, programs must be able to acquire multiple processors and these processors
must be able to share virtual memory. A typical approach to this problem is to allocate a
fixed number of processors to the program [81]. In order to simplify the management of this
allocation, context switches into or out of the program involve all processors simultancously.
The allocation of processors and support for shared virtual memory is implemented in the
operating system using OS-level processes that are scheduled by the kemel. This processor
allocation approach allows the self-scheduling to occur without OS intervention, since the
processors access a shared run queue in user space to determine their share of the work.
One approach that might simplify run-time system design is to map program fragments
or tasks onto OS processes one-to-one. However, there are two main problems with this
approach: 1) the overhead associated with creating and scheduling OS processes is very
great, and 2) the semantics of the language unit of parallelism may be inconsistent with
the OS process. In the first case, the amount of state information these processes carry
cause context switching to be expensive. This state may include open file descriptors and
the virtual address translation mapping in addition to a status word, stack pointer, program
counter and register set. This replication of state in each process makes it difficult to share
resources between processes in a Unix-like OS. Because of the state they carry, these OS
processes are referred to as heavyweight. In some new systems though, direct support
for lightweight processes is available from the OS kernel, e.g., Mach [2]. However, even
though these lightweight processes carry less state and take advantage of shared resources

in a global location, the overhead of entering the kernel on their behalf is still too expensive
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for most forms of language parallelism, including language-level tasks [96]. Also, see the
performance figures in [26].

In addition to performance problems, it is possible that language units of parallelism
may not map semantically onto OS processes. Complex process models that accommo-
date interprocess communication and preemption semantics are not appropriate for simple
microtasks. Further, in the case of concurrent languages, it is possible that the language de-
fined semantics for creation, termination, and communication cannot be supported directly
by the existing semantics of OS processes.

The performance problem coupled with the possibility of semantic problems effec-
tively prevents a direct mapping of parallel language units to operating system processes.
Therefore, the more common approach to supporting program parallelism is to use a
language-specific user-mode? run-time system. Figure 2.7 illustrates the layering of soft-
ware and hardware using this approach. This diagram shows which parts of the software
have access to certain instructions provided by the hardware. Only the operating system
kernel has access to privileged instructions such as those provided to manipulate the trans-
lation lookaside buffer. Instructions provided by the hardware for synchronization and/or
communication are visible to both the run-time and operating systems. This allows the
run-time system to perform scheduling and synchronization as needed. The application
program may only access the remaining type of instructions, which are referred to here as
“regular instructions”. Many current systems allow application-level code to request syn-
chronization through operating or run-time system calls. In an idealized system, however,
synchronization and communication are implicit in the semantics of the language, and they

are handled directly by the run-time system without programmer intervention.

2.4.1 Threads

As mentioned above, operating systems are appearing that support lightweight processes

2 Recall from Chap. 1 that user mode refers to code that does not execute in the OS kemel.
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Figure 2.7. Software/hardware hierarchy.

and virtual memory sharing. In Mach, for example, a fask acts as a heavyweight process
and contains the open file descriptors and virtual memory mapping for a collection of
lightweight processes referred to as threads. The threads are the units of execution that
are scheduled by the OS kernel and share the resources of the parent task. In the case
of Mach, a single task can be allocated to a parallel program, and the multiple execution
streams of the program can be mapped dynamically onto several threads by the run-time
system. Other options are possible in a Unix-like operating system, including the allocation
of multiple heavyweight processes to a single program, e.g., Symunix [61]. In any case, the
operating system processes (heavyweight or lightweight) that represent execution units can
be regarded as virtual processors [26]. The language run-time system is then responsible for
scheduling the units of program parallelism amongst the virtual processors. This allows the
dynamic scheduling of parallel execution streams to occur in user mode with less overhead

than the alternative of assigning each execution stream to an independent OS process.
2.4.2 Scheduling

With the model for scheduling program parallelism mentioned above, there are additional

problems to consider regarding the OS scheduling of threads, i.c., virtual processors. While
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it has been suggested that parallel language units be mapped one-to-one onto threads [26],
we believe that the frequent creation and termination of relatively small grain language
units does not warrant this approach. The run-time system can schedule these units onto
available threads much more quickly, as will be demonstrated in Chaps. 5 and 6.

Another issue regarding thread scheduling is the usefulness of coscheduling [23] or
gang scheduling [65, 26]. With this type of scheduling, context switches into or out of the
parallel program involve all threads allocated to that program. This approach is intended
to avoid long delays and/or thrashing of the scheduler when all threads of a program are
blocked at a barrier synchronization point while the last thread has been preempted or is
blocked for some other reason. However, this strategy may cause unnecessary preemption
of some threads and prevent the scheduling of any part of the program when the number of
physical processors available is less than the number of threads allocated to the program. If
threads are preempted or deallocated only during run-time system scheduling points, gang
scheduling may be unnecessary, since the mapping of program units onto threads is handled
by the run-time system scheduling mechanism. Furthermore, in the case of heterogeneous
parallelism, the multiple threads of a single program may not need to synchronize at all,
and gang scheduling provides no additional benefit. Also, depending on the structure
of the code, it may or may not be desirable to use gang scheduling when a system call
by one thread may cause preemption. The case of I/O system calls is discussed below.
These issues regarding scheduling and preemption are discussed further in the context of a

proposed parallel programming system in Chap. 7 below.

2.4.3 Dynamic Memory Allocation

A common service provided by operating systems is the allocation of additional memory
space to a program at run-time. This function is implemented in Unix via a variety of
routines including malloc and sbrk. In the case of a multiprocessor operating system,

there are some new issues to consider. In addition to supplying additional memory space, it
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will most likely be necessary to make this space addressable by all threads or OS processes
dedicated to the parallel program. This will certainly be necessary if the run-time system
itself requested the storage. Also, multiple requests for storage from the same parallel
program should be serviced in mutual exclusion so that multiple calls do not receive
overlapping memory spaces. This type of dynamic memory allocation is supported in
Dynix via the shsbrk, shmalloc, and mmap system calls [23].

Depending on its complexity, the run-time system itself may choose to manage dynamic
memory allocation. If a large chunk is allocated from the OS at start-up, the run-time system
can allocate memory from this pool for its own use, and manage deallocation as well. This
avoids making many costly calls to the OS. However, the OS must still provide the capability
described above, for those programs which allow user-level requests for storage viaa system

call and when the run-time system requires additional storage at run-time.

2.4.4 1/O Support

Support for 1/O operations is another area typically managed by the operating system.
While this support via a system call is straightforward for a uniprocessor program, there
are several issues to consider in the case of a parallel program. If multiple threads are
not synchronized and perform I/O operations using the same file descriptor information,
problems may occur [23]. While these problems can be solved at the language level by
synchronizing tasks or microtasks before performing I/O operations, it may be desirable in
general to allow parallel I/O activity. Direct OS support for parallel I/O with shared file
descriptors may be necessary [23]. This support may even require some form of built-in
synchronization.

The other major problem related to I/O activity in parallel programs is the interface
between thread/task states and OS-level scheduling. If a language-level task (or microtask)
requests J/O activity, the associated OS-level thread making the call may become blocked

until that activity is completed. While this may introduce some delay in the time it takes
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the program as a whole to reach its next synchronization point, the approach simplifies
the duties of the run-time system. The operating system reinstates the thread and task (or
microtask) at the point of suspension after completion of the J/O activity without any further
action required by the run-time system. However, other possibilities exist which prevent
the blocking of the OS-level thread, thus avoiding a temporary reduction in processor
allocation for the parallel program. In Mach, for example, an asynchronous system call is
possible where a thread may continue and check the status of the call at a later time. To
incorporate this approach, the run-time system must be aware of and support the blocking
of language-level tasks or microtasks for /O activity. This will complicate the run-time
support if run-to-completion semantics are expected.

Each of the above stated OS issues and their impact on scheduling and synchronization

are discussed in the context of a proposed parallel programming system in Chap. 7.

2.5 Hardware Architecture

In addition to the view the operating system presents to the generated code of a parallel
program, it is also critical to consider the hardware architecture. As stated above, we are
primarily concerned with multiprocessors where each processing element has the ability
to directly access a physically shared memory. Main memory can be centrally located,
with access served by a bus, crossbar, or other interconnection network. Alternatively, the
memory may be spread across multiple memory units local to each processor as long as
each processor may access any other processor’s local memory. In this latter configuration,
the time to access memory may be variable, depending on the location of the memory
unit relative to the referencing processor. Such a system organization has been termed
Non-Uniform Memory Access (NUMA).

Caches may also be present that serve subsets of processors (typically one per processor)
in order to, among other things, reduce the main memory bandwidth requirement. Because

memory is shared, it is possible for multiple caches to contain different versions of the
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same data item, causing the cache consistency or cache coherency problem [119] which
requires either a hardware-based or software-based solution. If caches are kept consistent
via a hardware mechanism, they are transparent to the user program and operating system.
Otherwise, software must maintain consistency, and these caches then become a form
of local memories. Many methods have been proposed for both hardware and software
controlled cache consistency. Surveys of approaches for hardware consistency appear in
[17] and [4], while software solutions are proposed in 38, 56, 39, 41]. A brief survey of
both hardware-based and software-based cache consistency schemes is given in [102].

In systems where a shared bus is used to access main memory, the cache consistency
problem is commonly solved using a bus-snooping cache consistency protocol. In systems
where there is no shared bus, when, for example, a crossbar or multistage interconnection
network is used to connect the processor-cache subsystems to a shared memory, the cache
consistency problem is usually solved in software or by using a central directory-based
hardware scheme. Although other techniques such as a shared cache or snooping on a
crossbar are possible, these approaches require complex hardware support and are not
scalable to more than a few, i.e., more than a dozen, processors. Therefore, our experiments

focus on software and directory-based hardware schemes.

2.5.1 Software Consistency

We can categorize software mechanisms for cache consistency into three general types that
rely on: 1) non-cacheable data; 2) compiler-managed cache block consistency; or 3) write
merging. The first type is the classical technique where shared data is made non-cacheable,
typically on a page-by-page basis. The second type requires that the compiler utilize
information about data dependencies and alignment of words in cache blocks to bypass the
cache on a fetch if necessary, and to write through or flush blocks to main memory when
needed. The third type allocates and zero fills cache blocks for result data areas, and then

overlays these blocks at the conclusion of the parallel loop to form the final result in main
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memory. This last approach allows multiple processors to share cache blocks, but requires
that no two words be shared between microtasks. This property has been referred to as
false sharing [60), and allows the overlaying of result areas to be performed using simple
OR instructions on each logical word.

Of the three approaches, the second has the most potential for fast execution as it
incorporates the most information about the structure of the code and its data dependencies.
However, this approach is also the most difficult to implement. The most sophisticated such
scheme is called Fast Selective Invalidation and is summarized in [40]. In this scheme, the
compiler tags each reference as one that either may retrieve the data from the cache, cache
read, or must retrieve it from memory, memory read. This distinction is made based on
how the data is accessed in the program. Data that is used in a read-only fashion is always
marked cache read. If data is written at any point in the program, it is marked memory read
in any parallel loop following the one in which it is written. However, it is still possible for
a memory read to retrieve data from the cache. This is permitted if the block was written
earlier in the same parallel loop, i.e., microtask, currently executing. This is supported by a
special change bit in the caches for each block which is reset before and after execution of
a microtask. The change bit for a block is set whenever that block is written. If the change
bit is true, a later memory read may be retrieved from the cache.

Another scheme that requires compiler support, called Version Control, is also proposed
in [40], but this scheme requires substantial hardware support. This scheme maintains
version numbers and updates them at the beginning and end of each microtask, instead
of resetting change bits. The version number is incremented at the end of a microtask
for a cache block if it contains any part of an array that was written by any microtask
associated with the current parallel loop. This version number, or CVN, is maintained by
each processor in a separate private memory. When a block is cached, an additional cache
block tag field called the birth version number, or BVN, is loaded with the current CVN,

or CVN+1 if the access is a write. Later references to this block compare the CVN to the
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BVN, and if the BVN is less than the CVN, the cache block is stale, and a memory fetch
must take place.

In addition to requiring sophisticated compile-time data dependency analysis, the
schemes described above also makes three key assumptions: 1) caches are write-through
to main memory>, 2) task migration is disallowed, and 3) the cache block size is one word.
While the authors state that the scheme can be modified to support a change in these assump-
tions, it appears to be a non-trivial task to do so. For example, the scheme also requires that
no two processors access the same cache block for a given parallel loop. This is areasonable
requirement if the cache block size is one word. However, with a multiword cache block,
which is the norm in existing computer systems, it is quite likely for different processors to
access different cache words in the same cache block (false sharing as introduced above).
In order for this scheme to work, either microtasks have to be constructed that do not share
cache blocks, or data must be aligned by the compiler so that only part of a multiword block
is actually used. Of course, a single word cache block could be implemented in hardware,
but this would seriously degrade performance by losing the advantage of spatial locality in
other data references. This is a difficult problem to solve.

In our experimental system (described in Chap. 4), the cache block size is 16 words, and
caches are copy-back to conserve interconnection bandwidth. It has been shown elsewhere
that write-through caches do not in general perform well when compared to similarly
configured systems with copy-back caches [128]. Also, the restriction on task migration is
inconsistent with our model of parallelism and its associated run-time and operating system

support. Finally, the scheme described in [40] also requires hardware support.

2.5.2 Directory-Based Hardware Consistency

The classic directory-based hardware cache consistency scheme is the one proposed by

3 That is, data written to a cache is written to memory at the same time. A copy-back cache
updates memory later when the updated cache block is to be replaced.
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Censier and Feautrier in [34]. It is similar to the one originally proposed by Tang [126] but
requires fewer cache tags and a smaller central directory. The directory is located in main
memory and contains an entry for each cache block in the system. Each entry contains
“location” bits to indicate which caches, if any, possess the block and a “modified” bit to
indicate whether or not the main memory version is up-to-date. If the memory version is
not up-to-date, the modified bit is set and the block may reside in only one cache. For the
directory tags, each entry requires P 4- 1 bits for a P processor system.

While the Censier and Feautrier scheme allows sharing of clean lines, a modification to
this scheme suggested in [4] restricts blocks to reside in at most one cache. The location
bits can then be replaced with an index that indicates the cache where the block resides.
Only log, P + 1 bits are required for each directory entry. This scheme is based on the
assumption that sharing levels are generally low, and it is better to conserve directory bits
rather than support extensive sharing. However, as pointed out in [50] and reiterated in
Chap. 5 below, this scheme is too restrictive as it also prevents the sharing of read-only data.
Due to the performance problems with this modified scheme, a compromise scheme which
allows blocks to reside in some fixed number of caches less than the total has also been
proposed and tested [35]. This reference introduces terminology which refers to the Censier
and Feautrier scheme as a full-map directory, while the modified schemes are termed as
limited directories.

Another possibility for adirectory-based consistency scheme isadistributed, or chained,
directory. Chained directories introduce extra cache block tags that are used to form either
singly or doubly linked lists of the same cache block in different caches. When a block is
introduced into a cache, it is added to the list for that block. These lists are used to propagate
invalidations from cache to cache if the line is updated by a processor. Additional techniques
are required to implement this scheme in order to preserve the linked list structure in the
case of block replacement. Pilot implementations of both doubly [78] and singly [129]

linked list chained directories are underway.
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A directory scheme that incorporates a broadcast mechanism has also been proposed in
[16]. This scheme maintains only two bits per cache block directory entry, which indicate
one of four states: 1) block not cached, 2) block clean in exactly one cache, 3) block clean
in an unknown number of caches, and 4) block dirty in exactly one cache. Because the
directory entry contains no cache pointers, this scheme broadcasts invalidations and write-
back requests. While this approach is the most scalable of directory schemes, it is also
potentially the most costly in terms of interconnection network bandwidth. Modifications
that incorporate some fixed number of cache pointers into the directory (similar to the
limited directory approach) may be useful in reducing the number of broadcasts needed.

Our experiments tested two versions of directory-based hardware cache consistency: 1)
the full-map directory, and 2) the limited directory with only one cache pointer per block.
Although the full-map scheme is not scalable to many dozens of processors, we believe,
based on our simulation approach (described in Chap. 4) and other published results [35],
that the results of these experiments give a good indication of the performance possible
when using limited directories with more cache pointers or some version of a broadcast-
based scheme. For both approaches tested, which we term shared and private hardware
consistency respectfully, the directory information is used on cache misses or non-private
hits to retrieve the up-to-date cache block and, if necessary, invalidate other copies and
update the tags and directory. Further modifications to all of the above-mentioned schemes
are possible, including the addition of a write-broadcast approach [47]. Such a scheme
would update all caches on a write to a block instead of sending invalidations. However,
the large bandwidth requirement of such an approach combined with its potential to update
unused blocks makes this scheme unpopular with computer architects. Additional details
of our implementation of cache consistency can be found in Chap. 4. Surveys of several

central directory-based schemes can be found in [4] and [102].
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2.5.3 Synchronization

Another major feature of the hardware architecture of shared-memory multiprocessors is
the synchronization mechanism provided. This feature is a vital component in the design,
as it enables software to be built that utilizes the multiple processors. A synchronization
operation is usually based on an indivisible read-modify-write operation on either a main
memory word or special memory hardware. Examples of such instructions include test-
and-set [76], fetch-and-op [69], and compare-and-swap [76].

If a read-modify-write instruction is provided that operates on a word of main memory,
a large number of synchronization variables that can be directly supported in hardware are
available to the program, but at potentially great cost in access time. This approach also
raises issues regarding cache consistency and synchronization because concurrent attempts
to lock a memory word by multiple processors can result in a ping-pong effect, where
ownership of a cache block changes frequently between processors and many invalidations
are sent through the system [59]. Alternatively, special hardware synchronization locations
provide for fast access, but they are limited in number. These hardware locations may be
special shared registers [53, 18] or special memory areas [22].

In some systems with process-based programming models where large numbers of
processes may be running on many processors, it has been shown that synchronization ac-
tivity may become a bottleneck which seriously degrades performance [71]. To overcome
this problem, basic hardware synchronization mechanisms are augmented with software
techniques to implement synchronization with less hardware contention. Studies have
shown a great performance improvement with the use of software enhanced synchroniza-
tion techniques when contention for hardware locks is great [71, 10]. However, for the
synchronization requirements of our programming model and run-time system on a 16 CPU
multiprocessor, these software enhancements are unnecessary. This was largely due to the
quick fetch-and-op synchronization directly supported in hardware in our testbed, which

all but eliminated the need for critical sections in the run-time system. This is discussed
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further in Chap. 4 below.

2.5.4 Sequential Consistency and Weak Ordering

The concept of sequential consistency was originally introduced in [85] as a criteria to
establish whether a multiprocessor could execute a parallel program correctly. The formal
definition in [85] states: '

[Hardware is sequentially consistent if] the result of any execution is the same
as if the operations of all the processors were executed in some sequential order,
and the operations of each individual processor appear in this sequence in the
order specified by its program.

In [3], the above definition is restated as the following two conditions:

1) all memory accesses appear to execute atomically in some total order, and 2)
all memory accesses of each processor appear to execute in an order specified
by its program (program order).

When these conditions are met, it is impossible for a write from a given processor to
be observed by another processor at a particular time unless it can be observed by all other
processors at that time. While this is a desirable property, and one that is expected by
programmers, it can be difficult to implement in high-performance systems where out-of-
order execution is allowed on individual processors, or processor to memory interconnection
networks allow memory accesses to be received out-of-order.

In order to overcome the implementation difficulties of sequential consistency, a weaker
condition termed weak ordering was originally introduced in [58]. In 3], a revised formal
definition of weak ordering was given as:

Hardware is weakly ordered with respect to a synchronization model if and only
if it appears sequentially consistent to all software that obey the synchronization
model.

The idea behind this weaker condition is to provide sequential consistency only if pro-

grams use synchronization primitives with critical sections to prevent race conditions. This
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enables the hardware to enforce sequential consistency only when synchronization instruc-
tions are encountered. Alternatively, the software can contribute to enforcing sequential
consistency of synchronization operations by issuance of a special instruction to commit all
outstanding memory accesses before the next instruction (a synchronization operation) can
be issued. Such an instruction has been referred to as a fence [105, 3], and one is provided in
the Astronautics ZS architecture called STORES [18]. In our simulation testbed, a similar
instruction, called QUIET, is used to wait for all memory accesses to complete in addition
to waiting for all processor pipes to empty. It is also important to note that completing
memory accesses implies completion of any associated invalidations in a cache-consistent

multiprocessor.

2.6 Summary

In this chapter we have provided background material and definitions that pertain to parallel
programming language models, their run-time support code, the resultant role of the operat-
ing system, and the major architectural issues regarding the software’s implementation on a
shared-memory multiprocessor. In the next chapter we will examine several research efforts
that have produced similar programming models, run-time systems, operating systems, and

implementations on actual/simulated multiprocessor systems.



CHAPTER 3
RELATED WORK

Although a relatively young field, considerable work has been reported on parallel process-
ing systems and their programming. Parallel programming models range from automatic
compiler-detected parallelism in sequential languages, explicitly parallel procedural lan-
guages, to implicitly parallel functional and single-assignment languages. The run-time
support design and implementation for these programming models has ranged from dy-
namic sélf-schcduling microtasking systems to multitasking systems and statically sched-
uled Single Program Multiple Data' (SPMD) systems. This run-time support has also
been implemented both in user mode and through library calls to operating system rou-
tines. In addition to the wide range of programming models and their implementation, the
targets for this software have ranged from small- and medium-scale shared-memory mul-
tiprocessors to large-scale distributed-memory multiprocessors as well as heterogeneous
multicomputers, distributed systems of networked personal workstations, systolic arrays,
and dataflow machines. In most cases, some degree of performance evaluation of the
resulting software/hardware system has been done.

As stated in Chap. 1, our focus is on procedural languages which may provide both
explicit constructs and parallelizing compilers to take advantage of the fine- to medium-
grained parallelism found in loops and procedures. Our run-time support conforms to the

dynamically self-scheduled microtasking model. Furthermore, we restrict our target to

! In an SPMD system, a copy of a single program is executed on each processor. Each copy
executes with its own set of data, which is usually a combination of statically partitioned data and
that exchanged via messages with other processors at run-time.

39
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be a multiprocessor with either shared memory or a transparent implementation of shared
memory by the operating system. With this context in mind, we present a review of related

research efforts in the rest of this chapter.
3.1 Parallel Language Models

In the following paragraphs, we describe related efforts in the design of procedural languages
for parallel processing which incorporate parallel loops and procedures. For completeness,
we also briefly describe concurrent and distributed languages as well as tool-based parallel

programming systems.
3.1.1 Parallel Loop-Based Languages

Most of the work done in this area has focussed on automatic detection of parallel loops
in sequential FORTRAN-like programs. This work began at The University of Illinois in the
1970s and resulted in the Parafrase project [84]. This was the context for Wolfe’s thesis
[133], which formalized the concept of data dependency and defined its relationship to
parallelizing sequential program loops. Similar work was also performed at Rice University
[7].

Both of these efforts have continued, and formed the starting point for numerous other
researchers who have also contributed to the state-of-the-art in compiler-detected program
parallelism. Many papers have been published describing the identification of parallel loops
[134, 103, 109, 20, 91], the invention of the doacross parallel loop that accounts for inter-
iteration synchronization [55, 125, and techniques for the analysis of interprocedural data-
dependencies to enable compilers to parallelize loops containing procedure calls [30, 31, 90].
However, although these techniques have proved beneficial in compiling code for processors

with vector units, the current state-of-the-art in compiler-detected program parallelism, by
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itself, is not a substitute for parallel programming, as the results of empirical studies have
found [117].

Particular problems present in the case of automatically detected parallelism in compilers
are interprocedural data-dependency analysis and the presence of pointer type variables. In
the first case, when a compiler is trying to determine whether or not a loop may be executed
in parallel, it must be able to detect any data dependencies that inhibit parallelization. While
this task may be straightforward in many cases, it is complicated when procedure calls are
present in the loop being analyzed. In this case, the compiler must determine whether or
not there are any data dependencies within the called procedure that prevent parallelization.
This situation is a problem when the compiler does not have access to the source code
for the called procedure at the point of the call. This problem is aggravated by separate
compilation, which is becoming more commonplace in newer programming environments
which incorporate object-oriented design and other advances in software engineering.

The second problem is data dependency analysis in the presence of pointer type vari-
ables. Pointer types allow variables to be declared that hold address values which refer to
other objects. Their presence in a program complicates data dependency analysis, since
it is typically not possible to determine which object a pointer type variable will refer to
at run time. Thus, it may be impossible to determine if any data dependencies exist, and
parallelization is effectively prevented. This problem has largely been ignored since there
is no pointer type in the FORTRAN language. However, these variables are commonplace
in other procedural languages, e.g., C, and have proved to be a valuable programming
tool. This problem must be addressed if compiler-detected parallelism is to be profitably
exploited for a large base of sequential programs.

While advances in automatic parallelization of sequential programs may successfully
address these problems in the future, other efforts aimed at exploiting the parallelism of the
looping construct have involved explicit programmer encoded parallelism. Two notable

proposals based on FORTRAN include Cedar FORTRAN [73] and the work of the Parallel
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Computing Forum (PCF) [87]. Other proposals which include parallel loops and are based
on Pascal or C include Simultaneous Pascal [124, 95], EPEX C [97], and PCP [28]. We
briefly describe these proposals below.

3.1.1.1 Parallel FORTRAN

The Cedar FORTRAN language [73] was designed for use on the Cedar Multiprocessor under
development at The University of Illinois. The Cedar-1 machine is a collection of four
clusters of eight vector processors, each cluster being an Alliant FX/8 which shares a global
memory with other clusters. The configuration may be extended to include many more
clusters. The language is intended to take advantage of the hierarchical shared-memory
architecture. It also has its roots in past efforts to vectorize and parallelize FORTRAN, as
described in [73]). (For example, array/vector extensions are adapted from the proposed
FORTRAN 8x standard [9].)

Cedar FORTRAN provides constructs for both doall and doacross loops. Both loop
types allow declaration of local variables for each iteration of the loop. doall loops do
not have an order of iteration execution specified for their iterations, but doacross loops
must be scheduled horizontally, that is, in the order specified by the iteration index. For
doacross loops, synchronization primitives are provided and must be specified by the-
programmer to control the amount of overlap allowable between iterations of the loop.
Cedar FORTRAN also contains “macrotasking” extensions similar to those provided by Cray
FORTRAN [86, 82, 19]. These library routines allow the spawning of tasks which use
a specified procedure as a code body. These tasks are also assigned some number of
processors to execute them and are termed “cluster tasks” in Cedar FORTRAN.

Each of the two parallel loop types may be further described with implementation
directives called “confined”, “spread”, or “cross-cluster.” Confined loops are confined
to the processors of the cluster task in which they are executed. Alternatively, spread

loops are executed by the processors of multiple cluster tasks. The intent of these first
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two implementation directives is to nest confined loops within spread loops, so that the
hierarchical structure of Cedar may be mirrored in the program. However, cross-cluster
loops are also defined which enable the compiler to combine the processing resources of
multiple cluster tasks and perform the mapping of loop iterations onto processors, thus
relieving the programmer of this effort.

Cedar FORTRAN also contains several synchronization primitives, as well as techniques
for partitioning data into shared and private common blocks. Shared data includes variables
local to cluster tasks and global data. Global data resides in the global store shared by
all clusters, but is demand paged to the clusters that reference it. In fact, all shared data
is demand paged to the clusters that request it. For synchronization, a large assortment
of primitives are provided including the lockon/lockof £ routines for mutual exclusion
and evpost/evwait routines for barrier and producer/consumer style synchronization
provided by Cray FORTRAN. Cedar FORTRAN also includes the with statement for spec-
ifying a critical section. The with statement specifies a resource that must be acquired
before the statements following it may be executed. The resource for the with statement
is a variable declared as sync. These variables include tag fields which may be used by
with statements and updated in a way to order the synchronization of processors.

The PCF proposed parallel FORTRAN [87] is similar to Cedar FORTRAN in many
ways, but also contains several differences. PCF FORTRAN does not contain doall or
doacross loops per se, but instead provides a PARALLEL DO statement, with which
both of the aforementioned loop types may be implemented. PCF FORTRAN also provides
a PARALLEL SECTIONS construct as well asa PARALLEL CALL facility for parallel
procedure calls (discussed below in Sec. 3.1.2). PARALLEL SECTIONS allows specifi-
cation of groups of statements that may execute in parallel. PCF FORTRAN also provides
a wide variety of synchronization primitives as well as techniques for declaring local and
shared data of different classifications.

As with the Cedar FORTRAN cluster task, PCF FORTRAN provides a notion of a larger unit
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of encapsulation which handles the exccution of the parallel constructs. In PCF FORTRAN,
this unit is called the virtual processor. The loop iterations or other units of work created
by the parallel constructs (which we call microtasks) are referred to as chores. In order
for the programmer to specify parallelism, he or she must create several virtual processors
and then create chores within them. In order to guarantee that multiple virtual processors
contribute in the execution of a single parallel construct, the construct must be declared
as SPREAD, and the programmer must ensure that each SPREAD construct is encountered
in the same order in each contributing virtual processor. Virtual processors are scheduled
by the implementation onto physical processors, but more than one processor may not
simultaneously execute the same virtual processor. Thus, multiple chores created by a
single virtual processor without the SPREAD form of the parallel construct are restricted to
a single processor. These chores may then only execute in parallel if the processor provides
additional parallelism through multiple instruction streams, e.g., HEP and Horizon, or vector
processors. In essence, the programmer is required to manage the amount of parallelism
seen at the run-time support level as well as the logical program-level parallelism.

Figure 3.1 is taken from [87] and shows what is referred to as the Advanced Machine
Model. The boxes labeled “state” refer to the notion of state in PCF FORTRAN, which
represents the values of all variables and arrays as well as open file descriptors at a particular
point in time in the program. The state provides a context for a virtual processor and the
chores that are mapped to it. A chore may have its parts executed within multiple states on

different virtual processors using the SPREAD construct as described above.

3.1.1.2 Parallel Pascal and C

Asmentioned above, other parallel procedural language proposals have contained constructs
that incorporate parallel looping structures. Simultancous Pascal [124, 95] is one which
provides a forall construct as well as a fork/join mechanism. The forall is

essentially a doall construct, and includes a mechanism for declaring variables local to
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hardware hardware
processor processor
virtual virtual virtual
processor processor processor
state state state
chore chore chore chore

Figure 3.1. PCF FORTRAN advanced machine model.

the parallel loop. The fork/join construct contains some number of statements between
the keywords fork and join, Each of these statements may execute independently and
in parallel. Simultaneous Pascal also provides a using construct for declaring variables
with the scope of a single statement, a locking statement for defining, locking, and
releasing semaphores, and a t raverse statement, for operating on a dynamically created
data structure in parallel.

The parallel constructs of Simultaneous Pascal emphasize fine-grained parallelism,
particularly with fork/join and traverse providing single-statement parallelism. No
mention is made in the references about parallelism at the procedure-call level. Also,
Simultaneous Pascal does not specify language-level constructs for managing the mapping
of parallel program fragments onto processors or virtual processors. This task is left to the
. SpoC run-time system, which is also described in the references. We discuss this run-time
support below in Sec. 3.2.4.3.

Another procedural parallel language which contains constructs for parallel loops is
EPEX C [97]. Although this extension of C is centered around parallel procedure calls
(which are discussed in the following subsection), PARFOR and PARSECT constructs are
also provided for coding parallel loops and sections. Conventional C for statements that

are nested in parallel sections may be specified to execute “cooperatively” in the same
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manner as a SPREAD DO in PCF FORTRAN. EPEX C also provides a DOTOG (do
together) construct which is analogous to the fork/join of Simultaneous Pascal. A
BARRIER statement is also provided for synchronization. The scope of BARRIER is all
parallel “processes” within the parallel section where the barrier is executed. EPEX C also
provides z{ mechanism for declaring shared and private data.

PCP is another C-based parallel language which contains support for parallel loops.
PCP supports parallel loops and parallel procedure calls with the splitall and split
constructs. However,.the semantics of split are not only to indicate potential parallelism
in the program, but also to subdivide the number of processors associated with a current
thread and assign them to newly created sub-threads. Thus, split defines the amount
of real parallelism based on the number of processors available, not on the semantics of
the program. PCP also defines support for lock/unlock synchronization, barrier

synchronization, and a fetch._and_add operation.
3.1.2 Parallel Procedure-Based Languages

While not as widely studied as parallel loop-based languages or languages for concurrent
and distributed computing, several language proposals have been made that are based on the
concept of parallel procedures. Perhaps the first such proposal was the extended FORTRAN
used for the HEP multiprocessor [120). This system allowed individual procedures to be
created and executed in parallel. A CREATE statement caused a subroutine to execute in
parallel with its creator. A RESUME statement in a called subroutine caused its caller to
resume execution and run in parallel with the called subroutine. Created subroutines or
called subroutines that executed a RESUME statement terminated asynchronously with their
creators when a standard FORTRAN RETURN statement was executed. Synchronization
between parallel procedures was not implemented with barrier or fork/join constructs, but
instead was controlled by access to asynchronous variables. Each memory word in hardware

contained a “full/empty” bit, and asynchronous variables provided the programmer with a
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method to access that bit. Basically, a read of an “empty” variable was suspended until a

producer filled it.
Another system that includes parallel procedures is the EPEX C environment developed

for the IBM RP3, described above and in [97). Parallel procedures are created in EPEX C
with the parcall statement. All available processors execute the parcall to create 2
new parallel procedure until one execution of the parcall returns FALSE. At this point,
no additional parallel procedures, or paraprocs are created by this parcall, and, when
all those already created have completed, the creating procedure or “parent” is allowed to
proceed. Each parallel procedure is passed a private copy of the arguments, so if a data
structure is to be shared by multiple paraprocs, it must be passed using a pointer variable.
There is no data consistency checking or protection between multiple paraprocs, so data
integrity must be guaranteed by the programmer using parcall control synchronization
as well as the BARRIER statement.

The number of paraprocs created by a parcall is determined by the code of the
parallel procedure, which eventually must return FALSE. However, additional parcalls
may exist in paraprocs, allowing a “tree” of paraprocs to be created. Only leaf nodes of the
tree may be executing at any given time though, because parent paraprocs must suspend
until all children complete. EPEX C defines all parent stack frames to be visible to children,
effectively requiring the run-time system to support a cactus stack (discussed below, see
Fig. 3.2). Thus, any paraproc can refer to any ancestor’s locai variables.

As stated above, a parallel procedure capability is also provided by PCF FORTRAN [87].
The PCF constructs differ from EPEX C in two major ways. First, as is the case with HEP
FORTRAN, a parallel procedure call results in the spawning of only one parallel procedure.
Consequently, in order to execute procedures in parallel, the creator does not block at the
point of the parallel call. However, unlikec HEP FORTRAN, PCF provides a WAIT ALL
CHORES form of synchronization which enables a creator to suspend until all chores

it has created have completed. This construct allows a parent to block until all parallel
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procedures created have finished, since a parallel procedure call results in a chore creation.
PCF FOR'_I‘RAN is similar to EPEX C in that shared data accessed from parallel procedures
must be protected by the programmer. However, it is unclear from the language definition
as to whether a cactus stack must be implemented.

Other run-time system packages have been developed that enable parts of a sequential
language program to be executed in parallel. These “system” calls are usually language
independent, and require explicit calls to be inserted into the original program. This
approach is similar to providing support for parallelism at the operating system level,
which we believe requires excessive overhead. The generality of these run-time systems
also prevents many assumptions about program structure from being made, which in turn
prevents speed enhancing optimizations from being made. An overview of these run-time
environments is given in [82] and [19].

Another parallel language proposal that we have made uses the parallel procedure idea
for distributed-memory multiprocessors (DMMs) [45]. However, in that system, additional
constructs are provided in the language that reflect the message passing hardware and
operating system. We consider the procedures in this case to be more like “full-fledged”
processes, since they have the capability to send and receive messages to/from other
processes. Also, as a performance consideration, the location of processes within the

DMM can be controlled at the language level.

3.1.3 Concurrent and Distributed Languages

As stated previously, there are a wide variety of programming models available for parallel
processing systems. Even when considering only procedural languages, the possibilities
include not only languages which incorporate parallel loops and procedures, but also
concurrent languages, languages for distributed-memory multiprocessors (or data parallel

languages), and languages for programming distributed systems.
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A concurrent language is one which incorporates a tasking or process model, and
typically requires a multitasking run-time system. Examples include Ada [57], Concurrent
C [66], and Linda [67]. These languages are intended to be independent of the underlying
architecture, leaving the responsibility of supporting the language specification to the run-
time system implementation. However, the designs of Ada and Concurrent C are best
suited to shared-memory multiprocessors while the design of Linda is intended to facilitate
implementation on distributed-memory multiprocessors. It should be noted, though, that
some work has been done to support Ada on distributed-memory machines [43, 79] as well
as Linda on shared-memory machines [33].

Languages for distributed-memory multiprocessors include concurrent languages with
special memory models and constructs for message passing [45] as well as data parallel
languages such as Parallel Pascal [112] and Cx [114]. While the former model is similar to
a concurrent language, the data parallel languages are in-step with the SPMD programming
style and provide constructs that enable a single code fragment to run on each processor
and access its own data area. Message passing is either implicit or denoted in an intuitive
manner, relieving the programmer from coding calls to low-level message passing routines.

In addition to languages for distributed-memory multiprocessors, other languages have
been proposed specifically for programming distributed systems, i.e., groups of complete
computer systems connected via some local area network. Examples of such languages in-
clude SR (Synchronizing Resources) [13], NIL [104], and Lynx [115]. These languages are
much like concurrent languages, but they typically provide mechanisms for fault recovery

and dynamic reconfiguration of logical communication channels.
3.1.4 Tool-Based Parallel Programming Systems

In addition to compiler-detected parallelism and explicitly parallel languages, work has
also been done in the development of tools for specifying program parallelism. These

tools usually provide a graphical interface, and enable programmers to construct parallel
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programs by specifying sequential code fragments and their dependency on each other.
The sequential code fragments are usually encapsulated as procedures, for example CODE
[29] and Poker [123], but tools are also available for working with loop-level parallelism,
for example Pat [15]. These tools are primarily concerned with helping the programmer
understand parallelism while providing an opportunity for rapid-prototyping of “portable”
parallel programs. Less emphasis is placed on performance, although Pat does interface
with the Cray microtasking library (described in Sec. 3.2.4.2 below). Similar work has been
done for distributed-memory multiprocessors, where the emphasis is on performance and
on relieving the programmer from specifying calls to low-level message passing routines.
These are typically intended for use with homogeneous SPMD programs. Examples include
Task Grapher [89] and Hypertool [135].

3.1.5 Summary and Analysis

The above subsections have provided a summary of a representative set of language fea-
tures which enable the programming of parallel loops, sections, procedures, and language-
level processes. For the work described in this thesis, we have used the language model
for doall loops as they would be determined by parallelizing compilers which provide
iteration-local variables where necessary. However, in some cases we found that the paral-
lelization tools available to us were unable to locate all potential loop parallelism. This may
be overcome by using one of the parallel-loop based languages described above. In addi-
tion, our approach is one independent of the specifics of the shared-memory architecture.
We also require the run-time management of parallelism to be the job of the run-time system
and not the programmer. For those reasons we disregard proposals using the concepts of
cluster tasks, spread do loops, and processor group splitting as described above.

In addition to loops, our run-time system design is also intended to support parallel pro-
cedures. In order to implement this support efficiently, the semantics of parallel procedures

must be carefully defined. Consideration must also be given to the expressiveness of these
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resulting parallel procedure semantics. With this in mind, we define a set of constructs to
enable the programming of parallel procedures in Chap. 6. These constructs resemble those
described above, but are still significantly different from other proposals. By providing a
create statement which may spawn any number of parallel procedures without blocking the
parent, we provide a way to express more parallelism than the proposals described above.
However, we also restrict the form of synchronization to create and merge statements in
order to provide a language and run-time system environment which prevents deadlock.
The issue of deadlock is not seriously addressed in any of the imperative parallel language
proposals described above. Complete details of our parallel language constructs are given

in Chap. 6.

3.2 Parallel Run-Time Support

As stated in Chap. 1, other researchers have developed and implemented run-time support
mechanisms for parallel programs. However, much of this work has focussed on OS-
level support or system libraries, which we have characterized as an inefficient approach
to supporting parallelism. On the other hand, some studies have described language
specific run-time systems, but most have either focussed on theoretical issues or have
not revealed proprietary implementation information. The remaining work on language
specific run-time systems has been done in non-commercial research environments, where
experimental systems have been described in moderate detail. In the following subsections
we will briefly describe those other research efforts, placing particular emphasis on the
experimental systems. We begin with library and OS-level run-time support, followed
by user-mode language-specific multitasking and microtasking run-time systems. It is the
microtasking systems with which we are most interested, since that is the focus of this

dissertation.
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3.2.1 Library Defined Support

A survey of library-based multitasking run-time systems for FORTRAN can be found in
[82]. This article describes experience using these systems, not their implementation or
performance. Two microtasking systems, from Cray and IBM, are also included in the
survey, and we discuss these further below.

The Uniform System for the BBN Butterfly Machines [131, 19] is defined as a library of
run-time support routines. However, these routines execute in user-mode for the most part,
thus avoiding the high overhead of operating system calls. The system assumes that one
operating system process is available for each processor. A similar run-time system is the
Chameleon system developed at the University of Washington [8]. This system includes
language directives that enable data partitioning among parallel code sections. However,
the specification of parallelism and its implementation is similar to the Uniform System,
which we describe in more detail below.

The Uniform System is centered around a set of code and data elements that define the
portions of a program that may execute in parallel. A task generator is a data structure
that describes an amount of parallel work. The data structure contains a fask generation
procedure, a task work procedure, data, and fields for bookkeeping. The task generation
procedure is essentially the code that is executed in order to schedule the next instance of a
task associated with the task generator. It also generates the parameters and performs any
other initialization for the task being scheduled. The task work procedure is the code that
actually forms the body of the task. The data in the task generator is for all tasks created in
conjunction with the generator to share, and the bookkeeping fields are used to keep track
of the progress of all these tasks. Parallel activity is started by placing a task generator
into shared memory. However, the reference makes no mention of how or where multiple
generators are placed in memory. Processors spin on local locks waiting for parallel work
fo be created. Local locks are updated in a tree-like fashion when work is created, i.e., one

processor updates locks for two other processors, and so on.
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The Uniform System library also provides a collection of routines called activators for
creating and initializing task generators. There are a number of specific activators that
allow predefined “types” of generators to be created, as well as a general purpose activator
for specifying any type of generator. For example, a call to the specific generator GenOnI

(task.work, range) indicates that a task generator should be created with task work
procedure t ask_work and, as part of the task generation procedure, each task should be
given a unique actual parameter equal to an integer between 0 and range. Essentially, the
name of the activator called encodes the method for which parameters will be prepared for
the generated tasks. As a result, this also determines the number of tasks created. Other
activators enable passing of the elements of a lower triangular of a matrix or generating
only as many tasks as processors. Clearly, these activators are designed with specific
applications in mind.

Calls to the general purpose activator specify a task generation procedure, a task work
procedure, a pointer to common data, generator initialization and finalization procedures,
a flag indicating whether the generator is synchronous or asynchronous, a flag indicating
whether the generator is abortable, and a processor limitation. Initialization and finalization
procedures allow generator specific code to be executed before creation of any tasks and
after completion of all tasks. Synchronous generators cause their creator to block until all
generated tasks have completed. Asynchronous generators allow the creator to continue
after the generator has been created. An abortable generator may be removed and cease to
create tasks before all have been generated. A processor limitation allows restriction of the
number of processors that may work on a generator, regardless of the number of tasks to
be created. Specific activators assemble parameters based on their function and in turn call
the general purpose activator.

Because of the Non-Uniform Memory Access (NUMA) architecture of the Butterfly,
several additional routines are present in the Uniform System to dynamically allocate

memory in different partitions across the local memories of each processor and in shared
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memory. The reference also shows several examples of how a compiler can translate

parallel FORTRAN constructs into calls to the Uniform System.

3.2.2 Multiprocessor Operating System Support

In Chap. 2 we stated that multiprocessor operating systems that allow parallelism in user
programs are appearing. Examples include Carnegie Mellon University’s Mach [26], The
University of Rochester’s Psyche [116], and Sequent Computer Systems’ Dynix [23].
Each of these systems allows programmers, through system calls, to access the functions
of thread or lightweight process creation, interprocess communication, shared memory
allocation, thread scheduling options, and synchronization. However, this approach, while
fully functional, is cumbersome and inefficient, incurring system call overhead for basic
operations. While some optimization is possible, for example, the reuse of created threads
for other program tasks, these run-time support mechanisms are still best used by a language
specific user-mode run-time system. One effort aimed at reducing the high system call
overhead by supporting multiprocessor OS primitives outside of kernel mode when possible
is underway at the University of Washington [11]. Still, this approach is OS oriented, and
can benefit from language specific run-time support which avoids any calls or interrupts to

the OS, whether in or out of kernel mode.

3.2.3 Multitasking Systems

As mentioned above, multitasking systems have been built for multiprocessor computers.
These run-time systems typically support language-level processes or procedures as re-
stricted forms of processes, both with preemptive semantics. As mentioned in Chap. 2,
these systems also require considerable support for timing, priorities, interprocess commu-

nication, and synchronization.
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In addition to the multitasking systems described in [82], Other multitasking systems
exist which are defined by high-level language semantics and therefore are transparent to
the user. Commercial implementations of parallel Ada exist for both the Sequent Balance
[99] 2 and Encore Multimax [64]. Research work has been done toward implementing Ada
and Ada-like run-time systems on distributed-memory multiprocessors [51, 48, 79, 45].
Work has also been done implementing Concurrent C [52] and Linda [33] on both shared-
memory multiprocessors and distributed systems. A description of Ada run-time system
components appears in [43], Concurrent C is described in [52], and Linda is described in
[67]. In the case of Ada, additional work has been published regarding the performance
of individual language features, with some discussion of their relation to run-time system

components [42, 46].

3.2.4 Microtasking Systems

3.24.1 Cedar Project

A significant amount of work in the area of dynamically self-scheduled microtasking run-
time support has been done by Polychronopoulos at The University of Illinois as part of
the Cedar Project {106, 110, 107, 108]. This work has focussed primarily on scheduling
techniques for the iterations of parallel loops and has led to the development of guided
self-scheduling, introduced in Chap. 2. This research has also described a decomposition
of parallel programs into task graphs and discussed the relation between nodes in the graph,
the synchronization it requires, and the combining of nodes to reduce scheduling points
where possible. This is discussed in more detail in Chap. 5.

The work by Polychronopoulos has also contributed a theoretical framework for quan-

tifying the tradeoffs in different scheduling algorithms. A result of this theory is a proof

2 A parallel Ada system also exists for the current Sequent Symmetry series.
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that guided self-scheduling provides optimal performance. However, this proof relies on
several simplifying assumptions, e.g., synchronization and scheduling times are constant,
that do not necessarily hold true in real systems. While simulations back up this claim, they
embody most of the assumptions and are at a sufficiently high-level that the issue of data
reference locality is not accounted for. In later chapters, our experimental testing shows

mixed results for guided self-scheduling, but it still appears to be a useful technique.

3.2.4.2 Commercial Efforts

Implementation work on microtasking run-time systems has been done for commercial
systems by Cray® [54, 82], IBM [32, 82], and Convex [36]. Other computer system
vendors have also been developing microtasking-style run-time systems including Alliant
[127], Tera [130), Sequent [100], Apollo (Hewlett-Packard), Stardent, and Encore. While
the first three companies have revealed some information on the structure of their run-time
systems, they have revealed little about actual implementation details of their proprietary
systems. Most published material centers around the programming requirements to use
these systems, which are typically some combination of automatically compiler-detected
parallelism and the addition of compiler directives to explicitly denote parallelism. These
systems emphasize loop-level parallelism, although most will allow procedure calls inside
microtasks if compiler directives are supplied that allow data dependencies to be ignored.
These systems are also usually limited by disallowing the nesting of microtasking constructs,
enabling an efficient implementation using run-until-completion scheduling semantics. The
above references, with perhaps the exception of [36] and [127], also say little about the
operating system role, except that it must supply multiple processors and shared memory
to the parallel program. Performance of these systems is also discussed very little, except

for some isolated loop results on a two processor system discussed in [32] and a report of

3 From the date of the citations it appears that Cray coined the term microtasking.
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megaflop rates on a Cray Y-MP system with up to 8 processors executing a hand parallelized
and vectorized version of the Perfect Club benchmarks [1, 70]. Development that addresses
some of these above issues, especially nesting and suspension of microtasks, is undoubtedly
underway at these companies. However, a comprehensive account of these efforts and their
results has yet to be published.

As stated above, Convex has published the most to date about the structure of their run-
time system and its interface to the operating system [36]. For the C240 system, the Unix
kernel was modified substantially to take advantage of a scheduling mechanism that makes
extensive use of special purpose shared or “communication” registers. There are a fixed
number of “sets” of communication registers, and each set can “mount” a Unix process by
copying key elements of its context including pointers for virtual memory addressing. Each
set of registers also includes a set of “thread identifiers”, which are used to set up addressing
of private storage for each thread. In this case, a thread is what we refer to as a microtask.
With this context information mounted, any processor can contribute to the parallel work of
any process by executing one of its threads. Appropriate values from the communication
register set are used to ensure proper virtual memory addressing. The reference does not
discuss the situation where a process is waiting to be mounted and no space is available in
the register set, or if processes may be unmounted before they have completed.

The Convex approach, called Automatic Self-Allocating Processors (ASAP), is one
where multiple process contexts are simultaneously resident with respect to each processor.
This is a more flexible approach than other efforts which rely on mounting multiple process
contexts simultaneously, the first being the HEP multiprocessor [120], with a newer version
under development called Horizon [130]. These other systems are finer grained, with
a single processor fetching successive instructions on the behalf of different execution

threads.
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3.2.4.3 Experimental Run-Time Systems

Experimental run-time systems that can be considered as microtasking have been described
in more detail [124, 95, 97]. These run-time systems were developed in conjunction with
the Simultaneous Pascal and EPEX C language efforts described above. The language
and run-time system for Simultaneous Pascal has been termed SpoC, for Simultaneous
Pascal on Concert, where Concert is the Harris Corporation’s Concert Multiprocessor.
Some performance data has also been reported for SpoC. In contrast, it is unclear how
much development was actually done on the EPEX C system described here, since it was
designed for the IBM RP3, an experimental machine which did not reach production status.
Both the Concert Multiprocessor and the IBM RP3 are NUMA machines with a hierarchical
arrangement of local and remotely accessible memory as described for the BBN Butterfly

above.

SpoC

The SpoC run-time system supports the parallel forall loops, parallel statement execu-
tion, and parallel pointer manipulation described above. The reference [124] implies that the
created microtasks are scheduled using run-to-completion semantics, but since nesting of
parallel constructs is allowed which requires a parent microtask to wait for child completion,
run-until-block semantics are actually used. However, the references say nothing about the
blocking and resumption of microtasks and their effect on the scheduling algorithm.

Each microtask created in the SpoC system is referred to as a thread. Each thread is
provided with a frame, which is essentially an execution frame commonly associated with a
procedure call. Each frame contains standard procedure call informationrequired by Pascal,
in addition to information such as a parent frame pointer, an outer scope pointer to support
addressing of variables at multiple nest levels, a pointer to a synchronization counter, a

pointer to a “semaphore” that protects that counter, an address where the code to implement
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a join resides, and a variable length portion for thread local data. Frames are essentially
preallocated memory areas that are grouped into multiple linked lists called frame pools.
Each frame pool is associated with a particular processor, so multiple processors do not
contend for the same memory during frame allocation, unless the allocating processor’s list
of frames are all being used. This last condition requires locking to ensure mutual exclusion
during frame acquisition.

After frames are acquired and initialized, they are placed in the work pool which is
essentially a run-queue. A processor schedules work from a frame by loading its values
into its registers where possible. For the fork/join construct, a frame is created for each
statement in the construct. For forall loops, one frame is created for the loop, and each
thread schedules a frame, acquires a unique loop index, and then reinserts the frame into
the work pool. No detail is provided about how this scheduling and reinsertion process
can be overlapped by multiple processor schedules, or how the thread-dependent local data
area of the frame is managed for multiple iterations. The traverse construct is similar
to forall in thread creation, except a frame is created for each independent branch of the
data structure to be traversed. For example, to traverse a binary tree, each node creates two
frames to expand the traversal down each subtree. Each scheduled thread also has access
to a local stack for procedure calls and interrupt handling, however, no description is given
as to how that stack is managed in relation to suspension and rescheduling of threads.

Although the SpoC frames contain considerable context to support the sharing of vari-
ables at multiple nest levels among other things, at least one example program has been
run with favorable speedup results [95]. The reference reports results for a Mandelbrot
image processing application and a Gaussian elimination application. Two versions of each
program were produced using two different parallelization strategies at the language-level.
Speedup for Gaussian elimination peaked at about 7, while the two versions of Mandelbrot
peaked at 20 for 21 processors and 58 for 63 processors. The reasons given in the reference

for speedup limits include data locality problems and excessive thread context, although
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they claim that run-time system and scheduling overhead is not significant. The approach
suggested to address these problems is based on hardware modifications, including the addi-
tion of a thread-context coprocessor and a structured memory controller which incorporates
information about the nature of SpoC data structures.

The SpoC references make no mention of the operating system role or its interface to
the system. Based on the description of the hardware environment in [124], it appears to be
a system which enables a program and run-time system to be downloaded to a collection of
“bare” processors by the host computer, effectively making Concert a single-user parallel

computer.

EPEX C for RP3

The EPEX C system for the IBM RP3* describes a run-time system to support the constructs
for program parallelism described above [97]. However, no performance data is reported,
and the system may not have been fully implemented. The system is divided into two major
functional areas, 1) the scheduler, and 2) a memory allocation facility that supports a cactus
stack.

Parallel procedures in this system (or simply microtasks) are scheduled from a central
ready queue of entries kept in priority order which contain a pointer to code, a pointer
to parameters, flags indicating readiness and completion, and a lock for ensuring mutual
exclusion of access. These entries are placed in the queue by the parent, and all available
processors access this entry to call the procedure until one call returns FALSE. When this
happens, further calls do not occur, and the parent waits for all other calls to finish before
removing the queue entry and proceeding. While other processors can execute any available

work in the queue, a parent procedure must wait for completion of children after the call

4 This system is distinct from the EPEX FORTRAN for the IBM 3090 mentioned in the
microtasking references cited above.
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to the child that returns FALSE. However, since nesting is supported, muitiple parents may

be blocked at any given time, wasting processing resources.
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Figure 3.2. Example cactus stack.

In addition to scheduling a microtask by reading information from the queue entry, 2
creation of a branch on the cactus stack must also occur in the run-time system. The cactus
stack allows multiple procedure calling frames to be linked together, so that variables of
parallel procedures can be referenced at multiple nest levels. An example cactus stack
is shown in Fig. 3.2. Although [97] says little about how these branches are created or
managed, it does point out that a parent procedure cannot complete and deallocate its
branch until all of its children have completed. This is necessary since child procedures
may reference the local variables of the parent.

Only a few implementation details of this EPEX C system are given in the reference.
Also, performance data is not supplied apart from a few comments about the performance
of certain run-time system functions. These include the suggestion that programmers strive
for large grain procedures complete with synchronization statements. The idea is to limit

parallel procedure calls which are costly, containing several hundred instructions to create.
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The wasted time by scheduled parents waiting for child completion is also an issue which
encourages a limit on the amount of parallel procedures actually created. Deadlock is also
mentioned as a potential problem, but nothing is said about preventing it. The authors do
make the point, however, that this is an experimental system which has not been designed
with efficiency goals in mind. There is also an implicit assumption that a fixed number of
processors are assigned to a parallel job and no further discussion of the operating system

interface is given.
3.2.5 Summary and Analysis

As described in the above paragraphs, a notable amount of research and development work
has been done in the area of parallel run-time systems, including microtasking systems
on shared-memory multiprocessors. However, in each case, there is either a deficiency of
detail in describing the implementation, a limit on capabilities, a dearth of performance
data, or design inefficiencies. In this dissertation, we will address these issues, and present
an efficient run-time system design which will support run-until-block semantics for both
parallel loops and procedures with nesting, without wasting processing resources with
resident blocked microtasks. We present a new stack-based scheme for managing blocked
microtasks, which also allows sharing of data between ancestors and descendants without
the complexity of a full cactus stack implementation. We also provide an approach to frame
allocation and initialization that enables fixed-length frames to be allocated quickly. In
each case, we provide working assembly code which explicitly defines our implementation.
And, in addition to extensive performance data, explained in the following section, we also

discuss the design for an interface to a multiprocessor operating system.
3.3 Multiprocessor Performance Evaluation

As mentioned in the introduction, numerous performance evaluation studies of various

types have been done for shared-memory multiprocessors. However, for the most part,
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these studies have used very different program models from our work, where code is
parallelized and run-time support implemented using ad hoc techniques and/or the SPMD
style. As a result, these programs conform to a large grain parallel programming model.
In fact, many of the studies referenced below have borrowed codes from the same set of
of parallelized CAD applications for circuit layout and verification. Also, these studies
have relied primarily on trace-based simulation, which calls into question the accurate
representation of synchronization activity in the case where the simulated architecture is
different from the one where the traces are collected [25].

Most detailed performance studies of parallel programs executing on shared-memory
multiprocessors have differed greatly from our work in at least one aspect. These studies
have cbncentrated on different style architectures, e.g., bus-based systems [62, 63], used
traces from one system to simulate a generic machine [118], or used unrealistic assumptions
about cache block size, e.g., one word, cache size, e.g., infinite, or cache write-back
implementation, e.g., assume sectored in a non-sectored system [101, 132, 4, 35, 40, 72).
Such assumptions eliminate the problems that must be solved in real computer systems with
the implementation of cache consistency in the presence of false sharing. Another study
which does incorporate execution-driven simulation and an architecture similar to ours,
also uses a different programming model (as stated above) and presents data in terms of
cache access times instead of program running time and speedup [98]. Also, other studies
have been done on real multiprocessor systems that are concerned with synchronization
performance {71, 10, 12]. However, these studies rely on synthetic benchmarks to evaluate
the performance of several synchronization-related activities. Finally, other studies have
been done which incorporate a fine-grained parallel model similar to ours and have used
real program execution to measure speedup [70, 8, 14, 32, 124]. These studies, however,
do not report performance data in the detail we investigate.

One study that has combined a fine-grained programming model with detailed hardware

architecture directed performance evaluation is described in [128]. This study analyzes
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the impact of the cache coherence protocol and synchronization on the performance of
two fine-grained parallel applications and a multiuser workload. This work was done
using hardware-based performance monitoring tools on the Sequent Symmetry bus-based
shared-memory multiprocessor. Data is reported on bus traffic, cache miss rates, and
program speedup. Synchronization is via cached-based locks, which also participate in
the coherence protocol. The bus utilization measurement is of primary importance in this
study, as it determines the scalability of the system. This shared resource is used to transfer
data between a processor cache and main memory, or between two caches. This data traffic
also includes synchronization related activity. The cache miss rate is a2 major determinant
of bus utilization. This study says little, though, about the structure of the parallel code,
and states explicitly that it is not focussed on application or run-time support tuning. Asa
result, the reference notes that the overhead of parallelization has a significant impact on
performance.

While the studies mentioned above are valuable and provide insight into the performance
of parallel programs on multiprocessor systems, our goals in this phase of our research differ
in two major ways. First, we are concerned with the performance of fine-grained parallel
programs which use microtasking run-time systems. In order to measure this performance,
we have designed and implemented a run-time environment and language constructs for
creating the necessary parallel programs. Second, the results of our performance studies
are intended to unveil the interaction between speedup of a parallel program and the
sources of run-time overhead attributed to both hardware and software mechanisms. While
other studies attempt to project the raw performance of a cache memory subsystem or a
synchronization mechanism, our work is aimed at measuring these components of run-time
overhead in the context of a given fine-grained parallel program, in addition to the overhead
associated with the mechanisms employed by the run-time system. Our experiments
measure the individual impact of each source of overhead for a set of parallel programs, and

attribute to each source a percentage slowdown of these programs versus ideal speedup. As
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stated in Chap. 1, these sources of overhead are broken down into three categories: 1) Static
Load Imbalance, 2) Run-Time Scheduling and Synchronization, and 3) Cache Consistency
Overhead. A combination of software restructuring and execution-driven simulation has
enabled us to perform the necessary tests, which vary both the cache consistency technique
and the run-time system design. Our testbed is based on the Astronautics ZS series, a shared-
memory multiprocessor with a crossbar interconnect between processors and memory. This
system also provides several sets of shared registers which enable fast synchronization
and enhance the performance of the run-time system. Also, although some simplifying
assumptions are inevitable when simulating a prototype system, care has been taken in our
work to ensure that these assumptions do not misrepresent the impact of false sharing or

the overhead associated with synchronization.

3.4 Summary

In this chapter we have surveyed other research efforts concerned with design, imple-
mentation, and performance evaluation of parallel programs and programming systems on
shared-memory multiprocessor systems. We have classified the work into three major cat-
egories: programming languages, run-time systems, and performance evaluation. Overall,
we see that each study or research project is concentrated on one or at most two of the
major areas. One of the goals of our work is to study the issues relevant to all three areas
in the context of one study. In the following chapters, we explore each of these areas as
they relate to experimentation with a fine-grained, microtasking-based, parallel processing

system,



CHAPTER 4

MOTIVATION AND APPROACH

In this chapter we motivate our experimental study, and describe our testbed environment.

4.1 Motivation

As stated in the last chapter, we are interested in exploring the performance potential asso-
ciated with loop-based and procedure-based parallel programming models. Our aim is not
only to verify the efficiency of our run-time support code, but also to examine the perfor-
mance characteristics of the complete system, and to identify performance bottlenecks.

In our studies examining loop parallelism, we were able to examine incremental perfor-
mance degradation due to different parts of the system. Because the loops used in this set of
experiments were considered in isolation, we were able to exploit our a priori knowledge
about the code’s execution on a uniprocessor system to aid us in determining the effects of
parallelization overhead. Together with our ability to eliminate (or “short-circuit”) overhead
from some parts of the system in the simulator, we were able to identify the incremental
overhead contribution from three major “barriers”, or sources of “impedance”, to parallel
program speedup: 1) load balancing; 2) run-time scheduling and synchronization; and 3)
cache consistency overhead. The evaluation of the performance based on the relative over-
head amounts due to each category enables us to identify performance bottlenecks based
on application code characteristics. It also helps us verify the efficiency of our run-time

support code.

66
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In contrast, we are only able to determine an amount for cache consistency overhead
for our parallel procedure tests, because of the large programs used and the highly dynamic
nature of our parallel procedure codes. However, the testbed described below and the
techniques used for parallel program construction and cache consistency simulation apply

to all of our experimental testing.

4.2 Performance Barriers

As stated above, there are three barriers that impede the performance of parallel programs
which we categorize as: 1) load balancing; 2) run-time scheduling and synchronization;

and 3) cache consistency overhead. We discuss these in greater detail next.

4.2.1 Load Balancing

A parallel processing system has a perfectly balanced load when all processors are actively
participating in a parallel computation and no processor is left idle. This ideal is rarely
attained. For example, load imbalance can be caused in the execution ofa single parallel loop
when the number of iterations is not an exact multiple of the number of processors available:
some processors are left idle while waiting for the “leftover” iterations to complete. This
static imbalance is aggravated when the ratio of iterates to processors is small and the grain
size of each iteration is fairly large. Such factors increase the number of idle processors and
the time they must wait. The situation can be further hampered by the effects of cache misses
and memory bank conflicts, which effectively vary the execution time of each iteration,
and also by the run-time scheduling algorithm, which may distribute iterations unevenly
amongst the processors. On the other hand, it is possible for this dynamic imbalance to
improve load balancing, by compensating for static imbalance. However, even in this case,
the running time of the program is still increased. In our tests, we identify the impedance

due to the static imbalance that decreases load balancing and therefore efficiency. The
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effects of dynamic imbalance is measured in the context of the other overhead categories

described below.

4.2.2 Run-Time Scheduling and Synchronization

The run-time support code that is necessary to enable parallel processing of doall loops
or parallel procedures is an additional source of overhead that degrades performance. In
addition to the instructions that must be executed as part of this code, another major source
of overhead in the run-time support is synchronization. Although this effect is minimized
in our experiments by the shared “semaphore” registers of the ZS (described below), long
idle times for processors waiting to synchronize can still be observed. For each microtask,
the time to execute the run-time support code and perform any necessary synchronization
must be small compared to the time to execute the application code of the microtask, or the

potential benefits obtained from parallelization will be lost.

4.2.3 Cache Consistency

The third major impedance limiting the performance of parallel loops is the overhead
required to keep caches consistent. As is clear from the description of cache consistency
techniques given above in Chap. 2, rather elaborate schemes are required that have the
potential to incur large amounts of overhead. Depending on the technique used, large
variations in cache consistency overhead can be observed when processor reference locality
is altered due to the run-time scheduling technique. The presence of cache consistency
techniques may also degrade performance significantly when a program is run on a single
processor and consistency actions are unnecessary.

An issue related to cache consistency is the choice of cache line size. While a large line
size may enable a single processor system to take advantage of spatial locality in data refer-

ences, it may also increase the amount of false sharing present in a multiprocessor system.
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Increased false sharing results in an increase in the invalidation rate and, consequently, a
decrease in the cache hit rate. Cache misses that occur as a result of a previous invalidation
are referred to as invalidation misses [62]. The choice of line size has a lesser effect when
software consistency is used because a “worst-case” static view to the problem is taken that

is largely independent of run-time data movement.

4.3 Measuring Performance Barriers

Using our simulator testbed (described below), we are able to obtain detailed and highly-
accurate performance measurements for the execution of parallel loops and procedures.
Also, through simulator modifications, we can effectively short-circuit certain system effects
in order to factor out the contribution to the overall performance degradation due to the
three performance barriers listed above in the execution of parallel loops. To achieve this,

we make the following three kinds of measurements.

4.3.1 Inherent Parallelism

In order to evaluate the performance of the overall parallel processing system, we first
determine the best parallel performance possible for a given doal1l loop. This “inherent”
parallel performance is determined by executing a subset of the iterations on a single
processor with no cache consistency actions or run-time support code. The subset of
iterations selected for execution are those that represent one processor’s allocation with the
best static load balancing for a given number of processors and fewest cache misses. By
comparing this performance rating to what would be possible with perfect linear speedup’
we can compute the impedance due to static imbalance only. This is a function solely of the

number of iterations and the number of processors, hence the term inherent. It can be used,

! That is, N processors run the program in T'/N time, where T is the time required to run the
program on one processor using the best sequential algorithm,
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in general, to establish an upper bound on parallel performance for any program containing

parallel loops.

4.3.2 Assumed Consistency

The next step in the overhead measurement process is to determine the impedance due to the
run-time scheduling and synchronization functions. For each scheduling algorithm tested,
we construct the parallelized code for the doall loop by inserting the run-time support
code at the assembly language level. By executing this code on the simulator without any
support for cache consistency (assumed consistency), we can determine the impedance due
to run-time scheduling and synchronization by subtracting out the running time for the in-
herent parallel case described above. The scheduling effects include overhead in executing
run-time code, additional load imbalance caused by non-optimal dynamic schedules, and
additional cache misses due to memory reference locality. The impedance produced by syn-
chronization in this configuration includes the time to execute synchronization instructions

and the time lost by memory bank conflicts among the processors.

4.3.3 Complete System Simulation

In the next phase of measurement, we add the support for cache consistency. Simulation
under these conditions gives us the performance of the complete system as it would actually
appear. By comparison to the assumed consistency case, we get a measure of the impedance
due to cache consistency support. This impedance is caused both by explicit actions to
enforce consistency and by an increase in cache miss rates due to invalidation misses. At
this stage of simulation we can also measure the impact of the major cache parameters, €.g.,
cache line size and set associativity, on both pure and invalidation miss rates, which in turn

affect overall performance.
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4.4 Experimental Testbed

4.4.1 The ZS Series

The Astronautics ZS series of computers are based on a proprietary 64-bit processor de-
signed with numeric applications in mind. The processor is heavily pipelined and is capable
of issuing two instructions per clock period. Memory accessing and floating point are de-
coupled by using distinct instruction issuing streams for each. Memory accesses are also
buffered using processor queues for integer and floating point loads and stores. These
features permit dynamic scheduling between addressing and floating point functions, and
successfully hide memory latencies in many cases [122]. This type of architecture is
referred to as Decoupled Access/Execute (DAE) [121].

The ZS-1, a uniprocessor, was completed (both hardware and software) and has been
operational for some time. The ZS hardware is constructed to support systems containing
up to 16 processors, but multiprocessing software is incomplete. ZS-series multiprocessors
use a set of shared “semaphore” registers for low-overhead interprocess communications.
Simulations reported in this dissertation use accurate timings derived from the actual ZS
multiprocessor hardware.

Each processor in the ZS system is provided with a 128K byte data cache. The
interconnection network in the ZS multiprocessor system is essentially a crossbar network.
The data path is four words (256 bits) wide, and is optimized for 16 word (one cache block)
transfers. To support references to non-cacheable data, smaller transfers, down to one byte,
can be accommodated, but the timing for smaller transfers is the same as for a full 16 word

transfer.
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| ZS Series Multiprocessor Hardware
Clock period 45ns
Data cache size 128K bytes
Data cache organization 2-way set associative
Data cache block size 128 bytes, 16 double precision words
Memory size 128M bytes
Memory access time 675ns
Processor/Memory interconnect “ crossbar
Simulator error | 5%

Table 4.1. ZS hardware and simulator characteristics.

4.4.2 The Multiprocessor Simulator

The multiprocessor simulator is a register-transfer-level simulator and program interpreter.
Based on the instruction and address information supplied by the interpreter, the busy
times of the functional units, load and store queues, cache, main memory, registers, and
pipelines are modeled. The states of these subsystems are advanced each clock period in
accordance with any dependencies that are present. A file of system parameters is used by
the simulator to define cycle time requirements for the functional units, memory access,
and the queues. In addition, parameters such as cache line size and data associativity,
functional unit requirements for each instruction, and the processor clock speed can be
varied. Except where noted below, the parameter values used in the ZS multiprocessor
simulations included a processor clock speed of 45ns, a 2-way set associative data cache
of 128K bytes with a block size of 128 bytes, and an 8-way interleaved main memory with
an access time of 15 clock periods. The simulator reports a single processor megafiops
(MFLOPS) harmonic mean rating of 4.0 for the 24 Livermore FORTRAN Kernels on the
ZS-1. Table 4.1 lists the major characteristics of the ZS hardware and the multiprocessor
simulator.

In the uniprocessor case, we found the simulator timing results to be consistently faster

than actual running time on the ZS-1 by about 5%. This discrepancy is due to the omission
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of address translation faults and operating system scheduling interrupts in our simulations.
In order to avoid different versions of a “warm cache” between the different hardware
configurations tested, the data cache for each processor is flushed before execution of the
timed loop. This provided each test case with identical starting positions.

The parallel programs used for our experiments make use of the ZS’s shared semaphore
registers for synchronization. There are 32 sets of registers, each set consisting of 32
registers of 32 bits. Several fetch-and-op instructions are provided that operate on the
semaphore registers. Instructions are also provided for the first 8 semaphore registers in
each group that enable processors to block until the value of a particular register becomes
either positive or negative. Together with the ability to read and write these registers,
these instructions make the semaphore registers ideal for holding addresses, implementing

barriers, and computing indices for a microtasking run-time system.

4.5 Parallel Program Construction

Our parallel programs were developed using sequential code and a knowledge of data
dependencies and parallelization boundaries. To detect candidate codes for parallel loop
execution we used the Kuck & Associates KAP data dependency analyzer together with the
hand parallelization diaries used by Grassl in [70]. However, we found some instances of
parallelism which were possible but not detected. We added this parallelism into our codes.
These tools were very helpful in detecting the parallelism using a loop-based language
model.

Our parallel procedure codes also used both a loop-based program (where loops are
essentially converted into procedure calls) and a recursive code for a Quicksort program
which has independent sub-problems at each recursion. A sequential FORTRAN Quicksort
program could not benefit from the tool for automatic detection of parallelism because it
implements recursion at that language level using several GOTO statements and an array

managed as a stack. This structure gives the appearance of dynamic data dependencies
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which in fact do not exist. This prevents the parallelizer from making useful assumptions
about the code structure which allow parallelism. Instead, the Quicksort program had to be
hand parallelized at the language level using our parallel language constructs (introduced
in Chap. 6) and knowledge of the algorithm.

The sequential base codes used for the programs were compiled on a ZS-1, and then
disassembled. At the assembly source level, we added instructions to implement the self-
scheduling based run-time support. This code conversion was debugged using a ZS-1,
which we have on-site. Of course, some bugs only manifest themselves when the code is
executed on multiple processors. These conditions were detected by verifying the results
of the simulations. Although bugs of this sort are time-consuming to locate, they occurred
infrequently and were hence not a significant problem.

Because each processor executes the same code, the run-time support code is responsible
for synchronizing these multiple threads of execution and assuring that each processor
executes a unique subset of the total work to be done. The run-time support code added to
the parallel programs was written to be independent of the number of processors used to
execute it. This code only assumes that a count of the number of available processors is
provided in one of the semaphore registers.

The simulator initiates the execution of each processor at the entry point of the object file.
The start code of this object is essentially a piece of run-time system code that synchronizes
the processors and dispatches all but one to the self-scheduling kernel. The last processor
executes the entry code of the program itself, and eventually gets to the code that sets up
the first parallel execution, thus enabling the other processors to schedule work. These
other processors have no environment of their own worth saving, and simply use registers
and share the main stack environment when necessary. The details of this implementation
vary somewhat between loop support and procedure support, and this is described in further
detail in Chaps. 5 and 6 respectively.

Implicit in this style of execution is the notion of one operating system process or thread
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per processor. Hence, our number of virtual and physical processors is the same. Also, since
no system calls are made, and no other parallel programs are present in the system to cause
preemption, there is no OS-level context switching necessary. Almost all programs tested
have a running time of less than one second in real-time, which is a reasonable value for an
observed time between interrupts on one processor in a multiprocessor system?. Further,
the simulator does not model address translation faults or interrupts, which also allows us
to avoid entrance to the operating system. Traps are not intended to occur in our system,
so they simply create an error condition which halts the simulator. Because the run-time
support is supplied at the user-mode and is either generated inline with the code or linked
together with it as a set of small routines, there is never a need in our simulations to enter
the operating system. The modeling of system calls and OS-level context switching would
require a port of an appropriate multiprocessor operating system to the ZS. An approach
to merging our parallel run-time system code with a multiprocessor operating system is

discussed in Chap. 7 below.
4.6 Implementing Cache Consistency

In our experiments, we evaluated two software and two hardware consistency schemes.
The software schemes consisted of 1) making result data non-cacheable, and 2) using
local memory management instructions to implement write merging. The ZS provides
mechanisms to make pages of virtual memory non-cacheable as well as several instructions
for allocating and flushing cache blocks. The hardware schemes we evaluated are two
variants of a central directory-based approach to cache consistency. In order to evaluate the
hardware schemes accurately, the ZS simulator was modified to incorporate them. These

consistency techniques are described in more detail below.

2 Although an interrupt may occur as often as once every millisecond to check for schedulable
OS-level processes, these interrupts may only be felt by one processor, possibly idle and not
allocated for use by a parallel program. Hence, an observed time between interrupts of 1 second
is not unreasonable.
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4.6.1 Software Consistency

While the first software cache consistency scheme is straightforward, the second warrants
some further explanation, It utilized the “allocate block” and “flush block™ instructions
to manage a local copy of the final result data in each cache. Each processor allocated
enough blocks to hold the entire result array at a temporary virtual address distinct from
those used by the other processors and distinct from the final result area. As a side effect
of the allocate block instruction, each word in each block is initialized to a value of zero.
Each processor then proceeds with its share of the parallel loop iterations, performing one
or more scheduling operations depending on the self-scheduling technique used. After
all iterations have been scheduled, the first processor to complete its work proceeds by
flushing its entire result area to main memory at a virtual address reserved for the result
using multiple flush block instructions. Each successive processor to complete its iterations
then, in mutual exclusion with other processors, reads each 64 bit word from the result
area, performs an “OR” operation between that word and the corresponding word stored at
its temporary location, and places the result at the result area’s virtual address. After each
word is read and updated, the cached result area is flushed to main memory.

An alternative approach to software consistency would be to flush blocks as they are
written in the body of the loop. Techniques for this style of consistency have been proposed
in the literature [40, 56]. However, due to the fact that loop iterations are allocated
dynamically with our run-time support, and that the compiler-produced code accesses
words in blocks in a non-sequential fashion, we would have to completely rewrite the
generated code, realign all program variables, and restrict iteration allocation in order to
ensure consistent results. This problem would be simplified if individual words could be
flushed instead of blocks, or if the word size and cache block size were the same (as assumed
in [40]). However, reducing the cache block size to such a small value would eliminate the
positive effects of spatial locality obtained with a multiword block. A policy of prefetching

one word blocks may compensate for this problem [88], but this requires sophisticated
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compilers and architectural modifications that are beyond the scope of our study.

Several properties of the codes we simulated enabled us to use the temporary result
area approach to consistency. The most important property is that while any number of
processors may need to access the same logical block, no two processors require access to
the same word within a given block. (As mentioned in Chap. 2, this property is referred
to as false sharing.) This creates a situation where each cache contains a temporary result
area with words that contain either zero or a final result, and, no two caches contain a final
result in the same logical word. This enables the OR instruction to be used to merge the
temporary result areas. This approach to data consistency has been used in various forms
in other systems, e.g., the Myrias SPS-2 [24].

If the temporary result areas are too large to remain in the cache along with the other
referenced data for the duration of the loop iteration executions, each processor must
allocate its temporary result area at a different virtual address. If block replacement in the
cache then effects the result area, its values will not be corrupted by collision with another
processor’s temporary results. This approach may require that a large virtual memory space

be available to the parallel program.

4.6.2 Hardware Consistency

The hardware cache consistency schemes we evaluated are based on the central directory
approach proposed in [34]. While this approach is similar to the one originally proposed
by Tang [126), it requires fewer cache tags and a smaller central directory. Surveys of
directory-based cache consistency techniques can be found in [4] and [102].

The hardware consistency scheme implemented requires a central directory with an
entry for each block. This entry contains several bits that indicate which caches contain the
block and whether or not the main memory copy is up-to-date. In one scheme, originally
proposed in [34], each directory entry contains one bit for each cache in the system to

indicate the block’s presence in that cache. There is also one bit for each entry that
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indicates whether main memory is up-to-date with a cached block. If it is not, this bit is
set, and the block may reside in only one cache. This consistency scheme does not require
any additional cache tags than those already provided by the hardware. These include a
valid bit, a dirty bit, and least recently used bits. Figure 4.1 shows the tags associated with

a cache block at both the processor cache and main memory.

One Cache Block
Processor Cache
Data [g Iﬁj
) LLRu Bits (2), Valld, Dirty )
Interconnection Network
One Cache Block ~

Maln Memory
[ Data | A

IPresence Bits or Index, Modifled Bit

Figure 4.1. Block tags for directory-based cache consistency schemes.

A write miss makes a block dirty and consequently exclusive to that cache. The directory
must be consulted to invalidate any other cached entries. A write hit must also consult the
directory and propagate invalidations if the block is not already dirty (and thus private). The
modified bit in the directory must also be set when a write to a block is performed. Read hits
and dirty write hits may proceed without accessing the directory. A read miss requires that
the block’s presence bit be set in the directory for the requesting cache to indicate that this
block is now present in that cache. Read and write misses must also supply the up-to-date
value of the block to the requesting cache. If the modified bit is set in the directory on a
cache miss, main memory must read the block from the cache containing the up-to-date
value and clear the associated dirty bit before supplying the data to the requesting cache.

A variation of this scheme proposed in [4] was also tested. Instead of providing a
presence bit for each cache in each directory entry, only enough bits are provided to encode

an index to one cache in the system. If there are P processors in the system, this alternate
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scheme reduces the number of presence bits from P bits to logz P bits as shown in Fig. 4.1
and mentioned previously in Chap. 2. However, this scheme provides exclusive access for
each cached block and requires an invalidation whenever a processor accesses a block that

is cached elsewhere in the system.

4.6.3 Simulating Hardware Consistency

As mentioned above, our experiments for evaluating hardware cache consistency techniques
required some modifications to the simulator, effectively changing the architecture of the
7S. We also made several simplifying assumptions to avoid a detailed redesign of the
hardware. The first assumption is that no race conditions exist between checking local
cache tags and accessing the central directory. The simulator updates the cache tags, the
directory, and performs invalidations at the point of the cache miss. The processor in this
case then idles the required number of cycles to simulate the time taken to perform these
updates. Any subsequent accesses by other processors always see the most up-to-date cache
tags and directory values. Because individual words are not shared in our test programs
without explicit synchronization, subsequent block accesses by other processors need not
wait for previous ones to complete before updating cache tags and directory values. The
first processor will cache the block and load the referenced word into the load queue, but
the block will no longer be valid. Overall, the effect of eliminating race conditions is to
force an arbitrary serialization of events in a manner that is easy to implement. It relieves
the simulator from re-examining requested transactions a second time when they reach the
directory, possibly modifying their effect, e.g., causing or canceling an invalidation, based
on the values present in the directory.

Although cache tags and directory entries are updated instantaneously, processors must
wait additional cycles before accesses are complete if the requested memory bank is busy or
the block to be accessed is dirty in another cache. We assume that the directory isinterleaved

across the memory banks so that the block requested resides in the same memory bank as
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its directory entry. This provides mutual exclusion for directory entries, since only one
processor may access a given memory bank at any one time. We also assume that the
directory can be updated, any necessary invalidations can 56 sent, and main memory can
be read all in the time it takes to perform a main memory access. If the requested memory
block is dirty in another cache, we assume that memory can be updated and the value
supplied in one additional main memory access time. Since the requesting processor has
control of the main memory bank when the modified bit is checked, we do not queue the
request to write the up-to-date cache block back to main memory and update the directory.

Our race-free implementation does not model the increased network traffic for invalida-
tions, nor does it suspend a writing processor to wait for an invalidation acknowledgement.
The lack of additional network traffic modeling makes our results slightly optimistic, but we
believe this is not a serious omission, since our experiments are not characterized by heavy
invalidation traffic.? Also, because invalidations are not acknowledged, our system perfor-
mance is slightly more optimistic than it should be for modeling a weakly-ordered system.
(Recall from Chap. 2 that a weakly ordered system is one which guarantees a consistent
value of a shared memory word provided access to it is protected by explicit hardware
synchronization. However, the simulator does implement a weakly-ordered system with
the help of the QUIET instruction contained in the programs, which stalls the processor
until all pipes are empty and all memory operations are complete, and the performance gain
by our simplified modeling of cache invalidations should be slight at best.

These simplifications to the modeling of hardware cache consistency make the simula-
tion of the shared consistency scheme equivalent to how we would simulate the scalable
broadcast-based scheme proposed in [16]. This is so because invalidation traffic is not
modeled, and write request traffic is modeled as one memory access time to read the value

from the appropriate cache. While the broadcast-based scheme certainly requires more

3 Exceptinthe case of private hardware consistency, where performance is already significantly
degraded by excessive invalidation-misses. See the cache hit rates in Tables 5.9 and 6.2.
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interconnection bandwidth and will also suffer more network contention, our simulations
of the shared hardware scheme provide an idea of how the broadcast-based scheme could
perform in an ideal situation. Also, as mentioned in Chap. 2, there are other more scalable
directory-based schemes that may closely match the performance of the shared hardware
scheme.

Finally, the simulator provides interlocks and memory bank arbitration so that banks
are accessed in mutual exclusion. Bank conflicts will add delays to the completion of
requests, and these times are effectively added to the base memory access times we assume
for directory accesses. While our assumptions about race conditions, the ability to send
invalidations, the ability to read up-to-date blocks in other caches, and the ability to add a
directory to the memory system most certainly simplify our experiments, we believe that
these tests do reflect the additional delays brought about by cache misses due to invalidations

and memory accesses to modified blocks.

4.6.4 Major Assumptions

The major assumptions made in order to perform our simulations are summarized in Ta-
ble 42. As stated above, we believe these assumptions are reasonable for determining
relative performance of different cache consistency techniques and dynamic scheduling
algorithms. The overall impact of these assumptions will be to over predict performance
by a small amount. However, since most of our results are presented in terms of speedup,
the predictions will be accurate, since single processor tests make the same assumptions.
We can summarize the impact of the major assumptions listed in Table 4.2 individually.
The absence of OS interaction is consistent with the relatively short running times of
the programs, and the absence of other work on the system. This provides a consistent,
repeatable testbed environment which provides an upper bound on performance. The times
to consult the directory and implement a copy-back due to a cache miss to a modified block

(implied copy-back) are simulated using average memory access time as a baseline, but



82

| Major Assumptions for Multiprocessor Simulator R

No OS interaction.

1 OS process per processor.

Central directory part of memory.

Directory access time is 675ns, same as memory.

Data cache copy-back time for a miss to a modified block is 675ns.
Directory and cache tags are updated instantly.

Implied copy-back network traffic is not modeled.

Invalidation network traffic is not modeled.

Invalidations are not acknowledged.

Bank conflicts are modeled for directory access.

Table 4.2. Major assumptions for simulation.

any further delays caused by network contention or race conditions in updating cache or
directory tags are omitted. However, further delays caused by memory bank conflicts on
the directory access are modeled by the simulator. The overall impact of these modeling
assumptions are that the reported execution times are slightly optimistic. However, the
execution times reported by the simulator are equivalent to that observable in a real system
when no race conditions or network contention occur. This is not unreasonable given the

frequency of cache misses and contention on a crossbar interconnection network.

4.7 Summary

In this chapter we have described our methodology for filtering the impedance due to
different sources of overhead found in a parallel processing system. Our simulation testbed
has also been thoroughly described. In the next two chapters, we describe our design,
implementation, and testing of loop-based and procedure-based parallel programs and their

run-time support.



CHAPTER 5

LOOP PARALLELISM

5.1 Introduction

In this chapter we discuss the performance issues relating to loop-level parallelism and
evaluate their impact based on the results of simulations run using the testbed described
in the previous chapter. We begin by describing the loop model of parallelism used
in these experiments. The implementation of the run-time support for these programs
is then described. The following sections discuss the loops used in our experiments,
and provide detailed performance data from the simulation testbed. These sections also
examine the performance breakdown into the three major overhead categories discussed in
the previous chapter. The relative performance of the :fferent cache consistency techniques

and scheduling algorithms is also examined.

5.2 Language Model

In each of our example programs, the loops used were doal1l, so there are no cross-iteration
dependencies requiring synchronization. This allowed us to use the run-to-completion
semantics compatible with the simple microtasking model, which enabled the use of the
length one run queue described in Chap. 2. However, this approach prevented the use of
nested parallel loops, which prompted us to use a policy of only parallelizing outermost

loops, as described in [106].
83
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The parallel loops used in our experiments are all based on existing code from sequential
programs. Because we compiled the code with an optimizing compiler for a uniprocessor
configuration, the ZS-1, some modifications had to be made to the resulting assembly source
in order for the program to be parallelized. These changes were minor for the first three
tests which each involved a single doal1 loop kernel. The most common change required
improving the compiler’s register allocation so that private copies of local data for each
iteration were not kept at identical memory locations on the stack. If there were not enough
registers to complete this task, a local stack area was set up for each microtask to store
local data. These techniques prevented the need to declare local variables as arrays at the
language level.

For the last parallel loop code simulated, a complete program taken from the Perfect
Club Benchmark Suite [1], more significant changes were required at the language level.
The TRFD program uses a single large common block to store all arrays. In some cases
identical array slots were used to store local data for multiple iterations of a parallel loop.
To overcome this, the common block was expanded, and the array indexing pattern was
modified. The impact of this expansion is described in Sec. 5.8 below.

For the three kernel tests, the identification of the desired doall loop was straight-
forward. However, the selection of doall loops in the TRFD program was much more
difficult. In addition to the array overlaying technique described above, this program also
contained array references where the indices were themselves array references. Further,
these second-level array references were to arrays whose values were not initialized until
run time. Consequently, our attempt to use a data dependency analyzer came up very short
in identifying the maximum possible level of parallelism based-on loops!. However, with
the help of a hand parallelization diary kept as a part of the work described in [70], we were

able to parallelize all major outermost loops?. As aresult of this parallelization strategy, the

1 A study which identifies this type of shortfall can be found in[117].

2 Except the loop around the entire program, since this would require a nesting capability.
This is discussed further in Chap. 6
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data memory area had to be increased (as described above), and some integer variables that
were incremented inside of loops had to be initialized with a proper starting value before
entrance into the parallel loop. This modification essentially makes these values private to

each microtask.

5.3 Run-Time Support

5.3.1 Scheduling

The test programs for our experiments were parallelized by allocating microtasks that
executed some subset of the iterations of the outermost doall loop. We tested three
different dynamic scheduling policies, all based on the concept of processor self-scheduling.
The first scheme, which we simply call self-scheduling, creates one microtask for each
iteration of the outermost doal1 loop. The second, which we refer to as chunk scheduling,
computes an “optimal” chunk size by dividing the number of iterations for the outermost
doall loop by the number of processors available. If the numbers do not divide evenly, an
extra “chunk” of the leftover iterations is also created. The third technique, called guided
self-scheduling, allocates a number of iterations equal to [3;'] where R; is the number of
iterations remaining to be scheduled at step ¢ and p s the number of processors [106, 110].
The run-time support code for each of these techniques can be found in Appendix A.

For self-scheduling, one processor places the starting address and the maximum iteration
value in separate semaphore registers. At the starting address, just before the loop body,
the beginning iteration value for a microtask is converted into a “base value” to be used for
the loop. This base value could be, for example, a base address for array accesses, or an
iteration count modified to reflect a non-unit stride. This step is required since loop iterates
are scheduled with NV indices uniquely assigned a value between 1 and N, even if the loop

index does not begin with 1 or has a unit stride. The code at the end of the loop is also



86
modified. Because each microtask only executes one loop iteration, the code of the loop
body is simplified by eliminating the test at the end of the outermost loop that normally
would determine whether or not the last iteration for that microtask had been executed.

After reading the semaphore registers and before loop execution, another semaphore
register is decremented. When this counter reaches zero, it indicates that the semaphore
registers can be reloaded with values pertaining to the next parallel loop for execution.
While the code to load the semaphore registers before the loop is executing, all other idle
processors are waiting to enter the scheduling code. When the semaphore register holding
the total number of iterations to be executed is written and becomes greater than zero, the
waiting processors begin executing a fetch&decrement operation on the register to acquire
a unique index for that microtask.

The chunk scheduling code is similar, but requires more steps. The code that loads the
semaphore registers before the loop must also compute the chunk size. This results in a
longer setup time for the loop during which other processors participating in the execution
of this loop must wait. Also, each microtask must compute both beginning and ending
iteration values based on the chunk size and its scheduling index. Because each microtask
may execute a number of iterations, the code to test for completion of the iteration range
must be restored to the loop body. This code was removed in the self-scheduling case.

The code for guided self-scheduling is a little more complex. As part of the process
of acquiring a unique index for each microtask, several computations must be made to
get the proper chunk size as well as the starting and ending values for the iteration range.
Because the global number of iterations remaining is the basis for these computations,
they must be performed in mutual exclusion until this global value can be updated. This
effectively creates a critical section of several assembly language instructions to perform
a self-scheduling operation. In addition to holding addresses and key index values, the
semaphore registers are also used to implement a binary semaphore that ensures mutual

exclusion for the scheduling operation. While the chunk scheduling approach also requires
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a chunk calculation, it is performed only once before any microtasks begin. For guided
self-scheduling, a chunk calculation must be performed at each scheduling point, thus
increasing the scheduling code critical section from one fetch&decrement instruction to a
lock acquisition and several integer arithmetic instructions.

The run-time support code in some cases involved additional instructions beyond that
required for the scheduling techniques. In some codes, several values and addresses used
“globally” by all iterations are computed before entrance into the loop. These values are
computed by one processor during the loop setup and then loaded into additional semaphore
registers. Each microtask then reads this “mini-context” into its processor’s own register set
and/or stack space before it begins execution. If there is a shortage of semaphore registers,
pointers to a globally shared data area or stack frame may be used instead. Alternatively,
each microtask may compute its own mini-context. This last approach is desirable if it can

be completed in less time than copying semaphore registers.

5.3.2 Microtask Graph

As an aid to visualize the transformation of the parallel loop code into microtasks, we can
construct a microtask graph which is similar to the task graphs presented in {106, 133, 107].
The microtask graph shown in Fig. 5.1 provides detail down to the basic block level. A
rectangle represents a sequence of statements that constitute a basic block as defined in [6].
The rectangles with rounded corners represent parallel loops or a collection of microtasks
associated with a parallel loop. These units are referred to as tasks in [106]. The dashed
arcs between basic blocks represent actual execution dependencies determined by the data
dependencies in the source code and the length-one queue implementation. The other
solid arcs represent branches (both conditional and unconditional), and the dotted arcs
represent branches that are possible with chunk or guided self-scheduling, where multiple

loop iterations may be scheduled at once.
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Figure 5.1. Microtask graph for parallel loop program.

In Fig. 5.1, the basic blocks, in groups of one or more, are labeled with the part of the
program they represent. The blocks labeled as “arbitration”, “setup code”, “preschedule”,

“entry code”, or “exit code” are essentially run-time system units to be generated in-line

with the program’s sequential code. The sequential code is represented by the blocks
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labeled “parallel loop code”, “sequential code section”, or “main entry code”. The ellipse
labeled “schedule” represent execution in the self-scheduling code of the run-time system.

As stated above, the squares with rounded corners in Fig. 5.1 represent tasks which are
a collection of microtasks. Although execution dependencies may exist between blocks
contained in different tasks, branches can only exist within tasks, between task code and
the schedule code, or between blocks not contained in tasks. This last condition allows
execution of entire tasks to be repeated. This condition would occur if, for example, an
outer loop existed around several inner parallel loops. When task execution is repeated, we
say that multiple instances of the task will exist during the lifetime of the program. When an
execution dependency exists between a block within a task and a block outside that task, the

block at the base of the arc must be executed for the last time per that instance of the task

before the block at the end of the arc may be executed.

In order to explain the meaning of the graph more clearly, a description of the execution
of the code represented in Fig. 5.1 by multiple processors follows. All processors enter
the program from the operating system, and the first piece of code selects one processor
to continue while dispatching the others to the self-scheduling kernel code. The single
processor then continues with the program execution, allocating and initializing variables if
necessary. Any sequential code at the start of the program is then executed. In this example,
a sequential loop surrounds two procedure calls, and the procedures contain parallel loops.
The procedure calls and returns are simply embedded in the code labeled “sequential code
section” in the diagram. After the sequential code, the setup code for the first parallel loop
is executed. After the setup, the other processors waiting in the scheduling code are now
able to begin allocating the microtasks that constitute this parallel loop. This is indicated
by the dashed execution dependency arc between the setup code and the microtask entry
code. Instead of entering the scheduling kernel itself, the processor that sets up the parallel
loop preschedules the first microtask and begins execution immediately.

In this example, the second parallel loop is not data dependent on the first. However,
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since only one parallel loop may be set up in the semaphore registers at a time (as a
consequence of the length-one queue), there is an execution dependency between the
microtask entry code of the first parallel loop and the set up code for the second parallel
loop. This requires that the last microtask for the first parallel loop be entered before the
next loop may be set up. Set up and scheduling of the second parallel loop proceeds as
before. Also, there is an unconditional branch at the end of the microtask exit code to the
self-scheduling kernel, as indicated by the circle labeled “S”.

Before the third parallel loop shown in Fig. 5.1 can begin execution, the first two must
complete, and the following sequential section must be executed. This is indicated by the
execution dependency between the microtask exit code of the first two parallel loops and
the following sequential code. Another execution dependency exists between the end of the
third parallel loop and the sequential section that follows it. At this point, either the program
proceeds with an exit, or a branch back to the beginning of the program is executed.

The execution dependencies are shown in the graph to indicate where multiple pro-
cessors may participate in execution of the program. As shown in Fig. 5.1, execution
dependencies point to the beginning of basic blocks where processors may branch from the
scheduling kernel. These arcs indicate where synchronization between the body of the gen-
erated code and the scheduling kernel is necessary. They do not indicate branches. Blocks
that are not pointed to by an execution dependency arc are instead pointed to by a branch
arc. This implies a sequential execution dependency, where the block is executed by the
same processor as the one that executed the previous block. This condition also holds for
blocks shown as being adjacent to other blocks that lie underneath it. Also, we should note,
that even though this microtask graph can be created at compile time and used to guide
run-time support code generation, it does not represent a run queue that can be created
statically. The code for each loop is still generated in program order. Consequently, each
loop set up section is visited in program order, and the run queue is created and managed

dynamically as described above.
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5.4 Source Programs

To date, we have measured the performance of three parallel loops. The firsttwo are different
versions of a simple matrix multiply based on the 21st Livermore FORTRAN Kernel (LFK21)
[94]. The third program is the Gauss-Legendre subroutine (Gauleg) from the Numerical
Recipes [111]. It is used to compute a set of weights of a polynomial function over a given

interval that can be used to compute the integral of the polynomial.

54.1 LFK21

We produced two versions of generated code for LFK21 by interchanging the order of the do
loops. The first version of the code moves the innermost do loop to the outermost do loop
in order to encourage the compiler to unroll inner loops and to make parallelization of the
program easier. This resulted in the FORTRAN code shown in Fig. 5.2. The value of n used
for the experiments described here was 100. It is this outermost loop limit that determines

the number of microtasks that will be created, e.g., 100 in the simple self-scheduling case.

dimension PX(25,101), Cx(25,101), v¥(101,25)

dol5 j=1, n
do 15 k =1, 25
do 15 i =1, 25

PX(i,j) = PX(i,]j) + VY (i,k) * CX(k,3)
15 continue

Figure 5.2. Code for version 1 of LFK21.

This version produced the fastest code in the sequential case for several reasons. In
addition to enabling the compiler to unroll the innermost loop, the indexing patterns in
this case produced a unit stride in each of the three arrays. With the large (128 byte)
cache line size, this version warmed the cache quickly and produced a minimum number of

cache misses. The compiler could not accumulate partial results in registers, because the
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innermost loop accesses a different element of the result matrix on each iteration. However,
this did not degrade performance, because the low number of cache misses combined with
the ZS’s dual instruction issue capability enabled the average number of clock periods per
instruction (CPI) to approach 0.6 while producing a MFLOPS rating of 12.4. The number
of instructions dynamically executed for each outermost iteration was 3485, of which 55%
referenced memory, i.e., were loads or stores.

Although the version of the code shown above is the fastest in the uniprocessor case, its
heavy use of memory caused performance problems when running on multiple processors
with consistent caches. To provide a contrast, we tested an alternate version in which the
“k” and “i” do loops were interchanged. We chose this restructuring to keep the variable
length do loop as the outermost one. This allows a parallelization strategy that creates n
microtasks (for self-scheduling) of a fixed granularity, the same technique as used in the
previous version.

In this new version, each microtask computed the final result for one column of the PX
array, which enabled partial results for each element to be accumulated in a register. It
also enabled different microtasks to avoid accessing values of the PX array that were in the
same cache line. The disadvantage of using this version of the code is that it produced a
non-unit stride access pattern for the VY array. Although this version of the code produced
only 4 additional data cache misses and 2 additional instruction cache misses for n=100,
it ran quite a bit slower than the previous version, averaging slightly less than 1 CPI and
8.6 MFLOPS. The number of instructions executed for each outermost loop iteration was
3280, with 38% of those accessing memory. The source of the slowdown for this version of
LFK21 was a reduction in instruction execution overlap (pipelining) due to busy registers

during the multiplies and adds.
5.4.2 Gauleg

The Gauleg subroutine contained more instructions, but the code referenced shared data
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[Teer. ]| Avg. Inst. per Iter. | Mem. Ref. | CPI “MFLOPS |
5 782 7.9% [ 1.7 7.0 ]
16 1589 38% | 1.5 9.2
25 2244 27% | 1.5 9.6
50 4063 15% | 1.5 10.0
160 11475 05% | 1.5 104

Table 5.1. Sequential code performance and characteristics for Gauleg.

structures much less frequently (see Fig. 5.3). The doall loop for this code was the DO
12 loop. After a detailed calculation, each iteration of the doall loop wrote four result
values into different single precision (4 bytes per element) floating point arrays (X and W).
Although many other variables were used inside the loop, each one was either a read-only
parameter (N, X1, X2, XM, XL), or a variable local to that iteration (I, J, P1,
p2, P3, PP, 21, 2).Thisenabled extensive use of registers and kept the percentage
of memory references low — ranging from 7.9% for 5 iterations down to 0.5% for 160
jterations. (The number of iterations in the Gauleg subroutine corresponds to the number
of weights that are calculated.) The execution time of each iteration varies and cannot be
determined at compile time, because Newton’s method is used and its convergence rate is
data dependent. The net result is that microtasks execute a varying number of instructions
regardless of the scheduling algorithm used. Each iteration of Gauleg averaged between
782 instructions for a 5 iteration version to 11,475 instructions for a 160 iteration version.
The performance of the ZS system on this program for various numbers of iterations is

given in Table 5.1.

5.5 Inherent Parallel Performance

The inherent parallel performance for LFK21 versions 1 and 2 with n=100 is summarized
in Table 5.2. In the table, P is the number of processors used, S is the speedup, E, or

S/ P, is the efficiency, and MFLOPS is the total number of megaflops achieved using all
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IMPLICIT REAL*8 (A-H,0-2)
REAL*4 X1,X2,X(N),W(N)
PARAMETER (EPS=3.D-14)

XM=0.5D0* (X2+X1)
XL=0.5D0* (X2-X1)
DO 12 I=1, (N+1)/2
Z=C0S(3.141592654D0* (I-.25D0) / (N+.5D0))
1 CONTINUE
P1=1.DO0
P2=0.D0
po 11 J=1,N
P3=P2
P2=P1
P1=((2.D0*J-1.D0) *2*P2~-(J-1.D0) *P3) /J
11 CONTINUE
PP=N* (2*P1~-P2) /(2*2-1.D0)
21=2
Z=71-P1/PP
IF (ABS(2-%Z1) .GT.EPS)GO TO 1
X(I)=XM-XL*Z
X (N+1-T)=XM+XL*2
W(I)=2.D0*XL/((1.D0-Z*Z)*PP*PP)
W(N+1-I)=W(I)
12 CONTINUE

Figure 5.3. Code for Gauleg.

the available processors. Recall from Chap. 4 that this performance rating is extrapolated
from the results of executing a subset of iterations on a single processor with a minimum of
cache misses and no run-time support overhead or synchronization. The subset of iterations
is chosen based on an optimal static schedule that obtains the best possible load balance.
In the case of Gauleg, the optimal static schedule accounted for the fact that different
iterations of the doal1l loop were of differing granularities. The inherent parallelism for
each version of Gauleg is summarized in Fig. 5.4. The MFLOPS rating for this code ranged
from 7.0 using 1 processor for 5 iterations to 161.4 using 16 processors for 160 iterations.
It is clear from the tables and chart that, even though there is optimal load balancing of
outermost loop iterations, there is still a limitation on speedup. This limitation is primarily

due to the fact that optimal load balancing still leaves some processors idle some of the
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I Version 1 | Version 2
P| S | & [MFLOPS| 5 | E | MFLOPS |
1] 1.0]1.00] 124] 10]100] 86
2 20099 247 20| 1.00 172
4 39098 489 | 40099 343
8| 74093 922 76095 65.4
12 H 106088 | 1310 | 109 [0.91 93.9
16 || 13.3 | 0.83 | _ 165.7 | 13.9 | 0.87 120.0

Table 5.2. Inherent parallel performance for LFK21.
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Figure 5.4. Inherent parallel performance for Gauleg.

time. However, the largest instance of Gauleg does come close to 100% efficiency. Another
factor that affects the speedup when using larger numbers of processors is the increased
number of overall cache misses. If only one processor is used, the cache is warmed by the
initial iteration so that subsequent iterations do not miss the cache. On the other hand, if
the number of processors used equals the total number of iterations, each processor will be

allocated one iteration and it will have to start with a cold cache.

5.6 Performance With Assumed Consistency

Figures 5.5 and 5.6 show the loop speedups for the parallelized version of each program
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and problem size tested together with inherent parallelism for comparison. The speedups
for LFK21 show performance close to inherent parallelism for guided self-scheduling and
self-scheduling. Chunk scheduling performance is significantly worse, due to its inferior
dynamic load balancing. Figure 5.5 also shows the speedup of the second version of LFK21
when it is calculated based on the single processor performance of version 1. This compares
the speedup of version 2 to the “best sequential algorithm”., However, we also compute
the speedup for version 2 as compared to itself, in order to demonstrate the performance
possibilities for other codes with similar memory referencing patterns and grain size. In
fact, it is the relatively low percentage of memory references per microtask that enable the
speedups of version 2 (when compared to itself) to be slightly greater than version 1. The
results for tests with n=50 and n=25 show the same trends, but the speedups using 8, 12

and 16 processors are about 18% less for n=50 and 30% less for n=25 (see Appendix B).
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Figure 5.5. Speedups for both versions of LFK21, n=100, assumed con-
sistency.
The speedups for Gauleg shown in Fig. 5.6 indicate that self-scheduling provides the
best run-time performance. For problem sizes of 50 and 160 iterations, this dynamic
scheduling technique is close to inherent parallelism. The performance of chunk and

guided self-scheduling for all sizes of Gauleg is less than self-scheduling. This is due to



Figure 5.6. Speedups for all versions of Gauleg, assumed consistency.

the imperfect dynamic load balancing of these techniques, which is further aggravated by

the variable-sized grains of the iterations of Gauleg.

5.7 Complete System Performance

5.7.1 Overview

Figures 5.7 through 5.10 show the speedups of both LFK21 versions with n=100 and
two instances of Gauleg for all scheduling algorithm and cache consistency technique
combinations. In Figs. 5.7 and 5.8, there is a great variation in performance depending
on the consistency technique employed. For the first version of LFK21, the hardware
consistency techniques are much better than the software techniques. The performance
of the non-cacheable data approach is heavily degraded by the high number of memory
references in each microtask. The write merging technique (software consistency) is slowed

by the time it takes to merge the fairly large result areas for the double precision result array.
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The “adjusted” technique refers to a calculated result for write merging, where itis assumed
that the data overlaying can be performed pairwise among processors in parallel, requiring
log, P steps. Because the iterations of LFK21 are all the same number of instructions,
we can compute the adjusted performance of write merging by adding a base time equal
to that required for all microtasks to complete the computation to the time required for
merging assuming the pairwise approach. Although the pairwise approach would require
additional synchronization, memory space, and possibly hardware support, we calculate
this value as an upper bound on performance. However, as is clear from Figs. 5.7 and 5.8,

this adjustment to write merging does not provide much improvement.
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Figure 5.7. Speedups for LFK21, version 1, n=100.

The results for version 2 of LFK21 shown in Fig. 5.8 are quite similar, except that
the speedups for the non-cacheable data approach are much greater, and the speedups for
private hardware consistency are much worse. For the other techniques, the speedups are
slightly greater than they were for version 1. The increased speedups in each case are due

to the reduced number of memory references for version 2, and, the reduced performance
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Figure 5.8. Speedups for LFK21, version 2, n=100.

of private hardware consistency is due to the non-unit stride referencing pattern for one
operand in the multiply. This causes multiple references to the same block by each processor
at different times in the computation. Because private hardware consistency invalidates all
other copies when any processor references the block, there are many more invalidation
misses occurring, even on the read-only operands of the multiply. Despite the improved
speedups for the other consistency techniques used with this version of the code, it is
important to note thz_lt version 1 still provides the best overall performance in terms of
MFLOPS in most cases. The exceptions are discussed in Sec. 5.7.3.2 below.

The speedups for the versions of Gauleg shown in Figs. 5.9 and 5.10 are much less
dependent on the cache consistency technique used. Shared hardware consistency and
non-cacheable data perform the best, but the other techniques are not far behind. The only
exception to this trend is for the smaller program sizes, 16 iterations in Fig. 5.9, when using
all 16 processors. The overall improvement in speedup when compared to LFK21 is a
consequence of the low percentage of memory references in Gauleg,. It is also worth noting

that, in contrast to the LFK21 codes, the performance for all the consistency techniques
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which indicates that run-time scheduling and

10. Speedups for all versions of Gauleg, 160 iterations.

Figure 5

is very close to that of assumed consistency,

in this case than cache consistency overhead.

synchronization overhead is greater
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5.7.2 Software Consistency

Perhaps one of the most interesting results was observed when cache consistency was en-
forced by making result data non-cacheable. Because the first version of LFK21 references
memory often, the speedups of the code for n=25,n=50, and n=100in this case are never
greater than 1. The second version of LFK21, however, writes to the result array much
less frequently, and the speedups are about 20% less than shared hardware consistency in
most cases. In the case of Gauleg, memory references are infrequent, and the performance
using non-cacheable data is almost identical to that using shared hardware consistency.
These results demonstrate that while non-cacheable pages may be a reasonable technique
for maintaining consistency in some cases, it can be totally inappropriate in others. It
is also important to note that code should be optimized for fewer memory references if
non-cacheable data is to be used. This optimization may require loop restructuring as was
done for version 2 of LFK21.

The performance of the codes implementing cache consistency with temporary result
areas and cache management instructions was poor overall. For version 1 of LFK21, the
speedup never exceeded 2, and for version 2, it never exceeded 2.4. The “adjusted” results
(described above) for both versions of LFK21 were slightly better. The speedup calculated
versus the sequential running time of version 1 of LFK21 was never greater than 2.5, while
the speedup calculated versus the sequential running time of version 2 of LFK21 was never
greater than 3.5. The results did show an increase in speedup as more processors were
employed, whereas the original code that updated the final result area one processor at a
time showed its best performance at 2.4 with only 4 processors.

The performance of Gauleg using write merging was much better, approaching hard-
ware consistency for larger iteration counts running on fewer processors. However, this
consistency technique was still the worst performer for all tests using Gauleg. This result
suggests that non-cacheable data is the best approach to software consistency when memory

accesses are infrequent.
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5.7.3 Hardware Consistency

For the hardware consistency tests, the simulator was modified as described in Chap. 4.
Since cache consistency was enforced in hardware, there was no need for the programs to
use any special cache management or data alignment instructions. The programs used for

these tests were identical to those used in the assumed consistency tests.

5.7.3.1 Private

For both versions of LFK21 and each value of n, the performance of the private hardware
scheme for cache consistency was similar to that of adjusted software consistency. For
the first version of LFK21, the performance of hardware consistency was worse for fewer
numbers of processors, and better for greater numbers of processors. For the second version
of LFK21, the private hardware consistency technique always performed worse than the
software results, with maximum speedups being less than 2.7 and 2.0 when compared to
both versions of the sequential code.

For the tests involving Gauleg, the performance of private hardware consistency was
close to that of cached write buffer software consistency. Although they were slowest, these
two techniques did perform quite well when compared to the others, except when 8 or more
processors were used on 16 iterations or less (see Fig. 5.9). This result is a direct reflection
of the percentage of memory accesses made by the different problem sizes of Gauleg.

It is interesting to note here the difference in performance of the various scheduling
algorithms. In the other tests where consistency is assumed or main memory traffic is
otherwise reduced, self-scheduling has a slight performance edge for larger numbers of
processors because of its improved dynamic load balancing. This is also true for all
experiments involving the Gauleg codes, where variable length iterations present a need
for better dynamic load balancing. However, in Fig. 5.7 we see that chunk scheduling and

guided self-scheduling perform better in the LFK21 version 1 experiments using private
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hardware consistency. Because they allocate chunks of iterations greater than 1, multiple
adjacent iterations are allocated for each schedule. This provides additional spatial locality
on each processor which reduces cache misses. This result is more visible for the first
version of LFK21, where memory is accessed frequently. However, this locality effect is
not an issue with the Gauleg code, due to the relatively low number of memory references.

The major problem with the private hardware consistency technique is the slowdown
caused by the prevention of sharing of read-only data. This is especially evident for the
second version of LFK21, where each of the microtasks access the elements of one of the
operands in the same order in a non-unit stride fashion. Since an access to any block must
invalidate any other copies of that block, there are many more cache misses using this

consistency technique.

5.7.3.2 Shared

The performance of the shared hardware consistency scheme was better than any of the
other techniques, and approached the performance of assumed consistency for both Gauleg
and the second version of LFK21. The shared hardware consistency mechanism allows
any cache block to reside in more than one cache. As long as the block is not modified, no
consistency actions are required. This approach avoids the difficulties encountered by the
* private scheme with read-only data. With sharing of read-only data possible, the effects
of reference locality were less pronounced with shared hardware consistency. Locality
did have a major impact on version 1 of LFK21, where guided self-scheduling and chunk
scheduling outperformed self-scheduling (see Fig. 5.7).

Tables 5.3, 5.4, and 5.5 show the running times in microseconds for both versions of
LFK21 using shared hardware consistency. These tables show the volatility in performance
as the problem size changes. As n increases, the number of microtasks created increases,
while the grain size of each microtask remains the same. For n=25, we see that, depend-

ing on the scheduling algorithm, version 2 outperforms version 1 for larger numbers of
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Version 1 Times Verston 2 Times

P || Chunk | Self | Guided || Chunk | Self | Guided
1“ 2656 | 2646 | 2603 ]| 3683 [3745| 3681
2 I 1420 | 3105 | 1387 || 1941 [1977] 1934
4 800 | 1697 909 || 1068 | 1080 | 1062
8 493 | 1032 628 || 639] 634 627

12| 304 744| 637 498 490 489
16| 740 | 742| 632 377 364| 405

Table 5.3. LFK21 run times for n=25, shared hardware consistency.

[ Version1Times ||  Version 2 Times

P || Chunk | Self | Guided || Chunk | Self | Guided
1| 5247]5235] 5141 7324|7460 | 7322
2 2660 [ 6193 | 2638 || 3686 | 3780 | 3716
41 15263294 | 1685 2090|1983 | 1964
8 910 | 1968 959 | 1219|1090 | 1082
12 705 | 1353 794 941 793 798
16 606 | 1120 732 812 | 653 651

Table 5.4. LFK21 run times for n=50, shared hardware consistency.

processors. When n=50, the performance of the two versions is about equal for 12 and
16 processors. For n=100, version 1 has better performance for all scheduling algorithms
using shared hardware consistency except for 16 processors, where the performance of the
two versions is about equal. This result demonstrates that as the number of microtasks
increases relative to the number of processors and efficiency levels rise, the factors that

dominate uniprocessor performance also begin to dominate multiprocessor performance.

§.7.3.3 Cache Line Size

In an attempt to reduce the amount of false sharing and the resultant invalidation misses, we
tested the two versions of the LFK21 code with different cache line sizes and set associativity

for assumed, shared, and private hardware consistency. While the change in associativity
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Ver@g_} Times Version 2 Times

P || Chunk | Self |Gﬁ@gi1 Chunk [ Self | Guided
T 10427 | 10412 | 10216 || 14605 | 14891 | 14604
2 5250 | 12358 | 5182 | 7327 7529 | 7364
4 2663 | 6512 3027 3689 | 3785 3741
8| 1738 | 3685 | 1665 2390 1992| 1976
2 1324 | 2641 1313 | 1814 1400 1403
16 1122 | 2067 | 1126 1528 1111 | 1102

Table 5.5. LFK21 run times for n=100, shared hardware consistency.

had virtually no effect, there were some variations caused by changing the cache line size.
For version 1 of LFK21 with n=100, the performance using self-scheduling was improved
when line sizes of 8 words (64 bytes) and 4 words (32 bytes) were used. However, this
improvement did not match the performance of guided self-scheduling when using a 16
word cache line size. For version 2 of LFK21 with n=100, all scheduling algorithms
ran faster when using an 8 word or 4 word cache line size when using private hardware
consistency. This increase was not enough to compete with shared hardware consistency
with the original 16 word line size. All tests with a line size of2 word; resulted in reduced
performance. Overall, the attempts to reduce false sharing and increase performance with
a smaller line size were unsuccessful. This is due in part to the unit strides present in these

codes and their reliance on spatial locality.

5.7.4 Scheduling Algorithms

Our experiments did not suggest that any of the three scheduling algorithms tested was
clearly the best. The results for LFK21 using assumed consistency suggest that self-
scheduling and guided self-scheduling perform about the same, with chunk scheduling
running slower. Self-scheduling provides the most speedup for 16 processors, while guided
self-scheduling runs faster on fewer processors. Since self-scheduling allocates only 1

iteration for each schedule, it provides the best dynamic load balancing. However, guided
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self-scheduling can come close in load balancing, since smaller chunks are allocated during
later schedules. Also, since chunk scheduling and guided self-scheduling allocate more
iterations per schedule on average, they have fewer scheduling points at run-time. For this
reason, these approaches may incur less scheduling overhead than self-scheduling, even
though their scheduling code requires more instructions to compute chunk size and loop
bounds.

The results for Gauleg, however, indicate that the superior dynamic load balancing of
self-scheduling outweighs the reduction in scheduling point overhead. This resuit occurs
because of the variable length instruction counts in the iterations of Gauleg. When chunk
scheduling or guided self-scheduling is used on Gauleg, some microtasks are aggregates
of several bigger iterations, while others are aggregates of several smaller iterations. This
causes a situation where load balancing is upset because some microtasks complete long
before others.

For the LFK21 tests using cache consistency, the performance of the scheduling algo-
rithms depended on the amount of memory accesses in the code. For the first version of
LFK21, where the number of memory accesses is 55% of the instructions, the performance
of guided self-scheduling was best, with chunk scheduling being next (see Fig. 5.7). As
mentioned earlier, this is due to the spatial locality in memory referencing that occurs
when adjacent iterations are executed on the same processor. For the second version of
LFK21, where memory accesses make up 38% of the instructions, guided self-scheduling
and self-scheduling are about equal in providing the most speedup (see Fig. 5.8). Similar
results were also observed for n=25 and n=50, except that chunk scheduling performed
best for version 1, and self-scheduling was best for version 2.

These results suggest that different scheduling techniques be used depending on the
characteristics of the code inside the parallel loop. However, the benefit gained by choosing
the appropriate scheduling algorithm may be quite small if the other sources of run-time

overhead dominate the execution time. In the following subsection, we examine the impact
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Version lj Version 2 . .
Slowdown || S.L.I. | S.S. C.C. || Siowdown || S.LI | S.S. | C.C.

P
1 1.5% || 0.0% | 58.2% | 41.8% 08% || 00% | 9.4% | 90.6%
2 3.0% {| 17.8% | 60.9% | 21.3% 1.6% || 12.5% | 44.9% | 42.7%
4 203% || 7.8% | 16.4% | 75.7% 3.2% || 18.6% | 53.2% | 28.2%

8 32.3% || 23.9% | 15.3% | 60.7% 9.1% || 59.7% | 30.4% | 10.0%
16

12 56.6% || 24.4% | 12.7% | 62.9% 16.2% || 63.0% {21.9% | 9.1%
79.1% {| 25.2% | 10.5% | 64.4% 21.6% || 69.5% | 25.3% | 5.2%

Table 5.6. LFK21 overhead, guided self-scheduling, shared hardware
consistency.

of each of the three performance barriers in our experiments, and identify the bottleneck in

several different configurations.
5.7.5 Overhead Breakdown

Tables 5.6 and 5.7 show the breakdown of impedance from each of the three major

performance barriers for the best performing combinations of each parallel loop. The

column labeled “slowdown” indicates how much slower the code ran than would be ideally

possible with linear speedup. The overhead responsible for this slowdown comes from the

three main impedance groups described above in Chap. 4. Each of the next three columns of
the table show the percentage of total overhead attributed to static load imbalance (S.L.L),
run-time scheduling and synchronization (S.S.), and cache consistency (C.C.). Because
these three columns show the amount of total overhead attributable to each category, their
sumn for any given number of processors (P) is 100% (+ 0.1% in roundoff error).

The figures in Table 5.6 indicate that cache consistency support is the main source of
overhead in the parallel processing of LFK21, version 1. The next highest contribution
comes from static load imbalance. As stated in Chap. 4, there may be additional overhead
due to dynamic load imbalance depending on the performance of the run-time scheduling

algorithm. In this case, however, the overhead due to run-time scheduling and synchro-
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16 Iterations 160 Iterations
P | Slowdown | SLL | SS. [ CC. |[Slowdown | S.L.L sS. [CC.

1 39% || 0.0% | 99.5% | 0.5% 04% || 0.0% | 100.0% | 0.0%
2 6.7% || 23.0% | 71.5% | 5.5% 05% || 1.5% | 97.5% | 1.1%
4 12.1% || 37.0% | 54.6% | 8.4% 14% || 21.7% | 77.3% | 0.9%
5 38.1% || 57.7% | 39.6% | 2.7% 1.3% || 552% | 42.5% | 2.3%
8

2

6

32.9% || 52.9% | 37.1% | 94% 3.3% || 28.9% | 70.3% | 0.8%
"99.9% || 55.5% | 40.3% | 4.1% 7.1% || 14.1% | 84.9% | 1.0%
T79% | 55.4% | 42.2% | 24% | 7-3% || 39.1% | 60.2% | 0.7%

Table 5.7. Gauleg overhead, self-scheduling, shared hardware consis-
tency.

nization is relatively small when 4 or more processors are used, indicating that dynamic
load imbalance is not significant.

The impedance breakdowns for version 2 of LFK21 are quite a bit different than version
1. As more processors are used, the main source of overhead shifts from cache consistency
support toward static load imbalance. However, itis important to note that the total overhead
(slowdown as a percentage of ideal performance assuming linear speedup) in this case is
much less than for version 1. The reduced number of memory references in version 2
has changed the bottleneck of the system to static load imbalance, which is based on the
structure of the code itself.

The impedance breakdowns for Gauleg with problem sizes of 16 and 160 iterations
appear in Table 5.7. The most interesting columns in this table are the ones which show the
percentage slowdown as compared to the ideal case of linear speedup for 160 iterations. The
greatest amount of potential performance that is lost is only 7.5% . Because the amount of
overhead is so small, the percentage breakdowns in the other columns are volatile. Run-time
scheduling and synchronization is the bottleneck in this case, but the overhead contributed
by it is quite small. For 16 iterations, the slowdown is greater, but it is largely a result of
static load imbalance. This occurs because there are only 16 microtasks created which are

of differing granularities.
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5.8 Multiple Loop Experiments

5.8.1 TRFD

As mentioned in Sec. 5.2 above, our tests to measure the performance of multiple parallel
loops in a single program is based on the TRFD code from the Perfect Club Benchmark
Suite. This program is a “kernel” of the calculation used in a two-electron integral trans-
formation [1]. The code is based on a restructured mathematical equation which requires
on the order of n® floating point operations where r is the number of basis functions used
in the transformation. The code for the TRFD program used in our experiments appears in
Appendix C, and its structure is summarized by Fig. 5.11. It has been modified to remove
statements associated with timing, computing FLOP rates, and printing the results. How-
ever, our uniprocessor tests using the parallelized code did include these other statements,
in order to help verify the code’s correctness.

Program TRFD

DOI=10,N, 5

v

CALL INTGRL

DOALL

DOALL

v

CALL OLDA
DOALL

DOALL

DOALL

|

Figure 5.11. Structure of TRFD code.
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The TRED code in Appendix C shows the parallel loops as doal1l loops. There are 5
parallel loops in total, two in the INTGRL subroutine and 3 in the OLDA subroutine. The
mainline of the code is a DO loop which repeats the entire calculation (one call each to
INTGRL and OLDA) for different values of n. Although the iterations of this outermost DO
loop could be done independently, there is little or no advantage to creating a small number
of microtasks of very large but very different granularities. Also, this outer loop is provided
simply to repeat the test for different values of n as part of the benchmark. It is not part of
the transformation calculation.

The microtask graph for this program is similar to the one given in Fig. 5.1, except
that there are two more parallel loops before the end of the program. There are also
execution dependencies between the end and beginning of each of the last three parallel
loops (all contained in the OLDA subroutine). As indicated in the graph, the first two
parallel loops (both contained in the INTGRL subroutine) may have their microtasks execute
simultaneously. The bulk of the floating point operations are contained in the third and fifth
parallel loops (the first and third in the OLDA subroutine). Consequently, the microtasks
associated with these loops are of a much larger granularity than those found in our loop
kernel tests. These loops also have greatly varying dynamic instruction counts between
iterations. The iteration counts are n * (n + 1)/2 for the third loop and just n for the fifth.

As mentioned in Sec. 5.2 above, the TRFD program overlays memory space for several
arrays in one large common block. In our version, this memory area was expanded so that
different iterations of a doa 11 loop would not be data dependent. For this program, written
for the Perfect Club with n varying between 10 and 40, the increase in memory was from
8M bytes to 16.8M bytes with our version. This increase was not a problem for the large
main memory of the ZS-1 (128M bytes). However, in an effort to reduce the simulation
time of the program, our tests only considered values of n equal to 10 or 15, which required

less than 4M bytes of memory.
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5.8.2 Experiments

Because of the size and complexity of the TRFD program, some experiments done with the
loop kernels could not be repeated. These include the tests for inherent parallel performance
and the write merging approach to cache consistency. The parallel loops in TRFD contain
several inner loops, sometimes with a nest level of 5. Combined with the nature of the
iteration in each loop, it was too difficult to determine (in a reasonable amount of time)
the exact pattern of execution for each iteration of each loop. This prevented us from
determining an optimal static load balance. However, we were still able to determine the
amount of overhead due to cache consistency, with the exception of the write merging
technique. Also, if the previous experiments are any indication, the performance of non-
cacheable data in these tests does not suggest that the performance of write merging would

perform much better.

5.8.3 Performance

Figures 5.12 and 5.13 summarize the speedups realized with parallel versions of TRFD for
n = 10 and n = 15. The performance of each cache consistency technique is overlayed in
the figures, so that the incremental improvement of one cache consistency techniques over
another can be seen directly. Recall that, for n = 15, the program actually repeats the entire
calculation for n = 10. However, the time spent executing the loops with n = 15 greatly
exceeds the time spent for n = 10 (about 8:1).

The speedups for TRFD are comparable to LFK21, especially v;/hen n = 15. Although
we cannot be certain, this may suggest that the load balancing situation is similar, even
though TRED does contain several short serial sections. The memory referencing percent-
age of instructions is similar to version 2 of LFK21 at 37%. However, this similarity did
not help the performance of non-cacheable data as a consistency technique. Clearly, TRFD

makes more of its memory references to shared writable data. While the performance of
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Figure 5.12. TRFD speedups for n = 10.

Consistency Technique
[ Assumed R Shared P] Private
16
14
12.]
10
Speedup 8
6
4
2 ﬁ e
o JLdy WIZ Vlﬂf
S$GC clsaclsGc|sGC|sGC|sGC
| |
1

16 12 8 4 3 2

Processors and Scheduling

[S=Selt G=Guided C =Chunk |

Figure 5.13. TRFD speedups for n = 15.

private hardware consistency is similar to LFK21 version 2, the performance of shared
hardware consistency is better for TRFD, almost as good as assumed consistency. For
this program, read accesses must far outnumber write accesses to shared writable data.

Table 5.8 shows the amount of overhead with self-scheduling for cache consistency as a



113

TRFD, n =10 TRFD, n = 15
P || Shared | Private | Non-Cacheable || Shared | Private
1] 0.00% 0.00% 244.75% || 0.09% 0.00%
2| 3.54% | 46.67% 253.80% || 2.90% | 57.57%
3] 418% | 60.01% 269.39% || 3.26% | 67.66%
41 434% | 74.98% 275.16% || 3.28% | 80.30%
8 || 455% | 118.75% 328.75% || 3.39% | 118.42%
12 || 3.98% | 147.36% 379.74% || 3.34% | 154.41%
16 || 3.78% | 170.85% 396.36% || 3.10% | 184.30%

Table 5.8. Cache consistency overhead for TRFD, self-scheduling.

percentage of running time for assumed consistency. The overhead with chunk and guided
self-scheduling is slightly lower, but these codes also produced less speedup. This is
discussed further below.

In examining the speedups for TRFD, we see nearly linear speedup until more than
8 processors are employed. For n = 15, 12 and 16 processor configurations perform
significantly better than the case where n = 10. This is due to the increased iteration
counts of the compute-intensive parallel loops. Except for the tests with 1 or 2 processors,
the results also show the best performance for self-scheduling followed by guided self-
scheduling and chunk scheduling respectively. This result is due to the load balancing
benefits of self-scheduling in the presence of large and variable grain microtasks. Indeed,
the data cache hit rates for these tests show a slightly higher hit rate for chunk scheduling,
even though it produced the smallest amount of speedup. Table 5.9 shows the overall
hit rates for each combination of scheduling and cache consistency techniques for 16

Processors.

5.9 Conclusions

While our investigation studied several aspects of the performance of parallel loops on a

multiprocessor mini-supercomputer, it should not be assumed that the results observed in
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TRED, n = 10 I TRFD, n = 15
Scheduling || Assumed | Shared | Private || Assumed | Shared | Private
Self 99.4% | 98.6% | 72.8% 99.6% | 99.1% | 72.7%
Guided 99.4% | 98.8% | 73.3% 99.7% | 99.3% | 73.8%
Chunk 99.5% | 98.8% | 74.0% 99.7% | 99.2% | 73.0%

Table 5.9. Data cache hit rates for TRFD, 16 processors.

our tests will be identical to those obtained on other multiprocessors or with different parallel

programs. We can, however, make the following conclusions based on our experiments.
5.9.1 Load Balancing

Static load imbalance is a major source of impedance to speedup. Although cache con-
sistency support is often the bottleneck in a parallel processing system, load balancing is
a major factor that may be more easily addressed. While our experiments demonstrated
that high efficiencies are possible with doall loops, if a source program has a significant
fraction of sequential code between these loops, overall program efficiency will be quite
low. By modifying the run-time system to permit nested parallel constructs to be supported
via a variable length queue, more parallelism of varying grains may be exploited. Although
this may require more overhead in run-time support code, the tradeoff may well be worth
it, since this ovérhead is quite low with the current technique. This approach also requires
a modification of the langnage model of parallelism. Care must be taken, however, to
add parallel programming constructs that do not severely hamper the performance of the

run-time system. This is discussed further in the following chapter.
5.9.2 Cache Consistency

Hardware consistency techniques perform better than software techniques. However, bet-

ter software techniques are possible, but they require additional hardware support and/or
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operating system support. For this reason, software approaches seem better suited to
statically-scheduled single-user parallel processing systems. On the other hand, only the
private hardware consistency technique is scalable in the number of processors. Because
we observed poor performance with this technique, other scalable techniques based on
shared hardware consistency should be considered if more than a few dozen processors are
to be used. One such possibility is a broadcast-based approach, which does not require a
presence bit for each cache [4], or a partial map scheme where only some presence bits are
kept in the central directory and the others are distributed throughout memory [78, 129] or
supported in software [35). Additionally, depending on its hardware complexity, a policy
based on write-broadcast instead of write-invalidate for maintaining consistent data may be
more appropriate for the fine-grained sharing present in parallel loops.

Our results show shared hardware consistency to be the best technique for maintaining
cache consistency. It outperformed the other techniques we tested, including private hard-
ware consistency. This is attributable to the type of parallelism present in the test programs.
A fine-grained parallel program is more likely to share déta than those parallelized at the
program level. Also, our tests accounted for the effects of sharing cache blocks even when
individual words are not shared (i.e., false sharing). This level of sharing caused too many
invalidations in the private hardware consistency case.

The software schemes we tested did not fare well at all, with the exception of non-
cacheable data for Gauleg and possibly the second version of LFK21. The overhead of
write merging for consistency seems to be too great for microtasking. Although this second
approach had reasonable performance for some versions of Gauleg, it was still slower than
non-cacheable data. Write merging might perform better if larger grain microtasks are
present, but, if the result area is also larger, the overhead of merging these areas is also
larger. As for non-cacheable data, the performance is directly dependent on the number of
references to this data. In some cases, the effect can be extremely bad. If this technique

were to be used in a production machine, hardware techniques to speed up these accesses
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without blocking the cache should be employed.

There are also problems and tradeoffs to consider when using software schemes for
consistency. While the techniques we tested did not perform well in many cases, it is
possible that techniques using cache management instructions embedded within the parallel
loop bodies may perform better. However, these techniques require sophisticated compilers,
as well as protection from interrupts or context switching by the operating system. The
compiler has to manage the mapping between memory words and cache blocks, to ensure
that false sharing does not introduce inconsistency. If the software also assumes the presence
of, or absence of, cache blocks based on prefetching or cache management instructions, the
operating system must prevent context switching and microtask migration from violating
these assumptions. For these reasons, we believe that software consistency schemes are best
suited for statically-scheduled single-user compute-intensive parallel processing systems.

In general, parallel programs should be optimized for a minimum number of memory
references. As the speedups for Gauleg show, the fewer the memory references, the
better the speedup. On the other hand, version 1 of LFK21 almost always provided more
MFLOPS with less speedup than version 2 (when compared to itself) in the tests reported
here. However, we have observed the opposite result in tests with different iteration counts
(see Table 5.3) or when using non-cacheable data for consistency. A tradeoff must be made
by the compiler depending on the frequency of memory accesses, any spatial locality in
these references, the cache consistency technique employed, and the scheduling algorithm

used.

5.9.3 Run-Time Scheduling and Synchronization

Our user-mode run-time system is very efficient. The single processor results demonstrated
that run-time support overhead for parallelism was not expensive (see Tables 5.6 and 5.7
for P = 1). Although run-time scheduling and synchronization was the bottleneck in some

cases, these instances occurred only when the total system overhead was quite low. This
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is due in large part to the fast semaphore registers and their synchronization primitives.
We believe this performance warrants the addition of techniques to support more types of
parallelism.

The best scheduling algorithm is dependent on the characteristics of the code. Codes
with few memory references and/or variable sized loop iterations should use self-scheduling.
Codes with fixed sized iterations and many memory accesses should use chunk or guided
self-scheduling. Consideration must also be given to the type of cache consistency used as
well as the performance bottleneck of the system. However, while it is possible that the
system bottleneck will prevent a change in performance due to the scheduling algorithm, it
may be impossible to determine the bottleneck at compile time.

We should also note though, that if one type of scheduling algorithm is to be applied
blindly throughout the program, it should be self-scheduling. As our tests with the TRFD
program pointed out, with many large microtasks of varying granularities, the benefits of
load balancing with self-scheduling will most likely outweigh the minimal benefit of the

increase in cache hit rates obtained with chunk or guided self-scheduling.

5.94 Analysis

Now that we have quantified the impact of the three major performance barriers on parallel
loop program performance, we can begin to look for alternative programming models that
overcome the identified performance problems. Table 5.10 specifies the three performance
barriers, a desired change in the properties of the programming model to minimize their
impact, and a method for achieving this change in properties. These three columns are
labeled “Barrier”, “Change”, and “Method” respectively.

In order to overcome performance loss due to cache consistency overhead, references
to data used only locally must be increased as a percentage of all data references. A

straightforward way to accomplish this is to increase the grain size of parallelism, which
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[ Bamier | Change [ Method |
Cache T Increase || Increase |
Consistency locality “ grain size
Static Load Increase Nested
Imbalance parallelism “ parallelism
Scheduling and Reduce Increase
Synchronization || scheduling || grain size

Table 5.10. Methods to overcome impact of performance barriers.

provides for longer instruction streams which compute a larger portion of work on a local
data set with fewer accesses to shared data.

The problems associated with static load imbalance can be overcome by increasing
the amount of parallelism present in the program. This can be done by allowing nesting
in parallel constructs, so that multiple, potentially heterogeneous, execution streams may
execute simultaneously. This change need not also reduce the grain size, since there are
opportunities for parallelism at a higher level than the inner loops we have concentrated on
thus far. This will be demonstrated in Chap. 6.

The amount of overhead due to scheduling and synchronization can also be limited, by
reducing the number of scheduling operations. However, we donot want to achieve this goal
by constructing microtasks of multiple iterations, since self-scheduling has demonstrated
better overall performance with its superior dynamic load balancing. Instead, the number
of scheduling operations that occur per instruction can be reduced by simply increasing the
average grain size. A new model of parallelism that increases parallelism and grain size is
discussed in Chap. 6.

In addition quantifying the major performance barriers and outlining an approach to

minimizing them, we can also summarize our major overall conclusions:
e Hardware cache consistency techniques perform better than software techniques.

e Cache consistency and static load imbalance are the major sources of overhead.
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e Self-scheduling is the best technique for dispatching microtasks.

While the first two conclusions are straightforward, the last one warrants further discus-
sion. If we assume larger average grain sizes and increased parallelism as suggested above,
then self-scheduling will provide the best load balancing and the problem of data locality
will be minimized. However, if small-grain microtasks are to be scheduled, a modified
self-scheduling technique is possible, where one loop iteration is scheduled at a time, but its
value is dependent on the identification of the scheduling processor, as opposed to simple
first-come, first-served linear order. Such a modification can ensure that self-scheduling
will always provide load balancing good enough to overcome any small advantage the other

techniques may have in preserving data reference locality.

5.10 Summary

In this chapter we have evaluated the performance of different scheduling policies and
cache consistency techniques in conjunction with loop-based parallel programs. We have
also quantified the impact of the three sources of overhead that impede parallel program
performance which were introduced in Chap. 4. The discussion above also outlined an
approach for minimizing the impact of the three major performance barriers. In the fol-
lowing chapter we will introduce a programming model which implements this approach,
by increasing both the potential for parallelism and the grain size. This approach uses a
language model that permits procedural parallelism. In the next chapter, after developing
a suitable model of parallelism, an enhancement to our run-time support is discussed, and

the performance of the resulting system is presented.



CHAPTER 6

PROCEDURE PARALLELISM

6.1 Introduction

In the last chapter, we quantified the impact of the three major barriers which impede the
performance of parallel programs using a generally accepted language model for parallel
loops. In this chapter we overcome the performance problems discussed in Chap. 5 with
procedural parallelism. In the case of procedures, there are many more options and proposals
for a language model, as mentioned in Chap. 3. In order to build on our run-time system
design discussed in the last chapter, and to meet several design criteria (discussed below),
we propose a new language model for procedure parallelism. Following this proposal, we
describe the run-time support implementation as well as some performance results from

our multiprocessor simulation testbed.

6.1.1 Design Goals

The procedure-based approach outlined in this chapter is intended to offer a middle ground
between parallelizing compilers and concurrent languages, while eliminating any ad hoc
techniques for run-time support from the language. A major goal in our design, however,
is an efficient implementation. An important consequence of this goal is that the language

constructs for parallelism must be designed with an eye toward their run-time support

120
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requirements. It is critical that parallel language constructs requiring excessive run-time
system overhead be omitted from our language proposal. Furthermore, we require the
run-time support for these new constructs to be efficient enough to support loop-level
parallelism similar to that described in Chap. 5. This requirement enables us to benefit
from an existing and generally accepted language model of parallelism while incorporating
a new model capable of greater generality. Finally, our language design must also provide
nested parallel constructs and a larger grain size in order to overcome the major performance
barriers as discussed in Chap. 5.

In addition to overcoming the performance barrier of cache consistency, increasing
grain size also reduces the impact of scheduling overhead. This overhead/granularity
tradeoff is analyzed by compilers that parallelize at the loop level. Because fine grain
loop iterations must be combined in some cases to compensate for overhead, other sources
of parallelism within a program are being investigated, so that more processors can be
effectively used to increase speedup. Research involving interprocedural data dependency
analysis in sequential programs demonstrates a desire to extract more parallelism of a larger
granularity [90]. Our approach to parallel programming also addresses this need for larger
grain parallelism.

With these points in mind, we can state our goals in developing a parallel language
model and run-time system. Our approach focuses on providing language level mechanisms
for expressing parallelism. We will use the following words to denote the design goals

regarding our parallel programming system:

1. Efficiency. The overhead required to support parallel execution threads should be
as low as possible. As a result, only a minor penalty should be incurred when the

parallel program is executed on a single processor.

2. Flexibility. The parallel language constructs should allow expression of varying de-
grees of granularity from loop-level to procedural-level, which reduces the percentage

of execution time spent on overhead by optimizing for specific cases.
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3. Expressiveness. The language model should allow the straightforward expression
of a wide variety of parallel algorithms. An important aspect of this requirement is
that a dynamic model of parallelism must be supported (this is explained below).

4. Structure. In addition to flexibility and expressiveness, the parallel language model
should promote the development of well-structured programs. This goal requires that
critical sections are centralized and well-identified, so that deadlock among multiple
parallel threads is prevented.

By attaining these goals, we will have a parallel programming system that is efficient,
easy to use, and widely applicable. The efficiency goal ensures that the system will be
useful in both parallel and multistream execution modes. High performance of the run-
time system will reduce the minimum grain size of parallelism necessary so that system
overhead does not dominate execution time. The flexibility goal will allow the programmer
to specify parallel code that meets the practical minimum grain size requirement, so that
multiple processors may be profitably exploited. Based on our approach to the efficiency
goal, we expect the practical minimum grain size to be small, e.g., on the order of 10,000
executed assembly language instructions (as demonstrated in Sec. 6.4 below), so that large
amounts of parallelism may be exploited at run-time.

The expressiveness goal ensures that a wide variety of applications may be coded in
the parallel language. The parallel model is intended to support general purpose parallel
programming, which includes scientific computation-intensive applications as well as non-
numeric applications typified by sorting, searching, and branch and bound applications. The
model is not intended to provide mechanisms that are useful for programming embedded or
distributed systems, or even simulating such systems. It is also not intended for managing
physical resources, and so is not useful for programming operating systems. These types
of applications are better suited to concurrent languages, e.g., Ada, Occam, Concurrent C,
Linda, etc., which allow persistent communicating processes at the expense of run-time

system overhead, i.e., multitasking as described in Chap. 2.
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On the other hand, the model for parallelism we propose is intended to be more expres-
sive than parallel loops or sections that are based on sequential languages, especially those
constructs that may not be nested. To attain this goal, we incorporate a dynamic model of
parallelism. Even though parallelizing compilers may use dynamic scheduling techniques
to allocate loop iterates to processors (as described in Chap. 5), the structure of the program
parallelism is typically static, where the main program creates a number of microtasks to
execute the iterates, and then resumes control to set up the next parallel loop. In our dynamic
model of parallelism, any thread of execution can dynamically create additional threads
using an explicit create statement. This requires a run-time system capability to queue and
schedule multiple heterogeneous threads or procedure-processes. Using this model, the
bottleneck of the main program executing serially to set up each new homogeneous parallel
section is eliminated. Instead, new instances of parallel code are set up and added to the
run queue when they are created, and in parallel with other procedure-processes.

The structure goal is intended to encourage an easy to understand, straightforward style
of parallel programming, that does not hamper efficiency, flexibility, or expressiveness. If
implemented, the benefit of this requirement is that the model used forexpressing parallelism
prevents deadlock and “distributed critical sections”. Deadlock results when a parailel
program unit is suspended waiting for an event that will never occur, e.g., the unlocking of
asemaphore. Previous proposals for imperative parallel languages have provided constructs
which enable deadlock situations to be easily specified by a programmer. One example
is a general purpose semaphore or synchronization statement, €.g., a barrier, that can be
used anywhere in a parallel program. In this case, a barrier could be specified where each
processor must wait for all others to reach the barrier, but one processor may have branched
over the barrier. In other languages where barriers are not provided, it is still possible to
encounter deadlock through improper use of primitives for synchronous communication.
In any case, it is a difficult task for a programmer to manage all the possibilities of parallel

execution and ensure that deadlock will not occur in his or her program.
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Distributed critical sections occur when different programming units manipulate shared
resources, each within its own code section. Even though these accesses to shared resources
may occur in mutual exclusion, the program s still difficult to understand and debug. These
problems with semaphores were identified in [74] and [27], where proposals were made
to unify synchronization and communication to aid in centralizing a given critical section.
This idea was refined with the extended rendezvous concept of Ada, where a critical
section can be embedded within a rendezvous statement which is used for synchronization
and communication between tasks [77]. We propose a parallel programming model that
centralizes access to data that is logically shared by multiple program units as well, but
our constructs rely on parameter passing with process creation and termination instead of
rendezvous. Our model also prevents deadlock in the scheduling and execution of parallel

program units.

6.2 Language Model

6.2.1 Overview and Background

Our approach to thé development of a parallel programming system begins with the design
of a suitable language and its run-time system. In order to focus on the parallel nature of
the language, we extend an existing sequential language, namely C. We chose C since it
has simple constructs and is easily implemented. Also, from our point of view, C has a
desirable property in that functions cannot be nested statically. This is consistent with our
model of parallel program units, that are also restricted from being statically nested. Our
proposed language constructs can also be added to FORTRAN with only slight modification,
as we have already done in order to perform several experiments.

The extensions we propose for parallel programming include the addition of a parallel

procedure model to C. Each of these parallel procedures, called procedure-processes Or,
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to adopt the terminology of [97], simply paraprocs, share parameters with the process
that invoked it. Both process synchronization and communication are handled through the
create and merge primitives. Procedure-processes may create other paraprocs, so that a
logical tree of procedure-processes can be created that fluctuates dynamically.

This parallel procedure model bears some resemblance to others that have been proposed
previously, as introduced in Chap. 3. The system we propose here is intended to be simpler
and therefore more efficiently implemented than any of these other proposals. While
several ideas from the other systems have been incorporated, much of the complexity
has been stripped away. The mechanisms we propose allow procedure-processes to be
created in groups, and restrict synchronization to be performed through process creation
and termination only. Our model also allows for parallelism to be specified without the
possibility of deadlock.

The run-time system for this parallel language is designed to provide maximum per-
formance. In fact, the design of the parallel model of the language has been influenced
considerably by run-time system performance considerations. The origin of our run-time
system is the self-scheduling technique described in the previous chapter. By building
on this basic run-time system, we can support a dynamic model of parallelism where
procedure-processes are created in addition to being scheduled at run-time. Because par-
allel work can be created by any active process, the simple self-scheduling technique must
be extended to c;pcrate with a variable length run queue of available work. Also, due to
the semantics of process creation and termination, it is possible for procedure processes to
become suspended while waiting for child processes to complete. This requires a blocking
and resumption capability in the run-time system, in order to support the run-until-block

semantics.
6.2.2 Parallel Procedure Model

The model we propose for specifying program parallelism is based on adding a process
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model to the C language. This process model has semantics very similar to that of the
C function or FORTRAN subroutine. These procedure processes are quite different from
the processes or tasks of concurrent languages in that there are no communication ports,
channels, or rendezvous type communication calls. Instead, all explicit communication is
through parameters passed to the procedure-process at creation. Parameters are passed to the
created paraprocs using reference semantics, so any manipulation of their value is evident to
the parent paraproc. There is also a shared global memory space, but itis not protected from
simultaneous access by multiple paraprocs. There are no explicit synchronization primitives
provided in the language model except for the create and merge primitives for process
creation and termination. Furthermore, there is no data dependency checking between
procedure-processes. The programmer ensures that this is not necessary by explicitly
stating parallelism with procedure-processes. The rationale for our decisions regarding
these language constructs is given in Sec. 6.3, where the run-time system implementation

is described.

6.2.2.1 Declaration and Scope

The advantages we see in choosing C as a base language for adding parallel constructs are
its rules for function and variable declaration, scope, and visibility. Function declarations
cannot be nested in C, and we choose to apply this restriction to procedure-processes as
well, Paraprocs are declared in a manner almost identical to C functions (see Sec. 6.2.2.3
below for an example). Using semantics similar to C keeps the model both simple and
consistent with the C language.

Scope and visibility rules for variables are the same as they are for C [83]. Global
variables are declared at the beginning of the main program or are visible in other files
using the extern declaration. Variables declared within a procedure-process are not
visible outside the procedure-process. Variables may be visible to a subset of processes

all declared in a single file using the st at ic declaration. Accesses to these variables are



127
unprotected as is the case for global variables. Paraprocs themselves may also be declared
as stat ic, which restricts their visibility to the file where they are declared and prevents
paraprocs declared in other files from creating instances of them.

Paraprocs must be reentrant, so that multiple instantiations of them may all execute
simultaneously. All variables local to a paraproc are allocated on the stack, so all of them
are deallocated when the process completes, just as in the case of a procedure/function
return!. Static variables are not allowed in processes, they must instead be declared as
described above. Besides its own variables, a paraproc can only access parameters, global
variables, and visible static variables. Data that is to be shared by subsets of processes is
controlled by the programmer by using parameters or static variables. If the programmer
requires that access to shared static or global data must be synchronized, the create and

merge primitives must be used.

6.2.2.2 Creation and Termination

Paraprocs are created in groups of 1 or more in a single create statement. The paraproc
name and parameter list are specified in the create statement, and a variable is specified
as the destination of a procedure-process group value that is returned. If a parameter is
a scalar or structure, it is passed to each paraproc created. If a parameter is an array, the
value passed is indexed from the array base using the created child paraproc’s instantiation
number. This number is unique to each paraproc in the group, and is a value between 1
and N where N is the number of paraprocs in the group. Each procedure-process has a
predefined variable me, which is the value of its instantiation number.

After paraprocs are created, they execute in parallel with their creator and siblings.
Since any procedure-process may create additional paraprocs, the program can be thought

of as a “tree” of paraprocs executing in parallel. A paraproc terminates when it executes

! As an optimization, it may be possible to allocate locals in registers. This is discussed in
Chap. 7.
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a complete statement. All paraprocs must merge with their child paraprocs before they
can execute a complete statement. The merge statement specifies the procedure-process
group value returned by the create statement. When all of the child paraprocs in the group
terminate, the parent paraproc may continue past the merge point. This is effectively a
barrier synchronization, but its scope is limited to the parent paraproc and its children rather
than the entire program. A paraproc may create several different procedure-process groups
during its lifetime, execute with them in parallel, and merge with them in any order it
wishes.

The main thread of execution of the program is the “master” process, and it is the only
schedulable execution thread when the program begins. The program terminates when the
master thread completes, and this can only happen after it merges with all of its children.

6.2.2.3 Example Syntax

The following program fragments show the proposed syntax for the parallel procedure
model. The code is a parallel quicksort program adapted from a sequential version given in
[5]. The code assumes two predefined functions, £ indpivot andpartition, whichare
used to find the pivot value and partition the global array A to be partially sorted around the
pivot. These sequential routines are be found in [5], and similar FORTRAN versions are re-
produced in Appendix C. Because we require that all C functions be reentrant, findpivot
and partition can both be called by many paraprocs simultaneously. This algorithm
computes the correct result, because there is no data dependence between paraprocs. Any
paraproc sorting the array is working only with its own subrange. This subrange is only
shared with its parent paraproc, and the parent stops accessing the array before it creates
any children, This is an example of using the create statement to synchronize access to
shared data.

This algorithm demonstrates the ability of parallel procedures to specify a grain size

that is large in comparison to most parallel loop bodies. The calls to the serial routines
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findpivot and partition provide a large number of instructions to be executed
within a single parallel procedure. Because of the semantics of our language constructs,
these function calls in the body of the paraproc do not inhibit parallelization on procedure-
process boundaries.

In the example, the new reserved words needed for the parallel extensions are shown
in boldface. The first code fragment demonstrates the syntax used for declaring paraprocs
(Fig. 6.1). The keyword process denotes that the code is not a C function and instead is
to be executed as a parallel thread when created by a corresponding create statement. The
rest of the code is the same as it would be if the procedure-process was instead a function,
except for the complete statement, which is used to terminate the paraproc.

The quicksort procedure-process also includes create and merge statements. The
create statement is used to create a group of paraprocs using some visible procedure-
process declaration. In this case, the visible procedure-process is quicksort itself. The value
returned by create is a procedure-process group identifier, and is used later as a parameter to
the merge primitive. The number 2 in brackets in the create statement specifies the number
of paraprocs of the same type to be created. This value can be replaced by any integer
expression. The paraproc name and actual parameters are then specified. In this example,
the first created paraproc has access to iarg[0] and jarg (0], while the second has
access to iarg[1) and jarg [1]. These array values are assigned from local parameters
and variables before the create statement. These values correspond to the partitioning of

the subrange of the array A.

In general, each parameter is passed (with reference sem antics) toeach created procedure-
process, except for any parameters that are arrays with a subscript specified as a *. In this
case, each paraproc is passed a unique entry of the array based on its unique instantiation
identifier. The parameters in the paraproc to be created are declared as *’ed arrays also,
so that the compiler may generate the proper addressing sequence in instances where it

has yet to encounter the actual create statement. The array values are taken sequentially,
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typedef struct node { /* type declaration for records to be sorted */
char name [NAMESIZE] ;

int key:
}  RECORD;
RECORD A[N]; /* N is some predefined constant, A is array of records */
e e . /* other global are declared here */
process quicksort (i, j)
int i(*), j(*); /* declare type of parameters*/
{
int pivot, pivotindex, k: /* local variable declaration */
iarg(2], jargl2]: /* variable declaration for child paraproc parameters */
pid sorters; /* variable declaration for paraproc group handle */
pivotindex = findpivot (i, j): /* source code for findpivot is in App. C */
if (pivotindex != 0)
{
pivot = A[pivotindex].key:
k = partition(i,j,pivot); /* source code for partition is in App. C */
iarg[0] = i; jarg[0] =k - 1;
iarg[l] = k; jarg[l] = j;
sorters = create [2] quicksort (iarg(*], Jjarg[*]):
J* creates 2 paraprocs, each gets one value of unique index in iarg and jarg ¥/
merge (sorters); /* wait for the 2 sorter paraprocs to complete */
}
complete; /* paraproc terminates */
}

Figure 6.1. Paraproc declaration.

starting with the value at subscript 0, since arrays are zero-based in C. If the array is multi-
dimensional, with *’s in multiple dimensions, the indices are assigned with the right-most
index varying first (this is consistent with row-major ordering). These rules are significant if
the number of procedure-processes created is less than the total number of values in an array
parameter. If the number of paraprocs is greater than the number of values corresponding
to *’ed dimensions of an array parameter, an erroneous condition occurs. It is possible to
generate code to check this condition at run time if it cannot be determined at compile time,

e.g., the number of paraprocs to be created is not known at compile time. The issue of
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checking for erroneous conditions is discussed in Chap. 7.

The next line of quicksort shows the syntax used for merging with child paraprocs. This
statement acts as a barrier synchronization by suspending the parent until all of the children
referenced by the procedure-process group handle are completed. Since the semantics of
the parameter passing are by reference, any values returned by the child paraprocs are
available in the actual parameters after the merge statement. However, in this example,
iarg and jarg are unaffected. The child paraproc’s updates of A, though, are recorded at
the merge point.

Figure 6.2 can be thought of as a continuation of Fig. 6.1, where, after declaration of
the quicksort procedure-process, the main program appears. The main program creates
1 quicksort paraproc to sort the entire array. Because the creator does not suspend after
the create, other statements may be executed before the merge, including more create
statements for other procedure-processes. For example, several sorts on different keys may
all proceed in parallel if the array A is used as a read-only variable. This would require

some minor modifications to quicksort to make it more general.

main()

{
pid sorter; J* declare paraproc handle of predefined type pid */

e J* code to initialize A goes here */
sorter = create[1] quicksort(0, N - 1);

. e /* execution continues here after create */
merge (sorters) ; /* wait for sorter paraproc to complete */

Figure 6.2. Paraproc creation in main program.

6.2.2.4 Structure

The structure of our parallel language encourages a programming style where procedure-

processes are used as computational tasks while the parent paraproc coordinates the data
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and results. The merge primitive provides a barrier type synchronization mechanism.
Because this technique is somewhat limited, some algorithms may need to create and
merge with procedure-process groups many times in order to synchronize access to shared
data. Because of the efficient design of our run-time system (described in Sec. 6.3), we
believe this situation is acceptable. Furthermore, as we will show in the next section, our
basic parallel extensions prevent a deadlock situation from occurring.

Alternatives to our create and merge primitives that allow processes to synchronize
arbitrarily, e.g., semaphores, allow a coding style which is confusing, contains distributed
critical sections, and permits a deadlock situation to occur. Deadlock can also occur if
rendezvous style communication is used. Adding rendezvous capabilities also increases
process weight by adding communication queues to the process state, which makes run-
time system context switching more expensive. However, as stated above, some algorithms
are not suitable for our proposed programming model, and they will have to utilize other

languages that incorporate alternative synchronization techniques.

6.3 Run-Time Support

The run-time system is the key component in the implementation of a parallel programming
system. It provides the interface between the hardware, operating system, and the model of
parallelism at the language level. In order to describe the run-time system, we must make
some assumptions about the hardware environment. Our proposal is intended for a system
of one or more homogeneous processors, each having direct access to a logically global
shared memory space. This memory space may be contained in a central “main memory”’
unit or spread across several memory units. The memory space may be cached into multiple
caches or local memories that may share individual data items. In this case, the caches
are assumed to be kept consistent. Alternatively, the memory space may be spread across
multiple local memories and possibly a central memory, with no two memory units both

possessing a single data item. In this case, all processing elements must be able to directly
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access each local memory, e.g., [113], or the operating system must create the “illusion” of
shared memory [24].
The target architecture must also supply a non-interruptible read-modify-write instruc-
tion for synchronization. This instruction should be executable by the run-time support in
user mode so that overhead is kept to a minimum. The ZS series simulator testbed described

in Chap. 4 satisfies our requirements for a generic shared-memory multiprocessor.

6.3.1 Overview

The basic structure of the run-time system is based on microtasking. Each processor allo-
cated for the execution of the program begins by executing the run-time system scheduling
kemnel which runs in user mode (the role of the operating system is discussed in Chap.
7). The kernel code continuously attempts to obtain work for the processor from a global
queue. When a program begins, the main unit begins execution and the run queue is empty.
Only when additional procedure-processes are created does work enter the queue. All work
present in the run queue is ready for scheduling, there is no need to synchronize between
execution of queue entries. When work is obtained from the run queue, it is processed
until the run-time system is reentered, either to obtain more work, add work to the queue,
or to perform synchronization. When the run-time system is reentered, it is possible that
some updating of global run-time system data structures will be performed as a result of
the work just completed or the synchronization request. When all work is completed each
processor will be busy looping in the kernel attempting to acquire work. When the last
thread of execution terminates (the main program unit), an operating system call is made

so that those processors may be reclaimed and used for another job.
6.3.2 Scheduling

Our approach for scheduling processors can be described as a self-scheduling style. As

stated in Chap. 5, this term has been used to describe the technique where multiple processors



134
each obtain a unique iteration of a parallel loop they are to execute [120, 106]. The case we
describe is similar in that each processor acquires an index and other basic information from
the queue that determines which instantiation of which parallel procedure it is to execute.
The queue structure enhances the analogy, since one queue entry is made for each group of
procedure-processes created.

The queue is a linked list of work entry data structures, or frames. These frames are
similar to the frames used in the Spoc run-time system [95]. However, the frames we use
are simpler, and are not variable length execution frames for procedures. Instead, they
contain a fixed amount of basic information that is needed to begin a procedure-process. A
frame consists of the parallel procedufe’s starting address, the number of members in the
procedure-process group, a pointer to a memory space where parameter pointers reside, and
a pointer to the next frame in the work queue. The slot that holds the number of instantiations
to be executed also doubles as a synchronization counter. Frames are allocated from an
area in memory designated to be the frame pool. Because frames are of a fixed size, their
allocation and reclamation can be performed very quickly without any interaction with the
operating system.

When a processor schedules a paraproc, an indivisible fetch&decrement* operation is
performed on a global register or well-known memory location that contains the number of
paraprocs yet to be created for the procedure-process group represented by the frame at the
head of the run queue. This global value is initialized by reading the count of procedure-
processes to be created (which is also the synchronization counter) from the corresponding
frame when it is moved to the head of the run queue. The global value is read before the
fetch&decrement operation to assure that it is greater than zero. If it is not, the run queue
is empty, and the value is reread in a tight loop until it is greater than zero, indicating that

the fetch&decrement can proceed®. If the number returned by the decrement is greater

2 If the hardware does not support fetch&op, the operation is performed non-atomically using
the provided synchronization primitive to ensure mutual exclusion.

3 The processor may also check its stack in the loop to see if it has a blocked paraproc that
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than zero, the processor begins execution of the procedure-process indicated by the current
frame with the unique instantiation index returned from the fetch&decrement operation
(this index is the value of the me variable described above). The parameter pointer is used
to obtain access to the parameters passed to the procedure-process. The synchronization
counter in the frame is decremented when the paraproc executes the complete statement.

If the value returned from the fetch&decrement operation is not greater than zero, one
of two operations takes place. If the value is negative, the scheduling kernel is reentered to
reread the value in a tight loop until itis positive®. When the value becomes greater then zero,
the fetch&decrement is performed again. If the value returned from the fetch&decrement
is equal to zero, the last procedure-process of the current frame has been scheduled and the
global run queue pointer to this frame must be updated. The processor that assumes this
task must wait until all other processors that scheduled one of the current paraprocs hasread
the starting address and frame pointer before these run-time system globals can be changed.
These values are then updated from the next frame in the queue and the queue head pointer
is set to reference this next frame of work. If no new work is available, the processor must
wait for a new set of paraprocs to be created by entering the tight loop mentioned above. It
may also be possible for the run-time system to call the operating system to relinquish the
processor instead of waiting for more work. This can only be done under certain conditions,

and is discussed in Chap. 7.

6.3.3 Synchronization

Synchronization among multiple procedure-processes is expressed at the language level
using the create and merge primitives. There are no other synchronization primitives

provided, but mutual exclusion is observed by the run-time system when needed to perform

may be resumed. This is discussed further below.

4 In the Astronautics ZS series, the processor may idle until the global register becomes
positive. This avoids busy waiting. Also, the processor may check its stack to see if it has a
blocked paraproc that may be resumed. This is discussed further below.
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its services. Because create may specify parameters, communication between parent and
child is possible, and the merge primitive is used to synchronize access to this data.
Communication between sibling paraprocs must be coordinated by the parent, and is done
by passing the same parameters to more than one child paraproc. Further possibilities for
communication are discussed below, in Sec. 6.3.4.

Synchronization in the run-time system is performed by directly manipulating the
synchronization hardware or using the assembly-level synchronization instructions. Mutual
exclusion is necessary in the run-time system to protect the integrity of run-time system
data structures that are shared by all processors running in the kernel. The synchronization
performed in the run-time system allows the high-level synchronization statements of the
language to be supported, thus eliminating the need for programmers to use low-level
synchronization routines such as semaphores.

The barrier style synchronization of the merge statement is supported by decrementing
the synchronization counter in a frame on behalf of a completing procedure-process. The
merging parent checks this value to see if it is zero. If it is not, that paraproc must block,
and a new one is scheduled from the run queue with control being transferred in a manner
similar to a procedure call. When that procedure-process completes, the synchronization
counter for the blocked parent paraproc is checked, and if it is still not zero, another paraproc
is scheduled on that processor. If it is zero, control is returned to the parent paraproc, in a
manner similar to a procedure return. ‘

Because of the simple structure of synchronization in the language, it is not possible for:
1) a blocked parent paraproc to be waiting for the completion of a child paraproc; and2)all
other processors are trying to schedule more work; and 3) no new paraprocs are available to
be scheduled. This deadlock condition cannot occur because conditions 2) and 3) together
imply that any children created by the parent in condition 1) must have completed, and

the parent may resume execution. The only way that child paraprocs may block and in
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turn block their parent is if they themselves have created more paraprocs®. This, however,
violates conditions 2) and/or 3) for deadlock. There is no other way that paraprocs can
block waiting for other events, since there are no other synchronization primitives.

The only possibility for deadlock within the run-time system is when the frame pool
becomes exhausted. If the pool cannot be enlarged dynamically, then the program must
abort. However, a simple operating system call should trivially accomplish this task. Any
other chance for deadlock to occur comes from the actions of the operating system. This

issue is discussed in Chap. 7.

6.3.4 Communication

As stated above, communication between paraprocs is primarily through parameters that
are passed at paraproc creation. Data can also be shared through the use of global variables.
Programmers use create and merge to synchronize access to shared data as stated above.
Parameters allow parent paraprocs to share different variables with different child paraprocs.
For example, the syntax described above demonstrated how to split up the elements of an
array over a group of child paraprocs.

Parameters are passed with reference semantics to improve efficiency. Since we assume
a shared memory space, reference parameters are more efficient than making unnecessary
copies of variables. This approach also relieves the programmer from passing pointers to
objects that will be modified, as must be done when parameters are passed by value. Passing
pointers with value parameters would also complicate the syntax proposed in Sec. 6.2.2
above.

In addition to reducing the number of variable copies, another aspect of the run-time
system that provides for increased efficiency is the fixed size of frames. This is done to make

frame allocation and initialization very fast. It requires, though, that a set of parameters

5 Any created paraproc is ready for execution due to the dynamic nature of the run queue.
That is, there is NO work placed in the run queue unless it is ready for execution.
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be passed via a single address. This address refers to an area where the addresses of all
the parameters reside®. In order to implement this approach, there must be a quick way to

allocate local memory for a procedure-process.

6.3.5 Stack Management

In order to provide this local memory, we assume that each processor has a chunk of
sequential memory locations that it can efficiently manage as a local stack. This stack is
used in the classic way for procedure (C function) calls and operating system calls. For
parallel procedure-processes, it is used for parameter passing with a pointer to the parameter
space placed in the corresponding frame. Also, the stack is used for saving contexts of
merging paraprocs and accessing synchronization counters at scheduling points. Thus, the
stack is shared concurrently among all paraprocs scheduled on a particular processor that
have yet to complete. Only one paraproc at a time is active on any processor, so the sharing
of the stack is very similar to the sharing that goes on between the caller and callee of a
function.

When a procedure-process begins execution, it allocates space for its local variables
using the stack in the usual way. The address in the frame that refers to the parameter
space is available to the paraproc, and several strategies are possible for using this address
to refer to the parameters. These techniques may involve use of the stack. When a new
group of paraprocs is to be formed, the stack is used to allocate a parameter space area and
an address referring to this area is placed in the new frame. After paraproc creation, the
creator continues execution, and the stack may continue to grow in size. When a paraproc
terminates, it returns the stack top pointer to reflect the top of the stack when the paraproc
began execution. Figure 6.3 shows a logical organization of stacks and frames in the run

queue.

6 Possibilities for optimizing parameter passing are discussed in Chap. 7.



139

Copled into Queue Head Queue Tall

Shared Reglsters
>| Count Count Count “| Count _L
Addr Addr Addr Addr =
Param,| Param Param Param
Ptr Ptr Ptr Ptr
. FP FP FP FP
Frame Frame Frame Frame
\.
< :
Stack Stack

Figure 6.3. Processor stacks and frames in run queue.

If a paraproc executes a merge statement and the child paraprocs have not all yet
terminated, the parent paraproc must block. Any registers that must be saved by the parent
paraproc are pushed on the stack in addition to a return address, as is similar to the case
of a procedure call. Also, the last item to be pushed on the stack is the address of the
synchronization counter that the blocking paraproc is waiting on. The processor then jumps
to the run-time system’s self-scheduling code to obtain more work.

This approach relieves paraprocs from saving registers on the stack before they may
begin execution. Since a blocking paraproc saves its own context’ on the stack, it need only
save the registers that it will use after the merge point. In the programs we have implemented
with this technique, the amount of registers to be saved at a merge point is usually less than
4, as opposed to saving all general purpose registers upon entry. Furthermore, this technique
enables a paraproc context to be transferred to another processor (or virtual processor) via a
stack pointer. Although this type of migration has not yet been implemented, its usefulness

and exact implementation are discussed in Chap. 7.

1 Essentially its stack space and general purpose registers, not special purpose registers or
other information managed at the operating system level
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When a paraproc completes, it returns the stack to its original location as described
above. A check is then made to see if the top of the stack is a valid pointer to a syn-
chronization counter that is now equal to zero. If it does, the counter reference is popped
and a procedure-style return is executed so that the blocked parent may resume. If the
synchronization value is non-zero, a jump to the run-time system’s self-scheduling code is
executed instead.

Because the stack is used as a link to parameters passed to child paraprocs, the parent
paraproc is required to merge with its children before completing. This is to prevent the
stack top from being returned to a point that deallocates the parameter space. We believe this
a not a serious restriction, since it is likely for parent paraprocs to require synchronization
with their children so that shared data can then be manipulated safely. This restriction also
permits the use of fixed length frames, since the stack is used for the variable length portion
of the logical execution frame.

While our system for suspending and resuming a merging procedure-process may
seem quite unconventional, we believe that this technique saves us considerable execution
overhead. An alternative scheme would be to save the entire state of the suspending
process in a process control block (PCB), and link all such blocks in a queue of blocked
processes. This approach would increase the overhead of scheduling, since a check of the
suspended process queuc would then be necessary. We believe the procedure call and return
technique to be more efficient, as calling and returning sequences for procedure calls are
well understood, and can be implemented with only a few instructions. This approach also
allows local stack areas to be used for process stacks, eliminating the need to reload stack

pointers from and allocate stack areas in PCB’s.

6.3.6 Microtask Graph

Figure 6.4 shows a revised version of the microtask graph introduced in Chap. 5. In this

version, additional ellipses are present to denote additional run-time system activities. Also,
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a dashed line is included to denote a fence in a microtask where execution may suspend due
to a merge point. The microtask groups, or fasks in the terminology of [106], are denoted
in the graph as rectangles with rounded corners. These tasks are parallel procedure groups,
and a microtask is an allocation of one parallel procedure from the group. Although the
main program thread is depicted as a paraproc in the figure, we must point out that this task
contains only one microtask. Tasks that do not include a potential block point could, in
principle, also be doall loops. The prospect of merging these two programming models
is discussed in Chap. 7.
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Figure 6.4. Microtask graph for parallel procedure program.

The program depicted in Fig. 6.4 begins execution in the same manner as before. Upon
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an initial arbitration, one processor begins execution of the main program while the others
are dispatched to the scheduling code. The main program sets up the parameters for the first
group of paraprocs and then enters the run-time system to “create” them. After creation,
the main program resumes execution, and the scheduling kernel is free to start allocating
paraprocs to processors. When the mainline reaches the merge point, it must block and
branch to the scheduler if its child paraprocs have not yet completed, as indicated by the
execution dependency. If the children have completed, the main program microtask may
continue execution and then exit to the operating system.

Although not shown in Fig. 6.4, the group of paraprocs shown on the right could
themselves create another group of paraprocs. In this case, the creating group would
contain a merge point, which would represent a potential block point for every paraproc
in the group. Also, since all created paraprocs share the main program microtask as a
common ancestor, they each contain a conditional branch to the main program’s resume
point. The condition is a check of the synchronization counter pointed to at the top of
the stack on one of the processors as described above. In fact, with multiple groups of
paraprocs created and executed simultaneously in a single program, it is possible for a
completing paraproc to branch to a blocked paraproc embedded in its stack, even if the
two are unrelated. Finally, we should also point out that the microtask graph represents
code fragments and their relationships. It does not indicate the number of instances of any
particular group of microtasks, so that multiple levels of instantiations are represented only
by one microtask group per level, even though at run-time there may be several groups at

each level.

6.3.7 ZS Implementation

The implementation of parallel procedure run-time support for the ZS architecture was
straightforward. The frames allocated and initialized as part of paraproc creation were

assembled into a linked list as the run queue. The head frame of the run queue was placed
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in the semaphore registers, so that scheduling could be performed quickly without the
need for chasing pointers. Only one processor was needed to update the list and copy the
head frame into the semaphore registers once all paraprocs of the current frame had been
scheduled. The assembly code for frame allocation and initialization, scheduling and run

queue management, and paraproc blocking and resumption can be found in Appendix A.

6.4 Experimental Results

Our experiments with the parallel procedure run-time system described above involved the
experimental testbed described in Chap. 4. We tested two programs using the run-time
system. The first was a new version of the TRED program described in Chap. 5. The
second was a parallel quicksort program based in part on the code sections used in the

language discussion above.

6.4.1 Source Programs

6.4.1.1 TRFD

The TRFD program used in these tests is very similar to the one used in Chap. 5. However,
there are two major differences in the parallel procedure version. First, each parallel loop is
treated as if it were a parallel procedure. This transformation is one that could be performed
by a compiler to make parallel loop code suitable for our parallel procedure run-time system.
However, some minor code changes are necessary at the assembly language level in order
to use the paraproc run-time system. Instead of passing values through semaphore registers
to parallel code loop bodies as done in the code of Chap. 5, these values are passed as
parameters using stack space and the frame structure described above. Also, each paraproc

body is passed the frame pointer of the parent code, so that read only stack variables may
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be shared. This last change may be thought of as an enhancement that enables a reduction
in parameter space for paraproc calls when values are used in a read-only fashion.

The second major change for the paraproc version of the code is the inclusion of nested
parallelism. This approach allowed parallelizing the outermost loop of the program and
the first nested loop in the final parallel loop of the OLDA subroutine. As mentioned in
Chap. 5, the TRFD program overlays the memory space for several arrays in one large
common block. Because the outermost loop of the program repeats the entire calculation
for different values of n, the memory space in this common block had to be expanded
to avoid unnecessary data dependencies between the calculations associated with different
values of n. This required an expansion from 16.8M bytes of the parallel loop version
to 36M bytes with the procedure version that can simultaneously accommodate values of
n equal to 10, 15, 20, 25, 30 35, and 40. However, in our simulations with » = 10 and
n = 15, only 4M bytes were needed.

The nested parallel loops in the OLDA subroutine did not require any further memory
expansion. It did, however, require some pre-calculation of integer values before entrance
into loop bodies. In the sequential version of the code, these integer values are accumulated
in the bodies of the loops. The pre-calculations of the parallel procedure version were also
required for the parallel loop version of the code described in Chap. 5.

The addition of the nested parallel loop in the OLDA subroutine increased the number of
microtasks for this last loop from n to n * (n + 1)/2. The parallelization of the outermost
loop of the entire program did not increase parallelism for the test where n = 10. However,
when n = 15, the program also repeats the calculation for n = 10. In this case, the entire
calculations involving all parallel loops may execute simultaneously for both n = 10 and

n = 15. The code for this version of TRFD is included in Appendix C.

6.4.1.2 Quicksort

The parallel procedure code for the quicksort program is based on the recursive sequential
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code found in [5] and used above to demonstrate the syntax and semantics of our language
extensions. For our experiments, though, the array of records to be sorted was made up of
floating point numbers which were also used as keys. The program was also parallelized at
the assembly language level after compiling sequential portions written in FORTRAN. The

FORTRAN version of the parallel procedure quicksort program is given in Appendix C.

6.4.2 Performance

6.4.2.1 TRFD

Figures 6.5 and 6.6 show the speedups for the parallel procedure version of TRFD. These
graphs should be compared to Figs. 5.12 and 5.13 found in Chap. 5. Recall from Chap.
5 that each bar in these graphs is made up of overlays of bars for each cache consistency
technique. That is, for example, the area shaded for assumed consistency shows the
additional performance gain over shared hardware consistency. Also, there is only one bar
per processor in Figs. 6.5 and 6.6 because only simple self-scheduling is used to dispatch
microtasks.

Forn = 10, we see that, for more than 4 processors, the increased parallelism associated
with the paraproc version provides more speedup (20% to 25%) for both assumed and shared
hardware consistency. Recall though, that the increased parallelism for n = 10is due solely
to the nesting in the last parallel loop in the OLDA subroutine. The enables the creation of
55 microtasks for the inner parallel loop as opposed to 10 outer loop microtasks with the
original version. However, despite the increased parallelism and the potentially increased
overhead associated with it, the performance of the program on 4 or less processors is still
nearly linear even for shared hardware consistency. This suggests that the overhead for the

paraproc run-time system is close to that of the parallel loop run-time system.
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Figure 6.5. TRFD speedups for n = 10.
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Figure 6.6. TRFD speedups for n = 15.

For n = 15, the speedups are up to 25% better for both assumed and shared hardware
consistency. However, in this case, the speedup is linear for assumed consistency and nearly
linear for shared hardware consistency even for 16 processors. In addition to the larger
problem size which includes more microtasks of a larger grain, this program also includes
more parallelism due to the parallelizing of the outermost loop. Figure 6.7 illustrates the

additional parallelism for the paraproc version of TRFD over the loop version for n = 15.
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As with n = 10, the increased parallelism and support from the run-time system does not
reduce speedup for smaller numbers of processors which cannot, in general, make use of
the additional parallelism.

DOI=10,N,5 DOALLI=10,N,5

Loop Version Paraproc Version
AR MM ——
DOALL EXECUTION
MERGE  FLOw

Figure 6.7. Parallelism for TRFD, n = 15.

Although the speedups are better overall for the paraproc version of the code, the
difference between assumed consistency and shared hardware consistency is greater. The
cache consistency overhead is greater in the paraproc case due to its tendency to reduce data
reference locality. The speedup for private hardware consistency and non-cacheable data
is much less for both loops and paraprocs. This is due to the increased overhead associated

with these consistency techniques.
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TRFD, n = 10 | TRED,n =15
P || Shared | Private_| Non-Cacheable | Shared | Private
1] 000%| 0.00% 251.95% || 0.09% | 0.00%
21 415% | 49.41% 260.88% || 2.73% | 54.81%
3| 491% | 61.68% 274.27% || 4.40% | 69.14%
4 | 10.44% | 71.76% 285.86% || 4.49% | 81.37%
8 7.97% | 135.72% 347.75% || 1.50% | 131.20%
12 || 27.54% | 191.40% 404.00% || 8.01% | 191.44%
16 || 14.15% | 267.81% 492.76% || 6.89% | 268.68%

Table 6.1. Cache consistency overhead for paraproc TRFD.

[Scheduling ]| Assumed [ Shared | Private |
n=10] 99.3% | 98.2% [ 742%
n=15| 99.6% | 98.9% | 73.8%

Table 6.2. Data cache hit rates for paraproc TRFD, 16 processors.

Tables 6.1 and 6.2 show the cache consistency overhead and the cache hit rates re-
spectively for TRFD using paraprocs. These tables can be compared to Tables 5.8 and
5.9 in Chap. 5. For the paraproc version of the code, the cache consistency overhead is
greater. It is also somewhat volatile for the smaller version of the program where n = 10.
This increase in cache consistency overhead is confirmed by the reduced hit rates for the
paraproc version of TRFD. This is further evidence that the increased level of parallelism
combined with simple self-scheduling results in a smaller amount of data reference local-
ity per processor. The probability that a processor will schedule consecutive microtasks
associated with the same run queue entry is decreased with the paraproc run-time system.

However, in spite of the reduced hit rates and increased cache consistency overhead,
the speedups for the paraproc version of TRFD are greater. This clearly shows that the
advantage of increased parallelism with its positive effect on load balancing far outweighs
the disadvantages of reduced data reference locality. While this may not be true for programs

with very small grain microtasks, we believe this example is representative of codes that can
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benefit from fine-grained parallelization. The microtasks created in the TRFD program are
on the order of 10,000 executed assembly language instructions. Other programs with very
small grained microtasks, e.g., less than 1000 executed assembly language instructions, have
further problems associated with run-time support overhead in addition to load balancing

and cache consistency overhead.

6.4.2.2 Quicksort

Figs. 6.8 and 6.9 show the speedups for the parallel quicksort program for 6400 and 50,000
floating point numbers respectively. Similar results were also observed for 1000 numbers,
with speedups slightly higher than the 6400 number case. While the speedups for greater
numbers of processors is somewhat disappointing for this program, it is important to note

that the speedups are at least respectable for 2, 3, and 4 processors.
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Figure 6.8. Quicksort speedups for n = 6400.

The overall limit to speedup for this program is due to the nature of its parallelization.
The FINDPIVOT and PARTITION routines consume a large percentage of the execution

time for each paraproc. Also, the running time for these routines is dependent on the size of
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Figure 6.9. Quicksort speedups for n = 50, 000.

the interval they are working on. At the beginning of the program, before the first recursion,
there is only one paraproc executing and the interval to be processed is the entire array A.
After the first recursion, there are only 2 paraprocs executing, each with an interval roughly
one-half the size of A. Clearly, there is a large portion of execution time spent with less than
4 schedulable paraprocs. Also, as parallelism increases, grain size decreases.

In addition to the reasonable speedups for 2, 3, and 4 processors, there is further
evidence that the run-time support code is not the limiting factor in speedup. In an attempt
to compare our paraproc quicksort program to “the best sequential algorithm” in order
to compute speedup, we tested a sequential FORTRAN version taken from the Numerical
Recipes [111]. This program contained loops and GO TO statements together with a stack-
like data structure to implement recursion at the FORTRAN source level. This code structure
inhibited loop-level parallelization due to data dependencies. Also, in an attempt to avoid
a slowdown with quicksort in the case where the data set is already sorted [5], a random
number generator was incorporated to aid in partitioning the intervals.

In our tests with this program, it ran between 38% and 76% slower than our paraproc

version on 1 processor. This indicates that the “retrofit” of recursion at the source level
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combined with the random number generator required more overhead than our paraproc

run-time system and the procedure calls to FINDPIVOT and PARTITION.

6.5 Summary and Conclusions

In Chap. 5 we identified the need to exploit more parallelism and increase grain size in order
to alleviate the problems with load balancing and cache consistency overhead. Our goal
in this chapter was to provide language extensions to specify this parallelism in terms of
procedures, and to implement efficient run-time support for both these language extensions
and parallel loops. We required an efficient implementation of the run-time support so that
a solution to the problems with load balancing and cache consistency overhead did not
create new problems with run-time scheduling and synchronization.

Our results from experimentation with the paraproc run-time system with the TRFD
program suggest that we have met our performance goals. Although cache hit rates de-
creased slightly, program speedup increased significantly in some cases. Perhaps more
importantly, in no instance did performance decrease as a result of the more robust run-time
support code. This confirms the efficiency of our run-time support implementation.

We also demonstrated speedup potential for recursive algorithms using our language
extensions and run-time system. However, the experiments with the parallel quicksort
program also exposed the limits of speedup due to the nature of the parallel algorithm
itself. Although enhancements to the run-time system and its operating system interface
may overcome this difficulty (discussed below), it is also possible to improve speedup effi-
ciency by taking advantage of the language features to specify more parallelism, including
heterogeneous parallelism. For example, the quicksort program could be modified to sort
using pointers to records with multiple fields and keys. Then, several sorts on different
keys could proceed in parallel. Also, since paraproc creation does not block the parent until

a merge point, other paraprocs could be created to perform other operations on the same
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shared data. For example, a set of student records could be processed to determine a curve
for test scores in parallel with sorts based on student names and identification numbers.

It is also worth noting that these paraproc programs specify synchronization implicitly
through the language constructs. There is no need for explicit programmer specified
synchronization through system calls. This provides the deadlock prevention property of
the language extensions, while still allowing a wide variety of general-purpose parallel
algorithms to be expressed. This language structure meets the design criteria stated in Sec.
6.1

In all of our tests, there are no operating system calls, I/O statements, or OS-level
context switching. As a result, virtual processors are in effect physical processors, and
the program’s allocation does not vary at run-time. This is not unreasonable for these
tests, since all program running times are less than 1 second, a reasonable amount of time
observed between interrupts for an OS-level process on a shared-memory multiprocessor®.
However, in order to make our system feasible in a realistic setting, it must handle OS
interaction and be able to vary processor allocation dynamically. For example, the parallel
quicksort program is one which could benefit from acquiring additional processors only
after several recursions.

The following chapter addresses the issues of merging our run-time system with a
multiprocessor operating system. As always, the goal is to provide additional capabilities

without unnecessarily increasing overhead.

8 Although an interrupt may occur as often as once every millisecond to check for schedulable
0S-level processes, these interrupts may only be felt by one processor, possibly idle and not
allocated for use by a parallel program. Hence, an observed time between interrupts of 1 second
is not unreasonable.



CHAPTER 7

SYSTEM ISSUES

7.1 Introduction

In the previous chapters we have addressed problems with parallel language models and
their associated run-time support requirements. In this chapter we address the issue of
incorporating our run-time system design into a viable system similar to one that could be
produced commercially. In order to overcome the restrictions of our simulation testbed
and develop a run-time system compatible with existing multiprocessor operating systems,
minor modifications to the run-time system described in Chap. 6 are provided. We use this
run-time system as a baseline because of its ability to efficiently support both loop- and

procedural-level parallelism.

7.2 Language Model

As mentioned above, the run-time system described in Chap. 6 can efficiently support both
parallel loops and parallel procedures. This leads us to a language model that contains
the constructs introduced in Chap. 6 to support parallel procedures, as well as a doall
construct to support parallel loops. This enables the programmer to specify parallel loops,
but still allows the compiler to detect them. The compiler may also coalesce nested loops

to increase grain size and reduce overhead [134]. By adding parallel loop constructs to

153
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the language, we can allow this type of parallelism to be expressed naturally, without
forcing the programmer to use procedure-processes. Furthermore, by adding a doacross
looping feature, inter-iteration synchronization may be introduced and handled by the code
generator. If we assume that the compiler generates the correct sequence of instructions
for synchronization, our argument for deadlock prevention is still valid (provided that the
microtasks are scheduled in the order specified by the doacross, and that processors do
not suspend at these synchronization points). Parallel loop constructs have been proposed
and incorporated into several FORTRAN [73, 87] and C [97] dialects. One of those proposals

could be adapted to coexist with our language extensions for parallel procedure-processes.

7.3 Code Generation and Optimization

7.3.1 Code Generation

The compiler for a paraproc-based language will require a few modifications in convention
and code generation for parallelism. For one, all procedure code must be reentrant, so that
multiple sequential procedure calls can be executed by multiple paraprocs simultaneously.
Second, the code generated for paraprocs must save and restore registers as part of a merge
operation, but not as part of the standard procedure entry code. Thus, sequential procedures
must save all used registers on entry, but paraprocs do not. The keyword process isincluded
in paraproc declaration to aid the compiler in determining which register save policy to
employ at different points in the program.

The compiler may also be forced to mix parameter semantics between calls to sequential
procedures and creation of paraprocs. Paraprocs use reference semantics not only to relieve
the programmer of explicitly passing pointers, but also to facilitate data sharing between
parent and child through the use of shared memory. The implementation is free, however,

to use value parameters in cases where the value is not modified by the child. This may be
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desirable in the case where a number in a register is to be passed. A mixing of parameter
passing semantics is not uncommon in high-level languages, particularly when sophisticated
optimization is involved.

The code generated for create statements must also handle the condition of array slices
(denoted with an *) passed as parameters. This code is rather straightforward to generate, in
part because of the syntax, which tells the compiler when it is necessary at both the create
point and at the entry point of the paraproc. However, this feature requires that the number
of paraprocs created be less than or equal to the number of array values. In some cases,
the compiler can detect a violation of this condition and issue an error message. In other
cases, a run-time test at the point of the create statement can detect an erroneous indexing
condition. Such a test would certainly increase overhead, but it could be omitted once the
debugging phase is over.

Outside of the requirements listed above, the recognition of, and code generation for,
each paraproc keyword is rather straightforward. The syntax has been designed to help
in this effort. For example, the data required for the create statement can be easily
parsed and converted into a call to the run-time system routine aframe. The merge and
complete statements simply generate standard instruction sequences. The only variable
is the number of registers to be saved by the merge statement. The complete statement
is almost unnecessary, but is included to make the compiler’s job easier. However, the
compiler could detect a missing complete, or a case where a complete occurs before a
necessary merge. Assembly code examples for the code generated to implement these

statements can be found in Appendix A.

7.3.2 Optimization

Our system for procedure-processes proposed in Chap. 6 also provides several opportunities

for optimization. The techniques for parameter passing and local stack variable allocation
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are prime targets for optimization. Because the run-time system assumes no data depen-
dence between procedure-processes, parameter values may be copied into registers, as long
as they are written back to their original locations in memory before the next create or
merge statement (hereafter referred to as a synchronization point). Local variable allo-
cation may occur in registers and avoid the stack entirely if they are not to be passed as
parameters. On the other hand, stack variables that are to be passed as read only parameters
to child paraprocs can be accessed via the parent’s frame pointer, which is copied into a
new frame at paraproc creation.

These optimizations can also be used in generating code for parallel loops. In this case,
it may be possible for the generated code and run-time support to revert back to the baseline
self-scheduling system. If the compiler can determine that no other procedure-processes
may be active, frame allocation may be bypassed, and the global registers or well-known
memory locations may be initialized directly. If other paraprocs may be present, frame
allocation and initialization are required, but parameter passing is not needed. The shared
variables are referred to directly as globals, and registers may be used to hold their values
between synchronization points. These techniques can also be applied to paraprocs that do

not create any children, since they can be executed inline.
7.4 Operating System Interface

The role of the operating system (OS) in our parallel processing system is simple and
straightforward. We still require the OS to support I/O requests, shared virtual memory,
and library routines, e.g., timing support. The concepts of time and process priorities are
omitted from our proposed language, because they complicate the implementation. On the
other hand, we believe that a predefined dynamic memory allocation routine (similar to
the Unix routine malloc) should be supported by the run-time system, in order to avoid
unnecessary OS interference. This routine must account for the fact that multiple paraprocs

may be calling it simultaneously. This is easily implemented by the run-time system, with
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its ability to directly execute instructions for synchronization. Separate memory areas for

the frame pool and dynamic allocation should be acquired from the OS at program startup.
7.4.1 Virtual Processors

As mentioned in Chap. 2, the method we propose for OS scheduling of the parallel program
is the virtual processor approach. The program is allocated some number of OS processes
or threads, which it uses as virtual processors. The virtual processors begin execution of the
run-time system as a user program. The OS manages the scheduling of virtual processors
on physical processors. Clearly, a policy of allocating a number of virtual processors equal
to the number of available physical processors should reduce OS level context switching
overhead. The virtual processor approach to an OS interface has been used successfully by
several compilers, .g., the Ada compilers for the Sequent Symmetry and Encore Multimax,
and parallel language environments [23]. In addition to scheduling virtual processors, the
OS must also ensure that these OS processes can share their virtual memory space. This
system enables the run-time system to run in user mode and manage the program level
parallelism, even though it is transparent to the programmer.

In order to ensure that deadlock will not occur in the program, we require the OS
scheduler to prevent starvation of any virtual processor. However, if a parent paraproc is
not blocked at a merge point on a given virtual processor, the corresponding OS process may
be relinquished by the run-time system at a scheduling point associated with a complete
statement, decreasing the program’s allocation of virtual processors by 1. This is desirable
in the presence of increasing system load, where the number of OS processes due to other
jobs may increase to be far greater than the number of physical processors.

With some modification to the run-time system, it is also possible for the program to
relinquish a virtual processor at a paraproc merge point. When a paraproc blocks at a merge
point, it saves its registers and a pointer to its synchronization counter on the stack, and

branches to the scheduling kernel. Alternatively, a system call could occur to relinquish the
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virtual processor. However, all virtual memory allocated to the program must be retained,
because the stack space essentially contains the context of the blocked paraproc. These
non-resident stack pointers can be saved in a stack pointer queue. Then, in the future when
other virtual processors are looking for work, they can switch stack pointers and resume the
blocked paraproc. If a stack pointer switch condition is checked for when the run queue is
empty and no ancestor on the current stack is available for resumption, the conditions for
preventing deadlock are not violated. Any blocked paraproc in a non-resident stack will
eventually be resumed, enabling the resumption of any ancestor paraprocs waiting for it to

complete.

74.2 1/0

The other major requirement of the operating system is the support for /O operations. As
mentioned in Chap. 2, problems can occur when multiple microtasks in a single program
are attempting I/O operations using the same file descriptor information. In general, we
believe that the program should be responsible for synchronizing 1/O requests between
microtasks. This is most easily implemented by coordinating I/O operations in parent
paraprocs, after child paraprocs complete. The low overhead synchronization present in the
paraproc system makes this a reasonable approach. However, in the case of heterogeneous
parallelism, multiple I/O requests may be executed simultaneously by different parent
paraprocs. In this situation, it is likely that different file descriptors will be used for what
are apparently unrelated I/O activities. However, some I/O support for synchronizing I/O
requests may be necessary as stated in Chap. 2.

Another issue related to parallel program I/O activity is blocking and scheduling of
virtual processors. If a virtual processor is blocked during I/O activity, and then resumed
following it, an OS level context switch takes place which temporarily blocks the microtask
that virtual processor was executing. If the block time is significant, it can hamper the

progress of the rest of the program if it is waiting for completion of that microtask. However,
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the context switch after I/O completion will resume the microtask at the point of the system
call, and the program can proceed without experiencing deadlock.

Alternatively, some systems, e.g., Mach, have introduced an asynchronous system call
which allows the virtual processor to proceed while the I/O activity is executing. The
status of the call is checked at a later time, to determine if the microtask may be resumed.
This approach can be incorporated into our run-time system by treating the I/O request as
a creation of a child paraproc. The microtask simply blocks at a merge point using the
stack in the usual way. The code generation for the system call and block/merge sequence
will be modified slightly to make the pointer to the synchronization counter act as a check
on the completion of the system call. This may require some operating system support
that indicates system call completion by zeroing out a word at a given address. This
approach can be used with any system call which the operating system is willing to execute

asynchronously.
7.4.3 Scheduling

Relevant to the discussion on I/O and asynchronous system calls is the issue of OS-level
scheduling and its impact on the parallel program. As mentioned in Chap. 2, some proposals
have been made that advocate gang scheduling or coscheduling, where all virtual processors
for a given parallel program are scheduled and preempted en mass. This approach is
probably necessary when all virtual processors are executing microtasks involved in a
doacross loop, since the inter-iteration synchronization does not result in a run-time
system level context switch. In this case, coscheduling avoids a situation where all but
one microtask is executing a busy wait, wasting processor cycles. However, in general we
believe that the support for nested heterogeneous parallelism in our system will avoid this
pathological situation. Because the run-time system can adapt to a dynamically varying
allocation of virtual processors while still avoiding deadlock, the coscheduling requirement

is not necessary. If a situation arises where most virtual processors cannot schedule work,
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they may be deallocated, thus freeing up resources for other jobs. Other virtual processors
may be acquired later in the program, and they will assume the stack pointers queued by
the earlier virtual processors. Of course, a policy of coscheduling by the operating system
will not harm the execution of a parallel program using our run-time system.

Perhaps a more important issue related to OS scheduling is the preemption of a virtual
processor by the operating system for the purpose of running a different virtual processor
from a different program. The blocking of the virtual processor may result in the blocking
of a microtask or run-time system action related to synchronization. As long as the virtual
processor is resumed eventually, deadlock will not result for the parallel program. Also,
as mentioned above, the capability of the run-time system to free up resources when work
cannot proceed will avoid the wasting of resources or operating system thrashing.

However, in this case, performance of the parallel program may suffer. A better approach
in this situation would be for the operating system to “nudge” the program to voluntarily
relinquish a physical processor. With this approach, a virtual processor voluntarily blocks
when its microtask reaches a merge point. As described above, the stack pointer is saved,
and the virtual processor is released. An optimization may retain the virtual processor
for use later instead of deallocating it. This approach to context switching and resource
allocation will require some operating system support as well as minor run-time system
changes. Of course, there will be some situations where “nudging” is not practical, and the

consequences of the first approach must be endured.

7.5 Summary

In this chapter, the integration of our paraproc run-time system with a language model,
compiler, and multiprocessor operating system has been presented. The language model
supports parallel loops, both implicit and explicit, as well as parallel procedures. The

compiler requirements for such a language are straightforward. In most cases, the OS
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interface can be implemented using existing operating systems for shared-memory multi-
processors. Additional capabilities can be implemented with minor modification to both

the run-time system and the operating system. We believe that these modifications can be

easily implemented.



CHAPTER 8

SUMMARY AND CONCLUSIONS

In this thesis, we have presented a design and implementation of run-time support code
for parallel programs targeted to a shared-memory multiprocessor. The run-time system
presented supports both parallel loop and parallel procedure language models. For the
parallel procedure language model, we have introduced language constructs that enable
the expression of this form of parallelism without the possibility of deadlock, while not
unnecessarily complicating the run-time system. We have also demonstrated the efficiency
of our run-time support code through experimentation using our simulator testbed. These
tests also aided in making final design choices for the run-time system, and identified
performance bottlenecks. Finally, we have presented an approach to integrating our run-
time support into a complete system comprised of a language, compiler, run-time system,
and operating system. For the most part, the complete system can be implemented using
software technology which is available today.

As a result of this work, we have observed a number of performance characteristics
which impact design choices for compiler writers and run-time support implementors. Our

research has led to the following conclusions:

o With our user-mode, language-specific run-time system, the major performance bar-
riers are cache consistency overhead and load balancing, not run-time scheduling and

synchronization.

e The best scheduling algorithm depends on the grain size and its variability, as well as

memory referencing frequency and pattern.
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e The improved load balancing of self-scheduling often offsets the higher cache hit
rates of chunk or guided self-scheduling.

e Overall, hardware cache consistency techniques provide for much better performance

than software techniques.

Our main contribution with this work is the first quantitative study of run-time support
structures for shared-memory parallel programs. We have identified three major perfor-
mance barriers which impede the speedup of parallel programs and quantified their impact
on the performance of a multiprocessor system. We have also quantified the tradeoffs be-
tween parallel language semantics and implementation requirements, and used the results

from the study of performance barriers to direct a new design for a parallel language model.
8.1 Alternative Architectures

In order to confirm our contribution to research in this area, the results of our quantita-
tive study must be applicable to other shared-memory multiprocessor architectures that are
similar to the Astronautics ZS series. At the architectural level, most existing machines
in this class differ only in the processor/memory interconnect, hardware synchronization
mechanism, or the presence/absence of shared registers. For example, the Sequent Sym-
metry multiprocessor, a shared-memory architecture which supports up to 30 processors,
has a shared-bus interconnect to memory, a synchronization mechanism providing the func-
tionality of test-and-set using cache-based locks, and no shared register set. Despite these
differences to the ZS series, we can still apply our general conclusions to this particular
architecture.

The shared-bus interconnect of the Symmetry provides cache consistency using a write-
invalidate snooping protocol. This cache consistency scheme is equivalent to shared
hardware consistency, in that it permits all caches to possess a single cache block simul-

taneously. The cache miss rates observed in our tests with shared hardware consistency
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are similar to those reported in [128], and are low enough so that the shared bus is not
saturated. Thus, our parallel language model and run-time system is suitable for execution
on machines with a shared-bus interconnect to memory.

The hardware synchronization mechanism of the Symmetry does not support fetch&op,
but instead provides a test-and-set mechanism using cache-based locks. This mechanism
is designed for lightly contended locks used in conjunction with short critical sections
[71]. The test-and-set operation combined with very short critical sections is sufficient to
satisfy the synchronization needs of our run-time system. However, despite the presence of
heterogeneous parallelism, accesses to the head of the run queue may be heavily contended
at times. This in turn causes lock variables to move repeatedly from cache to cache,
consuming bus bandwidth and degrading performance. This situation can be overcome
using one of the software enhancements to the locking protocol proposed in [71], which
prevents thrashing by following a software protocol that delays access to lock variables
until they are likely to be available. Thus, the absence of a fetch&op synchronization
mechanism does not invalidate our results.

Finally, the Symmetry does not provide a shared register set like those found in the ZS-1.
While we used these registers to hold run queue information and semaphore values, the same
effect could be accomplished using well-known memory locations. The accesses to this data
are mostly reads, so the values could exist in multiple caches simultaneously. All writes take
place in short critical sections which can be controlled using the software enhancements to
the locking protocol as mentioned above. This approach eliminates unnecessary migration
of a memory word from cache to cache by serializing its access. This serialization is similar
to that provided in hardware with a fetch&op synchronization primitive. The combination
of software-enhanced cache-based locks and well-known memory locations allows our run-
time system to be implemented efficiently in a system without fetch&op synchronization

or shared registers.
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8.2 Future Work

In addition to determining the structure of an efficient run-time system for a class of shared-
memory multiprocessors, this work has raised several issues which should be addressed by

future research:

o More parallel algorithms need to be coded using the new language constructs to
further demonstrate the usefulness of the model.

e Tests with longer programs in a multiuser environment are necessary to further
validate the conclusions. This testing will require a full implementation on a suitable

multiprocessor operating system.

e For very fine-grained microtasks, a modified self-scheduling algorithm which in-
creases data locality should be developed. This modified algorithm would still
schedule one iteration at a time, but would select the iteration based on the processor

identifier.

e Tests on different systems with greater numbers of processors need to be done to

determine the scalability of the run-time system.

In conclusion, we can say that our test results warrant the implementation of our system
on a shared-memory multiprocessor which is to be used as a dynamically scheduled time-
shared server among many parallel programs. However, in addition to the points listed
above, further experimentation may be useful to determine the system performance in the
case of doacross loops, alternative cache consistency schemes, and the modifications
proposed to improve operating system integration. The test data reported in this dissertation
do confirm, though, that our approach to run-time system design and implementation is one

which meets our goals for flexibility and efficiency.
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APPENDIX A

RUN-TIME SUPPORT CODE

A.1 Parallel Loop Run-Time Support Code

Figure A.1 shows the self-scheduling kernel code used both for self-scheduling and chunk
scheduling. In this code, A22 and A16 are general purpose registers. The SGEC S1
statement blocks the processor if the first semaphore register is not greater than or equal to
zero. When the semaphore register satisfies this requirement, the processor is unblocked
and may continue. The SADDC statement is a fetch&add operation on the first semaphore
register. As a side effect of SADDC, the fetched value is stored into the semaphore copy
register, special control register SC. This fetch is done before the add, which is effectively
a decrement, since A22 was initialized to —1. This fetched value is then copied into A22,
and a test is done to see if it is less than zero. If so, a branch to sched: is executed,
and the processor must re-attempt to acquire work. This may require blocking at the SGEC
statement until more work is created and the first semaphore register is made to be greater
than zero. If the fetched value copied into A22 is greater than or equal to zero, an address is
copied from the second semaphore register into A16 via a CPSAC instruction. A branch to
this address is then executed. The parallel loop setup code initializes the second semaphore
register to contain the start address of the body of the parallel loop.

Figure A.2 shows an example of parallel loop setup code using self-scheduling and the

kernel code in Fig. A.1. The SLTC statement waits for the value in the third semaphore
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.globl sched

sched:
DUPAC 222, Oxfff #2022 = -1
SGEC s1 #wait for sem reg S1 >= 0
SADDC s1, A22 #SC = S1, S1=S1+A22
RCRC A22, SC #A22 = SC
TLTAB AQ, a22, A0 #test A22<0
JMPT sched #if A22<0, go to sched
CPSAC Ale, S2 #A16 = S2
BRI Al6 #branch to address in Al6

Figure A.1. Self-scheduling kernel code.

register to become negative, indicating that all microtasks associated with the previous
parallel loop have completed their scheduling operations and are done reading the semaphore
registers. The CPASC statements then load values required by the loop body into several
semaphore registers. The last three of these loads involve the argument pointer AP, the
stack pointer SP, and the frame pointer FP. In this example, A17 is equal to the index value,
initially the highest value in the range of indices for the DO loop. A16 is initialized to one
less this value, and this number is copied into the semaphore registers to indicate the number
of microtasks yet to be created. The third semaphore register, S3, is used to implement
the barrier described above. The fourth semaphore register, S4, is used to implement a
barrier indicating that all microtasks created in conjunction with this loop have completed
and (if necessary) have written their results to memory. The first semaphore register, S1,
is used by the scheduling kernel shown in Fig. A.1. The starting address for the parallel
loop body is copied via A3 into a semaphore register. The jump to £irst : represents the
prescheduling of the first microtask by the processor. This is possible because the general
purpose registers read by the parallel loop are already initialized.

The starting address for the other processors which acquire microtasks through the
self-scheduling kernel is the label begin:, and the code at this point initializes general
purpose registers to be equal to values copied from the semaphore registers. Note thatAl17
is initialized to the value in A22, the value returned by the scheduling kernel. However,

if this value is zero, a branch to last : occurs, which is the starting address for the code
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SLTC s3 #wait for S3 to become <0
CPASC S8, A22 #copy general purpose (gp) -
CPASC s9, Al3 #registers to semaphore (s) -
CPASC S10, Aal4 #registers
CPASC s11, AlS5
CPASC s12, Al2
CPASC S28, AP
CPASC §29, S°pP
CPASC s30, FP
DUPA Al7, Al6 #A17=A16
SUBAC Al6, Ale, Ox1 #A16=A16-1
DUPAD A3, begin #A3= address of begin
CPASC 83, Al6 #sS3=Al16
CPASC 52, A3 #S2=A3
CPASC s4, Al6 #S4=A16
CPASC s1, Al6 #S5=A16
JMP first
begin:
TEQAB A0, A22, A0 #test if A22==0 (A0=0 always)
CPSAC AP, s28 #copy argument (AP), stack (SP), -
CPSAC sP, s29 #$and frame (FP) pointers from -
CPSAC FP, S30 #8528, S29, and S30
JMPT last #if A22==0, go to last
DUPA Al7, A22 #A17=A22
CPSAC A22, S8 #copy s regs to gp regs
CPSAC Al3, S9
CPSAC Al4, S10
CPSAC Al5, §S11
CPSAC Al2, §S12
first:
DUPAC Al, Oxfff #Al=-1
SADDC s3, Al #SC=83, S$3=S3+Al
RCRC Al, c2 #A1=C2, read proc id
DUPA FP, Sp #FP=SP
ANDAD Al, Al, 0x0000001f #mask off high bits
MULAC Al, Al, 0x100 #0x100=two cache blocks
SUBA FP, FP, Al #FP=FP-Al
SUBAC Al, al7, Ox1 #A1=A17-1
ASRC Al, Al, Oxffe #A1=A1*4
ADDA Al5, Al5, Rl #A15=R15+Al

Figure A.2. Self-scheduling setup code.

following the parallel loop.

The code beginning at the label first : is the last set of instructions to be executed
by all microtasks before entry into the parallel loop body. The third semaphore register,
S3, is first decremented to indicate the completion of copying values from the semaphore

registers. The next several statements modify the FP pointer so that each microtask has a
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local memory area for storing locals. Any available general purpose register can be used
in stead of the frame pointer if the frame pointer is required for other references global to
all microtasks. This local area is acquired off the stack top, indexed according to a unique
hardware identifier found in special control register C2. Each local area is the size of two
cache blocks to avoid unnecessary false sharing between microtasks. The last operation by
the code fragment is the initialization of general purpose register A15 using the base value
it already contains and the himomsk index value contained in A17.

Figure A.3 shows the first part of the chunk scheduling setup code for the same parallel
loop. This code also uses the scheduling kernel shown in A.1, but is a replacement for the
code given in A.2. This code is similar to the setup for self-scheduling, except a calculation
of chunk size is performed and the number of microtasks to be created is roughly equal
to the number of processors. The number of processors is read from semaphore register
seven, S7, which has been previously initialized. If the number of iterations (stored in
A16) s less than the number of processors, the chunk calculation is bypassed, and a chunk
size of one is used. The code starting at iokayb: computes the chunk size by dividing
the number of iterations by the number of processors in use. If the division is not exact, the
number of microtasks to be created is increased by one plus the number of chunks left in
the remainder less one. The code starting at iskipc: initializes the semaphore registers
as before, except the chunk size and the total number of iterations are also stored.

Figure A.4 shows the second part of the chunk scheduling setup code. The code at
begin: isalmost the same as for self-scheduling, as is the code after iskipd:. The only
difference is the calculation of beginning and ending iteration values at f£irst : based on
the chunk size A18 and the microtask index value A17. The code following computes the
new FP and initializes A15 as before.

Figure A.5 show the scheduling kernel for guided self-scheduling. Due to the nature of
the calculation of the number of iterations per microtask, this scheduling kernel is somewhat

longer than that shown in Fig. A.1. The start of the kernel is the same, but the value in
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Al

Al
A0

0x1
0x1

A4

Oxfff

#wait for S3<0
#copy gp regs to s regs

#copy AP, SP, FP to s regs

#read num procs into Al
#A3=begin address

#check if num iterations <
#num procs

#if Alé6>=Al, go to iokayb
#A1=A16, set num microtasks
#A2=1, set chunk size

#go to iskipc

#compute chunk size
#check remainder

#test RA4==0

#if A4==0, go to iskipc
#increase microtask count
#by more than one if
#remainder is bigger
#than chunk size

#A5=A1-1

#store chunk size

¥#store iteration ceiling
#one less microtask count
#store begin address
#store microtask count
#init barrier counter
#init Al7 and Al8 for
#preschedule

Figure A.3. Chunk scheduling setup code, part 1.

the first semaphore register S1 is only used to guard entrance into the kernel, and is not
used to provide an index value. Instead, the fourth semaphore register S4 is read to see
if any iterations for the current parallel loop remain. If no iterations remain, the first
semaphore register is zeroed to allow another processor to enter the kernel, and a branch to

the address contained in the fifth semaphore register S5 occurs. At this address, a barrier

is implemented, and one processor is selected to set up the next parallel loop.
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begin:
TEQAB A0, A22, A0 #test for microtask num==0
CPSAC AP, s28 #copy pointers from s regs
CPSAC Sp, S§29
CPSAC FP, s30
JMPT last #if micro num==0, go to last
DUPA Al7, A22 #A17=A22
CPSAC A22, S8 #copy 8 regs to gp regs
CPSAC Al3, s9
CPSAC Al4, S10
CPSAC AlS, S11
CPSAC Al2, Si2
CPSAC Al8, S6
CPSAC Al6, S5
first:
DUPAC Al, Oxfff #Al=-1
SADDC s3, Al #done reading s regs
MULA All, Al7, Al8 #compute iteration limit
SUBAC Al10, Al17, Oxl #$and fist iteration
TLTAB AQ, Al6, All #for microtask
JMPF iskipd #if greater than ceiling,
DUPA All, Al6 #reduce upper value
iskipd:
RCRC Al, c2 #read proc id
DUPA FP, SP #code to allocate temp
ANDAD Al, Al, 0x0000001f #variable space for
MULAC Al, Al, 0x100 #each proc for microtask
SUBA FP, FP, Al
ASRC Al, Al0, Oxffe #A1=A10*4
ADDA Al5, Al5, Al #A15=A15+A1

Figure A.4. Chunk scheduling setup code, part 2.

If iterations do remain to be scheduled, a branch to alloc: occurs. At this point,
a number of iterations to be scheduled is computed based on the ceiling of the number
of iterations yet to be scheduled divided by the number of processors in use. After the
calculation, the number of iterations remaining must be updated, and stored in the fourth
semaphore register S4. If the value allocated is greater than 127, the adjustment to the
count of remaining iterations must be done in pieces, since the SADDC instruction can
only do byte arithmetic. After this calculation, the kernel is unlocked by zeroing the first
semaphore register S1. Final adjustments are then made to A15 and A1 6 to determine the
first and last iteration values respectively for this microtask.

Figure A.6 shows the setup code used in conjunction with the guided self-scheduling
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.globl gsched

gsched:
DUPAC Al2, Oxfff #A12 = -1
SGEC Sl #wait for S1 >= 0
SADDC s1, Al2 #SC=S1, S1=S1+Al2
RCRC Al3, SC #Al3 = SC
TLTAB A0, Al3, A0 #if A13<0
JMPT sched #then go to sched
CPSAC Al3, sS4 #A13=S4
TEQAB A0, Al3, A0 #test Al3==0
CPSAC Al, s7 #read num procs into Al
JMPF alloc #if not Al3==0, go to alloc
CPSAC aAl2, S5 #A12=85
CPASC s1, AQ #51=0
BRI Al2 #branch to address in Al2
alloc:
CPSAC Al4, S6 #read iteration limit
SUBA Al5, Al4, A1l13 #compute first iteration
DIVA Al6, Al3, Al #compute ceiling of
REMA All, Al3, Al #remaining iterations
TEQAB A0, aAll, A0 #over number of processors
CPSAC Al2, S2
JMPT norem
ADDAC Al6, Al6, Ox1 #adjust to get ceiling
norem:
DUPA All, Ale #if necessary
again:
TLEABC A0, All, Ox7f #test if greater than 127
JMPT okidok
DUPAC Al7, OxfS8l #if so, compute new remaining
SADDC 54, Al7 #count in pieces
ADDA All, Ali, Bal7
JMP again
okidok:
SUBA All, A0, All
SADDC  S4, All #update remaining iter count
CPASC s1, AQ #unlock kernel
ADDA Al6, Al6, AlS #compute start and end
ADDAC Al5, Al1S5, Oxl #iteration values
BRI Al2

Figure A.5. Guided self-scheduling kernel code.

kernel code given in Fig. A.5. While the kemel code for guided self-scheduling is more
complex than the other techniques, its setup code is simpler. However, due to the calculation
involved with guided self-scheduling, the first microtask is not prescheduled with this setup
code. The semaphore registers are initialized as before, and the values required by the

kernel are also stored. The code at begin: reads the semaphore registers, initializes the
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CPASC S8, A22 #copy gp regs to s regs
CPASC s9, Al3
CPASC 10, Aal4
CPASC s11, AalS5
CPASC s12, Aal2
CPASC s$28, AP
CPASC §29, SP
CPASC §30, FP
DUPA Al7, Alé #A17=A16
DUPAD A3, begin #A3=begin address
DUPAD A4, last #A4=last address
CPSAC AS, s7 #A5=57, num of procs
CPASC s2, A3 #store begin addr
CPASC S5, Ad #and end addr
SUBAC A5, A5, Ox1 #A5=A5-1
CPASC S6, Al7 #store iteration total
CPASC sS4, Al7
CPASC 83, AS #init barrier register
CPASC s1, A0 #unlock kernel
JMP gsched #go schedule

begin:
CPSAC AP, S28 #load AP, FP, SP from
CPSAC sp, s29 #s regs
CPSAC FP, s30
DUPA Al7, Al1S #get begin iteration
DUPA All, Alé #get end iteration
CPSAC A22, S8 #copy s regs to gp regs
CPSAC Al3, Ss9
CPSAC Al4, S10
CPSAC Al5, S11
CPSAC Al2, S12
RCRC Al, Cc2 #Al=proc id
DUPA FP, SP #code to allocate temp
ANDAD al, aAl, 0x0000001£ #variable space
MULAC aAl, Al, 0x100
SUBA FP, Fp, Al
SUBAC Al, Al7, Oxl #Al1=A17-1
ASRC Al, Al, Oxffe #A1=A1%*4
ADDA AlS5, Al5, Al #A15=R15+Al

Figure A.6. Guided self-scheduling setup code.

iteration registers, and then computes the new frame pointer and value for A15 as before.

A.2 Parallel Procedure Run-Time Support Code

Figure A.7 shows the code to initialize the frame pool for the parallel procedure run-time

system. The code is called as a regular sequential procedure from the main program during
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initialization. It is passed the starting address of the frame pool as well as its size in frames.
Each frame is 20 bytes or 5 halfwords. One halfword is sufficient to hold and integer
value or address. The pool initialization simply zeros out the first two words of each frame
to indicate that they have not been allocated. The semaphore registers initialized in this
routine are reserved for run-time system globals.

#iframe (addr, num)
.globl _iframe_

_iframe :
SUBAC FP, SP, 0x8 #standard proc entry code
SUBAC Sp, SP, 0x8
DUPA ASQ, A2 #save A2
STHAC AQ, FP, 0
LDHAC A0, AP, 0x8 #load begin addr of pool
LDHAC A0, AP, 0x10 #get pool size in frames
DUPA a1, ALQ #put begin addr in Al
LDHA AQ, ALQ, A0 #another load to get pool size
DUPA A2, ALQ #put size in A2
ADDAC Al, Al, 0x4 #align pool start to halfword
ANDAD al, a1, Oxfff££££fc #boundary
CPASC s8, Al #init pool pointer
CPASC 85, Al #init tail pointer
MULAC a2, A2, 0x14 #framesx20, size of frame
ADDA A2, al, A2 #$a2=addr of first word
#aftexr pool
DUPA ASQ, A0 #put 0 in store queue
STHAC Ao, Al, 0 #put 0 in the head of 1lst frame
lop : #loop to put 0 in 1lst 2 words
DUPA ASQ, A0 #0of each frame
DUPA ASQ, A0
TLTAB A0, Al, A2 #test if > end pointer
STHAC AQ, Al, 0x4
STHAC Al, Al, 0x14 - #Al=A1420, put 0 at this addr
JMPT lop
CPASC $9, A2 #init end of pool ptr
DUPA Al, A2 #set return value
LDHAC A0, FP, Oxc #standard proc exit code
LDHAC AO, FP, 0
LDHAC A0, FP, 0x8
LDHAC A0, FP, 0x10
ADDAC SP, FP, 0x18
DUPA AP, ALQ
DUPA A2, ALQ
DUPA FP, ALQ
BRI ALQ

Figure A.7. Frame pool initialization code.
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Figures A.8, A.9, and A.10 show the code for adding a frame to the run queue. After
entering the subroutine and saving registers A2, A3, and A4 on the stack, the code starting
at rep: acquires a lock from the fourth semaphore register S4. Once the lock has been
acquired, the values for queue tail pointer A1, the frame pool end pointer A4, and the frame
pool head pointer A2 are loaded from the corresponding semaphore registers reserved to

hold these values.

#pid = aframe (num, routine, pptr, £p)
.globl _aframe

_aframe_:
SUBAC FP, SP, 0x10 #standard proc entry code
SUBAC SP, sp, 0x10
DUPA ASQ, A2 #save A2, A3, A4
CPAX XSQ, A3, A4 #on the stack
STHAC AQ, FP, 0
STXC A0, FP, 0x8
DUPAC Al, Ox£ff #Al1=-1
rep:
SGEC sS4 #wait for $4>0
SADDC sS4, Al #SC=54, S4=S4+Al
RCRC A2, sC #A2=SC
TLTAB A0, A2, AQ #test A2<0
JMPT rep #if so, go to rep
CPSAC al, S5 #copy tail ptr to Al
CPSAC A4, s9 #copy end of pool ptr to A4
CPSAC A2, S8 #copy pool ptr to A2

Figure A.8. Add frame code, part 1.

The code starting at back: in Fig. A9 attempts to find an unallocated frame for
addition to the run-queue. The first frame checked is the first one spatially following the
current tail pointer. As the checking progresses with each spatially following frame, a
check is made to see if the end of the pool is reached using A4. If so, a flag in A3 is
updated and the next frame to be tested will be at the head of the frame pool. If the pool
is passed through twice and no frame is found, a jump to die: occurs and the program
halts. Alternatively, the code at die: could instead take action to expand the frame pool,
probably via an operating system call.

The code after skip: in Fig. A.9 shows the test to determine if a frame is available. If
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the first two halfwords in a frame are zero, the frame is unallocated and may be used for the
current group of paraprocs to be created. The code that follows loads the parameters passed
to add frame via the argument pointer and stores them into the newly allocated frame. A2
is also loaded with the run-queue tail pointer, and a test is done to see if it is equal to the
newly allocated frame. This condition occurs if the run queue is currently empty. If the
run queue is not empty, the frame at the tail of the run queue is set to point to the newly
allocated frame, effectively adding this frame to the end of the queue.

The code in Fig. A.10 waits for the memory writes to the frame to be performed, and
then updates the global tail pointer in the fifth semaphore register S5. The global run queue
head pointer is then read from the second semaphore register S2, and tested to see if it is
null. If not, the code jumps to done : where the lock protecting add frame is released and
procedure return is executed. If the queue head pointer is null, the frame information is
loaded directly into the semaphore registers for scheduling. However, the processor must
first wait for all previously loaded microtasks to be scheduled, thus the barrier using SLTC
on the third semaphore register.

Figure A.11 shows the calling sequence for add frame which essentially creates a
group of paraprocs. The paraproc parameter addresses are first pushed on the stack, since
parameters to paraprocs are passed by reference. Next, the parameters to add frame itself
are pushed. These include a stack address that points to the paraproc parameter addresses
pushed as described above. They also include the starting address of the code, the current
frame pointer, and the number of paraprocs to be created in conjunction with this frame.

Figure A.12 shows the code generated to implement the completion of a paraproc. As
stated in the comments, a paraproc jumps to this code fragment after restoring its stack to the
way it found it and placing its own frame address in A1. The sixth semaphore register S6
is used as a lock to protect the access of any synchronization counter. Using only one lock
for all synchronization counter accesses did not prove to be a performance bottleneck in our

tests, but additional locks and/or more sophisticated locking schemes could alternatively be
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ADDAC Al, Al, 0x4
DUPA A3, A0

TLTAB a0, Al, A4
JMPT skip

TEQAB a0, A3, AQ
SUBAC al, A2, 0x10
JMPF die

DUPAC A3, 0xl1

LDHAC Al, Al, 0x14
TEQAB AQ, ALQ, A0
JMPF agn

SUBAC Al, Al, 0x4
LDHA A0, Al, AQ
TEQAB RO, ALQ, A0
JMPF back

LDHAC RO, AP, 0x8
LDHAC A0, AP, 0x10
LDHAC AQ, AP, 0x18
LDHAC AQ, AP, 0x20
CPSAC A2, S5

LDHA A0, ALQ, A0
DUPA ASQ, ALQ

DUPA ASQ, ALQ

DUPA ASQ, ALQ

TEQAB A0, A2, Al
STHAC AQ, Al, 0x4
DUPA ASQ, ALQ

STHAC AQ, Al, 0x8
DUPA ASQ, A0

STHAC A0, Al, 0x10
STHAC A0D, Al, 0
STHAC AO, Al, 0xc
JMPT dont

DUPA ASQ, Al

STHAC AQ, A2, 0xc

Figure A.9. Add frame code, part 2.

#start with next frame
#initialize flag

#check for end of pool

#check for twice thru loop
#reset Al to head of pool

#set flag after once thru

#load value

#and check for 0

#not zero, try again

#check other frame slot for 0

#not zero, try again

#load proc params, num
#routine

#pptr

#fp

#A2=85, tail pointer

#another load to get value num
#store other pts in new frame

#test if new frame==tail ptr
#initialize frame

#dont add frame to tail
#if queue empty

#add current frame to
#end of queue

employed. After acquiring the lock, the paraproc decrements the synchronization counter

associated with its own paraproc group. After memory is updated, the lock is released.

The next step is to check the stack top to see if an ancestor paraproc is blocked and has

its context embedded in the stack. This is so if the value on the stack top is non-zero. This
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dont:
QUIET #wait for stores!
CPASC SS, Al #set queue tail to new frame
CPSAC A3, s2 #A3=82, queue head pointer
TEQABC A0, A3, Ox£fEff $test for null head ptr
JMPF done # if not null, then done
LDHA Ao, Al, Al #otherwise, put this frame
LDHAC A0, Al, 0x4 #at the head of the queue
SLTC s3 #wait for last frame to

#be consumed

DUPA A2, ALQ
CPASC s3, A2 #load semaphore registers
CPASC so, ALQ #with work to be scheduled
CPASC s2, Al
CPASC s1, A2

done:
QUIET #wait for updates to complete
CPASC s4, Al #release lock
LDHAC AQ, FP, 0x14 #standard proc exit code
LDHAC A0, FP, Oxc
DUPA AP, ALQ
LDHAC AQ, FP, 0x8
DUPA A2, ALQ
LDHAC A0, FP, 0x0
DUPA A3, ALQ
LDHAC AQ, FP, 0x10
DUPA A4, ALQ
LDHAC a0, FP, 0x18
DUPA FP, ALQ
ADDAC sp, SP, 0x20
BRI ALQ
.globl die

die:
HALT

Figure A.10. Add frame code, part 3.

value is a pointer to the synchronization counter that the ancestor paraproc is waiting on.
If the counter is zero, the parent is resumed by branching to the address stored at the next
halfword on the stack. If there is no ancestor in this stack, or its synchronization counter is
non-zero, a branch to the scheduling kernel is executed.

Figure A.13 shows the code generated by a parent paraproc for the purposes of merging
with its children. The associated synchronization counter is checked first, and, if it is zero,

all children have completed and execution may resume at post :. At this point, the frame
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ADDAC ASQ, Fp, 0x£fb4 #push parameter address
ADDAC ASQ, Fp, Oxf7c #push parameter address
ADDAC ASQ, FP, 0x£f98 #push parameter address
STHAC SP, Sp, 0x£f£8

STHAC sp, Sp, Oxf£8

STHAC sp, sp, Ox££8

DUPA ASQ, FP #push current frame ptr
DUPA ASQ, SP #push parameter space addr
STHAC sp, sp, Oxf£8

ORAD ASQ, A0, _crunch_ #push start address
STHAC sP, SP, Oxf£f8

ADDAC ASQ, FP, 0xfd4 #push ptr to number of
STHAC sP, sP, Ox££8 #paraprocs to be created
ORAD Al, AQ, dreta

STHAC Sp, sp, Ox££8

CPAXC XSQ, A1, 0x4

STXC Sp, sp, Oxff8

CPAX XsQ, FP, AP

DUPA AP, SP

STXD SP, SP, Oxff£££FF8

JMP _aframe

dreta:
Figure A.11. Call to add frame, creating paraproc group.

used for the descendant paraprocs is deallocated by zeroing its starting address slot.

If the initial check of the children’s paraproc synchronization counter fails, the parent
must block by saving any registers it needs later on the stack and jumping to the scheduling
kernel to obtain more work. In this example, only the current frame pointer and argument
pointer are saved on the stack. This was typically the case in our codes, since registers are
not often reused between procedure calls or non-nested loops. A pointer to the children’s
frame and the resumption address of the blocking parent are the last two items placed on
the stack. The code at the resumption address simply reloads the registers and continues
execution.

Figure A.14 shows the first part of the paraproc self-scheduling kernel. A processor
actually enters this code at sched:, where it tests the first semaphore register S1 to see
if it is non-negative thus indicating that work to be scheduled is present in the semaphore
registers. If the value is non-zero, it is the paraproc index value, and the processor has

successfully acquired a microtask for execution. In this case, a branch the the address stored
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.globl complete
complete:
#one way jump to here with "leveled" stack,
#which points to ancestor’s synch pointer at stack top
#$frame address is passed in Al

lock: .
DUPAC A2, Oxf£f
SGEC S6 #wait for S6>0, acquire lock
SADDC S6, A2 #fetch—and-add
RCRC A2, sC
TLTAB AQ, A2, Al
JMPT lock
LDHA AQ, Al, AQ #load value at synch ptr
SUBAC ASQ, ALQ, 0xl #subtract 1 to indicate
#completion
STHA A0, Al, A0 #store result
QUIET #wait for it to complete
CPASC s6, Al #release lock
QUIET
LDHA AQ, SP, AQ #load synch ptr on stack top
DUPA Al, ALQ
TEQAB OR Al, A0 #is it a valid ptr?
JMPT sched #no ancestor
#otherwise look for parent
.globl 1look
look:
LDHA A0, Al, Al #load value at synch ptr
TEQAB A0, ALQ, A0 #test if ready to resume (==0)
JMPF sched #not yet ready
LDHAC SP, SpP, 0x8
BRI ALQ #resume ancestor

Figure A.12. Paraproc completion code.

in the zeroth semaphore register is executed. If the value obtained from the first semaphore
register is equal to zero, a branch to next : is executed to reload the semaphore registers
with the values from the frame at the head of the run queue.

If the value obtained from the first semaphore register is negative, a branchtobsched:
is executed so that the stack may be checked for a blocked ancestor. If one is present, a
branch is executed to Look :, which is defined in the complete sequence shown in Fig. A.12.
After checking the state of the ancestor’s synchronization counter, the processor may return
to sched:. This essentially creates a “loose” loop where the semaphore registers and

the ancestor’s synchronization counter are alternately checked until one source provides
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merge:
# merge code - generated inline with parent
# assume child frame address is in Al
LDHA AQ, Al, Al #load synch counter
TEQAB A0, ALQ, A0 #if 0, merge is complete
JMPT post
DUPA ASQ, FP #else, save needed regs,
DUPA ASQ, AP #a return addr, and the
STHAC Sp, sp, Ox£ff8 #synch ptr on the stack
DUPAD ASQ, dresume
STHAC sp, SP, Ox££8
DUPA ASQ, Al
STHAC SP, SP, Ox£f£f8
STHAC spP, Sp, Oxf£f8
JMP sched #get some more work
dresume:
LDHAC SP, SP, 0x8 #resume after
LDHAC sP, Sp, 0x8 #waiting for merge
DUPA AP, ALQ #reload saved regs
DUPA FP, ALQ
post:
DUPA ASQ, A0 #deallocate frame
STHAC AO, Al, 0x4

Figure A.13. Code to merge with descendants.

schedulable work. If an ancestor is not present on the stack, the processor blocks on the
first semaphore register, waiting for another to load work into the semaphore registers.
The code starting at next : either reloads the semaphore registers with work found at
the head of the run queue or waits for work to be created if the run queue is empty. The
global run queue head pointer is loaded from the second semaphore register S2 to see if it is
null. If so, the processor must wait. Otherwise, the next frame pointed to by the run queue
head is also checked to see if more work is ready to be scheduled. If this pointer is null, the
processor must wait. If not, the data is loaded from the queue into the semaphore registers,
and the queue is updated. The fourth semaphore register 54 is used as a lock to protect the
integrity of the run queue, as previously shown in Fig. A.8. Once the lock is acquired, the
contents of the frame pointed to by the head of the queue are checked again to see if it was
updated between the first check and acquisition of the lock. If so, the semaphore registers

may be loaded as stated earlier.
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bsched:
LDHA AQ, SP, A0 #check for ancestor
DUPA Al, ALQ
TEQAB A0, Al, AQ
JMPF look #check ancestor status
SGEC S1

.globl sched

sched:
DUPAC al, Oxfff
SADDC s1, Al
RCRC Al, sC #acquire index value
TLTAB A0, Al, A0 #if negative, check
JMPT bsched #for ancestor
TEQAB AQ, Al, Al #if zero, update queue
JMPT next
CPSAC A2, s2 #if >0, get work
CPSAC A3, 0
BRI A3

next:
DUPAC A3, Ox£ff #decrement semaphore register
SADDC s3, A3 #protection barrier
CPSAC aAl, s2 #get queue head pointer
TEQABC AQ, al, Oxfff
JMPT bwait #wait if no more work
LDHAC a0, Al, Oxc
DUPA A2, ALQ
TEQAB Al, A2, AO
JMPF okay #load next frame

Figure Al4. Paraproc scheduling kernel, part 1.

If the processor is forced to wait for more work to be created, the run queue head pointer
is explicitly set to null, and the lock protecting the run queue is released. At this point,
another check for a blocked ancestor is made, enabling a flow in the loose loop described
above. If no ancestor is present, the processor waits for the run queue head pointer to be
updated. This will be done when another processor enters the add frame routine. Once the
queue head is initialized with a new frame pointer, the processor may continue. In this last
case, the processor in add frame will load the frame contents directory into the semaphore

registers.
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acquire:
DUPAC A2, Ox£fff
SGEC sS4 #acquire queue lock
SADDC sS4, A2
RCRC A2, sC
TLTAB AQ, A2, Al
JMPT acquire
LDHAC a0, al, 0xc #check if next frame has work
DUPA A2, ALQ
TEQAB A0, A2, A0
JMPF bokay
SLTC s3
DUPAC A2, Oxfff
CPASC s2, A2 #reset queue head pointer
CPASC 54, A0 #unlock queue
bwait:
LDHA AQ, spP, A0 #check for ancestor
DUPA Al, ALQ
TEQAB A0, Al, AQ
JMPT wait
JMP look #check ancestor status
wait:
QUIET
SGEC s2 #wait for more work
JMP sched
bokay:
CPASC s4, Al #unlock queue
okay:
LDHA AQ, A2, AQ
LDHAC A0, A2, 0x4 #load frame data into
DUPA Al, ALQ #semaphore registexrs
DUPA A3, ALQ
SUBAC A4, Al, 0x1
SLTC s3
CPASC S2, A2
CPASC s3, Al #will schedule first one, and
CPASC so, A3 #decrement S3 when we get there
CPASC s1, A4
BRI A3

Figure A.15. Paraproc scheduling kernel, part 2.
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APPENDIX B

ADDITIONAL PERFORMANCE DATA
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Figure B.1. Speedups for LFK21, version1,n=50, assumed consistency.

Figures B.1, B.2, B.3, B4, B.5, and B.6 show speedups for several different cache
consistency configurations for both versions of LFK21 with n=50. The trends for n=25
are similar. Details can be found in [50].

Figures B.7, B.8, and B.9 show speedups for Gauleg using each type of cache consistency
mechanism. In each case, self-scheduling provides the most speedup. Speedup also

increases with problem size.
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Figure B.2. Speedups for LFK21, version 2, n=50, assumed consistency.
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APPENDIX C

PARALLEL LANGUAGE SOURCE CODE

Figures C.1, C.2, C.3, C4, C.5, and C.6 show the code for the parallel loop version of
TRED. In all cases of doa 11 loops, the arrays referenced are shared amongst all microtasks
participating in the loop’s execution. The integer values are private to each iteration, and
thus to each microtask. The data dependencies of a sequential program could, in general,
produce a situation where integer values must be shared by multiple iterations. This could
require restrictions on the compiler as far as placing these values in registers, and may also
require doacross semantics with synchronization. With each of our example doall
loops, such sharing of individual words was unnecessary.

The main program unit for the parallel loop version of TRFD is shown in Fig. C.1.

Figure C.2 shows the TRFD code for the INTGRL subroutine. This code contains two
doall loops that may both execute simultaneously.

Figures C.3, C.4, C.5, and C.6 show the TRFD code for the OLDA subroutine. This
code contains three doall loops. Each loop must complete entirely before any loop that
follows it may begin. This is necessary to protect data dependencies.

Figures C.7, C.8, and C.9 show the modified code for the paraproc version of the TRFD
program. The code for the INTGRL and OLDA subroutines is almost the same at the source
level, except that the inner DO 300 loop in OLDA is changed to a doal1 loop. Figure C.7
shows the main program, Fig. C.8 shows the DRIVER subroutine, and Fig. C.9 shows the
CRUNCH paraproc. Although this modified source code indicates the changes made to use

the paraproc system, in principle, it is possible for a compiler to automatically generate
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code for use with the paraproc run-time system based on a parallel loop program that is
either hand-parallelized or automatically restructured.

Figures C.10, C.11, C.12, and C.13 show the code for the paraproc parallel quicksort
program. Figure C.10 shows the driving code of the main program for only 100 array
elements to be sorted. Our tests with larger array sizes used many more DATA statements to
initialize the array. The quicksort paraproc itself is called QSORT and is shown in Fig. C.11.
The parameter M is used to limit the depth of recursion. Uniprocessor tests showed little
difference in performance based on M, but 7 did give the fastest ranning time. Figure C.12

shows the FINDPIVOT subroutine, and Fig. C.13 shows the PARTITION subroutine.
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program TRFD

IMPLICIT REARL*8 (A-H,0-2)

C...TRANSLATED BY FPP 2.26B16 12/12/89 09:21:51
C...MODIFIED BY RMC, I/O AND MEGAFLOP CALCULATION REMOVED

(e BNo RN o N o]

(IR e IN 9!

10

9998

anan

o000

20
30

COMMON/IJPAIR/IA (255)
COMMON/MEMORY /X (2100000)
COMMON/TRFPAR/NUM, NORB
DATA MAX /2100000/

————— SET MO’S AND AO INTEGRALS -----
Repeat calculation for different values of NUM

DO 30 NUM=10,40,5

Loop to set up indicies into MEMORY common block for use
as compute storage in INTGRL and OLDA

DO 10 I=1,NUM

IA(I)=(I*(I-1))/2

NORB=NUM

Compute indicies and loop limits for subroutine calls.
NP=NUM

NPQ= (NUM* (NUM+1)) /2

NRS= (NUM* (NUM+1)) /2

I00=1

I10=I00+NUM*NUM

I20=I10+NUM*NUM

130=120+NORB*NUM*NRS

I40=I30+NPQ*NRS

LAST=I40

NEED=LAST-1

IF (NEED.GT.MAX) WRITE(IW,9998) NUM,NEED,MAX
FORMAT (/ NOT ENOUGH CORE. NUM,NEED,MAX = ’,14,2110)
IF (NEED.GT.MAX) STOP

————— CALCULATE -V~ AND (IJ//KL) -----
INTGRL subroutine contains two doall loops.
CALL INTGRL(NP,NPQ,X{I00),X(I30))

————— TRANSFORM INTEGRALS —-~~--

OLDA is only called once in following loop. It contains
3 or 4 doall loops, depending on supported nest level.
NTRF=1

DO 20 ITRF=1,NTRF

CALL OLDA (X(I00),X(I30),X(I30),Xx(130),X(130),

1 X(120),X(I20),X(110),X(110),
2 NORB, NORB, NUM, NUM)

CONTINUE

CONTINUE

STOP

END

Figure C.1. TRFD main program code.
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SUBROUTINE INTGRL (NP, NPQ,V,X)
IMPLICIT REAL*8 (A-H,0-2)

.. .TRANSLATED BY FPP 2.26B16 12/12/89 09:21:51

10
20

110
120
130
140

REAL*8 A,B
COMMON/IJPAIR/IA (255)
DIMENSION V(NP,1),X(NPQ,1)

First doall loop, initializes a dummy vector.

doall 20 J=1,NP

DUM1=DFLOAT (J)

DO 10 I=1,NP

DUM2=DFLOAT (1)
Vv(I,J)=1.0D+00-1,0D+00/ (DUM1+DUM2)
CONTINUE

CONTINUE

Second doall loop, initializes X, part of MEMORY block,
for later use in OLDA.

doall 140 I=1,NP

DO 130 J=1,1I

IJ=IA(I)+J

A=1.0D+00/ (I+J)

DO 120 K=1,I

MAXIL=K

IF(K.EQ.I) MAXL=J

DO 110 L=1,MAXL

B=1.0D+00 / (K + L)

VAL = A+ B

IF (I .EQ. J) VAL = VAL * 0.5D+00
IF (K .EQ. L) VAL = VAL * 0.5D+00
X(IA(I)+J,IA(K)+L) = VAL

X (IA(K)+L,IA(I)+J) = VAL
CONTINUE

CONTINUE

CONTINUE

CONTINUE

RETURN
END

Figure C.2. TRFD subroutine INTGRL code.
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SUBROUTINE OLDA (V,XRSPQ,XRSIJ,XIJRS,XIJKL,
1 XRSIQ,XIJKS,XIJ,XKL,NORB, MORB, NUM,NDIM)

----- THIS IS THE ORIGINAL -TRFCOR- FROM -HONDO- ———--

IMPLICIT REAL*8§ (A-H,0-2)

...TRANSLATED BY FPP 2.26B16 12/12/89 09:21:51
DIMENSION V(NDIM,1)
DIMENSION XRSPQ(1),XRSIJ(1),XIJRS(1l),XIJKL(1)
DIMENSION XRSIQ (MORB,NUM, 1) ,XIJKS (MORB,NUM,1)
DIMENSION XIJ(1),XKL(1)
DATA ZERO /0.0D+00/

————— TRANSFORM -P- AND -Q- —-—----
NRS= (NUM* (NUM+1)) /2

NP=NUM

NQ=NUM

MRSIJO0=0

MRSPQ=0

First doall loop, begins calculation, values to be reused later.

doall 100 MRS=1,NRS
MRSPQ = NRS* (MRS-1)

DO 15 M2Q = 1, NUM
DO 15 MQ = 1, MORB
XRSIQ(MQ,M2Q,MRS) = ZERO

15 CONTINUE

DO 40 MP=1,NP

DO 30 MQ=1,MP

MRSPQ=MRSPQ+1

VAL=XRSPQ (MRSPQ)

IF (VAL.EQ.ZERO) GO TO 30

DO 20 MI=1,MORB
XRSIQ (MI,MQ, MRS)=XRSIQ (MI,MQ, MRS)+VAL*V (MP,MI)
XRSIQ(MI,MP,MRS)=XRSIQ(MI,MP,MRS)+VAL*V(MQ,MI)
20 CONTINUE
30 CONTINUE
40 CONTINUE

Figure C.3. TRFD subroutine OLDA code, part 1.
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MRSIJ=MRSIJ0
DO 90 MI=1,MORB

DO 50 MJ=1,MI
XRSIJ (MRSIJ+MJ)=ZERO
CONTINUE

DO 70 MQ=1,NQ
VAL=XRSIQ (MI,MQ,MRS)
IF (VAL.EQ.ZERO) GO TO 70

DO 60 MJ=1,MI
XRSIJ (MRSIJ+MJ)=XRSIJ (MRSIJ+MJ)+VAL*V (MQ, MJ)
CONTINUE

CONTINUE
MRSIJ = MRSIJ + MI
CONTINUE

MRSIJO0=MRSIJ0+NRS
CONTINUE

----- TRANSPOSE (R,S//I,J) —-——--—

NIJ=(MORB* (MORB+1))/2
MRSIJ=0

2nd doall loop, computes matrix transposition.

doall 120 MRS=1,NRS

MIJRS=0

MAX=MRS

IF (MAX.GT.NIJ) MAX=NIJ

DO 110 MIJ=1,MAX
DUM=XRSIJ(@RSIJ+MIJ)

XIJRS (MRSIJ+MIJ)=XRSIJ (MIJRS+MRS)
XIJRS (MIJRS+MRS)=DUM
MIJRS=MIJRS+NRS

MRSIJ=MRSIJ+NRS

Figure C.4. TRFD subroutine OLDA code, part 2.



ao0n

196

----- TRANSFORM -R- AND —S- —=-==-

NR=NUM

NS=NUM

MIJKL=0

MIJRS=0

MIJ=0

MLEFT=NRS-NIJ

3rd doall for final calculation.

doall 300 MI=1,MORB

MIJOT = (MI*(MI-1))/2
MIJRSOT = MIJ* ( (NR* (NR+1))/2)
MIJKLOT = MIJOT* (NIJ+MLEFT)
MIJKL=MIJKLOT

With minor modification, this loop can be made a doall as well.
Of course, this requires use of the paraproc run-time system.

DO 300 MJ=1,MI
MIJ=MIJOT+MJ

DO 210 MsS=1,NS

DO 210 MK=MI,MORB
210 XIJKS (MK,MS,MIJOT+MJ)=ZERO

MIJRS=MIJRSOT+ (NRS* (MJ-1))
DO 240 MR=1,NR

DO 230 MS=1,MR
MIJRS=MIJRS+1

VAL=XIJRS (MIJRS)
IF(VAL.EQ.ZERO) GO TO 230

DO 220 MK=MI,MORB
XIJKS (MK, MS, MI JOT+MJ) =XIJKS (MK, MS, MIJOT+MJ) +VAL*V (MR, MK)
XIJKS(MK,MR,MIJOT+MJ)=XIJKS(MK,MR,MIJOT+MJ)+VAL*V(MS,MK)
220 CONTINUE
230 CONTINUE
240 CONTINUE

Figure C.5. TRFD subroutine OLDA code, part 3.
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MIJKL = MIJKLOT+ ((MJ-1)* (NIJ+MLEFT))
LMIN=MJ

LMAX=MI

DO 290 MK=MI,MORB

DO 250 ML=LMIN, LMAX
XIJKL (MIJKL+ML)=2ERO
250 CONTINUE

DO 270 Ms=1,NS
VAL=XIJKS (MK, MS, MIJOT+MJ)
IF (VAL.EQ.2ERO) GO TO 270

DO 260 ML=LMIN, LMAX

XIJKL (MIJKL+ML) =XIJKL (MIJKL+ML) +VAL*V (MS, ML)
260 CONTINUE
270 CONTINUE

MIJKL = MIJKL + 1 + LMAX - IMIN

LMIN=1

LMAX=MK+1
290 CONTINUE

300 CONTINUE

RETURN
END

Figure C.6. TRFD subroutine OLDA code, part 4.
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program TRFD

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/IJPAIR/IA (255)
COMMON/MEMORY /X (4500000)
COMMON/POOL/IFPOOL (5002)
DATA MAX /4500000/

----- Initialize frame pool —--=—=—-—---
should be done automatically

CALL IFRAME (IFPOOL,1000)

————— SET MO’S AND AO INTEGRALS ——-—--
Replaces do loop to repeat entire program for
N between 10 and 40

CALL DRIVER(10,40)

STOP
END

Figure C.7. TRFD main program code for the paraproc version.
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SUBROUTINE DRIVER (ILOW, IHIGH)
IMPLICIT REAL*8 (A-H,0-2)
COMMON /IJPAIR/ IA(255)
COMMON /MEMORY/ X(4500000)
DIMENSION INDICIES({7)
DIMENSION NUMS (7)

DIMENSION NPQS (7)

INTEGER IBASE

Declaration for paraproc group handle.
PID ICRUNCHERS
Compute array of indicies as in original program

DO 10 I=1,IHIGH
IA(I) = (I*(I-1))/2

Compute parameters for each child proc created.

I=0
IBASE=1

DO 30 J=ILOW,IHIGH,5

I=I+1

NUMS (I)=J

NPQS (I)=(J* (J+1))/2

INDICIES (1)=IBASE

IBASE = IBASE+1+(2*J*J)+(J*J*(NPQS(I)+J))+(NPQS(I)*NPQS(I))
CONTINUE
Create child procs
TCRUNCHERS = CREATE {I] CRUNCH (NUMS (*),NPQS (*), INDICIES (*))
Wait for children to complete.

MERGE (ICRUNCHERS)

RETURN
END

Figure C.8. TREFD subroutine DRIVER code.
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PROCESS CRUNCH (NUM, NPQ, INDEX)

INTEGER NUM(*),NPQ(*), INDEX(*)

IMPLICIT REAL*8 (A-H,0-2)

COMMON /IJPAIR/ IA(255)

COMMON /MEMORY/ X(4500000)

INTEGER NORB,NP,NRS,100,I10,I20,130,140

Same code as previously in the mainline of TRFD.

NORB = NUM

NP = NUM

NRS = NPQ

I00 = INDEX

I10 = I00+NUM*NUM

I20 = I10+NUM*NUM

I30 = I20+NORB*NUM*NRS
I40 = I30+NPQ*NRS

CALL INTGRL (NP,NPQ,X(I00),X(I30))

CALL OLDA (X (I00),X(I30),X(I30),X(I30),X(130),

1 X (I20),X(I120),Xx(110),X(110),
2 NORB, NORB, NUM, NUM)

COMPLETE

RETURN

END

Figure C.9. TRFD subroutine CRUNCH code.
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PROGRAM QUICKSORT

DIMENSION A(100)
PID ISORTERS
DATA (A(I), I= 1,100) / 29.82,71.51,3.30,87.44,
53.42,63.16,

27.13, 60.31, 83.34, 22.81, 66.84, 52.91, 53.42,
g8.01, 53.39, 76.12, 79.09, 67.61, 38.39, 24.81,

13.42, 52.10, 34.86, 99.83, 38.46, 81.59, 61.75,
93.39, 3.21, 99.34, 92.22, 94.29, 7.03, 6.67,
83.14, 9.01, 12.68, 62.22, 2.95, 85.02, 95.82,

49.29, 77.72, 36.65, 3.48, 48.98, 71.83, 1.41,

32.37, 89.95, 28.39, 79.36, 54.05, 46.08, 11.67,
77.17, 74.33, 10.13, 4.62, 49.95, 68.40, 19.40,
4.11, 98.40, 42.44, 64.14, 89.41, 52.99, 71.79,

19.73, 44.91, 71.44, 59.10, 27.54, 15.67, 67.95,
26.05, 25.01, 82.09, 89.67, 57.08, 38.27/

WNhHEROVOJOWUL& W KH WY

ISORTERS = CREATE [1] QSORT(100,A,1,N)
END

Figure C.10. Main program for parallel quicksort.

89.10, 25.75, 93.16, 27.72, 71.58, 48.34, 53.11, 18.34,
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PROCESS QSORT (N,A,I,J)

c Procedure process to perform quicksort on array A
c of N values using subinterval between I and J.
INTEGER N

DIMENSION A (N}

INTEGER I(*),J(*)

PARAMETER (M=7)

INTEGER FINDPIVOT,PARTITION
INTEGER PIVOTINDEX,K
DIMENSION IARG(2),JARG(2)
PID SORTERS

c If interval is less than M, then sort in place.
IF (J-I.LT.M) THEN
DO 13 IJ=I+1,J
ATMP=A (1IJ)
DO 11 1I=1I0-1,1,-1
IF(A(II) .LE.ATMP) GO TO 12
A(II+1)=A(II)

11 CONTINUE
II=0
12 A(II+1)=ATMP
13 CONTINUE
ELSE
c
c Find pivot index for interval I to J.

PIVOTINDEX = FINDPIVOT(N,A,I,J)
IF (PIVOTINDEX .NE. 0) THEN
PIVOT = A(PIVOTINDEX)

c Find partition around pivot.
K = PARTITION(N,A,I,J,PIVOT)
c
c Prepare parameters for child processes.
IARG(l) =T
IARG(2) = K
JARG (1) K-1
JARG(2) = J
c
c Create 2 children to sort 2 sub-intervals.
SORTERS = CREATE [2] QSORT(N,A,IRRG(*),JARG(*))
c
c Wait for children to complete.
MERGE (SORTERS)
ENDIF
ENDIF
COMPLETE
RETURN
END

Figure C.11. Quicksort paraproc QSORT code.



Q

Oa0o0aqa0

15

16

203

INTEGER FUNCTION FINDPIVOT(N,A,I,J)

Find a pivot value for subinterval I to J in
array of size N.

DIMENSION A(N)
INTEGER K

Pivot index is either I or index of first value
encountered in A between I and J that is greater
than A(I).

FIRSTKEY = A(I)
DO 15 K=I+1,J
IF (A(K) .GT.FIRSTKEY) THEN
FINDPIVOT=K
GOTO 16
ELSE
IF (A(K).LT.FIRSTKEY) THEN
FINDPIVOT=I
GOTO 16
ENDIF
ENDIF
CONTINUE
FINDPIVOT=0
RETURN
END

Figure C.12. Quicksort subroutine FINDPIVOT code.
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INTEGER FUNCTION PARTITION(N,A,I,J,PIVOT)

Partition of subinterval between I and J
in array A of size N using pivot value PIVOT.

DIMENSION A (N)
INTEGER L,R

L=I
R=J
CONTINUE

Swap values at L and R.

ATMP=A (L)
A(L)=A(R)
A (R) =ATMP
IF (A(L).LT.PIVOT) THEN

Increase L while values less than pivot.

L=L+1
GO TO 20
ENDIF
IF (A(R) .GE.PIVOT) THEN

Decrease R while values less than pivot.

R=R-1
GO TO 21
ENDIF
IF (L.LE.R) GO TO 19

PARTITION = L

RETURN
END

Figure C.13. Quicksort subroutine PARTITION code.
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