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Chapter 1

Introduction

Many researchers feel that uniprocessor cache design is a well-understood process that

warrants no further investigation. While caches are among the most thoroughly-studied

components of computer architectures, the current level of understanding has not helped industry

to consistently produce microprocessors with balanced memory systems. A few recent examples

support this point:

• The performance of the Macintosh 680x0 emulator running on a PowerPC 603 is

roughly 60% that of the earlier PowerPC 601 running the same emulator at the same

clock rate (80 MHz) [MacWeek94; MPReport94]. A more optimized version of the

680x0 emulator that is twice as fast on the 601 delivers only a 5% improvement on the

603. These performance problems have been attributed to the 603 cache structure,

which implements split, 2-way, 8-KB instruction and data caches, compared with the

unified, 8-way, 32-KB cache of the 601. The disappointing performance of the 603

has delayed the introduction of PowerPC-based Apple Powerbooks, which are

awaiting a re-design of the chip, called the 603+, with larger on-chip caches.

• Disappointing performance of Windows NT on the MIPS R4000 processor led to a

redesign of the memory system in its successor chip, the R4200. The new design

doubles the size of the direct-mapped instruction cache to 16KB, but leaves the direct-

mapped data cache at 8KB. Fortunately, simulations prevented designers from making

the mistake of allocating die area to the data cache, rather than the instruction cache.

The reverse configuration (8-KB I-cache, 16-KB D-cache) yields 7% less

performance under Windows NT [MPReport93].

• Although the peak cycles per instruction (CPI) of the first-generation DEC Alpha chip

(21064) is 0.5, hardware-monitor measurements reveal that the actual CPI of the chip
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is typically in the range of 2 to 3 on the SPEC92 benchmarks and over 4 on the data

transaction processing TPC benchmarks [Cventanovic94]. This 200-MHz chip

implements relatively meager, direct-mapped, 8-KB, primary instruction and data

caches, resulting in memory stalls that account for more than 60% to 70% of lost

performance. Later versions of the Alpha architecture (e.g., the 21164) have

implemented much more substantial on-chip caches, enabling the processor to come

closer to its potential peak performance.

The belief that cache design is a solved problem is not consistent with the reality that several

recent microprocessors exhibit memory-system problems that either prevent them from achieving

the true potential of their high clock rates, or that require costly chip redesigns to reach their

performance goals.

If caches are so well understood, why do memory-system problems persist? One reason is that

hardware technologies are constantly changing, upsetting previous system designs that achieved a

balance between the processor and the memory system. In particular, memories are generally

getting larger and cheaper, but not faster [Touma92; Jouppi94]. At the same time, the move

towards higher clock rates and multi-issue machines are making processors more memory hungry.

In his dissertation, Upton shows that microprocessor clock rates have increased at a rate of 40%

per year during the past decade, while DRAM speeds have only increased at a rate of 11% per year

during the same period [Upton94]. These trends are increasing the sensitivity of overall

performance to cache designs. Jouppi notes that disabling the cache of the VAX 11/780, a machine

introduced in the late 1970’s, would only increase run times by a factor of 1.6 [Jouppi90].

Disabling the cache of a more recent machine, the HP 9000/735 introduced in the early 1990’s,

would increase its run times by a factor of 15 [Upton94].

A more subtle reason behind unbalanced memory-system designs is a shift in the utilization of

memory resources caused by changes in operating system and application software. A memory

system that has been optimized for a given workload, consisting of certain versions of applications

and an operating system, is not necessarily optimal for later versions of the same software. An

example of this is shown in Table 1.1 which gives the contribution to processor stall cycles of

different memory-system components (TLB, I-cache, D-cache and Write Buffer) in an engineering

workstation. The last two rows of the table give the performance of the same application (an

MPEG decoder, see Figure 1.1) on the same machine (a MIPS-based DECstation) under two
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Operating
System

Measurement
Method

CPI TLB I-cache D-cache Write Buffer Other

None pixie + cache2000 1.43 0.01(1%) 0.06(14%) 0.05(13%) 0.18(41%) 0.14(32%)

Ultrix Monster 1.66 0.01(2%) 0.10(15%) 0.26(39%) 0.14(21%) 0.15(23%)

Mach Monster 2.06 0.15(14%) 0.32(30%) 0.30(28%) 0.21(20%) 0.08(8%)

Table 1.1  The Effect of Operating Systems on CPU Stall Behavior

This table shows three collections of CPU stall measurements for the mpeg_play  workload (see Figure 1.1) running on a
DECstation 3100. The DECstation 3100 has 64-KB, off-chip, direct-mapped instruction and data caches and a 64-entry, fully-
associative TLB. The cache line size is one word. The different columns show the total CPI and the contributions of different
system components to CPI increases above 1.0 (this is a single-instruction issue machine). Numbers in parenthesis give the
relative contribution of each stall type to CPI increases above 1.0. Other stands for non-memory related stalls, such as
integer and floating-point interlock cycles.

In the first row, CPI was determined by a cache2000  simulation driven by pixie -generated traces [MIPS88]. cache2000
was configured to simulate a memory system with the same parameters as the DECstation 3100. Because pixie  generates
single-task, user-only references, this measurement only includes references made by the mpeg_play  task itself (40% of
total execution activity). The last two rows give CPI under both Ultrix and Mach as measured by direct monitoring of the
DECstation hardware, using the Monster hardware monitoring system [Nagle92]. These last two measurements include
100% of system activity.
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different operating systems, Ultrix and Mach. Note that although the workload and machine are

the same, the overall CPI under the two operating systems differs by 25%. More importantly, when

compared against Ultrix, there is a shift toward greater utilization of the TLB and I-cache under

Mach. This shift in memory utilization leads to a different optimal allocation of chip die area for

on-chip TLBs and caches [Nagle94].

The increasing sensitivity of overall system performance to cache design, combined with a

shift in how memory-system components are utilized by modern applications and operating

systems, presents a challenging design problem to computer architects. Before architects commit a

Mach 3.0 X11 DisplayBSD 4.3
ServerKernel Server

Emulation
Library

mpeg_play

40%

5%30%

25%

Figure 1.1  The MPEG Decoder Workload

mpeg_play  decodes an MPEG-compressed video stream and displays the
resulting sequence of frames in an X window [Patel92]. We will frequently use
mpeg_play  throughout this dissertation as an example of an application that
presents a several difficulties to accurate memory-system simulation.

The components of mpeg_play , depicted in this figure, include a dynamically-
linked emulation library, an X11 display server, a user-level BSD server, the Mach
3.0 micro-kernel and the mpeg_play  process itself. The relative importance of
each workload component is given as a percentage of total execution time.

The memory-referencing behavior of this application is difficult to analyze
because most trace-driven simulators are unable to account for the activity of
multiple user-level tasks, dynamically-linked code, or operating system servers
and kernels.
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particular design to silicon, they need a way to evaluate the performance of design alternatives

more quickly, accurately and cheaply.

Trace-driven memory simulation is probably the most popular method for dealing with this

problem [Smith82, Holliday91]. Trace-driven simulation begins by collecting a long sequence of

memory references made by some workload of interest. A trace-driven simulator then executes a

loop similar to that shown at the top of Figure 1.2. The processing steps include obtaining an

Figure 1.2  Trace-driven and Trap-driven Simulation Algorithms

The core execution loops of trace-driven and trap-driven simulators. This code
omits many details of actual simulation, such as the treatment of writes and
assigning penalties for different types of misses (e.g., in a critical-word-first
cache). Single-pass simulators that evaluate multiple memory configurations in a
single trace pass also have a more complex structure [Mattson70; Hill87;
Thompson89; Sugumar93].

traps invoke trap_handler(address):

trap_handler(address){
miss++;
clear_trap(address);
displaced_address = replace(address);
set_trap(displaced_address);

}

while (address = next_address(trace)){
if (search(address))

hit++;
else {

miss++;
replace(address);

}
}

Trap-driven Simulation

Trace-driven Simulation
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address from a trace, searching for this address in a simulated cache, and then invoking a

replacement policy in the event of a miss. The trace addresses can come from a file created by a

trace-extraction tool, or they might be generated “on the fly” by an annotated workload. The

search procedure involves indexing a data structure that represents the cache and then, depending

on the associativity of the cache, performing one or more comparisons to test for a hit. Though a

simple operation, the search and test must be performed for every address in the trace.

Over a period of at least 30 years, this basic approach to memory simulation has been

continually improved with respect to flexibility, portability, speed, and accuracy. Despite this

progress, trace-driven simulators still suffer from an inherent speed bottleneck that is a direct

consequence of their basic operation: (1) readeach address, (2) search and (3) replace on a miss.

The result is that the very fastest trace-driven simulators are still from one to two orders of

magnitude slower than actual hardware.

This dissertation is about a different method for memory-system analysis, calledtrap-driven

memory simulation. This method is based on the observation that most memory references, such as

cache hits, do not change a cache’s state. Those references thatdo change cache state, such as

cache misses resulting in cache-line refills, are far less-frequent events. A trap-driven simulator is

designed to only be invoked (trapped to) when the state of a simulated memory structure changes.

Trap-driven simulation is best explained by contrasting its essential features against those of

traditional trace-driven cache simulation (see Figure 1.2). As discussed previously, the processing

steps in trace-driven simulation include reading each address from a trace, searching for each

address in a simulated cache, and then invoking a replacement policy whenever an address misses

the simulated cache. A trap-driven simulator operates on a different principle. It is driven not by

address traces, but by traps into an operating system kernel where it resides. A trap-driven

simulation begins by setting traps on all memory locations in a workload’s address space.1

Locations with traps set represent memory that is not currently resident in a simulated cache

structure. As the workload executes, the first reference to each such location causes a trap into the

kernel, which is directed to the trap-driven simulator. Because all such traps represent simulated

cache misses, there is no need to search a data structure representing the simulated cache. The

1. Setting a trap on a memory location means that any reference to it results in a kernel trap that
invokes the trap-driven simulator. We discuss a variety of methods for achieving this effect in
later chapters of this dissertation.
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simulator simply counts the miss and then clears the trap on the required memory location.

Clearing the trap effectively caches the memory location in the simulated cache structure because

subsequent references to the location will proceed uninterrupted. As a simulated cache begins to

fill, incoming traps may collide with previously cached memory locations that map to the same

cache line. To mimic the displacement of such lines from an actual cache, the simulator sets a new

trap on a previously-cached memory location in accordance with some replacement policy.

The most important aspect of this form of simulation is that it offers the potential for increased

simulation speed. Because simulated cache hits do not trap to the simulator, they are processed at

the full speed of the underlying hardware. Overall simulation slowdowns are therefore determined

by the cost to process cache misses, which are a far less frequent event than cache hits. Trap-

driven simulation is, in principle, a promising approach to memory simulation because it

overcomes bottlenecks inherent in trace-driven simulation speed. However, a number of practical

questions must be answered to determine if trap-driven simulation is actually a viable alternative

to trace-driven simulation:

(1) Flexibility: What is the range of memory configurations, policies, and performance

metrics that can be simulated by a trap-driven simulator? Are there any inherent

limitations in the flexibility of the method?

(2) Portability: How difficult is it to implement a trap-driven simulator, and what

hardware support is required? How could future hardware be designed to better

support trap-driven simulation?

(3) Speed: How much overhead is incurred by a simulator trap? Is it so large that

overall simulation slowdowns are worse than traditional trace-driven simulation?

(4) Accuracy: What forms of simulation error are exhibited by a trap-driven simulator

and how do these errors compare with trace-driven simulation? Is it possible to take

into account references made by all workload components, including multiple user

tasks, operating system servers and the kernel?

The purpose of this dissertation is to answer these questions. We begin in Chapter 2 by

establishing the current state-of-the-art in trace-driven simulation with a survey of over 50 recent

trace-driven simulation tools. The conclusions drawn from this survey will serve as a basis for

comparison in our study of trap-driven simulation, which begins in Chapter 3. We introduce the
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design of a prototype trap-driven simulator, namedTapeworm, which we then use in the remaining

chapters to examine the four issues offlexibility, portability, speed andaccuracy.

We will show that although first-generation trap-driven simulators have exhibited some

problems with flexibility and portability, many of these limitations can be overcome through

careful simulator design, and with the help of minor and inexpensive modifications to future host

hardware. More importantly, we show that trap-driven simulation delivers on its potential to break

past bottlenecks in trace-driven simulation speeds. The high speed of trap-driven simulation,

combined with its ability to accurately account for multi-task and operating system effects, makes

it an attractive alternative to trace-driven simulation in future memory-system designs.
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Chapter 2

Trace-driven Simulation

Trace-driven simulation has been used in the evaluation of memory systems for decades. In his

1982 survey of cache memories, A. J. Smith gives examples of trace-driven memory-system

studies that date as far back as 1966 [Smith82]. This chapter is a survey of developments in trace-

driven memory simulation during the past 10 years. It plays an important role in this dissertation

because it helps to define the classic problems associated with memory-system simulation and the

motivating factors behind the vast body of published works on trace-driven techniques. Because

the trap-driven approach is an alternative method for memory-system simulation, any arguments

for its use must include a comparison against more established techniques. Therefore, a second

objective for this chapter is to evaluate the current state-of-the-art in trace-driven simulation in

preparation for a comparison with trap-driven simulation. In later chapters, we will see that many

of the advances in trace-driven memory evaluation, such as multi-configuration simulation

algorithms and set sampling, can also be applied to trap-driven simulation. Thus, a final

justification for this survey is that it also benefits the further development of trap-driven

simulation.

This is not the first survey of trace-driven simulation techniques. Holliday examined the topic

for uniprocessor and multiprocessor memory-system design [Holliday91] and Stunkel et al.

studied trace-driven simulation in the specific context of multiprocessor design [Stunkel91].

However, developments in the field during the past three to four years, together with the need to

elaborate issues of importance in this dissertation warrant a new examination of these methods.

Although trace-driven methods have been successfully applied to other domains of computer

architecture, such as the simulation of instruction microarchitectures, this survey will focus on

trace-drivenmemory-system simulation. In particular, we are primarily interested in uniprocessor

memory-system design that takes into account operating-system activity. Throughout this chapter,

we will comment on the strengths and weaknesses of various trace-driven approaches in terms of
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desirable features for any memory simulation technique, such asflexibility, portability, speed,and

accuracy.

This study will begin by defining the characteristics of an ideal trace-driven simulation

environment. This is followed by an analysis of over 50 actual implementations of trace-driven

simulation tools, noting how they compare against the ideal. This chapter has been organized so

that it can be read at two different levels of detail. A good sense of the overall goals and strategies

of trace-driven simulation, along with the capabilities of existing tools can be obtained by reading

just the first and last sections (Section 2.1 and Section 2.3) and then scanning the summary tables

that accompany each subsection in Section 2.2. An in-depth reading of the text in Section 2.2

offers additional information and insights that are not captured by the summary tables alone.

2.1 Ideal Trace-driven Memory Simulation

An ideal trace-driven memory simulation environment supports three main activities:trace

collection, trace reduction andtrace processing (See Figure 2.1).

Trace collection is the process of determining the exact sequence of memory references made

by some workload of interest. To ensure accurate simulations, the collected address trace should

be as close as possible to the stream of memory references made by the workload when running on

an actual system. In particular, an ideal trace should becomplete, detailed, and free of any

distortions.

A complete trace includes all memory references made by each component of the system,

including all user-level tasks and the operating system kernel. User-level tasks include not only

applications, but also OS server and daemon tasks that provide services such as a file system or

network access. Because dynamically compiled and linked code is becoming increasingly

important in applications such as multiple API and ABI emulation [Nagle94; Cmelik94], a

complete trace should also include references made by this form of code.

An idealdetailed trace is one that is annotated with information beyond simple raw addresses.

Useful annotations include changes in VMpage-table state for translating between physical and

virtual addresses,context switch points with identifiers specifying newly activated tasks, and tags

that mark each address with areference type (read, write, execute),size (word, half word, byte)

and atimestamp.
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Trace Collection

Trace Reduction

Trace Processing

Secondary
Storage

Context Switch

New Mapping

R Word 0x00f5a4f0Time

pava

tid

W Byte 0x00fb64f0Time

R Half 0x00164240Time

X Word 0x0057cde0Time

Figure 2.1  The Three Steps of Trace-driven Simulation

Trace quality defined by:
Completeness
Distortion
Detail

Ideal Trace Reduction:
10x to 100x Reduction Factor
No resulting Simulation Error
High Speed

Simulation Parameters:

Metrics:

I-cache, D-cache, TLB
Split or Unified, Multi-level
Size, Line Size, Associativity
Random, FIFO, LRU Replacement

Miss ratios
Misses per instruction (MPI)
Cycles per instruction (CPI)

Workload Components

Mach 3.0 X11 DisplayBSD 4.3
ServerKernel Server

Emulation
Library

mpeg_play

40%

5%30%

25%
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Ideal traces should beundistorted so that they do not include any additional memory

references, or references that appear out of order. Though this is usually not a problem with single-

task traces, various forms of distortion can affect the quality of more complete traces that include

multi-task and operating-system references. These distortions, which will be discussed in greater

detail later, includetrace discontinuities, time dilation andmemory dilation.

Although the three aspects of trace quality described above are the most important

considerations, ideal trace collectors should have other characteristics as well. In particular,

portability, both in moving to other machines of the same type and to machines that are

architecturally different is important. Finally, an ideal trace collector should befast, inexpensive

andeasy to operate.

Address traces can be very large, consuming both storage space and processing time. An ideal

trace-driven simulation environment should include trace-reduction techniques that help to reduce

these space and time requirements by removing unneeded or redundant data from full address

traces. Ideal trace reduction should achieve very high levels of data compression without affecting

the accuracy of simulations performed by the reduced traces. It may be acceptable to relax the

constraint of exact trace reduction if higher levels of compression can be attained and if the

resulting degree of simulation error is low. As with ideal trace collection, ideal trace reduction

should be fast, inexpensive and easy to use.

The final stage of trace-driven simulation istrace processing. An ideal address-trace processor

would be able to simulate a wide range of memory system hierarchies consisting of caches, TLBs,

and primary- and secondary-storage devices. Ideally, these simulations would produce a range of

performance metrics, such as miss ratios, misses per instruction (MPI) and memory cycles per

instruction (CPI) for each component of the memory system.1 An ideal trace processor would be

able to simulate all memory system configurations of interest in a single pass over the trace data,

quickly and cheaply, producing error-free performance metrics, even from reduced trace data.

The individual stages of trace-driven simulation must be connected throughtrace interfaces so

that trace data can flow from one stage to the next. In the ideal case, the overhead of these

interfaces would be negligible, adding little to the overall simulation time. Ideal trace interfaces

1. These performance metrics, along with others, are defined in greater detail in Chapter 4.
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would also offer unlimited buffering so that different stages of trace-driven simulation can be

performed at different times and so that trace data can be reused without having to be recollected.

2.2 An Analysis of the State-of-the-art in Trace-driven Simulation

Achieving all of the characteristics of ideal trace-driven simulation as defined above is

difficult to do in practice. Nevertheless, considerable progress has been made during the past

decade to develop good trace-driven simulation environments. In this section we study the

techniques, the algorithms and several example implementations of actual trace-collection, trace-

reduction and trace-processing tools to determine how close they come to the ideal.

Before we begin our analysis, we must define an important metric that we use to compare the

speed of different trace-driven simulation tools. The rate at which addresses are collected, reduced

or processed is one natural way to measure speed, but this metric makes it difficult to compare

trace collectors or processors that have been implemented on dissimilar hardware. Because the

number of addresses processed per second by a particular trace processor is a function of the speed

of the host hardware on which it is implemented, it is not meaningful to compare this rate against a

different trace-processing method implemented on slower host hardware. To overcome this

difficulty, we report all speeds in terms ofslowdown relative to the host hardware from which

traces are collected from or processed on. Depending on the context, slowdowns are computed in a

variety of ways:

Slowdown = (Address Collection Rate) / (Host Address Generation Rate) (Eqn 2.1)

Slowdown = (Address Processing Rate) / (Host Address Generation Rate) (Eqn 2.2)

Slowdown = (Total Simulation Time) / (Normal Host Execution Time) (Eqn 2.3)

Note that each of these definitions divides by the speed of the host hardware and thus allows a

rough comparison of two methods implemented on different hosts.

2.2.1 Trace Collection

Of the three basic stages of trace-driven simulation, the problem of trace collection is probably

the most difficult and has certainly received the most attention in terms of published work.
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Address traces have been extracted at virtually every system level, starting at the circuit and

microcode levels all the way up to the compiler and operating system levels (see Figure 2.2).

Table 2.1 arranges approaches to trace collection into five basic categories, along with a summary

of their defining characteristics. After examining each of these different methods in greater detail,

we will return to this table to draw general conclusions about the state-of-the-art in trace collection

techniques.

Figure 2.2  Levels of System Abstraction and Trace Collection Methods

This figure illustrates the relationship between different trace-collection methods and
the various levels of system abstraction. Collecting traces at any given level holds
certain advantages and disadvantages.

Operating System

Compiler

Assembler

Linker

Loader

Emulation

Microcode

Circuits and GatesHardware

Software Single-stepping

Code Annotation

Instruction Emulation

Microcode Modification

Probe-based
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Characteristics Probe-based
Microcode

Modification
Instruction-set

Emulation
Static Code

Instrumentation
Single-step
Execution

Completeness Multi-task Yes Yes Maybe Maybe No

Kernel Yes Yes Maybe Maybe No

Dynamically-compiled Yes Yes Yes No No

Dynamically-linked Yes Yes Yes Maybe No

Detail Tags (R / W / X / Size) Yes Yes Yes Yes Yes

Virtual Addresses Maybe Yes Yes Yes Yes

Physical Addresses Yes Yes Emulated No Yes

Task Identifiers Maybe Yes Emulated Maybe N/A

Time Stamps Yes No Maybe No No

Distortions Discontinuities Yes Yes No Maybe N/A

Time Dilation No 10 - 20 No 2 - 30 N/A

Memory Dilation No No No 4 - 10 N/A

Slowdown 1,000 + 10 - 20 15 - 75 10 - 30 50 - 100

Memory Ext. Buffer Host Buffer 4 - 40 10 - 30 + Buffer Host Buffer

Expense High Medium Medium-Low Medium-Low Low

Portability Low Very Low High-Medium Medium High

Ease-of-Use Low High High High-Low High

Table 2.1  Summary of Trace-collection Methods

This table summarizes the characteristics of five common methods for collecting address traces. For the descriptions of trace quality
(completeness, detail and distortions) a Maybe entry means that the method has inherent difficulty providing data with the given
characteristics, but there are examples of tools in the given category that overcome these limitations. The ranges given in the slowdown
row exclude times for excessively bad implementations.
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External Hardware Probes

A straightforward method for collecting address traces is to record signals from electrical

probes physically connected to the address bus of a computer while it runs a workload. These

address and control signals are fed into a high-speed memory buffer at the full speed of the

monitored system. Some mechanism is required to move the contents of the hardware trace buffer

to a standard storage device, such as tape or disk, so that it can be processed at a later time. If a

long, continuous address trace is desired, then the buffer must either be very large or there must be

some way to stall the monitored system. If there is no way to stall the system, then several

discontinuous address-trace samples can be acquired and concatenated together. The resulting

trace exhibits a form of distortion that we will calltrace discontinuity. Under certain

circumstances (see the discussion on time sampling in Section 2.2.2), traces with discontinuities

can be used to perform the same sort of memory simulations enabled by longer, continuous traces,

but with some sampling error. Table 2.2 summarizes several probe-based trace collectors recently

described in the literature. We discuss each in greater detail below.

Most commercial logic analyzers provide the necessary hardware to construct a trace-

collection system [Tektronix94; HP91]. Alexander et al. used this approach by connecting a logic

analyzer to a National Semiconductor 32016-based workstation running Genix to collect address

traces for TLB and cache simulation [Alexander85; Alexander86]. The small size of the trace

buffer (4096 entries of 32 bits each) required the design of some circuitry to place the processor in

a stalled state while the buffer was unloaded to a secondary-storage device. A similar approach

was used by a team including the author who connected a DAS 9200 logic analyzer to an R2000-

based DECstation 3100 to obtain traces in a system calledMonster [Nagle92]. In this system, the

operating system kernel was modified to stall the machine in a software loop, avoiding the need to

design any additional hardware. Some logic analyzers provide interchangeable probes to more

easily support multiple architectures. For example, in addition to support for MIPS processors, the

DAS 9200 also has probe modules for most other popular microprocessors. Fuentes has

demonstrated this portability by using a DAS 9200 to collect addresses from both Alpha-based and

Pentium-based workstations [Fuentes93].

When a probe-based trace collector stalls a processor, subsequent activity by that processor

may be different from the activity that would have ensued had the stall not occurred. In other

words, the traces become distorted. The resulting traces still capture all activity, but they still

exhibit trace discontinuities because of gaps in real time. For example, if only the processor is
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Reference Name Processor
Buffer Size

Stall Method Completeness
Download
ChannelEntries Entry Size

[Alexander85] — NS 32016 4 K 32 bits HOLD Logic All References Serial

[Nagle92] Monster R2000 512 K 96 bits Kernel Idle Loop All References Ethernet

[Fuentes93] — Alpha, Pentium 512 K 156 bits None Cache Misses Ethernet

[Happel92] — R2000 8 M 40 bits — All References —

[Fuentes93] MTM i486 33 M 80 bits None Bus Transactions Ethernet

[Flanagan92]
[Flanagan94]

BACH i486, 68030,
SPARC

80 M 96 bits High-priority
Interrupt

All References Parallel DIO
Board

[Torellas92] DASH R3000 2 M 72 bits Master Process Bus Transactions Ethernet

[Biomation91] K450M — 80 M 64 bits — — 12 Mbits/sec
DMA

Table 2.2  Probe-based Trace Collectors

All of the probe-based trace collectors in this table collect complete address traces with multi-task and operating system references. Buffer
size determines the maximum sample size of uninterrupted memory references that can be captured. Most collectors can stall the
monitored system when the trace buffer becomes full, but some cannot (see Stall Method). The speed with which the trace buffer can be
unloaded is determined by the Download Channel which typically moves data at much lower bandwidths than the rate at which traces are
acquired. Some probe-based trace collectors are only able to collect cache misses or bus transactions, not complete address traces (see
Completeness).
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stalled, external I/O devices, such as disks or network controllers, will continue to operate and will

appear to the stalled processor to respond faster than they normally would. Stalling too long or too

frequently may result in distorted traces that do not accurately reflect true system operation.

A problem with hardware monitors based on logic analyzers is that their trace buffer sizes are

often relatively small (4 K-entries to 128 K-entries), resulting in frequent processor stalls, and thus

greater distortion in the trace due to discontinuities. Special-purpose hardware with very large,

high-speed memories has been built to reduce the extent of this problem. Biomation Corporation

builds a trace-collection system with 80 million trace buffer entries [Biomation91]. The trace

collector described in [Happel92] has a 40 M-byte trace buffer, large enough to hold 8 million

memory references at a time. TheMagellan Trace Machine (MTM)has buffer that can hold 33

million bus transactions [Fuentes93], and recent versions of theBach system use similarly large

buffers [Flanagan94].

The trend towards higher levels of chip integration creates a problem for probe-based trace

collection. Most recent microprocessors implement at least their primary caches and TLBs on-

chip, making many of their important address and control signals inaccessible to external probes

[MPReport93; MPReport94]. Examples of probe-based trace collectors that are limited in this way

are described in [Torrellas92] and [Fuentes93]. One solution to this problem is to deactivate on-

chip caches to force all load and store operations off chip where they can be detected by external

probes. However, this action can perturb the behavior of the system. Even if the resulting trace

distortion is considered acceptable, some processors do not support disabling of on-chip caches in

a general way [Digital92; Fuentes92]. Although full address traces are desirable, a trace of just

cache misses is by no means worthless. As we will see in Section 2.2.2 on trace reduction, a trace

of cache misses can still be used to simulate other cache configurations, subject to certain

restrictions.

There are numerous other examples of hardware-based monitors that give performance

information specific to the particular memory system implemented by the host hardware. These

monitors, which usually consist of collections of event counters [Nagle92; Digital92;

Cvetanovic94; IBM90] or address histograms [Emer84; Clark85b], do not collect address traces

and therefore cannot be used to determine the performance of memory systems that are different

from the monitored system.
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The main advantage of all of the probe-based trace collectors described above is their ability

to capture trace sequences complete with both user and kernel memory references, and free of

most forms of trace distortion, provided the trace buffer is deep enough. Although the traces are

complete, this does not necessarily mean that they are easy to interpret. Hardware events such as

cache misses, integer- and floating-point-unit stalls, exceptions and interrupts all must be

separated from run cycles to determine the actual type (read, write, execute) and size (word, half

word, byte) of the memory references made by a monitored processor. This essentially amounts to

implementing the inverse function of the processor sequencer, either in the trace-collecting

hardware, or in a trace post-processing tool [Nagle92]. Because the addresses captured by a probe-

based monitor are usually physical addresses, special methods that require cooperation from the

host OS must be used to reverse translate these physical addresses to their matching virtual

addresses [Grimsrud93]. For similar reasons, it is often difficult to relate a given memory

reference to the task that made it without assistance from a modified OS kernel that emitstrace

markers or other annotations as clues [Torellas92; Nagle92; Fuentes93]. These problems all follow

from the fact that probe-based trace collectors are external to the monitored system and therefore

do not have easy access to operating system data structures held inside the system.

A common misconception regarding trace collection using hardware probes is that the

technique is very fast. While it is true that acquisition of the trace proceeds at the full speed of the

monitored system, it is important to include the overhead of managing trace-buffer overflow and

unloading the trace-buffer memory. This overhead is typically not reported in published papers,

but because most systems can only unload these buffers through some form of relatively low-

bandwidth channel (see Table 2.2), this overhead is necessarily high. For a system where overhead

data is available (Monster), approximately 12 hours are required to obtain 11 seconds of real-time

system activity in a fully-automated system. Fuentes has reported that a similar delay of 45

minutes is required to download about one second of real-time activity captured by the MTM

system [Fuentes93]. These delays represent effective slowdowns of more than a thousand times

the speed of unmonitored hardware. The overhead from both these systems comes from moving

trace-buffer data over an Ethernet to a machine with SCSI-connected disks. Most of the other

systems listed in Table 2.2 use similar or even lower-bandwidth interconnect to the trace buffer, so

their overheads should be comparable or higher.

Hardware probe-based methods share other common disadvantages. The first is expense.

Logic analyzers with deep trace memories cost in the range of $50,000 to $200,000 [Tektronix94;
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HP91]. These amounts are probably low compared to the engineering costs associated with

designing custom hardware as in [Flanagan92] or [Torellas92]. A second problem is portability.

Although logic analyzers like the DAS 9200 support most popular microprocessors with custom

probes, making it easier to move to other architectures, it is often necessary to physically modify

the motherboard or chassis of the monitored system to enable probe access to the signals of

interest [Nagle92; Fuentes94]. Finally, these systems are generally not very user friendly, often

requiring a long start-up period to learn to operate.

As noted above, the advent of on-chip caches is making it increasingly difficult to build trace

collection hardware as an afterthought. The future of probe-based trace collection will therefore be

determined mainly by the level of supportdesigned into systems for this activity. A small, on-chip

trace buffer that traps to the kernel whenever it becomes full is an example of the sort of support

that could be provided. However, even a very small buffer of 2048 entries with 32-bits per entry (8

K-bytes) is about the size of on-chip caches in current microprocessors [Nagle94] and thus would

be relatively costly in terms of chip area. We are not aware of any existing microprocessor that

includes such hardware.

Microcode Modification

The high cost circuit-level probing has motivated many researchers to develop methods for

collecting traces at higher levels of system abstraction. In this section we examine a form of trace

collection that takes place at the microcode level, which is on the borderline between the hardware

and software levels of a system (see Figure 2.2).

From the beginnings of the IBM 360 series (1964) until the DEC VAX machines, the most

common method for implementing control logic was microcode. When implemented off-chip, a

microcode memory is often writable or can be modified through replacement, making it possible

to change the behavior of instructions, or to support multiple instruction sets. Agarwal realized

that this mechanism makes it possible to collect address traces [Agarwal86; Agarwal88]. He

modified the microcode on a VAX 8200 to cause all instructions to deposit the addresses of their

memory references into a reserved area of main memory as a side effect of their execution.

This method, which Agarwal callsaddress tracing using microcode (ATUM), offers a number

of advantages. The first is completeness. Because the microcode runs “beneath” the operating

system, all user and kernel references are captured, as well as those from dynamically-compiled
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and dynamically-linked code. Because ATUM has access to internal system state, it is easily able

to annotate traces with access-type tags, context switch points, and page-map information.

Another advantage is speed. ATUM acquires address traces with a slowdown of only about 10 to

20, and because the addresses can be processed directly out of the trace buffer in main memory,

there is not the same overhead for buffer unloading as with external probe-based trace collection.

Finally, because no additional hardware is required, the only cost associated with ATUM is the

engineering effort required to modify microcode to produce the desired results.

The ATUM method suffers from a few minor disadvantages and one major one. First, ATUM

traces exhibit some discontinuity distortion because the processor is not stalled when the trace

buffer becomes full. Buffer size can only be increased to a certain point because it takes away from

the usable memory of the host system.2 Agarwal has developed a method, calledtrace stitching, to

treat this problem [Agarwal89]. Microcode modification also introduces another form of trace

distortion, commonly calledtime dilation. Because instructions take 10 to 20 times as long to

execute as they normally would, external events such as clock interrupts will occur more

frequently. This causes more frequent invocations of the code that handles clock interrupts,

disturbing TLB and cache state. More frequent clock interrupts can also cause scheduling quanta

to expire more rapidly, resulting in changes in the behavior of the CPU scheduler. Another

disadvantage is that the method captures only microcode-controlled activities, meaning that I/O

activity and other memory transactions controlled by hardwired logic are not captured. The

primary disadvantage of the microcode-modification technique is that it suffers from poor

portability. Because most modern processors have a hardwired control, rather than being

microprogrammed, this technique is no longer generally applicable [Hennessey90]. In such

systems, trace collection is more conveniently performed at higher levels in the system. For

example, RISC processors are typically implemented with hardwired control and are therefore not

amenable to microcode modification. However, the relatively simple and uniform coding of RISC

instruction sets has lead to the development of fast instruction-set emulators and binary-rewriting

tools that instrument executables to produce traces as a side effect of their normal execution (see

the following sections on instruction-set emulation andcode annotation).

2. In Agarwal’s implementation, the size was limited to 2 MB, which holds 400,000 memory
references.
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While most RISC machines no longer use microcode, some CISC machines as the x86 series

from Intel still do. However, this microcode resides in an unmodifiable, on-chip ROM. This

suggests that microcode modification may still be a viable method,3 but as with probe-based

monitoring, it can no longer be added to a processor as an afterthought; if future processors wish to

take advantage of this technique, it must bedesigned in from the start.

Instruction-set Emulation

An instruction-set architecture (ISA) is the set of instructions that defines the interface

between hardware and software for a particular machine. A microcode engine is an ISA interpreter

that is implemented in hardware. It is also possible to interpret an instruction set in software

through the use of aninstruction-set emulator. Emulators typically execute one instruction set (the

target ISA) in terms of another instruction set (thehost ISA) and are usually used to enable

software development for a machine that has not yet been built, or to ease the transition from an

older ISA to a newer one [Sites92]. As with microcode, an instruction-set emulator can be

modified to cause an emulated program to generate address traces as a side-effect of its execution.

Conventional wisdom holds that instruction-set emulation is very inefficient, with slowdowns

estimated to be in the range of 1,000 to 10,000 [Agarwal89; Wall89; Borg89; Stunkel91;

Flanagan92]. Clearly, the degree of slowdown is related to the level of emulation detail. For some

applications, such as the verification of a processor logic design, the level of detail required is very

high and the corresponding slowdowns may agree with those cited above. However, in the context

of this review, we consider an instruction-set emulator to be sufficiently detailed for the purposes

of address-trace collection if it produces an accessible stream of instruction and data references as

part of its emulation. Given this minimal requirement, there are several recent examples of

instruction-set emulators that have achieved slowdowns much lower than 1,000 (see Table 2.3).

Tracer [Henry83] andSpa [Cmelik93] are examples of slow instruction-set emulators. They

work by reading, interpreting and dispatching instructions one at a time. Instructions are re-

interpreted each time they are encountered. Reported slowdowns for these iterative emulators

range from 500 to about 1,500.

3. Not all Pentium instructions come out of the microcode store, so such modifications could be
challenging.
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Reference Name Target(s) Host(s) Method
Multi-
task

Kernel Slowdown

[Henry83] Tracer VAX 11/780 VAX 11/780 Iterative Interpretation No No 1,500

[Cmelik93] Spa SPARC SPARC Iterative Interpretation No No 600

[Larus91] SPIM MIPS-I SPARC, 680x0, MIPS,
x86, HP-PA

Predecode to IR No Some 25

[Cmelik93] Shadow SPARC SPARC Dynamic Compilation No No 64

[Magnusson93] gsim 88100 HP-PA, SPARC Block Compilation Yes Some 35 - 45
50 - 74

[Veenstra94] MINT R3000 R3000 Block Compilation Yes No 18 - 65

[Bedicheck94] mg88 88100 SPARC, 680x0, 88100 Threaded Code Yes Some 54 - 74

[Cmelik94] Shade SPARC-V8,
SPARC-V9,

MIPS

SPARC-V8 Dynamic Compilation No No 9 - 14

Table 2.3  Trace Collection through Instruction-set Emulation

We define an instruction-set emulator to be a program that directly reads executable images written in one ISA (the target) and that
emulates it using another ISA (the host). In general, the target and host ISAs do not need to be the same, although they may be. We only
consider instruction-set emulators that also generate address traces. For a more complete survey of instruction-set emulators in general,
see [Cmelik94]. Some of these tools support multi-processor simulation. In these cases, slowdowns are given for a single process, but may
include some un-removable overhead due to the multi-processor support.
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The faster emulators use a variety of techniques to achieve their speed. InSPIM, a MIPS-I

executable is read and translated, in its entirety, to an intermediate representation understood by

the emulation engine [Larus91]. After translation, emulation slowdown relative to the host

hardware is a factor of approximately 25.Shadow dynamically compiles only target instructions

that are actually executed into a form that can be run directly by the host [Cmelik93].

A later generation of Shadow, namedShade, also uses dynamic compilation to host

instructions, but translations are cached so that each instruction is compiled only once. In this

system, as each instruction is referenced for the first time it is compiled into an efficient sequence

of native instructions that runs directly on the host machine. Compiled sequences of native code

are recorded in a lookup table, which is checked by a core emulation loop each time it dispatches a

new instruction. If a compiled translation already exists, is it found through the lookup mechanism

and the code sequence need not be recompiled. Both Shadow and Shade support address-trace

processing by calling user-supplied “analyzer” code after each instruction is emulated. The

analyzer code is given access to the emulation state, such addresses generated by the previous

instruction, so that memory simulations are possible. The slowdowns reported in Table 2.3 are for

Shadow and Shade emulations with a null analyzer.

Like Shadow and Shade,MINT [Veenstra94] andgsim [Magnusson93] also dynamically

compile code into the sequences of host instructions that are then saved for future re-execution.

But unlike Shade, which compiles one instruction at a time, these simulators compile clusters of

several source instructions together. This strategy makes it possible to construct more efficient

sequences of equivalent host instructions because less emulator state must be saved and restored

between each translated instruction.

Each of the emulators described up to this point rely on a core emulation loop that is executed

after each emulated instruction or block of instructions executes. Themg88 emulator avoids this

overhead by combining dynamic compilation with a technique calledthreaded-code execution that

directly links multiple translations together. These links, from one translation to the next, avoid the

need to return to the core execution loop until a new, untranslated instruction is encountered

[Bedichek94].

These last three emulators (MINT, gsim and mg88) exhibit slowdowns as high as 65 to 75.

However, this reflects the additional overhead required to generate multi-processor address traces.

The reported slowdowns are in some cases higher than they need to be for address-trace collection
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because they include additional emulation detail. For example, the mg88 emulator models

instruction-execution times and includes full simulation of caches, a memory management unit

and I/O devices [Bedichek94]. The gsim slowdowns reflect a similar overhead for more complete

system simulation, but the MINT slowdowns are for emulation with address generation only.

With respect to trace completeness, most of these tools collect only references from a single

task and exclude kernel references. Some of these tools claim to support multi-threaded

applications and emulation of operating system code, but this statement should be interpreted

carefully. All of these emulators run in their own user-level task and require the full support of a

host operating system. Within this task, they create avirtual system with varying degrees of detail.

This doesnot mean that these emulators are able to generate the address references made by the

actual host operating system, nor are they able to see any references made by any other user-level

tasks in the host system. For example, mg88, MINT and gsim, which are all designed for multi-

processor simulation, intercept threadfork()  calls made by the application and then emulate

multi-processor execution by emulating a few instructions from each thread, in turn, according to

some scheduling policy. Mg88 emulates the execution of operating system code by supporting the

additional instructions in the ISA that require supervisor privileges, such as memory-management

functions. Mg88 even simulates hardware I/O devices to make the virtual system complete. Some

of these emulators (e.g., Shadow and Shade) are able to handle dynamically-compiled and

dynamically-linked code.

With respect to trace detail, instruction-set emulation naturally produces virtual addresses, but

is generally unable to determine the physical addresses to which these virtual addresses

correspond. Unlike the probe-based methods, instruction-set emulation can avoid time-gap and

time-dilation trace distortions because all aspects of the virtual system, including I/O devices, can

be stalled.

Instruction-set emulators generally share the advantages of high portability, flexibility and

ease of use. Several of the emulators, such as SPIM are written entirely in C, making ports to hosts

of several different ISAs possible [Larus91]. Emulators with more machine-specific components,

such as mg88, have nevertheless proven to be relatively easy to port to other hosts [Bedichek94].

Shade has been designed for easy portability to other target architectures, one of which had yet to

be implemented at the time the paper was written [Cmelik93; Cmelik94]. In other words,

instruction-set emulators like Shade can collect address traces from machines that have not yet
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been realized in hardware. Some of these emulators are very flexible in the sense that the analyzer

code can specify the level of trace detail required. For example, Shade analyzers can specify that

only load data addresses in a specific address range should be traced [Cmelik94]. Ease of use is

enhanced by the ability of these emulators to run directly on executable images created for the

target architecture, with no prior preparation or instrumentation of workloads required.

A major disadvantage of instruction-set emulators is that they build up a large amount of state.

Instructions that have been translated to an intermediate representation, or to equivalent host

instructions, use from 4 to 20 times as much memory as compiled code [Cmelik94; Bedichek94].

Other auxiliary data structures, such as tables that accelerate the lookup of translated instructions,

boost memory usage even higher. Actual measurements of memory usage are unavailable for most

of the emulators in Table 2.3, but for Shade they are reported to be in the range of 4 to 40 times the

usual memory required by normal, native execution [Cmelik93; Cmelik94]. Increased memory

usage means that these systems need to be equipped with additional physical memory to handle

large workloads.

Code Instrumentation

The fastest instruction-set emulatorsdynamically translate instructions in the target ISA to

instructions in the host ISA. This translation may involve some additional instrumentation of the

host code to produce address traces. Because these emulators perform translation at run time they

gain some additional functionality, such as the ability to trace dynamically-linked or dynamically-

compiled code. However, this additional flexibility comes at some cost, both in overall execution

slowdown and in memory usage. For the purposes of trace collection, it is often acceptable to trade

some flexibility for increased speed. For example, if the target and host ISAs are the same and if

dynamically-changing code is not of interest, then a workload can be instrumented statically,

before run time. Code instrumentation can be performed at the source (assembly) level, the object-

module level, or the executable (binary) level (see Figure 2.2 and Table 2.4), with different

consequences for both implementation and the end user [Stunkel91; Wall92; Pierce94a].

The main advantage of working at the source level is ease of implementation. The task of

relocating code and data of the instrumented program can be handled by the usual assembly and

link phases of a compiler, and more detailed information about program structure can be used to

optimize code-instrumentation points. Unfortunately, instrumentation at this level often causes
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Method Reference Name Slowdown
Time

Dilation
Memory
Dilation

Completeness

Processor Analyzer InterfaceMulti-
Task

Kernel

Source [Stunkel89] TRAPEDS 20 - 30 20 - 30 8 - 10 No No iPSC/2 Linked Into Task

[Eggers90] MPtrace 1,000 + 2 - 3 4 - 6 No No i386 File + Post Process

[Larus90] AE 20 - 65 2-5 — No No MIPS, SPARC File + Post Process

Object [Borg89] Epoxie 8 - 12 8 - 12 5 Yes No1 Titan Buffer Processor

[Chen93a] Epoxie2 15 15 2 Yes Yes R3000 Buffer Processor

Binary [Smith91] Pixie 10 10 4 - 6 No No MIPS File / Pipe

[Stephens91] Goblin 20 20 10 No No RS/6000 Linked Into Task

[Pierce94a] IDtrace 12 12 12 No No i486 File / Pipe

[Larus93] Qpt 10 - 60 2-5 3 No No MIPS, SPARC File + Post Process

Table 2.4  Code-instrumentation Tools

Code-instrumentation tools add instructions to a program at the source, object or binary level to cause them to output address traces as a
side effect of their execution. In the above table, Slowdown refers to the time it takes to both run the instrumented program and to produce
the full address trace, while Time Dilation refers only to the time it takes to run the instrumented program. Usually these are the same, but
some instrumented programs generate only a minimal trace of significant events which must be post-processed to reconstruct the full
trace. Memory dilation refers to the additional space used by the instrumented program relative to an uninstrumented program.

Notes: 1 Kernel tracing was implemented, but was not fully debugged. 2 Data-only address traces.
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problems for the end user because the complete source code for a workload of interest is often not

available. This is especially true when the workload links object modules from a standard code

library. An early example of code instrumentation performed at the source level is theTRAPEDS

system [Stunkel89]. TRAPEDS adds trace-collecting code and a call to an analyzer routine at the

end of each basic block in an assembly source file. The resulting program expands in size by a

factor of about 8 to 10, and its execution is slowed by about 20 to 30. Other systems take better

advantage of the additional information about program structure available at the source level. Both

MPtrace andAE use control-flow analysis to annotate programs in a minimal way so that they

only produce a trace of significant dynamic events [Eggers90; Larus90]. The resulting significant-

event traces are combined with a post-processor that reconstructs the full trace given the control-

flow graph of the original program. This method reduces both the size and execution time of the

instrumented program. Programs instrumented by MPtrace are only about 4 to 6 times larger than

usual, and exhibit slowdown of only 2 to 3, not including the time to regenerate the full trace.

Eggers et al. argue that it is useful to postpone full-trace reconstruction until after the workload

runs because this minimizes the effects of time dilation. It is important to include the time to

regenerate the full address trace when considering the speed of these methods. In the case of AE,

trace regeneration brings overall slowdowns up to about 20 to 60. Unfortunately, the trace-

regeneration time is not given in terms of slowdowns for MPtrace, although Eggers et al. do report

that trace regeneration is the most time-consuming step in their system, producing only 6,000

addresses per second. Assuming a processor that generates 6 million memory references per

second (a conservative estimate for machine speeds at the time the paper was written), 6,000

addresses per second corresponds to a slowdown of approximately 1,000.

Performing instrumentation at the object-module level can help to simplify the preparation of

a workload program. In particular, source code for library object modules is no longer needed.

Wall argues that instrumenting code at this level is only slightly more difficult because data-

relocation tables and symbol tables are still available [Wall92]. An early example of this form of

code instrumentation isEpoxie, implemented for the DEC Titan [Borg89; Borg90; Mogul91], and

later ported to MIPS-based DECstations [Chen93a]. In both of these systems, slowdowns for the

annotated programs ranged from about 8 to 15 and code expansion ranges from 2 to 5.

Code instrumentation at the executable level provides the highest level of convenience to the

end user because it is not necessary to instrument a collection of source and/or object files to

produce the final, instrumented program. Instead, a single command applied to one executable
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produces the desired instrumented code. Unfortunately instrumentation at this level is also the

most difficult to implement because executable programs are often stripped of symbol-table

information. A significant amount of analysis may be required to properly relocate code and data

after trace-generating instructions have been added to the program [Pierce94a]. Despite these

difficulties, there exist several program instrumentation tools that operate at the executable level.

An early example isPixie, which operates on MIPS executables [MIPS88; Smith91]. Pixie

expands program sizes by about 4 to 6 on average and slows program execution by about a factor

of 10. The popularity of Pixie has prompted the development of several similar programs that

work on other instruction-set architectures. These includeGoblin and IDtrace which operate on

RS/6000 and i486 binaries, respectively [Stephens91; Pierce94a]. Our measurements of Goblin

show that it exhibits code expansion factors of about 10 and slowdowns of about 20 for instruction

traces only. This is in disagreement with values reported in [Stephens91], possibly because of a

different selection of workloads. IDtrace, which generates complete instruction and data traces,

expands a program by a factor of 12 over the original and execution slowdowns are also about 12.

A second generation of the AE tool, calledQpt, can operate on both MIPS and SPARC binaries

[Larus93]. Code expansion is not reported in this paper, but slowdowns are given to be 2 to 5 for

generation of the significant-events trace, with an overall slowdown of 10 to 60 when including

the time to regenerate full traces.

In general, these tools are not capable of instrumenting multi-task workloads or the operating

system kernel, but there are some exceptions. Borg and Mogul describe modifications to the Titan

operating system, Tunix, that support tracing of multiple workload tasks by Epoxie [Borg89;

Borg90; Mogul91]. Tunix interleaves the traces generated by multiple tasks into a global trace

buffer that is periodically emptied by a trace-processing program. These researchers also

experimented with instrumenting the Tunix kernel itself, although they do not report any results

obtained from these traces [Mogul91]. Chen continued this work by porting a version of epoxie to

a MIPS-based DECstation running Ultrix and Mach 3.0 to produce traces from single-task

workloads including the user-level X and BSD servers, and the kernel itself [Chen93a; Chen93c].

As a rule, static code instrumentation cannot handle code that is dynamically compiled at run

time, for the obvious reasons. Dynamically-linked code also poses a problem although some

systems, such as Chen’s, treat this problem in special cases. For example, Chen modified the BSD

server to cause it to dynamically map a special instrumented version of the BSD emulation library

into user-level tasks that require a BSD API.
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With respect to trace detail, these methods naturally produce virtual addresses tagged by

access type and size. Some of the systems that can annotate multi-task workloads are also able to

tag references with a task identifier [Borg89]. However, associating a true physical address with

each virtual address is essentially impossible because an instrumented program is expanded in size

and therefore utilizes virtual memory very differently than an uninstrumented workload would.

The tools that include multi-task and kernel references are subject to several forms of trace

distortion. Trace discontinuities occur when the trace buffer is processed or saved to disk and time-

dilation distortion occurs because the instrumented programs run 10 to 30 times slower than they

normally would. Chen and Borg et al. note that the effects of these distortions on clock-interrupt

frequency and the CPU scheduler can be adjusted for by reprogramming the clock-generation chip

[Borg89; Chen93a]. However, a solution to the problem of apparent I/O device speedup is not

discussed. Borg et al. discuss a third form of trace distortion due to instrumented-code expansion

called memory dilation. This effect can lead to increased TLB misses and paging activity. The

impact of these effects can be minimized by adding additional memory to the system (to avoid

paging), and to emulate, rather than instrument, the TLB miss handlers (to factor out increased

TLB misses) [Borg89; Chen93a].

These tools share a number of common characteristics. First, they are on average about twice

as fast as instruction-set emulation techniques. Note, however, that some of these tools are

outperformed by very efficient emulators, like Shade. Second, all of these tools suffer from the

disadvantage that all workload components must be prepared prior to being run. Usually this is not

a major concern, but it can be a time consuming and tedious process if a workload consists of

several source or object files. Even for the tools that avoid source or object-file instrumentation, it

can be difficult to locate all of the executables that make up a complex multi-task workload like

sdet  from the SPEC SDM suite [SPEC93]. Portability is generally high for the source-level

tools, such as AE, but decreases as code modification is postponed until later stages of the

compilation process. Portability is hampered somewhat in the case of Chen’s system, where

several workload components in the kernel must be instrumented in assembly code by hand. Note

that static instrumentation must annotate all the code in a program, whether it actually executes or

not. This is not the case with the instruction-set emulators which only need to translate code that is

actually used. This is an important consideration for very large executables, like X applications,

that are often larger than a megabyte, but only touch a fraction of their text segment [Chen94a].

These additional memory requirements add to the expense of these methods.
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Single-step Execution

Addresses can also be collected at the highest level of system abstraction shown in Figure 2.2:

the operating system. Most operating systems support some form of debugging utility that enables

a programmer to step through a program one instruction at a time to expose errors. This form of

debugging is usually supported in hardware through a single-step execution mode, where the

processor traps into the OS kernel after the execution of each instruction or basic block [Digital86;

AMD91; AMD93; Motorola93; HP90; Motorola90b] or by breakpoint instructions that cause

kernel traps whenever they are executed [Kane92; Intel90]. A debugger that supports single-step

execution and examination of processor state, such as registers, can be modified to generate both

instruction-address and data-address traces. Instruction-address traces are produced by simply

recording the value of the program counter at each execution step. Data-address traces require

instruction emulation to determine if the current instruction generates a memory reference and, if

so, the value of that reference. Examples of studies that use traces obtained through single-

stepping include [Wiecek82; Clark85; Winsor89].

The main advantages of this method are low expense, high portability, and ease of use. With

the exception of debugger data structures, little additional host memory is used. Reported

slowdowns for this technique vary widely from 100 [Agarwal88] to 1,000 [Flanagan92] to 10,000

[Holliday91]. High slowdowns are usually due to debugger implementations that rely on the

UNIX ptrace()  facility which, in turn, is implemented using UNIX exception-signal handlers.

Recent work on tuning the exception-delivery path in UNIX-based systems suggests that these

slowdowns could be cut dramatically [Thekkath94]. Assuming the support of a very efficient

exception delivery mechanism, slowdowns could be brought as low as 50, but probably not much

lower.

Although there is nothing inherent in this approach that limits traces to a single task, or to

user-only references, debuggers typically do impose these limitations. Similarly, dynamically-

compiled and dynamically-linked code is usually not supported by debuggers. Because only

address-trace information is desired, a single-step trace-collection tool could, in principle, be

written from scratch to avoid the overheads and single-process limitations of program debuggers.

We are not aware of any existing trace-collection system that uses this approach.



32

Although once very popular [Holliday91], single-step execution as a method for trace

collection has essentially been abandoned in recent years because of the greater efficiency of other

software-based methods.

Summary of Trace-collection Methods

Table 2.1 summarizes the general characteristics of each of the trace-collection methods

examined in this section. Because of the range of capabilities of tools within each category and

because of the subjective nature of some of the characteristics (e.g., portability), it is difficult to

accurately and fairly summarize all considerations in a single table. Nevertheless, it is worthwhile

to attempt to do so, so that some general conclusions may be drawn.

For descriptions of trace quality (completeness, detail anddistortion), aYes entry means that

most existing implementations of the method naturally provide trace data with the given

characteristics. AMaybe entry means that the method does not easily provide this form of trace

data, but there are nevertheless a few existing tools that overcome these limitations. ANo entry

means that there are no existing examples of a tool in the given category that provide trace data of

the type in question, usually because the method makes it difficult to do so.

To make the comparisons fair, trace-collection slowdowns include any additional overhead

required to produce a complete, usable address trace. This may include the time required to unload

an external trace buffer (in the case of the probe-based methods), or to regenerate a complete

address trace from a significant-events file (in the case of certain code-instrumentation methods).

Slowdowns do not include the time required to process the trace, nor the time to save it to a

secondary storage device. We give a range of slowdowns for each method, removing any

excessively bad implementations in any category.

Additional Memory requirements refer to external trace buffers, or physical memory reserved

by the host that is consumed either by trace data or by a workload expanded in size due to

instrumentation. Factors that determine theExpense of the method include the purchase of special

monitoring hardware, or any necessary modifications to the host hardware, such as changes to the

motherboard to make CPU pins accessible by external probes, or the purchase of extra physical

memory for the host to satisfy the memory requirements of the method.Portability is determined

both by the ease with which the tool can be moved to other machines of the same type, and to

machines that are architecturally different. Finally,Ease-of-Use describes the amount of effort
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required of the end user to operate the tool once it has been developed. These last few

characteristics require a somewhat subjective evaluation which we provide with a roughHigh,

Medium, orLow ranking.

Despite all of these qualifications, it is possible to draw some general conclusions about how

close actual trace-collection methods come to the ideal. A first observation is that high-quality

traces are still quite difficult to obtain. Methods that by their nature produce relatively complete,

detailed and undistorted traces (e.g., the probe-based or microcode-based techniques) are either

very expensive, hard to port, hard to use or outdated. On the other hand, the techniques that are

less expensive and easier to use and port (e.g., instruction-set emulation and code instrumentation)

generally have to fight inherent limitations in the quality of traces that they can collect, particularly

with respect to completeness (multi-task and kernel references). Second, none of the methods are

able to collect complete traces with a slowdown less than about 10. Finally, when all the factors

are considered, no single method for trace collection is a clear winner, although some, such as

single-step execution, have clearly dropped out of favor. The probe-based and microcode-based

methods probably produce the highest quality traces as measured by completeness, detail and

distortion, but their future is in some jeopardy if designers fail to provide certain types of hardware

support or greater accessibility in future machines. Code instrumentation is probably the most

popular form of trace collection because of its low cost, relatively high speed, and because of

recent developments that enable it to collect multi-task and kernel references. However, advances

in instruction-set emulation speeds and the greater flexibility of this method may lead to the

increased use of this alternative to code instrumentation.

2.2.2 Trace Reduction

Once an address trace has been collected, it is input to a trace-processing simulator or stored

away on disk or tape for processing at a later time. There has been considerable interest in finding

ways to reduce the enormous size of address traces in order to minimize both processing and

storage requirements.4 Because address traces exhibit high spatial and temporal locality, there are

many opportunities for achieving high factors of trace reduction. In a study by Pleszkun, the

information content (entropy) of address traces was shown to be very low [Pleszkun94].

4. A modern uniprocessor operating at 100 MHz can easily produce half a Gigabyte of address trace
data every second.
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There are several points of interest when evaluating and comparing different methods for trace

reduction (see Table 2.5). The first, of course, is the factor of trace compression. The time required

to reconstruct or decompress a trace is also important because it directly affects simulation times.

Given that a reduced trace is eventually used to drive a memory simulator, it is important to know

whether or not the resulting simulations produce results identical to simulations with a full trace. If

results are not exact, the amount of error and its relationship to the parameters of the memory

structure being simulated are of interest. Finally, many of the trace reduction methods make

assumptions about the type of memory simulation that will be performed using the reduced trace.

These assumptions usually lead to restrictions in the use of the reduced trace, and should be

understood as well.

One approach to trace reduction is to apply standard data compression algorithms. For

example, the UNIX compress utility, which implements the Lempel-Ziv algorithm [Ziv76],

achieves a compression factor of about 3 to 5 on typical address traces [Agarwal90]. Samples has

shown that much higher degrees of compression can be attained if the full address trace is first pre-

processed to produce a stream of address differences [Samples89]. When the resultingdifference

trace is input to the same Lempel-Ziv compression algorithm, the compression factors increase to

10 to 20, for traces with mixed instruction and data references, and to as high as 100 for traces with

only instruction references [Sample89]. This system, calledMache, reproduces the complete

address trace, so resulting simulations are unrestricted and exact. However, because the full

address trace must be reconstructed before simulation, there is a space, but not a simulation-time

savings. In fact, Samples reported times imply that decompression can add a slowdown factor of

as much as 200 to trace-driven simulations.

Another method for trace reduction, discussed in the previous section, is to instrument

programs so that they produce traces of only significant dynamic events [Larus90; Eggers90]. The

resulting significant-events file is much smaller than the complete trace, but can be post-processed,

along with additional information (such as the control-flow graph), to produce a complete trace.

One such tool,AE, achieves compression factors of 10 to 40. As with Mache, the complete trace is

regenerated so simulations using these traces are unrestricted and exact, but there is no simulation-

time savings. Trace reconstruction slowdowns range from 20 to 60 with AE [Larus90], and are

over 1,000 withMPtrace [Eggers90].
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Method Reference
Reduction

Factor
Decompress

Time
Simulation
Speedup

Exact? Error Restrictions

Data Compression [Samples89] 10 - 100 100 - 200 0 Yes N/A None

Abstract Execution [Larus90] 10 - 40 20 - 60 0 Yes N/A None

[Eggers90] — 1,000 + 0 Yes N/A None

Stack Deletion [Smith77] 5 - 100 0 4 - 50 No < 4 - 5% Fully-associative Memories

Snapshot Method [Smith77] 5 - 100 0 4 - 50 No < 4 - 5% Fully-associative Memories

Cache Filter [Puzak85] 10 - 20 0 — Yes N/A Fixed-line-size Caches

[Wang90] 10 - 20 0 7 - 15 Yes N/A Fixed-line-size Caches

Block Filter [Agarwal90] 50 - 100 0 — No < 12% Fixed-line-size Caches

Time Sampling [Laha88] 5 - 20 0 5 - 20 No < 5% Small Caches (< 128 K-byte)

[Kessler91] 10 0 10 No < 10% Small Caches (< 1 M-byte)

Set Sampling [Puzak85] 5 - 10 0 10 No < 2% Set Sample Not General

[Kessler91] 10 0 10 No < 10% Constant-bits Set Sample

Table 2.5  Address Trace Reduction Methods

The trace reduction factor is the ratio in size between the reduced trace and the full trace. Decompress Time is only relevant to methods that
reconstruct the full trace before it is processed. Most of these methods pass the reduced trace directly to the trace processor which is able
to process this data much faster than the full trace (see Simulation Speedup). Usually, simulations with a reduced trace result in some
simulation error and can only be performed in a restricted design space (see Exact, Error and Restrictions).
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Often a designer has a specific purpose in mind for a given set of address traces. For example,

the traces might be used only for cache simulations where the cache size is larger than some

specific minimum and the line size is fixed. In a situation such as this, a full address trace can be

substantially reduced in size, provided that the resulting reduced trace is only used for simulations

in an appropriately-constrained design space. Smith has suggested two examples of this form of

trace reduction [Smith77]. He constrained his simulation design space to fully-associative memory

structures (for main-memory page-replacement or TLB simulations), and then devised two

methods for trace reduction:stack deletion andthe snapshot method. Stack deletion applies a full

memory trace to a simulation of an LRU stack memory. Addresses that hit in the top D entries of

the stack are discarded, while addresses that miss are concatenated to form a reduced trace. The

rationale for this method is that references that hit the LRU stack are also likely to hit in any fully-

associative main memory or TLB that is larger in size. Thesnapshot method constructs a reduced

trace by concatenating snapshots of memory contents taken at periodic intervals separate by T, the

snapshot parameter. Smith points out that such a trace could be acquired at the full speed of a real

machine by periodically interrupting execution and recording the contents of page reference bits

[Prieve74]. The rationale for this method is similar to that of the stack deletion method; the

memory snapshots capture the most important references, while filtering out repeated references to

the same location. Depending on the values of the deletion parameter, D, and the snapshot interval,

T, Smith reports that trace-size reductions range from a factor of 5 to 100. When Smith used these

reduced traces for the simulation of various page-replacement algorithms and compared the results

against simulations with full traces, he found the relative error to be less than 5%. An advantage of

these methods over those previously discussed is that the reduced trace can be used directly by the

simulator. This means that there is no decompression overhead and the resulting simulations are

much faster than they would be on a complete address trace. Note, however, that the simulation

speedups (4x-50x) are not directly proportional to the compression factors (5x-100x). This is

because simulations with the reduced trace result in more misses per trace event than with

simulations on the full trace. Because processing misses usually requires more time than

processing hits, simulations on the reduced trace take more time, per trace event, than they do on

the full trace.

Trace stripping, first suggested by Puzak in his dissertation [Puzak85], is another method for

constructing reduced traces that can only be used in a restricted design space. This method applies

the full address trace to the simulation of a small, direct-mapped cache with some given line size.

Only the references that miss thisfilter cache are saved to form the reduced trace. Puzak proved
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that the trace of misses can be used to perform exact simulations of any cache with greater size or

associativity than that of the filter cache, provided that the line size is held constant. When

simulating line sizes different than that of the filter cache, Puzak points out that some simulation

error does result, but it is generally less than 10% and decreases with increasing cache

associativity.

Wang and Baer extended the cache filter concept to enable the simulation of write-back caches

[Wang90]. Their cache filter is the same as Puzak’s, but in addition to recording all read misses,

their reduced trace also includes the first write to any clean cache line. With both of these methods,

the trace reduction factor is equal to the inverse of the cache miss ratio. Assuming miss ratios of

0.05 to 0.10 for small direct-mapped caches, slowdowns would be in the range of 10 to 20. As with

Smith’s methods, the simulation speedups are not directly proportional the trace-reduction factor.

Agarwal and Huffman have pointed out that cache filters exploit only temporal, but not spatial

locality in address traces [Agarwal90]. They have devised another form of trace filter, called a

block filter, that provides an additional order-of-magnitude reduction of trace size, beyond that of a

cache-filtered trace. A block filter takes as input a cache-filtered trace and two other parameters

called the window size, W, and the block size, B. The filter reads a group of W references at a time

and outputs only a single reference from eachspatial locality in the window. Two addresses are

defined to belong to the same spatial locality if they refer to the same block of B addresses. The

rationale for constructing the reduced trace in this way is based on the theory of stratified sampling

[Hodges64], where the strata correspond to spatial localities. Agarwal and Huffman show that

application of the block filter can increase trace reduction factors to as high as 100, while keeping

the error in simulation results under 10% to 12%.

Researchers have investigated other forms of sample-based trace reduction. One approach is

to collect samples over time (time sampling [Laha88]), while another is to collect samples over

space (set sampling [Puzak85]). Each is discussed in greater detail below.

Laha et al. collected different segments of a full trace that were each contiguous in time

[Laha88]. Each of these trace segments was driven into a memory simulator to obtain an estimate

of some performance metric, such as a miss ratio. The miss-ratio estimators from each trace

segment were combined to form an average estimate of performance over the length of the entire

trace. This method, calledtime sampling, must be conducted with care to avoid errors. First, the

individual trace segments must be long enough to overcome a form of bias caused by starting the
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simulation of each segment in a cold (empty) memory. Second, a sufficient number of trace

segments must be collected (Laha et al. suggest 35) to ensure that different phases of execution are

adequately represented. This study showed that time samples representing 5% to 20% of the full

trace can be used to simulate caches with less than about 5% relative error. The simulations were

limited to relatively small caches (< 128 K-bytes) to minimize errors due to cold-start bias.

Puzak proposed an orthogonal trace sampling approach, calledset sampling (or congruence-

class sampling) [Puzak85]. With set sampling, the reduced trace is constructed by keeping exactly

those addresses that reference a certain random collection of cache sets. References to any other

sets are discarded. Cache simulations are performed on each sampled set individually to obtain

several estimates of some performance metric. Then, as with time sampling, the estimators are

combined to form an overall estimate of cache performance. Because each set in the sample sees

all of the references made to it by the full trace, this method does not suffer from cold-start bias.

Puzak showed that set samples representing 10% to 20% of the full trace produce simulation

results with less than 2% error with 90% confidence. He also showed that error decreases with

increasing cache associativity. A disadvantage of Puzak’s random set sampling is that a set sample

for a given cache configuration will not necessarily be a set sample for other cache configurations.

This implies that a different set sample may have to be constructed for each different cache

configuration simulated.

Kessler has applied both time sampling and set sampling to the problem of simulating multi-

megabyte secondary cache memories [Kessler91]. He developed and evaluated several

improvements to both methods, including techniques for minimizing the effects of cold-start bias

and a method for carefully constructing a single set sample for the simulation of several different

cache configurations. He also compared the ability of the two different methods to meet a goal of

10% sampling that produces simulation results that are less than 10% in error, with 90%

confidence. He showed that set sampling is able to satisfy this goal for large caches (greater than

one megabyte), but time sampling breaks down in this range.

Some of these trace reduction methods can be combined to produce multiplicative

improvements in compression factors. For example, a cache-filtered trace could also be time or set

sampled. Similarly, standard data-compression algorithms can be applied to just about any trace

reduced by the other methods, although the resulting compression factors are likely to be less than

they would be on a full trace where the initial entropy is lower.
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In summary, the most appropriate trace reduction method often depends on the questions to be

answered by the simulation study. Because many of the methods restrict the way that the resulting

reduced trace may be used, no single method is always best. A designer must first decide on the

memory design space to be explored and then select a method depending on the simulation speed

and accuracy required. If fast and exact simulation results are required, the best trace-reduction

methods are limited to size-reduction factors of about 10. If speed is not a concern, but exact

results are necessary, then tools like Mache or AE provide good solutions with size-reduction

factors as high as 100, but trace reconstruction times can slow simulations by as much as 50 to

200. If simulation errors of 10% or less are considered acceptable, then the best methods (perhaps

used in combination) can achieve space and time reduction factors of as high as 50 to 100.

2.2.3 Trace Processing

The final phase of trace-driven simulation,trace processing, often requires the most

processing time. The objective of trace processing is to estimate the performance of a range of

memory configurations by simulating their behavior in response to the memory references

contained in an input trace.

This process is time consuming because a designer is typically interested in hundreds or

thousands of different memory configurations in some design space. Consider that a design space

for a simple cache defined by sizes ranging from 4 K-bytes to 64 K-bytes (in powers of two), line

sizes ranging from 1 word to 16 words (in powers of two), and associativities ranging from 1-way

to 4-way, contains 100 possible cache designs. The design space becomes very large when adding

different replacement policies (LRU, FIFO, Random), different set-indexing methods (virtually-

or physically-indexed) and different write policies (write-back, write-through, write-allocate).

These design options are for a single cache, but actual memory systems are typically composed of

multiple caches that cooperate and interact in a multi-level hierarchy. Because of these interactions

and because different memory components often compete for scarce resources such as chip-die

area, the different components cannot be considered in isolation. This leads to a further,

combinatorial expansion of the design space.

One approach to this problem is to simulate multiple memory configurations in a single pass

of the address trace (see Table 2.6). It is desirable that the simulator be able to vary parameters

along several dimensions and also be able to produce any of several different metrics for



40

Reference Name

Range of Parameters

Metrics Overhead
Sets Line Assoc

Write
Policy

Sector

[Mattson70] Stack Simulation Fixed Fixed Vary None No Misses —

[Hill87] Forest Simulation Vary Fixed 1-way None No Misses < 5%

[Hill87] All-Associativity Vary Fixed Vary None No Misses < 30%

[Thompson89] — Fixed Fixed Vary W-back Yes Misses, Write Backs < 100%

[Wang90] — Vary Fixed Vary W-back No Misses, Write Backs < 65%

[Sugumar93] Cheetah Fixed Vary 1-way W-thru No Misses, WB Stalls < 120%

Table 2.6  Multi-configuration Memory Simulators

Multi-configuration memory simulators can determine the performance for a range of memory configurations in a single pass of an address
trace. However, each of these simulators is limited in the way that memory-configuration parameters can be varied (see Range of
Parameters). Total cache size is determined by the equation: Size = Sets * Assoc * Line.

Overhead is the extra time it takes to perform a multi-configuration simulation relative to a single-configuration simulation (as reported by
the authors of each simulator). This overhead is usually an underestimate of the true processing overhead because values reported in
papers typically include the time to read input traces from a file.
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performance, such as miss (hit) ratios, transfer ratios, misses per instruction (MPI) and cycles per

instruction (CPI).

Mattson, Gecsei, Slutz and Traiger were the first to develop trace-driven memory simulation

algorithms that are able to consider multiple configurations in a single pass of an address trace

[Mattson70]. In their original paper they introduce a method, calledstack processing, that

determines the number of memory references that hit in any size of fully-associative memory that

uses astack algorithm for replacement. They give several examples of stack replacement

algorithms, including LRU and OPT. They also note that some replacement policies, such as

FIFO, are not stack algorithms. In their original paper, and in a collection of other follow-on

reports (see [Sugumar93] or [Thompson89] for a more complete description), Mattson et al.

described extensions to the basic stack algorithm to handle different numbers of cache sets, lines

sizes and associativities.

In their early work, Mattson et al. did not report on the efficiency of actual implementations of

their multi-configuration simulation algorithms. We are interested in the overhead of performing a

multi-configuration simulation relative to a single-configuration simulation. This value lets us

compute the average simulation speedup for a range of cache configurations relative to the time

that would normally be required by several single-configurations simulations. Many researchers

have advanced multi-configuration simulation by proposing various enhancements and by

reporting simulation times for actual implementations of these improvements. We focus on a

collection of recent papers that exhibit the range of parameters that multi-configuration methods

have been extended to, and that characterize the current state-of-the-art in this form of simulation

(see Table 2.6).

Hill noted that the original stack algorithm requires that the number of cache sets and the line

size be fixed [Hill87]. This means that a single simulation run can only explore larger caches

through higher degrees of associativity. Hill argues that designers are often more interested in

fixing the cache associativity and varying the number of sets, a form of multi-configuration

simulation that hisforest simulation algorithm supports. Another algorithm studied by Hill isall-

associativity simulation which enables both the number of sets and the associativity to be varied

with just slightly more overhead than forest simulation. Thompson and Smith developed

extensions that count the number of writes to main memory for different-sized caches that

implement a write-back write policy [Thompson89]. They also studied multi-configuration
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algorithms for sector or sub-block caches. Wang and Baer combined the work of [Mattson70],

[Hill89] and [Thompson89] to compute both miss ratios and write backs in a range of caches

where the both the number of sets and the associativity is varied. In his dissertation, Sugumar

developed algorithms for varying line size with direct-mapped caches of a fixed size, and also for

computing write-through stalls and write traffic in a cache with a coalescing write buffer

[Sugumar93].

There are several points to be made about multi-configuration algorithms in general. First, for

all of the examples considered, the overhead of simulating multiple configurations in one trace

pass is reported to be less than 100%, which means that one multi-configuration simulation of two

or more configurations would perform as well as or better than collections of two or more single-

configuration simulations. However, these results should be interpreted with care because these

overheads are reported relative to the time to readand to process traces. When the time to read an

input trace is high, as is often the case when the trace comes from a file, the overhead of multi-

configuration is very low. However, if the trace input times are relatively low, then the multi-

configuration overheads will be much higher. This is the case with the Sugumar’sCheetah

simulator which appears to have very high overheads relative to Hill’sTycho simulator [Hill87;

Sugumar93] (see Table 2.6). Cheetah, however, is approximately eight times faster than Tycho

because its input processing is more optimized [Sugumar93].

A second point is that even though multiple configurations can be simulated with one trace

pass, it is often still necessary to re-apply multi-configuration algorithms several times to cover an

entire design space. Hill gives an example design space of 24 caches, with a range of sizes, line

sizes and associativities where the minimal number of trace passes required by stack simulation is

15 [Hill87]. For the same example, forest simulation still requires 3 separate passes and can only

cover half of the space. All-associativity simulation also requires 3 separate passes, but covers the

entire design space.

Finally, despite many advances in multi-configuration simulation, there are many types of

memory systems and performance metrics that cannot be evaluated in a single trace pass. For

example, most of these simulators restrict replacement policies to LRU, which is rarely

implemented in actual hardware. Similarly, performance metrics that require very careful

accounting of clock cycles generally cannot be computed for a range of configurations in a single

simulation pass. For example, simulating contention for a second-level cache between split
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primary I- and D-caches requires a careful accounting of exactly when cache misses occur in each

cache.

2.2.4 Trace Interfaces

Until now, we have only examined the three components of trace-driven simulation in

isolation. Figure 2.1 suggests a natural composition of the three components in which they

communicate through a simple linear interface of streaming addresses that may or may not include

some form of buffering between the components. Because of the high data rates required, the

selection of mechanisms used to communicate and buffer trace data is crucial to the overall speed

of a trace-driven system. A bottleneck anywhere along the path from trace collection to trace

processing can lead to high overall slowdowns. In this section we examine the pros and cons of the

most-commonly-used methods (see Table 2.7).

Method
Buffer

Capacity
Bandwidth Slowdown

Same
Task?

Typical Application

Files G-bytes 1 MB / sec 100 No Probe-based
Microcode Modification

Pipes K-bytes 5 MB / sec 20 No Code Instrumentation

Memory K-bytes 10 MB / sec 10 Yes  ISA Emulation
Code Instrumentation

Procedure
Call

None — — Yes ISA Emulation
Code Instrumentation

Table 2.7  Some Trace Interfacing Methods

These estimates of bandwidth are based on measurements performed on a
DECstation 5000/133 with a 33 MHz processor and a SCSI-connected disk. The file
bandwidth is for a first read of the file from disk (as opposed to second reads which
may be held in a file-block cache). Memory bandwidth was measured for a block of
uncached reads and writes to simulate the interaction between a trace collector and
trace processor that share the same address space. If these components can
cooperate in such a way that the reads and writes are cached, bandwidth increases to
about 40 MB/sec. Slowdowns were computed by assuming that this machine
generates address references at an approximate rate of 100 MB/sec.
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Files

Because address traces conform to a simple linear-data-stream model, there are several

options available for communicating and buffering them. The simplest and most commonly-used

mechanism is the OS filesystem.Files provide deep buffering capability because they are

implemented with secondary storage devices. As a result, files enable the postponement of trace

processing as well as the ability to replay the same traces over again. This helps both to reproduce

simulation results and to avoid the costs of re-collecting address traces. Files are most commonly

used by probe-based trace collectors to permanently store the contents of their external trace

buffers. Once a long trace of multiple samples is collected in a single file, a trace processor need

not know the details of some clumsy interface to a specialized hardware trace buffer; the trace is

simply accessed through a standard file read.

Files have some important disadvantages, the first of which is speed. Assuming a file-read

bandwidth of 1 MB/sec and an address-generation rate of 100 MB/sec by the host (see the caption

of Table 2.7), trace-driven simulation slowdowns are at least 100. Note that this still compares

favorably to re-collecting traces with probe-based methods where slowdowns are in the thousands.

Another disadvantage with files is that they are simply never large enough. Assuming again a host

address-generation rate of 100 MB/sec, a 1.2 Giga-byte hard disk would be filled to capacity in

about 12 seconds of real-time execution. This underscores the importance of the trace-reduction

methods, described in Section 2.2.2, which can improve effective file capacity and bandwidth by

one to two orders of magnitude.

Pipes

Pipes are another abstraction provided by the filesystem that can, under certain circumstances,

overcome the limitations of files. Pipes establish a one-way channel for the flow of sequential data

from one task to another. Usually only a moderate amount of memory, on the order of kilobytes, is

provided to buffer the data flowing between the two tasks. This implies that both a trace collector

(producer) and trace processor (consumer) must be running at the same time to prevent buffer

overflow. However, in this approach, which is often calledon-the-fly simulation, traces are

discarded just after they are processed. Because traces need to be re-collected for each new

simulation run, this technique is most effective when the trace collector is able to produce traces

faster than can be read from a file. In the case of ISA emulators and code annotation tools, where
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slowdowns range from 10 to 75, this requirement is often met. When pipes are used, trace-

reduction methods are usually less attractive because they must be re-applied during each

simulation run. This typically provides little or no advantage over simply processing the full

address trace.

Same-task Communication

Both files and pipes are inter-process communication mechanisms provided by a filesystem.

As such, their use incurs a certain amount of operating system overhead for copying or mapping

data from one address space to another, and from context switching between tasks. These

overheads can be avoided if a trace collector and trace processor run in the same task and arrange

communication and buffering without the assistance of the OS. Several of the instruction-set

emulation and code-annotation tools support trace collection and trace processing in the same task

address space (see Table 2.4). In these systems, two different approaches to communicating and

buffering trace data are commonly used. The first method is to make aprocedure call to the trace

processor after each memory reference. In this case, trace collection and processing are very

tightly coupled and thus no trace buffering is required. A disadvantage is that procedure-call

overhead, such as register saving and restoring, must be paid after each memory reference. With

the second method, a region of memory in a task’s address space is reserved to hold trace data.

Execution begins in a trace-collecting mode which continues until the trace buffer fills and then

switches to a trace-processing mode which runs until the trace buffer is again empty. By switching

back and forth between these two modes infrequently, this method helps to amortize the cost of

switches over many addresses.

2.2.5 Overall Trace-driven Simulation Slowdowns

Because of the variety of trace-driven simulation techniques and the ways to interconnect

them, it is difficult to determine overall trace-driven simulation slowdowns. Unfortunately, very

few papers report overall slowdowns because most tend to focus on just one component or aspect

of trace-driven simulation, such as trace collection. Researchers that do assemble complete trace-

driven simulation environments tend to report the results, not the speed of their simulations. There

are, however, a few exceptions, which we summarize in this section and augment with our own

measurements. Table 2.8 lists several complete trace-driven simulation environments that are
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Name Reference
Trace

Collection
Trace

Reduction
Trace

Processing
Interface
Method

Slowdown
Effective

Slowdown

Epoxie + Panama [Borg89] Code Instr None Single Config Memory 100 100

Meerkat [Bedichek94] ISA Emul None Single Config Proc Call 150 150

Monster + Cheetah — Probe-based Time Sample Multi (8) File 419 52

Pixie + Cheetah [Sugumar93]* Code Instr None Multi (44) Pipe 183 4

Pixie + Tycho [Gee93] Code Instr None Multi (44) Pipe 6250 142

Pixie + Cache2000 [MIPS88]* Code Instr None Single Config Pipe 60 - 80 60 - 80

Table 2.8  Overall Trace-driven Simulation Times

This table gives some typical slowdowns for a complete trace-driven simulation system. The number of configurations considered in a
single pass of the trace are given under the Trace Processing column. Slowdowns are for a single simulation run, while Effective
Slowdowns are computed by dividing by the number of configurations (given in parenthesis) simulated during that run. In each row,
slowdowns were taken (or computed) directly from the referenced paper. For entries that have an asterisk by the reference, slowdowns
do not come from the paper, but were determined by running the tool on a DECstation 5000/240.
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composed of a wide range of different trace collection and trace processing methods. As such,

these systems are fairly representative of the sort of trace-driven simulation environments that can

be constructed with state-of-the-art methods. We could find no examples of trace-driven

simulators that exhibit overall slowdowns less than about 50 when they consider both instruction

and data references. The fastest combination was Cache2000 driven by Pixie traces generated on-

the-fly and passed through a pipe. Note that the overheads of the two multi-configuration

simulators (Tycho and Cheetah) cause their overall slowdowns relative to single-configuration

simulation (Cache2000) to be much higher than the values reported in Section 2.2.3. For Cheetah,

the overheads are at least 300%, and for Tycho they are an order of magnitude higher.

To better understand the sources of trace-driven slowdown, we measured the speed of

Cache2000 driven by Pixie traces over a range of instruction and data cache sizes. The results,

shown in Figure 2.3, illustrate that most of the slowdowns are due to trace processing. However,
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Figure 2.3  The Components of Trace-driven Slowdowns

These two plots give the components of trace-driven slowdowns for the fastest,
single-configuration trace-driven simulator system found in this survey. The trace
processor is Cache2000 and the trace collector is Pixie. These components were
interfaced by an Ultrix pipe. The left plot shows slowdowns for I-cache
simulations, while the right plot shows the slowdowns when simulating both I- and
D-caches concurrently.
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even if the trace processing time were reduced to zero, trace collection and trace communication

each still slow the workload down by a factor of 5 to 15.

As Table 2.8 shows, the generation, transfer and processing of trace data for memory-system

simulation is extremely challenging. With increasing processor speeds, trace-driven slowdowns

are likely to increase in the future. This is a simple consequence of our definition of slowdown,

which divides the overall rate at which a trace-driven simulator can collect and process addresses

by the address-generation rate of the host machine (recall Eqn 2.1 - Eqn 2.3). Assuming that

workloads fit reasonably well into an on-chip CPU cache, the denominator in this ratio increases in

direct proportion to increasing CPU clock rates, which have improved by roughly 40% each year

during the past decade [Upton94]. The numerator, however, is much more affected by bandwidth

improvements all along the memory hierarchy for two reasons. First, many popular trace-

collection methods, such as those based on code instrumentation or ISA emulation, cause traced

workloads to bloat in size. This means that instrumented or emulated programs do not fit well into

CPU caches and are therefore bound more by main-memory bandwidths. Second, trace interfaces

that use buffering often rely on slower parts of the memory hierarchy. For example, files rely on

disks, and pipes rely on cross-domain transfers that usually result in main-memory data copies.

In a best-case scenario, traditional trace-driven simulation is unlikely ever to exhibit

slowdowns lower than about 20 to 35. This conclusion can be reached by observing three basic

facts uncovered earlier in this analysis:

(1) The fastest trace collectors are based on static code instrumentation and their

slowdowns are no better than about 10 to 15.

(2) The fastest trace-driven systems perform trace collection and trace processing on-

the-fly. However, this technique effectively precludes the use of trace reduction

methods, and imposes overheads that add a slowdown of at least 5 to 10 simply to

communicate trace data from the trace collector to the trace processor.

(3) Processing an address for the simplest of memory structures, a direct-mapped cache,

requires a minimal slowdown of approximately 5 to 10. Anything more complex

than direct-mapped cache simulations must necessarily take more time.

The sum of these slowdowns for trace collection and trace processing are in the range of 20 to

35. Our analysis of the fastest single-configuration trace-driven simulator that we could find (Pixie
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+ Cache2000) exhibits slowdowns in the range of 60 to 80, and the fastest multi-configuration

simulator (Pixie + Cheetah) is at least 3 times slower, supporting the claim that trace-driven

simulation is, in practice, one to two orders of magnitude slower than actual hardware.

2.3 Summary

The purpose of this chapter has been threefold: (1) to define and clarify the common issues

and problems inherent in any form of memory-system simulation, (2) to evaluate and analyze the

state-of-the-art in trace-driven memory simulation, and (3) to learn from trace-driven methods so

that they may be applied to trap-driven simulation.

Our definitions of the issues and problems associated with memory-system simulation were

given in the context of anideal trace-driven simulation environment. The most important aspect of

simulation is that it produce accurate and meaningful results. To assess this characteristic in less-

than-ideal systems, we defined the concept oftrace quality which relates directly to the accuracy

of trace-driven simulations. Our definition of trace quality specifies what is meant bytrace

completeness, trace detail andtrace distortion. We also noted the importance of simulationspeed

because it constrains the degree to which a design space can be explored. We defined a simple

metric for speed,slowdown, which enables meaningful comparisons of simulation tools that have

been implemented on host machines of differing speeds. In addition to the main issues of accuracy

and speed, we have defined a handful of other considerations to use when evaluating a memory-

system simulator. These includeexpense, portability, ease-of-use and, finally, theflexibility and

range of simulations that can be performed.

The foregoing survey leads to several conclusions contrary to the conventional wisdom. In

particular, instruction-set emulation is faster than commonly believed, probe-based trace

collection is slower than commonly believed, and multi-configuration simulations include more

overhead than typically reported. Most importantly, no single method is best when all points of

comparison are taken into consideration; there is much variability among the methods with respect

to speed, accuracy, flexibility, expense, portability and ease-of-use. Our analysis enables us to

reach two basic conclusions about the current state of trace-driven simulation accuracy and speed:

(1) High-quality traces are still quite difficult to obtain and even the very best traces may be

incomplete, lack detail, or contain distortions that can affect simulation accuracy. (2) Because of
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inherent bottlenecks, traditional trace-driven simulation will always be one to two orders of

magnitude slower than actual hardware.

Our final objective for this study was to identify trace-driven simulation techniques that could

be adapted to work with trap-driven simulation. As we will see in the next chapter, techniques

such as cache filtering, set sampling, time sampling and multi-configuration simulation can all be

implemented, often with relative ease, in a trap-driven simulator. This, combined with an ability to

capture a complete and detailed picture of memory-referencing behavior and to break past inherent

bottlenecks in trace-driven simulation speeds, makes trap-driven simulation a very attractive

alternative for memory-system simulation. However, trap-driven simulation has certain

disadvantages of its own. We begin our study of both the pros and cons of trap-driven simulation

in the next chapter.
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Chapter 3

Trap-driven Simulation

Strict adherence to the trace-driven simulation paradigm is likely to limit further substantial

improvements in memory-simulation speeds. The primary bottleneck in trace-driven simulation

comes from collecting and processingeachmemory reference made by a workload, whether or not

it changes the state of a simulated memory structure. Several researchers, noting this bottleneck to

trace-driven simulation, have developed innovative software-based methods for eliminating or

reducing the cost of processing addresses that do not change simulation state. We begin this

chapter with a brief survey of three such tools, which each use very efficient code-instrumentation

techniques to improve simulation speeds by a factor of 2 to 3 relative to fast trace-driven

simulators.

In the second part of this chapter, we argue that software-only simulation methods, like those

described above, simply cannot provide further speed improvements. Software-only simulation

methods have, after over 30 years of development, reached a speed barrier, and further advances

will only be possible if simulation-host hardware is more directly involved in the task of sorting

memory references that change simulated-memory state. This is where our investigation of trap-

driven simulation begins. We examine early trap-driven simulators that demonstrated that

simulated TLB and cache hits could be processed at the full speed of the hardware hosting a

simulation.

These first-generation trap-driven simulators, while successful in demonstrating the feasibility

of a new simulation method, left unanswered a number of questions regarding its overall

flexibility, portability, speed, and accuracy. In the final section of this chapter, we introduce the

design of a new trap-driven simulator, Tapeworm II. This design, and a prototype implementation

of it, will be used in subsequent chapters to examine and answer open questions about trap-driven

simulation in general.
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3.1 Beyond Trace-driven Simulation

Table 3.1 summarizes three recent memory-system simulators that each try to eliminate or

remove the cost of processing workload memory references that do not change simulation state.

These techniques,hit bypassing, customized instrumentation, andactive memory, are each based

on optimizations of standard code annotation techniques.

3.1.1 Hit Bypassing

MemSpy is a memory simulation and analysis tool built on top of the TangoLite trace-

collection tool [Martonosi92]. Original implementations of MemSpy, which instrumented

assembly code to call a simulation routine after each heap or static data reference,1 exhibited

typical trace-driven slowdowns in the range of 20 to 60 when performing simulations of a 128-

KB, direct-mapped data cache. Each call to the MemSpy simulator incurred overheads for saving

and restoring registers, simulating the cache, and updating statistics. Altogether, it cost about 230

to 275 cycles to service a simulated cache hit and 320 to 510 cycles for a cache miss. Martonosi

observed that cache hits are the more frequent simulation event and can be optimized by

modifying the code that instruments each memory reference with code to immediately detect

1. MemSpy does not instrument instruction references or data references to the stack segment. This
means that, depending on the workload, MemSpy instruments between about 8.3% to 21% of all
instructions.

References Name
Overall

Slowdown
Cache Configurations Completeness

[Martonosi92;93] MemSpy 10 - 20 D-cache (128-KB) Single Task, No OS

[Srivastava94] ATOM 12 D-cache (—) Single Task, No OS*

[Lebeck94; 95] Fast-Cache 3 - 7 D-cache (16-KB to 1-MB) Single Task, No OS

Table 3.1  Beyond Traces: Some Recent Fast Simulators

Overall Slowdowns are highly dependent on workload and the configuration (size,
associativity) of the cache being simulated, so we report slowdowns as a range of values.
Wherever possible, we describe the simulation parameters in terms of Cache
Configuration and Completeness.

* Srivastava et al. report that efforts to annotate the OSF/1 kernel with ATOM are in
progress.
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simulated cache hits. When this case occurs, the MemSpy simulator code isbypassed and

execution continues to the next instruction. Thishit-bypassing code requires about 25 instructions,

compared with the 230 to 275 cycles for a full call into the MemSpy simulator. The resulting

MemSpy slowdowns, after the hit-bypassing optimization, were measured to be in the range of 10

to 20.

Because hit-bypassing is implemented in software, it limits the effectiveness of techniques

such as time sampling [Laha88] and set sampling [Puzak85]. Martonosi investigates time

sampling in a later paper by adding another check to the instrumented code to enable and disable

monitoring at regular intervals [Martonosi93]. When enabled, instrumentation overheads are

similar to those cited above, but when disabled, an instrumented reference executes only 6 extra

instructions. When trapping is enabled for 10% of the entire execution time, MemSpy slowdowns

drop to about 4 to 10, a factor of two improvement over simulations without sampling. This is a

rather disappointing result given that 10% sampling should ideally result in a factor of 10 speedup.

The bottleneck is the cost of instrumentation; Even when trapping is turned off, each instrumented

memory reference still results in the execution of 6 extra instructions.

3.1.2 Customized Instrumentation

A common problem with many trace-collection tools is that they produce traces with an

inflexible level of detail, which may provide too much or too little information for a given type of

simulation. For example, a trace complete with both instruction and data references provides more

trace information than is actually needed by an I-cache simulator which must filter away the data

references. Many trace collectors are similarly rigid in the mechanism that they use to

communicate addresses, typically forcing the trace through a file or pipe interface to another task

containing the trace processor. Although these policies enable generic trace-driven simulators to

be built, they miss certain opportunities to speed simulations.

The ATOM tracing system is designed to solve some of these problems by supporting

customized instrumentation [Srivastava94]. With ATOM, a simulator writer defines an

instrumentation specification that controls the way that a workload is annotated. To do I-cache

simulation, for example, a simulator writer can specify that only instruction references be

annotated, and that a specific I-cache analysis routine be called at these points. ATOM then uses an

object-module editing tool, called OM, to embed calls to the I-cache analyzer routines, while using
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a number of optimizations to save and restore a minimum of registers. Srivastava et al., report that

cache2 simulation can be performed on ATOM-annotated SPEC92 benchmarks with a slowdown

of about 12 [Srivastava94].

3.1.3 Active Memory

Fast-cache is another tool that implements a more flexible and optimized interface between an

annotated workload and simulator routines [Lebeck94; Lebeck95]. Fast-cache is based on an

abstraction calledactive memory. Each block of active memory has an associatedhandler routine

that is called whenever memory locations in the block are referenced. During a memory-system

simulation, these handlers can be changed dynamically to implement certain optimizations. For

example, a memory block that is known to be held in a simulated cache can have its handler set to

point to a NULL routine. An access to this memory location results in an event that doesn’t change

simulated-memory state (i.e., a simulated cache hit) and because its handler is a NULL routine, the

simulator is not invoked.Fast-cache implements active memory blocks in software by adding 9

instructions to instrument each original workload instruction that makes a memory reference (only

5 instructions execute for references that invoke the NULL handler). Fast-cache currently works

on single-task, data-only simulations; No instructions or operating system references can be

instrumented. Fast-cache achieves overall slowdowns in the range of 3.1 to 6.7 for the simulation

of direct-mapped data caches ranging in size from 16KB to 1MB [Lebeck94].

3.1.4 Summary of New Memory Simulation Methods

The success of ATOM, MemSpy, and Fast-cache suggest that memory-simulation speeds can

be improved over traditional trace-driven methods by reducing the cost of processing workload

events that do not affect simulated memory state. Because all three systems are based on software-

only methods, they share a number of important advantages. Namely, they are flexible, low in cost,

and relatively portable because they do not rely on special hardware support. ATOM, for example,

can also be used for a variety of other customized program-analysis tools, including file I/O

analysis, program profiling, dynamic-memory allocation analysis, and compiler auditing

[Srivastava94].

2. The parameters of the simulated cache were not reported.
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Because they are based on the same basic techniques as trace collectors that use code

instrumentation (see Section 2.2.1), these tools also suffer from some of the same disadvantages,

such as causing program text to bloat in size by factors as high as 5 to 10 due to added instructions.

Code expansion may not be a concern for applications with small text segments, but instrumenting

larger, multi-task workloads along with the kernel, can cause substantial bloat. For this and other

reasons, these tool are difficult to extend beyond single-task workloads. To date, all three tools

exclude kernel references and dynamically-linked or dynamically-compiled code, although work

is reportedly in progress to instrument the OSF/1 kernel using ATOM. Finally, as reported by

Martonosi, code-instrumentation techniques have difficulty exploiting the full benefits of set and

time sampling because of the base overhead they add, even when in a non-sampling mode.

3.1.5 Performance Bounds on Software-only Methods

The highly-tuned simulation systems described above improve over traditional trace-driven

simulation speeds by a factor of 2 to 3, reducing slowdowns to within an order of magnitude of

actual hardware. Unfortunately, there are two reasons to believe that this is the end of the road for

improvements in the speed of software-only memory simulators. First, the slowdowns of these

tools are bounded by the number of instructions that they add to a workload. The fastest simulator

in the group, Fast-cache, must execute at least 5 extra instructions for each instrumented memory

reference (and many more if the reference misses the simulated cache). Second, code that is

bloated by annotation increases host I-cache misses. An instrumented version of thetomcatv

SPEC92 workload, for example, exhibits a 20-fold increase in the host I-cache miss ratio

[Lebeck95]. In other words, slowdowns are bounded not only by the number of instructions added

to a workload for annotation, but also by the host I-cache, which will always be less effective

when executing a bloated, annotated workload than the original, un-annotated workload.

These bounds to maximum simulation speed are evident in published results for Fast-cache

and MemSpy. Fast-cache slowdowns for the simulation of a perfect D-cache that never misses are

2.5 to 4.5 [Lebeck94] and for MemSpy they are about 10 [Martonosi94]. It is important to note

that both of these simulators instrument data references only, and that the above slowdowns are for

single-task workloads with relatively small text segments. Complete instrumentation of both data

and instruction references of larger workloads is likely to bring the best-case slowdowns into the

range of 10 to 20.
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3.2 Enter Trap-driven Simulation

Unlike the software-only methods described in the previous section, a trap-driven simulator

relies on the underlying host hardware to detect workload memory references that change

simulated-memory state. Because a trap-driven simulator adds no instructions to a workload, it

avoids the bounds that limit the fastest memory simulators based on code instrumentation. In

principle, trap-driven simulations can achieve near-zero slowdowns. We begin our study of trap-

driven simulation with a look at first-generation trap-driven simulators (see Table 3.1).

3.2.1 Trap-driven TLB Simulation

The first-generationTapeworm is an early example of trap-driven TLB simulation [Nagle93;

Uhlig94b]. Tapeworm relied on the fact that all TLB misses in a MIPS-based DECstation are

handled by software in the operating system kernel. The Tapeworm code was compiled into the

operating system kernel and the usual TLB miss handlers were modified to call the Tapeworm

code via procedural “hooks” after every miss. This mechanism passed the relevant information

about all user and kernel TLB misses directly to the Tapeworm simulator. Tapeworm used this

information to maintain its own data structures and to simulate other possible TLB configurations.

With Tapeworm, a simulated TLB could be either larger or smaller than the host TLB because

Tapeworm ensured that the host TLB only held entries available in the simulated TLB. For

example, to simulate a TLB with 128 slots using only 64 host TLB slots, Tapeworm maintained an

array of 128 virtual-to-physical address mappings and checked each memory reference that missed

the host TLB to determine if it would have also missed the larger, simulated TLB. Tapeworm thus

maintained a strict inclusion property between the host and simulated TLBs. Tapeworm controlled

the actual TLB management policies by supplying placement and replacement functions that were

called by the operating system miss handlers. It simulated TLBs with fewer entries than the host

TLB by providing a placement function that never utilized certain slots in the host TLB.

Tapeworm used this same technique to restrict the associativity of the host TLB.3 By combining

these policy functions with adherence to the inclusion property, Tapeworm could simulate the

performance of a wide range of different-sized TLBs with different degrees of associativity and a

3. The actual (host) R2000 TLB is fully-associative, but varying degrees of associativity can be
emulated by using certain bits of a mapping’s virtual page number to restrict the slot (or set of
slots) into which the mapping may be placed.
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References Name Trap Method
Cycles per

Trap
Overall

Slowdown
Type of

Simulation
Completeness

[Nagle93; Uhlig94b] Tapeworm TLB Miss Trap 100 - 650 0.5 - 4.5 TLB Multi-task, With OS

[Reinhardt93] WWT Memory Parity (ECC) 2,5001 1.4 - 461 MP D-cache Single Task, No OS

[Lee94] Tapeworm486 Invalid Page Trap 3,600 - 4,000 0 - 14 TLB Multi-task, With OS

[Talluri94] Foxtrot TLB Miss Trap 1,500 - 4,000 — TLB Single Task, No OS

[Uhlig94] Tapeworm II Memory Parity (ECC)

Invalid Page Trap

300
325 - 360

700

0 - 10 I-cache
Instr Prefetch

TLB

Multi-task, With OS

Table 3.2  Trap-driven Simulators

The code in a trap-driven memory-system simulator is only invoked when the simulated memory state changes (e.g., on
cache misses). Traps into the simulator are implemented using a variety of techniques (see Trap Method). Cycles per Trap
are the approximate number of host machine cycles required to handle a trap. Overall Slowdown are highly dependent on
the configuration (size, associativity) of the cache or TLB being simulated, so we give slowdowns in ranges. Type of
Simulation and Completeness summarize the range of simulation supported (MP = Multi-processor).

1Miss costs and slowdowns for WWT were taken from [Lebeck94].
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variety of placement and replacement policies. Because all user and kernel misses were

intercepted, Tapeworm was able to fully consider multi-task and OS effects for these different

TLB configurations.

The principal advantage of driving Tapeworm with hardware-generated kernel traps is that

non-trapping memory references proceeded at the full speed of the underlying host hardware; A

simulated TLB hit resulted in no system slowdown. On the other hand, a simulated TLB miss

incurred the full overhead of a kernel trap and the simulator code, which varied from 100 to 650

host cycles. Fortunately, TLB hits are far more frequent than TLB misses, outnumbering them by

more than 300 to 1 in the worst case [Nagle93; Uhlig94b]. The result is that Tapeworm TLB

simulation slowdowns ranged from about 0.5 to 4.5.

Recently, trap-driven TLB simulation has been implemented on other architectures with

similar success. Lee has implemented a trap-driven TLB simulator on a 486-based PC running

Mach 3.0 [Lee94]. Because the i486 processor implements hardware-managed TLBs, this

simulator uses a different mechanism for causing TLB miss traps, one that is based on page-valid

bits. By manipulating the valid bit in a page-table entry, Lee’s simulator can cause TLB misses to

result in kernel traps in the same way that they do in a machine with software-managed TLBs.

Talluri et al. uses similar techniques in a trap-driven TLB simulator that runs on SPARC-based

workstations under theFoxtrot operating system to study architectural support for superpages

[Talluri94]. Talluri and Lee both report that the overall slowdowns for their simulators are

comparable to those of Tapeworm.

3.2.2 Trap-driven Cache Simulation

A limitation with the trap-driven simulators described above is that they are not easily

extended to cache simulation. This is because the mechanisms that they use to cause kernel traps

operate at the granularity of a memory page. The first trap-driven simulator that overcame this

limitation is theWisconsin Wind Tunnel (WWT), which caused kernel traps by modifying the error-

correcting code (ECC) check bits in a SPARC-based CM-5 [Reinhardt93]. Because each memory

location has ECC bits, this method enabled traps to be set and cleared with a much finer

granularity, enabling cache simulation.
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As with the trap-driven TLB simulators noted above, a simulated cache hit in WWT ran at the

full speed of the host machine, and for caches with low miss ratios, overall slowdowns were

measured to be as low as 1.4. However, in a recent comparison with Fast-cache, Lebeck et al.

reports that WWT exhibits slowdowns of greater than 30 or 40 for caches smaller than 32KB

[Lebeck94]. These slowdowns are much higher than those reported for TLB simulation, both

because cache misses occur much more frequently than TLB misses, and because a WWT trap

requires about 2,500 cycles to service.

3.2.3 Open Questions about Trap-driven Simulation

The earliest attempts at trap-driven simulation in Tapeworm and WWT showed that near-zero

slowdowns for memory simulations are possible. Unfortunately, these simulators raised more

questions than they answered. These first-generation trap-driven simulators exhibited wide ranges

of simulation slowdowns (see Table 3.1), making it difficult to determine when trap-driven

simulation is faster than trace-driven simulation. The range of simulations that could be conducted

was limited (TLB-only in Tapeworm or D-cache, single-task-only in WWT) and methods for

setting traps were ad-hoc, drawing into question the flexibility and portability of the method in

general. Finally, the potential sources of trap-driven simulation error were generally unstudied.

3.3 Tapeworm II

Tapeworm II is a trap-driven simulator design that we will use in subsequent chapters for

answering open questions about trap-driven simulation. A prototype implementation of this design

runs in the Mach 3.0 operating system kernel on a MIPS R3000-based DECstation 5000/200, and

can simulate a range of TLBs, instruction caches, and instruction prefetch units. In this section, we

discuss our design goals for Tapeworm II4 and then present an overview of its organization in

terms of its system-independent, OS-dependent, and hardware-dependent components.

4. Note: Tapeworm II is different from the original Tapeworm TLB simulator, but for the purposes
of brevity, we often simply refer to it as Tapeworm.
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3.3.1 Design Goals

Tapeworm was developed to enable studies of the interaction between computer architectures

and operating systems. As such, our main design goal was to be able to account for the memory

referencing behavior of all components of a workload, which might be spread across multiple

user-level tasks and include the operating system kernel. Figure 3.1 illustrates the type of

workload that Tapeworm was designed to monitor. The figure showsmpeg_play , an MPEG

video decoder running under the Mach 3.0 operating system. This workload is difficult to monitor

for a number reasons. First, a substantial fraction of its time (25%) is spent in the privileged kernel

mode of execution. Second, its user-level components are spread across three different tasks: the

Mach BSD server, the X11 display server and thempeg_play  process itself. Third, the workload

includes a segment of code, called the BSD emulation library, which is dynamically-linked into

thempeg_play  address space.

In addition to being able to monitor all workload components, we also wanted to isolate

interactions between different workload components by specifying that a given component be

cached or not cached during a given simulation run. By running multiple trials with different

combinations of workload components cached, this capability would enable us to measure cache

interference effects.

Mach 3.0 X11 DisplayBSD 4.3
ServerKernel Server

Emulation
Library

mpeg_play

40%

5%30%

25%

Figure 3.1  The MPEG Decoder Workload
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Because Tapeworm was also intended for an exploration of the pros and cons of trap-driven

simulation, it was important that its design be extensible to explore issues of flexibility, and that it

be structured for portability to other machines. Finally, it was important that its trap handlers be as

fast as possible so that it could exceed previously-established limits to trap-driven simulation

speed.

3.3.2 Tapeworm Organization

A Tapeworm simulation system is composed of acontrolling workstation and one or more

simulation hosts(see Figure 3.2). The simulation host workstations each have a Tapeworm

embedded in their kernels, which respond to commands from a user-leveltwControl  task. The

controlling workstation connects to each of thetwControl  tasks to issue simulation commands,

and runs a user interface (xtw ) and a database server to log simulation results. This division

between simulation control and simulation hosts minimizes perturbation to workloads under study

and enables multiple simulations to be conducted concurrently.

The Tapeworm code is divided into machine-independent, OS-dependent, and hardware-

dependent sections (see Table 3.3). To explain how these different components interact, we will

walk through an example Tapeworm simulation scenario.

System-independent Code

A Tapeworm simulation begins with a user-defined specification of a workload and host

operating system, along with the parameters (size, associativity, replacement policies, etc.) of the

Code Lines of Code %of Total Code

Machine-independent Code 5652 82%

OS-dependent Code 889 13%

Hardware-dependent Code 343 5%

Table 3.3  Tapeworm Code Distribution

The majority of Tapeworm code is machine-independent, consisting of the user-level
X interface xtw  and a twControl  task that runs on each simulation workstation.
The remaining OS- and hardware-dependent code is detailed in Table 3.5 and
Table 3.5.
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caches or TLBs to be simulated. The user can also specify which workload components (user,

kernel, servers) should be included in the simulation. These simulation parameters are controlled

throughxtw , the X interface to Tapeworm (see Figure 3.3 for an example of one dialog box in this

interface). After the simulation parameters have been set,xtw  issues a series of remote-procedure

calls to the user-leveltwControl  task that runs on a simulation host.twControl , in turn,

makes kernel calls to the OS-dependent code inside the kernel of the simulation host to initialize

Tapeworm, and then starts a simulation by running the specified workload.

Figure 3.2  The Tapeworm Simulation System
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OS-dependent Code

At the beginning of a Tapeworm simulation, the simulated cache5 is empty, a condition that

5. For the remainder of this discussion, we will describe cache simulation, although the same basic
actions apply to TLB simulation as well.

Figure 3.3  Basic Tapeworm Simulation Parameters

This figure depicts a dialog box from the X interface to Tapeworm. Before a
simulation begins, a user selects a workload and operating system to run under.
The user also specifies which workload components (e.g., kernel, user-task tree,
BSD server, X server) are to be included in the simulation. A user can also specify a
set-sampling pattern to speed simulations at the expense of some loss in accuracy.
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Tapeworm models by initially setting traps on all workload memory locations. To accomplish this,

Tapeworm requires cooperation from the OS virtual-memory (VM) system. When a task faults on

the first access to one of its pages, the VM system registers the page with Tapeworm using

tw_add_page()  (see Table 3.5), which sets traps on each memory location in the page. As the

workload begins to use the new page, the first reference to each location causes a trap into the

kernel, which is directed to Tapeworm. All such traps represent simulated cache misses, so the

handler counts the miss and then clears the trap on the required memory location. Clearing the trap

effectively caches the memory location in the simulated cache structure because subsequent

references made by the workload to this location will not trap, allowing the workload to proceed

uninterrupted. As the simulated cache begins to fill, incoming traps may collide with previously

cached memory locations, requiring that they be displaced from the cache. The Tapeworm trap

handler simulates this by setting new traps on displaced memory locations, in accordance with the

cache parameters (e.g., size, associativity, indexing policy, replacement policy, etc.).

A parallel routine,tw_remove_page() , is used by the VM system to remove pages from

the Tapeworm domain when they are unmapped due to task termination or paging to secondary

storage. tw_remove_page()  clears all traps on a page and flushes the contents of the page

from the simulated cache. This mimics the same actions performed by the VM system on the host

machine’s real cache.

Routine Description

tw_add_page(tid, p, v)

Add a page to the Tapeworm domain. The page is added by setting traps on all of
its physical memory locations starting at the page address p. The task ID (tid)
and the virtual-to-physical page mapping defined by (p,v)  are recorded by Tape-
worm to enable forward and reverse address translations.

tw_remove_page(tid, p, v)

Remove the page define by (tid, p, v)  from the Tapeworm domain. The
page is removed by flushing it from the simulated cache and by clearing all traps
on its memory locations.

tw_attributes(tid, simulate, inherit)

Set Tapeworm attributes for the task identified by tid . A tid  of zero signifies the
kernel. A non-zero value of simulate  registers a task with Tapeworm. A non-
zero value of inherit  indicates the initial value of the simulate  attribute for
children of the task.

Table 3.4  OS-dependent Tapeworm Routines
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If the VM system maps more than one virtual page to a given physical page, it must still

register the mapping with Tapeworm by usingtw_add_page() . In this case, Tapeworm

increments a reference count for that physical page, but does not set any new memory traps. This

enables a new task to benefit from shared entries brought into the cache by another task, as would

happen in a real system. Similarly,tw_remove_page()  decrements the reference count, and

flushes the page from the simulated cache only when the reference count reaches zero.

Tapeworm supports cache simulation for workloads consisting of multiple tasks. To control

which tasks are included in a given simulation, each is assigned two Tapeworm attributes

(simulate  and inherit ), which are set by callingtw_attributes() , and are stored in an

extended version of the OS task data structure (see Figure 3.4). Ifsimulate  is zero (the default

value), then the task runs without any intervention from Tapeworm. When non-zero, simulate

causes all current and future pages used by the task to be added to the Tapeworm domain via a

tw_add_page()  call. A second attribute, inherit , defines the initial value ofsimulate

for all children of the task. After a task fork, a child task inherits the Tapeworm attributes of its

parent as follows:

child.simulate <-- parent.inherit

child.inherit <-- parent.inherit

Different settings of the (simulate , inherit ) pair are useful for common simulation

situations. For example, if the attribute pair (simulate=0 , inherit=1 ) is set on a shell task,

then any workload that is started from this shell, and all of the workload’s children will be

registered with Tapeworm. The shell task itself, however, is excluded from the simulation. This

inheritance mechanism simplifies the simulation of workloads with complex task fork trees, such

as sdet , kenbus , or a multi-stage optimizing compiler. Another common attribute pair,

(simulate=1 , inherit=0 ) is used when only the task itself, but not its children, are to be

simulated. This combination is useful for registering kernel pages with Tapeworm.

Hardware-dependent Code

The hardware-dependent portion of Tapeworm provides the routines needed to control host-

memory trapping mechanisms, as well as an auxiliary routine that aids in the computation of

performance metrics. Table 3.5 defines the complete semantics for the primitives in this interface.
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Figure 3.4  Tapeworm and the Host VM System

PageHost VM System

Tapeworm

tw_attributes

tw_add_page()

Physical Pages

tw_set_access()

Trap bits

Mach 3.0

X11 DisplayBSD 4.3
Server

Kernel

Server

Emulation
Library

mpeg_play

40%

5%30%25%

BSD        0 0
X11        0 0
Mach       1 0
mpeg_play  1 1

Attribute Checks

simulate inherit

Faults



67

The first three routines,tw_set_access() , tw_get_access() , and tw_trap() ,

form the core of this interface, enabling Tapeworm to control the trapping mechanisms of the host

hardware. To support the maximum flexibility in memory simulations, an implementation of these

routines should support the full functionality defined in Table 3.5. In particular, the

implementation oftw_set_access() , should support a wide a range of values in thepa ,

size , andstate  parameters. To enable multi-task and OS memory simulations, values ofpa

referring to any user or kernel memory location should be permitted. To enable both TLB and

cache simulations, values ofsize  ranging from as small as a cache line (4 or 8 words) to as large

as a page (4 KB or 8 KB) should be supported. Finally, all three access (trap) states,6 noAccess ,

readAccess , and fullAccess , should be supported to enable both I- and D-cache

simulations.

Routine Description

tw_set_access(pa, size, state)

Set the access state of the memory region containing pa  (a physical address). The
operation is performed on memory boundaries that align to size  bytes, starting at
(pa  div size ) and extending for exactly size  bytes. All subsequent references to
memory locations in this range are checked against the trap state , which may be
one of three values: noAccess , readAccess  or fullAccess . Reads or
writes to a location marked noAccess  or writes to a location marked readAc-
cess  result in an OS kernel trap that passes control to Tapeworm with a call to
tw_trap()  (see below). Reads to a location marked readAccess  or reads
and writes to a location marked fullAccess  can proceed at full hardware
speeds.

tw_get_access(pa)

Return the access state for the memory location at physical address pa .

tw_trap(pa, va, type)

This routine, the entry point to the Tapeworm trap handler, is invoked by the host
hardware whenever an access violation occurs. The host hardware should provide
the physical address (pa) and virtual address (va ) of the violating memory refer-
ence, and the type of memory reference (type ), which can be a dataLoad , a
dataStore  or an instrFetch .

tw_get_counts(type)

Returns a count of occurrences of a given type  of event (e.g., dataLoad ,
dataStore, instrFetch, instrExec ). Only references to pages added
to the Tapeworm domain should be counted (see tw_add_page()  and
tw_remove_page()  in Table 3.5).

Table 3.5  Hardware-dependent Tapeworm Primitives
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The Tapeworm simulation algorithms only produce miss counts, but the final routine in the

interface, tw_get_counts() , can be used to obtain event counts from which other

performance metrics are computed. To support the computation of a range of performance metrics,

this routine should report counts of memory load and store references, as well as instruction

fetches and number of instructions executed.

These hardware-dependent primitives form an interface that is very similar to the memory-

protection model supported by most microprocessor memory-management units. The important

difference is that protection is provided at a finer granularity. Similar fine-grained access control

interfaces have been proposed for systems that implement distributed shared memory [Appel91;

Reinhardt94]. This interface differs slightly in its orientation to trap-driven simulation, including

the addition of the event-counting routinetw_get_counts() .

3.4 Chapter Summary

We began this chapter with a survey of software-only memory simulators that have exhibited

promising speedups by abandoning the trace-driven simulation paradigm. Because they rely on

software methods only, these simulators offer important advantages, including relatively high

portability and flexibility. But because they are all based on code annotation, they still suffer from

performance bottlenecks, limiting them to run about an order of magnitude slower than actual

hardware.

Early work in trap-driven simulation demonstrated for the first time that memory simulation

slowdowns could approach zero, unbounded by any bottlenecks other than the inherent miss ratio

of a simulated cache. These promising developments left unanswered, however, several questions

regarding the flexibility, portability, speed and accuracy of trap-driven simulation.

The Tapeworm II design serves as a framework for exploring the bounds of trap-driven

simulation in the remainder of this dissertation. In Chapter 4 we study trap-driven simulation

flexibility by showing how a wide range of simulation algorithms can be implemented given the

full support of the hardware-dependent Tapeworm primitives of Table 3.5. In Chapter 5 we discuss

6. Access statesrefer to those set by a trap-driven simulator usingtw_set_access() . These
levels of access are always a subset of the page-level access rights granted to a workload by the
host VM system.
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methods for porting these primitives to existing hardware, noting the difficulties we encountered in

our prototype implementation of Tapeworm. In Chapter 6 we use this prototype implementation to

show that for the smallest (1-KB) caches, trap-driven slowdowns start at the speed of the fastest

trace-driven simulators, but steadily approach zero for larger caches. Finally, in Chapter 7 we use

the Tapeworm prototype to study sources of trap-driven simulation error.
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Chapter 4

Flexibility

The flexibility of a memory simulator can be assessed in a variety of ways. The range of

memory configurations that can be modeled and the richness of the performance metrics reported

by the simulator are certainly two important aspects of flexibility. If a simulator is capable of

multiple-configuration simulation, then the size and dimensions of the design space covered in a

single simulation pass is another measure of flexibility. Simulation flexibility is also enhanced

through the ability to make speed-accuracy trade-offs. For example, it is often desirable to allow a

10% increase in simulation error in exchange for a factor of 10 increase in simulation speed; a

flexible simulator enables such trade-offs.

Over the years, trace-driven memory simulators have demonstrated a high degree of flexibility

in all of these respects. Practically any conceivable memory system can be simulated with trace-

driven approaches and, as discussed in Chapter 2, many algorithms have been developed that

enable a flexible range of multiple configurations to be simulated in a single trace pass. The survey

in Chapter 2 also discussed techniques that filter or sample address traces in space or time to allow

an architect to flexibly trade some degree of simulation accuracy for increased simulation speed.

Unfortunately, the flexibility of trap-driven simulation is not as well understood. The purpose

of this chapter is to investigate issues of trap-driven flexibility and to answer the following

questions:

• What is the range of memory configurations, policies, and performance metrics that

can be simulated by a trap-driven simulator?

• Can multi-configuration simulation, and memory-reference filtering or sampling

methods be adapted to trap-driven simulation?

• What are the inherent limitations of trap-driven simulation flexibility?
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This chapter introduces the concept ofaccess constraints, which help to answer the above

questions by enabling us to reason about the feasibility of different forms of trap-driven memory

simulation. Using the access-constraints model, along with a collection of diagrams, pseudo-code

algorithms, and explanations, we show that a very broad range of memory configurations can be

simulated with trap-driven techniques. We will also show that the trace-driven techniques of multi-

configuration simulation, as well as set sampling, time sampling, and address trace filtering can be

adapted to trap-driven simulation.

Many, but not all of the algorithms presented in this chapter have been implemented in the

Tapeworm II simulator. At the end of this chapter, we describe our experiences with these

implementations and comment on certain limitations encountered both with trap-driven simulation

in general, and with Tapeworm II in particular.

4.1 Simulation Range

We define simulation range as the number and type of memory configurations that a simulator

can model. Table 4.1 shows some of the cache structures, policies of operation, and performance

metrics that define a simulated memory-system configuration. In this section, we will show how

each of these aspects of memory-system design can be modelled with trap-driven simulation. We

assume that the reader is familiar with the basic cache design options shown in the table, so we

limit our discussions to the problems of simulating these design options, rather than describing

their pros and cons in detail. Chapters from Hennessy’s and Patterson’s book on computer

architecture [Hennessy90], and Smith’s survey of cache memories [Smith82] give a more detailed

explanation of these design options, along with advantages and disadvantages.

4.1.1 Basic Cache Structures

The purpose of a cache, of course, is to speed access to recently-used memory locations. A

reference to memory that is held in the cache is processed faster than a reference to information

that is only held in memory. Performance can be improved by caching many different forms of

information, including instructions, data, and page-table entries. In the descriptions that follow, we

discuss cache simulation in general terms, describing methods that work equally well for I-caches,

D-caches, Unified caches and TLBs.
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Basic Cache
Structures

Cached Entity Many forms of information benefit from being cached. We
consider the caching of instructions in I-caches, data in D-
caches and page-table entries in TLBs.

Cache Size The maximum amount of information (in bytes) that can be
held in the cache memory.

Line Size Line size is the minimal unit of information that can be held (or
mapped) by the cache structure. For I- and D-caches, this is
the line size. For TLBs, this is the page size.

Associativity The degree to which several memory lines can co-reside in
the same cache set. We consider direct-mapped, set-associa-
tive and fully-associative caches.

Basic Caching
Policies

Replacement
Policy

In an associative cache, a line refill often requires a cached
line to be displaced from a set. We consider Random, FIFO,
LRU and NMRU replacement policies.

Write Policy The method for updating main memory after a write. Options
include write-back and write-through policies.

Indexing
Policy

The type of address used to index the cache. Options include
indexing with a physical or a virtual address.

Forms of
Cache

Composition

Series Caches are sometimes composed caches in series to form a
multi-level hierarchy. The cache closest to the processor is
usually called the first-level (L1) cache, which may be backed
by a second-level (L2) and sometimes even a third-level (L3)
cache.

Parallel Cache can also be composed in parallel. Common examples
include split I- and D-caches, or victim, assist, and hybrid
caches.

Cache
Performance

Metrics

Event Counts The most basic performance metrics are simple counts of
memory events that affect performance. Interesting events
include read and write misses, cache-line write-backs, total
number of read and write references, and number of instruc-
tions executed.

Ratio Metrics Basic event counts can be combined to form various ratio
metrics, including miss ratios, traffic ratios, and misses per
instruction (MPI).

Cycle and
Time Metrics

Ultimately, the most important performance metric is the
amount of time required to run a workload to completion.
Given estimates for the cycle penalties of different memory-
system events, such as cycles per miss (CPM), it is possible
to compute cycles per instruction (CPI). This cycle metric, in
turn, can be used to compute total workload run time, given a
cycle time and the total number of instructions in a workload.

Table 4.1  Simulation Range: Cache Structures, Policies, and Metrics

This table shows the types of cache parameters and policies of operation that we study in
this chapter. All of these aspects of caches (with the exception of a write-through write
policy) can be modeled with a trap-driven simulator.
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Simulating Direct-mapped Caches

Figure 4.1, shows the hardware for a simpledirect-mapped cache that holds small contiguous

segments (lines) of memory in its sets. The address (a) that is used to access this type of cache is

divided into three parts. The middle part (aset) is used to select a cache set, which consists of a

valid bit (v), a tag, and a line of data. After the selected set has been read from the cache, the high-

order bits of the address (atag) are compared against the cache tag. If there is a match and if the set

is valid, then the low-order bits (aoffset) are used to select the appropriate instruction from the

cache line. Notice that the combination of bits atag and aset completely define the memory line. We

therefore sometimes refer to the concatenation of these bits as aline.

The number of bits in each part of the address (denoted by ||a||) is a function of the cache size

and the line size:

Figure 4.1  Direct-mapped Cache Hardware

For many of the examples in this chapter, we set the cache size to 4 KB and the line
size to 16 bytes, thus dividing the cache into 256 sets (0x100, in hex). This implies
that ||aoffset|| = 4 bits and ||aset|| = 8 bits. These particular settings enable easy
interpretation of addresses expressed in hex because the hex digits align to the
boundaries of the three address parts. For example, address 0x2004 (tag 2, cache
set 00, offset 4) would hit in the above cache, but address 0x3018 (tag 3, cache set
01, offset 8) would miss.
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||aoffset|| = log2(lineSize) (Eqn 4.1)

||aset|| = log2(cacheSets) (Eqn 4.2)

||atag|| = ||a|| - ||aset|| - ||aoffset|| (Eqn 4.3)

||aline|| = ||atag|| + ||aset|| (Eqn 4.4)

where cacheSets = (cacheSize / lineSize) (Eqn 4.5)

Thememory equivalence class of an address, denoted by [a], is:

[a] = {all addresses, b, such that (aset = bset)} (Eqn 4.6)

The cache in Figure 4.1 has 256 (FF in hex) memory equivalence classes, the elements of

which are shown as a row of memory locations to the right of each cache set. The concept of a

memory equivalence class is important because it precisely specifies the subset of memory

locations that a given cache can hold. A direct-mapped cache, for example, is constrained to hold

at most one line from each memory equivalence class at a time.

With these definitions in place, we can now explain how a trap-driven simulator models a

direct-mapped cache. Figure 4.2, shows that a direct-mapped cache can be represented with a

simple data structure (cache[] ) that holds the starting addresses of cached memory lines, and a

variable (misses ) that counts the number of references that miss the simulated cache during the

run of a workload.

The main task of a trap-driven simulator is to continually update these data structures so that

they mirror the state of an actual cache running the same workload. The simulator accomplishes

this by constraining access to the memory of the machine hosting the simulation in a way that

causes a trap whenever the workload makes a memory reference that would result in a change of

simulated cache state. In the simplest case, references that hit a cache do not change its state, but

references that miss a cache do change its state because they are followed by a line refill that

overwrites one of the cache sets.

Figure 4.2 shows how a trap-driven simulator can detect changes in cache state. The figure

represents memory as a collection of pages, each divided into 16-byte regions on which access bits

can be set. In this example, the possible access levels areno access andfull access.1 Notice that

the current setting of full access on the 16-byte regions starting at 0x2000, 0x1020, 0x8030 and
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0xAFF0, correspond exactly to the type of accesses that would result in hits for the cache shown in

Figure 4.1. References that would miss the simulated cache, however, are marked as not accessible

in the memory of the host machine and would cause a trap into the simulator if referenced. Notice

that the simulator permits access to at most one line in each memory equivalence class, in keeping

with the constrained way that a direct-mapped cache can hold memory lines.

Figure 4.2 shows the state of the simulator data structures and the host memory at one

particular point in time during the run of the workload. We can see by inspection that the particular

1. Full access means the maximum access given to the page of the memory location by the host
operating system. For text pages, full access is typically read-only, while for data pages it may be
read-write access.

Figure 4.2  Data Structures and Host Memory for
Direct-mapped Cache Simulation
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This figure shows the data structures and host physical memory required for trap-
driven simulation of the direct-mapped cache shown in Figure 4.1.

In a direct-mapped cache, at most one line from each main-memory equivalence
class may be held in the cache at any point in time. Tapeworm emulates this
constraint by permitting access to at most one line in each main-memory
equivalence class.
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pattern of traps that have been set for this particular cache structure at this particular point in time

will have the desired effect: the next reference to a memory location that is not in contained in the

simulated cache will cause a trap. But what happens after the trap? That is, what actions must be

taken by the trap handler to ensure that future references that change the state of the simulated

cache will also cause traps? We need a more precise specification of the pattern of access rights on

memory that are permitted throughout an entire workload run for a given cache configuration. To

this end, we introduce the concept ofaccess constraints.

We model the host physical memory system as a set of elements, P, that consists of the byte

addresses of all memory locations that have been added to the simulator’s domain (recall

tw_add_page()  in Chapter 3). The size of this set, denoted by |P|, is the total number of

physical memory locations that are subject to the simulator’s access controls. The subset

represents the memory locations that may be accessed without causing a trap. We can now express

the access constraints for the simulation of a direct-mapped cache as follows:

Thecache-size constraint:

(Eqn 4.7)

The line-size constraint:

(Eqn 4.8)

Thedirect-mapping constraint:

(Eqn 4.9)

Thecache-size constraint says that at mostcacheSize memory locations in the domain of the

trap-driven simulator can be accessed without causing a trap. Theline-size constraint says that all

the memory locations in the same memory line must all be accessible or not accessible as a group.

Finally, thedirect-mapping constraint says that at most one line from each memory equivalence

class is accessible at a time. Thus, the set C is exactly the set of memory locations that can be

accessed by the workload without causing a change of cache state and a corresponding kernel trap.

The operation of the trap handler can now be simply stated as follows:A trap handler maintains

the validity of some set of access constraints during the run of a workload.

The concept of access constraints is useful for a couple of reasons. First, if we can express the

access constraints for a given caching structure, then we know that trap-driven simulations of such

a structure are algorithmically possible. Second, access constraints help us to make qualitative

C P⊂

C cacheSize≤

a b, P∈( ) aline bline=( ) a C∈ b C∈⇔( )⇒{ }∀

a P∈( ) a[ ] C∩ lineSize≤{ }∀
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statements about the speed of a trap-driven simulation. Clearly, the larger the set C, the closer a

simulation will be to a zero slowdown (if C = P, then the slowdown would be 0). Thus, if the

access constraints show that trap-driven simulations are algorithmically possible and that the size

of the set C is not so constrained as to excessively slow simulations, then we know that the trap-

driven simulation of the given memory structure is feasible. On the other hand, an inability to

define access constraints, or access constraints that make the set C too small,2 are indications that

trap-driven simulation is not possible.

We now give a detailed example of how a trap handler responds to an incoming trap in a way

that satisfies the access constraints of Eqn 4.7 - Eqn 4.9. Figure 4.3 shows the trap that occurs after

a reference to location 0xB024. This trap corresponds to the cache miss that would occur in an

actual cache like the one shown in Figure 4.1. In an actual cache, the required line, starting at

0xB020, would be loaded from memory and inserted in cache set 02, displacing the line starting at

0x1020. The trap handler invoked bytw_trap()  simulates this change in cache state by

rearranging the access rights of the host physical memory in accordance with the access

constraints and then records the new line in its cache data structures. These actions are depicted in

Figure 4.3, which shows the trap handler removing access to region (0x1020 to 0x102F), the

displaced cache line, and permitting access to region (0xB020 to 0xB02F), which represents the

newly accessed line. The trap handler updates the cache data structure, counts the miss, and when

it returns to the running workload, the access state of the host memory will be in conformance with

all three access constraints. No more than 4 KB of physical memory addresses can be accessed

without a kernel trap (Eqn 4.7, the cache-size constraint), addresses belonging to the same

memory line all have the same access rights (Eqn 4.8, the line-size constraint), and at most one

line from each memory equivalence class can be accessed (Eqn 4.9, the direct-mapping

constraint).

Simulating Different Cache Sizes and Line Sizes

Until now we have made our descriptions concrete by selecting a specific cache size (4 KB)

and line size (16 byte) for our examples. It is possible, however, to write a trap handler that enables

2. The meaning of “too small” depends on speed of a trap-driven simulator’s trap handlers, the miss
ratio of a given workload in a given cache size, and the acceptable level of simulation speed.
Trap-driven speed measurements, presented in Chapter 6, will help to make the meaning of “too
small” more concrete.
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cache size and line size to be freely varied. Figure 4.4 shows the pseudo code for a flexible trap-

handler that works for different values ofcacheSets  andlineSize .

If the simulated cache size (i.e., the number of cache sets) is changed, then the size of the

cache[]  data structure changes accordingly (see Eqn 4.5) and the bits used to index this

structure change as specified by Eqn 4.1 through Eqn 4.4. Memory will be re-partitioned into a

different set of equivalence classes according to Eqn 4.6, and the access constraints (Eqn 4.7 -

Eqn 4.9) will then define new permissible patterns of access to the host memory. The net result of

these changes is that a larger simulated cache will enable more host memory locations to be

accessed during the run of a workload, and less traps will occur during its run. Because our access

Figure 4.3  An Example Trap in Detail
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constraints were derived to model the caching constraints of a direct-mapped cache, this reduction

in traps will exactly correspond to the reduction in misses in an actual larger cache. Similarly, if

the cache data structure is reduced in size, the accessibility to host memory locations will also be

constrained, which, in turn, would cause traps (and simulated misses) to increase in direct relation

to the misses that an actual smaller cache would exhibit.

Changing the simulated line size also changes the equivalence-class partitioning of memory,

and the re-application of the access constraints will result in a change of simulated miss counts that

will correspond exactly to the misses of an actual cache with a new line size.

It is important to note that these changes in simulated cache size and line size are in no way

restricted by the cache parameters of the host machine. If the full semantics of the

tw_set_access()  call are supported, then the simulated cache size and line sizes can be both

smaller or larger than values of these parameters for the host machine.

Figure 4.5 depicts how changes in simulated cache parameters induce different partitions of

host-memory equivalence classes. If the line size is doubled, but the cache size stays the same,

then Eqn 4.5 implies that the number of cache sets (and thus the number of memory equivalence

classes) will be halved (see top of Figure 4.5). The number of cache sets (and memory equivalence

classes) is also halved if the size of the cache is halved, but the line size stays the same (see the

middle of Figure 4.5). Although the number of equivalence classes is halved in both cases, notice

that the members of these classes are not the same. In the first case, each 4-KB page is partitioned

into 128 contiguous 32-byte lines that each belong to a different equivalence class. In the second

int cache[cacheSets];
int misses;

tw_trap(pa, va, type) {
tw_set_access(pa, lineSize, fullAccess);
if (tw_get_access(pa) != noAccess))

tw_set_access(cache[pa set ], lineSize, noAccess);
cache[pa set ] = pa line ;
misses++;

}

Figure 4.4  A Trap Handler for Direct-mapped Cache Simulation
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Figure 4.5  Cache Size, Line Size and Memory Equivalence
Class Relationships
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case, however, each equivalence class is formed from 16-byte lines that are taken from the top and

bottom half of each page.

In the cases considered so far, the cache size has been less than or equal to the host page size.

If the cache is larger than the page, then the partitioning of memory into equivalence classes can

depend on the allocation of virtual pages to physical pages, a situation that may vary from run to

run of a workload (see bottom of Figure 4.5). Note that a trap-driven simulator is sensitive to these

effects because it runs in an actual host operating system, alongside the workload being monitored.

These page-allocation effects, which are a source of variability in measure cache performance,

will be discussed in greater detail in Chapter 7.

Simulating Set Associativity

Direct-mapped caches sometimes exhibit high levels of conflict misses when two lines that are

members of the same memory equivalence are simultaneously in use. One solution to this problem

is to relax the direct-mapping constraint so that multiple lines from each memory equivalence

class may be cached at the same time. Such a cache is commonly called ann-way, set-associative

cache, and its associativity,n, is the number of memory lines that can be held in each cache set.

Figure 4.6 shows an example 3-way, set-associative cache.

As with a direct-mapped cache, the memory address (a) used to access ann-way, set-

associative cache is divided into three parts. The middle part (aset) selects a cache set, which holds

up to n lines from its associated memory equivalence class. The high-order bits of the address

(atag) are compared against alln of the tags and valid bits for each line in the set. If there is a

match, the appropriate line is selected and the low-order bits of the address (aoffset) are used to

index the cache line. In ann-way, set-associative cache, the number of cache sets is a function of

the cache size, the line size and the associativity:

(Eqn 4.10)

The number of bits in each part of the address (||aoffset||, ||aset||, ||atag||, and ||aline||) is then the

same as the equations for a direct-mapped cache (Eqn 4.1 - Eqn 4.4). A set-associative cache also

has the same cache-size and line-size access constraints as a direct-mapped cache (Eqn 4.7 and

Eqn 4.8). It replaces the direct-mapping constraint, however, with the set-associativity constraint:

cacheSets cacheSize( ) lineSize cacheAssoc⋅( )⁄=
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The set-associativity constraint:

(Eqn 4.11)

Because we can express the access constraints for set-associative cache simulation, and

because the size of the set C is no more constrained than it is for the simulation of a direct-mapped

cache of the same size, we can conclude that trap-driven simulation of set-associative caches is

just as feasible as it is for direct-mapped caches.

Figure 4.7 shows the data structures and host memory required to simulate the 3-way, set-

associative cache of Figure 4.6. The left side of the figure shows a convenient data structure for

set-associative cache simulation: a two-dimensional array (cache[][] ), where the first index

selects a cache set, and the second index selects a line within a given set. Depicted next to this data

structure is the physical memory of the host machine. As with our previous examples, the

equivalence classes that this particular cache structure induces on the host memory are shown as

different rows of memory.

Figure 4.6  Set-associative Cache Hardware

This figure shows a 12-KB, 3-way set-associative cache, with a 16-byte line size.
These parameters divide the cache into 256 sets, which implies that ||aoffset|| = 4
bits and ||aset|| = 8 bits.
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Figure 4.7 is a snapshot of the simulator data structures and host memory at a specific time

during the run of a workload. Notice that the access rights on the memory are in compliance with

the access constraints for a 3-way, set-associative cache simulation; at most three memory lines

from each equivalence class are accessible. This ensures that any memory reference that misses

the simulated 3-way cache would also cause a trap to the simulator. Figure 4.8 shows an example

trap handler for such an event. This trap handler makes the required line accessible to the

workload and then brings the simulator data structures and host memory back into conformance

with the access constraints. Notice that the handler is very similar to the direct-mapped cache

handler (Figure 4.4), but differs slightly with the addition of the routinetw_replace() . The

Figure 4.7  Data Structures and Host Memory for
Set-associative Cache Simulation
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A simple extension to Tapeworm’s data structures and trap handlers enables the
simulation of set-associative caches. In an n-way set-associative cache, up to n
memory lines can reside in each cache set. Tapeworm’s trap handlers emulate this
relaxed constraint by permitting access to at most n lines in each memory
equivalence class.

The example above shows a 3-way, 12-KB cache with 16-byte lines. Accesses to
lines starting at 0x5030, 0x6030 or 0x3030 in equivalence class 03 are permitted,
and correspond to simulated cache hits. Any other references to lines in this
memory equivalence class, however, would result in a kernel trap and a call to
tw_trap() . Such a trap corresponds to the cache miss that would occur in an
actual 12-KB, 3-way I-cache.
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purpose of this routine is to select a line to displace from the cache set. This selection was not

required before because in a direct-mapped cache there is only one possible line that can be

replaced. The choice of line to displace from a set-associative cache set after a miss is guided by a

replacement policy. We will examine the simulation of several popular replacement policies in

Section 4.1.2.

Simulating Full Associativity

A fully-associative cache is a special kind of set-associative cache with only one set that can

hold any memory line. Because it has only one set, ||aset|| = 0, aline = atag, and memory consists of

only one equivalence class. A fully-associative cache has the same cache-size and line-size

constraints as direct-mapped or set-associative caches (Eqn 4.7 and Eqn 4.8), but because there is

only one memory equivalence class and only one cache set, there is no third caching constraint. A

trap-driven simulator can thus simulate full associativity by simply ensuring that the total number

of memory lines accessible to a running workload is always less than or equal to the simulated

cache size. The necessary modifications to the trap handler of Figure 4.8 are minor, so we do not

detail them here.

4.1.2 Basic Caching Policies

In addition to the basic cache structural parameters of size, line size and associativity, the

performance of caches is also determined by their policies of operation. In this section, we

Figure 4.8  A Trap Handler for Set-Associative Cache Simulation

int cache[cacheSets][cacheAssoc];
int misses;

tw_trap(pa, va, type) {
tw_set_access(pa, lineSize, fullAccess);
line = tw_replace(pa);
if (tw_get_access(cache[pa set ][line]) != noAccess)

tw_set_access(cache[pa set ][line], lineSize, noAccess);
cache[pa set ][line] = pa line ;
misses++;

}
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examine the trap-driven simulation of three important classes of caching policies:replacement

policies, write policies, andindexing policies.

Simulating Random Replacement

As noted in the sections on simulating associativity, enabling more than one memory line from

an equivalence class to be held in a cache set introduces the need for a replacement policy. Four of

the most common replacement policies,Random, First-in-first-out (FIFO), Least-recently-used

(LRU) andNot-most-recently-used (NMRU) can all be implemented by a trap-driven simulator.

The first of these policies, Random replacement, is the easiest to implement. As its name

suggests, the Random replacement policy simply picks, at random, the line to displace from the

set. This is easily implemented in the trap handler of Figure 4.8 by writing thetw_replace()

routine to return a random number in the range of 0 to N-1. Because this policy requires no

additional simulation state, we need not redefine the access constraint equations.

Simulating FIFO Replacement

With a FIFO replacement policy, lines in a set are replaced in a round-robin order. This is also

easily implemented intw_replace()  by maintaining a FIFO counter for each set in the cache.

Each call totw_replace()  then returns the current value of the FIFO counter for the given set,

and then increments the counter modulo the set size. Although the FIFO counters associated with

each of the cache sets constitute part of the simulated memory state, these counters change only

during a simulated cache miss. Thus, no additional access constraints are required to implement

this policy in a trap handler.

Simulating LRU Replacement

The Random and FIFO replacement policies are both relatively easy to implement because

they either do not add to the simulated cache state, or the added cache state only changes on cache

misses. LRU replacement, on the other hand, is more difficult to implement because it depends on

patterns of usage of the lines in a set. With LRU replacement, the lines in each set are continually

sorted on the basis of order of last use, and on a miss the current least-recently-used line is selected

for displacement.
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A trap-driven simulation of these policies is only possible if we can formulate a new set of

access constraints that define exactly those memory references that do not change simulation state.

Notice that an access to any line other than the most-recently-used (MRU) one requires a resorting

of the usage order, and thus a change in the simulated cache state. This means that only the MRU

cache lines may be accessed by a running workload without causing a change in simulated cache

state. If we define a subset M of the memory locations in our cache structure ( ) to be these

MRU cache lines, then the access constraints on this set are as follows:

Thecache-size constraint:

(Eqn 4.12)

The line-size constraint:

(Eqn 4.13)

Themost-recently-used constraint:

(Eqn 4.14)

Notice that these access constraints are very similar to those of a direct-mapped cache

(Eqn 4.7 - Eqn 4.9). The main difference is that the total number of cache lines that are accessible

at any point in time during the simulation is equal to the cache size divided by the associativity.

From these access constraints, we can conclude that trap-driven simulation of ann-way, set-

associative cache with LRU replacement is possible, and its speed will be proportional to the trap-

driven simulation of a direct-mapped cache of 1/n-th the size. For example, the simulation of a 12-

KB, 3-way, set-associative cache should be about as fast as the simulation of a 4-KB, direct-

mapped cache.3 Note, however, that simulation of a fully-associative cache with LRU replacement

is probably not possible because only one line in the entire cache would be accessible at a time.

Large fully-associative structures are, however, rarely implemented in hardware, so this is not a

severe limitation.

Figure 4.9 shows trap handling for simulation of LRU replacement. As before, a set-

associative cache can be represented as a two-dimension array, but now the lines in each row (set)

are sorted according to order of use. Unlike previously simulations, in which all lines in the

simulated cache are accessible in host memory, the LRU trap handler only permits access to the

3. We will verify this with empirical data in Chapter 6 on trap-driven simulation speed.

M C⊂

M cacheSize cacheAssoc⁄( )≤

a b, P∈( ) aline bline=( ) a M∈ b M∈⇔( )⇒{ }∀

a P∈( ) a[ ] M∩ lineSize≤{ }∀
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MRU line in each set, in accordance with Eqn 4.12 through Eqn 4.14. Thus, not all traps

correspond to simulated cache misses; some of the traps will only require a re-sorting of the lines

in a cache set to reflect current order-of-usage status. The two possible cases are shown in

Figure 4.9.

For Case I, a simulated miss, the missing line (starting at 0x6000) is cached as the MRU entry,

and is made accessible. The previous MRU line (starting at 0x2000) is shifted into second place

and access to it is removed. The LRU line (starting at 0x3000) is displaced, and the line starting at

0xA000 becomes the new LRU line. Finally, the miss is counted.

Figure 4.9  Simulating LRU Replacement

This figure shows a trap handler for LRU replacement in a 3-way, set-associative
cache. Only a small slice of the simulated cache (set 00) is depicted, before and
after two types of traps.
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In Case II, the trap is due to an access to a cached, but not-most-recently-used line. This is a

cache hit, but the cache state must be updated to reflect the new order of line use. The figure shows

how this sorting is accomplished and how access is removed from the previous LRU line (starting

at 0x2000) and given to the new LRU line (starting at 0xA000). The miss counter is not

incremented in this case.

Simulating NMRU Replacement

Like LRU replacement, the NMRU policy also requires maintenance of usage order, but only

to a partial extent. With NMRU, it is only necessary to know that the line being replaced is not the

most-recently-used line. In principle, we could just use the same access constraints implemented

by the LRU trap handler, and then randomly pick from the NMRU entries in the event of a miss.

However, there is an optimization that relaxes the access constraints and increases simulation

speeds. This optimization works by enabling access to all lines in a cache set, except one: the

candidate for NMRU replacement. We partition the cache C into two sets, N andN, such that

 and . The set of all NMRU candidates lines is N, and the rest of the

cached lines areN. Only the memory lines inN are accessible according to the following access

constraints:

Thecache-size constraint:

(Eqn 4.15)

The line-size constraint:

(Eqn 4.16)

Thenot-most-recently-used constraint:

(Eqn 4.17)

These access constraints are very similar to those of a simple set-associative cache, with the

added restriction that one cached line, the NMRU candidate, may not be accessed. When a

reference causes a trap to the cache set, these constraints ensure that the reference could only have

been to the cached NMRU candidate, or to some other, uncached line. Figure 4.10 shows how

these two cases are handled by an NMRU trap handler for a specific cache set (00). Notice, first,

that in this 3-way, set-associative cache, 2 lines from the set are accessible in the host memory.

Only access to the NMRU candidate (or some other uncached line) will cause a trap to the

C N N∪= N N∩ ∅=

N cacheSize( ) cacheAssoc - 1( ) cacheAssoc⁄( )≤

a b, P∈( ) aline bline=( ) a N∈ b N∈⇔( )⇒{ }∀

a P∈( ) a[ ] N∩ lineSize cacheAssoc 1–( )⋅( )≤{ }∀
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simulator. The array representing the cache places the NMRU candidate in array entry

cache[00][2]  (this is an element of N), and the other cache lines, in no particular access order,

are held in array entriescache[00][0..1]  (these are elements ofN).

For Case I, a simulated miss, the NMRU candidate is displaced, and a new NMRU candidate

is selected, at random, from the setN. We are guaranteed that this line is not the most-recently-

used line, because the reference that caused the miss is now the MRU line. Access is removed

from the new NMRU candidate, the entries in thecache[][]  array are re-ordered, and the miss

is recorded inmisses .

Figure 4.10  Simulating NMRU Replacement

This figure shows a trap handler for NMRU replacement in a 3-way, set-associative
cache. Only a small slice of the simulated cache (set 00) is depicted, before and
after two types of traps.
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In Case II, the handler detects that the trap is due to an access to the cached NMRU candidate

by finding this line in the cache data structure. The NMRU candidate is no longer a candidate for

replacement (because it is now the MRU line), and because the reference does not correspond to a

simulated cache miss, themisses  counter is not incremented. Instead, a new NMRU candidate is

selected at random fromN, and exchanges position with the old NMRU candidate in the cache

data structure. This swap is accompanied by a shift in host-memory access: the new NMRU

candidate is made inaccessible, and the old NMRU candidate (which is now the MRU line) is

made accessible.

Notice from the access-constraint equations that we would expect NMRU simulation to

perform better than LRU simulation on caches of the same size. In particular, the speed of ann-

way, set-associative simulation of the NMRU policy would be proportional to the simulation of an

(n-1)-way, set-associative cache of (n-1)/n-th the size. For example, the simulation of a 12-KB, 3-

way, set-associative cache should be about as fast as the simulation of an 8-KB, 2-way, set-

associative cache. Unlike with LRU replacement, simulating fully-associative caches with NMRU

replacement is possible because all but one line in the cache (the single NMRU candidate) is

accessible to the running workload.

Write Policies

We have so far only considered read references to cached information. This is entirely

adequate for simulating I-cache and TLBs, because instructions and page-table entries are

typically cached with read-only access. A complete simulation of D-caches, however, requires a

consideration of writes. Figure 4.11 depicts common hardware for supporting writes. The cache

shown in the left figure supports awrite-back write policy, while the cache depicted in the right

figure supports awrite-through write policy.

With awrite-back policy, a write that hits in the D-cache modifies the D-cache line and marks

it dirty by setting its dirty (D) bit. A write that misses the cache is typically first loaded into the

cache as would occur with a read miss, and then the line is modified and the dirty bit is set. When

the line is subsequently displaced by a future cache miss, the dirty line is written back to memory

to maintain coherence. In a write-back cache, performance can be lost if these write-backs increase

cache miss penalties.
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With a write-through policy, writes update memory immediately. A write buffer is often used

to queue writes so that the processor can continue execution. If the write hits in the cache, then the

appropriate cache line is also updated, but if the write misses the cache, then there are two options.

Either the line can be loaded into the cache and then modified, or no action can be taken. The first

method is called awrite-allocate policy (notice that write-back policy, as described above, is also a

write-allocate policy). In a write-through cache, performance is lost if processor writes must be

stalled due to a full write buffer.

In the next section we will show how trap-driven simulation can model a write-back write

policy. Unfortunately, simulation of a write-through write policy appears not to be possible with

trap-driven methods. The reason is due to the inherently different nature of a write buffer

compared to that of a traditional cache. Caches arememories whose state only change in response

to a read or write memory reference. Write buffers, on the other hand, arequeues whose state

gradually change over time. That is, after a write request is placed in a write buffer (thus changing

its state), the request is serviced as a background operation. When the operation is completed, the

request is removed from the buffer (thus changing its state again). The exact moment that these

changes in write buffer state occur is dependent on many factors, such as bandwidth to main

Figure 4.11  Hardware for Two Write Policies
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memory, the size of the write request, and previously-queued writes. Unfortunately, these events

do not fit our access-constraint model, so we are unable to design a trap handler to model them.

Simulating a Write-back Write Policy

As with all forms trap-driven simulation, a trap handler for write-back simulation must

constrain access to the host memory so that a trap occurs after any memory reference that changes

the simulated cache state. For a write-back cache, simulation state includes not only the starting

addresses of cache lines, but also the dirty/clean status of each line. In other words, a given

memory line can be in one of three states:uncached, cached-clean, or cached-dirty.Transitions

between states are determined by the following rules:

• Case I: If a line isuncached, then both reads and writes to its memory locations cause

cache state to change. A read reference makes the line cached-clean, and a write

reference makes the line cached-dirty.

• Case II: If the line iscached-clean, then changes in cache state depend on the type of

memory reference. If it is a read, then cache state doesn’t change, but if it is a write,

the dirty bit if the line must be set to change its state to cached-dirty.

• Case III: If a line iscached-dirty, then both reads and writes cause no change to cache

state at all. That is, both reads and writes to the line are cache hits.

We now formalize these into a new set of access constraints suitable for trap-driven

simulation. We first divide the set of memory locations representing the simulated cache, C, into

two non-overlapping sets, R and W (s.t.  and ), such that R represents

all host memory locations that can be accessed with read references, without causing a trap to the

simulator, while W represents all host memory locations that can be read or written without a trap.

Our access constraints for a direct-mapped write-back cache are then:

Thecache-size constraint:

(Eqn 4.18)

The line-size constraint:

(Eqn 4.19)

C R W∪= R W∩ ∅=

R W∪ cacheSize≤

a b, P∈( ) aline bline=( ) a R∈ b R∈⇔( )⇒{ }∀

a b, P∈( ) aline bline=( ) a W∈ b W∈⇔( )⇒{ }∀
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Thedirect-mapping constraint:

(Eqn 4.20)

The cache-size constraint says that the total number of memory lines with any type of access

(read-access or full-access) cannot exceed the size of the simulated cache. The line-size constraint

says all parts of a given memory line must have the same access state (no-access, read-access, or

full-access). Finally, the direct-mapping constraint says that at most one line from each memory

equivalence class is accessible (either read-access or full-access) at a time.

The existence of these access constraints implies that trap-driven simulation of write-back,

direct-mapped caches is possible. A minor modification to the direct-mapping constraint shows

that write-back,n-way, set-associative cache simulation is also possible:

The set-associativity constraint:

(Eqn 4.21)

Figure 4.12 shows data structures for trap-driven write-back simulation, alongside a snapshot

of host memory access state that complies with the access constraints for direct-mapped, write-

back cache simulation (Eqn 4.18 - Eqn 4.20). The main additions to the simulator data structures

are an array (dirty[] ) that marks the clean/dirty state of cache lines, and three new variables

a P∈( ) a[ ] R W∪( )∩ lineSize≤{ }∀

Figure 4.12  Data Structures and Host Memory for
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writeBacks , writeMisses , andreadMisses ) that count the number of dirty cache lines

written back to memory, and the two types of cache misses.

Figure 4.13 shows the trap handler that maintains these simulator data structures under the

access constraints. The handler first checks if the line is cached, a situation that can only occur if a

write reference is made to a clean, cached line. In this case, the handler gives full access to the line,

marks it dirty, and immediately returns to the running workload. If the line is not cached, then a

genuine miss occurred, and the handler counts a write-back if the line is dirty. Then, the handler

adjusts the members of the sets R and W by setting the appropriate level of access for the line

int dirty[cacheSets], cache[cacheSets];
int writeBacks, writeMisses, readMisses;

tw_trap(pa, va, type) {

if (cache[pa set ] == pa) {
tw_set_access(pa, lineSize, fullAccess);
dirty[pa set ] = 1;

}

else {
if (dirty[pa set ])

writeBacks++;

switch (type)
{

case dataLoad:
tw_set_access(pa, lineSize, readAccess);
dirty[pa set ] = 0;
readMisses++;

case dataStore:
tw_set_access(pa, lineSize, fullAccess);
dirty[pa set ] = 1;
writeMisses++;

}

if (tw_get_access(pa) != noAccess) {
tw_set_access(cache[pa set ], lineSize, noAccess);
cache[pa set ] = pa line ;

}
}

}

Figure 4.13  A Trap Handler for Write-back Write Policy Simulation
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(read-access or full-access) in accordance with the access constraints. Finally, the handler sets the

dirty status of the line, counts the type of miss, removes access to the displaced cache line, and

updates thecache[]  structure.

Simulating Virtual and Physical Indexing Policies

The trap handlers that we have considered so far have all used the physical address,pa , to

index the cache data structure, and therefore simulate physically-indexed caches. A common

alternative to this cache indexing policy is virtual indexing.

Because the trap handlers of a trap-driven simulator are designed to run in the OS kernel of a

host machine, they have full access to both virtual and physical address, and can therefore easily

switch between both indexing policies. This ability makes it possible to explore the effects of an

operating system’s virtual-to-physical page allocation policy on cache performance. As we will

see in Chapter 7, these page-allocation policies can affect caches because different allocations of

virtual pages to physical page frames from run to run of a given workload can cause its memory to

reside in different cache locations.

Most of the trace-driven simulators discussed in Chapter 2 are unable to be used in such

experiments because they are limited to either virtual addresses or physical addresses, or can’t

easily collect multiple samples of the virtual-to-physical mappings from run to run of a workload.

4.1.3 Complex Memory Systems

In the previous sections, we have shown how to simulate a range of basic cache structures with

different policies of operation. In this section, we discuss how these “building block” cache

structures can be composed to simulate more complex memory systems. For the purposes of trap-

driven simulation, the composition of caches can be divided into two basic categories. Caches can

either be composed in series, forming a memory hierarchy, or they can be composed in parallel.

There are many examples of both forms of cache composition and as we will see in the next two

sections, all can be simulated with a trap-driven simulator
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Simulating Caches in Series

The increasing gap between processor and main memory speeds is making it increasingly

difficult to adequately service memory requests with just a single level of cache placed between

the processor and main memory. Many memory systems, therefore, link a series of successively

larger (but slower) cache memories into a memory hierarchy [Short88, Baer87, Baer88,

Przybylski89, Przybylski90, Happel92, Kessler91, Olukotun91, Jouppi94, Wang89]. In such a

system, the processor first references the fastest cache in the hierarchy, and on a miss tries to find

the requested data by referencing each of successively larger caches in the hierarchy. The overall

performance of such amulti-level cache hierarchy depends on the number of misses and the miss

penalty in each cache in the hierarchy.

The key to simulating the caches in a multi-level hierarchy is to note that they typically exhibit

an inclusion property, meaning that each cache in the hierarchy is a proper subset of the next

largest cache in the hierarchy.4 To be more precise, we define a collection of sets C1, C2, ..., Cn,

consisting of host memory locations that represent the caches in the memory hierarchy to be

simulated. Each of these sets has an associated collection of access constraints derived from the

parameters of the cache that they represent. Following the inclusion property of multi-level

caches, these sets , satisfy the following additional properties:

• Host memory locations in C1 can be accessed without causing any change in

simulated cache state all along the cache hierarchy.

• Accesses to host memory locations in C2 may change the state of the simulated first-

level cache, but all other caches in the hierarchy will be unchanged.

• Accesses to host memory locations in Cn may change the state of the simulated first-

level to (n-1)-th level caches, but the n-th level cache will be unchanged.

Given these conditions, a multi-level cache can be simulated by a trap handler that implements

the access constraints for just the smallest set, C1. Because of the inclusion relationship between

each of these sets, any memory references that cause a change of state anywhere higher in the

hierarchy must also result in a trap. Given this, the C1 trap handler can maintain a data structure

for the entire multi-level cache hierarchy, and count the number of misses at each level.

4. This property is sometimes slightly relaxed, as in the case of write-back caches.

C1 C2 ... Cn⊂ ⊂ ⊂
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An alternative method is to simulate the different levels of the memory hierarchy in multiple

simulation passes. For example, if a designer wishes to simulate a two-level cache hierarchy, then

the misses from the first-level cache can be counted in one simulation pass where the trap handlers

implement access constraints for the C1 set. Then, a second simulation pass can be performed in

which the trap handlers implement the access constraints for the C2 set. Because the set C2 is

larger than C1, the second pass will run more quickly than the first.

The advantage of the second method is increasedoverall simulation speeds. To understand

why this is so, consider the typical design constraints that a memory-system designer must

contend with. Often, because of access time requirements, a first-level cache is highly constrained;

its size is typically small and it has low associativity. A second-level cache, on the other hand, is

usually much less constrained because it is not part of the critical execution path of a processor. A

designer faced with these constraints typically only needs to simulate only a small set of first-level

cache configurations, but is free to explore a much wider range of second-level configurations.

Because the simulation of a multi-level cache can be separated into two phases as described above,

the simulation task can be divided into two parts: (1) slow simulations of a small set of first-level

cache configurations, and (2) fast simulations of a large set of second-level cache configurations.

The miss counts from these two sets of simulation passes can then be arithmetically combined to

obtain an overall estimate of simulation performance for the complete memory hierarchy.

Performing the multi-level simulations in this manner is much faster than if each possible

combination of first-level and second-level cache were simulated at speeds determined by the

access constraints for C1.

Simulating Caches in Parallel

Ideally, a cache is large, highly associative, fast, and supports multiple access ports. It is, of

course, difficult to realize such a cache in actual hardware, but it is sometimes possible to combine

two different cache structures into a single hybrid structure that exhibits the strengths of both. For

example, a relatively large and fast direct-mapped cache can be accessed in parallel with a

relatively small and fast fully-associative cache. The resulting hybrid structure benefits from the

size of the direct-mapped cache, and the associativity of the smaller fully-associative cache. Such

cache structures have been variously calledvictim caches [Jouppi90],assist caches [Gwennap94]

andhybrid caches (or TLBs)[Jacob95]. Another common example of caches that are accessed in

parallel aresplit I- and D-caches, which are an alternative tounified caches. By splitting a unified
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cache into two caches, the number of access ports can be doubled and parameters of the two

caches can be independently tuned.

Two caches accessed in parallel are implemented in a trap-driven simulator by maintaining a

separate data structure for each cache and then enforcing two different sets of access constraints,

one for each cache. Because the caches would be accessed in parallel in a real implementation, it is

possible to permit the memory locations of both caches to be accessible simultaneously during the

trap-driven simulation. This is ideal for a trap-driven simulator, because an increase in the number

of host memory locations that are simultaneously accessible increases simulation speeds. If it

makes sense to do so, a variety of policies for moving cached information between the two caches

(as in a hybrid cache) can also be implemented, provided that the policy is invoked only on cache

misses.

4.1.4 Metrics

All of the algorithms that we have presented so far provide the same type of performance

metric, a count of some event that affects memory-system performance. We have shown that trap-

driven simulation can countreadMisses, writeMisses, andwriteBacks, which can be used directly

to compare the relative performance of two different cache structures. A cache that exhibits fewer

misses or write-backs than another cache, when running a given workload, clearly provides better

performance.

Unfortunately, simple event counts in isolation can’t be used to compare the performance of

different workloads running in the same cache because each may make a different number of total

references. Another problem with simple event counts is that they do not provide a good measure

of the relative importance of the memory system on overall system performance. It is usually

necessary to combine these counts with other information to obtain a more complete picture of

overall performance. In this section, we examine how other common performance metrics can be

obtained through trap-driven simulation.
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Miss Ratios

A common and intuitive measure of cache performance is themiss ratio (MR), which is the

number of cache misses divided by the number of times the cache is referenced. Some example

miss ratio computations include:

For I-caches:

MRinst = (instMisses) / (instRefs) (Eqn 4.22)

For D-caches:

MRdata = (readMisses + writeMisses) / (dataRefs) (Eqn 4.23)

For TLBs:

MRtlb = (instMisses + dataMisses) / (totalRefs) (Eqn 4.24)

where totalRefs = (instRefs + dataRefs). To compute these ratios in a trap-driven simulation

environment, we use thetw_get_counts()  call (see Chapter 3), which returns the number of

instruction or data references made to host memory pages registered with the simulator. The

advantage of miss ratios over simple event counts is that they can be used to compare the

performance of two different workloads running in the same cache because the different number of

references made by each workload is factored into the computation.

Traffic Ratios

In multiprocessor systems that share a common memory-system bus, an important metric is

the traffic ratio (TR), which measures the affect of a cache on memory-bus references. The traffic

ratio is the number of bytes transferred to and from main memory with a cache, divided by the

number of bytes transferred to and from main memory without a cache. If each cache miss or

write-back transferslineSize bytes of data to or from memory, and ifrefSize is the average number

of bytes in a simple instruction or data memory reference to main memory, then traffic ratio can be

computed from the miss ratio as follows:

(Eqn 4.25)

BecauselineSize and refSize are typically constant and fixed values for a given memory

system, the computation of traffic ratios poses no problems for a trap-driven simulator.

TR MR blockSize refSize⁄( )⋅=
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Misses per Instruction

The miss ratios of different caches in a memory system (I-cache, D-cache, TLB, second-level

cache, etc.) are not directly comparable because they do not use a common denominator in their

computation. For example, if an I-cache and D-cache both exhibit a 0.10 miss ratio, this does not

mean that they have an equal impact on overall performance; the I-cache will exhibit many more

total misses because I-caches are typically accessed much more frequently than D-caches. This

problem can be avoided by reporting misses for different caches against a common denominator,

the total number of instructions executed. Some example computations of this metric,misses per

instruction (MPI), are shown below:

For I-caches:

MPIinst = (instMisses) / (instExec) (Eqn 4.26)

For D-caches:

MPIdata = (readMisses + writeMisses) / (instExec) (Eqn 4.27)

For TLBs:

MPItlb = (instMisses + dataMisses) / (instExec) (Eqn 4.28)

As with the computation of miss ratios, a trap-driven simulator relies on the

tw_get_counts()  call to obtain the value ofinstExec, the total number of instructions

executed by the workload from pages in the simulator’s domain.

Cycles per Instruction

Although very useful for comparing the relative performance of different workloads in

different types of caches, the MPI metric still omits an important piece of information, the amount

of time a workload spends waiting for a memory system. To compute this value, the average

number ofcycles per miss (CPM) must be known. Given this value,cycles per instruction (CPI)

for a memory system component can be computed as follows:

(Eqn 4.29)

Obtaining an accurate estimate of cycles per miss depends very much on the features of the

memory system being simulated. In a simple machine that completely stalls on a cache miss, and

CPI CPM MPI⋅=
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waits until the entire line has been loaded into the cache, the average CPM is simply the number of

cycles required to load a cache line. This, in turn, is a function of the cache line size (in bytes), the

fetch latency (in cycles), and the refill bandwidth (in bytes per cycle) of the next level in the

memory hierarchy:

CPM = latency + (lineSize / bandwidth) (Eqn 4.30)

In a more sophisticated memory system, estimates of CPM can be more difficult. For example,

if the cache implements abypassmechanism that enables the processor to resume execution after

the required bytes have been loaded into the cache, then the average CPM value must be computed

as a weighted average of miss penalties:

(Eqn 4.31)

where paccess(i) is the probability that the missing access is to the i-th byte of a cache line and:

(Eqn 4.32)

A trap-driven simulator can estimate this probability density function by maintaining a histogram

of miss counts. A counter can be associated with each byte (or word) on a line, and after each miss,

the counter that corresponds to the part of the line that is required first is incremented.

Another refill policy iscritical-word-first, in which the cache controller fetches the required

part of the line first. Assuming that the bandwidth of the refill is high enough to load the remainder

of the line into the cache before its other parts are accessed, the CPM for this refill policy can be

approximated as:

CPM = latency (Eqn 4.33)

As memory systems become more complex, it becomes increasingly difficult to accurately

estimate values for CPM. For example, a memory system canprefetch instructions or data

[Farrens89, Hill87, Smith78, Smith92, Pierce95], caches can be designed topipeline accesses

[Jouppi90, Olukotun92, Palcharla94], and process multiple outstanding misses in parallel (anon-

blocking or lockup-free cache), and dirty write-backs can be queued and processed as a

background operation [Smith82, Kessler91]. Each of these memory-system optimizations can

reduce the average value of CPM in a complex way that is dependent on many factors, including

CPM latency paccessi( ) i
bandwidth
-------------------------⋅

i 1=

lineSize

∑+=

paccess i( ) 1=
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the memory-access patterns of a given workload, and the execution engine of the CPU. It is

difficult to accurately account for these effects in a trap-driven simulator.

4.2 Adapting Methods of Trace-driven Simulation

In the survey of Chapter 2, we discussed several trace-driven simulation methods that enable a

memory-system designer to explore a design space more quickly. In this section we show how

four of these methods,set sampling, time sampling, multi-configuration simulation, andaddress

filtering can be adapted to trap-driven simulation.

4.2.1 Set Sampling

With set sampling, only a portion of the sets in a cache are simulated and the performance in

these sets is used as an estimate of the performance of the entire cache.

With trace-driven simulation, set sampling is implemented by filtering a trace of all memory

references that do not access the sampled cache sets. The resulting filtered trace must hold exactly

the memory references that access the sampled cache sets, no more and no less, and the remaining

addresses must also be in the same order as in the original trace [Puzak85; Kessler91]. Filtering a

trace to obtain a set-sampled trace is apre-processing step that itself takes time. The advantage of

the set-sampled trace, once obtained, is that it can be used repeatedly in subsequent simulations

that will complete more quickly because there are less total addresses to process.

An operation equivalent to set sampling can be performed by a trap-driven simulatorduring a

simulation run. This is accomplished by subjecting only a subset of host-memory equivalence

classes to the access constraints of a given cache structure. Figure 4.14 shows how this is

implemented for the example of a direct-mapped cache simulation. In the example shown, the

even memory equivalence classes [00], [02], ..., [FE] conform to the usual direct-mapping

constraint (at most one memory line accessible per cache set), but in the odd equivalence classes

[01], [03], ..., [FF], all memory locations are fully accessible. This relaxed pattern of access right

guarantees that the trap handlers will only see misses from the sampled, even sets. In this way, a

trap-driven simulator can automatically filter references to the unsampled sets at the full speed of
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the host hardware. As a result, the trap-driven simulation speeds increase in inverse proportion to

the fraction of sets sampled.

With both trace-driven and trap-driven set sampling, the miss counts from the simulated sets

can be used to compute estimates of overall performance. An estimated value of overall MPI, for

example, would be computed as follows:

MPIi = missesi / instExeci (Eqn 4.34)

where MPIi is the MPI estimate for some set sample, missesi is the number of misses exhibited by

the cache sets in the sample, and instExeci is the fraction of total instructions used to compute the

MPI estimate. In his dissertation, Kessler suggests several options for computing the fraction

instExeci, and shows that simply multiplying the total number of instructions, instExec, by the

fraction of sets sampled is the superior method [Kessler91]. This is convenient for trap-driven

simulation, because it requires no special host hardware support beyond what we have already

defined intw_get_counts() .

4.2.2 Time Sampling

Set sampling selects memory references based on which cache sets they map into. Set

sampling, therefore, samples addresses in space. Another common sampling option is to sample

addresses on the basis of which region in time they appear [Laha88; Kessler91].

Figure 4.14  Set Sampling in a Trap-driven Simulator
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In a trace-driven simulator, time sampling is implemented by a different form of trace filtering.

A complete, contiguous set of N addresses is selected from a complete trace to form a time sample,

and then this trace sample is fed to a trace-driven simulator to obtain an estimate of MPI over the

sampled region of program execution. Multiple sets of time samples, each containing all the

references in a window of program execution can be collected, but each sample is fed into an

initialized simulator that assumes the cache is empty at the beginning of the sample. The resulting

simulation speeds will be faster by a factor determined by the number of sampled memory

references relative to the total number of workload memory references.

In a trap-driven simulator, time sampling can be implemented by simply activating and

deactivating the enforcement of access constraints. By monitoring the number of clock interrupts

or the number of memory references (through thetw_get_counts()  call) made by a workload

during its execution, the simulator can turn access constraints on and off at pre-specified intervals.

Before turning access constraints on after some period of non-sampling, the data structure

representing a simulated cache can be flushed so that it will be empty at the beginning of a sample,

as is done with trace-driven simulation. During periods when access constraints are not enforced

(and cache misses are not counted), workload execution will proceed at full host hardware speeds.

Thus, trap-driven simulation is able to benefit from time sampling in the same way that trace-

driven simulation can.

4.2.3 Multi-configuration Simulation

In this section, we briefly describe a very basic stack algorithm for multi-configuration

simulation based on the original ideas of Mattson et al [Mattson70]. We will then discuss a

transformation of this algorithm that is suitable for implementation in a trap-driven simulator.

Finally, using a simple argument, we show that many, more complex, multi-configuration

algorithms can be implemented in a trap-driven simulator.

A Basic Stack Algorithm

The technique of stack analysis relies on the property ofinclusion that is exhibited by certain

classes of caches with certain replacement policies. Mattson et al. show, for example, that ann-
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entry, fully-associative cache that implements an LRU replacement policy includes all of the

contents of a similar cache with only (n-1) entries.

When inclusion holds, a range of different-sized, fully-associative caches can be represented

as a stack as shown in Figure 4.15. The figure shows that a one-entry cache holds the memory line

starting at 0x700A, a two-entry cache holds the lines starting at 0x700A and 0x5000, and so on.

Trace addresses are processed, one at a time, by searching the stack. Either the address is found in

the stack (Case I) at somestack depth, or it is not found (Case II). In the first case, the entry is

pulled from the middle of the stack, and pushed onto the top to become the most-recently-used

entry; other entries are shifted down until the vacant slot in the middle of the stack is filled. In the

second case, the missing address is pushed onto the top of the stack and all other entries are shifted

down.

To record the performance of different cache sizes, the simulator maintains an array that

counts the number of hits at each stack depth. At the end of the simulation run, the number of hits

in a fully-associative cache of sizen (hitsn) can be computed from this array by adding all the hit

counts up to a stack depth of (n-1) as follows:

hits[] stack[]

...
...

Figure 4.15  Data Structures for Stack Simulation

In Case I, the address is found at stack depth 3, so the hits[3] counter is
incremented, and the entry at this depth is pulled to the top of the stack. In Case II,
the address is not in the stack, so it is pushed onto the top, and no counter is
incremented.
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(Eqn 4.35)

Further metrics, such the number of misses, the miss ratio, or the MPI in a cache of sizen can

then be computed as follows:

missesn = totalRefs - hitsn (Eqn 4.36)

missRation = missesn / totalRefs (Eqn 4.37)

MPIn = missesn / instExec (Eqn 4.38)

A Trace-driven Implementation of the Stack Algorithm

The essential parts of the trace-driven stack algorithm of set-associative caches is shown in

Figure 4.16. This algorithm implements one stack for each cache set so that a range of direct-

mapped to n-way set-associativities can be simulated in a single simulation pass.

The algorithm reads addresses from an input trace one at a time, indexes a cache set, and then

searches the corresponding stack with thesearch()  routine. The search returns the stack depth

hitsn hits i[ ]
i 0=

n 1–

∑=

int stack[cacheSets][maxAssoc];
int hits[maxAssoc];

while (pa = trace(file)) {
stackDepth = search(stack[pa set ][], pa);

if (stackDepth > 0)
adjust(stackDepth, stack[pa set ][]);

if (stackDepth != Infinity)
hits[depth]++;

}

Figure 4.16  A Trace-driven Implementation of the Stack Algorithm

By maintaining a separate stack for each cache set, caches ranging in associativity
from direct-mapped to n-way set-associative can be simulated in one trace pass.
The pseudo-code above shows the essentials of such a stack algorithm. Notice that
a stack is only adjusted when the workload accesses memory location that is not at
the top of any stack.
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of the address, orInfinity  if the address is not located in the stack. If the address is not at the

top of the stack, then the stack is adjusted withadjust()  as shown in the two cases of

Figure 4.15. If the stack depth is not infinity, then the appropriate hit counter is incremented.

A Trap-driven Implementation of the Stack Algorithm

Implementing the stack algorithm in a trap-driven simulator poses two problems. First, any

memory reference that requires a change in state of the array of stacks must be detected. Second,

the array of hit counters must be maintained for each stack and each stack depth. The trap-driven

algorithm shown in Figure 4.17 shows how these problems are solved.

The first problem can be solved by noticing that in the trace-driven implementation, the array

of stacks is only updated when the stack depth is greater than zero. In other words, any reference to

the top of a stack in a given set does not change the state of the stack data structure. By restricting

access to only the most-recently-used line in each set, a trap-driven simulator can force traps to

occur whenever stack state needs to be updated. The access constraints that accomplish this are

very similar to those used for the simulation of an LRU replacement policy (Eqn 4.12 - Eqn 4.14).

int stack[cacheSets][maxAssoc];
int hits[maxAssoc], coldMisses;

tw_trap(pa, va, type) {
stackDepth = search(stack[pa set ][], pa);

adjust(stackDepth, stack[pa set ][]);

if (stackDepth == Infinity)
coldMisses++;

else
hits[stackDepth]++;

}

Figure 4.17  A Trap-driven Implementation of the Stack Algorithm

This figure shows a trap-driven version of an algorithm equivalent in function to that
of Figure 4.16. The stack is always adjusted in this version because traps only
occur when the workload references memory not at the top of a stack.



108

The second problem, updating the array of hit counts for each stack depth, is easily solved for

stack depths other than 0. The trap handlers can simply increment the appropriate hit counter

before returning to the running workload. It is not possible, however, to continually update the hit

counters that correspond to stack depth zero without trapping after each memory reference.

However, if we know the total number of references made by the workload, as well as the number

of misses that occur at a stack depth of infinity (cold-start misses), then from the following

equality:

(Eqn 4.39)

we can compute the total number of hits to stack depth 0 in all stacks. Once this value is known,

performance metrics can be computed for caches of varying associativities (or set sizes) and can

be computed using the same equations as given in Eqn 4.35 - Eqn 4.38.

Other Multi-configuration Algorithms

As noted in Chapter 2, Mattson et al. and others have show that the simple stack algorithm can

be extended to a variety of cache structures with different sizes, line sizes, associativities, and

write policies. Can these algorithms be adapted to trap-driven simulation? The answer is yes, but

an exhaustive transformation of each of the numerous published multi-configuration algorithms

would not be particularly enlightening. Instead, we provide a simple, intuitive argument for why

transformations are possible.

All multi-configuration algorithms rely, in some way, on the similarity of state among a

collection of cache structures. This similarity is usually described in terms of aninclusion

relationship among all of the cache structures simultaneously under consideration. There is

typically somebase configuration that is smaller, less associative, or more constrained in some

other way, than any of the other caches considered, and the state of this base configuration is

included in all of the other caches that are simulated. If a trap-driven simulator defines access

constraints for the base configuration, then a trap will occur for all references that cause a change

in state inany of the multiple configurations considered. It is possible, then, to write a trap handler

that implements the desired multi-configuration simulation algorithm.

In support of the above argument, we cite the work of Wang and Baer [Wang90] who give

single-pass, multi-configuration simulation algorithms for a variety of cache sizes, associativities,

hits 0[ ] totalRefs coldMisses– hits i[ ]
i 1=

maxAssoc

∑–=
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and performance metrics (misses and write-backs). All of their algorithms are all driven by filtered

traces that are obtained by removing all trace addresses that hit in a small direct-mapped cache (a

base configuration), or that are not first-time writes to a clean line. A trap-driven simulator can

provide a series of traps that correspond exactly to the addresses in Wang’s form of filtered trace

by implementing access constraints similar to those of Eqn 4.18 - Eqn 4.20. The existence of

Wang’s algorithms and the ability of a trap-driven simulator to produce a reduced sequence of

addresses on-the-fly, shows that a range of multi-configuration trap-driven simulations are

possible.

4.2.4 Real-time Filtered Trace Generation

Each of the methods described in the previous three sections is based on some form offiltering

of a complete sequence of memory references. Set sampling filters out addresses not belonging to

the sampled sets, time sampling filters addresses not belonging to sampled time windows, and

multi-configuration simulation uses a base cache configuration to filter the references presented to

several other, less-constrained configurations. We showed that the trap-driven implementation

each of these methods is possible by using access constraints to define different types of memory-

reference filters. This observation leads to a different way of viewing a trap-driven simulator: It is,

in essence,an address generator that can produce a filtered stream of memory references, on-the-

fly, in a flexible manner. A filtered address stream obtained from a trap-driven simulator can be

used in much the same way as any other filtered address trace can.

4.3 Flexibility and Tapeworm II

We have discussed in detail the forms of memory simulation that can, in principle, be

implemented by trap-driven simulation. Most, but not all of these algorithms have been

implemented in Tapeworm II.

Figure 4.18 shows two dialog boxes for the X interface to Tapeworm that illustrate some of the

flexibility in its simulation parameters. As the figure shows, Tapeworm can simulate I-caches and

TLBs with a range of sizes, line sizes, associativities, replacement policies, and indexing policies.

Not shown in the figure, but also supported by Tapeworm is the simulation of multi-level cache

hierarchies. Jacob added the ability to simulate hybrid TLBs to an earlier version of Tapeworm
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Figure 4.18  Some Tapeworm Cache and TLB Simulation Parameters

This figure shows two dialog boxes from the Tapeworm X interface, one for setting
TLB parameters, the other for I-cache parameters. TLB size can range from 16 to
1K entries, and associativity can be from 4-way to fully-associative. I-cache size
can range from 1K to 1M, line size from 16 bytes to 1K bytes, and associativity from
direct-mapped to fully-associative.
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[Jacob95]. Tapeworm can report simulation results in terms of all of the metrics discussed in

Section 4.1.4. Finally, Tapeworm supports address filtering through set sampling.

The primary omission of functionality is D-cache simulation,5 which was not possible due to

insufficient support from thetw_set_access()  primitive in the Tapeworm II prototype. The

reasons behind this will be discussed in Chapter 5 on Portability. Because D-cache simulation was

not implemented in Tapeworm, write policies could also not be implemented. Tapeworm does not

implement time sampling, primarily because set sampling, a functionally equivalent method, has

been shown to be generally superior to time sampling [Kessler91]. Earlier versions of Tapeworm

implemented multi-configuration simulation algorithms for TLB simulation, but were later

abandoned because of the high speed of single-configuration simulations made the more complex

and slower multi-configuration algorithms less attractive than they normally are in a trace-driven

environment.

4.4 Flexibility Summary

The goal of this chapter has been to develop a better understanding of what can and cannot be

modeled by a trap-driven simulator. Our primary tool for reasoning about flexibility has been the

concept ofaccess constraints, which are a precise definition of exactly those memory references

that a running workload can make without causing a change in simulated cache state. A trap-

driven simulator is, in essence, a program that maintains a set of access constraints throughout the

run of a workload.

Using access-constraint definitions, we have shown that a broad range of cache structures and

policies of operation can be implemented with the small set of primitive routines defined in

Table 3.5 of Chapter 3. We showed that the simple operations of series and parallel composition

can combine these basic cache structures into trap-driven simulations of arbitrarily complex

memory systems. In a similar manner, we showed that the basic event counts available at the end

of a trap-driven simulation can be combined to compute all of the common memory-performance

metrics. Access constraints essentially define a filter for memory references. This observation is

5. A collection of case studies performed by our group [Nagle93, Nagle94, Uhlig94b, Uhlig95] has
shown that changes in operating-system structure tend to have a greater impact on TLB and I-
cache performance. Tapeworm’s inability to consider D-caches was therefore not a major
hinderance to these studies.
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the basis of trap-driven adaptations of set sampling, time sampling and multi-configuration

simulation.

The access-constraint concept has also proven useful for exposing inherent limitations in trap-

driven simulation. In particular, hardware structures that continually change state in parallel with

program execution present difficulties to a trap-driven simulator. Examples of such structures

include write buffers, prefetching units, and non-blocking caches. Although some approximation

of the performance of such hardware structures may be possible, trap-driven simulation cannot

completely and accurately account for their complete behavior. It should be noted, however, that

when very high levels of simulation accuracy are required, trace-driven simulation may also have

difficulty in these respects. For example, new processors that perform speculative execution or that

execute instructions out of order, require a more detailed processor simulator, and cannot be

simulated with simple static traces.

In summary, although trap-driven simulation does not exhibit the full flexibility of traditional

trace-driven simulation, it comes very close. In future chapters we will see that the high speed of

trap-driven simulations, in addition to its ability to easily consider multi-task and operating-system

effects, more than compensates for small limitations in simulation range.
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Chapter 5

Portability

Trace-driven simulation methods have been implemented on a broad range of host computer

systems. Some form of trace collection, the hardware-dependent component of trace-driven

simulation, exists for nearly every modern instruction-set architecture. This high degree of

portability has been an important factor in the acceptance of trace-driven simulation methods.

If trap-driven simulation is to become widely accepted, it must exhibit a similar level of

portability. Unfortunately, there are only a few trap-driven simulators presently in existence,

suggesting that the method is difficult to adapt to a range of machines. Trap-driven simulation is,

on the other hand, a relatively new method, so a lack of implementations does not imply that the

method is inherently non-portable. The purpose of this chapter is to develop a clearer picture of

trap-driven simulation portability, with the ultimate goal of answering the following questions:

• How and to what extent can trap-driven simulation be implemented on existing,

unmodified computer systems?

• How can next-generation systems be modified to better support trap-driven simulation

and how expensive would such modifications be?

We examine portability in three steps, beginning with a description of several general methods

for implementing trap-driven simulation primitives on unmodified hardware. We will see that trap-

driven TLB and I-cache simulation can be performed on most existing machines, but sometimes

D-cache simulation is not possible. Next, we examine our specific implementations of trap-driven

simulation primitives in Tapeworm and Tapeworm II, noting the various difficulties and problems

that we encountered. Finally, armed with this experience, we suggest inexpensive hardware

modifications that could substantially improve the portability and speed of a trap-driven simulator.

This final section serves as a guide to architects who wish to provide support for trap-driven

simulation in future computer systems.
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5.1 Porting to Existing Hardware

An important underlying assumption of the trap-driven algorithms presented in the previous

chapter is that the host hardware provides full support for the primitive routines defined in

Table 3.5. Ideally, we would like to implement these primitives on unmodified, existing hardware

to keep implementation costs to a minimum. The following sections describe several different

methods for achieving this goal.

5.1.1 Implementing Access Control

The memory-access primitives,tw_set_access()  and tw_get_access() , are the

basis for the realization of access constraints equations, and are thus key to any trap-driven

simulation algorithm. Table 5.1 summarizes several methods for implementing these primitives on

existing hardware, each of which is based in some way on the unconventional use of certain

privileged machine operations. We describe each in greater detail below.

Method References Required Hardware Support
Simulation

Type

TLB Miss
Redirection

[Nagle93]
[Uhlig94b] [Talluri94]

Software-managed TLB TLB

Page Table
Shadowing

[Lee94] [Uhlig94b] Standard memory-management hard-
ware

TLB

Instruction
Shadowing

— Kernel trap for breakpoint instructions I-cache

Instruction
Recoding

— Kernel trap for un-implemented instruc-
tions

I-cache

Tagged
Memory Trap
Redirection

— Memory tag bits that support run-time
type checking, debugging, or synchroni-
zation.

D-cache
I-cache

Memory Parity
Recoding

[Reinhardt93]
[Uhlig94b]

Memory with parity or error-correcting
code (ECC) bits with a diagnostic mode
to modify these bits.

D-cache
I-cache

Table 5.1  Methods for Implementing Access-control Primitives

This table summarizes some forms of host hardware support that are useful for
implementing the tw_set_access()  primitive. Many of these are common features of
existing architectures (see Table 5.2). References are given for known existing
implementations of a given method in an actual trap-driven simulator. Simulation Type
specifies the most suitable application of a given method.
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TLB Miss Redirection

In a machine with software-managed TLBs, access to a page-sized region of memory can be

controlled by inserting or removing a mapping to the region in the TLB. Because TLB misses are

handled in software on such a machine, a memory reference that violates the access rights defined

by the TLB contents will cause a trap that can be forwarded to a trap-driven simulator. With this

technique, it is possible that only a subset of all of the accessible host memory regions can be held

in the TLB at any given point in time. In this case, the simulator can record access rights in an

auxiliary data structure that can be queried after each TLB miss trap. Only true violations are

forwarded to the simulator. The original Tapeworm TLB simulator used this method to implement

trap-driven TLB simulation [Nagle93; Uhlig94b], as does the TLB simulator by Talluri

[Talluri94].

A disadvantage of this method is that if the host TLB is small, then there will be frequent

“false” traps that must be checked as described above. Another limitation is that access can only

be granted on regions of memory that are the size of a page, limiting simulations to TLB

structures. Additionally, host machines that handle TLB misses in hardware are unable to use this

method because they do not trap to the OS kernel after each TLB miss.

Page Table Shadowing

Some of the limitations of the method described above can be avoided by a related method

that makes ashadow copy of the actual page tables of the host VM system. The shadow copy

holds the access rights defined by the trap-driven simulator, which are always a subset of the actual

access rights defined by the host VM system. By inserting this page-table shadow in place of the

actual page tables, the memory-management hardware will trap on a more constrained set of

access rights. If a resulting trap is due to a true page fault or access violation, it is forwarded to the

host VM system to handle in its normal way. Otherwise, it is passed to the trap-driven simulator.

This method was implemented by Lee in his port of the original Tapeworm simulator to a 486-

based Gateway PC [Lee94] and is also used in Tapeworm II.

The main advantage of page-table shadowing is that it works with both hardware- and

software-managed TLBs. A further advantage is that no checking is required for false traps as with

the redirection of software-managed TLB miss traps. A disadvantage is that a more complex set of
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data structures (the page-table shadows) must be maintained, and access control is still limited to

page-sized regions of host memory.

Instruction Shadowing

Another form of shadowing can be used to control access on smaller regions of memory

consisting of instructions. This method works by inserting a shadow page full of breakpoint

instructions in place of each text page that is in the domain of the trap-driven simulator. A

workload that accesses (executes) memory locations on the shadow page will be suspended by an

instruction-breakpoint trap to the kernel. Read-only access can be granted to the shadow-page

memory location by copying a valid instruction from the original text page in place of the

breakpoint instruction. Similarly, access can later be removed by copying a new breakpoint in

place of the valid instruction.

Instruction shadowing can be implemented on any machine with a breakpoint instruction (i.e.,

most modern microprocessors), but the method is easier to apply to RISC machines, which have

regular 32-bit instruction codings. The method allows read-only access to be controlled on

memory regions as small as a single word, but it can only be applied to instruction memory

locations, limiting its applicability to I-cache simulation. Because each shadowed instruction page

uses twice as much physical memory as it normally would, another disadvantage of instruction

shadowing is increased memory usage.

Instruction Recoding

Most instruction sets have a number of unused instruction codes that cause an undefined-

instruction trap if encountered by the processor. If the number of unused instruction opcodes is

less than the number of legal ones, as in the MIPS-I instruction set [Kane92], then it is possible to

recode each legal opcode, in a one-to-one manner, to a corresponding and unique un-implemented

opcode. Read-only access to instruction memory locations can then be granted or removed by

converting an instruction to and from its legal and un-implemented counterpart.

The advantage of this method over instruction shadowing is that the recoding of instructions

can be donein-place, so that no extra memory for shadow pages is required. With the exception of

these memory savings, instruction recoding shares the same advantages and disadvantages of
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instruction shadowing. Namely, it allows access to be controlled on small memory regions, but it

it’s applicability is limited to I-cache simulation.

Tagged Memory Trap Redirection

Some machines associate tag bits with each memory location so that they can perform an

access test on references to small regions of memory. Tagged memories have been proposed and

implemented for a variety of purposes, including distributed shared memory, debugging,

synchronization, and run-time type checking [Reinhardt94; Alverson90; Taylor86].

A machine that supports tagged-memory checks provides ideal support for a trap-driven

simulator because tag states can often be set in such a way to cause kernel traps. Unfortunately,

few machines implement tagged memories, so applicability of this method is limited.

Memory Parity Recoding

Although most machines do not provide memory tags, manydo add extra parity or error-

correcting-code (ECC) bits to each memory location to detect memory errors. These machines

typically support diagnostic test modes that enable the parity or ECC bits to be recoded to an

invalid state and then stored back to memory. Subsequent accesses to memory locations with

recoded parity or ECC bits cause a kernel trap that can be forwarded to a trap-driven simulator. As

with instruction recoding, it may be possible to change access states in-place, avoiding the need

for shadow copies of original data.

The recoding of memory parity bits can be performed on small regions of both instruction and

data memory, making the method suitable for both trap-driven I-cache and D-cache simulation.

Unfortunately, implementing this method can be difficult because it requires a knowledge of the

diagnostic test modes of a system, information that is often not publicly available. Another

limitation is that it is usually only possible to implement two access states, (no-access and read-

only) or (no-access and read-write).1 This method was first proposed and implementing in the

WWT simulator on a SPARC-based CM-5 [Reinhardt93], and is also used in Tapeworm II.

1. If only two access states can be implemented, most forms of trap-driven simulation are still
possible. Three states are only required when simulating a D-cache where write-back counts are
desired.
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5.1.2 Implementing Traps

Methods for controlling access cause host hardware to trap to the OS kernel, invoking some

code inserted at a trap-vector address. Normally, the code at the vector address contains a handler

for some normal system function, like servicing a page fault, a debug trap, or a memory-parity

error. This code vector must be replaced by new code that invokes thetw_trap()  call. This

replacement must be done in a way that satisfies two requirements. First, normal system functions

must still be supported. For example, an actual page fault or ECC error must still be serviced.

Second, the three argumentspa , va  andtype  must be computed so that they can be passed in the

invocation oftw_trap() .

The first requirement can be satisfied by checking for conditions that identify the cause of the

trap so that it can be properly directed to either the host operating system or to the trap-driven

simulator via atw_trap()  call. How this is implemented depends on the trapping mechanism,

but it is typically not difficult to accomplish. For example, if page-table shadowing is used, a real

page fault can be detected by consulting the host VM page tables. Similarly, if a specific and

consistent method for recoding ECC bits is used, then real ECC errors can be detected with high

probability.

The second requirement can usually be satisfied by reading status registers provided by the

host, which will typically report the virtual or physical address responsible for a trap, along with

the address of the faulting instruction. If only a virtual or physical address is reported, but the

opposite form is required, then the page tables of the host can be used to translate or reverse

translate the address. The type of memory reference (dataLoad , dataStore , or

instrFetch ), if not directly reported by the host hardware, can be deduced by examining the

faulting instruction.

5.1.3 Implementing Event Counting

Many new microprocessors support performance counters that can be used to determine the

number of loads, stores and instruction fetches that are required to implement the

tw_get_counts()  primitive. To support the full semantics of this call, counting should only

be performed while executing tasks that are in the trap-driven simulator’s domain. This can be

implemented by enabling or disabling counting, as appropriate, during task switches. For



119

processors that do not provide performance counters it may be necessary to use brute-force

methods, such as counting memory references with an external hardware logic analyzer.

5.1.4 Summary of General Implementation Methods

We have presented several methods for implementing trap-driven simulator primitives on

existing hardware. No single method is superior in all respects, with the selection of the best

method depending on the type of memory simulation to be performed and on the particular support

provided by the host hardware. Fortunately, many existing machines provide at least some form of

support for a trap-driven simulator (see Table 5.2).

TLB-miss redirection and page-table shadowing are most effective for TLB simulation

because they allow access to be changed quickly on large memory regions and because any

microprocessor with an MMU provides the necessary support. Wide support for instruction

breakpoints makesinstruction shadowing the best choice for I-cache simulation, withinstruction

recoding being an attractive optimization that saves memory, provided that there are enough un-

implemented instruction codings available to permit its implementation. While not as widely

supported,tagged-memory-trap redirection andmemory-parity recoding provide the advantage of

supporting both I-cache and D-cache simulation, but they may not be able to implement all three

access states.

5.2 Portability and Tapeworm II

To demonstrate their feasibility, several of the methods for implementing trap-driven

simulator primitives on existing hardware have been tested in the Tapeworm and Tapeworm II

prototypes. We now describe and comment on the various difficulties encountered during the

implementation of these prototype primitives.

5.2.1 Implementation of Access Control

The Tapeworm and Tapeworm II prototypes experimented with three of the methods for

implementing thetw_set_access()  primitive: TLB-miss redirection, page-table shadowing,

and memory-parity recoding.
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Privileged Operation
MIPS
R3000

MIPS
R4000

SPARC
DEC

Alpha
Tera

Intel
i486

Intel
Pentium

AMD
29050

HP PA-
RISC

Power
PC

Software-managed TLB Yes Yes Yes Yes — No No Yes Yes —

Memory Management Hardware Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Instruction Breakpoint Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Invalid Instruction Trap Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Memory Tag Bits No No No No Yes No No No No No

Memory Parity or ECC Traps Yes Yes Yes Yes Yes — Yes — — —

Performance Counters No No — Yes — No Yes No — Yes

Table 5.2  Privileged Operations on Modern Microprocessors

The entries in this table were taken from a variety of sources including data books, text books and Microprocessor Report
[MReport92; MReport93; MReport94]. A given entry may not be true for every implementation of a given processor. Some
features, such as memory-parity-error traps are actually system-implementation dependent. For these features, an affirmative
entry means that we found at least one system with the given microprocessor that implements the feature. A blank entry means
that insufficient data was available.
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TLB-miss redirection in the first version of Tapeworm on a DECstation 3100 proved

successful, although maximum speed when simulating large TLBs was limited due to a large

number of false traps. This limitation was avoided in the port to the 486-based Gateway, and in

Tapeworm II on a DECstation 5000/200, both of which successfully implement page-table

shadowing.

The implementation of access control with ECC bits in Tapeworm II was far more difficult.

Recoding ECC bits on a DECstation 5000/200 proved to be a time-consuming operation, requiring

a long and convoluted sequence of control instructions to the memory-controller ASIC that

implements its ECC logic. To ensure that a trap would occur on a future reference, it was also

necessary to flush the recoded memory from the processor cache,2 an operation that also required a

complex and time-consuming sequence of special instructions.

A more serious problem was caused by writes to memory locations marked non-accessible by

recoded ECC bits. These writes resulted in new (valid) ECC bits being recomputed and stored to

memory without checking the old (invalid) ECC bit values. This behavior effectively changed a

memory location’s access state from no-access to full-access outside of Tapeworm’s control.

Fortunately, the method could still be used on read-only text pages, but this limited simulations to

I-caches with two access states, no-access and read-only. As noted by Reinhardt, it is possible to

avoid this problem on a machine with anallocate-on-write policy3 by flushing memory locations

from the cache when setting their state to no-access [Reinhardt93]. In such a system, a write to the

uncached location causes the data to first be read (allocated) from main memory into the cache

before the write completes. The ECC bits of this allocate operation will be checked in the same

way as any other read to main memory, thus forcing a trap to occur. Although this solution enables

D-cache simulation, it still only supports two access states: no-access and full-access.

Other problems with ECC caused difficulties when porting Tapeworm II to other machines.

For example, our port of Tapeworm from a DECstation 5000/200 to a DECstation 5000/240 was

hindered due to differences between the way that DMA is implemented on the two machines.

Another minor limitation is that ECC bits are checked on 4-word cache-line refills, effectively

limiting the simulation of cache line sizes to multiples of 4 words.

2. On the DECstation 5000/200, ECC is only checked on cache-line refills after a cache miss.

3. The DECstation 5000/200 uses a write-though policy with no allocate-on-write.
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5.2.2 Implementation of Traps

Implementation of thetw_trap()  call was non-eventful for the TLB miss redirection and

page-table shadowing methods. All the necessary information,pa , va  and type , was easily

accessible and available in hardware registers, enabling efficient trap handlers to be written.

An efficient implementationtw_trap()  was much more difficult in the case of the ECC

recoding method. First, this trap was routed to a generic exception vector and had to be identified

from among many other sources of traps, interrupts and exceptions. A clumsy interface to the

memory-control ASIC required a dozen load, shift, add and mask instructions to piece together the

memory address of an ECC error (i.e., thepa  value of thetw_trap()  call). Once this value was

obtained, the corresponding virtual address had to be found by searching an inverted page table.

These code sequences, along with the complex sequence described in the previous section for

recoding ECC bits, required several working registers. This, in turn, required the saving and

restoring of several workload registers before and after each trap, further increasing the trap-

handling time.

In retrospect, given the problems implementingtw_set_access()  andtw_trap()  with

ECC bits, it would have been more sensible to use instruction shadowing or instruction recoding in

Tapeworm II. Implementation would have been eased because instruction breakpoints are far

easier to set and clear, and the breakpoint traps report the faulting instruction address in an easily

accessible hardware register. The resulting primitives would have supported the same two access

states (no-access and read-only), and would likely have resulted in a faster, less problematic

implementation. Unfortunately, these methods were devised after work on this dissertation began,

but work is currently underway to implement and evaluate them.

5.2.3 Implementation of Event Counts

Tapeworm was implemented on machines that do not support performance counters. We were

forced to use the brute-force method of obtaining memory-reference counts and instruction counts

using a logic analyzer. Special marker instructions were inserted in the kernel to mark address-

space switches. This was required to enable and disable counting so that only instructions and

memory references made by tasks in the Tapeworm domain would be counted.
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5.2.4 Summary of Tapeworm II Portability

Despite several implementation problems, particularly with ECC recoding, we were able to

implement enough of the Tapeworm primitive operations to construct a usable trap-driven

simulator prototype. Although limited to TLBs and I-caches, this prototype has enabled us to

evaluate the feasibility of trap-driven simulation without resorting to hardware modifications.

Despite being hindered by these limitations, we will see in future chapters that the speed and

accuracy of this prototype provides significant improvements over trace-driven simulation. These

promising results in a prototype implementation justify the investigation of special hardware

support for trap-driven simulation that could provide an even greater boost in memory-simulation

speeds.

5.3 Trap-driven Simulation on Next-generation Hardware

During the implementation of the Tapeworm primitives, it became clear that certain minor

hardware modifications could substantially improve their efficiency. Table 5.3 lists some

suggestions for designers who wish to provide more support for trap-driven simulation in their

designs of future machines. We now describe these hardware modifications in greater detail.

Primitive Hardware Support
Relative

Cost

tw_set_access() MMU Modifications to support small, variable-sized
pages with sub-page access bits

High

Memory tag bits for coding access states Medium

Trap on cache miss or first write to a clean line with per-
page enable bit

Low

tw_trap() Dedicated trap vector Low

Extra working registers for trap handler Medium

Easy access to va , pa  and type Low

tw_get_counts() Instruction and memory-reference counters with per-
page enable bit

Medium

Table 5.3  Suggested Hardware Support for Trap-driven Primitives

This table summarizes some forms of inexpensive hardware support that would ease the
implementation of the trap-driven primitives. The relative cost of these methods is based
on the approximate degree to which they could affect the design of the host machine.
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5.3.1 Support for Access Control

We propose three different hardware modifications that would each help to implement the

tw_set_access()  primitive. These modifications are roughly ordered according to decreasing

cost, with a corresponding decrease in flexibility and speed. The first method, which modifies

MMU hardware, provides the most flexibility, but is also likely to be the most costly. The second

method, based on tagging memory with access bits, is somewhat less flexible but would probably

have less of an impact on processor cycle time. The final method, involving a simple modification

to a system’s cache controllers, would cost very little, but would also be the least flexible and

could provide worse performance.

Memory Management Unit Modifications

The access controls required by a trap-driven simulator are very similar to those already

supported by standard MMU hardware. This suggests that MMUs are a natural starting place for

hardware modifications that support access control on smaller regions of memory. Two

modifications to standard MMUs, used in combination, would enable them to provide the desired

support. The first modification is to support small, variable-sized pages, and the second is to

implement sub-page protection.

Many recent microprocessors support variable-size pages by using a variable number of bits

from the virtual address in their TLB lookups (the larger the page, the smaller the virtual page

number and the corresponding TLB tag). For example, the MIPS R4000-series support 7 page

sizes ranging from 4K to 16MB pages [Kane92]. An extension of this concept is to enablesmaller

variable-sized pages by supporting slightly larger tags. For example, adding 8 bits to the maximum

TLB tag size would enable the minimum page size to be reduced from 4K to 16 bytes. Although

this method enables access control on smaller regions of memory, it would dramatically increase

TLB miss rates. For example, a 64-entry TLB holding mappings for 16-byte regions would cover

a total of only 1 KB of memory, an effective capacity less than even a very small cache.

A different extension to MMU hardware issub-page protection, which enables memory

locations on the same page to have different levels of access. This is supported by extending page-

table entries to contain extra access bits for each sub-page region. For example, a 4-KB page could

be divided into 16 sub-page regions of 256 bytes apiece. Access to each region could then be

guarded by 2 access bits that encode the three access states. The number of sub-page regions is
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limited by the number of access bits that can be held by the TLB. In the example above, full

support of three access states would require 16 x 2 = 32 bits, using a simple coding scheme.4

Support similar to this is provided in actual machines, such as the RS/6000, which provides a lock

bit for each 128-byte region on a page [Schonias94], and the R4000, which maps 8K virtual

regions in one TLB entry, but permits the two halves of the 8K region to have different access

rights (and physical page frames) [Kane92]. Although sub-page protection improves the

granularity of protection, 256-byte or 128-byte regions are still too large for cache simulation,

where line sizes are typically in the range of 16 to 64 bytes.

An MMU that combines the above two methods could overcome their individual limitations.

If, for example, a machine with variable-sized pages set the page size to 512 bytes, and divided it

into 16 sub-page regions, then a 64-entry TLB could map a total 32 KB of memory and access

could be controlled on 32-byte regions. A strong point of this method is that it flexibly supports a

full range of access sizes, ranging from cache-line sizes to larger, traditional-sized pages.

The implementation costs of such support are difficult to assess because of their affect on

TLBs, which are typically highly-associative structures that are sensitive to increases in the size of

their tags and content bits. We note, however, that many processors now support 64-bit virtual

addressing and steadily increasing physical memory sizes, both of which require similar increases

in TLB tag and content sizes.

Memory Access Tags

Access control can be supported simply and directly by tagging memory locations with bits

that code the three possible access states (no-access, read-access, and full-access). Such support

would essentially be the same as that provided by tagged memory systems described in previous

sections [Reinhardt94; Alverson90; Taylor86]. The host hardware should support instructions that

enable the access-state tags to be changed quickly, and each memory access should be checked

against these tags. This could be implemented by minor modifications to cache-control logic. The

access bits, for example, would be checked on cache refills, and then concatenated to cache tags so

that they could be checked as part of the usual cache hit-detection logic on future references.

4. More compact codings are possible, at the expense of increased complexity.
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Such support can increase the cost of a design in two ways. First, extra memory is required to

store the access tags (both in memory and in caches). Second, extra logic is required to perform the

access checks. The amount of extra memory required is small compared to the extra bits already

stored by many machines to support parity or ECC bits. For example, a parity bit is often assigned

to each byte or word of memory, and 7 ECC bits are required for each 32 bits of data to implement

a single-error correcting, double-error detecting code. These ratios of data to redundant bits are

roughly 4:1 to 32:1. On the other hand, if two access bits are assigned to 32-byte blocks of

memory, then the ratio of data to extra bits is only 128:1. Schoinas points out that if a system

already supports ECC, it is possible to avoid extra memory costs altogether by coding the access

states with unused ECC values [Schoinas94].

The amount of extra logic required to implement memory-access tags would not substantially

complicate cache-control logic because only two extra access-state bits must be examined. This is

unlikely to add to the critical path of a processor that must already check page-level access

(through a TLB lookup) and perform cache-tag comparisons on 20- to 30-bit values. This method

is somewhat less flexible than the MMU modifications described in the previous section because

the regions tagged by access bits are of a fixed (small) sized.

Trap on Cache Miss

The TLB miss redirection method, described in Section 5.1.1, relies on host hardware that

traps to the kernel whenever a TLB miss occurs. Unfortunately, this same method cannot be

applied to cache simulation because host cache misses are typically serviced entirely by hardware.

Cache-control logic could, however, be modified to support a trap-on-cache-miss execution mode.

When the processor is in this mode, acache miss, or thefirst write to a clean cache line would

cause a trap to a software cache-miss handler. This form of support is not quite the same as actual

fine-grain access control, but equivalent functionality can be achieved, provided that the host

cache uses a write-back, allocate-on-write policy, and supports instructions to manipulate the state

of the cache. Given such a machine, the three access states can be synthesized as follows:

• Flushing a memory location from the cache corresponds to setting its access state to

no-access because a future read or write to the memory location will cause a cache

miss and cache-line refill, resulting in a kernel trap.
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• Loading a memory location into the cache and clearing the dirty bit on the line

corresponds to setting the access state toread-only because a future write to the line

will cause afirst-write trap.

• Loading a memory location into the cache and setting the dirty bit on the line

corresponds to setting the access state tofull-accessbecause both reads and writes to

the cache line will proceed uninterrupted, as long as the line is not displaced from the

cache.

As with TLB miss redirection, a trap does not necessarily imply that access was violated; traps

can occur when a line that was marked accessible is displaced from the cache and then later re-

accessed. A data structure that records the access state of each memory location in the simulator’s

domain (much like the page-table shadow) could be used to check each trap for actual access

violations, and false access violations would be handled by simply reloading the desired memory

location back into the cache.

To avoid interfering with access to pages outside the domain of the simulator, it should be

possible to disable the trap-on-cache-miss execution mode on a per-page basis in much the same

way that many processors support a per-page cacheable bit. In a machine that supports multi-level

caches, it would be best to implement the trap-on-cache-miss mode in the largest cache, so that

false access violations could be kept to a minimum.

This method is inexpensive to implement because it uses the existing resources of a standard

write-back cache (its tags and dirty bits), while implementing everything else in software. The

only required changes are a minor modification to the cache-control logic, and the addition of a

trap-on-cache-miss bit to the page-table entry format.

5.3.2 Support for Traps

Trap logic would be best improved by treating access violations as a common, rather than an

exceptional event. Three things, in particular, would improve the performance of atw_trap()

call. First, the trap should invoke code at a special vector address reserved for holding the

simulator trap handler. A dedicated vector removes the cost of determining if the trap is due to the

simulator or a normal system event. Second, a small set of working registers reserved for the

simulator trap handler would help to avoid the cost of saving and restoring workload registers.
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Finally, access to information about the reference causing the trap (pa , va  andtype ) should be

made easy for the handler to access quickly.

A good example of ideal support is exhibited by many processors that handle TLB misses in

software. The MIPS R-series of processors [Kane92], for example, support a dedicated trap vector

for TLB misses, although all other traps are sent to a generic trap vector. Two working registers are

always available to the TLB miss handler, so no workload registers must be saved, and the faulting

address is easily accessible in a hardware register. This simple support enables a software TLB

miss handler of less than a dozen instructions to execute in about 20 cycles [Nagle93]. Other

machines, such as certain versions of the HP-PA and the SPARC architectures, provide similarly

effective and streamlined trapping support [HP90; Huck93; Sun94]. We believe that a cleaner trap

interface could reduce the total miss-handling time in Tapeworm II from 300 cycles in its current

implementation, down to about 50 cycles.

5.3.3 Support for Event Counting

Many new processors already provide performance counters that report the total number of

memory references and instruction executed by a workload. A minor enhancement to such

counters is to support the enabling and disabling of counting on a per-page basis so that a counter

is incremented only when executing from text pages that have a count bit set. Such support would

make it easier to determine the exact number of references and instructions executed only by the

workload pages that have been added to the Tapeworm domain via thetw_add_page()  call.

5.4 Portability Summary

Trap-driven simulators are clearly more difficult to port to existing hardware than are trace-

driven simulators. The purpose of this chapter has been to alleviate this problem by describing

methods for implementing trap-driven primitives on existing hardware, and by suggesting low-

cost ways to support trap-driven simulation on future machines. Several of the methods discussed

for implementing the primitives on existing machines were validated in Tapeworm and Tapeworm

II, and the success of these prototypes justifies the consideration of more special hardware support

for trap-driven simulation in future machines.



129

We have shown that virtually any modern microprocessor supports trap-driven TLB and I-

cache simulation, although trap-driven D-cache simulation may not always be possible.

Difficulties implementing the Tapeworm prototypes usually stemmed from awkward hardware

interfaces that appear to have been designed under the assumption that traps are infrequent events.

Minor changes to these trap interfaces would substantially ease the implementation and improve

the performance of trap-driven simulators on future machines. Simple memory-reference and

instruction counters would have been very helpful, allowing us to avoid the use of a logic

analyzer; Every new processor should support at least an instruction counter.

Simply stated, the hardware support that a trap-driven simulator requires most is fine-grain

access control. Most of the problems with the trap-driven portability will vanish if future systems

provide such support. We have suggested three different methods for implementing fine-grain

access control, each with a different level of cost and flexibility, giving designers several possible

starting points. The suggested changes are by no means excessively costly, and many similar

forms of support have been implemented in past system and in many experimental machines.

It should be noted that many other applications would also benefit from fine-grained access

control. Program debugging, garbage collection, persistent storage, and distributed shared memory

could all be made faster and more efficient [Appel91; Reinhardt94; Schoinas94]. These

applications, and the promise of very fast trap-driven memory simulation, suggest that architects

should give more serious consideration to supporting fine-grained access control on future

processors.
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Chapter 6

Speed

The main motivation for our study of trap-driven simulation has been its potential for

improving simulation speeds. We have shown that despite several advances, trace-driven

simulation is still at least an order of magnitude slower than actual hardware, and is hindered by

inherent bottlenecks that limit further substantial improvements in its speed. Trap-driven

simulation speeds, on the other hand, are limited only by the frequency of changes in simulated

cache state. Slowdowns in a trap-driven simulator, for example, approach zero as cache sizes

increase. Although this is true in principle, it of no use in practice if trap-driven slowdowns are

excessively high for all but the largest caches. Other cache parameters, such as cache associativity,

line size and replacement policy, also affect the frequency of cache-state changes, as well as the

time to process these changes. Early trap-driven simulators, in fact, exhibited wide variations in

simulation speeds (see Chapter 3). These issues raise several questions:

• How do the speeds of actual trace-driven and trap-driven simulators compare?

• How do slowdowns of an actual trap-driven simulator vary with the parameters of a

simulated cache?

• For what range of cache parameters are trap-driven simulation slowdowns acceptable?

In this chapter, we answer these questions with measurements of the Tapeworm II prototype.

We begin by using theslowdown metric to compare the speed of Cache2000 simulations driven by

Pixie traces and Tapeworm simulations driven by kernel traps. We use a simple model for

simulation overheads to explain these results, and then apply the model in further experiments to

explore the relationship between slowdowns and simulated cache size, associativity, line size,

replacement policy, cache indexing and set sampling.



131

6.1 Trap-driven versus Trace-driven Simulation Speed

We compare the speed of simulators using the slowdown metric. Recall thatSlowdownis the

ratio of simulation overhead to the run time of an uninstrumented workload. Depending on the

simulator, we compute slowdown as follows:

Slowdown = (Tapeworm Overhead) / (Normal Workload Run Time) (Eqn 6.1)

Slowdown = (Cache2000 Overhead) / (Normal Workload Run Time) (Eqn 6.2)

whereOverhead is the time added to a workload run by Tapeworm or Cache2000. In the case of

Cache2000 simulators, this overhead includes the time to generate addresses from a pixie-

annotated workload.Normal Workload Run Time is for an unmodified workload running on a host.

machine.

Figure 6.1 plots Tapeworm and Cache2000 slowdowns against cache size for the

mpeg_play workload. Because the Pixie and Cache2000 combination can measure only a

single-task workload, Tapeworm was configured to set traps only on memory locations in the

mpeg_play  task to enable a fair comparison.1 For both simulators, slowdowns decrease as cache

sizes increase. Cache2000 slowdowns are approximately 30 for the smallest caches and decrease

to just under 25 for the largest caches, while Tapeworm slowdowns start at about 3-4 for small

caches and decrease to 0 as cache size is increased. To understand this behavior, consider the

following expression for the overhead of the Cache2000 simulations:

Cache2000 Overhead = (Misscount) (Misstime) + (Hitcount) (Hittime) (Eqn 6.3)

where Misscountand Hittime represents the number of simulated cache misses and hits, while

Misstime and Hittime are the average amount of time required to process simulated cache hits and

misses, respectively. These processing times are different because a simulated cache hit requires

only an address generation and search operation (about 60 cycles in Cache2000), but a simulated

cache miss also requires data structures to be updated with the missing cache line (about 260

cycles in Cache2000). This explains why the Cache2000 slowdowns decrease with increasing

cache size; larger caches exhibit more hits than misses, and hits require less time to process.

1. The plot also shows Tapeworm slowdowns when all workload components are monitored. The
resulting slowdowns are about 2 to 2.5 times greater.



132

Figure 6.1  Comparison of Trace-driven and Tapeworm Slowdowns

Tapeworm slowdowns compared with slowdowns of a Cache2000 simulation
driven by Pixie-generated instruction address traces. The simulation is of
mpeg_play  for different sizes of direct-mapped instruction caches with 4-word
lines (4 bytes/word). Two different Tapeworm simulations are shown: one with
user-only references from just the mpeg_play  task and another with references
from all workload components, including the kernel and user-level servers (BSD
and X). The Pixie + Cache2000 combination can measure only a single-task
workload. In all cases, slowdowns were computed relative to the total wall-clock
run time for all workload components.

The Pixie + Cache2000 simulations were performed under Ultrix 4.1 on a
DECstation 5000/133. The Tapeworm simulation were performed under Mach 3.0
on a DECstation 5000/200. Slowdowns in each case were computed relative to
the respective host machine to make them comparable.

Note: Because not all workload components are instrumented with the User Only
Cache2000 simulations, the slowdowns shown here are lower than the
slowdowns for Pixie + Cache2000 simulation given in Chapter 2.
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Tapeworm adds overhead only when executing its trap handler:

Tapeworm Overhead = (Trapcount) (Traptime) (Eqn 6.4)

where Trapcount is the number of Tapeworm traps and Traptime is the average time to process a

single trap. The Tapeworm trap handler, can displace workload instructions from the host I-cache,

thus increasing the number of workload I-cache misses. We include the cost of host I-cache

pollution as part of the average time to handle a Tapeworm trap. Pollution of the host D-cache is

also included as part of the average trap-handling time, but this effect is minor.

The original implementation of the Tapeworm miss handler was written entirely in C and

required over 2,000 cycles per miss to execute, similar to the 2,500 cycles required for the same

operation in the Wisconsin Wind Tunnel Simulator [Lebeck94]. This cost was so high in

comparison with the trace-driven hit and miss times that Tapeworm slowdowns were comparable

to Cache2000 slowdowns when simulating small cache structures that frequently trapped.

To improve performance, the handler was optimized by re-writing it entirely in assembly code

and by bypassing the usual kernel entry and exit code. The new code uses no execution stack and

saves fewer registers, requiring approximately 300 cycles to handle simulated misses in direct-

mapped caches with 4-word line sizes (see Table 6.1 for the components of this time).

Task Instructions

Kernel Entry and Exit 59

Obtain Faulting Address 33

Direct-mapped Cache Simulation 45

Set Trap 46

Clear Trap 5

 Total 188

Table 6.1  Tapeworm Miss Handling Time

This table shows the instructions required to handle different
components of a Tapeworm trap for the simulation of direct-mapped
caches with 4-word line sizes. A 25-MHz DECstation 5000/200
required 299 cycles to execute the 188 instructions in the handler.
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The expression for Tapeworm overhead explains the shape of the Tapeworm slowdown curves

shown in Figure 6.1. Small caches frequently miss, resulting in a change of cache state and a

Tapeworm trap. The resulting overall slowdowns for a 1-KB cache are about 3 to 4. As the number

of misses decreases for larger caches, the number of traps also decrease to negligible amounts, and

slowdowns approach zero for caches as small as 8-KB to 16-KB.

Large fractions of the time in the Tapeworm trap handler could be further reduced with the

help of better host hardware support. The 59 instructions required by the kernel entry and exit

consist mostly of instructions that save and restore registers and that redirect a trap from the

general-exception vector to the Tapeworm trap handler. This cost could be reduced if the host

hardware supported a dedicated vector for access-fault traps. The 33 instructions required to

obtain a faulting address and the 46 instructions required to set an access trap are due mostly to an

awkward interface to the ECC diagnostic logic on the DECstation 5000/200 (see Section 5.2.1 and

Section 5.2.2), and could be reduced substantially with a cleaner design.2 An additional benefit of

a cleaner design is that it would reduce the number of working registers required by the trap

handler, thus further reducing the cost of kernel entry and exit.

6.2 Speed and Tapeworm II

In the previous section, we introduced a simple model to explain Cache2000 and Tapeworm

slowdowns. In this section, we use this model to explain Tapeworm slowdowns in greater detail

over a broader range of simulated cache and TLB configurations. Because the following sections

do not include comparisons with Cache2000, Tapeworm slowdowns for the remainder of this

chapter include all system activity (thempeg_play  task, the Mach 3.0 kernel and the user-level

BSD and X servers).

6.2.1 Line Size and Slowdown

The slowdowns reported in Section 6.1 were for the simulation of a direct-mapped cache with

a 4-word line size. Simulating larger line sizes increases the amount of time in

2. An implementation with instruction breakpoints (see Section 5.1.1) would probably also require
less instructions.
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Figure 6.2  Line Size and Slowdown

As the simulated line size increases, the Tapeworm miss handler requires more
time to set and clear memory traps. However, as line sizes increase, the total
number of simulated misses (and traps) decreases. These two effects are shown in
the top plot for a 1KB, direct-mapped I-cache. The bottom plot shows the combined
effect of these two factors on overall simulation slowdowns over a range of direct-
mapped I-caches and line sizes.
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tw_set_access()  because traps must be set and cleared on larger clusters of memory. On the

other hand, increasing the line size decreases the number of cache misses because larger lines

better exploit the temporal and spatial locality in memory-reference streams. These two opposing

effects are shown at the top of Figure 6.2, which shows that each doubling of the line size reduces

the number of cache misses by 30% to 45%, with diminishing reductions in misses as the line size

increases. On the other hand, each doubling of line size increases the miss-handling time by 25%

to 80%, with larger relative increases in time as line size increases. Setting and clearing memory

traps on a cluster of 4 words requires about 100 cycles. For small line sizes, this is a relatively

small component of the miss-handling time, which is dominated by the kernel entry and exit code.

However, as line sizes grow large, the fraction of miss-handling time spent setting and clear traps

begins to dominate, and each doubling of the line size nearly doubles the time to handle a miss.

Recall that the overall Tapeworm overhead is the product of the number of traps and the time

required to handle each trap. For direct-mapped caches, traps occur if and only if a reference

misses the simulated cache. The resulting slowdowns are shown in Figure 6.2, which shows that

initially, increasing the line size reduces overall simulation slowdowns because the number of

misses is substantially reduced, but the increase in miss handling times is relatively small.

However, for the largest line sizes, slowdowns begin to increase because the relative reduction in

misses begins to diminish, while the cost of handling a miss increases geometrically. The “U-

shape” of these Tapeworm slowdowns versus line size is very similar to those of the performance

of actual hardware caches that exhibit cache pollution due to large lines [Przybylski90].

6.2.2 Associativity and Slowdown

For a very simple replacement policy, such as Random, the simulation of cache associativity

does not appreciably change trap-handling times in the Tapeworm II prototype. The MIPS R3000

processor of the Tapeworm host machine has a Random register that is used by the software TLB

miss handlers. Tapeworm uses this same register to implement a fast version of random

replacement for the simulation of associative caches. Although the trap times do not increase when

simulating associative caches with Random replacement, caches with higher degrees of

associativity typically exhibit fewer cache misses, resulting in overall decreases in simulation

slowdowns.
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Figure 6.3  Associativity and Slowdown

Simulating associative caches with Random replacement does not appreciably
affect the miss handling time. However, greater degrees of associativity can reduce
misses. These two effects are shown in the top plot for a 4-KB I-cache with an 8-
word line. The bottom plot shows the combined effect of these two factors on overall
simulation slowdowns over a range of I-cache sizes and associativities.
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Trap-handling times and number of traps (misses) are plotted at the top of Figure 6.3 for

caches ranging in associativity from 1-way (direct-mapped) to 8-way. The product of these two

terms, plotted at the bottom of the figure, show that trap-driven slowdowns decrease with

increasing simulated associativity. Because the greatest reductions in miss counts come from 2-

way, set-associativity, overall slowdowns do not decrease substantially for associativities of 4-way

or greater.

6.2.3 Replacement Policy and Slowdown

Simulating set-associative caches with replacement policies other than Random can add to the

time spent in the trap handler. When simulating a first-in first-out (FIFO) replacement policy, for

example, trap handling is slightly more expensive than Random because a wrap-around counter

Figure 6.4  Replacement Policy and Slowdowns

This figure shows slowdowns over a range of 4-way set-associative I-caches with
an 8-word line size. Miss counts for these policies differ by less than 10%, but
slowdowns vary by as much as a factor of two.
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must be maintained for each set. Figure 6.4 shows the cost of maintaining the FIFO counter by

plotting slowdowns for Random replacement and FIFO replacement over a range of cache sizes.

Other replacement policies that depend on order of use, such as not-most-recently-used

(NMRU) and least-recently-used (LRU) increase both the trap-handling times and the total

number of simulator traps. The additional traps help Tapeworm to order memory locations

according to use within each set (recall Section 4.1.2). To fully sort the members of a cache set

according to use, our trap-driven algorithm for LRU simulation permits only the most-recently-

used memory location in each set to be accessible. This causes the simulation of a 4-way, set-

associative cache to trap about as frequently as the simulation of a direct-mapped cache of 1/4-th

the size. Figure 6.4 shows that the resulting slowdowns for LRU simulation are about two times as

great as they are for the other replacement policies.

The trap-driven algorithm for NMRU replacement is more efficient than LRU because it

restricts access to only one memory location in each cache set, the NMRU candidate. Thus, in the

4-way, set-associative cache, 3 of the 4 memory locations in each set are always accessible.

Figure 6.4 shows that the resulting simulation speeds for NMRU replacement are only slightly

worse than the FIFO simulation speeds.

6.2.4 Cache Indexing Policy and Slowdown

When a cache-miss trap occurs in the current implementation of Tapeworm, the host hardware

supplies only the missing physical address to the trap handler. This is all that is required when

simulating physically-indexed caches. To simulate virtually-indexed caches, however, a reverse

translation must be performed. Tapeworm implements an inverted-page table structure to perform

this operation, increasing the cost of trap handling. The plot in Figure 6.5 shows the resulting

increase in simulation slowdowns over a range of cache sizes.

6.2.5 Data-cache Simulation and Slowdown

The current implementation of Tapeworm cannot simulate data caches, so we cannot report

actual slowdowns for this form of simulation. However, given knowledge of trace-driven
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simulation slowdowns for D-cache simulation, we can speculate on the degree of slowdown that

Tapeworm would exhibit if itcould perform D-cache simulation.

At first, it may seem that simulation of data caches would exhibit inherently larger slowdowns

because miss ratios for data caches are typically higher than they are for instruction caches

[Gee93]. Although this is sometimes true, Tapeworm overheads are determined not by miss ratios,

but by the total number of cache misses. Because data references typically occur at 1/4 to 1/3 of

the frequency of instruction references in RISC processors [Hennessy90], I-cache misses can

actually outnumber data cache misses even when instruction-miss ratios are lower. In fact, it is

often the case that I-cache miss counts are higher than D-cache miss counts for many workloads
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Figure 6.5  Cache Indexing Policy and Slowdowns

Simulating a virtually-indexed cache increases the processing time for each trap
because the physical addresses given by the hardware must be translated to a
virtual address. This plot shows the difference in slowdown between virtual- and
physical-indexing in a direct-mapped I-cache with a 4-word line. Because virtual
indexing and physical indexing are the same for caches that are 4KB or smaller,
only caches greater than 8-KB are shown.
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[Nagle94; Maynard94]. Therefore, it is not reasonable to conclude that trap-driven slowdowns of

D-caches would be inherently slower than those of I-caches. This assertion is supported by our

experiment in Chapter 2, which showed that the trace-driven simulations of both D-cache and I-

cache is only about twice as slow as the simulation of I-cache only (see Figure 2.3). Of course, the

relative number of instruction and data misses is highly dependent on workload characteristics, so

actual slowdowns for I-cache and D-cache simulation ultimately depend on the workload being

simulated.

6.2.6 TLB Simulation and Slowdown

The time to handle a simulated TLB miss is much higher than the time for a simulated cache

miss (about 700 to 1,000 cycles), because the Tapeworm TLB miss handlers were never optimized

by re-writing them in assembly language as was done with the cache-miss handlers. This was
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Figure 6.6  TLB Slowdowns

The cost of handling a Tapeworm TLB miss trap is about 700 to 1,000 cycles. TLB
misses are, however, infrequent, resulting in low overall simulation slowdowns. This
plot overall slowdowns for TLBs with different associativities and sizes (assuming a
4-KB page)
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deemed unnecessary because TLB misses are far less frequent than cache misses, even for small

TLBs. Figure 6.6 shows that TLB simulation slowdowns are, in fact, less than 2 for even the

smallest TLBs.

6.2.7 Set Sampling and Slowdown

All slowdowns reported so far are for simulations without sampling. Recall that set sampling

uses only a subset of cache lines, causing slowdowns to decrease in direct proportion to the

fraction of sets sampled. Figure 6.7 illustrates the benefits of set sampling, showing that sampling

1/n-th of the cache sets reduces slowdowns by a factor ofn. Although set sampling improves
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Figure 6.7  Set Sampling and Slowdowns

When a smaller fraction of cache sets is sampled, the number of Tapeworm traps
decreases. This results in a decrease in simulation slowdowns that is proportion to
the fraction of sets sampled. This figure plots slowdowns for different degrees of
sampling over a range of small, direct-mapped I-caches with a line size of 8 words.
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simulation speeds, it also increases the amount of measurement variance. We examine this effect

in greater detail in later sections on simulation accuracy.

When 1/8-th set sampling is used, Tapeworm overheads for even the smallest 1-KB I-caches

result in less than a doubling of workload run times. Larger caches (> 32-KB) add less 20% to

30% to run times. Slowdowns that are this low make it possible to monitor cache performance

while the host workstation is in actual use, opening up new possibilities for real-time memory-

system analysis.

6.3 Speed Summary

Early trap-driven simulators exhibited wide variations in their slowdowns, which were highly

dependent on the cost and the number of simulator traps. Through a variety of optimizations, the

Tapeworm II prototype improves the cost of trap handling over early trap-driven simulators by

nearly an order of magnitude. Using Tapeworm’s optimized trap handlers, we showed that a trap-

driven simulation slowdowns of an I-cache start at about 10 for a direct-mapped, 1-KB cache, and

approach zero for modestly larger caches (> 16-KB). TLB slowdowns are similarly low, starting at

under 2 for a small 32-entry TLB, and quickly approach zero for larger TLBs. Even in the worst-

case, these slowdowns are better than the fastest trace-driven simulators studied in Chapter 2.

Frequently, cache configurations that perform better in actual hardware (e.g., associative

caches or caches with tuned line sizes) also exhibit lower trap-driven simulation slowdowns. Other

simulation parameters, such as replacement policy or indexing policy, minimally increase

overhead, and we argued that D-cache simulation slowdowns are likely to be similar to I-cache

slowdowns. When implementing set sampling, Tapeworm simulation slowdowns decrease in

direct proportion to the fraction of sets sampled, reducing slowdowns to a range that makes real-

time monitoring of cache performance feasible.

The speed of the Tapeworm II prototype is very encouraging, given that its trap handlers are

hindered in a variety of ways by the host hardware. Very minimal changes to the hardware of the

host machine, such as described in Chapter 5, would enable even faster trap handlers. With the

appropriate support, trap-handling times in the range of 50 to 100 cycles are quite feasible, and

would reduce Tapeworm slowdowns by a further factor of 3 to 6.
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Chapter 7

Accuracy

Measurements of performance delivered by a memory-system simulator are typically subject

to two basic types of error, variance and bias.Variance refers to differences in measured

performance over multiple trial runs of the same workload with a given memory-system

configuration, whileBias refers to consistent, systematic over- or under-estimates of true

performance during multiple experimental trials. Memory-system simulator are subject to many

sources of measurement variation and bias, some of which are due to natural effects occurring in

real systems, while others are induced by the method of instrumentation and simulation itself. An

ideal memory-system simulator is sensitive to the real, naturally-occurring effects, but avoids the

induced, artificial sources of measurement error.

The survey in Chapter 2 discusses many of the known sources of trace-driven simulation error,

but trap-driven simulation errors have generally gone unstudied. Unanswered questions include:

• How can the different sources of error be isolated and quantified?

• What are the sources of trap-driven simulation bias and variance?

• Which errors are due to naturally-occurring system effects, and which are induced by

the simulator itself?

• How do trap-driven simulation errors compare with those of trace-driven simulation?

We will show that trap-driven simulation is not inherently any more or less accurate than

trace-driven simulation, but it is more sensitive to certain real-system effects that can cause

performance variations.
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7.1 Accuracy and Tapeworm II

Our examination of trap-driven simulator errors is based on the Tapeworm II prototype and

uses the workloads listed in Table 7.1. Tapeworm includes several features for isolating and

measuring the degree of different sources of error. Our study of trap-driven simulator errors will

use Tapeworm features such as its ability to control the caching of different workload components,

to switch between physical- and virtual-indexing policies, and to enable or disable set sampling.

7.1.1 Sources of Measurement Variation

With trace-driven simulations, the same trace from a given workload is typically used

repeatedly to obtain performance measurements for different memory configurations. As a result,

trace-driven simulations exhibit no variance if the simulation for a given memory configuration is

repeated. The precise sequence of traps that drive a Tapeworm simulation, however, are

Workload Description

mpeg_play mpeg_play  (version 2.0) from the Berkeley Plateau Research Group. Dis-
plays 85 frames from a compressed video file [Patel92].

jpeg_play The xloadimage  (version 3.0) program written by Jim Frost. Displays two
JPEG images.

gs Ghostscript (version 2.4.1) from the Free Software Foundation. Renders
and displays a single postscript page with text and graphics in an X window.

verilog Verilog-XL (version 1.6b) simulating an experimental GaAs microprocessor.

gcc The GNU C compiler (version 2.6)

spim The SPIM MIPS emulator written by James Larus [Larus91]. The input is
the SPEC92 espresso  program.

sdet A multiprocess, system performance benchmark which includes programs
that test CPU performance, OS performance and I/O performance. From
the SPEC SDM benchmark suite.

ousterhout John Ousterhout’s benchmark suite from [Ousterhout89].

xlisp Lisp interpreter written in C. Configured to solve the 8-queens problem.  A
SPEC92 benchmark.

espresso Boolean function minimization. A SPEC92 benchmark.

eqntott Translates logical representation of boolean equation to a truth table. A
SPEC92 benchmark.

kenbus Simulates user activity in a research-oriented, software development envi-
ronment. From the SPEC SDM benchmark suite.

Table 7.1  Workload Summary
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impossible to reproduce from run to run because of dynamic system effects. For example, the

distributions of physical page frames allocated to a task are different from run to run, which

changes the sequence of traps to the simulator. This is precisely the same effect that causes

performance variations in actual, physically-indexed caches [Kessler92, Sites88]. Measurement

variance can also be caused by Tapeworm itself when it employs set sampling. Cache-miss

estimates vary depending on the number and selection of cache sets that are included in a given

sample.

Table 7.2 shows the combined effect of page allocation and set sampling on the measured

performance of selected workloads from Table 7.1 The table summarizes measurements from 16

trial simulation runs of a 16 K-byte, physically-indexed cache when sampling 1/8th of the cache

sets. Standard deviations of the different measurement trials are rather large, ranging from about

10% to as high as 70% of the mean values. In some cases, minimum and maximum values differ

from the mean by as much as a factor of two.

Variation due to Set Sampling

To isolate the measurement variation caused by set sampling, we removed page-allocation

effects by simulating a virtually-indexed, rather than a physically-indexed cache. The memory

references applied to a virtually-indexed cache from run to run of the same workload are

unaffected by virtual-to-physical page allocation.

After removing variation due to page allocation, new trials were performed with and without

set sampling. The results are shown in Figure 7.1 forespresso . Results without sampling show

zero variance over multiple trials of the experiment. Notice that results without sampling

consistently predict slightly higher miss counts than those with sampling. This measurement bias,

discussed more completely in the next section, is due to an increased time dilation effect from the

higher slowdown of the non-sampled experiments.

Variation due to Page Allocation

Figure 7.2 shows how page allocation, working in isolation, can vary cache performance. We

removed sampling variation and then simulated the same workload (mpeg_play  in this example)

in both a physically-indexed and a virtually-indexed cache. Simulations of the virtually-indexed
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Workload
Misses ( x)

(x 106)
s

(x 106)
Minimum

(x 106)
Maximum

(x 106)
Range
(x 106)

eqntott 4.42 2.53 (57%) 3.25 (26%) 13.13 (197%) 9.88 (223%)

espresso 4.91 2.93 (60%) 3.45 (30%) 13.72 (180%) 10.28 (209%)

jpeg_play 18.58 1.34 (7%) 16.26 (13%) 21.96 (18%) 5.71 (31%)

kenbus 20.89 5.30 (25%) 17.10 (18%) 36.37 (74%) 19.27 (92%)

mpeg_play 58.48 7.01 (12%) 47.34 (19%) 68.95 (18%) 21.61 (37%)

ousterhout 31.50 2.61 (8%) 27.09 (14%) 35.03 (11%) 7.94 (25%)

sdet 41.28 8.77 (21%) 32.58 (21%) 63.48 (54%) 30.90 (75%)

xlisp 41.55 31.78 (76%) 15.16 (64%) 104.48 (151%) 89.32 (215%)

Table 7.2  Variation in Measured Memory System Performance

The statistics shown above represent 16 trial runs of each workload in a 16 K-byte, 4-word line, direct-mapped,
physically-indexed cache, using 1/8 set sampling. All workload components, including the kernel and servers, were
cached. x is the mean number of misses and s is the standard deviation of the trial set. Numbers in parenthesis are the
percent of the mean value for s and Range, and the percent difference from the mean value for Minimum and Maximum.
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cache exhibited zero variation because the sequence of references to the cache is independent of

the distribution of physical page frames assigned by the OS from run to run. This is essentially the

assumption made by most trace-driven cache simulators. Note that the 4 K-byte, physically-

indexed cache simulation results do not vary. This is because the page size on this machine is 4 K-

bytes; any page allocation will appear the same because all pages overlap in caches that are 4 K-

bytes or smaller.

With the physically-indexed cache, the greatest degree of variation (as a percentage of the

mean) appears at a cache size of 32 K-bytes, which is roughly the size of the program text used by

mpeg_play . This observation is consistent with Kessler’s probabilistic model of cache conflicts

Figure 7.1  Variation due to Set Sampling

This table isolates measurement variance due to set sampling. Tapeworm removed
all other sources of variation by considering only activity from the espresso
process (no kernel or servers) and by simulating virtually-indexed caches (4-word
line, direct-mapped). The two sets of data points are for measurements with and
without sampling and consist of 16 trials each. The error bars on the plot represent
one standard deviation.
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[Kessler91]. Kessler’s model predicts that with random page allocation, the probability of cache

conflicts peaks when the size of the cache roughly equals the address space size of the workload,

and decreases for larger and smaller caches. Figure 7.3 illustrates this effect more clearly for other

workloads and over a wider range of cache sizes and associativities. The plot shows that increased

cache associativity reduces performance variation. This happens for two reasons. First, increased

associativity increases the size of cache required for page allocation to have any affect at all.1

1. Increased associativity increases cache size, but does not increase the number of cache sets.
Therefore, an 8-KB, 2-way set-associative cache is indexed in the same way as a 4-KB, direct-
mapped cache.

Figure 7.2  Variation Due to Page Allocation

This table shows how page allocation alone can vary cache performance.
Tapeworm removed all other sources of variation by considering only activity from
the mpeg_play  process (no kernel or servers), and by not sampling. The two sets
of data points are for a physically- and virtually-indexed cache (4-word line, direct-
mapped). Each data point is the average of 4 trials. The error bars on the plot
represent one standard deviation.
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Figure 7.3  Variability in I-cache Performance versus Size and Associativity

These plots show variability in performance over multiple runs of the same workload in a physically-indexed I-cache. Performance
varies because the allocation of virtual pages to physical cache page frames is different from run to run. Variability is reported on
the y-axis in terms of one standard deviation of CPIinstr, the I-cache contribution to CPI.
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Second, associativity reduces cache conflict misses, which are the type of cache misses that are

affected by page-allocation decisions [Kessler91].

Variation due to page allocation is comparable to, if not larger than, that of set sampling. This

suggests that the error introduced by sampling is a reasonable trade for increased speed when

simulating physically-indexed caches. Of course, the combined effect of both sources of variance

is greater than either in isolation, forcing a larger number of trials to be performed to increase the

level of confidence in the mean value.

Variation due to Memory Fragmentation

In addition to page allocation, we have observed other sources of memory-system

performance variation due to OS effects, such as substantial increases in TLB misses due to kernel

and server memory fragmentation in a long-running system. Because fragmented data structures

are more sparsely distributed, they require more page-table entries to map, which can lead to

increased TLB misses. Figure 7.4 shows this effect in a plot of TLB performance for a 64-entry

TLB against time in a long-running system that repeatedly runs the same workload. Because

neither the workload nor the TLB configuration changes from run to run, one would expect

repeated simulation trials to result in roughly constant TLB performance. The plot shows,

however, sharp increases in misses at the beginning of the second and fourth days.

The first increase, between days 1 and 2, is due to the behavior of the Mach 3.0 kernel memory

allocator. This allocator initially works with a 400-KB pool of unmapped kernel memory.

Accesses to these locations do not contribute to the TLB miss rate. After long periods of allocation

and reclamation, this unmapped memory pool becomes fragmented and the memory allocator

must begin to use mapped kernel memory, which does contribute to TLB misses. The step in TLB

misses shown in the plot corresponds to the moment in time when the allocator must reach into

mapped regions of memory.

The second jump in TLB miss rates is due to a temporary change in workloads. Instead of

continuing to repeatedly run the same workload (ousterhout ), the system was made to run a

random series of workloads from our benchmark suite for about an hour. After this period, the

repeated execution of ousterhout was resumed. As the plot shows, the OS memory fragmentation

that resulted from the brief period of changed workload continued to affect the TLB performance

after returning to the repeatingousterhout  workload.
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The poor TLB performance described above is due to a design problem in the Mach kernel-

memory allocator, something that is best solved in software. The problem itself, although easily

detected by Tapeworm, would probably go unnoticed in a trace-driven simulation environment

that cannot easily conduct multiple experiment trials on an aging system.

Summary of Measurement Variation

Trap-driven simulation results, as produced by the Tapeworm prototype, are subject to both

artificial sources of variation (set sampling), as well as natural sources of variation (page-
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Figure 7.4  Measurement Variation due to Memory Fragmentation

Memory becomes fragmented as time passes, requiring more TLB entries to map.
This plot shows TLB performance as a fraction of total memory stall cycles over a
period of 5 days, starting with a freshly-booted system. The TLB holds 64 virtual-
to-physical mappings and the workload is ousterhout  which was run
repeatedly over the five-day period. Between days 3 and 4, a different set of
workloads was run for an hour, and then the repeated ousterhout  workload
was resumed.
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allocation effects and memory fragmentation). Because Tapeworm is part of an actual, running

system, is also sensitive to other system effects, such as link order in a system that implements

dynamic linking, or randomness in the order of task scheduling.

Tapeworm’s sensitivity to natural sources of performance variation, which may necessitate

multiple experimental trials, is not a liability. Performance variations due to page allocation and

memory fragmentation are real system effects that should be understood and taken into account

when making design decisions. If necessary, however, Tapeworm simulations can be configured to

remove these effects and produce measurements with less variation, like those from traditional

trace-driven simulators. An example of this is shown in Table 7.3.

7.1.2 Sources of Measurement Bias

With sufficient experimental trials, the variance errors of a workload can be quantified and

analyzed. In the absence of other sources of error, the resulting mean value will provide a good

estimate of true system performance. In this section we examine more serious forms of

measurement error that systematically over- or under-estimates true system performance. Sources

of measurement bias are hard to correct for because they are more difficult for the simulator to

account for and remove. Nevertheless, we will use certain Tapeworm features to isolate and

identify the magnitude of sources of measurement bias, whenever possible.

Bias due to Omitted Workload Components

If a simulation method completely omits memory references made by certain portions of a

workload, the accuracy of the resulting simulations will clearly be affected. The most common

form of omission is to restrict memory references to a single task. This occurs, for example, when

the Cache2000 simulator is driven by Pixie-collected traces. We illustrate the importance of

including all workload components (user, server and kernel)2 by using Tapeworm to measure their

individual contributions to the total number of I-cache misses.

2. By user task, we mean any of several tasks that are children of the shell from which the workload
was initiated. We collect tasks together in our simulations with the Tapeworm inheritance
attribute. A server task is the X display server or the BSD server, which exist prior to the
initiation of a workload. We refer to theserver tasks and thekernel as thesystem components of
the workload.
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Workload
Misses ( x)

(x 106)
s

(x 106)
Minimum

(x 106)
Maximum

(x 106)
Range
(x 106)

eqntott 4.19 0.10 (2%) 4.11 (2%) 4.26 (2%) 0.15 (4%)

espresso 4.26 0.06 (1%) 4.21 (1%) 4.30 (1%) 0.09 (2%)

jpeg_play 20.60 0.06 (0%) 20.56 (0%) 20.64 (0%) 0.08 (0%)

kenbus 22.03 0.05 (0%) 21.99 (0%) 22.06 (0%) 0.07 (0%)

mpeg_play 53.16 0.06 (0%) 53.12 (0%) 53.20 (0%) 0.08 (0%)

ousterhout 34.69 1.22 (4%) 33.83 (2%) 35.55 (2%) 1.72 (5%)

sdet 41.23 0.00 (0%) 41.22 (0%) 41.23 (0%) 0.00 (0%)

xlisp 21.67 0.19 (1%) 21.53 (1%) 21.80 (1%) 0.27 (1%)

Table 7.3  Measurement Variation Removed

These measurement were made as in Table 7.2, but with variation due to sampling and page allocation removed. This was
accomplished by configuring Tapeworm for simulation of virtually-indexed caches without set sampling.
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Table 7.4 shows I-cache miss counts and miss ratios for each of our workloads in a 4 K-byte

cache. The table shows the number of misses from the kernel, the BSD and X servers, and the user

tasks when each is allowed to run in a dedicated cache.3 The All Activity column gives results

when each of these workload components share a single cache. Due to cache interference among

the individual workload components, the sum of the individual miss columns is less than theAll

Activity column.

Note, first, that the SPEC92 benchmarkseqntott  andespresso  exhibit very low miss

counts overall. This is consistent with previous observations that many of the SPEC92

benchmarks require only small I-caches to run well [Gee93]. The servers and kernel contribute the

majority of total misses, but even with their contribution, the total number of misses is negligible.

Other workloads, such asmpeg_play , jpeg_play , sdet  andousterhout  exhibit the same

predominance of server and kernel misses, but with much higher overall miss ratios. In

ousterhout , for example, the total miss ratio is over 10%, mostly due to the system

components and interference effects. A simulator that considers only the user-task component of

ousterhout  would incorrectly estimate the I-cache miss ratio to be less than 1%. The only

workload in our suite with a greater fraction of misses coming from a user task isxlisp  which

performs much better in a cache that is only slightly larger.

Bias due to Memory Dilation

The amount of memory used by Tapeworm is small in comparison with many of the trace-

driven tools described in Chapter 2. Tapeworm does not cause a program to increase in size due to

code annotation, nor does it require large regions of host memory to be reserved for trace buffers.

Small amounts of host memory are, however, required for the Tapeworm code and data structures.

About 256 K-bytes of physical memory are allocated to Tapeworm at boot time. This removes 64

pages from the free memory pool, resulting in a possible increase in paging activity. This effect

can be offset by adding a small amount of additional memory to the host machine.

3. The cache is shared by multiple user tasks in the case ofkenbus , sdet  andousterhout .
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Workload
Miss Counts

From Traces User Tasks Servers Kernel All Activity Interference

eqntott 0.06 (0.000) 0.07 (0.000) 2.52 (0.002) 2.44 (0.002) 8.44 (0.007) 3.41 (0.003)

espresso 1.60 (0.003) 1.80 (0.003) 2.28 (0.004) 1.96 (0.004) 9.53 (0.018) 3.49 (0.007)

jpeg_play 2.98 (0.002) 3.14 (0.002) 14.58 (0.008) 9.21 (0.005) 36.28 (0.020) 9.35 (0.005)

kenbus — 7.50 (0.043) 11.89 (0.068) 12.78 (0.073) 45.70 (0.260) 13.53 (0.077)

mpeg_play 37.63 (0.027) 37.91 (0.027) 33.92 (0.024) 19.27 (0.014) 112.5 (0.079) 21.39 (0.015)

ousterhout — 1.93 (0.003) 18.62 (0.033) 21.72 (0.038) 61.39 (0.108) 19.12 (0.034)

sdet — 20.14 (0.024) 25.18 (0.031) 18.09 (0.022) 104.6 (0.127) 41.25 (0.050)

xlisp 85.77 (0.061) 90.02 (0.064) 6.31 (0.004) 2.98 (0.002) 135.8 (0.096) 36.55 (0.026)

Table 7.4  Miss Contributions of Different Workload Components

This table gives the number of misses (in millions) and the miss ratios (in parentheses) for different workload components. The
data were collected by running separate trials in which each workload was run in a dedicated direct-mapped cache of 4 K-bytes,
with a 4-word line. Whenever possible (e.g., for the single-task workloads), From Traces gives the miss ratios predicted by a
trace-driven simulation using Pixie+Cache2000. All Activity gives total miss counts when all workload components share the
same cache. Note that because of cache interference effects, the values in this column are greater than the sum of the individual
components. This difference is shown in the last column, Interference.

All miss ratios are relative to the total number of instructions in the workload. Hence, the miss ratios from each individual
component, plus interference, all sum to the total miss ratio given under All Activity.
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Bias due to Time Dilation

Because Tapeworm slows execution of a system, it is subject to the same form of time dilation

errors present in memory traces. One effect of time dilation is that it causes more clock interrupts

to occur during the run of a workload, leading to increased cache conflict misses. Figure 7.5 shows

the magnitude of error induced by time dilation. Notice that error grows most steeply from

slowdowns of 0 to 2, and then levels off for larger slowdowns. Most Tapeworm slowdowns are

under 4 where bias tends to be under 10%. Because the amount of slowdown varies from workload

to workload, time dilation cannot be removed by a simple adjustment to the clock interrupt

frequency as is done in [Borg90, Chen93b]. The most effective way to remove measurement bias

due to time dilation is to use set sampling to reduce simulation slowdowns.

Bias due to Non-trapping Memory Locations

The previous sections described forms of measurement bias shared by both trace-driven and

trap-driven simulators. One source of bias that is specific to trap-driven simulation is due to the

masking of certain Tapeworm memory traps. In the DECstation 5000/200, single-bit ECC errors

raise a hardware interrupt line to cause a kernel trap. If interrupts are disabled, a kernel trap cannot

occur, resulting in a reduction of simulated cache misses seen by Tapeworm. Because only the

kernel runs with interrupts masked, this limitation affects only kernel references. Moreover, only a

very small fraction of kernel code is affected. Special code around these regions helps Tapeworm

to account for their cache effects, and better host-hardware support for controlling memory access

(see Section 5.3.1) would avoid this problem altogether.

Summary of Measurement Bias

Most of the sources of trap-driven simulation bias described in this section also affect trace-

driven simulation accuracy. The survey in Chapter 2, for example, revealed that many trace-driven

systems also suffer from bias due to memory and time dilation. Similarly, the omission of

workload components has been a long-standing problem of trace-driven simulation [Flanagan93].

Tapeworm was designed from the outset to avoid this form of measurement bias, and its ability to

flexibly cache different workload components makes it an ideal tool for quantifying this type of

error. The current version of Tapeworm does not implement time sampling, but if it did, it would

be subject to the same forms of cold-start bias that occurs in trace-driven implementations of time
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Dilation
(slowdown)

Misses
(x 106)

Increase
%
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Figure 7.5  Error Due to Time Dilation

Increases in cache misses due to time dilation were measured for the mpeg_play
workload including all system activity (kernel and servers), running in a physically-
addressed 4 K-byte, direct-mapped I-cache with 4-word lines. Time dilation was
varied by changing the degree of sampling.
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sampling [Laha88; Kessler91]. The one form of bias that is unique to trap-driven simulation is

caused by non-trapping memory locations, a problem that could be overcome through better host

hardware support. In summary, trap-driven simulation is no more subject to forms of measurement

bias than is standard trace-driven simulation.

7.2 Accuracy Summary

We have used the Tapeworm II simulator to identify, isolate and measure a variety of sources

of memory-simulation error. Unlike trace-driven simulators, which always obtain the same

simulation result with a given trace, trap-driven simulators are sensitive to dynamic-system

effects, such as page allocation and memory fragmentation, which cause variations in performance

from run to run. This is a positive feature of trap-driven simulation because it provides better

insight into the true behavior of real machines.

With respect to artificial sources of measurement variation and bias, trap-driven simulation is

subject to many of the same sources of error as trace-driven simulation. In particular, variation due

to set sampling, and bias due to time sampling, time dilation, and memory dilation are forms of

error that both methods must contend with. The magnitude of these errors, however, is sometimes

less with trap-driven simulation (e.g., with memory dilation), and trap-driven simulators are often

able to employ certain techniques to minimize the effect of other sources of error (e.g., using set

sampling to reduce slowdowns and hence error due to time dilation). One of the most significant

features of the Tapeworm II prototype is its ability to monitor all system activity (with the

exception of small regions of un-interruptible kernel code). As a result, it is not subject to bias due

to omission of workload components. Our measurements showed that this form of error was

among the most significant.
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Chapter 8

Conclusions and Future Work

Our study of trace-driven and trap-driven simulation methods has enabled us to answer the

questions from the introduction:

(1) Flexibility: A model based on access constraints enabled us to determine when trap-

driven simulation is feasible. Using this model, we developed trap-driven

simulation algorithms for a broad range of memory configurations and performance

metrics. With a few exceptions (e.g., write-buffer simulation), trap-driven

simulation is nearly as flexible as trace-driven simulation.

(2) Portability: We examined several methods for implementing trap-driven simulator

primitives on existing machines, and showed that most machines provide enough

support for trap-driven TLB and I-cache simulation. Unfortunately, some existing

machines lack support for D-cache simulation and make the cost of kernel traps

unnecessarily expensive. We suggested minor and inexpensive hardware

modifications that could easily overcome these problems in future machines.

(3) Speed: Our prototype implementation of the Tapeworm II design on existing

hardware is faster than the fastest trace-driven simulators over a range of simulated-

memory configurations. Its slowdowns start at 10 in the worst case (with a 1-KB

cache), and approach 0 for larger or more associative caches. When set sampling is

used, slowdowns drop to less than twice the normal workload execution time in the

worst case, and add less than 20% to 30% to run times in more common cases. An

analysis of time spent in the Tapeworm trap handler showed that inexpensive host-

hardware modifications could realistically reduce these slowdowns by a further

factor of about 5.
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(4) Accuracy: Trap-driven and trace-driven simulation share many of the same artificial

sources of measurement error, but trap-driven simulation is often more able to

reduce the magnitude of their effects. Trap-driven simulators are more sensitive to

naturally-occurring system effects that cause variation in the performance of real

systems. The Tapeworm II prototype shows that a properly-designed trap-driven

simulator can account for the full activity of complex, multi-task workloads that

frequently invoke operating-system services.

Trace-driven simulation has evolved and improved over a 30-year period to the point where it

is now a well-understood, mature methodology that is unlikely to exhibit substantial further

improvements in performance. The method of trap-driven simulation, on the other hand, is only 2

or 3 years old and still in a relatively early stage of development. Nevertheless, in this short time it

has equalled or surpassed trace-driven simulation with respect to speed and accuracy.

The main weaknesses of trap-driven simulation are its portability and flexibility. It remains an

open question whether trap-driven simulation will be able to make continued advances in these

regards. The outcome will depend, in large part, on the willingness of computer architects to make

minor modifications in future designs to better support trap-driven simulation. Even with such

support, trap-driven simulation is not suited to certain forms of architectural simulation, such as

instruction-pipeline simulation, or simulations that require detailed, cycle-by-cycle accounting of

time.

In short, trap-driven simulation offers important advantages over trace-driven simulation, the

most important of which is speed. It is unlikely, however, that it will ever completely replace trace-

driven simulation due to limits in the detail of simulation that it can perform. Given this, the role of

trap-driven simulation is perhaps best understood as a new tool among the many used by computer

designers (see Figure 8.1). The selection of the most appropriate tool depends on the level of

simulation detail that is required. In the same way that trace-driven simulation cannot replace

circuit-level simulation, trap-driven simulation is unlikely to ever completely replace trace-driven

simulation.

8.1 Future Work

Work in trap-driven simulation and analysis could be developed and extended in many ways:
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• Porting Efforts: Implementing trap-driven simulation on new platforms will increase

acceptance of the method by making it available to a larger group of users.

• Trap-driven Simulator Design: Redesigning Tapeworm as a filtered-trace generator, as

described in Section 4.2.4, would enable a larger fraction of Tapeworm code to run

outside the kernel, thus making it easier to install new simulation algorithms. Such a

redesign would simplify the Tapeworm trap handlers, potentially leading to further

improvements in overall simulation speed.

• Software Performance Tuning: Our perspective of memory-system analysis has been

that of a computer architect who needs tools to evaluate hardware-design alternatives

for future memory systems. However, the speed of trap-driven simulation, combined

with its ability to dynamically monitor complex workloads in running systems also

makes it an ideal tool for software developers who wish to tune their applications to

anexisting computer’s memory system.

• Real-time Performance Analysis: When Tapeworm employs set sampling in

simulations of moderate-size caches (> 16-KB), slowdowns are low enough to be

virtually imperceptible to a user of the monitored system. This opens up the

Circuit-level Simulation

Behavioral / Structural Simulation
Trace-driven Architectural Simulation
Trap-driven Architectural Simulation

Figure 8.1  Computer Design Tools

The level of simulation detail required determines the best selection of simulator.
In general, as the level of simulation detail increases, simulation speed
decreases. Trap-driven simulation gives computer designers a new option for
memory-system simulation. It is faster, but less detailed than other forms of
simulation.

Increasing

Increasing

Speed

Detail

Gate-level Simulation
Register-transfer-level Simulation
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possibility of real-time memory-system monitoring and the detection of performance

problems that cannot be identified by traditional batch simulations.

• Software Engineering: Kernel traps could be the basis for new approaches to program

testing and debugging. It may be possible to use traps to efficiently measure the

percentage of program branches, code paths, or static variables exercised by a given

set of test inputs to a program. Such a tool would be analogous to the fault-coverage

analysis used by integrated-circuit designers to determine the effectiveness of a given

set of test vectors in causing all nodes in a logic design to switch on and off.

The main hinderance to trap-driven simulation and analysis tools is insufficient host-hardware

support. We have shown that the necessary modifications to host hardware are minor, and have

justified them through our successful implementation of the Tapeworm II prototype. We hope that

computer designers will choose to support trap-driven simulation in their future designs. In return

for this small investment, they will obtain a powerful new tool for analyzing memory systems, a

tool that will help to more quickly evaluate the memory requirements of new applications, and

thus reduce the chances of costly design mistakes.
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Appendix A  ISCA Paper Abstracts

In addition to serving as prototypes for the exploration of trap-driven simulation issues in this

dissertation, Tapeworm and Tapeworm II have also enabled studies of the interaction between

modern operating systems and computer architecture. The abstracts of three case studies that used

the Tapeworm simulators are included in this appendix as an indication of the types of memory-

system studies that can be performed with trap-driven simulation.
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Design Tradeoffs for Software-Managed TLBs

David Nagle, Richard Uhlig, Tim Stanley,
Stuart Sechrest, Trevor Mudge & Richard Brown

Abstract: An increasing number of architectures provide virtual memory support through

software-managed TLBs. However, software management can impose considerable penalties,

which are highly dependent on the operating system’s structure and its use of virtual memory. This

work explores software-managed TLB design tradeoffs and their interaction with a range of

operating systems including monolithic and microkernel designs. Through hardware monitoring

and simulation, we explore TLB performance for benchmarks running on a MIPS R2000-based

workstation running Ultrix, OSF/1, and three versions of Mach 3.0.

Results: New operating systems are changing the relative frequency of different types of TLB

misses, some of which may not be efficiently handled by current architectures. For the same

application binaries, total TLB service time varies by as much as an order of magnitude under

different operating systems. Reducing the handling cost for kernel TLB misses reduces total TLB

service time up to 40%. For TLBs between 32 and 128 slots, each doubling of the TLB size

reduces total TLB service time by as much as 50%.

Keywords: Translation Lookaside Buffer (TLB), Simulation, Hardware Monitoring,

Operating Systems.

Appeared in the 20th International Symposium on Computer Architecture, San Diego,

California, May 1993.
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Optimal Allocation of On-chip Memory for Multiple-

API Operating Systems

David Nagle, Richard Uhlig, Trevor Mudge & Stuart Sechrest

Abstract: The allocation of die area to different processor components is a central issue in the

design of single-chip microprocessors. Chip area is occupied by both core execution logic, such as

ALU and FPU datapaths, and memory structures, such as caches, TLBs, and write buffers. This

work focuses on the allocation of die area to memory structures through a cost/benefit analysis.

The cost of memory structures with different sizes and associativities is estimated by using an

established area model for on-chip memory. The performance benefits of selecting a given

structure are measured through a collection of methods including on-the-fly hardware monitoring,

trace-driven simulation and kernel-based analysis. Special consideration is given to operating

systems that support multiple application programming interfaces (APIs), a software trend that

substantially affects on-chip memory allocation decisions.

Results: Small adjustments in cache and TLB design parameters can significantly impact

overall performance. Operating systems that support multiple APIs, such as Mach 3.0, increase the

relative importance of on-chip instruction caches and TLBs when compared against single-API

systems such as Ultrix.

Keywords: On-chip Memory, Cache, TLB, Multiple-API Operating System, Mach

Appeared in the 21st International Symposium on Computer Architecture, Chicago, Illinois,

April, 1994.
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Instruction Fetching: Coping with Code Bloat

Richard Uhlig, David Nagle, Trevor Mudge, Stuart Sechrest & Joel Emer

Abstract: Previous research has shown that the SPEC benchmarks achieve low miss ratios in

relatively small instruction caches. This paper presents evidence that current software-

development practices produce applications that exhibit substantially higher instruction-cache

miss ratios than do the SPEC benchmarks. To represent these trends, we have assembled a

collection of applications, called theInstruction Benchmark Suite(IBS), that provides a better test

of instruction-cache performance. We discuss the rationale behind the design of IBS and

characterize its behavior relative to the SPEC benchmark suite. Our analysis is based on trace-

driven and trap-driven simulations and takes into full account both the application and operating-

system components of the workloads.

This paper then reexamines a collection of previously-proposed hardware mechanisms for

improving instruction-fetch performance in the context of the IBS workloads. We study the impact

of cache organization, transfer bandwidth, prefetching, and pipelined memory systems on

machines that rely on the use of relatively small primary instruction caches to facilitate increased

clock rates. We find that, although of little use for SPEC, the right combination of these techniques

substantially benefits IBS. Even so, under IBS, a stubborn lower bound on the instruction-fetch

CPI remains as an obstacle to improving overall processor performance.

Key words: code bloat, address traces, caches, instruction fetching.

Appeared in the 22nd International Symposium on Computer Architecture, Santa Magherita

Ligure, Italy, June, 1995.
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Abstract

Trap-driven Memory
Simulation

by Richard Albert Uhlig

Chair: Professor Trevor Mudge

The use oftrace-driven simulation in the evaluation of computer memory systems has been

popular for at least 30 years. Despite considerable progress in the development of this method, the

best trace-driven simulators still run at least one to two orders of magnitude slower than actual

hardware and it is unlikely that they will exhibit further substantial improvements in speed.

Trap-driven simulation is a new method for memory-system simulation that overcomes the

bottlenecks inherent in trace-driven simulation speed. By invoking a memory-system simulator

only on references that cause a change in the simulated memory state, trap-driven simulators can

potentially reduce memory-system slowdowns to zero. Although promising in principle, little is

known about how trap-driven simulation compares, in practice, to trace-driven simulation.

Through a literature survey of trace-driven simulation and the implementation of a prototype

trap-driven simulator, Tapeworm II, this dissertation compares the trace-driven and trap-driven

methods on the basis of their flexibility, portability, speed, and accuracy. We show that trap-driven

simulation offers clear advantages over trace-driven simulation with respect to speed and

accuracy. With some exceptions, trap-driven simulation is nearly as flexible as trace-driven

simulation, but suffers from certain problems of portability. We suggest methods for alleviating

these problems, through simulation-host hardware support in existing and future systems.

Keywords: Trap-driven Simulation, Trace-driven Simulation, Memory-system Simulation,

Cache, TLB


