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CHAPTER 1

INTRODUCTION

1.1 Motivation

With the proliferation of inexpensive computing power, distributed computing
— computing in parallel across a number of machines — has become very popular.
Despite a plethora of distributed systems, there is very little available by the way
of well defined programming paradigms, or formal specification tools for these sys-
tems. A similar scenario exists in the world of real-time systems. A distinguishing
property of real-time systems is the presence of timing constraints. That is, it is
not just sufficient to compute the required function but it is essential to compute
the neceésary function within certain time bounds. Even though a large number of
real-time systems have been constructed, there is no single language/model which
supports techniques to express the various constraints of a real-time system, analyze
them for consistency and implement the system.

The techniques to develop distributed real-time systems are very ad-hoc. Because
of this, such systems are expensive to build and maintain. The skyrocketing costs of
distributed real-time systems are of major concern, as these systems are prevalent
in many application domains like avionic systems and manufacturing systems, and
each system costs an astronomical sum per year [12].

The reason for this ad-hoc nature is that one does not have a usable and yet
sufficiently abstract computation model of distributed real-time systems. If one had
a model of computation, one could then build a compendium of information based
on this model which will help an implementor avoid re-solving problems that have
been solved elsewhere. Therefore a model of computation would ease the building
of software systems. This work is the first step in constructing such a model of
distributed real-time computation.

A valid question the reader might raise is why we choose to model distributed
real-time systems when we have stated that the individual components of distributed
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systems and real-time systems have not yet been well understood. The reason for
this stems from our belief that all systems can be classified as one of the following:
sequential, concurrent, concurrent real-time, distributed or distributed real-time. No-
tice that in the above classification, we do not distinguish between distributed and
parallel computation. Generally speaking, parallel computation refers to comput-
ing in an environment with a ‘large number’ of processes executing a similar code.
A parallel system can be treated as a distributed system, with a large number of
computing elements.

A natural containment relation between programs for these various systems ex-
ists. For example, sequential programs are a special case of concurrent programs. If
these systems are arranged in increasing order of programming and semantic (and
hence comprehension) complexity, they form a partial order as shown in figure 1.1.
If one is able to design a model to denote the top or the most complex element in
the partial order, the same model can be used to express all elements below it.

It is also the case that more and more real-time systems are being developed
for distributed execution. This is because of the reduction in overall execution
time in the case of distributed systems. Therefore it is only natural that we model
distributed real-time systems.

Distributed Real-Time
Real-Time Distributed
Concurrent
Sequential

Figure 1.1. Ordering of System Complexity

1.2 Goals

In [81], Stankovic enumerates the challenges presented by real-time systems. The
problems are categorized into specification and verification, real-time scheduling
theory, real-time operating systems, real-time programming languages and design
methodology, distributed real-time databases, artificial intelligence, fault tolerance,
real-time system architectures and real-time communication. In this thesis a subset



of these issues is addressed. The scope is limited to programming languages for
specification of distributed real-time systems.

The principal issue in specification of real-time systems is how to deal with time.
[51] defines a number of standards of time. When choosing a standard (or a set
of standards), one has to be careful not to cripple the number of systems that
can be specified. The choice of an appropriate standard is discussed in chapter 4.
Irrespective of the chosen standard, there are two principal problems in including
time explicitly. The first is that it presents problems in automatic verification. The
second problem arises due of a multiple notion of time (one per site), In such a
situation there is a need to address the issues of clock synchronization and creating
a universal time frame in the system. However, as discussed in a later section the
notion of time cannot be done away with.

We assume that languages can be used to characterize models of computation
just as regular languages model finite automata. This then permits the building of
a computation model using a programming language. We have designed a program-
ming language, as against only a formal language, as we wish the model to be useful
in practice and aid in system building. We emphasize that we do wish to construct
a formal model also. Hence the first step was to define a formal semantics for the
language. Other characteristics necessary for a model (like proof theory etc.) must
be derived from the defined semantics.

To model real-time systems correctly, all timing constraints of the hardware on
which the program is to actually execute have to be modeled. One also needs to
measure the time necessary to execute each programming construct. However, we
do not wish to burden ourselves by considering the execution speed of programs
written in the language at this stage. As our main concern is that of expressibility
of the timing constraints, the language will be used primarily for rapid prototyp-
ing. That is, the language will facilitate specifying and building a prototype of the
system quickly. Benchmarking of implementations will give us information of which
constructs are expensive to use. This information will be useful when production
quality systems are built. But this is too removed from our immediate goal and
shall not be discussed further.

Also performance related issues are tied to specific architectures and specific
implementations. A system specifier should be able to design a system which is
independent of architecture and be able to map it onto any given architecture. As
mentioned in [17], the first concern is to design a solution to the problem, while
efficient implementation of it on a particular architecture is only relevant after the
design. In order to have a realistic real-time environment for the execution of a
prototype, time has to be scaled appropriately to account for delays introduced by



the implementation of the language.

In short, the basic goal of this research is to design a simple, but also sufficiently
expressive computational model to permit the specification of distributed-real-time
systems. This goal can be divided into two major sub-goals. The first is to design
a programming language to be used for prototyping distributed real-time systems.
The second is to take the first step in developing the theoretical underpinnings of
distributed real-time computation by developing the semantics for the language.

1.3 Approach

In this section the strategy for the development of the language for distributed
real-time systems, and the building of its corresponding model is discussed. The
first step is the selection of an appropriate programming paradigm after which one
has to develop a notion of time and distribution within the chosen paradigm. We
also identify suitable constructs for specification of the temporal constraints and
incorporate them into the language. Having done that we define the semantics for
the language. In the following sections, our choice of programming paradigm, time,
distribution, temporal specifications and semantics are introduced.

1.3.1 Paradigm

In the construction of a programming language, the programming paradigm is
of paramount importance. The three major programming paradigms currently in
vogue are imperative, functional or applicative and logic.

The imperative style includes languages like C [49] and Ada [1]. The key feature
of the imperative style is the concept of a mutable state. These languages usually
support several control structures (loops, if-then-else, case) and are based on the
assignment statement which changes the state of the computation [8]. Functional
languages (like Miranda ! [88]) are stateless and allow only single assignment to
variables. That is, the values associated with variables cannot be altered and are
more like constants. As the main emphasis is on function composition and func-
tion application, functional languages support program building rather than object
building [7]. Programming in Logic is best explained by describing Prolog [53]. Pro-
log is based on a subset of first order logic known as Horn clauses. A set of Horn
clauses defines the problem domain. The particular problem to be solved is also

1 Miranda is a trade mark of Research Software Ltd.



posed as a set of Horn clauses which are to be proven in the original domain. The
solving of the problem is similar to finding a proof for the given set of clauses given
the original set of clauses which are to be treated as axioms. How the proof is to
be achieved, or the control information, is not specified by the programmer. The
language implementor makes the decision of how to effect the proof procedure. See
[83] for details.

We choose a paradigm which is essentially imperative. However, certain sub-
sets of programs in the language can be identified as functional/declarative. The
driving force behind the decision opting for an imperative paradigm was the need
to support a notion of time in the language. Advantages of functional programming
are obtained by the identification of functional sub-sets. The details of this are
presented are chapter 2. The declarative component of the language was necessary
to characterize the environment in which the system operates.

1.3.2 Concept of Time

Usually, it is difficult to specify or program a real-time system in a language that
does not support any metric which can be used to measure the rate of progress of
the computation or presence of events in the environment. A commonly used metric
is time. We, as real-time language designers, decided to have the notion of time in
the language. Two techniques can be used to achieve this. One can either have
explicit clocks or use events to keep track of time. Explicit clocks represent time
as a monotonically increasing function (except for clock synchronization). Events
on the other hand express intervals of time. If it is known that event b occurs t
units of time after a, event a can reset time to 0 and when b has occurred we know
that t units of time has elapsed. The latter is not very useful in our opinion, as
it is extremely difficult to specify event occurrences with much precision. Usually,
only the upper and lower bound of the interval is specified. In such a situation the
sense of time is not very accurate. Our language utilizes explicit clock definition to
support the notion of time.

1.3.3 Denotation of Distribution

One of the goals of the research is to support the specification of distributed
systems. The language must have construct(s) which can be interpreted to represent
distribution as opposed to concurrency. No programming language we surveyed
(see chapter 2) distinguishes concurrent programming and distributed programming.



Therefore, at the outset of this research, we identified certain features which could
be used to distinguish concurrent and distributed computing. These features are
orthogonal in that selection of one as a denotation of distribution does not diminish
the need to support the others. We enumerate these features and discuss their
implications.

In a distributed system, a particular value of interest to a computation may not
reside on the site of computation. In such a case a remote access is essential. For
example, in a distributed data base, all the items may not be replicated, to avoid
the update overhead, consistency problems etc. Hence a query may need to perform
a remote access.

An important fact which could be used in the design of algorithms for distributed
systems is that access to a remote variable could take orders of magnitude more
time than a local access [95]. This important difference can be used to characterize
a distributed system. Obviously one cannot describe the difference quantitatively as
it is extremely difficult to account for network delays precisely. For remote access to
be a distinguishing feature for distributed system, constructs denoting remoteness
using qualitative descriptions are necessary.

The remote access technique is useful only if one allows sharing of data. On
the other hand if sharing of data is disallowed (as in CSP [44]), other techniques to
characterize a distributed system are essential. Some of the other alternatives are
discussed below.

In a uniprocessor system, an occurrence of a fault results in an abnormal ter-
mination of the entire program. However, a distributed system can be designed to
continue to perform at least a subset of the functions at a lower throughput in the
event of a fault. This can be achieved by reconfiguring the system to perform the de-
sired functions. If one had constructs which specify how a system should reconfigure
itself in the event of a fault, those constructs could be interpreted as a denotation
for a distributed system. However, this would imply that our language will have to
provide specific techniques for fault tolerance. Having a language dictate fault han-
dling schemes is far from ideal, as different types of faults require different schemes.
The fault handling scheme will also depend on what the program is computing and
when the fault occurs. A language should provide general constructs which can be
used for all types of recovery without requiring any particular technique be used.
Hence reconfiguration specification techniques were not included in the study.

It is reasonable to assume that each processor in a distributed system has a
single clock associated with it. Under the above assumption, one can require a
specification of a distributed system to involve multiple clocks. Note that this does
not require the clocks to be completely independent. The various clocks could be



synchronized with each other to keep a uniform notion of time with an acceptable
margin of error. However, a model must be sensitive to clock synchronization and
other errors introduced to a multi-time notion.

For the purposes of this thesis, we select one of the above as the main feature
denoting distribution. This is not to conclude that the other features cannot be used
to characterize distribution nor do we conclude that a distributed system consists
only of multiple clocks. It is our opinion that multiple clocks are an important
component of distribution and we concentrate on the issues related to multiple
clocks.

The main criterion in the selection was that the chosen characterization should
be compatible with the rest of the language. Another important property that
the selected characterization should have is that programs using it should not be
overly verbose. Out of the three possible denotations discussed above (remote ac-
cess, reconfiguration and multiple clocks), the multiple clock characterization was
considered, as it introduces a sense of time in the model and at the same time de-
scribed a distributed system. Also this technique is general enough to be added to

existing languages.
1.3.4 Temporal Specification

In a programming language for real-time systems, it is essential to support tech-
niques which specify timing constraints the system is required to satisfy. As we have
an interest in developing a formal model, we assess the suitability of temporal logic
[67] for the above and overcome its shortcomings to suit our purpose. As discussed
in the next chapter, classical temporal logic is insufficient as far as real-time systems
are concerned. In this thesis, we discuss certain extensions to temporal logic.

1.3.5 Formal Semantics and Model

Having decided upon the basic structure of the language, it is essential to have a
formal framework within which one can analyze and reason about programs. Before
analysis, the meaning of syntactic terms has to be clear. The definition of formal
semantics provides meaning to the syntactic constructs of the language. From the
semantics, the tools for analysis are to be constructed. Hence, the definition of
semantics is the first step towards the goal of buiding a model. Semantics are also
necessary to make sure that all implementations do implement the same language.



The purpose of semantics is to assign a meaning to a program, which describes
the effect of executing the program. This is useful to a system designer who is
interested in knowing what happens when a particular construct is executed. Certain
* types of semantics also provide a formal basis for deducing properties of a program.
Mathematically speaking, a syntactically correct program P can be considered to
be an element of a set IT of all syntactically correct programs. The meaning of a
program P can be then be denoted by M(P). To define a formal semantics one
has to specify a mapping from II to M(II). To define this mapping completely the
structure of the elements of M(II) has to be properly chosen. These elements can
be considered to be the elements of the model of distributed real-time computation.

There are two main semantic styles: denotational and operational. Denotational
semantics while founded upon an elegant and powerful theory has problems mainly
because it is not easy to understand. As pointed out in [66] and [71], this is partly
because of the use of higher order functions taken as denotations of phrases. This
and other shortcomings of denotational semantics shall be discussed in chapter 3.

It is widely accepted that operational semantics is easier to understand than
denotational semantics. Operational semantics can be considered to be an abstract
implementation. It is usually associated with an abstract machine which executes
programs in the language. Initial attempts at operational semantics [99, 59] to cite a
few, (see chapter 3 for a detailed survey) resulted in an overly verbose characteriza-
tion and tended to be biased towards specific implementation strategies. Structural
Operational Semantics [72] used axiomatic descriptions of transitions and overcame
some of the problems in traditional operational semantics.

The advantage of operational semantics over denotational is that it is more un-
derstandable as the reader is able to imagine the execution of the program thus
visualizing behavior. In other words, if the purpose of semantics is to explain the
behavior of programs written in the language then an operational semantics is neces-
sary. This is because most people understand programs by visualizing their behavior.
An operational or a behavioral view of the language captures meaning by formaliz-
ing the idea of behavior and explaining the effect of executing each syntactic entity.
It is for this reason that in this thesis, we develop an operational semantics for the
language.

Summary
In this thesis, we develop A Real-time Language called ARL. ARL derives its

name from APL. Just as APL is an expressively powerful language for sequential
computation, ARL is powerful for distributed real-time computation.



ARL can be considered to be an imperative extension of a functional language. It
uses explicitly defined logical clocks to represent time. Multiple such definitions will
characterize a distributed system. It supports the definition of temporal constraints.
We have also defined an operational semantics for ARL.

As a brief overview, this thesis addresses the issues related to selection of pro-
gramming paradigm, characterization of time and distribution, constructing a for-
mal and programming model of distributed real-time systems. In the next chapter,
we review very briefly some of the issues related to programming languages and
distributed real-time languages in particular. In the same chapter we explain in
detail our decision to have an imperative language with functional sub-set. The
relation between the programming paradigm and clocks as time keepers, events as
communications and temporal specifications is also discussed. In the third chapter
we review some of the relevant semantic techniques. We also discuss concurrent
models of computation which can be used as semantic models. The syntactic struc-
ture of the language is explained in chapter four, while the formal semantics are
described in chapter five. In chapter six we demonstrate using examples the advan-
tages of our language over other languages. Finally in chapter seven we summarize
our achievements and identify areas which require future research.



CHAPTER 2

REVIEW OF PROGRAMMING LANGUAGES

In this chapter, issues related to the design of programming languages are dis-
cussed. The main emphasis is on the identification of programming language princi-
ples and study of their strengths and limitations for distributed /real-time systems.
The issues discussed include the three principal programming paradigms and their
amalgamation, the concept of events for communication and asynchronous behav-
ior, and temporal logic for timing requirements. Finally, a few languages designed
explicitly for distributed/real-time systems are studied.

2.1 Programming Paradigms

As mentioned in chapter 1, three principal paradigms of programming namely,
functional, logic and imperative are considered. After studying their suitability for
prototyping distributed and real-time systems, features that are relevant to our goal
are identified.

2.1.1 Functional Programming

There is a growing interest in functional languages and systems and a number of
languages have been designed, FP [7], SASL [90], Miranda [88] to cite a few. There
are both theoretical and practical advantages in using the functional paradigm. The
theoretical advantages of functional languages over assignment based or imperative
languages lies in the fact that lambda calculus is a natural model for their math-
ematical semantics. From a user’s point of view, functional languages are useful
as it is easy to support type inferencing, polymorphism, pattern matching, lazy
evaluation, higher order functions, etc. These features enable one to arrive at an
executable specification for a problem quickly as demonstrated in [86] and [87].

Algorithms can be considered to be composed of logic and control [52]. The logic
part specifies what the algorithm achieves, i.e. what is being computed, while the

10
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control part denotes how some function is to be achieved without explicitly telling
what the function computes. The main emphasis in a functional language is on
the logic along with some information about the control of the solution rather than
purely control or purely logic.

2.1.1.1 Limitations of Functional Languages

Theoretically, expressions which are purely functional can be executed in par-
allel. This fact can be used to speed up the execution of a functional program.
However, from a pragmatic view point they execute slowly on current hardware.
This restricts the usage of functional language in production quality systems. Lan-
guages which support normal order evaluation (e.g., lazy languages) are difficult to
debug. Standard debugging techniques are stack based and cannot be applied to
them. This is because a graph reduction scheme [91] is used to implement normal
order evaluation.

From a logical expressiveness view point functional languages are well suited for
sequential programs. However, they are not adequate for concurrent, distributed,
real-time program specification. A sequential system can be modeled by functions
modifying values computed by other functions. Usually concurrency involves non-
determinism and synchronization. Non-determinism cannot be modeled using a
purely functional approach as a non-deterministic function can produce different
outputs given the same input and hence is not functional in the mathematical sense.

For example, consider a merge routine, which given two input streams merges
them into one stream. Assume that the input streams are to be considered equiva-
lent. Also assume that an implementation of merge routine should be permitted to
non-deterministically select data from either stream when data is available on both.
Thus merge([1][2]) should be allowed to produce either [1,2] or [2,1] and hence cannot
be a function. Note that an implementation of merge is bound to be deterministic
but the specification of merge at the language level should be non-deterministic.

Synchronization is more of a state characteristic than a value characteristic and
cannot be represented by values returned by functions. Concurrent programs have
to be specified in terms of the behavior or collection of properties rather than only
values. Also, time being an implicit side-effect cannot be specified in a purely
functional language.
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2.1.2 Imperative Programming

Concurrent /real-time imperative languages [1, 10], do not have a natural formal
model associated with them as applicative languages have lambda calculus. But they
are very attractive for production quality software because of their wide spread use
and execution efficiency on current architectures.

However, they lack the expressiveness to support rapid prototyping. This is
especially true if an imperative programmer has to have a type secure program.
Typing plays an important role in program debugging. As debugging is an important
activity when building a prototype, the type structure provided by the language is
important. In imperative languages, the onus of providing types for the objects
and functions is on the programmer thereby resulting in verbose code. This is not
acceptable for prototyping system. It is also the case that the builder is unnecessarily
burdened with efficiency considerations from the start and the specificational aspects
get side-lined [17].

Because these languages support the concept of mutable state, the specification
of time and synchronization in these languages is relatively simple.

2.1.3 Logic Programming

‘As logic programming’s primary concern is with the logic of the system being
programmed, it has a distinct advantage in the area of specificational languages.
This is because specifications should be precise and yet allow the implementor the
freedom to choose the method of implementation, i.e., they should contain only
the logic of the system. Even though logic programming appears to be the most
appropriate, it has some shortcomings when one considers distributed/concurrent
logic programming.

Two types of parallelisms have been considered in logic programming, ezplicit
concurrency and implicit concurrency [62]. Implicit parallelism is concerned with
the definition of parallel implementations of the language that are equivalent to the
sequential semantics of the language. Explicit concurrency is obtained by introduc-
ing constructs related to concurrency. We are concerned with explicit concurrency
as our aim is to describe parallel systems, where the specifier may wish to specify
what can be computed in parallel.

Three basic mechanisms to transform a sequential logic language to a concur-
rent language have been proposed. Synchronization operators in Generalized Horn
Clauses [27] are similar to process fork and join operators. This makes the logic com-
plex and hard to understand. Synchronous communication mechanisms are similar
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to those of CSP. The mechanisms are based on the notion of events. Constraints on
the logical variables are present in languages like Parlog [18] and Concurrent Prolog
[79]. These languages require annotations of variables as read only to achieve syn-
chronization. It is extremely difficult to control the proof tree and these constructs,
when added to other constructs like cut, only make the program more difficult to
understand.

In general, logic languages are less expressive than functional languages for con-
current systems, because logic languages have no control information. The notion of
synchronization is not only state based, but also requires control information. Due
to this, logic programming does not play a major role in our language. However, our
language (ARL) does support certain constructs which are declarative in nature.

Conclusion

Based on the above arguments, we conclude that, while functional programs
specify the logic more explicitly than imperative languages, they lack the notion of
state and the various control structures available in the latter. Imperative languages
on the other hand specify the control associated with the algorithm in detail and it is
difficult to extract the logic from them. As executable specifications should embody
the logic explicitly along with some control information, functional languages can
be considered as a better vehicle for rapid prototyping than conventional or logic
languages.

However, not all tasks, especially in distributed/real-time computation, can be
done within the functional paradigm. To adapt a quote from Turner [89], “...
certain aspects of the language must be imperative and any attempt to pretend
otherwise can only be an exercise in self deception.” Thus the applicative paradigm
is combined with the imperative paradigm to form the basis for our language. This
makes the language essentially imperative, but certain parts of it can be identified
as functional.

2.2 Combining Functional and Imperative Languages

Having decided to combine the two paradigms, the possibility of retaining the
best of both worlds in this mixed paradigm is discussed. Gifford et al [31] present a
method by which it is possible to write functional and imperative computations in
the same program. The principal property which distinguishes functional program-
ming is that all expressions in a functional program are referentially transparent.
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A sub-expression in an expression is said to be referentially transparent if it can
be replaced by another expression having the same value without any effect on the
value of the whole expression. This property can be invalidated if the expressions
use any of the following three operations: 1) The ability to allocate and initialize
memory whose values might change, 2) The ability to read the contents of memory
whose value might change, 3) The ability to write new values into existing memory
locations.

(W,RA)
(W.A)
{W.R] {RA)
W) {R} (A)

()

R: Read variables
W: Modify variables
A: Allocate memory

Figure 2.1. Effect Class

A given expression might use a subset of the three operators described above.
To characterize this, we consider the power set of the set of operations. It has eight
elements and each of these eight subsets is called an effect class. A complete partial
ordering based on the subset relation of the power set is given in figure 2.1. The
complete partial order can be reduced to form other partial orders depending on
the type of restrictions one places on the system. [31] discusses the various restric-
tions in detail. As our main concern is to be able to distinguish functional from
non-functional program fragments, we collapse the lattice into a linear order with
three elements called FUNCTIONS, OBSERVERS and PROCEDURES. FUNC-
TIONS are purely applicative, while OBSERVER can see side effects, i.e., access
state variables but not change them, and PROCEDURES can cause and observe
side effects.

Inference rules are used to decide the effect class of a subprogram. These in-
ference rules partition a program into effect classes. For example, the fact that
constants are functions and variables are observers can be stated as inference rules.
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To do so, define A, an ex*ended type assignment and two functions Type and Effect.
An extended type assignment is a partial function that maps an identifier into a
pair consisting of its type and a token ‘Constant’ or ‘Variable’. The function Type
maps an extended type assignment and an expression into a type, while the function
Effect maps an extended type assignment and an expression or a statement into an
effect class. The inference rules have two components to them. The first is the
antecedent, while the second is the consequent and a horizontal line separates them. -
Examples demonstrating how inference rules can be defined are given below.

A(v) = <T,Constant>
Effect(A)(v) = Function

A(v) =<T,Variable>
Effect(A)(v) = Observer

The first of the two rules described above classifies a constant ‘v’ as a Function,
while a variable ‘v’ is classified as an Observer. The rule described below classifies
the assignment operator as a procedure. In it E represents an expression, and v a
variable of type T. The rules states that if v is a variable of type T and the type of
E is contained in T, the effect class of ‘v := E’ is procedure.

A(v) = <T,Variable>

Type(AYE) S T
Effect(A)(v := E) = Procedure

However, this classification is necessarily conservative in that a subprogram will
be assumed to be a procedure unless proven otherwise. This is because it is unde-
cidable whether a subprogram actually destroys referential transparency.

We have similar inference rules designed specifically for ARL to classify the
program into the various classes. It is now possible to use appropriate techniques
to implement and formally describe elements in each class. Therefore one can write
a program with both imperative and functional constructs and classify them using
the described scheme.

2.3 Events

Events are used in various programming languages but there is no single inter-
pretation of what for and how they should be used. Their primary use has been to
model information transfer in a concurrent environment. We discuss a few of the
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event oriented models. This will enable us to identify some of the issues in support-
ing events at the language level. We discuss Actors [42, 2], Group Element Method
(GEM) [60], Event Based Language (EBL) [77] as examples of event based models.

Actors

In an Actor model, the basic elements are actors and events. An actor is a com-
putational agent which maps each incoming communication to a 3-tuple consisting
of 1) A finite set of communications sent to other actors 2) A new behavior which
governs the action to the next communication. 3) A finite set of new actors created
by the communication.

The three elements can be interpreted as follows. An actor can be considered to
be a process which handles messages. The process could contain local information
retained from event to event (like a history.) A process also has the ability to spawn
other processes. An event is said to occur when a message is received by an actor.
An event signifies the start of an action following a communication. The complete
theory related to Actors is developed in [2] and is not discussed here. The following
is an example of an Actor based factorial function which illustrates the use of events.

def expr fact [n] =
if n = 0 then
reply[1]
else
reply [n * (call self (n-1) )]

In the above example, reply denotes sending the response to the actor that
invoked fact, while call self is a recursive call.

Group Element Method

An event in the Group Element Method(GEM) [60] represents a logical atomic
action marking the end of an action. A computation is represented by a concurrent
execution of events related by partial orders. We concentrate on the notion of events
and do not discuss the computational aspects.

An event instance belongs to a class called an event type. For example, As-
sign(newval : Integer) defines an event type called Assign. All instances of it have
an integer input parameter. Thus put(5) is a legal instance of Assign where put is
the name of the specific event and 5 the argument.
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In general, an event contains data and structural information. The data field
consists of a set of parameter values and what are called thread identifiers. Param-
eters are the normal static data items like integers, boolean etc. Threads on the
other hand identify specific control paths. The structural information consists of a
name and two identifiers called the element and group identifiers.

An element can be thought of as a sequential process while a group can be
considered to be an encapsulating unit (e.g., a module.) A thread is an identifier
for a particular chain of events. For example, (e,(p1,p2,. ..pn),t,elem,grp) identifies
an event of type e with value (p1,p2,...pn) in thread t. The event instance belongs
to element e in group grp.

Temporal logic is used to specify restrictions on event generation. The specifi-
cation of various systems using GEM is discussed in detail in [60].

Event Based Language

[77] discusses an Event Based Language(EBL) where events are abstract entities
that are explicitly instantiated by a program during its course of execution. A
program is composed of processes which can be executed concurrently.

An event instance carries with it information about its occurrence. Two relations
involving events, named causality and precedes, are defined. The causality relation
is used to indicate the process which causes an event and the precedes relation
indicates the ordering of events. In EBL, events are used for all programming
activities including assignment. Therefore events are not necessarily atomic.

Discussion

The common feature in the use of events as discussed above, is that events repre-
sent significant points in the computation. Statements to generate events explicitly
are provided. They can be used to represent explicitly used entities ranging from
assignment to communication.

The notion of events can also be extended to model entities not explicitly in-
stantiated but handled by the program like external interrupts. In general, events
can be used to represent interrupts, I/O, exceptions etc. Events can also be used to
denote either atomic or non-atomic activities. In short, the use of events has been
to indicate a change of state of the computation.

If events are to be useful, the information associated with them should be state
based. Therefore they cannot be a part of the functional paradigm. As real-time pro-
gramming requires a notion of state, ARL supports the definition and use of events.
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Events also play an important role in modeling communication in a distributed
environment. It is possible to characterize asynchrony using events. However, if
asynchronous event generation and handling has to be reliable, the implementation
has to handle unbounded buffering.

In the next section, we examine the usefulness of temporal logic for real-time
computation. Discussed are two principal types of temporal logic viz., linear time
logic and interval logic. We do not discuss other temporal logics like branching time
logic etc. [25)].

2.4 Temporal Logic

A logical framework is essential to facilitate specification and analysis of real-
time constraints. Temporal logic is a candidate formalism, as it is a logic dealing
with a notion of time. Temporal logic is essentially state based and it enables one to
write predicates about a particular state or a sequence of states as they are reached
during the course of the computation. As shown by Lamport [58), a program can
be specified by a set of properties it satisfies.

The basic operators in temporal logic are O representing henceforth, < indicating
eventually and o indicating next. Towards their meaning, let p be a predicate. O
p implies that p is true from now on till the computation terminates. < p means’
that p is true now or will become true sometime in the future. o p implies that the
predicate will be true at the next state of the computation. A few definitions used
in the context of temporal logic are presented.

Definition 2.1 A predicate p is a safety property if it is initially true and holds at
every state of the computation, i.e. p is invariant throughout the computation.

Intuitively a safety property states that no incorrect state is ever reached during the
entire computation. For example: Op is a safety property. As all safety properties
are satisfied by a null program — a program which does nothing — we also require
liveness properties which require that something good actually happens.

Definition 2.2 A predicate p is a liveness property if p is true at some state(s) of
the computation.

The following are examples of liveness properties: Op, OOp, OOp.

Definition 2.3 A non-terminating process is usually called a Divergent process.
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Temporal logic has to been used mainly to state and/or prove safety and liveness
properties in correctness of programs. It has been successfully used for reasoning
and verification about concurrent programs [68, 39]. Our interest in temporal logic
is different from the above. We are concerned with the appropriateness of temporal
logic as a vehicle to express timing constraints of a real-time system. A stricter
notion of liveness called timeliness is necessary. Timeliness (which is defined below)
has two components to it. The first concern is that a predicate becomes true only
after at least n units of time, while the second concern is that a predicate becomes

true within n units of time.

Definition 2.4 The at least case is defined as follows: —p & Vi<n o;—p & Im > n

OmP-
Definition 2.5 The within case is defined as follows: —p & Ji<n o;p.

Many real-time applications are required to be divergent and hence one should be
able to specify divergent computation. We, would however, like to distinguish two
types of divergences namely, internal divergence and external divergence. Internal
divergence occurs when the system diverges without any further interaction with
the environment, wlile external divergence occurs when the system diverges but
maintains a continuous interaction with the environment. Ideally, real-time systems
like control systems should be externally divergent, but generally no system should
be internally divergent. A requirement of the logic we wish to use is that one should
be able to specify external divergence. It would be an added advantage if it were
possible to detect certain types of internal divergence in a specification.

Interval logic [4], which is a variation of the temporal logic discussed above, can
be used to represent a finer granularity of time than the operators described above.
The following operators are defined in the logic: Meets, Overlaps, During, Starts,
Finishes.

Towards the meaning of these operators, let p and q be predicates. Let p- indicate
the unique time when p becomes true and p+ the unique time when p becomes false.
Similarly for q. Using this convention, the meaning of the above operators can be
defined as follows

e p Meets q = p+ = q-
o p Overlapsq=> (p- < q-) & (p+>q-) & (p + < q+)
o p During q = ((p- > q-) & (p+ <= q+)) or ((p- >= ¢-) & (p+ < q+))

o p Starts q = (p- = q-)
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o p Finishesq = (p + =-q+)

From the above definition it is clear that if p Finishes q then q Finishes p and
if p Starts q, q Starts p. Figure 2.2 gives a pictorial description of the definition.
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Figure 2.2. Interval Logic

Interval logic, while mathematically sound, has problems when systems based on
it are implemented. Only the operators During and Overlaps are implementable. It
is impossible to implement Meets, Finishes and Starts accurately as it is impossible
to verify and guarantee the equality of time as reading the time usually takes non-
zero time. Hence, specifications involving operators based on equality will almost
always be violated.

The above interpretation of During and Qverlaps is well defined only for a system
where all the reasoning is done using a single clock but is not well defined in a system
with multiple clocks. For example, a predicate p with respect to clock 1 could be
during another predicate q with respect to clock 2 but p with respect to clock
3 may not be during q with respect to clock 4, e.g., because of non-synchronous
clocks. Hence, interval logic by itself cannot be used to specify distributed systems
unless one extends the semantics of the operators or one works with completely
synchronized clocks. However an interval characterization of time is often essential.
The semantics of ARL has been designed so as to support both an integer and an
interval characterization of time. This will become clear when the semantics of the
constructs using time are defined in chapter 5.

The limitations of classical temporal logic have been overcome in logics like RTL
[46] etc. We have designed constructs which are similar to suit our language. This
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is discussed in detail in chapters 4 and 5.

Apart from the theoretical advantages of using a temporal logic, an added ad-
vantage is that one need not specify priorities of a scheduling algorithm. The onus of
satisfying these temporal constraints lies with the implementation. In other words,
the scheduling is abstracted from the program. As we do not wish to curtail the
expressiveness of the logic, a large class of temporal requirements can be specified
in the language. The only restriction we place on the operators is that they lead to
executable specifications.

2.5 Examples of Real-Time Languages

In this section, a few languages designed primarily for real-time systems are dis-
cussed. The purpose of this exercise is to identify the advantages and shortcomings
of various languages. This enables us to use the results of prior work. We have
identified the various drawbacks present in other languages and rectified them when
we designed our language.

As it is not feasible to look at all languages designed for real-time systems, some
popular classes have been identified and the selected languages are typical of the
particular class. The classes chosen are applicative, logic, imperative and data-flow.
For the sake of clarification, we consider data-flow as a special form of the imperative
paradigm.

2.5.1 Applicative Languages

2.5.1.1 ART

Broy in [14] discusses an applicative real-time language called ART. Time in
ART is mapped onto the set of natural numbers. Every object is given a time
stamp representing the time it was created. The language constructs are function
declaration, function application, conditional statement, delay statement (delay E1
for E2), ordering statement (E1 before E2). The delay statement returns the value
of El after delaying for the time specified by the value of E2. However, the time
to evaluate E1 and E2 are also important. Therefore the delay is the maximum of
time required to evaluate E1, the time to evaluate E2 and the value returned by E2.
The before statement forces the evaluation of E1 before E2.
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Broy discusses a denotational semantics for the language. To discuss a subset” "

of the semantics, let V,,,; be a non real time semantic function typed as: V,,: ex-
pressions (EXPR) — environments (ENV) — some semantic domain D. Let DOM
be D x Naturals, where the second field of the tuple represents the time stamp of
the object in question. Let L represent undefined. A real-time semantic function V
based on V,,; can be defined as V : EXPR — ENV — DOM. As an example, the
meaning of the delay construct is as follows: Let V(E1)(e) = (o1,t1) and V(E2)(e)
= (02,t2), where o; is the value of E; in the semantic domain while t; is the time
stamp of o;. Then

(L,00) if t2 = 0o
V(delay E1 for E2)(e) = { (L,t2+1) ifo2 =1
(01,maz(02,t1,12)) otherwise

The above equation indicates that if E2 takes infinite time to evaluate, the mean-
ing of the delay statement is undefined (denoted by L), i.e. no further information is
available about the statement, and takes infinite time to complete. If the evaluation
of E2 is undefined, i.e. evaluation of E2 results in an error, the meaning of the delay
statement is undefined and this is known just after E2 has been evaluated. In all
other cases it is the value of E1, with a time stamp of the maximum of t1, t2 and
o2.

Although it is theoretically appealing, ART does not have all the constructs for
program development. The language is purely functional and does not consider con-
structs for nondeterminism, concurrency and distribution. Though one can specify
the order of evaluation, using these primitives it is difficult to specify the occurrence
of something at an absolute time. Another problem is that delay as defined is re-
alizable only for a single thread of control. If more than one thread is active, the
scheduling overhead must be incorporated. Thus, the only realistic interpretation
of delay in ART is that of a lower bound. This by itself is not acceptable as one
must be able to specify the upper bounds on the delay.

2.5.1.2 Arctic

Arctic [20] is a language designed mainly for real-time control. It is a “stateless”
language in which the relationships between system inputs, outputs and intermediate
terms are expressed as operations on time varying functions. This characterization,
while correct for many of the control oriented systems, is not sufficiently general.

Time is represented by a function called time. The resolution of this function
is given by dur. Basic temporal constraints are specified by the time at which a
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particular “event” is to occur and how long the event is to take to execute. X(at)t
states that an event X is to occur exactly at time t, while X(for)d states that the
event X is to take d units of time to complete. It has temporal constructs like shift
and stretch to construct other constraints. The shift operator takes an argument
and translates a temporal specification by the argument times dur. For example, if
X is to occur at time t, X shift t’ forces X to occur at time t + t’ x dur. The stretch
operator changes the value of dur which was by default 1. For example, X dur 0.5
requires X to take half the previously specified time to complete.

For example, chimes causes[ E shift 0, C shift 1, D shift 2, G shift 3, G shift 8]
specifies the ringing of the bells. When the procedure chimes is called, the E note
is played immediately (shift of 0), the C note played 1 unit of time after the call, D
after 2 units of time etc.

It is our belief that these operators are not sufficient to model real systems. For
example, it is not possible to specify the bounds within which an event is to occur.
As mentioned earlier, it is difficult (if not impossible) to implement the at or the
for operators correctly. The requirement that the intermediate terms are also to
be expressed as operations on time varying functions is too restrictive. In real-time
systems it is not essential to synchronize every single term. It is only certain key
terms that have to satisfy timing requirements. The behavior of the program when
certain timing specifications are violated is left undefined. If a language has to be
used in programming real-time systems, it must facilitate recovery actions when
timing conditions go awry.

2.5.2 Logic Languages

The only logic real-time programming language we encountered in the literature
was [30]. Systems are described by events and states. States are properties of the
objects composing the system and represented by atomic formulae. The rules for
describing the behavior of the objects are deductive formulae of the if-then variety
whose premises can be events and states and relations between them and whose
conclusions are single events or single states. This allows the writing of each rule as
a Horn clause.

Events occur at a particular time and time is parameter in the formulae. For
example, arrival(L,F,T) represents the arrival of lift L at floor F at time T. As states
are properties of objects, they have a duration. All predicates referring to states
have two time parameters, which stand for time interval over which the property
holds. For example, moving(L,F,D,T1,T2) states the movement of lift L from floor
F in direction D holds in the time interval [T1,T2).
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Clearly the authors have tried to specify real-time systems within the logic pro-
gramming framework. Control information, as in Prolog, is specified outside the
logic and complicates the understanding of programs. In chapter 6 an example of a
program in real-time Prolog is presented. It will become evident that the logic ap-
proach requires associating time with most, if not all, objects. This is not acceptable
in a language aimed towards prototyping systems.

2.5.3 Imperative Languages

2.5.3.1 Crash

Crash [97] is a real-time language which uses shared variables as the medium of
communication and for synchronization. It has analog variables to model history of
a computation. It has timing construct to express scheduling constraints. Special
subprograms called tasks can be defined. Only tasks can be scheduled. The six basic
scheduling statements are: start a task immediately, start a task at a particular
absolute time, start a task within some interval, ezecute a task periodically, start
execution of a task when a particular condition is satisfied and cancel an active
task.

It is quite well suited for an environment where well designed experiments are
to be conducted. It does not support any prototyping features, nor does it consider
execution in a distributed environment.

2.5.3.2 Real-Time Euclid

Real-Time Euclid [50] is a language designed specifically to enable one to build
reliable hard real time systems. In order to make the system reliable it is necessary
to analyze the schedulability of programs and guarantee that in the execution of the
program, all deaclines shall be met.

The language is based on the imperative paradigm, and in order to guarantee
the schedulability of programs written in it, it eliminates all dynamic features. This
includes dynamic arrays, pointers and recursion. As the timing constraints are
closely tied with the control structure, temporal analysis of programs is more difficult
than were it separate from the control of the program. This coupling also hinders
modification to programs as any additional timing condition requires following the
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control flow of the program. Real-time Euclid can not be considered a language for
prototyping real-time systems.

2.5.3.3 Ada

Ada [1] is a language which comes closest to addressing a number of issues in
real-time distributed programming. It facilitates modular, parallel programming,
data abstraction and is a good tool for implementors. We do not consider it an
appropriate specification tool, as there are a number of shortcomings.

The language is not completely defined with respect to distribution. Various
attempts to provide a distributed environment have been made [21], [48], [47], [95]
and [93]. But there is no agreement regarding the unit of distribution and how dis-
tribution of a single program is to be specified. That is, there is no single technique
in distributing Ada. This is because Ada does not distinguish between concurrency
and distribution. The concept of time which is critical to real-time applications is
not complete in Ada as discussed in [96] [94]. Difficulties associated with priority
inversion which causes scheduling difficulties has beed identified in [34]). Another
drawback is that it does not have a well defined formal model associated with it.

2.5.3.4 ESTEREL

ESTEREL [11, 10] is a synchronous real-time language. It supports programming
constructs like modules, types and control structures. The basic communication unit
is signal which has a name and a value belonging to a particular type. Conceptually,
an event is an instantaneous broadcast of information. An information can be
composed of many simultaneous signals which themselves could convey values.

The emit instruction generates a signal and its associated value. The upto in-
struction defines a temporal scope for a code body. The upto instruction defines the
termination condition for a body in terms of when signals occur. For example, do B
upto S(X) executes B. Whenever the signal S occurs the execution of the upto block
is terminated and the value associated with the signal is stored in X and the exe-
cution continues. As the communication paradigm is synchronous, the occurrence
of S, is checked before executing B. If B is a loop, the loop is executed until the
signal occurs. The occurrence of an signal causes the loop to exit after the current
iteration.

Time is related to the signal flow and there is no universal time reference. It
supports classical programming language constructs like modules, types and other
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control structures. In chapter 6, where we compare ARL and ESTEREL, an example
of an ESTEREL program is given.

The language has three types of semantics viz., static, behavioral and com-
putational. The static semantics is used to detect temporal paradoxes, while the
behavioral semantics is used to verify program equivalences and the computational
semantics is used to specify what the program achieves. The three semantics are
discussed in detail in the next chapter.

The main drawback of ESTEREL as in Real-time Euclid is that the temporal
specifications are closely tied to the control structure of the language. It complicates
the process of making changes to an existing program. It also makes temporal
analysis difficult. This will be clear when we discuss examples in chapter 6.

The designers of ESTEREL claim that they wanted the language to be syn-
chronous in that a delay statement terminates exactly when its ending event occurs.
They also assume that all control transmission like the sequencing operator and
simple operations like assignment addition etc., take no time at all. It is clear that
these conditions are unrealistic and should not be assumed. The semantics of these
operators along with the semantics of signals leads to confusion. For example, as
discussed in [10], await S(X); await S(X) does not wait for two signals but only one
signal as the ‘;’ operator takes 0 time and the signal is still present when the second
await is executed.

Another drawback of synchrony and tying the temporal specifications to the
control flow, is that an signal occurrence need not affect the execution of the program
‘immediately’. The upto statement checks for signal occurrence only when the end
of the body is reached.

Note that we are interested in a language for rapid prototyping, which is not a
purported goal of ESTEREL. Thus, they do not discuss features like polymorphism,
type inferencing, higher order functions, lazy evaluation, declarative constructs etc.
They also do not discuss distributed execution of ESTEREL programs.

2.5.4 Data Flow

2.5.4.1 Real-Time Lucid

Real-Time Lucid is a declarative language by Faustini et al [28] based on Lucid
[6]. The basic data structures are streams. Streams are constructed via the fby
operator. For example, x:=1 fby (x + 1) defines a stream of positive integers.
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Other stream manipulating functions are asa and nezt. Asa is a binary filter and
takes in two streams, a data stream and a boolean stream. It returns a value
corresponding to the index of the first true on its boolean stream. Next is an unary
operator and it returns the stream after the first element has been removed.

The language assumes the existence of a global clock. The primitives for real-
time programming include specifying the bounds on the time necessary to create
and destroy objects. The bounds are specified as time intervals. For example, let x
be an object with x,; the permissible creation interval [a,b], and x4 the permissible
destroying interval [c,d]. If x,; and x,4 are the actual creation and destruction
respectively, then a < x5t < b <c < xqar < d.

The following is an example program in Real-Time Lucid. It samples an incoming
radar signal which can have a value in the range 0 to 100. The goal of the program
is to inspect the incoming signal at a specified sampling rate (Sampling) and to
output 0 if the signal value is less than 50, 1 otherwise. The output must remain
for a fixed duration (Duration) of time.

// Time constraints

stream = < [0,0], {1,1}, [2,2] ... >

Radar,; = stream/Sampling

// creation time for each element in Radar must satisfy sampling period
ZeroOne,; = Radar,;

// Data Dependencies

ZeroOne = Radar >=50;1;0

The only time related constructs are creation and destroying intervals for objects.
No other temporal features are discussed. Specification of a recovery action in case
of timing error is not addressed in the paper. The authors admit that more work
has to be done before it becomes an usable language. The main shortcoming of this
approach is that real-time foundation of the language is weak. It assumes that one
has knowledge of the life time of all objects. This assumption is not necessarily true
in a prototyping environment. If the language has to handle the distributed case, it
is necessary to extend the concept of time.

2.5.4.2 Lustre

Lustre, as defined in [9] and [16], is a synchronous data-flow language for real-
time systems. The basic data structure is a stream and the operators are very
similar to the ones in Real-Time Lucid. A novel idea is the use of boolean variables
as clocks. This notion of clocks is not to measure time but rather to be used as
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a selection function to construct new streams by using the when operator. They
implicitly assume that an integer timer is present. For example, if a clock C has
values true, false, true, true, false, false and true in the first seven instances of time
and if the corresponding values of a stream E were el €2, €3, e4, €5, €6 and e7, the
values of the new stream constructed by when C(E) is el, el, €3, e4, 4, e4, 7. The
value of new stream changes only when the clock is true.

Functions count and rank using this notion of clocks are defined. If C a clock and
n an integer, Count(C,n) is equal to the number of units of time the clock was true,
while Rank(C,n) is equal to the number of units of time say m, to be considered
to make Count(C,m) = n. These functions help the definition of a denotational
semantics for Lustre.

The computation of a rising edge of a variable is shown below. The function
EDGE takes in a boolean stream as input an returns a boolean stream. A rising
edge is detected when the current value (C) is true and the previous value (pre(C)
is false. The Lustre program is '

EDGE(C: boolean) return (H: boolean) ;
H = C - (C and not pre(C))

Clocks and other related statements in Lustre are more like ZF iterators of
Miranda [88] as they construct new sequences from old. Boolean sequences are
considered to be clocks and are constructed by the program. It is our feeling that
the notion of clock should be independent on the flow of the program. In a real-time
language, clock(s) should influence the flow of control and not the other way.

Like ART and Real-time Lucid, Lustre has very few programming constructs,
which the authors admit makes it difficult to specify realistic systems.

Conclusion

In summary, our brief survey has shown that if a language has a formal basis it
is too restricted to be used a rapid prototyping language, while if the language has
a large number of programming constructs there is no discussion of an associated
formal structure. None of the languages permitted the specification of recovery
in the case of timing violations. Also, none of these languages were designed to
prototype real-time systems.

One can conclude that a programming language which addresses the issues in
building distributed real-time systems along with an associated model is essential.
In the next chapter we discuss the various formal models developed to characterize
concurrency and real-time.



CHAPTER 3

SURVEY OF SEMANTIC STYLES FOR
CONCURRENT/REAL-TIME SYSTEMS

There have been a number of approaches to provide semantics for programming
languages. Two of the most prevalent are the denotational and the operational
styles. A brief introduction to denotational semantics is presented. Its limitations
and our preference for operational semantics is discussed. Following this, various
approaches to developing operational semantics are discussed.

3.1 Denotational Semantics

Denotational semantics gets its name from assigning denotations — which are ab-
stract entities modeling meaning — to language constructs. We describe this briefly.
The following is by no means a comprehensive and a fully technical discussion. The
interested reader can find the details in [35]. For the sake of simplicity we restrict
our attention to sequential languages. [13, 55] describe denotational semantics of
concurrent /real-time systems.

Denotational semantics is composed of functions associating elements in the
syntactic domain (like assignment, expressions subprogram calls) to elements in a
well structured domain. The first step, in denotational semantics for an imperative
language, is usually to formalize the concept of state. For example, states could
be represented by a set of identifier value pairs. A state could also be a set of
identifier value pairs along with two sequences of values representing input and
output performed by the system. Note that this is sufficient as we are considering
only a sequential language. Towards formalizing this we define the syntactic domain
first. Let Ids be the set of identifiers, E the set of expressions and Cmd the set of
commands allowed by a language. For semantic considerations assuine that there is
a set of expressible values called EXP. Also assume that the set EAMV represents
the environment, which can be defined as the function space from Ids to £EX7P.
In other words, environment as used in denotational semantics, defines values for
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identifiers. To define the meaning of elements in E we construct a mapping =: E
— ENV — EXP. In other words, the meaning of a given expression is a function
from an environment to the set of expressible values. The environment gives values
to the identifiers in the expression, while the element in the set of all possible values
represents the value of the expression. Similarly towards the meaning for Cmd
assume a set S to be set of states. Define a meaning function ©: Cmd — § — S.
Intuitively, commands transform a state to another state.

Mathematically speaking, denotational semantics is a homomorphism from the
algebra of syntax into an algebra of semantics. The syntactic algebra consists of
the permissible syntactic constructs while the semantic algebra consists of semantic
domains and interpretation of the operators in the algebra. The semantic functions
together form the homomorphism.

We do not discuss denotational semantics in any more detail as we are not cur-
rently interested in it due to certain limitations. These shortcomings are discussed
below.

3.1.1 Limitations of Denotational Semantics

The limitations of denotational semantics as developed in [35, 84] are discussed
in [71, 66, 98]. These limitations can be summarized as follows. Denotational se-
mantics is based on what are called X expressions. The semantics of trying to model
environments, stores etc. in lambda calculus gets intertwined with the semantics
of the programming language it is trying to explain. The notion of environments
etc., should have a natural representation in the semantic technique used if the se-
mantics is to be simple. Understanding A programming, especially when it involves
non-obvious constructs (like continuations), requires a lot of effort. In order to min-
imize the information necessary to specify the transformation, many constructs like
routine entry, exit, the distinction between parameters and variables etc., are ex-
pressed in not too understandable terms. While these principles are mathematically
sound, their relevance to the ordinary computer scientists is not apparent. To quote
Dana Scott [78]

... The difficulty in the presentation of the subject is in justifying the
level of abstraction used in comparison with the payoff: too often the
effort needed for understanding the abstractions does not seem worth the
trouble — especially if the notions are unfamiliar or excessively general.

This is especially true if the primary concern of the reader is in implementing the
language. As we have designed a language to support rapid prototyping comprehen-
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sibility and implementation of the language have a high priority. Thus, denotational
semantics are not quite appropriate at this time.

Operational semantics (which is described below) is better suited for the pur-
posed of deriving a semantics based implementation. This however is not to say that
denotational (or any other abstract) semantics is not relevant. It is'only because
the focus of this thesis is in designing a language and describing it formally so as
to aid an implementor, that we do not discuss denotational semantics. Other activ-
ities like development of a proof theory for the programming language, verification
techniques for the language etc., a denotational definition is desirable.

3.2 Operational Semantics

Operational semantics can be viewed as associating an abstract machine with
the language in question. The behavior of the machine describes the effect of execut-
ing a program. This definition of operational semantics permits an implementation
(compiler/interpreter) of the language to be an acceptable definition of the oper-
ational meaning of the language. Needless to say, this definition is at a very low
level. One of the first high level operational semantics styles was the use of Vienna
Definition Language(VDL) [99)].

3.2.1 Vienna Definition Language

The Vienna Definition Language (VDL) [99] defines an ideal machine which
executes the program. It is a tree based technique. That is, the transition rules
transform one tree to another. An algorithm to convert a program into its abstract
form similar to a parse tree, is assumed. The abstract program with the initial data
determines an initial state. This initial state is transformed into other states by the
transition functions, until a final state or a state which has no successor is reached.

Formally, a Vienna definition system V is defined as V=(EO,CO,,S,0,1) where
EO is a set of elementary objects, CO is a set of composite objects and is disjoint
from EO, @ € EO is a distinguished element called the null element, S C EO is a
set of elements called simple selectors, o and p are operators called the selection
and assignment operators. o takes a selector and an object and returns an object
(which could be null). x4 takes an object, a selector and another object and updates
the field indicated by the selector of first object to the second object. For example,
a tree with three selectors (or branches name) sl, s2 and s3 with sub-trees x1, x2
and x3 respectively can be represented as po(<sl:ix1>,<352:x2>,<s3:x3>), where g
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represents the tree forming operator. Call this object t. o(t,s1) is x1. Altering the
second sub-tree to y is achieved by the command pu(t,s2,y).

Every computation starts from an initial state/representation, and is character-
ized by a sequence of states or information configurations. A state is represented
as a composite object whose components may be selected by the selectors. An
information configuration is obtained by applying an instruction (tramsition rule)
to the previous configuration. These actions are constructed using the assignment
operator. An instruction of a VDL machine has the form

name(pl,p2,p3 ... pn) = |
C, — a
Co —* Ay

C3 — a3

Cm — am |

The p;’s are parameters, c;’s are boolean valued conditions and a;’s are the
actions to be executed if the boolean valued condition corresponding to it evalu-
ates to true. The condition action pairs are treated as a sequence and the action
corresponding to the first true condition is executed.

Consider the following example which is an outline of the transition rules to
evaluate a term. Call the evaluation routine value. Also assume the definition of a
function called apply which applies an operator to its arguments and the object env
representing environment. Functions is_binary, is_var and is_const which identify a
term as an application of a binary operator (defined by the op selector), a variable
and a constant respectively are assumed. Towards the transition rule for value
define, a to be value(a(sl,term)) and b to be value(o(s2,term)), where sl and s2 are
selectors. The transition rule is

value(term) = |
is_binary(o(op,term)) — apply(a,b,s(op,term))
is_var({term) — o(term, env)
is.const(term) — term]

The above rule states that if the term ‘term’ is formed using a binary operator
‘op’, the value of the term is the application of it to a and b. If ‘term’ is a variable,
the value is given by its binding (env) and if ‘term’ is a constant the value is ‘term’
itself.

VDL supports the concept of state consisting of store and control. The com-
plexity of the store depends on the language for which the model is being used.
For example, it can be a set of name value pairs, or could consist of environments
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to cater to block structured languages. The control aspect contains an abstract
program along with instructions for the interpreter.

3.2.2 Structured Operational Semantics

The main limitation of operational semantics based on VDL was that it was
overly verbose. These techniques were not considered to be “directly formalizing
the intuitive operational meaning found in most language definitions.” For instance
using the VDL machine to describe a language results in a large number of transition
rules that deal with the manipulation of the tree structure. In other words, the VDL
machine has a preconceived notion of what data structures and operations should
be used to implement the language. Similarly, the transition rules of the SECD
machine most of the instructions were to manipulate the stack.

Plotkin in [72], proposed a higher level of operational semantics, which employed
axiomatic descriptions of the transition rules. In this approach a number of tran-
sitions were coalesced to form a single transition rule with more meaning. The
intermediate steps of manipulating the various data structures is ignored. Apart
from reducing the number of transition rules, it also permits the implementor to
choose the appropriate data-structures. The only restriction is that the behavior
exhibited by the chosen data structures must satisfy the defined axioms.

Define a configuration as a two tuple with the first field an expression or a state-
ment and the second field the state of the memory in which the statement/expression
is to be executed/evaluated. The transition rules, as in VDL, form a relation on a set
of configurations. The transition rules consist of two parts: the antecedent and the
consequent. The antecedent and consequent can be considered as the conjunction
of subparts separated by commas. While the antecedent and the consequent have
the usual logical interpretation, they can also be interpreted as rewrite rules. The
following examples will illustrate the technique. The first rule captures the intuitive
meaning of statement composition.

<cl, s1> — 82, <c2, s2> — 3
<cljc2 s1> — s3

The rule is to be interpreted as “if the execution of command cl in state sl alters
the state to s2 and the execution of command c2 in state s2 alters the state to s3,
the execution of the composition of cl and c2 in state sl results in state s3.” The
two rules described below define the meaning for the ‘while’ statement. Notice that
the rule described above had two components to the antecedent while both the rules
described below have only one component.
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<b,M> — <true M’>
<while b do ¢, M> — <c;while b do ¢, M’>

<b,M> — <false,M’>
<while b do ¢, M> — <null, M’>

The Plotkin style operational semantics consists of giving a set of rewrite rules
which transform a program step by step into its result. This technique has been
then applied to CSP and is described in [73].

The two techniques described above (VDM and SOS) are very general and not
domain specific. They can be applied to any type of system including distributed
real-time systems. However, the characterization of parallelism in such models is
far from obvious as they do not have operators for parallelism (or concurrency.) A
few operational styles designed specifically for concurrent computation are studied
below. These techniques can be thought of defining formal languages which are
programming language independent. It is possible to use these formal languages
as a target language for a concurrent programming language. The translation will
provide the operational semantics for the programming language.

3.2.3 Calculus for Communication Systems

Calculus for Communicating systems(CCS) [64] is a paradigm for concurrent
computation. Concurrent computation is modeled by communication (or events)
between independent processes. It assumes that a system is observable in that the
events the various processes generate can be noted. The system can also be thought
of as one on which certain experiments (or actions) can be performed (by generating
an event from outside) and studying the system’s response. If the system rejects
an experiment it gets ‘stuck’ i.e., no further progress is possible. In other words, a
rejected experiment causes the system to come to an abnormal halt. The system is
described by the set of sequence of experiments it admits without getting stuck.

A system description consists of a set of triples called a labeled transition system.
The meaning of a typical triple (s,a,s’) is that the process s is transformed to process
s’ by performing action ‘a’ on the environment or by accepting an ‘a’ experiment.
We write s - s’ to represent (s,a,s’). Non-determinism is expressed when more
than one triple is active. For example, let s be a process on which actions ‘a’ and
‘b’ can be performed (i.e., (s,a,s’) and (s,b,s”) can be executed.) Assume that both
events a and b are available. The existence of the two rules can be interpreted to
mean that the system being described can non-deterministically choose one of the
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two transitions. The labeled transition technique describes a process by generating
a labeled graph. See figure 3.1. A collection of such graphs describes a concurrent
system.

CCS defines a set of operators which are used to construct processes. The set of
actions that can be executed by the processes forms the basis of a state. Towards
a syntactic definition of the operators in CCS, let A be a set of actions (or exper-
iments), V the set of processes. Assume that there is a bijection on the elements
in A. Let u be a typical element of the set of actions with  be the corresponding
element under the bijection called complementary action. Complementary actions
are used to denote actions which occur in pair like sending and receiving etc. Let E
be an element of V, i.e., represent a process. Let a null process be a distinguished
element of E. The following is a syntactic description of the operators. The set of

processes are defined recursively, i.e., they describe derivation of new processes from
old.

o u - E denotes the acceptance of action p after which the process behaves as
defined by E.

e E; | E, is called composition which is defined below.

e E\ A AC A denotes restriction of actions to elements not in A.
e E[S] , where S : A — A, a relabeling of actions.

e ¥ E;, called summation which is also defined below.

Informally, composition allows concurrent behavior of Eg and E; with commu-
nication through complementary actions, while restriction using set A, eliminates
the experiments involving elements belonging to A, i.e., the derived process does
not accept any event specified in the set A. Summation denotes a non-deterministic
selection of one of the components. Summation of two terms (binary summation)
is denoted by ‘+’. The above syntactic definitions satisfy the properties described
below. Note that certain properties are written in the form of a rewrite rule, viz. a
horizontal line separating the antecedent and the consequent.

op-E—"—»E
E, 5 F
°
LE LHF
Eo & Ey’

Eo | Ey 5Ey | E,
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Figure 3.1. Tree Representation of CCS program
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From these rules of action, the behavior of a process can be represented as a
tree. For example a process specified as a - (8 + 7 -7) + « - can be represented by
the tree shown in figure 3.1. It defines a process which after action « has a choice
of either behaving like (8 + 7 - 7) or like 7. If the former is chosen, the process has
a choice of either performing action # or 7 - 4.

Milne in [63] has shown how it is possible to represent the ticking of time (global
clock) in an extended CCS framework called Circal. As the increment of global
time should not depend on the behavior of the program, the definition of each of
the processes is augmented with a choice sum involving an action = which signifies
the ticking of time. A single tick occurs if no action takes place. If an event occurs,
it does so simultaneously with a clock tick. Simultaneous occurrence is indicated
using ‘(" ‘). For example, ( - €) indicates the simultaneous occurrence of the ticking
of time and occurrence of action e.

In the example, there are three processes A, B and C. Consider v as an event
representing the transfer of information from C to A, « as an event representing
transfer of information from A to B and f as an event representing transfer of infor-
mation B to C. When a process receives information, it sends it out (on its output
channel) at the next instant. If no input is received, time ticks. This continues for
ever and hence the processes are defined recursively with <= denoting definition.
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Figure 3.2. Time in Circal

See figure 3.2 for an interconnection between A, B, C and the clock. The Circal
notation for the above description is as follows.

A<=(y-7)(a-T)A+ 1A

B<=(a-7)(f-7)B+ 7B

C<=(@B-7)( -7)C+7C

As CCS (or CIRCAL) has a formal semantics, a language designer can translate
the constructs of the language in question to CCS. The operational nature of CCS
induces an operational semantics for the language. This technique has be applied
to a subset of Ada i.e., a subset of Ada has been translated into CCS [41].

3.24 CSP

The CSP [44] model is similar to the CCS model, in that there are events/actions
and channels over which communication occurs. Unlike CCS where the emphasis
was on communication, the main feature of CSP is a process. A process is defined
to be a behavior pattern of an object describable in finite terms. Events or actions
are used to describe the behavior of processes. The main operators are:

o —: Next
e pu: Parametrization
e |: Parallelism

o “?”: Channel Input
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e “I” : Channel Qutput
e [1: Non-determinism
o O : Controllable choice

The principal operator in the description of a process is the — operator. It plays
the role of - in CCS. Let ‘a’ be an event and P be a process. a — P describes
a process which engages in event a and then behaves like P. Process can also be
defined recursively. For example, P = a — P describes a process which engages in
an infinite sequence of a’s. The reader may assume the a’s to be ticks of a clock,
to get a feel for situations where such descriptions might be useful. Processes can
be parameterized using the p operator. For instance, P(x) = ux: x — Q can be
instantiated with any event (say ‘a’) which is substituted for x yielding P(a) = a
— Q. Processes which are to be executed in parallel are composed using the ||. P
|| Q describes a process composed of two sub-process P and Q where P and Q can
execute in parallel. Communication is a special form of an event. The event is a
two tuple involving a value and a channel. A process can wait for a value to occur
on a channel by using the “?” operator. For example, c?x describes a process that
is waiting for a value to be sent on channel ¢ and when the value arrives it is stored
in the variable x. Values are transmitted on the channel using the “I” operator. clv
emits the value v on the channel c¢. As CSP supports a synchronous communication
paradigm, the statement does not terminate unless there is a reading of channel ¢
using a c?x.

CSP (like CCS) supports two types of non-deterministic operators. One is called
non-determinism and the other controllable choice. Non-determinism is represented
by M and controllable choice is represented by O. In non-determinism the envi-
ronment has no knowledge and no control over the selection of the process to be
executed. In controllable choice, the environment can control which of the processes
involved is selected, provided the control is exercised on the very first action. The
following law formalizes the above description.

z:(AUB) — if z€ (A - B) then P(2)
(z:A—P(z))0(y: B = Qy)) = elsif z € (B — A) then Q(z)
elsif z € (AN B) then(P(2) NQ(z))

In the above equation, the notation of x : A— P(x) is to be read as x from A
then P of x. In other words, it defines a process which first offers a choice of any
event x in the set A and then behaves like P(x). The law described above states
that if an action solely in A can be performed then it is, and similarly for B. If an
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action which is common to both A and B then the selection of which process to
execute is not specified by the axiom i.e., is non-deterministic.

Other operators to specify interleaving, checkpointing, interrupts are present.
The development of these operators requires the introduction of a number of defi-
nitions. We refer the reader to [44]. [44] also discusses the properties and laws of
all the constructs in detail. As in CCS, the existence of an operational semantics
for CSP implies that a translation of a language into CSP defines an operational
semantics for the language.

Reed and Roscoe in [75, 76) discuss a timed extension of CSP. They use a dense
notion of time and extend CSP with a WAIT construct. WAIT t terminates after t
units of time. The meaning of a CSP process has to be augmented to know when
a process will be ready to handle actions or respond to the environment. This is
called the stability as it represents the stage after which the process cannot make any
more internal progress. In other words time stability represents the time after which
a process which has the exhibited current trace s will be ready to respond to the
environment, i.e. can handle an event. Towards the definition of stability let time be
represented by T and ¥ be the set of events/actions. The set of ordered timed traces
is defined as {s € (TxX)* such that if (t a) < (t” a’) then t < t’ }. It represents
the occurrence of events ordered by time. Also define the refusal of a process as the
set of events which the process can fail to engage in over a specified time interval.
In other words, it represents the set of events that the process will not accept over
the specified interval. Model a timed CSP process as a set of ordered three tuples
(s,a,R), where s is a timed trace of the process, R is a refusal of the process and «
is the time at which the process is guaranteed to be stable after exhibiting the trace
s and refusing 8. This forms the basis of a configuration on which the semantics
of timed CSP is developed. Due to the complexity of the rules, we do not present
them here, but refer the reader to [75, 76].

The purpose of the review is to study the effect of adding a time to an un-timed
model. It is clear from the brief overview that addition of time complicates the
semantics. Essentially, all relevant actions have a time associated with them.

3.2.5 S K Reduction Machine

This section is a slight departure from the discussion of general operational mod-
els. We discuss an implementation technique for functional languages as developed
by Turner in [91]. The technique is discussed in great detail in [24]. Our interest in
this implementation technique is because it can be thought of as defining an opera-
tional semantics. By imposing a left to right interpretation, these equations, could
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be cast into a rewrite system providing an operational meaning to lazy functional
programs. As our language supports lazy computation, it is essential to understand
its operational semantics.

The main feature of the technique is the use of combinators or operators that
serve the role of an environment, that is they define the binding of variables to
values. The compiler transforms each expression into its combinator form which is
stored internally as a tree. At run-time, the system executes this combinator code
based on a graph reduction algorithm [91]. As it is a normal order reduction, the
machine automatically supports lazy evaluation, which is necessary to implement
ARL.

Three basic combinators S, K and I are defined. They take functions as argu-
ments and return functions as results whose behavior satisfy the following equations.

e Sfgx=1x(gx)
e Kxy=x
oIx=x

The above equations are to be interpreted as describing the behavior of functions
under parameter x. For example, when S is applied to functions f and g, a new
function say h is obtained. The behavior of h when applied to X, is the same as
applying f to x and (g x).

Using these combinators one can verify that the successor function can be defined
to be S(S(Kplus)(K1))L The generation of this long winded code is explained in [91]
- When this is applied to say 10, the combinator to be reduced is S(S(Kplus)(K1))I
10 which can be rewritten to ‘plus 1 10’ using the above rules. To get more compact
code, combinators B and C are defined. They satisfy the following equations

e Bfgx=1(gx)

o Cfgx=1xg

The B and the C combinators can be re-written in term of S,K and I as follows.
e S(K El) E2 =B El1 E2

o SEl (K E2) = C El E2

Other combinators are P for pairing, U to handle functions with more than
one parameter (or uncurry), Y to handle recursion, cond for conditionals. These
combinators satisfy the following properties.
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o UfPxy=1xy
o Yh=h(Yh)
e cond truexy = x

o cond falsexy =y

3.3 Stepwise Development of Operational Semantics

Having reviewed several techniques, the quintessence of each computational fea-
ture is examined. By starting with a simple language and adding features like com-
munication, non-determinacy and assignment, the increase in semantic complexity
will be observed. This will help the reader in understanding some of the issues
discussed in chapter 5. The first language (Lo) has only the parallel construct and
local non-determinism. The second language (L;) introduces channel communica-
tion, while global non-determinism is introduced in the language L,. The language
L3 models real languages with assignment and CSP like channels.

In [22] the denotational and operational semantics for imperative languages is
developed in an incremental fashion. Initially, a language with only parallelism but
no communication or synchronization is considered. To this language, communica-
tions and synchronization are added and the semantics re-developed. This identifies
the necessary features in a model to support various constructs. We have culled
only.the operational semantics part as it is the focus of this thesis. The operational
semantics is based on transition systems a la Plotkin [73] with evolution represented
by ‘—’ and the rules written in the rewrite style with a horizontal line separating the
antecedent and the consequent. The interleaving model of parallelism is used [22].
Interleaving can be seen as scheduling parallel components on a single processor.
The interleaving model also assumes that a basic statement (action) is the unit of
schedulability.

3.3.1 Language L,

The structure of Ly, a simple language without channel communication or global
non-determinism, is

su=a]sl;s2|slUs2]sl| s2.
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In other words, a statement s can be recursively defined as one of

- An elementary action denoted by “a”

Sequential composition (;) of statements

Local non-determinism (U) (as opposed to controllable choice) of statements

Concurrent execution (||) of statements

Towards an operational semantics, let A represent the set of all elementary ac-
tions. Let A" represent the set of all finite strings over A and A“ represent the
set of all strings of countably infinite length over A. Let L represent an error (e-g-,
incomplete information or non-termination with no further elementary action). The
set of streams over A, A* is defined to be A* U A¥ U A* -{ L }. A* is set of all finite
words, infinite words and finite words followed by L. The set of streams forms the
basis of the configuration for the operational semantics. Let € represent the empty
stream. Let - indicates concatenation in the semantic domain. Let L -a be the same
as 1.

A configuration for the language Ly is a pair <s,w> where s is a statement and
w an element of A*. ‘w’ denotes all the actions performed until the execution of
the statement s. Assume, for allw € A¥ U A*- { L } that <s,w> — w holds. This
axiom states that an infinite or a terminated computation cannot be extended.

Towards a semantics for Ly, define the following axioms for all w € A*.

<a,w> — w-a
<sl U s2,w> — <sl,w> | <s2,w>

<sl,w> — <s',w’>
<sl;s2,w> — <s"s2,w’>
<sl||s2, w> — <s’||s2,w’>
<s2||sl, w> — <s2||s’,w’>

The first rule states that an elementary action extends the current stream. The
second rule states that any statement in a non-deterministic statment can be chosen.
Hence the possible observations is the union of either choice. The two rules defining
the parallel operator state that the scheduler decides which process to execute.
Using the above rules as inference rules, one can prove that <(al;a2)||b,w> —
<a2||b,w.al> by using the first | axiom and the concatenation axiom.
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3.3.2 The language L,

The language L, introduces synchronous communications. Let C be the set of
all communications and denote a typical element by c¢. Augment the alphabet A
from Ly to include C. For the purposes of synchronous communications, a bijection
on C is defined such that for every ¢ € C there is a € € C. Define € to be the
same as ¢. This bijection is to be interpreted as: ¢ can communicate only with €.
Synchronization (i.e., execution of ¢ and T simultaneously whose precise definition
is captured by the semantics) is represented by 7 (in the semantic domain) and is
considered to be an element of A. The introduction of communications requires a
more sophisticated interpretation of the parallel construct. It is also possible that
a statement may fail due to improper communication. Introduce a new symbol 6
different from .L and 7, to indicate failure due to communication. The set of streams
(over the new alphabet) is extended to A® U A* - §, where A* is defined as before.
The new term defines communication failure. Towards the semantics of L, define
the following as before: For all w € A¥ U A* - { §,L }, <s,w> — w, which states
that an infinite or a terminated computation cannot be further extended. The new
rules are described below.

The first rule is: for w € A* <c,w> — w-§ The above rule states that an
individual communication fails. That is, for a communication to succeed there
has to be a matching communication in a concurrent process. Synchronization
in a context is represented by <c;sl||c;s2,w> — <sl||s2, w-r >. The 7 represents
successful synchronization. Note that we do not characterize the values exchanged in
the communication. Synchronization failure is similar to individual communication
and is represented by the following rule <c||d,w> — w-6 if d # €

3.3.3 The language L,

In the language L, global non-determinacy is introduced and denoted by “4”.
The main feature of global non-determinacy is that the moment of choice is pre-
served. For instance, s1;(s2+s3) is not the same as (s1;s2) + (s1;83). The transition
rules new to L, are as follows.
<atcw> — weaand  <(atc)|[E,w> — wer

The rules state that if there is a choice between an action and communication, the
action is taken unless a matching communication is available. However if a matching
communication is available, the action must not be taken and the communication
action must be taken. This prevents a process from communication failure. This
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was not required in the case of local non-determinism where a the choice made in
one process is independent of the other processes.

3.3.4 The language L;

The final language we discuss is L which has assignment, and communication.
Communication involves exchange of values as in CSP [44]. To present the syntax
of L3, new syntactic categories namely, variables(Var) and expressions (including
boolean expressions) are assumed. The syntax for Ls has statements s whxch have
one of the following form

- Assignment of the form v :=e

- Boolean expression (b)

- Read from channel c?v

- Write to channel cle

- Sequencing s1;s2

- Global Nondeterminism (or controllable choice) (+)

- Parallel (]|)

The reason for having a boolean expression as a statement is that it allows the
characterization of certain statements like if, while etc. For example, if b then sl
else 52 is equivalent to (b;s1)+(-b;s2)

The fundamental feature of the semantics of L is the notion of state. The set
of states is the function space I and is defined to be Var — V, where Var denotes
the set of variables and V the set of values. We use o, o’ etc. to denote elements of
L. Notice that % plays the role of A in the previous languages.

For the operational semantics, define the set of streams as * U X% U X*.
{6, L}. For an expression e, let [ el (o) represent the value of e in state o. Let
o(vl(o)/v) stand for a new function derived from & such that it is different from
o only for the argument v (a variable) in which case it returns vl. Most of the
transition rules will be the same as before and are not reproduced. The transition
rules which are relevant deal with assignment and communication. The two rules
- described below state that direct assignment or assignment from channel alters the
state as to reflect the new value attained by the variable involved in the assignment,.
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<vi=e,o > — o( [ el (0)/v)  <cMWjcle,o > — o IL el (0)/v)

Discussion

To summarize, the structure of the semantics has to be enhanced with the addi-
tion of syntactic terms. However, the notion of streams is sufficient to characterize
meaning given interleaving semantics. Note that the meaning of a program in all the
cases will be the set of all possible individual meanings. In other words, the meaning
of a program will be set of all possible streams over the appropriate alphabet.

Having discussed some geperal styles, we review some of the application of these
techniques to develop semantics for programming languages is reproduced. We dis-
cuss the semantics of an Occam-like language designed for distributed computation,
POOL a parallel object oriented language and Esterel, a real-time language.

3.4 Real-Time Semantics for an Occam like Language

Huizing et. al. [45] present a fully abstract (or syntax directed) semantics for
real-time distributed systems that is an extension of [55] which they claim was not
fully abstract. The principal concern of fully abstract semantics is that the meaning
of a construct should be composed of the meaning of the sub-terms of the construct.

The semantics of a program is the set of all histories (i.e., a sequence of infor-
mation such as messages sent and received, processes waiting to synchronize with
others etc.) that can be elicited by the environment in which the program executes.
To simplify the semantic model, they assume that time is discrete, every elementary
action (assignment, communication, passing a guard) takes a unit time and in a
parallel statement all processes start immediately. They also assume the maximal
parallelism model where the view is that no unnecessary delays are incurred at any
time. This assumption implies that no two processes wait for each other as each
process has its own processor and communication is treated as an elementary action
(i.e., takes unit time.)

Operational semantics is based on labeled transition relations that transform
configurations consisting of pairs of statements and states. A state is a function
which yields values for the variables defined in the system. The meaning of executing
a statement P in state o is defined by a sequence of transformations into a null
statment with the final state being o’. Note that such a definition is meaningful as
P can be compound statement.
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All transitions are labeled by L which consists of the set of communications that
take place during the step denoted by L°¢ and the number of local actions (can be
considered to be time steps) that are performed during that step denoted by L",
ie, L = (L% L"). For example, consider the assignment statement x:= e, where
X is a variable and e an expression which is assignable to x. Let o be a state
function. The meaning of the assignment statement executed in state o can be
expressed as (x:=e,d) — (0, (o(e)/x)) with label (§,1). The label indicates that the
assignment was a local (an elementary) action (taking unit time) and involved no
communication (indicated by @). Notice that (a(e)/x) is a new function with one
argument such that if the argument is x the value returned is e otherwise it is the
value o(argument).

A more interesting example deals with the parallel construct. Assume that
processes P1 and P2 can be composed over (or share) a set of channels (say A.)
Denote this composition by P1 |5 P2. Also assume that processes which can be
composed do not share any variables. Denote the restriction of channel labels by
L;°\A and L,°\A. The parallel axiom can now be stated as follows.

Li°\A = L,°\A, (P1,0)3(P1',0}), (P2,0)3(P2,0l)
(P1 ||a P2, ) (P’ |5 P2, o)

where L = (max(L,", Ly™), L;° U L;°) and ¢’ the new state is defined as

o1(z) if x element of var(P1)
o'(z) = { oj(x) if x element of var(P2)
o(z) otherwise

The first condition of the antecedent, requires the communications involved in
the parallel construct (i.e. over the set A) to be synchronized. That is, the same
set of communications must occur during the parallel execution. The rest of the
antecedent is to be interpreted as if P1 in state ¢ is transformed to P1’ in state o}
and P2 in state ¢ is transformed to P2' in state o}, the parallel composition of P1
and P2 will yield a state o’ as defined. The consequent states that the execution of
composition of P1 and P2 over A can be rewritten to the execution of composition of
P1’ and P2’ over A in a new state. The transition is labeled L. The time component
of L indicates that the time to complete the rewrite of the parallel composition
is the maximum of the time taken by the individual processes, while the channel
component of L denotes the union of the individual channels.

The main concern in [45] is the fully abstractness of the semantics. From an
operational view point, the presentation is no different from the Plotkin style. The
main drawback of this technique is that simplifying assumptions regarding the time
it takes to statements involving communications are made.
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3.5 Operational Semantics of POOL

POOL [5] is a parallel object oriented language. For an example of a typical
objected oriented language see [33]. POOL’s operational semantics is also based
on a transition system. The semantics of a program is presented in terms of the
transitions it can make from one configuration to another. A configuration consists
of the statement(s) to be executed and the state in which it is to be executed in.
Towards a definition of configuration, define LStat, for labeled statements, as a set
of 2-tuples <a,s> denoting that object o can execute statement s, ¥ the set of
states, Type a function which assigns a class (similar to type) to an object and U
the set of definitions of classes (similar to abstract types) and methods (analogous
to subprograms). Let Pga(X) denote the set of finite sub-sets of the set X. Define
Conf, the set of configurations, to be Pgo(LStat) x £ x Type x U. Let o be a typical
element of ¥, 7 a typica: element of Type and u a typical element of U.

The transition rules form a relation on Confi.e., are a subset of Conf x Conf.
Based on the definition of Conf, the axioms satisfied by the various syntactic con-
structs can be specified. The axiom defining the conditional is presented below. Let
X be a subset of Conf, a an object which is to execute the conditional, § a boolean
expression, sl and s2 statements. Also, let err represent an erroneous condition.
< XU {< @, if B then sl else s2 >}, 0,7, u> —

<XU{<a,sl>},o,r,u> if B = true
<XU{<a,s2>},0,7,u> if f = false
err otherwise
The following rule describes the first action taken to effect the sending of a
message to an object represented by the expression ‘e’ requesting an execution of
the specified method m with parameters ‘param’. The first action is to evaluate ‘e’
to identify the object (say €’) to which the message is to be sent.

<XU{<a,e>}oruw —-<XU{<qe>}, o7, u>

< X U {< @, ¢! m(param)>}, 0,7, u> — < X' U {< @, €’! m(param)>}, ¢/,7’, u>

The rules to actually send/receive are more complex and are not discussed here.
The reader is referred to [5] for further details.

The semantics as defined is cumbersome, as the type and the set of definitions are
present in all transition rules, even though only a few constructs (like creating a new
object/method) will alter these. These constructs are predominantly static. It would
have been more elegant to define a compilation phase capturing such information
instead of maintaining it in the operational semantics.
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the subset of Py can be written in different ways (i.e. X U {< a,5>}, for different
a’s and s with the statements to be executed by other objects represented by X),
all the statments in the subset can be executed in parallel. Abstractly, there is no
difference in the semantic style described here and the Plotkin style. Our brief look
at it only shows that transition systems can also be used to describe object oriented
languages.

3.6 ESTEREL Semantics

In this section we examine closely the semantics of ESTEREL [10]. The syntax
of the language was outlined in section 2.5. The language designers have proposed
the following three semantics for ESTEREL

e Static semantics to check that programs do not have any temporal paradoxes.

e Behavioral semantics (which are a kind of denotational semantics) to defines
completely the temporal behavior but does not worry about effectiveness.

e Computational semantics (or operational semantics) which is more effective
than behavioral semantics defining how the execution of a program proceeds.

All three semantics are based on structural conditional rewrite rules defining a
transition system. But unlike the other transition systems, the rules are not defined
as to form a relation over a set of configurations. That is, it is not essential that
the entities on the left and the right of — which are enclosed within ‘< >’ are
necessarily from the same set.

The transition rules defining the static semantics have the form: <i,D> o
<G,D’>, where 1 is an instruction (statement), D is a set of signals which determines
the execution of i, b a boolean condition indicating whether i may terminate, L the
set of exits (tag labels) that i may execute, G is a dependency graph of signals
represented as a set of pairs (s1,s2) implying that signal s2 depends on signal sl
and D’ the set of signals after executing i. Based on the above definition a program
is said to be statically correct, if an only if there exists a transition of the form
<P, > bl <G,D’>, were G is acyclic. In other words there is no cyclic dependency
of signals.

The behavioral semantics defines the history transformation associated with a
program. The general idea is to consider the meaning of a program as a transfor-

mation under an input event set to a new program, emitting signals in the process.
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The transition rules related to the behavioral semantics have the following form.
<i, o, E> b <i’, o’, E’>, where i is an instruction, ¢ is a memory state defining
the current association of values with variables, E is the input event, b and L as in
the static case, i’ is the reconfiguration of i (i.e., the new instruction to execute), o’
the new memory state and E’ the event output by i.

As the behavioral semantics is not necessarily ‘effective’, the behavioral seman-
tics are refined (using the static semantics) to yield an interpretation system (or
computational semantics). The basic structure of the transition rules for the com-
putational semantics is identical to the behavioral semantics. It is augmented with
the graph G (introduced in the static semantics) and an integer n. The integer n
indicates the current level of execution with respect to the graph G. The use of G
and n will become clear from the example described below.

We present the static, behavioral and computational semantics for the upto state-
ment in order. Recall from chapter 2 that the upto instruction defines the termina-
tion condition for a body in terms of when signals occur. For example, do B upto
S(X) executes B. Whenever the signal S occurs the execution of the upto block is
terminated and the value associated with the signal is stored in X and the execution
continues. The transition rules are:

<i, Du{s}> ¥ <G,D’>
<do i upto s(x),D> "2t <G,D’>
s€E E(s)=v
<do i upto s(x),0,E> "5 <nulle [x — v],0 >
level(s) < n,s € E, E(s) = v

<do i upto s(x),0,E> tredC <nullofx — v1),0 >

The static semantics of ‘upto’ requires augmentation of the set of signals as
specified by the body. The behavioral semantics states that if a signal is present,
the associated value is bound to the variable and the upto statement terminates with
no signal generation. The computational semantics is a refinement of the behavioral
semantics and requires that if s is available at a level less than n, it will be handled
within n ‘steps’ and the value will be bound to x.

Discussion

The advantage of using three types of semantics is that there is a separation
of concerns. It enables one to choose a subset that is relevant to one’s need. The
compiler writer may use the static semantics to perform compile time checks, while
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the runtime system designer may use the computational semantics. However the
presence of multiple semantics could cause difficulty in generating a uniform picture.
Care must be taken so that the three semantics when combined do not lead to
paradoxes.

In our opinion, the approach of defining semantics which describes the com-
putational semantics and derive the behavioral semantics by defining appropriate
equivalences appears to be better as there is only one semantics on which the rest
of the work is built.

3.7 Summary

While, each of the techniques described above has its advantages, none of the
operational styles explicitly support typing concepts like polymorphism and abstract
data types. Another important drawback is that none of the semantic techniques
distinguish distributed programs from concurrent programs.

In thesis we remedy both these shortcomings. The semantics for ARL is based on
the concept of dynamic algebras [36]. A brief description of dynamic algebra and our
justification for this choice is presented chapter 5. Following the introduction, the
semantics of ARL is explained in detail. Before doing so, we present the syntactic
aspects of the language in the next chapter.



CHAPTER. 4
LANGUAGE: SYNTAX

Having discussed our goals and reviewed the literature to identify the various
options available to a language designer, we explain in detail the syntactic elements
of our language ARL (A Real-time Language.) Recall that the intended domain
of application of ARL is distributed real-time system prototyping. Therefore, the
emphasis is on ease of programming. In this chapter the syntax for all the language
constructs is explained with the meaning being explained with an appeal to intuition.
The precise or formal meaning of these consiructs is explained in chapter 5.

Overview

In general, an ARL program consists of a scl of modules or compilation units,
clock units, type units, event type units and interconnections between them. Each
module will usually contain local type definitions, subprograms, local event types
declaration, event handlers and timing requirements. Clock units contain only clock
definitions, while type units contain user defined types and event units contain event
type definitions.

In this chapter, the facilitics for types and data structure definition are explained
first. Being a distributed real-time language, communication using events, time
using logical clocks and timing aspects of the Janguage follow the exposition on
types. The description of ecvent gencration and handling precedes that of subprogram
definition and call, as the effecls of the handling of events on subprogram calls has
to be understood. Definition of the various types of subprograms and handling
of subprogram calls will be discussed after the discussion on events and temporal
specifications. Finally, the structuring mechanism of modules is described. We
consider both the semicolon and the end of line as a statement terminator. Hence
the semicolon can be omitted when a statement, is ended with a newline. This is only
to ease development of programs. In this chapter most of the syntax is explained
using examples and skeletal BNI® rules, ‘T'he lexical elements (terminal clements) in

0l
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the grammar are represented in the bold face. Zero or more elements are captured
within [ ], while | represents options for the given non-terminal. Also we assume
that id represents an identifier. The BNF grammar for all the principal elements of
the Janguage can be found in appendix A.

4.1 Typesin ARL

As in many programming languages, assigning a type to objects is central to data
security in ARL. Two common techniques of assigning types to objects are 1) explicit
typing of objects by the programmer and 2) system inferring a type (or a set of types)
from the usage of an object. The first scheme is used in programming languages like

- Pascal, Ada etc., while the second scheme is used in programming languages like
Miranda. In a language whose primary field of use is rapid prototyping, terseness
and flexibility for exploratory programming are key issues. In such situations it is
unreasonable to require the programmer to specify types for all objects. But on the
other hand the programmer should also be able to specify the type if so desired.
Hence the language supports both the inferred and explicit techniques for assigning
types to objects.

4.1.1 Type Schemes

In the current version of the language a type scheme derived from the Miranda
[88] type scheme is supported. However any other type scheme more powerful than
this that can be implemented and is consistent with our goals can be used. For
a list of possible type schemes see [15], where a number of possible type schemes
are described. Also [29] discuss type inferencing in the presence of sub-types. The
usefulness of these type schemes has yet to be ascertained and is not supported in
ARL. Note that a selection from a wide selection can be made as ARL is to be used
primarily as a prototyping language. So a slight sacrifice in runtime efficiency can be
made for a gain in expressiveness of the language. We discuss a particular extension
to the Miranda style type scheme which is supported by ARL. The derived scheme
incorporates dynamic type checking along with static type checking.

One of the main drawbacks of Miranda like type schemes is that the type assign-
ment has to be successful at compile time. Runtime checks for type correctness are
needed only for explicitly defined variant types. Such a type scheme is called a static
scheme. Heterogeneous types, like a sequence of either integers or boolean cannot be
assigned to objects unless a variant type is explicitly defined and pattern matching
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used to identify the sub-cases. Consider the sequence [ 2, true, 3]. A homogeneous
type system cannot assign a type it and indicates a type error. In order to help the
type system the user has to define a variant record as shown below.

Hetero :: Integerfield integer | Boolean field boolean

[ (Integerfield 2), (Booleanfield true), (Integer-field 3)] is an instance of Hetero.
The definition of variant types requires additional effort on the part of the program-
mer and is not in keeping with our goal of supporting prototyping. So, we select a
particular extension to the Miranda type scheme.

[85] describes a type scheme where type inferencing in the presence of heteroge-
neous types is supported. It retains the advantage of static typing of not having to
use runtime checks to verify type correctness. Only the operations on objects which
could not be typed statically require runtime checks. This strategy is a middle
ground between the approaches taken by Lisp where objects are not statically typed
and all type checking is done at run-time and Miranda where all type inferencing
and checking is done at compile time.

Before explaining the type inferencing algorithm used by Miranda and the tech-
nique to support incomplete types, the concept and use of polymorphic types is
discussed.

4.1.1.1 Polymorphism

One of the main contributions of languages like Miranda to functional program-
ming is the concept of parametric polymorphism or specifically the concept of a most
general type. When polymorphism is coupled with type inferencing, the language
can appear to be untyped without losing the advantages of typed programs. The
implementation assigns the most general type possible to all objects and instantiates
routines for all the appropriate types. This is an improvement over generic types
provided by Ada. The programmer need not declare an object to be generic as the
system treats an object to be generic if its inferred type is polymorphic. It is also
possible to explicitly declare a polymorphic type or function.

In the language, one can indicate polymorphic types using the symbol *, ** etc.
For example, ‘Tree * :: NILT | NODE * Tree Tree’, defines a polymorphic binary tree
called Tree. The *’ after NODE indicates that the data item associated with NODE
is polymorphic. One can derive a binary tree of integers, or a tree of characters from
this definition. The above notation will become clear in a later section. Functions

operating on polymorphic types are said to be polymorphic functions.
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4.1.1.2 Type Inferencing

Described below is an inferencing procedure for expressions involving only com-
plete types based on the Damas Milner type scheme for functional languages [19].
This procedure has been extended in [85] to support inferencing of heterogeneous
types. The inferencing procedure assumes that a function is type correct unless it
can prove otherwise. It starts out with a set of assumptions and a set of axioms

relating the types of syntactic terms. These axioms are written as antecedent fol-

lowed by the consequent. For example, Afe:o where A I- e:o is to
AF (letx:=e): o

be interpreted as: the assignment of type o to e is consistent with assumptions A.

The axiom is to be read as ‘if the typing of e as o is consistent with A, the type
assignment of o to (let x := e), which introduces a new variable x and initializes it
to e, is also consistent with A.’

Using similar rules, the type of the function can be inferred. The main work
horse in type inferencing is unification. The technique is explained using an example.
Define a higher order looping function ‘until’ in Ada-like syntax as

function until (final, trans, state) is
begin
if final(state)
then return state
else
until( final, trans, (trans state))
end

-

The above function can be written in the equational form as follows

until final trans state = state, final state
= until final trans (trans state), otherwise

The type assignment procedure starts out by assigning a type variable to the
arguments and to the result of the function. A type variable represents the set of
all possible types. The type assignment to arguments and the result fixes the type
of the function. For the sake of argument, let final be of type «, trans of type B,
state of type 7 and the result of type §. The type of the value returned by ‘until’ is
of the same type as ‘state’ viz., v as indicated by the first equation, thus unifying
v and é. The right hand side of the first equation requires final to return a boolean
type with an argument of type 7. Therefore « is unified to (y — boolean). The
second equation requires the type of (trans state) to be identical to state. Unification
requires f3 to be identical to y — +. No other type inference can be made using the
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above equations. Therefore the function until is typed (y — boolean) — (y — «)
— 4 — 7. As there is a type variable in the final type assignment, the function
is polymorphic. This is because the exact nature of the state is irrelevant to the
definition of until. We replace the type variables by *,** etc. and the type of until
is represented as (* — boolean) — (* — *) — * — *

A similar procedure when applied to the function foldr, which is defined below,
will assign the type
(* = ** — **) 5 **  [¥] — **. Here the function is polymorphic in two variables
denoted by * and **

foldropr =f
where
f[]=r
f(axx) = op a (f x)

Based on foldr, define a function concat = foldr (++) [ ]. Assume, type of (++)
to be [¥] — [*] = [*]. Unification of the types assigned to ++ and foldr yields
the type of concat as [[*¥]] — [*], which is a polymorphic in a single variable. Note
that concat is a function which concatenates a sequence of sequences into a single
sequence,

4.1.1.3 Heterogeneous Types

Having introduced the type scheme supported by Miranda, we elaborate on
the work described in [85]. Recall that the reason for wanting heterogeneous, or
incomplete, types, is to support mixed types without having to define variant types.
A plausible technique to type heterogeneous structures is to consider the union type
of all the components. The advantage of such a scheme is that certain errors can
be detected. For example, if an object can either be an integer or a character, an
operation requiring a boolean type is inappropriate on the object. However, this
solution does not handle all expressions. For example, no finite number of unions can
type the expression (list = cons(1,(map(Ax.[x])list))), which is the infinite sequence
(1,{1],[[1]] ... The type of this infinite sequence is [ Integer, [Integer], [[Integer]] ...
]. These infinite sequences can arise in our language as we support lazy evaluation.
The programmer can specify the infinite list which will be unfolded at execution time
only as much as necessary. But the type system is required to assign a consistent
type to these objects as there is no a-priori bound on the number of unfoldings. As

using unions does not solve the entire problem, a single universal sum type, denoted
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by Q is used. This simplifies the implementation as the permissible sum of types
need not be remembered.

Axioms to infer types with the ability to detect places that require dynamic
checks along with static type checking are developed in [85]. We do not discuss all
the axioms, but present an interesting example. The key feature is the definition
of an approximation relation C, which indicates a hierarchy of information. For
example, [2] C [int] implies that Q conveys less information than integer.

Let C denote a set of constraints and A a set of assumptions. Let C|-C’ denote
that any model for C is also a model for C’ or in other words C’ is consistent with
C. The axiom which governs function application is explained below. Let C,Ate:r
mean that using constraints C and assumptions A, the type for the expression ‘e’
can be inferred to be ‘7’

CAFetmT’ §CAF 7’8 ClH(1" > 1)C 7’

Axiom 4.1
xom CAF efe): T

The above axiom states that if e is typed as 7’, e’ is typed as 7” and given
constraints C and that (77 — 7) £ 7’ is consistent with C, the expression e(e’) (the
result of applying e to ¢’) can be assigned type 7.

For the sake of comparison, the inference rule without incomplete types is

Alte T = 7& Al e
Alele): T

The static type scheme does not have any consistency assumptions as it does not
accept any unexpected type. Hence there is no notion of approximation to be
represented by a partial order. The algorithm for heterogeneous type inferencing
uses a number of similar axioms and is composed of three distinct phases. We
present only an outline here and do not discuss the details. The reader is referred
to [85) for more details.

o Find a most general typing for the expression along with a set of verification
conditions which must hold for typing to be correct.

o Check for consistency.

¢ Find a most general solution in the form of a substitution and apply it to the
set of assumptions and the general type found.

Having discussed two related type schemes, we present constructs to declare
types in ARL.
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4.1.2 Type Definition & Operations

Even though type inferencing is supported, the user needs to be encouraged
to specify the type when possible. The use of types leads to better readability of
programs and can help detect errors. So a number of type definition techniques are
supported. To facilitate type definition, the language makes available the predefined
types: integer, real, boolean and character.

The user can define other types using these predefined types or any of the already
declared types. The kinds of types supported include tuples, constructors, sequences
and abstract data types. Tuples are simple records while constructors can be used to
define variant records or enumerated types. Sequences are similar to arrays and are
usually unconstrained. Abstract data types permit the specification of types without
revealing its internal details. The general form of a type declaration in BNF is

type-def :: id :: definition
definition :: tuple_def | constructor_def | sequence_def

4.1.2.1 Tuples

A tuple, also known as a record or a product type, is a finite ordered set of
elements with each element belonging to an already declared type. That is, the
domain of the defined type is the cartesian product of the individual domains. Two
techniques to define tuple types are supported. In the first technique, the individual
fields are not explicitly named. Pattern matching is used to identify the fields of the
type. For example name_rec :: (string,integer) defines name_rec as a 2-tuple type
with the first field of type string and the second of type integer. Pattern matching
on tuples is specified by a sequence of identifiers within parenthesis. For example,
if (x,y) is an object of type name_rec, the type of x is inferred/required to be string
and that of y integer.

The language does not provide predefined extractor functions, as it not possible
to write a general function which can operate on a general tuple type. The problem
arises as one does not know the number of fields in a tuple. However for a tuple of
known arity (number of fields), polymorphic extract functions can be defined. For
instance, extractor functions of a three tuple can be defined as:

firstfield :: (**¥* ***) — *
secondfield :: (*,*¥* ¥*k¥) — **
third field :: (*¥* ¥*¥) — ***
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An alternate definition of a tuple is to identify each field by a name and specify
the type. For example, name._rec can also be defined as

type name._rec is record
name : string;
soc.no : integer;
end record;

In this case, the names of the field can be used as extractor functions. For
example, if ‘ob’ is an object of type ‘name_rec’, ‘ob.name’ is of type string and
returns the string field of ‘ob’, while ‘ob.soc.no’ returns the integer field. The BNF
grammar for both the tuple definition style is

tuple.def :: id :: (id[,id])

tuple.def :: type id is record fields [ fields ] end record ;

fields :: id bf : id terminator

4.1.2.2 Constructors

Constructors are tags which can be used to define enumerated types and variant
records (union types). A constructor based type consists of a series of elements with
each element composed of two fields. The first field is a distinct name called the
name of the constructor, while the second is a sequence of type names. The name
fields of the constructor are to be treated as the tag values for a variant record and
have to be distinct for the purposes of type inferencing. A collection of constructor
names without any subsequent type field defines an enumerated type. Examples of
types defined using constructors are:

tree :: NILT | NODE integer tree tree
working_Day :: Mon | Tue | Wed | Thu | Fri

In the above examples, working_day is an enumerated type, while tree is a variant
record. In the type tree, if the tag value is NILT the tree has no data field, while a
tag value of NODE indicates that the value field is a 3 tuple consisting of an integer
and two trees. Note that ARL (like Miranda) requires the name of the constructor
starts with a capital letter. This information is used in type inferencing.

Pattern matching has to be used to identify the variant case. If an object x equals
NILT, the type of x is Tree and its tag is NILT and has no other field, while if x
equals (NODE n y z), x is of type tree with tag NODE and a value field consisting
of an integer n and two subtrees y and z. Type definitions using constructors is
governed by the following BNF formula.
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constructor_def :: id :: constructor [ | constructor ]
constructor :: cap-d [ id ]

The effect of constructors can also be achieved by explicitly defining a variant
record in the Ada style. For example, the type Tree declared above can be defined
in Ada as

type tag is (NILT, NODE)
type tree(typ : tag) is record

case typ is
when NILT => nulj;
when NODE =>

value : integer;
left,right : Tree;
end case;
end record;

The BNF for variant record case is

constructor-def :: type id (id : id ) is record fields [ fields ] case_opt
end record

case_opt :: case id is casefield [ casefield ] end case

case field :: when id => fields [ fields ]

While the first style results is a succinct definition, it forces one to use pattern
matching to identify the individual fields of a variable. In the second case one can
use the field names like ‘left’ etc., to identify a specific field.

4.1.2.3 Sequences

Sequences are unbounded arrays with all elements of the sequence having the
same type. Mathematically speaking, sequences are well ordered multisets. As
usual, two schemes to define sequences are provided. The first scheme borrowed
from Miranda while the second scheme is from Ada.

In Miranda, ‘[’ ‘]’ are used to denote sequences. For example, string :: [char]
defines a type string as a sequence of characters. The lower index is implicitly
assumed to be zero and there is no limit on the upper index. Multidimensional
arrays are constructed by using nested sequences. For example, multi_d ::[[integer])
defines a multi-dimensional array (sequences of sequences) of integers. [[1,2][3,4,5][6]]
is an instance of multi.d. Notice, that is possible to have a multi-dimensional array
with each row (or columns) a having different size. The first of the above examples
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of ‘string’ can be defined in the Ada style as:
type string is array (<natural>)

However, we retain the restrictions specified by Ada, and require an object of the
above type to have the bounds specified during declaration. This in our opinion will
result in a more efficient implementation and should be use when efficiency is desired.
However, this is less flexible than sequences in Miranda. It is also not possible to
have rows (columns) of different sizes. That declaration of multidimensional arrays
is a straight forward extension to the above. The BNF grammar for sequences is

sequence.def :: id [ id ]
type id is array ( range )

The various operations that can be performed on sequences are defined. Patterns
representing sequences are (a:x) where a is the first element in the sequence and x
is the rest of the sequence, which could be null. This is useful in representing non-
null sequences as parameters to subprograms. *:’ can be used more than once in a
pattern. a:b:c:x indicates a list of at least three elements with the first aliased to
a, the second aliased to b and the third aliased to c. The *’ operator can also be
used to add an element to the head of a sequence. For example, return 1:[234]
returns the sequence [ 1 2 3 4 ]. Concatenation of two sequences is defined by the
‘++’ operator. For example, [123 ] ++[34]=[12334]

A sequence subtract operator —— is also defined. It converts the arguments to
multi-sets and performs a set difference. The ordering in the resultant sequence is
the ordering induced by the first sequence. For example, [1 23] —— [2 3 5] = [1] and
(1234524] ——[325]=[1424]. The — operator can formally be defined as

x——[]=x
x —— (b:y) = (remove b x) ——y
remove b [} =[]
remove b (a:x) = x, a=b
= a:(remove b x), otherwise

An arithmetic series (a sequence of integers) can be abbreviated by *..". [a .. b]
represents a list of numbers from a to b inclusive with an increment of 1 (the default
increment.) [ a,b .. ¢ ] is an arithmetic series with first number a, second number b
and the last member not exceeding c if b-a is positive and not less than c if b-a is
negative. Infinite sequences are represented by omitting the last element. [1 ..] is
the sequence of positive integers, while [2, 4, 6, .. ] is a sequence of even integers.

Z-F (Zermelo-Fraenkel) expressions generate new sequences from existing se-
quences. A Z-F expression consists of an expression and a sequence of qualifiers. A
qualifier is of the form ‘pattern <- sequence of expressions.’” A qualifier generates a



61

list of values to be passed to the expression. The result of evaluating the expression
is added to the sequence. For example, factorsn =[r|r<-{1..ndiv2];nmodr
= 0 ] defines a sequence containing the factors of the number n. The Z-F expression
used above is to be interpreted as: for every r in the sequence [1 .. ndiv2],ifn
mod r equals G add it to the resulting sequence. In the above example, ‘r <- [1 .. n
div 2]; n mod r’ is the qualifier and r is the expression. Also, r to the left of the <-
is the pattern and [ 1 .. n div 2] and n mod r = 0 the sequence of expressions.

Z-F expressions can be used to construct lists from recurrence relations by per-
mitting the variable(s) on the left hand side of the <- in the qualifiers. [ x | x <-
a , (f x)] is the infinite sequence [a, f a, f(f a) ... ] The Z-F expression is to be
interpreted as select x from a and f(x) and add it to the sequence.

The use of multiple generators is to be interpreted like nested loops. For example
the valueof [fxy | x,y <-[12]]is[f11,f12,f21,f22] An equivalent Ada like
code fragment is

seq := [ ]
for xin 1 .. 2 loop
foryin 1.2 loop
seq := seq ++ [f(x y)]
end loop
end loop
return seq

This definition of nesting is not satisfactory for infinite sets, as certain values
may never be reached in an enumeration. To provide a satisfactory nesting rule, the
Cantor diagonalization algorithm is used [26]. The scoping rules in the new looping
construct are the same as that in the original loop. To denote the diagonalization
‘//’ is used instead of |. For example:
fxy//xy<-[1.3]]=[f11,f12,f21,f13,f22,f31,f23,f32,f33]

Using Z-F expressions and infinite integer sequences other infinite sequences can
be constructed. Z-F expressions are important not only for their terseness but also
because their proper usage can eliminate the use of recursion in functional programs.
For example, the cartesian product of two lists x and y can be specified as

cart-product x y = [(a ,b) | a <- x, b <-y ].
The general form of a Z-F expression is governed by the following BNF rules

zf_expr :: [ expr iterator qualifier [ qualifier ] ]
i [ generator | qualifier [ qualifier ] ]

iterator :: | | //

generator :: pattern <- expr [, expr |

qualifier :: expr | generator
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4.1.2.4 Algebraic data types

The usefulness of algebraic or abstract data types is a well studied topic and
we do not discuss their advantages [38, 100]. Abstract data types allow the user
to define a type together with some operations on it without exposing the internal
details of the type. We use the universal example of a stack as an example of abstract
data types.

abstype stack *

with
new-stack :: stack *
is_.empty :: stack * -> boolean
pop :: stack * -> stack *
top :: stack * -> *
push :: stack * -> * -> stack *

implement
stack * == [*]
new.stack =[]
pop (a:x) = x
top (a:x) = a

push x a = (a:x)

The keyword abstype names the type being described, while with introduces
the operations on objects of the defined type. All definitions following the im-
plement are hidden from the users of the abstract type. A ‘==’ statement after
implement defines the concrete type. In the above example the stack is represented
as a sequence. The operators are then defined on the concrete type.

One could also define an abstract data type in terms of the properties it satisfies
and operations to ensure the adherence to the properties. Once again, our example
is drawn from Miranda. Define a type ‘rational’, the rational numbers so that they
are always represented in their lowest terms. A constructor RATIO is defined which
has two integer fields. The first integer represents the numerator, while the second
field represents the denominator.

rational:: RATIO integer integer
RATIOp q
=> RATIO (-p) (-q), q <0
=>RATIOO01,(p=0) & (q~=1)
=> RATIO (p/h) (q/h), (p ~=0) & (h > 1)
where
h = hef (abs p) q
hefab =hefba,a <b
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= hef (a mod b) b, 2 mod b>0
= b, otherwise

Such definitions are composed of the type definition (constructors in the above
example), followed by ‘rules’ about the definition. Note that these rules could in-
troduce local definitions using the where clause as shown above.

The BNF grammar for algebraic types is as follows. Towards it we define
string-of_stars to represent *, **, *** etc.

abstype :: abstype id [ poly ] with signature

abstype :: constructor.def [ law ] local_declaration

poly :: string_of stars

signature :: [absfunc] implement absdefin

absfunc :: id :: type_indication

absdefin :: subprogram._decl

type-indication :: id [ poly ]| type-indication -> id [ poly ]
law :: pattern => expr [, expr ]

local_declaration :: where [ declaration ]

This concludes the discussion of data types in the language. The complete BNF
grammar can be found in appendix A. In the next section, we discuss how time and
distribution can be specified in ARL.

4.2 A Concept of Time

In this section, we show how logical clocks are used to introduce a definition of
time. As discussed in chapter 1 we permit multiple clock definitions in order to be
able to denote distribution. Note that when we say denote distribution we do not
mean the specification of what goes where, nor do we mean relative remoteness.
The mapping of code onto processors or indication of relative remoteness is an issue
which is best left to an implementor [17]. The reasons for this are discussed in detail
in section 4.7.2. What we do mean by denoting distribution is that the meaning
of a program is indexed by the mapping of clocks to other syntactic issues. This is
elaborated further in section 5.8.

Having permitted the definition of multiple clocks, there needs to be constructs
which help maintain a global notion of time within certain error margins. In this
section we also show how to synchronize the various clock definitions.

It is essential to have a concept of time in order to be able to specify any real time
system be it hard real-time or soft real-time [82]. One way of characterizing time is
to do away with an absolute time frame and denote the progress of time by defining
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points where a relevant ‘state change’ occurs. The interval between consecutive
points can be assigned a metric to measure the elapsed time. But this by itself is
insufficient as it does not give a precise sense of time. It is impossible to guarantee
ezactly when relevant state changes occur in all executions. That is, one cannot
be sure that a change will occur exactly t units of time after another. An added
deficiency of this technique is that it does not permit the characterization of static
periods (finite/infinite) and does not have an absolute control flow independent
notion of time.

An alternate technique to use one of the time standards defined in [51]. [51]
classifies time into the following time standards: 1) Time based on astronomical
observations, 2) External Physical time like UTC, 3) Physical clock like an oscillator,
4) Internal Physical which approximates external physical time 5) Local time is the
time of the local physical clock in a distributed environment.

We introduce a slightly different concept of logical clock, i.e., a variable whose
value is updated at a fixed period. We do not define a mapping between a logical
clock and any of the standards outlined above. This is because we believe that
the mapping will depend on the application. This lack of mapping is not a serious
limitation as ARL is to used primarily for prototyping systems. In other words,
the only feature to incorporate time in the language is to use explicit defined logical
clock(s) and specify timing with respect to this/these logical clock(s). This technique
is used in ARL, as it results in a more precise definition of time than an event
based time definition. It also allows us to characterize static periods (periods of
no apparent change) denoted by the passage in time signified by an increase in the
value of the clock.

To model real systems and to simplify the semantic model, the language supports
only a discrete notion of time. We do not consider this a serious limitation as
programs generally do not use or depend on the denseness of time. The discreteness
also permits an implementation to directly map logical clock(s) to physical clock(s).

The necessary syntax to define discrete clocks is discussed. As time ‘changes
by itself’ and not due to any program dependent execution, we use what we call
an auto procedure. In general, an auto procedure is any ‘segment of code which
is executed periodically.” As the value associated with a clock is to be updated
periodically irrespective of what a program achieves clocks are a specific type of
auto procedures. Clock definitions come in two flavours. The first defines a single
clock, while the second defines an array of clocks. The use of the array definitions
will become clear when when the units of distribution is discussed in section 4.7.2.
The array definitions is only a syntactic convenience and the clocks are independent
except for clock synchronization. The BNF grammar for the definition of clocks is
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clock_def :: auto id param_spec_opt := id 4 expr init expr
param.specopt :: id | id mod-param

mod_param :: [ mod-seq ]

mod.seq :: id : expr .. expr [ , mod_seq]

An example of a clock definition is: auto id := id + expr init n where expr is
a positive, integer valued expression determining the increment of the clock and n
the initial value of the clock. The value domain of the clock id by itself is the set
{ n, n+expr, n+2*expr .. } well ordered by the natural < relation. An example
of an array definition is auto clksfindex: 1.. 10] := clks + f(index) init g(index).
It defines 10 clocks indexed by ‘index’ with initial values given by g(index) and
increment f(index).

While the meaning of the initialization field is obvious, the meaning of the ‘in-
crement’ field is not. It is reasonable to interpret the ‘increment’ field as a measure
- of either 1) the frequency or 2) as the resolution of the clock. This will be discussed
briefly in sub-section 4.2.2. However, the absolute frequency of increment or resolu-
tion of the clock is not defined by the language and is left to the implementation.

4.2.1 Distribution

In this section we show how the definition of time can be used to denote distri-
bution. It is reasonable to assume that each machine in a distributed environment
has a local sense of time. It is widely accepted that a single global sense of time is
not sufficient to characterize a distributed system. We assume that time at each site
is maintained by a local physical clock. A distributed system can be represented
by a program involving multiple clocks. Our technique of unifying the concept of
time and distribution is unique in the area of programming languages. Very few
languages have an absolute time frame in the language itself and none of these use
multiple time definitions to characterize distribution. This unification is especially
significant for prototyping systems, as it has enabled the introduction of multiple
concepts at the program level with a single syntactic entity. In other words, by
using a single concept of clocks, the programmer is able to specify both the notion
of time and distribution. The system specifier can use multiple auto functions, to
define a multi-clock and hence use an important aspect of distributed systems to
denote distribution.

We reiterate that by this we have not defined the units of distribution nor have
we discussed how distribution can be achieved. We have only said what in ARL char-
acterizes distribution. The potential choice in the unit of distribution is discussed
in section 4.7.2.
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The price to be paid for permitting multiple clocks is that clocks are no longer
monotonic. This is because a uniform notion of time is essential and the programmer
has to deal with clock synchronization. Also reading of a ‘remote’ clock is not
instantaneous and hence an interval notion of time is necessary. This is discussed
in detail in the next chapter on semantics.

4.2.2 Interpretation of Increment Field

As mentioned above, there are two possible interpretations to the increment field
in a clock namely, frequency or resolution. In the frequency interpretation, the incr
field represents a relative frequency of the clock, while in the resolution of the clock,
the incr field represents a relative resolution of the clock.

Towards the explanation of the frequency interpretation, assume the existence
of a uniformly varying and continuously updated clock T. Also assume that all
logical clocks defined in the program behave perfectly such that the time represented
by them is incremented at fixed intervals. Also assume that the clock values are
incremented by one. Consider two clocks c1 and ¢2 such that the incr field specified
for cl is k1 and for ¢2 is k2. The intuitive relationship between the speeds of the
clocks is defined more precisely as follows. Define o(C) to be the time elapsed with
respect to T for C to be incremented by 1. Using this definition, the relation between
cl cand ¢2 can be defined as: o(cl)/o(c2) is equal to k2/k1.

In other words, the above condition states that the actual rate of increment
of the clocks are in the same ratio as their specified increments. Consider the
following example. Let a clock cl have an increment of 2 and a clock ¢2 have an
increment of 5. In one time unit with respect to an appropriate clock, the clock
cl is incremented twice while clock c2 is incremented five times. Note that if the
frequency interpretation is adopted, all mapping of these logical clocks to physical
clocks must respect the relative speed requirement. For example, if clock cl has
twice the speed of clock c2, the physical clock corresponding to ¢l must have twice
the speed of the physical clock corresponding to c2.

In the resolution interpretation, the increment represents the actual time that
has elapsed before consecutive readings of the clock yields a non-zero value. Hence
the minimum non-zero time difference between two consecutive calls to the read
the time will be in proportion to the specified increment. Let Qx be the actual
resolution of clock X. The relation between cl and c2 is 1/, is equal to k1/k2.

For the purposes of the current language definition, we prefer the resolution
interpretation. This is because, we do not distinguish between absolute time (or
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calendar time) and time read by the clock. If different clocks were of different
frequencies, creation of an absolute time is essential. This unnecessarily complicates
an already complex issue and we recommend the resolution interpretation.

In summary, the increment field in a clock definition represents a relative resolu-
tion with respect to other clocks. We also assume that all clocks have the same ideal
frequency so that we need not differentiate between absolute time and logical time.
That is, ideally all the clocks in the system keep identical time, but with different
resolutions.

4.2.3 Clock Synchronization

Experience shows that all hardware clocks drift from their expected values. In
systems involving multiple clocks, there is a need to check the drift and keep the
clocks related to one another. In other words, the clocks must not be allowed to
drift too much from their expected values and must be synchronized with respect
to others in the system. [51] defines two levels of clock synchronization. The first is
internal synchronization which refers to the construction of an approximate global
time base among the ensemble of nodes of a distributed system. The other is
external synchronization which refers to the synchronization of the approximate
global time base with the external physical time, in order to generate an internal
physical time. Note that even clock synchronization does not guarantee a perfect
time base and there always will be some errors. Clock synchronization only keeps
these errors within certain bounds. In ARL, synchronization will refer to internal
synchronization as it does not define a physical time base.

The language must either define a default synchronization interval or must pro-
vide techniques to specify synchronization. [80, 51], to cite a few, discuss clock
synchronization algorithms. These algorithms are valid only under strict assump-
tions of knowing the clock drift rate, network delays etc. Availability of information
such as the network delay cannot be assumed by the language definition. Different
environments will dictate different delays, and it would be inappropriate for the
language to define a fixed synchronization interval. The synchronization of clocks
will also depend on the resolution and the accuracy of the physical clocks. Therefore
we define a construct to specify clock synchronization. The semantics will abstract
the meanings thus permitting the use of a class of synchronization algorithm.

Two classes of clock synchronization algorithms are supported by ARL. The
first is the synchronization of one clock with respect to another, while the second
synchronizes a set of clocks with respect to each other. We discuss them in order.
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The general form of the construct to specify the synchronization of one clock
with respect to another is

clock.sync :: auto id >> expression id := id.

Consider ‘auto ((timerl >> n) timer2 := timerl)’. It is an example of clock
synchronization whose functionality is to synchronize timer2 to timerl at every n
units of time with respect to timerl. The meaning of the statement can be informally
described as follows. The clock timerl sends its current value to timer2 every n
units of time as measured by timerl. Timer2 on receipt of the time from timerl will
change its time ‘based on the value received’. The reason for not having a direct
assignment is to allow for corrections due to message transfer etc. Depending on the
characterization of time, the value assigned will either be an integer or an interval.
The integer is only an approximate notion of time, while the interval represents the
error in the time associated with timerl as seen from timer2. The details of this is
discussed in section 5.3.3.

Note that in the above syntax only one clock is synchronized with respect to an-
other clock. It might be desireable to synchronize a set of clocks with respect to each
other. We call a scheme where a set of clocks are synchronized with respect to each
other as broadcast synchronization. In order to permit broadcast synchronization
as used in [51, 80], the above syntax is generalized. In broadcast synchronization,
when each clock detects that a specified interval has elapsed, it broadcasts its time
(local time) to other clocks involved in the synchronization. When a clock has re-
ceived sufficient information from other clocks, it re-adjusts its clock appropriately.
The details of such a scheme will depend on the actual algorithm used by the im-
plementation. [80, 51] describe algorithms to effect broadcast synchronization. The
grammar governing this syntax is

broadcast.sync :: auto ( id [, id] : expr )

For example, auto(C1,C2, ...,C,: T), where C1, C2, ... C, are clocks to be
synchronized with respect to each other every T (an integer) units of time denoting
the periodicity of synchronization.

In the above section we have defined the constructs to effect clock synchroniza-
tion. We have not defined how this affects the nature of time. As mentioned earlier,
time can be characterized by either an integer or an interval. For example, due
to time delays and inaccuracies of the clocks involved, time as an integer may no
longer be sufficient. Time may have to be represented as an interval. Such issues
are discussed in detail in chapter 5.
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4.2.4 Periodic Tasks

The scope of the auto and the ‘>>’ statement is generalized to facilitate the
definition of periodic tasks. A periodic task, as the name suggests, is a task that is
to be performed periodically and ideally should be activated at fixed intervals. The
periodicity of such a task is specified with respect to an already defined clock. The
BNF rule for a periodic task is :

per-tsk_decl :: id_opt auto id >> expression subprogram_call
id-opt :: |id :

The following is an example of a periodic task:
name:auto (timerl >> m) (P argl .. argk)

The subprogram P with it’s k arguments is scheduled for execution every m time
units with respect to clock timerl. The arguments are expressions which are evalu-
ated every time the periodic task is scheduled for execution. These expressions could
refer to mutable objects defined in the compilation unit in which the periodic task
is defined. Note that timerl must be defined as a clock using an auto statement.
The ‘name’ field identifies the specified task.

4.2.5 Delay

The language provides two types of delay statements. The first is to delay until
an absolute time is reached while the other is to delay for a specified durations.
As it is impossible to guarantee a precisely delay the effect is to delay atleast until
the time is reached and atleast as long as specified respectively. The language does
not place an upper bound on the delay. This is because the upper bound depends
on the nature of scheduler, the criticality of the process waiting etc., which are not
known. An implementation may choose to delay for an arbitrarily large time as
long as it is greater than the specified time. But if the implementation delays for
too long the program could generate temporal violations (to be discussed later.)
Hence we delegate the building of a robust program to the programmer who should
account for bad implementations of delay using other temporal specifications. In
other words, upper bounds are to be specified using temporal specifications. The
nature of temporal specifications allowed by ARL are discussed in section 4.4.

The syntax of the delay statement is as follows
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delay_stat :: delay until_opt expr wrt clock_spec_opt
clock_spec-opt :: id | id [ expr ]
until_opt :: | until

For example, delay 10 wrt cl, delays the execution of the current thread for
atleast 10 units of time measured with respect to clock cl, while delay until 100
wrt c2, delays the execution until ¢2 reads atleast 100.

If the ‘delay until’ statement is only executed after the specified time has already
elapsed, the statement has ‘no effect’.

4.3 Events

The rationale for introducing events in the language is two fold. First, events are
a convenient tool to represent asynchronous aspects of the system and the environ-
ment with which the system interacts, e.g., interrupts. Any relevant asynchronous
behavior by the environment in which the program executes, can be modeled by
generating an event of the appropriate type. Events can also be treated as units of
communication by attaching a value which represents the message with an"event.

Communication in a concurrent environment can either be synchronous or asyn-
chronous. In synchronous communication, the sender waits till a receiver is ready to
accept the communication. In asynchronous, the sender mails the message and con-
tinues executing without waiting for receiver to accept the message. We chose the
asynchronous communication model as it is more elementary than the synchronous
model. In a real-time environment, the idea of waiting for a process to accept a mes-
sage seems too restrictive. The delay of one process should not affect the progress
of the other process unless it is absolutely necessary. The necessity of this can only
be decided by the programmer, due to which the language supports asynchronous
communication. The idea of asynchrony can also be used to model exceptions and
faults. . _

We do not wish to restrict the use of events in the language, as it nearly im-
possible for us to consider all possible situations where an event is essential. For
example, we do not suggest in the language any specific exception handling mech-
anism. The programmer has to choose the best technique for the application and
implement it using events. In general, events are to be used to denote significant
points during the computation, which include but are not restricted to, interrupts,
entering/exiting a function, I/0, exceptions etc.
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4.3.1 Event Types

Different events of similar functionality can be grouped to from an event type. In
keeping with our philosophy of a typed language, all values which can be associated
with an event of a type must belong to a data type. Thus, an event type refers to an
identifier called the event_name and the set of values associated with the name. An
implementation is required to maintain other fields along with the event_name and
value. The fields are the originator of the event (name of the encapsulation unit that
generated it), the event_name, the value associated with it, time of occurrence and
the clock with respect to which time was measured. The reason for this is explained
in chapter 5 when the precise semantics of such constructs is developed.

Event declaration comes in two styles. In the first the value associated with
events of the event type is not specified while in the second case it is. If the first
option is used (i.e., the type specification is omitted) an implementation should be
able to infer the type of the value field from the usage. The BNF rule governing an
event type declaration is as follows.

event_type_decl :: event id [, id ] |
event id [ ,id ] :: id

A compilation unit has the option of restricting the scope of events. It may
choose only to handle or only to generate events of a particular type. The rule to
specify such restrictions is

event_restrict :: input id [, id] | output id [, id]

The key word input indicates that the event(s) of the specified type(s) can only
be handled by the program unit. That is, events can be ‘input’ to it by other
compilation units. The program unit however cannot generate any event of that -
event type and all statements which instantiate an event are disallowed. The key
word output on the other hand signifies that the event(s) of the type(s) can only
be generated but cannot be handled by the program unit. For example, ‘input
E1,E2,E3’ specifies that events of type E1, E2 and E3 can only be handled and
should not be generated. Similarly, the output command requires that the specified
events cannot be handled. Therefore no handler involving these event types can be
present. For example, ‘output E4,E5’ specifies that events of type E4 and E5 cannot
be handled but can be generated.

A compilation unit consisting only of event declarations is called an event pool.
An event pool can be ‘included’ by other compilation units, thus facilitating sharing
of event types.
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4.3.2 Event Values

In order to make the language uniform, one might be tempted to make functions,
infinite lists etc. as first class objects [89]. This requires functions, infinite lists etc.
to be allowed as event values. However, as pointed on in [89], functions and lazy
lists are ‘closure’ objects and contain embedded references to any item in the heap
space of the process that created it. In a distributed setting, the data structures
at the various sites will have to be intertwined possibly requiring a global heap.
To characterize certain closure objects which may be passed from site to site, the
concept of hyperstrict is introduced in [89]. A function is said to be hyperstrict, if
all arguments to it are completely defined. In other words, there is no undefined
term (L) anywhere in the object. For example, any function operating on an infinite
tree is not hyperstrict as any finite representation of the infinite tree necessarily has
a 1 embedded in it. Using this definition it is possible to permit certain types of
functions as event values but this only adds to the non-uniformity of the language.
We disallow closure objects to be used as event values. We feel that this restriction
of only data types is necessary if the language is to be used in the building of realistic
distributed real-time systems.

4.3.3 Event Related Statements

Event usage can be divided into two classes: generation and handling. Specific
events are generated by the generate command. The statement takes as arguments
an event name and a value of the appropriate type. The effect of the generation is
to broadcast the pair to all modules in which the event type is visible for handling.
For example, generate(e,v) results in the (e,v) along with other information being
instantiated on all modules which can handle the event type e. Thus, the execution
of the generate command results in the broadcasting of information. The general
form of the generate statement in BNF form is

gen-stat :: generate ( id , expr )

As events were introduced in the model to characterize asynchrony, a declara-
tive statement is a natural way to specify their handling. The definition of these
statements (also called causal statements) and its intuitive semantics is described
. below.

Consider the following example. Assume that input event types e;,ez,€3 ...
en (not necessarily distinct) and subprograms g;, gs, g3 ... gn, { (not necessarily
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distinct) all of which return boolean values are defined. An example of a causal
statement is presented below.

g1(e1), g2(€2), . . ., gn(en) causes f(ei, e, e, ... eir)
Note that the indices i1 to ik have to be in the range 1 .. n but need not be
completely distinct. The restriction permits only the events on the left hand side of
the causes to be used on the right hand side. One need not use all the event values
and one may use a particular event value more than once.

Towards the meaning of the above statement, define a cycle as a sequence of
events which cause all the g;’s to execute an arbitrary number of times before forcing
f to be executed. When an event of type e; occurs then g;, which is a boolean value
returning subprogram (side effects are allowed), is invoked and a new thread is said
to have been started. If g; returns true, it waits for another event e;. Otherwise
g; in the current specification is said to become ‘passive” and g; will not handle
any further ¢;’s in the current cycle. When all the g/s become passive, f with the
appropriate arguments is evaluated, and if f returns true, all the g;’s become active
again and the cycle is repeated. Note that we do not require the sequence of events
in two cycles to be identical. A sequence of events in a cycle change the state of the
handlers from ‘active’ to ‘passive’ when the right hand side is invoked. If f returns
false, a predefined event disaster is generated after which the g;’s become active.
All events which occur during the period when the relevant handler is passive, are
queued. The ‘name’ field identified the causal statement.

The motivation for the above syntax comes from an attempt to specify fault
tolerance. The occurrence of event e; is an indication of the need for certain checks.
If something has gone awry, a corrective action is attempted. The returning of true
by the g; is an indication that either nothing was wrong or that the system recovered
from the error. A false value indicates that the system could not recover from the
error but can continue to function without further action. When a number of such
errors have occurred, signified by when all g;’s become passive, a subprogram f has
to be invoked. The subprogram f can be written to have ‘global information’ to
recover from all the previous errors. The returning of true by f indicates that the
corrective action was successful. Otherwise some catastrophic situation has arisen,
signified by the generation of an event of type disaster.

However we do not wish to restrict the use of events to only fault tolerance
and they may be used to specify any type of behavior by the programmer. Events
essentially indicate a state (or a set of states), not necessarily faulty, of the system
where a particular action is necessary. The use of events is only restricted by the
semantics of the construct defined. The general form of a causal statement is
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causalstat :: handler [ , handler | causes subprogram_call
handler :: id (id)

A simple example demonstrating the use of events is presented below. More
detailed examples are discussed in chapter 6. Consider controlling an object which
is oscillating between two points. When a sensor detects that the ob ject has reached
the left end point, an event ‘left-edge’ is generated with the velocity of the object
as the value. This should cause the object to start moving in the other direction
with an acceleration which depends on the current speed. The behavior of the right
end can be stated similarly. In the following program segment, let || represent a
comment,

input left_edge, right-edge || input event restriction
output acceleration || output event restriction

false (left_edge) causes move (left_edge) »

|| the event type name can be used to specify the value associated with the event.
false(right-edge) causes move (right-edge)

move x = generate (acceleration, func(x)); return true || generate an event

false is a predefined polymorphic function which always returns the boolean
false. When the object reaches the left end, it generated an event left_edge. false
is invoked which returns false invoking move with the value associated with the
event left_edge namely the velocity of the object. The subprogram move generates
an event called acceleration with a value depending on the velocity. This event
should be detected by a controller to move the object to the right. The event
right_edge evokes a similar response from move. The statement generating the event
acceleration, returns true to prevent the cause of disaster.

As ARL is a real-time language, it has constructs to specify timing requirements.
This is discussed in section 4.4. As the satisfaction of these requirements is not guar-
anteed, violations must be signaled. Similarly, if a periodic task cannot be scheduled
within the specified period, a scheduling violation must also be signaled. Two more
predefined event types provided by the language are: temporal_violation and pe-
riodic_violation. An event of type temporal_violation is generated whenever
a temporal constraint is violated. The type of the value field of this event type
is explained in the section of temporal violations. By then it will be clear what
information needs to be attached to this event type for recovery. Whenever it is
detected that a periodic task has not been scheduled during a period, an event of
type periodic-violation is generated. The value associated with it is the name of
the periodic task.
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4.3.4 Rules for Type Inference

Inference rules to handle event generation and handling are introduced. These
inference rules are added to the existing set of inference rules. There are two infer-
ence rules for the generate statement. The first rule deals with completely defined
types, while the second rule is for partially defined types.

In a generate statement, if the value field is of type 7, the type of the data
element associated with the event type (denote it by a function called valuefield)
should also be 7. If an event type e’s data field is assigned types 7 and 7, (say due
to two different generates), any type that has less information than 7 and 7; is an
acceptable type for the value field of e. These are described formally as

A,C F v:7 & generate(e,v) € STATEMENT
A,C I valuefield(e):7

A,C I value field(e): = & A,CF valuefield(e) : & C|-F7 C 7, ClF 7C =
A,C | value field(e): T

The causal statement can also be used to infer event types and types of the
subprograms handling events. Let g; be a subprogram handling events of type e;.
The following type inference rules are added.

A,C | g7 — boolean
A,C | valuefield(e;): 7

A,C | valuefield(e;): 7
A,C Fgi: 7 — boolean

A, CF g 7 — boolean & A,C |- valuefield(e;): " & C |- 7 T
A,C gi: 7 — boolean

The first rule states that if the argument to g; is of type 7, the value field of ¢;
can then be typed 7, while the second rule states that if value field of e; is typed
T, the subprogram g; can be typed as 7 — boolean. The third rule is to deal with
incomplete types. If g; is typed as 7 — boolean, and the value field of e; is typed
as 7’ and 7' is less defined than 7, the type of g; is relaxed to accommodate 7'.



76

4.3.5 Timing Event Occurrences

As events are the main items in a temporal specification, it is important to define
precisely when an event occurs. There are two main strategies in assigning time to
events. Events can either be atomic or non-atomic. We discuss the implications of
each case.

First consider non-atomic events. For example, communication from one site to
another can be said to occur from the time of generation to the time of receipt. One
can then define duration of event as a two tuple (tare ssinisn). In a distributed
system, this definition is insufficient by itself as the clock with respect to which
these times are measured is left undefined. The clock with respect to which time
is measured is important as ARL permits the specification of a mapping of clocks
to syntactic units. Therefore only a set of such values can characterize an event
occurrence. We emphasize that one send and many receives is considered to be a
number of single event generations.

Atomic events on the other hand need to have only one component (say the tfinisn
component). In a distributed system, we do need a set of values (one per clock)
but do not need a set of tuples. Therefore atomic events are simpler to characterize
than non-atomic events.

We examine if non-atomic events add to the expressiveness of the language.
The principal use of non-atomic events in other languages like Lustre [16], is to
characterize interval due to which the start and end of events were defined. However,
in ARL, intervals can be characterized using clock values. Therefore there is no need
to differentiate between the starting and ending of events. There is no loss in the
expressive capability of the language if events are treated as atomic. Hence to
simplify matters event occurrences as defined to be atomic. An event is said to
occur when the last instruction to generate it is executed. The last instruction is
defined precisely in the chapter on semantics.

4.3.6 Specific Communication

The broadcast communication interpretation for the generation of an event is
not expressively complete as it cannot model a channel. An added disadvantage
is that broadcast communication is not very efficient. It is possible to increase the
expressive power of the language and support specific communication without added
syntactic baggage.
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To achieve specific communication, the reply command is introduced. The
behavior of the reply command is different from the generate command only in a
thread activated by an event occurrence, otherwise its semantics are identical to that
of generate. If the procedure in which the reply command is used is in a thread
activated due to an event generation, the reply statement generates the event such
that it is visible only to the module that generated the original event which caused
the invocation. For example, let a unit M generate an event which causes procedure
p to be executed. Let reply(f,v) be executed in p. Instead of the normal broadcast
semantics of generate, reply(f,v) sends (f,v) only to unit M.

If more than one module responded with a reply to the original generate com-
mand, a set of channels has been established. A single channel can be established
by ensuring that the original message is relevant to only one module. The module
for which the message is relevant replies, while the other modules ignore the event.
This can also be achieved by restricting events using input and/or output. The
BNF grammar for the reply command is

reply.stat :: reply ( id , expr)

4.3.7 A Note on Parallelism

Different events generated by different(same) modules could arrive at a module
in an order such that the second event occurs before the handler for the first event
completes its execution. It is conceivable that an implementation could start the
execution of the handler for the second event concurrently or in parallel with the first
handler. However, we require that at no time do two instances of the same handler
execute concurrently with one another. This is to achieve a serializable computation
and also keep the semantics of a cycle simple. If not, it would be possible to modify
variables in a random fashion leading to non-serializable execution. It would also
be possible that, if multiple instances of the same handler were allowed, for a later
invocation to finish before the earlier. If the later handler returned false, it is
possible to activate the recovery routine, the routine on the right hand side of
a “causes” statement. However, if the first handler also returned false requiring
the recovery action, the recovery action caused by the later handler would have
been activated with the ‘wrong’ values. Restrictions to control the activation of
subprograms are discussed in the section on subprograms. Therefore, events of the
same type get queued on their handlers, with different handlers being executed in
parallel.
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For illustrative purposes, let p(e),q(f),r(e) causes s(e,f) be a causal statement.
Let events of type e with values vl and v2 and event of type f with value wl
arrive before any handler is activated. An implementation may choose to activate
p(v1),r(v1) and g(w1) in parallel. However, p(v2) can be activated only after p(v1)
returns and the handler p becomes active again. Similarly r(v2) can be executed
only after r(v1) returns and the handler is active.

4.3.8 Specific Events

As many events of the same type are generated, there is a need to identify
specific instances of them. Specific instances are identified by an integer represent-
ing the instance number. To facilitate the identification in programs, a function
EVENT_OCCUR is provided. It takes as argument an integer and returns the
value of the event number in question. If the said event has not occurred, an er-
ror value undef is returned. The number of event occurrences of an event type is
returned by OCCUR-NO. Therefore, for all event types e, and k greater than 0,
EVENT-OCCUR(e, OCCUR-NO(e) + k) is undef. ‘

A function TIME_OF returns the time a specific event occurred, with respect to
a specified clock. TIME_OF has three arguments, the event type, the event number
(an integer) and a clock name. The value returned is the time of event occurrence
and is an integer. Similarly a function VALUE_OF returns the value associated with
the specified event (an event type and an occurrence number.)

We do not allow a specification to wait for a particular event. Hence it is not
possible to handle only a particular event. If this were allowed, it would be possible
to write event handlers which miss certain events. As events signify important
milestones, all events must invoke a handler. However, language designers one can
only ensure the invocation of the handler but cannot prevent the handler from doing
nothing, thereby ignoring the event.

4.4 Temporal Specifications

A language to be classified as a real-time language must support the definition
of timing constraints. In this section the various forms of temporal specifications
allowed by the language are enumerated. As events are to be used to mark relevant
milestones during the course of the execution, the predicates in all timing constraints
will refer only to event types. This implies that if a general boolean condition is to be
a part of the constraints, the programmer has to perform the checking explicitly and



79

generate an event when the relevant condition is detected. This restriction might
seem strange especially when our goal was to enhance expressiveness. But one of our
goals was also to design a language for executable specifications. This requires one to
build a interpreter (preferably an interpreter which scales time appropriately so that
mapping onto a real system becomes easier) for the language. Allowing arbitrary
expressions in timing constraint statements rules out an interpreter which could scale
time as it would not be possible to estimate the time necessary to execute certain
statements. For example, the time necessary to execute an assignment statement
will depend on the number of constraints that depend on it. The allowing of general
expressions also introduces questions as to how often are the expressions evaluated?
This is of relevance as the expressions refer to mutable objects. Due to aliasing (due
to subprogram calls) it may not always be possible to re-evaluate the expression
when a mutable object that it refers to is altered. This could result in either too
many unnecessary evaluations or evaluations which are delayed. Hence it was felt
that it is best to disallow general expressions as a part of a timing requirement.

Allowing only events in a temporal specification is also a consequence of our
conjecture about how people design prototypes. Initially, the system designer has
only a general idea of what should happen and when those things should happen.
Events are used to identify the key happenings in the general setting. The designer
also has a idea of by when these events should occur. Temporal specifications
involving these events are then written. After that the designer writes the code
to actually effect the generation and handling of events. Hence any change to the
way the events are generated, need not require the re-calculations of the temporal
constraints. This is because the temporal specifications are independent of the
control structure of the program. This is in contrast to the situation where the
temporal constraints are tied to the control flow of the program. Any change to
the control flow will require recomputing of the temporal specifications. This will
become clear in chapter 6 when we compare ARL with the language ESTEREL.

To define the syntax of a timing requirement, a definition of terms and operators
which establish a relationship between various terms is required. In ARL real-time
specifications come in two flavors. The first consists of two timing predicates and
a temporal operator (the binary case) while the second consists of only one timing
predicate (the unary case.) The general form is

temporal.spec :: id : predicate binary-opt
binary_opt :: limit | temp_oper predicate limit
temp-oper :: before | after

limit :: atmost expr | atleast expr
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The ‘label’ field identifies the constraint. Its significance is explained in the
next paragraph when we discuss temporal violations. In the unary case there is one
timing predicate (say p) and the limit field specifies either an upper bound or a lower
bound and attaches a quantitative measure. For example un : p atmost 5, states
that predicate p must become true within 5 units of time. In the binary case there
are two timing predicates (say p and q.) The temporal ordering operator can either
be before or after and ‘limit’ specifies either an upper bound or a lower bound and
attaches a quantitative measure. For example, ex : p before q atleast 10 specifies
that the predicate p must become true before predicate q and the separation should
exceed 10 units of time. The structure of the temporal predicate is discussed later.

We diverge from the main goal of this section to complete the definition of the
temporal.violation event type. The label field acts as an identification of the
specification which was violated. There are two possible types of values associated
with timing errors. The first deals with the point notion of time while the second
deals with an interval notion of time. The possible types of violations associated
with point time, are early, late and wrong_ordering. The value wrong_ordering
is used when events occur in an order other than that specified in a constraint i.e.,
the second event precedes the first. The value early is used if the an event occurred
before it was supposed to and late if an event occurred later than expected. Asso-
ciated with these two values is also an integer value indicating how early or late the
events occurred. The error values necessary to characterize violations when inter-
val time is used are r_overlaps, l_overlaps, during, equals, meets, guaranteed
and possible. r_overlaps and l_overlaps are used to characterize overlap on the
right and the left hand side respectively. during, equals and meets are as defined
in [4]. guaranteed and possible are necessary as the magnitude of the separa-
tion between the intervals will vary depending on the point chosen in the intervals.
guaranteed indicates that all points in the intervals will result in a violation, while
possible indicates the existence of such points. The precise meaning of these values

-is explained in section 5.6.1.

The values described above are used only when an event actually occurs. It is
also possible to detect a violation without the occurrence of an actual event. This
is achieved by setting timer(s) to expire. In cases when a timer expires, tempo-
ral_violation is generated with value timer_ezpired. This is explained in more detail
in the chapter on semantics.

The type of the value associated with events of type temporal_violation is
TEMPORAL.LABELS x { early, late, wrong.ordering, timer_expired, r_over-
laps, loverlaps, during, equals, meets, guaranteed, possible } x EVENT-
-TYPES x INTEGER x [ ( EVENT.TYPES x INTEGER ) U { L })]. TEMPORAL-
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-LABELS is the set of labels associated with a timing specification while EVENT_TYPES
is the set of event types defined in the system. The element . indicates undefined
when an event supposed to have occurred did not. In this case the second field (in
the value associated with the temporal violation) has to be timer.ezpired.

We resume our discussion of temporal statements. As mentioned in the literature
survey standard temporal logic operators by themselves are not quite appropriate
for use in real-time computation. They do not have a strong sense of duration,
nor do they deal with multiple clocks. An added problem is that operators like
eventually while useful in specification of liveness and verification, are not ideal for
real-time specification where timeliness is more important. As discussed in chapter 2,
specifications involving interval logic operators like at, starts [4] are impossible to
implement in a distributed environment. Hence, these operators also are absent in
our language. The temporal operators defined by the language are after, atleast,
atmost, before, and wrt. The only ordering operators are before and after. The
operators atleast and atmost are used to specify the limit field, while wrt is used
to specify the clock with whose respect time is to be measured.

To define the predicates in a timing requirement a relation called occur is intro-
duced. It takes an event type, an integer and a value as its arguments The integer
is to be interpreted as an occurrence number of the event type while the value field
is to be interpreted as the value associated with the specific event.

The meaning of the occur relation, when used in a unary form is different from
when used in a binary relation. The unary form of the occur relation specifies the
type of event, its occurrence number and the value associated with the occurrence.
For example, occur(e,i,v) by itself specifies that the ith occurrence of events of type
e is required to have value v. When used in a binary relation, it is equivalent to
stating ‘if the ith occurrence of event type e has value v.” The exact meaning of the
unary and binary case is discussed in chapter 5.

It is also possible to specify the clock with respect to which the time is to be
measured. The specification of the clock uses the wrt operator. The example used
above can be extended to occur(e,i,v) wrt clk, where clk is defined to be a clock.
The meaning of the example extended using the wrt operator is that, if the ith
occurrence of an event of type e has value v, then time of occurrence is measured
with respect to clock clk. As will be seen in section 4.7.2, the programmer can specify
the mapping of modules to clocks. As one knows the identity of clock associated
with the module, remote clocks can be identified. The reading of a remote clock is
to be interpreted as acquiring information from a remote site.

The justification for the described definition of temporal predicates is as follows.
The occurrence of the ith event with value v is an indication that a significant state
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in a thread in the current execution has been reached. At this point one might
wish to check the status at a remote site. Ideally, the status is represented by
the ‘state’ of the site. However if the site is required to send state information,
the magnitude of the message to be sent could be prohibitively large. Also, in
a concurrent environment one can never be sure of a state at the time when a
specification is written. It is more likely that one in a set of states is acceptable. So
the subprogram requesting state information must have knowledge of all possible
states. This in our opinion is also unacceptable. Thus, time at a different clock is
used as an approximate measure of the status of the site which is using the clock.

It is clear that a rigid definition of the occur construct is not in keeping with
our goals of a language for rapid prototyping. One must either design an entire class
of relations similar to occur or must enhance the expressive power of occur. We
have adopted the second option as we believe that fewer the constructs a language
has, the easier it is to master it. Having mastered the syntax and semantics of a
particular construct, it would be relatively easy to understand its variations. The
language increases the power of the occur relation by permitting the user to ‘omit’
the occurrence and/or the value field in a specification. The interpretation in such
cases is as if an entire class of requirements were defined. It is as if the undefined
field were universally quantified. The omission of occurrence number is represented
as a “*’ or a “** with “* different from ‘“**’, while the omission of the value field
is denoted by ‘%’ and ‘8$’ with ‘$’ different from ‘$$’. This notation is similar to
the one used to represent types in polymorphic languages such as Miranda [88]. For
example occur(e,*,$) wrt cl before occur(f,**,$$) wrt c2 atmost n is a temporal
specification with all the permissible fields universally quantified. The general form
of a predicate is

predicate :: occur ( id , oc_option , val_option ) time_option
oc.option :: * | ** | expr

val.option :: § | $$ | expr

time_option :: | wrt clock.spec_opt

In the next section, we explain all the options along with an informal meaning
in detail. The precise meaning of these options is discussed in the section 5.6.

4.4.1 Temporal Predicates

Having explained the basic structure of the temporal predicates, all the permissi-
ble variations are enumerated below. As mentioned earlier, the power of the occur
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construct is increased by allowing one to ‘omit’ the occurrence/value field in a spec-
ification. Depending on the unspecified field, there are sixteen major categories.
What follows is an enumeration along with a discussion of the intuitive meaning of
each permissible variation of the occur relation. To do so we assume that e and {
are event types, i,j are integers, and v and w are values associated with event types e
and f respectively. In order to simplify the explanation, only the before operator is
used. Also the clock(s) with respect to which time is measured is not specified, nor
do we attach a numerical value to the separation required between the two events
specified in the predicates. The meaning of the statements when all operators, mul-
tiple clocks and absolute values are involved is a straightforward extension to the
single clock meaning. The binary use of the occur relation is explained at first, as
it is in this case that a large number of variations are possible.

Case I: We begin by describing the case where the occurrence and the value fields
are completely specified. Consider | occur(e,i,v) before occur(f,j,w) | as a template
for this case. If the ith occurrence of event type e has value v and if the jth occur-

rence of event type f has value w then the e event in question should occur before
the f event. If the ith occurrence does not have value v or if the jth occurrence does
not have value w the specification has no effect.

Case II: In this case the second value field is left unspecified. Let

occur(e,i,v) before occur(f,j,3) | be such a temporal specification. If the ith oc-

currence of event e has value v then it must precede the jth occurrence of event
f irrespective of the value associated with the event. Notice the implicit universal
quantification over the value field.

Case III: Let | occur(e,i,v) before occur(f,*,$)| be a temporal specification. If the
ith occurrence of event e has value v then it must precede any occurrence of event

f. This implies that all occurrences of events of type f have to occur after the ith
occurrence of event type e having value v.
Cage IV: This case explains the statement where both the value fields are undefined.
This case will illustrate the power of allowing implicit universal quantification. There
are two possible sub cases to consider.

Let | occur(e,i,$) before occur(f,*,$8)| be the first sub case. This statement

requires that all occurrences of events of type f happen after the ith occurrence

of event e. This requirement is independent of the value of the event in question
and hence the universal quantification over *, $ and $$. The second subcase is the

temporal specification of | occur(e,i,$) before occur(f,*,$)|. This constraint has to

be satisfied only for events of type f which have the same value as the ith event of
type e. Events of type f which do not have the required value are not governed by
this specification. This specification is syntactically acceptable only if the domain
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of values for event types e and f have a non empty intersection.

Cage V: Here all the four field are left unspecified and there are four sub-cases. Let
occur(e,*,$) before occur(f,**,$$) | be the first sub-case. This statement is best
explained by considering its equivalent in first order logic. Using the universal

quantification explanation, it translates to Vi,j,x,y occur(e,i,x) before occur(f,j,y).
The meaning of this is: pick any (i) occurrence of event e and pick any (§) event
of type f. If the specification is obeyed, then the type e event occurs before type f
event. The values associated with the events are irrelevant.

The second sub-case is| occur(e,*,$) before occur(f,** $)|. The meaning of this
case is : pick an event of type e and an event of type f such that their event values

are identical. For the specification to be satisfied, the e event should have occurred
before the f event.
The third sub case of | occur(e,*,$) before occur(f,*,$$) | translates to Vi,x,y

occur(e,i,x) before occur(f,i,y), i.e. the ith event of type e has to occur before the
ith event of type f. The values associated do not matter.

The final sub case is | occur(e,*,$) before occur(e,*,$)|. It’s meaning is similar

to that of sub-case three with an additional requirement that the values of the event
should also be identical. Here again the types must have overlapping values for the
statement to be syntactically valid.

Case VI: Consider| occur(e,i,v) before occur(f,*,w)| This specification requires that
if the ith occurrence of event type e has value v, then all occurrences of events of
type f having value w must occur after the e event.

Case VII: Let | occur(e,i,$) before occur(f,*,w)| be a typical element of this case.
Its meaning is: the ith occurrence of event e, should occur before all events of type
f with value w.

Case VIII: We now discuss the case where both the occurrence number fields are
left unspecified. There are two sub cases to consider. The specification

occur(e,*,$) before occur(f,**,w) |, requires any occurrence of type e to precede any
occurrence of type f with value w, while the timing statement

occur(e,*,$) before occur(f,*,w) | requires the above constraint only on events with

identical occurrence numbers.

Case IX: Consider the specification | occur(e,i,$) before occur(f,j,w)| This speci-
fication is operational only if the value associated with the f event is w. It requires
the ith event of type e to precede the jth event of type f.

Case X: The specification |occur(e,i,$) before occur(f,j,$$) |, requires the ith event
of type e to precede the jth event of type f, while the specification

occur(e,i,$) before occur(f,j,$) | requires the constraint to be obeyed if and only

if the values are identical. As before, there should be an overlap of type values
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associated with event types e and f for the specification be meaningful.
Case XI The meaning of | occur(e,*,v) before occur(f,j,w)| is the dual of case VI.

Cage XII The meaning of | occur(e,*,v) before occur(f,j,$) | is similar to case VII.
Case XIII: Here again, there are two sub-cases to consider. As the first sub-case
consider the following specification | occur(e,*,v) before occur(f,**,w)| When ex-
panded in logic, the statement reads Vi,j occur(e,i,v) before occur(f,j,w). On pick-
ing any two events of type e and f which have values v and w respectively, the
event of type e should occur before the event of type f. The second sub case of
occur(e,*,v) before occur(f,*,w) | expands into Vi occur(e,i,v) before occur(f,i,w).
Pick any event of type e and the corresponding event of type f. If the e event has
value v and the f event has value w, the e event occurs before the f event.

Case XIV: The semantics of the temporal requirements

occur(e,*,v) before occur(f,**,$) | and | occur(e,*,v) before occur(f,*,$)| is simi-
lar to case VIII. :

Case XV: The statement | occur(e,*,$) before occur(f,j,w) | has the dual meaning
of case IIL.

Case XVI: The meaning of | occur(e,*,$) before occur(f,j,$$) | and

occur(e,*,$) before occur(f,j,$) | is the dual of case IV.

Having considered all the types of binary specifications, the reader might wonder
if anything is really required to happen. All the above mentioned types of temporal
specifications are active only if the relevant events have the specified occurrence

number or value. These constraints do not require the value to be associated with
the event. In other words, one might consider the above requirements as safety
properties. A null program would satisfy all of the temporal conditions. It is neces-
sary to be able to specify liveness properties or statements which require something
to happen. The unary version of the occur relation is used for this purpose. The
unary relation has a form similar to the binary relations. It has a label field iden-
tifying the specification, the occur predicate, an optional bound using a clock, a
limit and an integer value. For example, {I: occur(e,*,v) wrt cl atmost n| requires
that all occurrences of event type e necessarily have the value v. Also, all the events

have to occur within n units of time as measured with respect to clock c1. There
are three types of the unary specification and they are enumerated below. As in the
binary case we do not specify the label, the clock and the limit. The interpretation
involving these fields is a straight forward extension of the interpretations of the one
without the field.

Case A: Joccur(e,i,v) | requires that the ith occurrence of event e should have value
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v. A timer is set on the start of the program to detect this if the limit field is the
atmost operator. Note that the atleast operator sets only a lower bound and does
not set a timer.

Case B: |occur(e,*,v)| requires all events of type e to have value v. In keeping

with the universal quantification which allows null occurrences no timer is set.

Case C: |occur(e,i,$)| requires the ith event to occur but the value is irrelevant.
As in case A, on the start of the program, timers for specifications of this type are

set appropriately.

Case D: |occur(e,*,$)| requires all events of type e to occur within the specified
time. But no timers are set as a non-occurrence of event type e satisfies the require-

ment trivially.
4.4.2 Extensions

The “*’ notation can be extended to specify events at fixed offsets. For example,

occur(e,*+k,$) before occur(f,*,$$)

requires the ith event of type f to occur after the (i+k)th event of type e. k in
keeping with our restrictions of not allowing general expressions, is required to be
a compile time constant. We do not enumerate the cases involving * and *+k
as these cases are straight forward extensions of cases where both event occur-
rence number fields are denoted by *. Similarly, the $ notation can be extended
to specify values which depend on values of the relevant event. For example,

occur(e,i,$) before occur(f,j,$ @ v)|relates the value of the ith event of type e and

the jth event of type f using a relevant operator represented by @ and the constant
v.

By implicit definition (i.e. by the implementation) of appropriate @, pattern
matching involving a single $ or a $$ in a temporal specification could be used.
For example, if r is a record with two fields and if event type e takes values in
r, occur(e,*,(obj-1,8)) is a valid predicate. A combination of the above such as
occur(e,*,$) before occur(e,*+k,$ @ v)|is also permitted. This requires extension
to the grammar rule governing predicates to the following.

oc.option :: star_opt | dstar_opt | expr
star-opt :: * | * + expr
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dstar-opt :: ** | ** 4 expr

val.option :: dollar-opt | ddollar_opt | expr
dollar_opt :: $ | § operator expr
ddollar-opt :: $$ | $$ operator expr

In the BNF grammar described above, the exact nature of ‘operator’ is not
specified. It can be either a pre-defined operator (like plus, minus, etc), pattern
matching (as shown in the example) or a user defined subprogram. The exact BNF
grammar for this can be found in appendix A.

4.5 Subprograms

The concept of subprograms is central to all programming languages. The ex-
pressiveness of a language is largely dependent on the ease of subprogram definition.
That is, the techniques available to define subprograms determine the degree of ease
of reading/writing programs written in the language. Care must be taken in provid-
ing tools to be used in declaring and using subprograms. In keeping with our goal of
amalgamating the various programming paradigms, these tools must also help one
categorize subprograms into functions, observers and procedures. As ARL is aimed
at programmers with either a procedural or a functional background, two types of
constructs for subprogram definition are provided.

The user can define all three types of subprograms as if programming in a lan-
guage like Ada. In this technique, the subprogram keyword (function, procedure,
observer) is followed by the subprogram identifier and the parameter specification
followed by the body. The exact rule for a body is not given. It is the union of the
rules for statements in Ada and Miranda used in the proper context. Towards the
definition of the BNF rule for subprograms, let newline represent the lexical element
carriage return. The actual BNF rule for the subprogram definition is

subprogram-decl :: subprogram_keyword_opt id parameter_spec is declarations

begin body end

subprogram keyword_opt :: | function | efunction | observer | procedure |
subprogram

body :: [ statement terminator ]

terminator :: ; | newline

‘subprogram_keyword_opt’ permits the specification of the effect class as an in-
dication of what is required by the programmer. If it is not specified or if the
generic term subprogram is used the implementation will assign an effect class to
it. Otherwise, the compiler will perform an effect class check and issue a warning
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if the specified effect class is stricter than the deduced effect class. Functions, by
default, are executed in a lazy fashion. If the programmer wishes an implementa-
tion to execute a function in an eager fashion, the function should be declared as
an efunction. The following example defines a procedure

procedure increment (x : in out integer) is
begin

x:=x + 10;
end;

The user, if familiar with languages like Miranda, might wish specify the sub-
program in an equational style. Note that only the style is equational. We do not
require any of the properties required of an equational programming language to be
valid. The BNF-like grammar for the definition of subprograms in the equational
style is

subprogram-decl :: subprogram keyword_opt identifier eqn.parameter_spec
= body local_declaration
local_declaration :: where [ declaration |

The increment example described above can also be defined in an equational
style as “increment x = x := x + 10”. In the equational style, pattern matching
can also be used to specify the parameters to the routine. Recall the definition of
type Tree. It had two constructors Nilt (for a null tree) and Node (for a node in the
tree). An inorder traversal of such a tree can be specified as follows.

inorder Nilt = [ ]
inorder (Node x left right) = (inorder left) ++ [x] ++ (inorder right)

The equational technique can be used to define functions which are polymorphic
in nature. For example if tree is polymorphic, the function inorder is a polymorphic
inorder tree walking function. ARL allows only functions to be polymorphic as we do
not wish to deal with the consequences of side effects in presence of polymorphism.

To retain most of the advantages of functional programming, functions should be
first class objects. It should be possible to pass functions as arguments and return
functions as values. To simplify matters functions are first class only with respect
to functions. In other words only functions can accept as parameter or return as
result functions. To achieve this all functions are Curried, which considers functions
with more than one argument as higher order functions each with a single argument.
Hence functions are first class objects i.e., can be passed as arguments as well be
returned as results from functions. We explain this through an example. Recall the
definition of the higher order function to implement looping
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until final trans state = state, final state
= until final trans (trans state), otherwise

The function is polymorphic in nature with type (* — boolean) — (* — *) — *
— *, where * denotes any valid type. Note that the parameters final, which deter-
mines the terminating condition and trans, the transition function, are themselves
functions.

Using the definition of until, one can define a function trim which removes leading
blanks as follows. Let - represent function composition and ~ the negation function.
Let ‘head’ return the first element of a sequence and ‘tail’ the last. Space is a function
which returns true if the character in question is a blank or a tab. Define trim as
trim = until ( ~ - space - head) tail

In the definition of trim the parameter ‘~ - space - head’ is mapped onto ‘final’.
That is, if the first element is not a space the loop can exit. If not, the transition
function is tail, i.e., the rest of the sequence. Note that the definition of until had
three parameters while trim specifies only the first two. This is allowed due to
Currying.

The type of trim can be deduced to be [character] — [character]. Due to the
type specificity of space, head and tail, trim is not a polymorphic function but a
monomorphic function obtained from until.

Note that higher order functions supported in Miranda (and hence ARL) is
weaker than the higher order functions in Lisp. In Lisp one can dynamically create
functions at run-time which is not permitted in ARL.

4.5.1 Nested Subprograms

One of the arguments against nested subprogram definition is that it is more
expensive to implement than non nested subprograms. This is because of the need
for dynamic chains along with static chains [3]. In a program development environ-
ment, it is a good idea to support nested subprogram definition. This is especially
true when the overhead introduced by nested subprogram is relatively small when
compared to other items supported by then language. It enables a programmer
can use hidden subprograms to perform tasks without divulging the knowledge to
others.

In our endeavor to support both the imperative style and the equational style
of programming, nested definition can be achieved in two ways. In the imperative
style, the subprogram is declared in the declarative region of the outer subprogram.
The inner declarations can hide objects declared in its scope as shall be seen from the
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following example. Consider a function to sort a sequence (not the most efficient)
which can be written as follows:

function sort(x : seq) return seq is
function insert(x : elem; y : seq) return seq is
{ x is used as arguments in both functions to demonstrate that one definition
might hide another }
tmp : seq;
begin
if y = null then
y := new node;
y.val := x;
return y
elsif (x < y.val) then
tmp := new node;
tmp.val := x;
tmp.next := y;
return tmp;
else
tmp := new node;
tmp.val := y.val;
tmp.next := insert(x,y.next);
return tmp;
end if;
end;
begin
if x = null then
return X;
else
return insert(x.val, sort(x.next));
end if;
end;

In the equational style, the function is defined with a where clause. The scoping
is determined by the ‘off-side rule’ discussed in [88]. For example, the function
described above can be written as

sort [ ] =[]
sort (a:x) = insert a(sort x)
where
insert a [ ] = [a]
insert a (b:x) = abix, a<=b
= b:(insert a x), otherwise
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4.5.2 Restrictions on Subprogram Invocation

In this section we discuss the issues related to when subprogram can be acti-
vated. If subprograms could be executed in parallel the throughput of the system
could be maximized. However, care has to be taken as otherwise an execution could
lead to non-serializable [69] computation and also obscures the semantics of various
constructs. Consider the following scenario. If the rate of event generation is faster
than event handling, it is possible to invoke the handlers in parallel. These handler
could be procedures which could mutate the values associated with variables. If the
computation is to be serializable, access to these mutable objects has to be con-
trolled. Rather than add constructs to control access to these individual variables,
we add constructs to restrict subprogram activation. The rationale for this similar
to choosing monitors [43] over semaphores [23].

The constraints are éxpressed as lists of subprogram names, called exclusive
access lists, such that only one subprogram in it can start a thread. A thread
is a subprogram invocation caused either by an event occurrence, the right hand
side of a causal statement or a periodic task. This condition is less stringent than
allowing only one subprogram in the exclusive access list to be active at any time.
For example, if A and B are in an list and A is activated by an event occurrence, A
can call B or A can call itself. The less stringent condition is allowed as A and B
are not executing in parallel. This interpretation of exclusive access allows recursive
operations on shared data structures.

For example, let A, B, C and D be procedures and { {A,B}, {C,D} } be an
exclusive access list. Only one of A or B can be the start of a thread. Similarly,
only one of C or D can be the start of a thread. However, it is possible to execute
the two threads (say started by A and by C) in parallel. In the thread started by
A, calls to B can be made.

In order to simplify the semantics (as shall be seen in the next chapter), we treat
the exclusive access lists as equivalence classes. For example, { {A, B}, {A, C} }
in a program is considered to be { {A, B, C} } in the semantics. This is not to say
that the two are equivalent. Our definition could serialize an execution more than
the specification. In the above example, it is possible for B and C to execute in
parallel, but is dissallowed by our semantics. We let the user define the exclusive
access lists individually and construct the smallest equivalence classes using from
them. The syntax to define an exclusive access list is governed by the following
BNF-like grammar

exclusivedef :: excl {id [,id ]}
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4.5.3 Non-Determinism

The language does not have any explicit construct to express non-determinism.
However, it is possible for a program in ARL to exhibit non-deterministic behavior.
The possibility of non-determinism is explained via an example. Let e be an event
type that has more than one handler and suppose at least two of the handlers (say
pl and p2) are in the same exclusive access list. When an event of type e occurs,
which of pl or p2 should be invoked first is not defined by the semantics. Thus the
behavior of the module on the occurrence of event e is non-deterministic.

4.6 Other Features

In this section the remaining features of the language are discussed. They include
variables, types of statements and units of compilation. However, we do not describe
other useful features like declaration of constants, definition of attributes for types,
overloading of subprograms/operators etc. [1]. The description of such features will
only be a reproduction of the Ada language reference manual. Hence the definition
of ARL in this thesis can be considered to be core language to which other essential
features can be added. The addition of these features should not result in a loss of
expressiveness. Rather, it should enhance other facets of a language not discussed
here. Thus, for a complete definition of ARL, the relevant rules(such as those for
expressions, operators etc.) in Ada [1] and Miranda [88] should be added to the
rules developed here.

4.6.1 Variables

If procedures are to be useful, the concept of mutable state must be defined. Two
principal techniques to characterize state are 1) variables 2) exchange functions. A
variable is an object whose value can be changed via an assignment statement.

Exchange functions [101] could also be used to capture the notion of state. An
exchange function carries out a two way point to point synchronous communication.
An exchange function has one input and returns a value of the same type as the
input. A call waits for a matching call and an exchange of values occurs i.e., the
input value of the matching call is returned. Consider the following example of a
transaction system, where a unit sends out requests and another unit accepts these
requests. Assume they use a channel called req. The behavior of the system can be
represented as:
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send-request(r) = req[r] and receive-request = req[‘null’].

When send-request is invoked (with parameter r), r is output on the channel req. An
active receive-request reads from the channel, returns r (the value) to its caller and
sends ‘null’ (indicating no information) to send-request which in turn is returned
to the unit invoking send-request. By disguising the state as a subprogram call, a
notation consistent with an applicative language is possible.

However, in ARL, we characterize state by variables. Variables are present in
many programming languages and the user will be familiar with them. Exchange
functions, while notationally consistent with functional languages will require the
user to re-think and re-design implementations which are well understood. Ex-
change functions also introduce the notion of synchronous communication. The
language will not have a uniform communication paradigm as the need to support
asynchronous communication has been established. Hence exchange functions are
not supported by ARL. All variables will be typed either implicitly or explicitly as
mentioned in the section on types.

4.6.2 Statements

Statements in ARL are divided into 1) Loops 2) Conditionals 3) Assignment and
4) Subprogram call. Each of these is discussed briefly below.

Loops

Standard looping constructs such as while, for, loop as defined by Ada are
present in ARL. We do allow the exit statement whose execution causes the loop to
terminate. These looping statements are allowed only in procedures and observers.

For the functional part of ARL, these constructs can be defined as higher order
functions and are not defined as primitives. This is because the programmer needs
to be encouraged to think in terms of higher order functions when programming
with functions, so as to utilize the power of functional programming. However to
ease the usage of these higher order functions, an implementation should define these
looping functions (while, for loop) as a part of the language environment.
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Conditionals

The conditionals supported are the if and the case statements. The if statement
comes in two flavors. The first style is used when the programmer uses an equational
(Miranda) style of programming and the other is the imperative (Ada) style. In the
equational style, the conditional follows °,’ after the equation. For example

quad-solve a b ¢ = ((-b) + radix )/(2 * a), disc > 0
where
disc=b*b-4*%a*c
radix = sqrt(disc)

The above equation is valid only if the condition (disc > 0) evaluates to true.
Otherwise a run-time error occurs. The other type of if follows the same rules as
the Ada if then elsif else endif.

The case statement can be explicitly used only in the procedural style of pro-
gramming. Pattern matching allowed in the equational style is effectively a case
statement. The structure of it is identical to that in Ada.

We do not reproduce the syntactic rules for these statements. The rules for ARL
is the union of rules in Ada and Miranda combined in a consistent fashion.

Assignment

The power of the assignment statement can be utilized only when programming
procedures. Functions are allowed only single assignment to the variables defined by
them. Observers on the other hand can mutate any variable defined by it but cannot
change the value of any other variable. The BNF grammar governing assignment
statments is

assign.stat :: expr := expr

Subprogram Call

An important aspect of a subprogram call is the evaluation of parameters. As
functions are to be lazily evaluated, their parameters are not evaluated unless nec-
essary. Calls to observers and procedures evaluate the parameters before the body
of the subprogram called starts execution.
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Procedures could have in, out and in-out parameters. Observers and functions
have only in parameters. Subprograms which return values, defined in an equational
style, have an implicit return statement viz., the right hand side of the ‘=’ being
evaluated. For subprograms defined in the usual style, a return statement has the
same effect. The BNF grammar for a subprogram call is given below.

subprogram_call :: id (expr [, expr])
subprogram-call :: id [ expr ]

Comments

Two kinds of comments can be written. The first kind is a single line comment.
The start of the comment is denoted by ‘||’ and end of line terminates the comment.
The second type of comment is the block comment and can extend over multiple
lines. The block is enclosed in ‘{’ and ‘}'.

4.6.3 Compilation Units

Compilation units permit the user to develop a program incrementally. They also
allow selective modification without requiring a recompilation of the entire program.
There are four basic kinds of units of compilation 1) type pool 2) event pool 3) clock
pool and 4) modules. We discuss each of this in detail.

Data Type Units

A type pool is a collection of data type declarations. One type pool can use the
type definitions introduced in other type pool(s) and is said to depend on them.
The BNF rule governing the structure of a type pool is

type-pl-decl :: import type_pool id is [ type_def | end type_pool.opt
type_pool_opt :: | id
import :: [withid[,id]]
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Event Type Units

An event pool is a collection of event types. An event pool can refer to type
pools to identify the type of the data field. The type of the data field can also be
left undefined, in which case it should be possible to infer a type for it. The BNF
rule for an event pool is

event._pl-decl :: import event_pool id is [ event_type_decl ] end event.pool_opt

event_pool_opt :: | id
import :: [ withid [, id]]

Clock Units

A clock pool is a collection of clock definitions. As a clock definition does not
depend on types, event types or other clocks, they are stand-alone units. The BNF
rule for a clock pool is as follows.

clock_pl_decl :: clock_pool id is [ clock-def ] end clk-pool_opt
clk-pool-opt :: | id

Modules

A module will usually consist of the bulk of the program. It would contain
local definitions, subprogram definitions, event handlers, temporal specifications
and periodic tasks. It also has an initialization part which is executed soon after
the clock associated with the module starts ticking.

Note the difference between the Ada definition and ARL definition. In Ada,
modules can share objects and subprograms. This however is disallowed in ARL.
Hence there is no need to make a distinction between the specification and the body
of a module. One can interpret the lack of sharing between modules as all modules
having a null specification part. The following BNF rules determine the structure
of a module.

module :: import module_spec module_body init.opt

init.opt :: endmopt | init statements endm_opt

endm.opt :: end | end id

import :: [ with id [, id] |

module_spec :: module id is

module_body :: distribution-map [ declarations ] [ subprograms |

clock_synchronization | causal_stat |
temporal.specs | periodic_tasks | event_restrict ]
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4.6.3.1 Parametrized Modules

We define a parallel program as a program where a number of processing elements
are programmed to execute similar code. As each processing element is executing
a similar code, it is unreasonable to expect a developer to program each of the
processing elements individually. To support parallel programming a concept similar
to a module type is introduced. A set of modules having similar behavior can be
defined by parameterizing a module. For example, module array.process [index :
1.. 100] ... end defines 100 modules having a similar structure. The module can
be defined to use ‘index’ to exhibit different behavior. Multi-parameter modules
can also be defined and are considered similar to array definitions. The mapping of
this to the available hardware is not defined by language. An implementation may
choose a mapping it determines to be ‘ideal.” The BNF grammar for a parametrized
module involves a change only to ‘module_spec’ and is as follows '

module_spec :: module param_spec_opt is
param.spec_opt :: id | id mod_param
mod_param :: | mod._seq ]

mod.seq :: id : expr .. expr [ , mod-seq]

Importation

The definition of importation determines what elements declared in one compi-
lation unit are visible to other compilation unit(s). The syntax to effect this was
presented in the grammar for the compilation units. In this paragraph, we discuss
it in detail.

Type definitions, except for abstract data types, and event type definitions are
essentially declarative in nature, i.e., the user cannot define subprograms or periodic
tasks in these units. However, the user can define initialization code for them a la
Ada. The implementation will define implicit operators for actions such as alloca-
tion, selection in a record etc. Abstract data types, have functions associated with
them and have an executable part. Thus replication of types involves replication
of the associated functions. Clock definitions could contain clock synchronization
while modules contain the bulk of the executable part of the program namely, sub-
programs, temporal specifications, event handlers etc. The with clause, as in Ada,
establishes connections between the items mentioned above. Diagram 4.1 illustrates
the permissible connections.
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Clocks Types Events

Modules

Figure 4.1. Importation Diagram

As shown in the diagram, modules can import clock, data type and event type
deﬁnitions, but cannot refer to objects in another module. Therefore the modules
in ARL are more restricted than packages in Ada. Our decision not to allow access
to objects in other modules is discussed in section 4.7.3.

Events and types can refer to types declared in a different compilation unit. The
only restriction is that complete type definition should not be circular. Incomplete
type definitions as in Ada can refer to one other. Clocks cannot refer to any other
item.

The with relation should induce a partial order on the compilation units and
any total ordering of this is a valid compilation order.

In the next section some of the issues related to program termination and dead-
lock are discussed. Following this, we suggest a unit of distribution.

4.7 Other Issues

Issues related to termination, deadlock, divergence, units of distribution and
sharing across modules are discussed in this section.

4.7.1 Termination

If we assume that a real-time program is required to maintain a continuous
relationship with its environment, ideally it should never terminate. However, it
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should be possible to write programs which are required to terminate. In ARL, due
to the declarative nature of handling events, a program terminates only when all of

the following conditions are true.
o There are no generated events that have to be handled
o There is no active statement and as a corollary all the subprograms are idle.

o All timers that have been set (for all the unary temporal specifications and cer-
tain binary specifications) have expired. Otherwise, a timer expiration could
trigger an event (temporal_violation) requiring a handler to be invoked.

e The communication medium is empty so that all generated events have been
handled. Otherwise, it is possible for an event in the communication medium
to activate a subprogram.

Related to termination is deadlock. Two modules in a system are said to be
deadlocked if the following situation is reached sometime during a computation.
Any subprogram in a module say ml, can be activated only by generating an event
in another module say m2 and any subprogram in m2 is activated only by generating
an event is module ml. This definition can be extended to the n-module case as
follows. An n-module system is deadlocked if there is a sequence iy, i, 13 ...i,
such that for k in 1 .. (n-1), module m;, is waiting for an event from module m;,
and module m;, is waiting for an event from module m;,. A system is said to be
deadlocked if all its component modules are deadlocked. It is obvious that the
termination condition is identical to the deadlock condition. Hence our semantics
cannot differentiate between deadlock and normal termination. The interpretation
of the event generation and handling has to be modified if one has to differentiate
deadlock and termination. This aspect is not considered in this thesis.

However, the language does distinguish between divergence and deadlock. Recall
that divergence is non-termination. The fact that the language cannot distinguish
between the two is obvious as deadlock is identical to termination while divergence is
the opposite of termination. Note that it is possible to differentiate between internal
divergence and external divergence. External divergence occurs when the program
does not terminate but continues to generate events, while internal divergence occurs
when a program does not terminate but does not generate any events either. But
it is not always possible to detect divergence though it would be useful to detect
internal divergence and generate an event to the effect.
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4.7.2 Units of Distribution

In a language designed for distributed execution, one of the first questions asked
is what can we distribute or what is the unit of distribution. In certain languages,
even if the distributable unit is not stated explicitly, there are some obvious can-
didates. However the same cannot be said for all languages. For example in CSP,
processes represent units of distribution. However, in languages like Ada, if the unit
of distribution and the unit of compilation are identical, the process of building a
distribution is greatly simplified [95]. This, however, is not obvious from the lan-
guage definition, as if one follows ones intuition, one might be tempted to use tasks
— which are the units of concurrency — as the unit of distribution. Therefore, it is
essential that the language defines the unit of distribution.

However, the choice of the distributable unit could depend on the nature of the
underlying architecture. For example, the unit appropriate for a tightly coupled sys-
tem may not be appropriate for a loosely coupled system. This has been observed in
Ada, where a task is an appropriate unit of distribution in a tightly coupled system.
However, tasks are far from ideal units in a loosely coupled system. However, the
definition of the unit of distribution by itself is not sufficient to effect distributed
execution. To execute a given program in a distributed fashion, the mapping of it
to the given hardware must also be specified.

Hence we divide distributed execution into two major components. The first is
the representation of distribution, while the second is the configuration or mapping
a distributed program onto a given architecture. We believe that the user must be
permitted to specify distribution explicitly in a program. This requires the unit(s)
of distribution to be defined by the language. However the configuration issue is
too implementation dependent to be solved at the language level. We discuss each
of these issues in detail below.

Specification of Distribution

The concept of wvirtual node as defined in [92] is the basis of our definition of
the unit of distribution. In [92] a virtual node is defined as a system consisting of
multi-processor system sharing memory i.e., a tightly coupled system. A distributed
system is defined to consist of a set of virtual nodes which do not necessarily share
memory.

Based on this, we define modules as the unit of distribution and the basis of
a virtual node. This is consistent with the definition of a distributed system as
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modules do not share objects (see section 4.7.3), and a module could have parallel
threads of execution. A inter-module object access is in the from of events thus
differentiating remote access form local access. We describe how a virtual node
based on multiple clock definitions can be specified in ARL. Towards a syntax to
specify distribution in a given program, let M be a module and C be a clock. The
command ‘for M use C’, associates the clock C with M. This is to interpreted
as: a mapping of logical clock C to a physical clock PC, results in the mapping of
module M to the processor(s) associated with PC. Define a virtual node as the set
of modules which have the same associated clock.

The above syntax can be generalized so that one can specify the mapping of
separate clocks to each module in a parametrized definition. For example, ‘for
MJindex] use C[index]’ associates clock(index] with M[index], where M and C are
parametrized modules and clocks respectively. The BNF grammar for the specifying
the mapping of clocks to modules is as follows.

distribution_map :: for module_.map use clock-map
module_map :: id |id [id ]
clock-map :: id | id [id ]

We emphasize that the user is not required to to specify the distribution. In
such cases the implementation is free to choose any mapping. If a mapping is not
specified for any of the modules, it is to be assumed that the programmer specified
a concurrent system as opposed to a distributed system.

Configuration

Configuration or how to actually distribute a given program introduces more
issues like 1) When does one specify the binding of program fragments to a processor?
2) Can the binding be done dynamically (for fault tolerance, load balancing etc.)?
3) What’s the cost of such operations? 4) What are the relative speeds of the various
processors?

As it is not possible to give an answer to the above questions, we refrain from
defining how to execute a given distributed program in the language. Hence we also
do not permit the specification of a mapping from syntactic terms to physical sites,
specifically the mapping of logical clocks in the program to physical clocks. This
gives the implementor the freedom to decide what actions are appropriate during
the configuration phase. ‘

In summary, ARL defines a module as the unit of distribution but it does not
specify how to configure a given program. In our opinion, this is not a serious
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limitation as the principal concern in ARL was the ability to express various con-
structs. However, ARL varies from other concurrent languages in that it is possible
to distinguish a concurrent program from a distributed program using the multiple
clocks.

4.7.3 Sharing across Modules

It has been argued that knowledge of which object is remote is essential to design
good algorithms [95]. We examine if any construct in the language language provides
remoteness information.

In the current definition of the language, modules do not have access to any item
defined in another module. As a consequence, a modules cannot access subprograms,
or variables defined in another module. This forces events as the only form of com-
munication between modules. The use of events will usually take considerably more
time than a local procedure call. This feature can be used as information about
potential remoteness. If modules are able to share variables or subprograms, one
would require annotations to indicate possible remoteness. These annotations add
extra syntax to the language and also has an affect on the representation of distri-
bution. The effect of not sharing objects across modules on prototyping requires
further study and is not addressed in this thesis. We emphasize that modules can
‘share’ subprograms defined along with abstract data types.

4.8 Conclusion

In summary, ARL is based on a paradigm derived from both functional and
.imperative languages. It supports type inferencing, polymorphism, lazy evaluation
etc. Being a rapid prototyping language it supports the creation of dynamic ob-
jects and recursive subprogram calls. ARL also supports the definition of discrete
clock(s) to be used for timing. Multiple clocks is also the focus of this thesis in
denoting distribution. The user defined clocks are incremented independent of the
control structure of the other elements in the system. The programmer can specify
how often these clocks are to be synchronized with respect to each other. ARL
supports the asynchronous communication by the way of events. Specifications in-
volving events are used to activate new threads of control. New threads of control
are essentially subprogram calls made when an event is generated. The semantics
of the specification is general enough to be able to specify fault tolerance. ARL
permits the definition of periodic tasks and new threads are activated when they



103

are activated. Constructs based on the occur relation are to be used to specify tem-
poral specifications. The occur relation can be universally quantified over certain
fields thus increasing the expressiveness of the language. Though the language does
not have constructs for explicit parallelism or non-determinism an ARL program
can exhibit parallelism and non-determinism.

In the next chapter, we discuss the semantics of the language. Following that
examples of programs in ARL and its comparison with other languages is presented.



CHAPTER 5

OPERATIONAL SEMANTICS

The first step towards building a computation model based on a programming
language is to define its semantics. The two principal semantic styles are denota-
tional and operational. The reason for choosing operational semantics over denota-
tional semantics was presented in chapter 3. We recall some of those arguments.
The underlying assumption is that most people understand the meaning of programs
by visualizing behavior. If the semantics is to explain behavior of programs written
in the language, an operational semantics is necessary. An operational or a behav-
ioral view of the language captures meaning by formalizing the idea of behavior and
explaining the effect of executing each syntactic entity. This is however not to con-
clude that other semantics styles like denotational semantics are unimportant. It is
just that our current focus is on behavioral models. Further research is necessary to
describe the denotational semantics along with proof rules etc. for the language to
be theoretically complete. In this thesis, we develop an operational semantics based
on dynamic algebras for the language.

This chapter is organized as follows. First we justify our choice of dypamic al-
gebras over other operational styles and present an overview of the structures in a
dynamic algebra. This is followed by describing semantics categories called proto-
types which correspond to syntactic terms. The components of the initial structure
or the state in which a given program starts is described. Certain assumptions
about the environment in which an ARL program is expected to be executed in
is described. The final section on the transition rules is composed of a discussion
of time and clock synchronization, event generation and handling, the checking of
the various temporal requirements and the execution of subprograms. Note that
we do not discuss the semantics of types and expressions as it is only a question of
re-writing the usual semantics in dynamic algebra form.

Why dynamic algebras? The following are the main reasons for choosing dynamic
algebras,

- Irom a mathematical point of view, static properties of a system can be captured
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by an algebra. For systems with dynamic properties, a dynamic algebra also
called an evolving structure is a natural choice.

- Algebraic features like abstract data types and polymorphism are difficult to de-
scribe in a purely operational setting. Dynamic algebras allows one to describe
these features using their natural algebraic definition.

- In real-time systems, resources limitations play an important role. The semantic
style must provide techniques to specify such limitations. In the dynamic
algebra technique describing resource restrictions in actual computations is
easy as they can be expressed in terms of first order formulae.

- A usual criticism of operational semantics is that, if defined completely, it is biased
towards an implementation. The semantics prescribes the data structures to
be used in an implementation which is not acceptable. Dynamic algebras
overcome this problem by defining the relevant data structures as abstract data
types. Implementation of these data types can be considered to be parameters
to the semantics. This will become clearer as we describe the model.

The dynamic algebra approach has been used to describe a sequential language
(Modula) [65] and a concurrent language (Occam) [37]. It is our endeavor to extend
it to describe distributed real-time languages. An introduction to dynamic algebra
is presented, following which the semantics for the language is developed in detail.

5.1 Overview of Distributed Real-Time Structures

An evolving structure or a dynamic algebra consists of a sequence of structures
— representing states — indexed by time. Each state is composed of a finite, many
sorted first order structure. This structure consists of a set of universes with an
associated name also called a set of sorts and a set of functions whose domains
and co-domains are universes constructed by recursively applying union and cross
product to the original set of universes. A set of transition rules determine the
evolution of structures into other structures.

All programs, at the start of their execution have an initial state/configuration.
This initial configuration usually depends on the program. The initial configuration
is modified to reach subsequent configurations by the transition rules. For the sake
of explanation, assume that we are given a program P. A configuration contains of
1) A set of ¥ algebras (defined below). The configurations of an ARL machine have
a Y algebra for each data-type in the program P disambiguated appropriately. 2)
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A set of statements that can be executed in the configuration 3) A set of temporal
constraints (specified in P) that are to be satisfied/verified.

The formal definition of X algebra is as follows. Define a signature as a set of
sorts § and a set of operators X and a function from £ to (S* x S). Associated with
the signature can be a set of axioms which the operators satisfy. In programming
language parlance, S is the set of types, ¥ the set of operators on the type. The
function of the signature assigns types to the operators. The axioms represent the
properties satisfied by the operators. Formally, a ¥ algebra A, is an S-indexed
family of sets A, with an operation 04: A,; X...X A,, — A, for each ¢ in % of
type sl x ... X sn — ¢ satisfying the defined axioms. The notion of ¥ algebras
is a well studied topic and we refer the reader to [32, 100] for further details.

Returning to the definition of configuration, one might wish to include behavioral
specifications relating the multiple clocks defined in P if the network characteristics
are known. This is discussed in section 5.3.3. One can also add resource restrictions
like memory size, cpu speeds, the largest/smallest possible integer etc to the initial
configuration. These restrictions, would be specified by first order formulae. For
example, MEM_.AVAIL = 100,000000 could be used to indicate that the memory
available is 100M units. These restrictions are not necessarily static and could
change from one state to the other. For example, the invocation of a subprogram
could reduce MEM.AVAIL by the size of the subprogram’s activation record.

As we cannot envisage all the resource restrictions, an implementation will nec-
essarily define more restrictions than defined here. In such a case, the transition
rules we develop here have to be extended to model the new resource availability
formulae.

Certain items which are not directly relevant to the core of the semantics need
not specified by the language designers. For example, the data structures used by
the abstract machine need not be specified completely. In fact, if the semantics is
to be unbiased towards an implementation, the data structures necessary should not
be specified in detail but should be axiomatized. Such items are considered to be
parameters to the semantics. In other words, different behaviors of these parameters
could result in different program behaviors.

The meaning of a program, given an initial configuration and instances of the
parameters, is the set of all possible evolutions from the initial configuration which
satisfy the transition rules. This will become clearer when the semantics are dis-
cussed in their entirety.
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If the number of transition rules is finite, the usefulness of the semantics will
increase greatly. For example, finiteness could be used in the development of a
semnantic driven compiler, would simplify any theory of equivalences etc. It is clear,
that we cannot consider individual transition rules for all possible syntactic terms
as this would result in infinite rules. In order to make the set of rules finite, the
transition rules should be treated as a relation on a set of syntactic terms.

It is obvious that similar constructs have similar transition rules. That is, the
essential actions necessary to execute similar constructs will be similar. For exam-
ple, the transition rules explaining different event generation will almost be identical
except for the name of the event the value of the event, the time of event instan-
tiation etc. But the basic meaning of event generation, which is transmitting the
information to all sites that can handle it, does not change.

One could classify the infinite set of syntactic elements into a finite number of
classes. These classes are called protostructures or prototypes [37]. Formally, a pro-
tostructure is a class of evolving structures corresponding to some syntactic category
in the language. Different structures of a prototype will have a common set of tran-
sition rules and integrity constraints or similar functionality. But they are likely
to have different sets of constants, resource restrictions, universes and functions.
Functions which permit the differentiation between instances of the prototypes are
also defined in the semantics.

For example, the prototype add can be used to characterize the addition oper-
ation. The transition rules shall describe how to effect the addition. However, the
prototype expression which could describe the set of all legal expressions has no
transition rules as there is no necessary common behavior between the elements of
this class. Different elements of the add prototype could have functions like arg!
and arg?2 indicating the values of input variables. These functions will have different
behaviors depending on the binding of arguments of the instance of add.

5.2.1 Prototypes for ARL

Here we enumerate the ARL prototypes and identify the universes and functions
associated with elements of the prototypes. The principal prototypes are modules,
expressions, statements, subprograms, events, clocks, causation, tempo-
ral_specifications, clk_sync periodic.-tasks. The statements prototype can be
further subdivided into if, case, while, for, assignment, generate and reply.
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The temporal_specifications prototype is composed of prototypes for the sixteen
main cases and the numerous other sub cases, while the expressions prototype will
consist of prototypes for all the standard operations like +, -, function call etc. Let
PROTO be the set of all ARL prototypes. Also construct a function TERM_.TYPE
which when given a syntactic term returns the prototype to which the syntactic
term belongs to. For example, TERM_TYPE(auto id := id + 1) returns clocks.

5.2.2 Functions on Prototypes

Having defined a finite number of prototypes, certain identifying functions which
differentiate one instance from another are defined. Associated with all instances
of every prototype is a function MY_SELF which returns the identity or name as-
sociated with the prototype. The function MY_SELF has no argument and varies
from instance to instance. For example, in the transition rules dealing with clocks,
MY_SELF return the name of the clock used in the syntactic term. We describe
these identifying functions by declaring their type and describing their behavior. We
emphasize that these identifying functions defined do not operate on all prototypes.
They operate only on certain prototype(s) as shown in the definition below.

e Clocks

— INCR : clocks — INTEGER
— INITIAL : clocks — INTEGER

o Causation

— CAUSER : causation — P (subprograms)

— CAUSED : causation — subprograms

— CAU_EV : causation — P (event_types)

— EVENT_SCOPE : causation x event_types — P(subprograms)

o Temporal Specification

— FIRST-EV : temporal_specification — event_types

— SECOND_EV : temporal_specification — event_types

— FIRST_OC : temporal_specification -+ INTEGER U { *, ** }

— SECOND_OC : temporal_specification — INTEGER U { *, ** }
— FIRST_VAL : temporal_specification — values U { $, $$ }
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— SECOND.VAL : temporal_specification — values U { §, $$ }
— FIRST-CLK : temporal_specification — clocks

— SECOND.CLK : temporal_specification — clocks

— LIMIT : temporal_specification — { UPPER, LOWER }

~ LIMIT-VAL : temporal_specification — INTEGER

— TS_LAB : temporal_specification — temporal_labels

e Generate

— GEN_NAME : generate — event_types
~ GEN_.VALUE : generate — values

o Clock Synchronization

— SYNCER : clk_sync — clocks
— SYNCED : clk.sync — clocks
— SYNCINT : clk_sync — INTEGERS
— B_.CLKSYNC : clocks — P(clocks)

o Subprograms

— SPGM_TYPE : subprograms — { Procedures, Observers, Functions,
Efunctions }

— SPGM.PARAM : subprograms — INTEGER (expr)
o Periodic tasks

— PT_INTERVAL : periodic_tasks — INTEGERS
— PT_NAME : periodic_tasks — subprogram

— PT_CLK : periodic_tasks — clocks

— PT-PARAM : periodic_tasks — INTEGER (expr)

5.2.2.1 Description

Type definition by itself does not define a function. The exact nature of the
above declared functions is now elaborated. Towards this description, consider the

following.
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e Let auto clk := clk + n init k be an instance of clocks.

o Let p(e),q(f) causes s(e,f) be an instance of causation and be labeled cau
for the purposes of future reference.

o Let generate(e,v) be an element of the generate prototype. Label it gen for
future reference

e Let auto (clkl >> interval) (clk2 := clkl) to be an element of the clk_sync
prototype. Let sync stand for the instance specified above.

o Let auto(cl,c2,c3: b.interval) be an example of multi-clock synchronization.
Let bsync represent the instance.

e For an element in the temporal_specification prototype consider

label : occur(e, oci, v1) wrt cl op occur(f, oc2, v2) wrt c2 lim t.error |, where
ocl, oc2 and t_error are elements of INTEGERS U { *, ** }, vl and v2 elements

of VALUES U { §, 88 }, op € { before, after } and lim element of { atmost,
atleast }. Let label be an identifier for the entire specification. Recall that *,
**, 8 and $$ denote universal quantification in temporal specifications.

o Let p(el,e2) be an element of the subprogram prototype. Call it proc for
purposes of identificaticn.

¢ Let auto (clk >> rate) (p-task al, a2, ... an) be a periodic task labeled ptask
for further reference.

The behavior of the functions is enumerated below.

o INCR(clk) = n

INITIAL(clk) = k

CAUSER(cau) = { p, q }
o CAUSED(cau) = s

CAUEV(cau) = { e, }

EVENT_SCOPE(cau,e) = { p }

GEN_NAME(gen) = e

GEN_VALUE(gen) = v
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e SYNCER(sync) = clkl

o SYNCED(sync) = clk2

o SYNCINT(sync) = interval

e B.CLK.SYNC(cl) = { ¢2,c3 }
o SYNCINT(bsync) = b.interval
e TS_LAB(label) = label

e FIRST_EV(label) = e

e SECOND_EV(label) = f

e FIRST_OC = ocl

e SECOND-OC = oc2

o FIRST.VAL = vl

¢ SECOND_VAL = v2
FIRST_CLK = cl

o SECOND_CLK = c2

LIMIT(label) = UPPER if lim = atmost else LOWER

LIMIT_-VAL(label) = t.error.

SPGM_PARAM(proc) = { (el,1), (€2,2) }

PT_INTERVAL(ptask) = rate

PT_NAME(ptask) = p-task

PT_CLK(ptask) = clk

PT_PARAM(ptask) = { (a1,1),(a2,2) ... (an,n)}



112

5.3 Initial Configuration

The meaning of of a program execution depends on the state in which the com-
putation starts. The start state has to be well defined to understand the meaning
of a program. In dynamic algebra terminology, the start state is referred to as the
initial structure. In the following paragraphs we describe in detail the components
of the initial structure.

As in VDL [99], we assume that a program is compiled into an appropriate
form on which the transition rules operate. To capture the compilation phase of a
program, we assume the existence of a parse tree which is used by the transition
rules. Also assume that the associated universe for this parse tree is . Define
U to have a set of nodes (NODES) which are instances of elements of PROTOQ
and static functions TERM.TYPE, ROOT, PARENT. We also define a dynamic
function called NEXT. TERM_TYPE, as defined before returns the name of the
prototype to which a syntactic term belongs. The other functions return various
executable statements. The function ROOT of a term points to the first executable
statement in the term, while PARENT of a term points to the first executable
statement block enclosing the term. NEXT points to the next executable statement.
For the sake of explanation consider, the following code fragment.

L0 j := true

L1 while (e) loop
L2 x:=10
L3 y = f(e,j)
end loop

L4

Let LO, L1, L2 and L3 represent pointers to the appropriate instances of the
relevant prototypes in the parse tree. ROOT of the sub-tree is L0. PARENT of
L2 or L3 is L1 and NEXT of L2 is L3. The NEXT of L1 will either be L2 or L4
depending on whether e evaluated to true or false respectively.

To formalize the flow of control from one statement to the other, dynamic con-
stants in a universe called MODE is introduced. The values in the universe MODE
are working and dormant. In the initial configuration, the root of each of the
modules in the program is in mode working and all other nodes have their mode
as dormant.

All transition rules that are discussed in this chapter have the structure described
below. Let ¢ [[ execute body 1| ’represent the transition rule(s) for the appropriate
body.
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if MYSELF.mode = working then
[ execute body i
NEXT.mode := working
MYSELF.mode := dormant
end if

The check for the working state and the flow of control are not written explicitly
when the transition rules are developed. Transition rules that describe the ‘run-time’
system activities are explicitly activated by other transition rules and do not have
the “working” check. For example, the liveness and reliability condition of the
communication medium, invokes the RECEIVE_MESSAGE transition rule. The
RECEIVE.MESSAGE transition rule does not check the working condition. This
will become clear when the transition rules are defined.

Certain components of the initial structure are composed of sub-structures. The
emphasis in this section is on the static structure reflected by a program. The
items we discuss are modules, structure to represent time, multiple clocks, clock
synchronization, temporal specifications and events. The dynamics of the program
is captured by the transition rules and is not discussed in this section. Before
describing the machinery on which the parse tree is based, we define a number of
finite sets constructed from the syntactical definition of the program.

5.3.1 Sets

A program in ARL consists of a collection of named modules. It is only natural
that we define a set MODULES representing the syntactic modules. Each element
of a parametrized module is considered to be a separate and different element of
MODULES. Subprograms are defined in modules, due to which we construct a set
SUBPROGRAMS containing the names of all subprograms in the system disam-
biguated in an appropriate fashion. This set can be partitioned into equivalence
classes with each class containing subprograms defined in a particular module. It
can also be partitioned on the basis of its effect class being either a efunction, func-
tion, observer or a procedure. Let E be the equivalence class obtained from the set
of all exclusive access lists in the program.

The set EVENT_TYPES contains all the event types defined in the program,
while the set CLOCKS contains the names of all clocks declared. The set VALUES
represents the union of all possible value domains. Assume the definition of sets like
INTEGER, REAL, CHARACTER and BOOLEAN which are subsets of VALUES.
Also defined are sets EXPR, the set of all expressions, EVHAN_SPECS the set
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of all event handler specifications, TEMPORAL.LABELS the set of of all labels
associated with the timing requirements. The set PTSK_LABELS defines the set of
labels associated with periodic tasks in the program.

The semantics uses other sets, which are defined when necessary so as to jus-
tify their need. We also define functions which are constructible from the syntactic
structure of a given program. These functions are based on the above defined sets.
A point worth noting is that these functions are static, i.e., do not change with
time. Later on we shall introduce what are called dynamic functions whose specifi-
cations undergo change with the passing of time. In other words, the specification
of the dynamic functions are affected by transition rules and they capture state
information.

A function MY_.MODULE: NODES — MODULES returns the module in which
the argument (which corresponds to a syntactic term) is present. A function VIS-
IBLE is defined as MODULES x EVENTS — BOOLEAN. It returns true if the
event type parameter is visible in the module for input. The event type is either local
to the module or it has been ‘withed’ and not restricted to output. A MODULES
indexed function SUBPR-SCOPE: SUBPROGRAMS — P(EVENT-TYPES) is de-
fined. It returns the set of event types that could activate the given subprogram.
This value is set of all event types that occur as parameters to the subprogram
used in the causal statements in the module. SUBPR-SCOPE is the universal (with
respect to the module) scoping function and not restricted to a specific causal state-
ment. In a later section, when we discuss the semantics of the causal statement, a
function which returns the scope of an event for a given causal statement is defined.

5.3.2 Structure of a Module

As an ARL program consists of a set of modules, which encapsulate various
other constructs, it is natural to start describing the initial structure of a module.
That is, the structure of the module defines the environment in which the program
operates.

The primary executable unit in a module is a subprogram, due to which the
execution of subprograms determines the dynamics of a module. As certain subpro-
grams can be executed in parallel, a module at any given time, can have multiple
threads (subprograms) of execution. Thus a parallel automaton is necessary to rep-
resent the behavior of a module. This parallel machine can be represented by a
set of automata (we consider them to be sub-automata.) However, parallelism in a
program can be restricted by the definition of exclusive access lists. The semantics
has to respect the mutual exclusion defined by these lists.
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Towards a formal definition of this, let M be a module and Ep be the set of
equivalence classes representing the set of exclusive access lists defined in M. Let
S = { p1, P2, --- Pn } be the set of all procedures and observers that are in any
exclusive access list in M. All procedures that do not occur in any of the explicit
lists form singleton sets in Ey. For Ey to be meaningful, all elements of Ey are
pairwise disjoint. In other words, no.p; can be in more than one set. Therefore
each element of Ey is an equivalent class, with up to one element in an equivalence
class being active at any given time. Let k be the cardinality of Ey. Therefore the
automaton representing the module has atleast k sub-automata. Let A’ = { a,, a,,
.. 2 } be the set of automata representing S.

It would appear that if one had an automaton per subprogram, the semantics
would be simplified. This however is not the case. The reason being that when an
automaton, corresponding to a subprogram, say p, is started, all the other automata
corresponding to subprograms in p’s Ey-equivalent class have to be disabled. This
is to respect the mutual exclusion specification i.e., atmost one of these can be active
at any given time. Transition rules for a procedure call would then involve disabling
the automata and at the end of the call, all the automata in the equivalence class
have to be re-enabled. Concurrent threads activated by procedures in an exclusive
access list have to be queued. Note that the queues associated with the automata
are not required to be FIFO. The exact handling of the queues, i.e., the selection
of which thread to activate, is left as a scheduling decision and is a parameter
to the semantics. So, no advantage is lost by considering a single automaton per
equivalence class. The single automaton can be thought of having a case statement
which branches out to execute the appropriate sub-automaton.

A’ by itself is not sufficient as S does not contain all the subprograms in the
module. Observers not mentioned in Ey and all functions can have multiple threads
active at a time and be executed in parallel. In order to model finite resources, an
implementation of the language usually bounds the number of threads that can be
active at any given time. The resource bounds can be represented by an integer
which indicates the maximum number of threads that can be simultaneously active.
This integer could vary from implementation to implementation depending on the
memory available, speed of the CPU(s) etc. and is to be treated as a parameter for
the semantics. Let the number of the threads allowed in a module be THREADS.
Let CURR-ACTIVE denote the number of threads that are active. An obvious
restriction is CURR-ACTIVE < THREADS.

As multiple threads of functions and observers are permissible, it is possible that
THREADS number of automata for functions/observers are necessary. To keep
track of the number of current threads started by a function, a dynamic constant
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LOCAL-THREAD is maintained with each instance of the subprogram prototype.
Clearly, LOCAL.THREAD < THREADS for all subprograms and for procedures
LOCAL.THREAD is always < 1.

Therefore the automata which simulates a module can be defined as A = A’ U
{THREADS copies of the each of the automata executing functions and observers
not represented in A’ }. In the initial structure, all the automata are in a ready
state and CURR-ACTIVE is 0. All the functions and observers have their LO-
CAL-THREAD set to THREADS (could be set to 0 without any major change.)
The ready state is explained in detail when the transition rules for subprograms are
discussed.

5.3.3 Time

The technique we adopted to model time is a generalization of the technique
described in [54). In [54] discrete time using a single clock is represented by a
structure C = (w, <, +). In the above structure, w is the set of natural numbers,
< the natural (and obvious) well ordering on w and + the successor operator. We,
having chosen to represent distributed systems using multiple clocks, cannot use
this simple structure. Our model cannot ignore the differences between single and
multiple clock systems as it is the sole feature characterizing distribution. To define
a suitable structure which represents multiple clocks accurately, we consider the
operations affecting the value of clocks 1) incrementing the value of current time and
2) clock synchronization. The meaning of incrementing can easily be represented by
a successor operator (denoted by +). However clock synchronization that invalidates
the simple structure.

In the single clock case, the clock value can be assumed to increase monotonically.
But since we are dealing with multiple clocks and have to model clock synchroniza-
tion it is inappropriate for clocks to satisfy the monotonic increasing condition. This
is because clock synchronization could ‘reduce’ the value of current time. This raises
the possibility that at two different points in time with respect to a reference clock,
a clock could read identical values. Therefore the clocks are piecewise monotonic.
Also the possible values of a clock does not form a set but a multi-set. A clock in
a distributed clock environment is modeled by a structure C = (w,, <, +). w. is
a multiset with preferably finite multiplicity. <. a well ordering on w,. An obvious
choice is be ordering the function on its domain. ‘+’ the increment operator. How-
ever the ‘+’ operator has to reflect clock synchronization. Every clock in the system
has a structure similar to the one described above.
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The various clocks can either be related abstractly by defining functions between
the various structures or operationally by developing transition rules to explain
the required relationships. The set of functions relating the various structures, is
described in the next section. For an operational description of a clock, we create a
unique process that simulates it. As a particular clock can be assigned to a particular
module it is also possible to have the process as part of the automata executing the
module. The operational view of multiple clocks in the form of transition rules are
described in a later section.

5.3.4 Multiple Clocks: Functional Relation

An important operation that needs to be supported is ‘knowing’ the time at a
remote site. Define a function called REMOTE_.TIME_FUNCTION to achieve this.
It takes three arguments viz., the clock name, time with respect to that clock and
the clock name whose time we wish to determine. As one is never certain of the
time at any remote site, a range of values representing the set of possible times (with
respect to the clock named in the first parameter of the function) is essential.

In a program, one could either deal with interval time or with point time. Though
point time is easier to use, there is a loss of information when converting from interval
time to point time. In this section, we define REMOTE_TIME.FUNCTION to
deal with point time and not a range. The discussion on ranges is presented in
section 5.6.1.

To arrive at a point notion of time, we define REMOTE_TIME_FUNCTION to
return an ‘average’ value within a range of integer values by using a function called
AVERAGE. The function AVERAGE is to be considered as an input parameter
to the semantics as we as language designers do not have sufficient information to
define it completely. Therefore, the semantics is not biased towards any particular
implementation.

To achieve a consistent relation between the various clock definitions we intro-
duce a meta clock (MC). The meta clock could be distinct from any other clock
defined in the system. It could also be equal to a clock defined by the program. The
first case will arise when one uses universal clocks like UTC to relate the various
clocks, while the second situation will arise when a clock in the system is designated
as the principal clock. To cater to both these cases, the initial value of MC is defined
to be 0 and its increment to be 1. Therefore, MC is w (the set of naturals) well
ordered the natural way.

Functions which capture the meaning of time as determined by multiple clocks
are defined. They are also parameters to the semantics in that we do not (and
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Figure 5.1. Remote Time Function

cannot) specify their precise behavior. However, we discuss the various constraints
on them. Define a CLOCKS indexed family of functions (: € CLOCKS) ¢; : MC
— (wi % w;) satisfying the following properties

- Vn e MCif ¢;(n) = [x,y] thenx < y
- if m < nthenVj € {1,2}: ¢i(m)(j) <;i ¢:(n)(§)

In the description above, [x,y] is to be interpreted as defining the range of values
of the clock i when MC reads n i.e. the range of values within which the value of
clock i lies. The first property requires the range to ‘good’ while the second property
requires both the first and second fields in the range of clock values to be monotonic
under the ordering <;.

Similar to the ¢’s, we define a CLOCKS indexed family of functions (i € CLOCKS).
These functions are like inverses for the ¢, i.e., map a clock value onto a range in
the domain of the meta-clock MC. 9; : w; —» MC x MC. If ¥i(x) = [a,b] then a =
min {y : x in $;(y) } and b = max {y : x in ¢(y) }.

As an example of the above consider ¢ to be { < 0,[0,0] >, < 1,[L,2] >,<
2,(2,3] >,<3,[2,4] >< 4,[8,4] >,< 5,[3,6] >, < 6,[4, 5] > }. Then ¥(3) = [2,5]

The behavior of the REMOTE_TIME_-FUNCTION can now be specified as
shown below. Its pictorial representation is shown in figure 5.1.

REMOTE.TIME_FUNCTION i tj = AVERAGE(min(cl,c2),max(d1,d2))
where

¢i(t) = [a'1b]’ ¢.i(a') = [CIadI]’ and ¢J(b) = [C2ad2]

5.3.5 Clock Synchronization

Clearly the behavior of ¢'s and the 3’s has to depend on the synchronization con-
structs used in the program. That is, they cannot be completely arbitrary functions
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but need to satisfy certain constraints. These constraints depend on the program in
question. We illustrate the constraints via an example. Recall that synchronization
of clocks C1 and C2 is syntactically expressed as auto (C1 >> n)(C2 := Cl1). An
descriptive meaning of the specification is: Every n ticks with respect to clock C1,
the current value of the clock C1 is copied into clock C2. This copying need not be
(and usually is not) instantaneous and hence there is an error associated with the
time indicated by clock C2. That is to say, when C2 is assigned the value from C1,
C1 would have changed its value. Let ¥; and ¢; be associated with clock C1 and
1, and ¢ be associated with clock C2. A plausible characterization of the delay in
clock synchronization is described below.

- Yk >0, 3 €nin such that 3;(k*n) C 21(k*n+e€min) and
- Vk >0, 3 €mqz such that 31 (k*n) C 21 (k*n+emaz)-

In the above notation 1; ; denotes the constraint on ; when synchronized with
clock j. See figure 5.2 for a pictorial representation of the constraint.

k*n +e_min k*n + e_max
vl
%

k*n 1

Figure 5.2. Clock Synchronization

The above requirement states that whenever there is a synchronization to be
performed (signified by k), there is a defined interval within which the actual syn-
chronization is achieved. The bounds on this interval is denoted by €, and €4z.
These parameters will depend on when the synchronization is being effected. That
is, the parameters are a function of n and k and other factors such as network char-
acteristics. The above constraints, define a relation between the various ®’s. In
other words the %’s are not independent.

The 1’s and the ¢’s have to satisfy the constraints imposed by all the clock syn-
chronization specified. Therefore 1; will be the outer envelope of all the individual
1;,;'s. Formally, let 9; ;(n) = [a;,b;] for all j. Then ;(n) = [ min{ a; }, max{ b; } ]

Notice that the ¢’s, the 1’s and the f’s are not completely defined and hence are

parameters to the semantics and are a part of the initial configuration. Also note
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that we have not prescribed a clock synchronization algorithm. We have only shown
how to characterize the effects of clock synchronization. The chosen algorithm along
with the network characteristic will determine the ¢’s and the 3’s precisely.

- 5.3.6 Temporal Ordering Consistency

Another important aspect of ARL is the presence of temporal constraints. For
each module, a data structure called the temporal_verifier is constructed. It stores
all the temporal constraints that have to be satisfied. It would be extremely inap-
propriate for the semantics to dictate the precise construction of the table. However
the table has to satisfy certain properties which can used by the transition rules.
These axioms define the table as an abstract data type.

Each entry consists of the name of the specification (i.e. an element of TEM-
PORAL-LABELS), type of first event its occurrence number and value, the clock
name with which to measure time for the first event, the type of the second event
and its occurrence number and value and the clock name associated with it, the
relation between the events and the numerical value associated with the relation
and whether it is the upper bound (denoted by atmost) or lower bound (denoted
by atleast).

Whenever a temporal specification is encountered (at compile time) in the pro-
gram, it is entered into the temporal.verifier. This table, fully constructed with all
the specifications, is a part of the initial configuration. Whenever an event occurs
the temporal_verifier is notified and it acquires the relevant information and performs
appropriate checks depending on the operators involved in the actual specification.
If the check fails it generates an event to signify temporal_violation. The exact na-
ture of the information acquisition and checks performed are governed by transition
rules which are described in a later section. For example, the specification

label: occur(e,*,v) wrt c1 before occur(f,i,$) wrt c2 atmost n

results in the entry <label, e, 1, v, cl, f, i, L, c2, before, upper.bound, n> being
added to the data structure. If an event of type e with value v occurs, the transition
rules to verifying the above requirement are activated.

5.3.7 Timer and Interrupts

To make a real-time system reliable and rugged, ideally, one should be able
to signal timing violations ‘as soon as possible.’ When a real-time language is
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implemented, timers are set to expire after a specified interval. The expiration of
the timer indicates that time has elapsed without the occurrence of the relevant
event. A realistic semantic model must be sensitive to timers. Note that this per se
does not specify any lower/upper bound on when a violation will be detected.

However, when timers are coupled with temporal specification verifiers, it is pos-
sible to generate ‘potentially incorrect’ (or not totally correct) warnings. Consider
the scenario where an event has actually occurred but the handler was interrupted
before entering the information into a data structure as a timer expired. The han-
dler for the timer expiration detects that the event has not occurred and signals a
temporal violation.

As we discuss later, our semantics maintains a table of events and their time of
occurrence. To avoid race conditions similar to the one described above, an event is
said to have occurred only when it is entered into the table and all timers waiting
on it reset. This is an acceptable definition as event occurrences are atomic.

To simulate a timer with operations of setting and reseting the structure asso-
ciated with the clocks has to be enriched. We define a timer to be a queue which
is sorted on time of ezpected events. That is, the first element in the queue is the
event which is ezpected to occur at the earliest, the second is the one is the next etc.

Define a timer T to a ordered sequence of type EVENT.-TYPES x INTEGER
x INTEGER x TEMPORAL_LABELS, with operations SET and RESET. Let
queue be an instance of 7. The ordering of queue is defined as Vi < j : Let
queue[i] = (e;,0;,t;,1;) and queuej] = (e;, 0;, t;,];) then t; < t;. Two procedures SET
and RESET with parameter type EVENT_-TYPES x INTEGER x INTEGER x
TEMPORAL_LABELS are defined. Assume they operate on instances of 7.

Assume for the moment that there is only one timer called queue and that SET
and RESET operate on it. SET(e,i,t,l) results in queue being altered such that Jj :
queuelj] = (e,i,t,]). In other words sets adds the entry to the queue. RESET(e,i,t,1)
results in queue being modified such that Vj : queue[j] # (e,i,t,]). As a shorthand
let top be defined as queue[l].

A timer, to function correctly, requires co-operation from the clock. The timer
is said to expire when the ‘current_time’ shown by the clock is greater than or equal
to the time field of top. When a timer expires it is as if “ generate (tempo-
ral_violation(l, timer_expired,e,i))” were executed. In other words, the expira-
tion of a timer is an indication of an occurrence of a timing error.

In the initial configuration, timers are set for all unary timing requirements
defined in the program. Timers will be set in certain binary cases as shall be seen
in section 5.6.
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5.3.8 Events

In ARL, events are the only form of communication between the various modules.
Recall, that events belonged to a group of elements called the event type. To
keep track of the occurrence number of each event, every instance of the event
prototype has a module indexed dynamic constant OCCUR_NO which indicates the
occurrence number of the next event. It is essential to have the constant indexed
by the set of modules, as different modules might handle/generate different events.
It is also necessary to keep track of all the events that have occurred. To do so
define for each module(denoted by M), a EVENT.TYPES indexed function called
M.EVENT.OCCUR: (POSITIVE ~ ( (VALUES x CLOCKS x POSITIVE) U {
1 })) where POSITIVE to be the set of non-negative integers. Given a module M
and an event type e, M.EVENT.OCCUR(e) is a function which when presented a
positive integer, to be interpreted as an occurrence number, returns the value and
time associated with it if the said event has occurred. If the specified event has not
occurred 1 indicating undefined is returned.

For example, let e :: arbiirary-type be such a declaration. M.EVENT.OCCUR(e)
is a function from POSITIVE to ( arbitrary_type x CLOCKS x (POSITIVE U { L
})). One can use arbitrary_type instead of VALUES as the programs are assumed to
be type correct. In the case when a type error is detected, the program terminates
with an appropriate error message. Note that type errors can arise because of
heterogeneous types.

A natural restriction on EVENT_OCCUR which forces the occurrence number
to be assigned in order is:

VM € MODULES and e € EVENT_TYPES :
if M.EVENT.OCCUR(e)(n)=.L then
M.EVENT-OCCUR(e)(n+1)=L

For example, let M.EVENT.OCCUR(e)(20) be L. and M.EVENT_OCCUR(e)(19)
be not L. The above constraint forces the occurrence number of the next event to
be less than or equal to 20, e.g., 21 is disallowed. The less than (i.e. reusing an occur-
rence number) is avoided by choosing the minimum k such that M.EVENT-OCCUR(e)(k)
is L.

At the start of the program, no event has occurred in any module due to which
M.EVENT_.OCCUR(e) returns undefined (or .L) for all modules, event types and
integers i.e.,

VM € MODULES, i>0, e € EVENT_TYPES: M.EVENT.OCCUR(e)(i) = L.
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Summary

This concludes the discussion of the initial structure. To summarize, it consists
of a set of automata which represent the subprograms. If possible the behavior
of the various clocks and their synchronization is captured by the ¢’s and t’s with
appropriate constraints. Data structures to store timing requirements and the events
that occurred are also defined. In the next section certain assumptions about the
environment in which the programs operate are discussed.

5.4 Prelude to Transition Rules

Having described the initial structure of the various elements of the language,
we are almost ready to discuss the transition rules. However, one cannot discuss the
meaning of programs in vacuum. The behavior of a program depends on its inter-
action with the environment. This is especially true in the case of real-time systems
which try to maintain some harmony with the environment. Different behaviors
will be elicited by different environments. For a program to execute ‘correctly’, the
behavior of the environment must be well defined. These assumptions about the
environment describes what the language expects the nature of the external world
to be.

5.4.1 Environment

The conditions discussed below, specify the behavior of the environment in which
all programs execute. While we use temporal logic to specify the behavior of the
environment, it can be translated into first order logic to be consistent with our
definition of dynamic algebra. The environment constitutes of the behavior of the
program defined clocks and the message system. Note that we cannot characterize
all types of environment here and what follows is to be considered as a example.

A clock defined in the program has to be incremented at a regular frequency by
all implementations. Otherwise the intuitive definition of a clock is lost. Thus we
require that the clocks actually tick, which is specified in temporal logic as

Axiom 5.1 VC € CLOCKS Vn € w: ¢ (C.current_time > n)

In the above axiom, ‘current-time’ is a dynamic constant which is modified by
the clock to indicate the passage of time. The axiom requires that a clock can always
attain a time which is greater than any constant there by forcing it to tick.
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As discussed in chapter 4, there are two possible interpretations to the clock
definition. One was the notion of frequency and the other was the notion of clock
resolution. The axiom(s) governing the behavior of clocks depends on the assump-
tions made. Under all circumstances, the axioms defined in section 4.2.2 hold.

If the notion of frequency is chosen, and if the mapping of the logical clock onto
a hardware clock is assumed, all clock increments must not be slower than any other
task that can be performed. This is to give a realistic picture of hardware clocks.
Since the basic task is computation of expressions, the following condition that clock
'incrementing is no slower than expression evaluation, also needs to hold.

Axiom 5.2 V C € CLOCKS V e € EXPR: O((C ~» C+INCR(C)) not after un-
eval(e) ~» eval(e)).

~+ is a causal relation derived from the transition rules by iteration (Kleene *).
a~» b can also be interpreted as a is true before b and b eventually becomes true.
The above formula requires all clocks C to attain its next value (i.e., be incremented
by INCR(C) ) no later than the time when expression e is completely evaluated.
The axiom for the resolution case was discussed in section 4.2.2.

As the basic form of communication (between modules) in the language is asyn-
chronous, the semantic model also needs to assume only an asynchronous paradigm.
We assume a simple send-receive paradigm for communication. Note that the lan-
guage does not define the topology of interconnection between the various modules.
As we are considering dynamic structure semantics for the language, the topology
of the network can be used as a parameter. The behavioral restrictions dictated by
the topology can also be specified axiomatically when specifying the behavior of the
environment As our immediate goal is only to define semantics for the language,
we do not wish to characterize the internal details of an unreliable communication
medium. Unreliable communication can be modeled by having additional axioms
to the basic set of axioms discussed below.

Towards the specification of a channel define MESSAGES to be set of messages
that can be transmitted. This channel characteristic is specified by

Axiom 5.3 V mess € MESSAGES, N € MODULES, Y M € MODULES:
N.SEND_MESSAGE(mess) — ¢ M.RECEIVE_MESSAGE(mess).

The above specification requires that all message which are sent will eventually
arrive at oll modules. The above rule can be optimized by identifying modules
which do not needing the message and not sending the message to them. The
protocol used and whether the transmission required error detection and multiple
sending is irrelevant at this stage as communication medium characterization is not
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the primary goal of this research. However, we would also like the communication
medium not to generate any spurious (or duplicate) messages. This can be specified

by:

Axiom 5.4 VMEMODULES: M.RECEIVE_MESSAGE(mess) —
IM’€MODULES: M”.SEND_MESSAGE(mess) before
M.RECEIVE.MESSAGE(mess)

As mentioned earlier, the set of axioms defined here are by no means complete.
They only demonstrate the power of dynamic algebras. Any other environmental
parameters that are deemed necessary can be used in a similar fashion.

5.5 Transition Rules

The transition rules for each syntactic entity in the language can be developed
now. Before doing so, we explain briefly how to interpret the rules. All transition
rules have two parts to them: an antecedent and a consequent. The antecedent
will be a boolean test and the consequent a set of statements to be executed. If
the evaluation of the test results in true the consequent is activated and executed.
The antecedent part of the transition rules will be omitted where it follows the
structure described in section 5.3. The transition rules also need to satisfy a liveness
requirement, so that the rules actually execute. We shall assume that they are a part
of the semantics and shall not state them explicitly here. The transition rules for all
the language constructs viz., time, events, temporal specification and subprograms
are discussed in the following sections.

5.5.1 Time

In ARL, the notion of time is defined by a program itself instead of a reference
to an external notion of time. This notion of time is obtained by using clocks.
All clocks defined in a program have two main fields viz. the initial value and an
increment value. Semantically every clock (for example clk), which is an instance of
the prototype clocks, has a dynamic constant called current_time which keeps track
of the current time. It is updated periodically, at a rate consistent with the axiom
governing clock increments. The speed of increment is governed by the environment
axioms and the liveness conditions of transition rules. The following assignment
statement characterizes clock increment.
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current-time := current.time + INCR(clk).

5.5.1.1 Operational Relation Between Multiple Clocks

When discussing the initial structure, we assumed that clock indexed functions
such as the ¢; and 9; could be defined with respect to some meta-clock. But it is not
obvious that such functions could easily be defined. Those functions were defined
to give a mathematical feel for a multiple clock system.

In this section, we present a purely operational semantics for relating the various
clocks in the system. In fact the presentation of the purely operational definition is
much simpler as there are no assumptions and there is no need to explain various
function characteristics and justify why it is reasonable to assume a certain behavior.
But the drawback of this scheme is that the behavior of the various clocks has to be
derived from the transition rules. Also the operational description must be general
enough so that it can enable the characterization of various schemes to synchronize
clocks. '

5.5.1.2 Transition Rules Relating Multiple Clocks

A few words about the approach we take to keep track of remote time are in
order. There are two operations that need to be described to fully explain the
relation between the various clocks. The first operation involves storing times which
are equivalent. For example, when clock cl reads t one should know what the
associated value with clock c2 is. This mapping is used by the transition rules
defining the meaning of the temporal constraints. This use will become apparent
when we consider the following timing requirement.

occur(e,i,v)wrt cl before occur(f,j,w) wrt c2 atmost n

As the programmer cannot specify the assignment of clocks to syntactic units, the
meaning of the above statement must be defined so as to be independent of the clock
it is assigned. Assume that a clock ¢ be associated with the timing requirement.
It seems inappropriate for one to wait till the ith instance of event e occurs (say
at time t as measured with respect to c) to send a message to clock cl to find out
the time corresponding to t. It would be better if one had a map which could be
consulted as the result is obtained quickly. This is true if ‘n’ were small and the jth
instance of f occurred before the value corresponding to t were obtained. In such a
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case the delay in signaling a possible violation could be unacceptable. Note that the
actual value returned by either strategy does have an associate error which cannot
be eliminated completely. Hence a map between various clocks is constructed by
periodically sending out a message requesting time and storing a value dependent
on the returned result.

The second operation in a system with multiple clock is to return the requested
mapping from one clock to another. It involves a look up and if the correspond-
ing value is not present, some interpolation (or extrapolation) is done. Towards a
precise formulation of the above remarks, define two message types CLK_-VAL and
CLK_RESP. CLK_VAL indicates the message is requesting the clock value, while
CLK_RESP is the acknowledgement to that and associated with it is the clock value
(an integer). The polling for remote time is specified by

V Cin (CLOCKS - { MY_SELF }): [ SEND_-MESSAGE(CLK_VAL,C)
sent_time[C] := MY_SELF .current_time ]

The above rule sends a message to all other clocks requesting their time. The
time when the message was sent is noted. The frequency of the execution of this
rule is also governed by the liveness axiom for this rule. The SEND.MESSAGE
causes RECEIVE_MESSAGE to be executed by the receiving module. On checking
that it is a request (CLK_VAL) to it (MY_SELF) the receiving clock sends a reply
as follows.

if RECEIVE.MESSAGE(CLK_VAL, MY.SELF) then
REPLY_MESSAGE(CLK_-RESP, MY_SELF,current_time)

This message is received only by the original module, as the response was sent
as a REPLY. The original module executes

if RECEIVE_MESSAGE(CLK_RESP,C,T) then
ADD.TO-TIME.TABLE(C, ESTIMATION( current-time, sent_time[C]), T)

As message passing time could be significant, the time returned would have
been attained somewhere between the time the message was sent and the time the
message was received.

In the above rule ADD.TO_TIME_TABLE is a function which stores the entry
in a data structure for retrieval. ESTIMATION is a function which calculates an
‘average’ value for the local time. The function ESTIMATION takes in two argu-
ments and returns a value. The type of value returned depends on the nature of
time necessary. If a single integer value represents time, the function returns an
integer. Otherwise an interval is returned. This value represents an estimate of the
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sent_time[C}

ESTIMATION T =C.cumrent_time

current_time

Figure 5.3. Remote Clock Values Estimation

local time. The returned value is then stored in the table. As message passing time
depends on the underlying hardware/network, the semantics does not prescribe an
estimation function and ESTIMATION is a parameter to the semantics. A plausible
ESTIMATION function for an integer time characterization is

(current_time + sent_time[C])/2

with the assumption that message passing takes approximately the same time either
way and the mid point is a better estimate of what the local time was when the
remote clock read the returned value. This is shown in figure 5.3.

Now to define REMOTE_TIME_FUNCTION, a function which allows one to
project time with respect to other clocks. Recall that REMOTE_TIME_FUNCTION
takes a clock and time with respect to it as the first two arguments. The third
argument it a clock whose time is to be determined.

REMOTE._TIME_FUNCTION C1 t C2 = V
where X = INTERP_FROM(C1,t) and V = INTERP_TO(C2,X).

In the above definition, INTERP_.FROM and INTERP_TO are interpolation
functions. They also are to be treated as parameters to the senantics.

We present an example of these functions below. To define IN TERP-FROM(C,
T), let TO be the largest value in the table with respect to clock C (used by
ADD-TO-TABLE) less than or equal to T and T1 be the smallest value in the
table with respect to clock C greater than or equal to T. If T1 is not defined, let T0
be the second largest and T1 to be largest values in the table. TO and T1 represents
the range within which T lies. Let the corresponding values with respect to the
local clock be AQ and Al respectively. INTERP.FROM(C,T) is defined as

if T=T0 then
return A0
else

return A0 + [ (Al - A0)(T-T0)/(T1 - TO) ]
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INTERP.TO(C,T) behaves similarly but maps onto clock C instead of from C.
Note that the above definition of the interpolation function, a point time value
characterization is assumed. For an interval characterization of remote time, the
functions INTERP_FROM and INTERP_.TO can be defined by interpolating the
start and the end of the interval.

The rest of the behavioral rules use REMOTE_TIME_FUNCTION and are un-
affected by the type of characterization. That is to say, it is independent on the
way multiple clocks are defined. This concludes our discussion on how to read time
from a remote clock.

The other activity involving multiple clocks is clock synchronization. Recall, that
associated with the prototype for clock synchronization were functions SYNCER,
SYNCED and SYNCINT. There are two transition rules for this prototype one as-
sociated with SYNCER and the other with SYNCED. The SYNCER has a dynamic
constant old-sync-time which represents the the last time a clock synchronization
was effected. The transition rule executed by SYNCER is

if [ (current_time - old_sync_time) > SYNCINT ] then
old_sync_time := current_time;

SEND.MESSAGE(CLK_SYNC, SYNCED, old_sync_time)

The SYNCED clock has no dynamic constant but executes the following transi-
tion rule

if (RECEIVE.MESSAGE(CLK.SYNC, MY_SELF, T) then
current_time := SYNC_FUNC(T)

The function SYNC_.FUNC returns a time based on its argument, which accounts
for network time and other errors and is a parameter to the semantics.

The transition rules described above can be extended to handle broadcast syn-
chronization (messages from N clocks) before deciding when to synchronize and the
value after the synchronization. Such schemes are discussed in [51, 80]. Recall that
the syntax for such a scheme is auto ( id [, id] : expr ). These schemes can be
abstracted by the following transition rules. The rules consist of two parts. One, is
to broadcast its time after the synchronization interval has elapsed. This is captured

by

if [ (current_time - old_sync_time) > SYNCINT ] then
old_sync_time := current.time;
VY C € B.SYNCED(MYSELF): SEND_MESS(B.CLK-SYNC, C, MY_SELF,
old.sync.time)
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In the above rule, B.CLK_SYNC, represents that broadcast semantics is used,
while BSYNCED(C) is the set of clocks which are kept in synchrony with C. The
message is stored by the receiving clock(s). When ‘sufficient’ information has been
received by the clocks (signified by a function called SUFF returning true), the time
is updated. The transition rules for updating the clocks are as follows.

if (RECEIVE-MESS(B.CLK_SYNC, MY_SELF, C, T) then
GOT.FROM := GOT_FROM U {C}
TIME_FROM|C] := [ T, current.time |

if SUFF(GOT-FROM) then
(current.time := SYNC_.FUNC(TIME_FROM))
GOT_FROM := {}

5.5.1.3 Discussion

The main advantage of the transition rules based characterization over the func-
tion based approach is that it is a purely operational. Hence a semantics driven
compiler can be implemented directly. The implementor need not provide any func-
tions to be used in determining temporal violations due to which the implementation
need not check for validity of the functions during the course of execution.

The disadvantage is that for temporal analysis the relevant functions must be
constructed. This is because it is usually easier to do an analysis using functions
than using transition rules. At this point, it is not evident that functions can easily
be derived from the transition rules without further assumptions.

5.5.2 Events

Events have a many fold use in the language. They can be used to specify any
asynchronous behavior and communication aspects of distributed real time systems.
They also form the basis for the timing requirements imposed on the system speci-
fied. This important role in the language requires one to develop the theory of events
in complete detail. Recall that one actually defines event types and instantiates a
number of events of that type. Recall also that an event type declaration is of the
form event_name :: type, where type is a data type defining the set of values that
can be associated with the value field of an instance of the event type.

To assign an occurrence number to the an event that occurs in a module, an
EVENT_TYPES indexed dynamic constant called OCCUR.NO is maintained. For
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example, if E is an event type, E.OCCUR-NO is the integer to be used as the
occurrence number for the next event of type E. To keep track of event occurrences,
an MODULES x EVENT_TYPES indexed function EVENT_-OCCUR was defined.
For an event type and an integer namely the occurrence number, EVENT_OCCUR
returned the value and time associated with the event if the event has already
occurred, returning L otherwise.

Events are generated by executing a generate or the reply command. These
statements take an event type and a value of the appropriate type as arguments.
The effect of generate is to inform all modules which can handle the event, that
the event with the associated value has occurred, while the effect of reply is to
send the message only to the module that generated the event that caused the
activation of the current thread. When a module detects an event occurrence,
all relevant subprograms in the causal statements are activated. All the relevant
temporal constraints are also checked.

There is a prototype associated with the generate statement. Let p be an
instance of the generate prototype. Let e stand for GEN_NAME(p) and v stand
for GEN_VALUE(p). Define a message type EV_.GEN to denote event generation.
A message of this type has associated with it the module name of the destination,
the source module name, the type of the event and the value associated with the
event. When p is to ready be executed (i.e., the event is to be generated), the
following transition rule is executed

VM € MODULES such that VISIBLE(M,e) :
SEND_MESSAGE(EV_GEN,M, MY_MODULE(MY_SELF),e,v)

The above rule, sends an event generation message to all modules which can
handle the event (denoted by M) with values e and v. The sender identifies itself
as the originator of the message. This is essential in the case when the responder
for this event used the reply command. The transition rule for the reply prototype
with e the GEN_-NAME of the prototype and v the GEN_VALUE is

SEND_MESSAGE(EV_GEN,REPLY.TO,MY_MODULE(MY_SELF),e,v)

The parameter REPLY.TO is the name of the unit (event from a module, a
causal statement or a periodic task) which caused the activation of the current
thread and is set when a thread is activated. If REPLY_T'O is undefined, the reply
statement executes the rule associated with the generate prototype. Therefore, the
transition rule for the reply prototype is

if REPLY.TO = 1 then
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V M € MODULES such that VISIBLE(M,e) :
SEND_MESSAGE(EV_GEN,M,MY.MODULE(MY.SELF),e,v)
else
SEND_MESSAGE(EV.GEN,REPLY_TO,MY..MODULE(MY_SELF),e,v)

Due to the liveness requirement of the communication medium, RECEIVE-
-MESSAGE will be executed by each module to whom the message was sent. The
action subsequent to the execution of RECEIVE_MESSAGE is described by

if RECEIVE_MESSAGE(EV_GEN,M,FR_PK e,v) & ( M = MY_SELF) then
EVENT_HANDLER(FR_PK ,e,v);
TEMPORAL_CHECKER(e,v)

The procedure EVENT.HANDLER stores the event value and time of occur-
rence in a table, while TEMPORAL_-CHECKER performs consistency check of the
temporal specifications involving the event. The semantics of EVENT_HANDLER
are discussed in the next section while the rules specifying the behavior of TEM-
PORAL.CHECKER are discussed in section 5.6.

Before discussing the semantics of EVENT_-HANDLER, the event along with
other information like the time of occurrence needs to be stored in a table. The
first step towards this is measuring the time and storing it in a temporary variable,
i.e., temp 1= current_time. The actual storing is achieved by changing the dynamic
function EVENT-OCCUR to a new EVENT_OCCUR called EVENT_-OCCUR! for
definitional purposes. Recall that EVENT_OCCUR keeps track of the events, their
values and time of occurrence. Towards the definition of EVENT-OCCUR’, define
k to be E.OCCUR-NO. If occurrence numbers are assigned in order, E.OCCUR-NO
has to be the minimum integer such that EVENT_-OCCUR(e)(k) = L. The new
EVENT.OCCUR is defined as follows.

(v, clock_assign(M),temp) ifn =k

’ —
EVENT-OCCUR'(e)(n) = { EVENT.OCCUR(e)(n)  otherwise

In essence, EVENT_OCCUR(e) is a structure which stores the information as-
sociated with every event occurrence. The occurrence of an event results in it being
updated in the natural way. Following the modification of EVENT_-OCCUR, the
OCCUR-NO is incremented by 1.

5.5.2.1 Event Handler

Having stored the event, its handler(s) i.e., subprograms (identified in causal
statements) waiting for the event to occur are to be activated. This is achieved
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in two steps. The event value is first queued on each of its handlers. This is to
take care of the situations when the handler could be in the passive state for some
time or was taking more time than the event generation rate. In either case it may
have a backlog of events to be handled. When an event is ready to be handled, it
is promoted to a queue associated with the subprogram. This is essential as it is
possible that no permissible thread of control is available to execute the required
invocation and the automaton corresponding to the subprogram cannot be activated.

To formally specify this, more definitions are introduced. For semantical pur-
poses, we label uniquely each subprogram in every event handler statement. This
set of labels called EVENT_LABELS, is disjoint from the labeling of timing re-
quirements. Another set CAU_.LABEL is defined to identify the CAUSED, in all
handlers. The set PTSK_-LABELS defines the set of labels associated with periodic
tasks in the program.

Associated with every instance of the subprogram prototype is a dynamic con-
stant WHO.CALLED which indicates who called the subprogram. This is neces-
sary to provide the correct semantics for the reply statement. WHO_CALLED
takes a value in the set EVENT.LABELS U PTSK_LABELS U SUBPROGRAMS
U CAU_LABEL. If WHO_CALLED is an element of SUBPROGRAMS it is an in-
dication that the subprogram was called by some other subprogram and not via
an event occurrence or a periodic task. An event invoked subprogram call sets the
WHO_CALLED to the appropriate EVENT_-LABEL. A periodic subprogram call
has its WHO_CALLED as an appropriate element of PTSK_LABELS.

Also defined is a function EVHAN_STATE, for event handler state, with one ar-
gument from EVENT_LABELS and returns a value in the set { active, inactive,
passive }, ie., it returns the state of the subprogram in a given event specifi-
cation. Furthermore, define a function EVHAN.ID to be a routine, which when
presented a subprogram a causal statement and an event returns an element in
EVENT_LABELS identifying the subprogram EVHAN.ID can be typed as causa-
tion X subprograms x event_types — EVENT_LABELS. Also define a function
PROC: EVENT LABELS — SUBPROGRAMS to return the subprogram associ-
ated with an event label. Note that CAU_ID is different from EVHAN_ID as CAU_ID
returns an CAU_LABEL when presented a causal statement.

For example, let p(e),q(f) causes r(e,f) be a causal statement. Call it spec for
the purpose of explanation. Define the set EVENT_LABELS to contain Lab_p_e
and Lab.q-f, such that EVHAN_ID(spec,p,e) is Lab_p_e and EVHAN_ID(spec,q,f) is
Lab_qf. PROC(Lab_p_e) is the subprogram p and PROC(Lab_q.f) is the subpro-
gram q.

Let {gi(e;)} be a typical specification to handle events i.e., an instance of the
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prototype causation. Assume one of the ¢;’s is e. The following transition rules
describe the behavior on the occurrence of an event of type e. For the purpose of
explanation assume the specification to be labeled spec. Recall that EVENT-SCOPE
was defined as a function from causation x EVENT_TYPES — P(subprograms).
For a given specification and event type, it returned the set of subprograms which
could be activated. The transition rule governing the behavior of causation under
an event of type e is presented below.,

Y g € EVENT_SCOPE(spec,e): ADD_-TO_LIST (el,(v,FR-PK))
where el = EVHAN_ID(g,spec,e)

In order to have a complete and precise semantics one must specify the transition
rules governing the behavior of ADD_TO_LIST. If one is to define transition rules
for ADD_TO-LIST a specific data structure must be used. It is inappropriate for the
semantics to dictate specific data structures and we refrain from providing transition
rules for ADD_TO_LIST.

An additional reason for not defining the exact semantics, is not to define the
order in which the events are to be handled. This flexibility provided to an imple-
mentation allows it to choose a program dependent (possibly intelligent) scheduler
to generate a schedule which could reduce the number of temporal violations. The
nature of scheduler should and will determine the exact nature of ADD_TO_LIST.
Each module might require its own scheduling policy and hence might have its own
version of list manipulating routines. For example, an implementation may assign
priorities to each event and maintain a priority queue. On the other hand a simple
scheduler might maintain a FIFO queue.

However, ADD_TO.LIST cannot be left completely undefined. Intuitively, ADD-
-TO.LIST adds an element to an existing data structure. The first argument iden-
tifies the data structure and the second indicates a value. Axioms governing the
data structure and operations have to be defined. We develop these axioms after
all the related operations on the data structure in question have been defined. To
make the semantics complete, the set of all ADD_TO_LIST’s can be considered to be
parameters for the initial configuration. In other words, the meaning of a program
is indexed by the specification of ADD.TO_LISTs.

Two items are discussed in the following paragraph. The first being the execution
of the subroutine on the occurrence of an event, the other being the activation of
the right hand side of the causes relation when all the elements on the left hand
side are passive. We present the transition rules for these in order.

Having placed the task on the event handler queue, our concern in this section
is to promote it to the subprogram queue. As this should be done only one at
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a time, we use the state inactive to indicate that the handler is waiting for the
subprogram to return before the next event can be handled. The transition rules
regarding subprogram calls are defined in section 5.6.2 and will describe the complete
behavior.

Vel € EVENT_LABELS such that EVHAN_STATE(el) = active:
EVHAN_STATE(el) := inactive
ADD_TO.LIST (Q-LAB(PROC(el)), (v,FR-PK,el))
where REMOVE_FROM_LIST(el) = (FR_PK,v)

In the above rule, Q_LAB is a function identifying the data structure for the ap-
propriate subprogram (identified by PROC of the event label). Just as ADD.TO_LIST
was not specified completely, REMOVE_FROM_LIST will also not completely spec-
ified. It will be considered as a parameter to the semantics. Its effect is to remove
an element from the data structure into which it was added by ADD_.TO_LIST.

The conditions that ADD_.TO_LIST and REMOVE_FROM_LIST have to satisfy
are given below. They are stated in terms of pre and post conditions with an
additional requirement that the statement terminates. The notation for the axioms
is the precondition followed by a horizontal line followed by the statement followed
by another horizontal line followed by the post condition.

Define £ to be the data structure operated upon by ADD.TO_LIST and RE-
MOVE_FROM_LIST. Let t be a sequence and a typical instance of £. Let T
= {1i: tfi] =y } ie, all the elements of the structure with value y. Let I’
be the value attained by Z after executing the relevant (ADD_TO_LIST or RE-
MOVE_FROM_LIST) procedure. Let | S | denote the cardinality of set S. The
properties satisfied by the routines ADD_TO.LIST and REMOVE_FROM_LIST are

|Z| =N
Axiom 5.5 ADD._TO_LIST(t,y)
[T =N+1
0 < |I|=N & REMOVE_FROM.LIST(t)=y, where (y =t[j])j €T
Axiom 5.6 REMOVE_FROM.LIST(t)
I'=1-{j}

The first axiom requires that ADD_TO_LIST results in the element being added
to the data-structure, while the second axiom requires that REMOVE_FROM_LIST
actually deletes the element from the queue.

Before exiting each subprogram checks the corresponding WHO_-CALLED. If
WHO_CALLED is an element in SUBPROGRAMS or PTSK_LABELS, the subpro-
gram terminates as usual. If it belongs to EVENT_LABELS, the called subprogram



136

sets the state of the subroutine of the appropriate label to either active or passive
depending on the value of the computation. If the subprogram activation was due to
the right hand side of a causal statement (belonging to the causation prototype),
which is indicated by the value of WHO_CALLED in CAU.LABEL, and if the value
to be returned is not true, an event of type disaster is generated. The transition
rules for this is discussed in section 5.6.2.

Having discussed the activation of the left hand side of the causal statement,
we discuss the activation of the right hand side of the causal statement (say spec).
The right hand side is activated when all the subprograms on the left hand side
have become passive. The execution of the right hand side is nothing but queuing
a request to the appropriate subprogram. The transition rule to activate the right
hand side is as follows

if [V e € CAU_EV(spec) & V g € EVENT_SCOPE(spec,e):
EVHAN_STATE(EVHAN._ID(g,spec, €)) = passive ] then
ADD_TO-LIST (Q-LAB(CAUSED(spec))), ( E-PARAMS (spec),
CAU_LAB(spec), CAUID(spec))

The antecedent of the rule checks that all the handlers in the causal statement
are in the passive state. If so, the right hand side (also a subprogram, denoted
by Q-LAB(CAUSED(spec)) ) is activated by placing a request onto the queue of
the appropriate subprogram. The use of CAU_LAB(spec) (in the WHO_CALLED
field) indicates that the semantics of the reply statement if used is the same as
generate statement. This is because the subprogram invocation is not due to an
event occurrence but rather due to a causal statement. This concludes our discussion
of event generation and handling. In the next section we discuss the semantics of
temporal constraints which are constructed using event types.

5.6 Transition Rules for Temporal Requirements

A real-time language must necessarily have features to define timing require-
ments which are to be satisfied by the program. Such features were discussed in
chapter 4. The semantics of these timing requirement statements have to be defined
with care, if the work has to be the basis for a model of real time computation. We
define two types of semantics for the temporal constraints as we had two kinds of
definitions for time. The first is assuming a point definition of time, i.e., using the
‘AVERAGE’ function. The second style defines the meaning of operators using an
interval meaning of time. In this section we describe in detail the transition rules
associated with the various timing specifications using the point definition of time.



137

The timing constraint checking is a process involving a number of data structures.
Once again, we shall not specify the exact nature of these data structures but define
them in terms of the properties they satisfy.

As the temporal specifications involve events, we define a data structure com-
posed of events. Recall that events belonged to a type. Each event also has a
instance (or occurrence) number, a value and time of occurrence associated with it.
Towards the formalization of the above, define a type EV_.TAB as EVENT_TYPES
x INTEGER x VALUES x CLOCKS x INTEGER. The first INTEGER field in-
dicates the occurrence number while the second INTEGER represents the time as
measured with respect to the CLOCK field. The function EVENT_OCCUR defined
before returns an element of type EV_TAB.

The temporal checker needs to identify all the events which are ‘relevant’ to it.
For example, an event of type e, with value v is relevant to a timing specification
involving occur(e,*,v) and is not relevant to a specification involving occur(e,*,w).
Towards the characterization of the above, define an operation GET-EVENT_ENTRY.
Its parameter is an element of EVENT.TYPES x (INTEGER U { L}) x (VALUES
U {1}) and the value returned by it are elements of EV_TAB. The L in the above
definition represents unspecified. GET_.EVENT_ENTRY returns the set of events
which match the input parameters. Essentially, GET_EVENT.ENTRY returns a
subset of an appropriate projection of the function EVENT_OCCUR. This is stated
axiomatically as follows.

Axiom 5.7 GET_.EVENT.ENTRY (f,j,val) = S where
V 7,y <fjval,z,y> € S iff EVENT_OCCURy (j) = (val,z,y)

Axiom 5.8 GET_.EVENT.ENTRY (f,,val) = S where
Vu,z,y,w <fu,val,z,y> € S iff EVENT_-OCCUR; (v) = (val,z,y)

Axiom 5.9 GET.EVENT_ENTRY (f,i,) = S where
Vu,z,y <fiu,z,y> € S iff EVENT.OCCUR; (i) = (u,2,y)

Axiom 5.10 GET_EVENT_ENTRY (f,,) = S where
Viw,z,y <fi,w,z,y> € S iff EVENT_-OCCUR;(z) = (w,z,y)

In the first axiom, all the three parameters to GET.EVENT_ENTRY are defined.
Thus the event to be returned is completely defined. GET_.EVENT_ENTRY returns
a null set if the event in question has not occurred. In the second case, the instance
number is left unspecified. GET_-EVENT_ENTRY returns all events of the specified
event type that have the value ‘val’, In the third case, the ith instance of the specified
event type is returned, while in the last case, all events of the specified type are
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returned. These axioms essentially state that the function EVENT-OCCUR is a
memory and GET_EVENT_ENTRY returns the set of relevant elements which have
already occurred.

The temporal checker also needs to know when an instance of an event type
occurred. Towards this, define a function TIME_OF of type EVENT-TYPES x
INTEGER x CLOCKS — INTEGERS. It returns the time a specific event occurred
with respect to a specified clock and is defined as follows

TIME_OF(e,i,c) =t
where
<e,i,v,c’,t’> € GET_LEVENT_ENTRY(e,i,)
if c=c’ then t=t’ else
t = REMOTE.TIME_.FUNCTION(¢’, t,’ c)

Transition Rules

Having discussed the functions used by the transition rules, we describe in detail
the rules for the temporal checker. There are two sets of transition rules per type
of timing statement. One set of rules deals with the occurrence of the first event,
while the other deals the the occurrence of the second event. Recall that for all
modules M, an event occurrence results in the incrementing of e’s occurrence number
and storing the event value and the time of occurrence via modifying the function
EVENT_OCCUR.

As there are two sets of transition rules per specification type, it is possible to
detect violations at two places. Due to this it is conceivable that two violations for
the same misordering of events be signaled. For example, if e is required to occur
before f and if it so happens that f occurs before e, the transition rules handling the
occurrence of f will detect an error as e has not yet occurred. Similarly the transition
rules for event e could detect an error that f has already occurred. Such multiple
detection of the same violation can easily be avoided by performing the check only
in an event due to occur later. In the above example, if the ordering check were
performed only in the rules associated with f, the violation will be detected as soon
as it occurs. Also, the violation will be signaled only once.

At this point is not clear if multiple detection is useful or harmful. However, it is
conceivable that certain programs might require multiple detections. The program
might wish to know all points where the events involved in the error occurred. The
above discussion points to having two types of semantics viz., maultiple and single
error detection.
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Another important issue related to temporal violation is the question of when to
set the timer for the binary operators. Based on our current semantics, a temporal
violation is valid only if the cvent number and the value match. Consider the

specification

I: occur(e,i,v) wrt cl before occur(f,j,w) wrt c2 atmost n

If the ith occurrence of event e had value v, should the timer be set for the jth
occurrence of event f even though we are not sure about the value? In the case
when the value did happen to be w and we did not set the timer, we would have
missed signaling an error early. However it is also possible that the timer was set
and it expired signaling an error for which a recovery action was taken. Later when
the jth occurrence of event f occurred it was discovered that it did not have value
w. Should an ‘undo’ of the recovery action (now determined to be spurious) be
performed or should it be ignored? It is not clear that chosing not to set the timer
is any better. In case the jth event never occurred, say due to an infinite loop, we
would have missed an opportunity to detect a potential violation.

It appears that these questions can only be answered by considering the needs of
an application. Different answers will lead to different languages. One can consider
the syntax presented to define 4 languages viz, multiple, always, multiple, certain,
single, always and single, certain. The difference in the languages is dictated by the
semantics. In this thesis we present the transition rules for one of the languages,
namely multiple detection and always setting the timer. The rationale being the pro-
grammer can always chose to ignore the types of violations perceived to be spurious
by specifying a null handler. To explain other elements in the class, the semantics is
a straight forward extension of the one defined here. It is also possible to augment
the language with compiler directives which gives the programmer the choice over
the semantics. This issue however is not discussed in this thesis.

Rules

In order to identify one temporal checking from another, the transition rules
for timing predicates have four dynamic constants viz., event.value, event.type,
event_.number and event_time with all instances of the temporal_specification
prototype. TEMPORAL_CHECKER identifies the relevant temporal specifications
and sets these variables in them. After this the transition rules are activated. When-
ever an event occurrence is detected, a new instance of the relevant transition rules
is unfolded with the appropriate parameters. We now explain the meaning of the
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sixteen types of temporal statements. We explain only the before operator. The
meaning of the after operator is the dual of that for the before operator.

The transition rules for all sub cases where * is replaced by* @ <integer constant>
and where $ is replaced by $ @ <value_type constant> are not explicitly presented.
They can be obtained by substituting event_number by event_number @ <integer
constant> and event_value by event_value @ <value_type constant> at the appro-
priate places. typical case.

To simplify our exposition, let spec be a typical instance of temporal_specification.
The following aliases are assumed. Recall that functions such as FIRST_EV etc.,
were defined in the section on prototypes.

FIRST-EV(spec) as E and SECOND-EV(spec) as F
FIRST-OC(spec) as I and SECOND.-OC(spec) as J
FIRST-VAL(spec) as V and SECOND_VAL(spec) as W
FIRST_.CLK(spec) as C1 and SECOND_CLK(spec) as C2
TS_LAB(spec) as L and LIMIT_VAL(spec) as N

Instead of repeatedly specifying the transition rules to compute the time of
the events with every case we define a variable T with the appropriate value.
As clock assignment to modules is not specified by the semantics, the transition
rules must be sensitive to the case when the clock assigned to a module is differ-
ent from the clocks in the temporal specifications. Let C be the clock associated
with the module in which the specification is defined. Define CURR-LIM to be (RE-
MOTE-TIME_-FUNCTION C event_time C1) + N. CURR-LIM computes the inter-
val between the first event with respect to the local clock and the second event with
respect to clock C2. Define T to be REMOTE.TIME_FUNCTION C2 CURR_LIM
C. T is the interval between the first event and the second event with respect to
the local clock. We use the time T to set timers in the relevant cases after the first
event has occurred. Similarly, instead of specifying the rules for timing checks with
every case, define COND to be ‘> N’ if the LIMIT of the specification is UPPER
and to be ‘< N’ if the LIMIT of the specification is LOWER.

In the case when a timing constraint is violated an event of type tempo-
ral_violation is generated. If the separation was not within specified limits and
LIMIT of the specification was LOWER, the value associated with the event is
early. The value late is used in the case when LIMIT is UPPER. For the purposes
of the transition rules, let T_ERR_VAL denote the appropriate error condition, i.e.,
T_.ERR_VAL is either early or late.

Consider | occur(e,i,v) before occur(f,j,w) atmost n| as an example. In this

case COND has value “>n”. If the f-event occurs later than n units of time after
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the e-event the value associated with the temporal_violation will be late. If, in
the above example, atmost were replaced by atleast, COND will have the value
“<n” and if the f-event occurs within n units of time, the value associated with
temporal_violation is early.

In the transition rules, the timer is set when appropriate only for the atmost
specification. The transition rules for the atleast specification does not require any
timer. This is because timers are useful only when there is a known upper bound on
when an event should occur. The atleast specifies only a lower bound. The upper
bound is not specified by it thereby requiring no timer. In this thesis, we discuss
specifications involving the atmost relation. The transition rules for the atleast
can be derived from the atmost specification by deleting the timer statements (or
replacing the timer statements by null which does nothing).

‘We reproduce the skeleton of the specification to help in recalling the syntactic
entity for which the semantics are being defined. We use the aliased form (as defined
above) with the assumption that all formal use of it will use the actual functions
which stand for the alias.

In the following rules, we do not write the end if for the if’s and use inden-
tation to identify nesting. We omit the limit part of the specification when we
present an instance of the temporal_specification prototype. We use COND and
T.ERR-VAL in the transition rules with the understanding that the correct one will
be used. We also omit the clock and the label fields. For example instead of

L: occur(E,*,V) wrt c1 before occur(F,J,$) wrt c2 atmost N

we use

occur(E,* V) before occur(F,J,$)

Listed below are the transition rules for all the sixteen cases in complete detail.

Case I: |occur(E,L,V) before occur(F,J,W)

The E-fired transition rules (i.e., the rules to be executed when an event of type E
occurs) are

if (event_type = E ) & (event_number = I) & (event.value = V) then
if GET_EVENT_ENTRY(F,J,W) # 0 then
[ generate(temporal_violation, (L,wrong_ordering,E,LF,J))
else
SET(F,J,T,L)
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Notice that as discussed above, we set the timer even though we are not sure
that the Jth occurrence of event F will have value W. The corresponding F-fired
transition rules are

if (event_type = F) & (event_number = J) & (event_value = W) then
if (GET_EVENT_ENTRY(E,L,V) # 0) then
if ( TIME.OF(F,J,C2) - TIME_OF(E,1,C1) COND ) then
[[ generate (temporal.violation(L,T_ERR-VAL,E,LF.J)) 1

Case II: The E fired transition rule for | occur(E,I,V) before occur(F,J,$) | is

if (event_type = E) & (event.number = I) & (event_value = V) then
if GET_EVENT_ENTRY(F,J,) # 0 then
[ generate( temporal_violation(L,wrong-ordering, ELF,J) 1
else
SET(F,J,T,L)

The counterpart F fired transition rules is

if (event_type = F) & (event_-number = J) then
if (GET-EVENT_ENTRY(E,L,V) # 0) then
if ( TIME_-OF(F,J,C2) - TIME_OF(E,I,C1) COND ) then
[ generate (temporal_violation(L,T_-ERR-VAL,E,LF,J)) 1

Case [II: | occur(E,I,V) before occur(F *,$)

if (event_type = E) & (event-number = I) & (event_value = V) then
if GET-EVENT.ENTRY(F, ,) # 0 then
V <F,J,W,C,T> € GET-EVENT.ENTRY(F,,)
[ generate (temporal_violation(L,wrong_ordering,E,LF,J)) 7

Though we use the universal quantifier in the test, it is still executable as any
given time the set of occurred events is finite. One could use a for loop to achieve the
effect. But using the quantifier simplifies the presentation. Note that in this case we
do not set the timer. To be consistent with our universal quantification we do allow
null occurrences of event type F. We also signal as many temporal violations as
there are F-events. This is to be consistent with the situation where the individual
specifications were explicitly specified. The F related transition rules are

if (event_type = F) then
if (GET.EVENT_ENTRY(E,L,V) # #) then
if ( TIME_OF(F ,event_number,C2) - TIME_OF(E,I,C1) COND) then
[[ generate (temporal_violation(L, T_ERR_VAL,E,],
F,event_number)) 7|
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Case [V: There are two sub-cases to consider here, the first being
occur(E,L,$) before occur(F,* $3) | whose transition rules are defined below.

if (event_type = E) & (event_number = I) then
if GET_EVENT_ENTRY(F,,) # 0 then
V <F,J,W,C,T> € GET_.EVENT_ENTRY(F,,)
[ generate (temporal_violation(L,wrong_ordering,E,I,F,J)) 1

if (event_type = F) then
if GET_EVENT_ENTRY(E,],) # 0 then
if TIME_OF(F,event_number,C1) - TIME.OF(E,I,C2) COND then
[ generate (temporal_violation(L,T_.ERR_VAL,E,]I, F, event_number)) 7|

else
[[ generate (temporal_violation(L,wrong-ordering,E,],

FJ)) 1

The above rule, illustrates the case where a single wrong ordering could result
in multiple signals. Let an instance for the second sub-case be
occur(E,L$) before occur(F,*,$) | the rules for which are

if (event_type = E) & (event_number = I) then
if GET_.EVENT_ENTRY (F,,event_value) # § then
V <F,J,W,C,T> € GET_.EVENT_ENTRY (F,,event_value)
[ generate (temporal_violation(L,wrong-ordering,E,L.F,J))

if (event_type = F) then
if GET_.EVENT.ENTRY (E,L,event_value) # 0 then
if TIME_OF(F,event_number,c2) - TIME_.OF(E,I,c1) COND then
Il generate (temporal_violation((L, T_ERR_-VAL,E,],

F,event.number)) 7|

Case V: This case is composed of four sub-cases. Let
occur(E,*,§) before occur(F,**,$8) |be a representative instance for the first sub-

case.

if (event._type = E) then
if GET_EVENT_ENTRY(F,,) # 0 then
V <F,J,W,C,T> € GET_EVENT_ENTRY(F,,)
I[ generate (temporal_violation(L,wrong-ordering,E event_number,

FJ) 1

if (event_type = F) then
V <E,LV,C,T> € GET_EVENT_ENTRY(E, , )
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if ( TIME_OF(F,event.number,C2) - TIME-OF(E,i,C1) COND) then
[ generate (temporal_violation(L,T_.ERR.VAL,E,I,
F,event_number)) Jj

For the second sub-case consider|occur(E,*,$) before occur(F,**$)|, for which
the corresponding transition rules are

if (event_type = E) then
if GET_.EVENT.-ENTRY (F,,event-value) # 0 then
V <F,J,W,C,T> € GET_EVENT_ENTRY(F,,event_value)
[ generate (temporal_violation(L,wrong_-ordering,E,
event_number,F,J)) 1|

if (event_type = F) then
V <E,levent_value,C,T> € GET_.EVENT_-ENTRY(E, , event_value)
if ( TIME_OF(Fevent_number,C2) - TIME_OF(E,i,C1) COND) then
[ generate (temporal_violation(L,T-ERR.VAL,E,],

F,event_number)) 7}

The transition rules for sub-case three which is
occur(E,*,$) before occur(F,*$3) |as follows.

if (event_type = E) then
if GET_.EVENT-ENTRY (F,event.number,) # @ then
[ generate (temporal_violation(L,wrong.ordering,E,
event_number,F,event_number)) 7]
else
SET(F,event_number,T,L)

if (event_type = F) then
if GET_EVENT.ENTRY(E,event_number,) # § then
if ( TIME-OF(F event_number,C2) - TIME_OF(E,event_number,C1)
COND) then
Il generate (temporal_violation(L,T_.ERR_VAL,E,
event_number,F, event_number)) ]|
else
[ generate (temporal_violation(L,wrong-ordering,E
,event_number,F, event_number)) ]|

The final sub-case is based on |occur(E,*$) before occur(F,*,$)

if (event_type = E) then
if GET_EVENT_-ENTRY (F,event_number,event_value) # @ then
[ generate (temporal_violation(L,wrong_ordering,E,
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event_number, F, event.number)) 7|

else
SET(F,event_number,T,L)

if (event_type = F) then
if GET-EVENT_ENTRY(E,event_number,event_value) # 0 then
if ( TIME_OF(Fevent_number,C2) - TIME_OF(E event_number,C1) COND)

then
[ generate (temporal.violation(L,T-ERR-VAL,E,

event_number,F event-number)) 7|

Case VI: A typical instance of a prototype for this case will be
occur(E,I,V) before occur(F,*,W) ). The e-fired transition rules are

if (event-type = E) & (event_number = I) & (event_value = V) then
if GET.EVENT_ENTRY(F,,W) # 0 then
V <F,J,W,C,T> € GET_EVENT_ENTRY(F,,W)
I generate (temporal_violation(L,wrong-ordering,E,IF,J)) ]

if (event_type = F) & (event_value = W) then
if GET_LEVENT_ENTRY(E,I,V) # 0 then
if ( TIME.OF(F ,event_number,C2) - TIME_OF(E,[,C1) COND) then
[ generate (temporal_violation(L,T_.ERR.-VAL,E,I,
F,event_number))

Case VII: Consider |occur(E,I$) before occur(F,*;W) |. The transition rules ex-
plaining the behavior of the prototype for this case are as follows.

if (event_type = E) & (event_number = I) then
if GET_EVENT_ENTRY(F,,W) # 0 then
V <F,J,W,C,T> € GET_.EVENT_ENTRY(F, W)
I[ generate (temporal_violation(L,wrong_ordering,E,I,F,J)) ]

if (event-type = F') & (event_value = W) then
if GET_EVENT_ENTRY(E,L,) # 0 then
if ( TIME_OF(F,event_.number,C2) - TIME_OF(E,I,C1) COND) then
[ generate (temporal_violation(L,T_.ERR_VAL,E I F event_.number)) |

else
[ generate (temporal_violation(L,wrong_ordering,E,I,F,J)) 7|

Case VIII: Transition rules for this case consist of two sub cases. Let
occur(E,*$) before occur(F,**,W)| be the first sub case. The transition rules
for the above specification are as follows
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if (event_type = E) then
if GET.EVENT_ENTRY(F,,W) 0 then
V <F,J,W,C,T> € GET_EVENT.ENTRY(F,,W)
[ generate (temporal..violation)(L,wrong.ordering,E,I,F,J)) 1

if (event.type = F) & (event_value = W) then
V<ELV,C,T> ¢ GET_EVENT_ENTRY(E, ,)
if ( TIME-OF(Fevent_number,C2) - TIME.OF(E,k,C1) COND) then
[ generate (temporal_violation(L,T.ERR_VAL,E,I,
F,event.number)) 7|

The second sub-case deals with the specification
occur(E,* $) before occur(F,*,W)|, the transition rules for which are as follows.

if (event.type = E) then
if GET..EVENT_ENTRY(F,event_number,W) # 0 then
[ generate (temporal_violation(L,wrong_ordering,E, event_number,
F.event_number)) 7|
else
SET(F,event_number,T,L)

if (event.type = F) & (event_value = W) then
if GET_EVEN T_ENTRY(E,event_number,) @ then
if ( TIME.OF(F ,event.number,C2) - TIME_OF(E,event_number,C1) COND)
then
[ generate (temporal_violation(L,T_ERR_VAL,E,event_number,
F.event_.number)) 7
else
[ generate (temporal_violation(L,wrong_ordering,E, event_number,
F,event_number)) 7|

Case IX is represented by the specification | occur(E,1,$) before occur(F,J,W) |,
the transition rules for which are described below.

if (event_type = E) & (event_number = I) then
if GET_EVENT-ENTRY(F,J,W) # 0 then
[ generate (temporal_violation(L,wrong_ordering,E,I,F,J)) 1
else
SET(F,J,T,L)

if (event_type = F) & (event_value = W) & (event_number = J) then
if GET_EVENT_ENTRY(E,L,) # § then
if TIME.OF (F event_number,C2) - (TIME.OF(E,I,C1) COND) then
I[ generate (temporal_violation(L,T_ERR_VAL,E,I,F,J)) 1
else
IL generate (temporal_violation(L,wrong_ordering,E,I,F,J)) 1
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Case X: The two sub-cases to consider are |occur(E,L$) before occur(F,J,$$)

and [ occur(E,1,$) before occur(F,J,$) | We shall discuss them one at a time in
order. The rules described below describe the operational behavior of the first
specification.

if (event_type = E) & (event.number = I) then
if GET.EVENT_ENTRY(F,J,) # 0 then

[ generate (temporal_violation(L,wrong_ordering,E,I,F,J)) 1
else

SET(F,J,T,L)

if (event_type = F) & (event_number = J) then
if GET_.EVENT_ENTRY(E,L,) # § then
if (TIME_OF(F,event_number,C2) - TIME_OF(E,I,C1) COND) then
[ generate (temporal_violation(L,T_ERR-VAL,E,],
F,event.number)) ]|
“else

[ generate (temporal_violation(L,wrong_ordering,E,LLF,J)) ]|

The second sub case’s behavior is governed by the following transition rules.

if (event_type = E) & (event.number = I) then
if GET_LEVENT_-ENTRY (F,J,event_value) # 0 then

[ generate (temporal_violation(L,wrong_ordering,E,l,F,J))
else

SET(F,event_number,T,L)

if (event_type = F) & (event.number = J) then
if GET_EVENT_ENTRY (E,Lievent_value) # 0 then
if ( TIME.OF(F event_.number,C2) - TIME_-OF(E,I,C1) COND) then
I generate (temporal_violation((L,T-ERR-VAL,E,LLF J)) 1

Case XI: As mentioned in chapter 4, when the temporal constraints were introduced
the meaning of this case is the dual of case VI. But for completeness sake we describe
the transition rules. A typical element of this case is

occur(E,*V) before occur(F,J,W)|, the transition rules for which are as follows.

if (event_type = E) & (event.value = V) then
if GET_.EVENT_ENTRY(F,J,W) # 0 then

[ generate (temporal_violation(L,wrong-ordering,E, event_number,
FJ) 1
else

SET(F,J,T,L)
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if (event-type = F) & (event.number = J) & (event_value = W) then
V <E,L,V,C,T> € GET_EVENT_ENTRY(E, ,V)
if ( TIME_OF(F ,event.number,C2) - TIME_OF(E,k,C1) COND) then
I generate (temporal_violation(L,T_ERR-VAL,E,I,
F,event.number)) ]|

Case XII: The operational meaning described below is for the specification
occur(E,*V) before occur(F,J,$)|.

if (event.type = E) & (event.value = V) then
if GET_.EVENT_ENTRY(F,J,) # 0 then
[ generate (temporal_violation(L,wrong_ordering,E, event_number,

1 FJ) 1
SET(F,J,T,L)

if (event.type = F') & (event_number = J) then
V <ELV,C,T> € GET_EVENT_ENTRY(E, ,V)
if ( TIME-OF(F ,event_number,C2) - TIME_OF(E,k,C1) COND) then
[ generate (temporal.vnolatlon(L T_ERR-VAL,E,LLF.J)) 1

Case XIII: This case consists of two sub-cases. Let the first sub case be represented
by | occur(E,*,V) before occur(F,**,W)|. The associated transition rules are

if (event_type = E) & (event-value = V) then
V <F,J,W,C,T> € GET_EVENT_ENTRY(F, ,W)
I generate (temporal_violation(L,wrong_ordering,E, event_number,

F.J) 1

if (event_type = F) & (event_value = W) then
V <E,LV,C,T> € GET-EVENT_ENTRY(E, ,V)
if ( TIME_OF(F,event_number C2) - TIME_OF(E,C1) COND) then
[ generate (temporal_violation(L,T_ERR-VAL,E,I,
F,event_number) 7|

The second sub-case is represented by |occur(E,*,V) before occur(F,*,W)|,

whose transition rules are

if (event_type = E) & (event_value = V) then
if GET_.EVENT_ENTRY/(F,event_number,W) # § then
[ generate (temporal_violation(L,wrong_ordering,E, event_number,
F,event.number)) |
else

SET(F,event_number,T,L)
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if (event.type = F) & (event_value = W) then
if GET_EVENT_ENTRY (E,event_number,V) # @ then
if ( TIME_OF(F event_number,C2) - TIME_OF(E,event_number,C1) COND)
then
[[ generate (temporal_violation(L,T_ERR_VAL,E,event_number,
F, event_number)) 7|

Case XIV: Let |occur(E,*,V) before occur(F,** $) | be a typical instance of a pro-
totype for the first sub case. Its transition rules are as follows

if (event_type = E) & (event_value = V) then
V <F,J,W,C,T> € GET_LEVENT_ENTRY(F, ,)
[ generate (temporal-violation(L,wrong_ordering,E,
event_number,F,J)) 7]

if (event_type = F) then
VY <E,LV,C,T> € GET_-EVENT_ENTRY(E, ,V)
if ( TIME_OF(F event_number,C2) - TIME_OF(E k,C1) COND) then
[ generate (temporal_violation(L,T_ERR.VAL,E,,

F,event_number)) 7|

The second sub-case is | occur(E,*,V) before occur(F,*,$) |, whose behavior is

explained by

if (event_type = E) & (event_value = V) then
if GET_EVENT_ENTRY(F,event-number,) # 0 then
[ generate (temporal_violation(L,wrong-ordering,E event_number,
F,event_number)) J|
else
SET(F,event.number,T)

if (event_type = F) then
if GET_EVENT_ENTRY(E,event_number,V) #  then
if ( TIME_OF(F,event-number,C2) - TIME_OF(E,event_-number,C1) COND)
then
[ generate (temporal_violation(L,T_ERR_VAL,Eevent_number,
F, event_number)) 7|

[y

Case XV: The meaning of the specification |occur(E,*,$) before occur(F,J,W)
described by

S

if (event.type = E) then
if GET_EVENT_ENTRY(F,J,W) # @ then
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[ generate (temporal_violation(L,wrong-ordering,E,
event_number, F,J)) 7]
else
SET(F,event_number,T,L)

if (event_type = F) & (event_-number = J) & (event.value = W) then
V <E,LV,C,T> € GET_.EVENT_ENTRY(E, , )
if ( TIME.OF(F event_number,C2) - TIME_OF(E,L,C1) COND) then
Il generate (temporal_violation(L,T_.ERR_VAL,E,L,F,J)) ]|

Case XVI: The final case consists of two sub-cases viz.
occur(E,*,$) before occur(F,J,$8) |and | occur(E,*$) before occur(F,J,$)|, whose
effect is described by the following transition rules.

if (event_type = E) then
if GET_EVENT_ENTRY(F,J,) # 0 then
[ generate (temporal_violation(L,wrong-ordering,E, event.number,

F,J) 1
else
SET(F,J,T)

if (event-type = F) & (event.number = J) then
V <E,LV,C,T> € GET_EVENT_ENTRY(E, ,)
if ( TIME.OF(F ,event_number,C2) - TIME_OF(E,I,C1) COND) then
Il generate (temporal.violation(L,T_ERR-VAL,E,L,F,J) ]|

The meaning for the second sub-case is given by the following rules

if (event_type = E) then
if GET_EVENT_ENTRY(F,J,event_value) # 0 then
[ generate (temporal_violation(L,wrong_ordering,E, event_number,

FJ) 1
else
SET(F,J,T,L)

if (event.type = F) & (event-number = J) then
V <E,LV,C,T> € GET.EVENT_ENTRY(E,i,event_value)
if ( TIME_OF(F ,event_number,C2) - TIME_OF(E,i,C1) COND) then
I[ generate (temporal_violation(L,T_-ERR_VAL,E,i,F,J) 1

This concludes the transition rules for the binary usage of the occur relation. We
now turn our attention to the formal semantics of the unary temporal statements.
Recall, that these statements required something to happen i.e., they are similar to
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liveness requirements.

Case A: The transition rules describing the effect of |occur(E,I,V)|is given by

if (event_type = E) & (event-number = I) then
if (event_value # V) then
I[ generate (temporal_violation(L,wrong_value,E,],
event_value,V)) 7
elsif [TIME_OF(E,I,C1) COND] then
[ generate (temporal_violation(L,T_ERR_-VAL,EI)) ]|

Case B: The following is the transition rules of the specification
occur(E,*, V)|, which requires all events of type E to have value V.

if (event_type = E) then
if (event_value # V) then
[ generate (temporal_violation(L,wrong_value,E, event_number,
event_value,V) 7|
else if [TIME_OF(E,event-number,C1) COND] then
Il generate (temporal_violation(L,T_ERR-VAL,E,I)) ]|

Cage C: The transition rules which explain [occur(e,i,$)| are

if (event_type = E) & (event_number = I) then
if [TIME_OF(E,event_number,C1) COND] then
[ generate (temporal_violation(L,T_.ERR-VAL,E]T)) 1

Case C: The transition rules explaining |occur(e,*,$) | are

if (event_type = E) then
if [TIME_OF(E,event_number,C1) COND] then
[ generate (temporal_violation(L,T_ERR_VAL,E,event_-number)) ]|

5.6.1 Interval Semantics

In this section a variation of the semantics for the temporal ordering statements is
provided. Recall that the semantics we defined above involved only point time. The
point time was obtained by using an averaging function called AVERAGE, which
was a parameter to the semantics. In certain situations, the averaging function may
not be very appropriate. This is true in systems where the range of error that can
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Figure 5.4. Possible relations between intervals

be tolerated is very small. The information lost in applying the averaging function
might be significant for certain applications.

We present a meaning to the temporal ordering functions which is based on an
interval definition of time. As mentioned before, interval time does not affect the
discussion of time and its relation with multiple clocks. Only the meaning of the
temporal operators before and after has to be altered.

In the point definition of time two times were either equal or one was less than
the other. An event ‘a’ is said to be before another event ‘b’ if the numerical value
associated with ‘a’ is less than the numerical value associated with ‘b’. In the
interval case, given two intervals there are six possible relations between them. This
is shown in figure 5.4. '

Before we describe the meaning of the timing constraints, more values for the
predefined event temporal_violations are introduced. The only values for the
point time case were wrong-ordering, early and late. In the interval semantics,
however, more values are needed to characterize the types of intervals. The new
values are r_overlaps, l_overlaps, during, equals, meets, guaranteed and pos-
sible. The last two values are relevant only when the intervals are disjoint. An event
with the guaranteed value indicates that irrespective of when exactly the relevant
events occurred, the constraint was violated. The value of possible indicates that
depending on when exactly the events occurred, a violation is possible. However, in
certain cases violation may not have occurred but our information regarding time
is not accurate enough to certify this.

Rather than discuss the meaning of each of the temporal specifications individ-
ually, we present two examples. The meaning for the other cases can be derived
from these examples. The first example has the limit as atmost while the second
has the limit as atleast. Let
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l: occur(E,L,V) wrt cl before occur(F,J,W) wrt c2 atmost n

be the first example of a temporal specification. To further simplify matters, the
rules regarding relevancy of the specification is not reproduced. The following tran-

sition rules are executed when checking the actual timing constraint.
Let [minl,max1] be TIME.OF(E,I,C1) and [min2,max2] be TIME_OF(F,J,C2)
The following rule checks for satisfaction.

if (minl < min2 < max1 < max2) then
[ generate(temporal_violation (L,r-overlaps,E,LF,J))1
elsif (min2 < minl < max2 < maxl) then
I generate(temporal_violation (L,l-overlaps,E,I,F,J)) ]|
elsif [( minl < min2) & (max2 < max1)] V [(min2 < minl) & (maxl < max2)]
then
[ generate(temporal_violation (L, during,E,LF,J)) 7]
elsif [(minl = min2) & (max1 = max2)] then
generate(temporal_violation (L, equals,E,LLF,J)) 7|
elsif (max1 = min2) then
[ generate(temporal_violation (L, meets,E,LF,J)) ]|
elsif (max1 < min2) then
if [(max2 - minl) > n] then
[ generate(temporal_violation (L, possible,E,LF,J))}}
elsif [ (min2 - max1) > n] then
[ generate(temporal_violation (L, guaranteed,E,I,F,J)) 1|
endif
end if

The meaning of temporal constraints involving atleast is as follows. As above,

let [minl,max1] be TIME_OF(E,I,C1) and [min2,max2] be TIME_OF(F,J,C2).

if (minl < min2 < max1l < max2) then

[[ generate(temporal_violation (L, r_overlaps,E,LLF,J)) ]
elsif (min2 < minl < max2 < maxl) then

I[ generate(temporal_violation (L, l_overlaps,E,LF,J))7|
elsif [( minl < min2) & (max2 < maxl)] V [(min2 < minl) & (maxl < max2)]
then

I[ generate(temporal_violation (L, during,E,LF,J)) ]|
elsif [(minl = min2) & (max1 = max2)] then

I generate(temporal_violation (L, equals,E,[,F,J)) ]|
elsif (max1 = min2) then

[[ generate(temporal_violation (L, meets,E,I,F,J)) ]|
elsif (max1 < min2) then

if [(max2 - minl) > n] then

[[ generate(temporal_violation (L, guaranteed,E,I,F,J))]|
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elsif [ (min2 - max1) > n] then
IL generate(temporal_violation (L, possible,E,I,F,J))1|
endif
endif

This concludes the discussion of interval semantics, as rewriting the transition
rules for all the temporal constraints is a straightforward exercise.

This completes our discussion of the transition rules for the temporal specifica-
tions permitted by the language. Further topics such as temporal reasoning about
programs should be based on these rules but are not relevant to the semantics per
se.

5.6.2 Transition Rules for Subprograms

As subroutines are the principal executable units in a program, the dynamic
semantics of the subroutine determines the execution of the program. As discussed in
the initial configuration, there is a specific automata, executing a class of subroutines.
The characteristic of these automata are presented in this section terms of a dynamic
algebra. The various states that they evolve through are categorized into a two
‘super’ states. These are distinct from the state of the program.

Recall that in our effort to retain the advantages of the various paradigms of
programming, we classified subprograms into functions, observers and procedures.
The transition rules for each of these classes differ slightly. Functions are to be
evaluated lazily unless defined using efunction and parallel invocations can be si-
multaneously active. Multiple invocations of observers can be executed in parallel
unless restricted by exclusive access lists. However they cannot be executed lazily.
As they have access to mutable variables they could return different results at dif-
ferent times. The semantics of procedures disallows simultaneous/parallel threads
of procedures/observers in the same exclusive access list and cannot be evaluated
lazily.

Define STATES, the set of ‘super’ states that a subprogram machine could be in,
to be { ready, busy }. A automaton which represents a set of subprograms in a ready
state can accept an invocation from an event occurrence, the right hand side of a
causal statement or a periodic task, if there is an available thread. When it accepts
a call, the state changes to busy, a state in which the parameters are evaluated, the
body executed.

When the state of a procedure is busy, the state of all other subprograms in its
exclusive access class is implicitly changed to busy as we have only one automaton
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per equivalence class. Hence a sequence of procedure invocations is like a monitor
[43] but without the syntactic baggage associated with them. When the end of the
procedure is reached, it changes the state of the corresponding automata to ready,
which also causes an implicit change in the state of automata in its equivalence class
to ready.

Functions and observers operate differently. We allow parallel executions of
multiple invocations of the same function. In order to be realistic, there is a bound on
the number of parallel invocations. This causes functions to reach the state dusy only
when all permissible threads are active. A parametric constant THREADS indicates
the maximum number of active threads. A dynamic constant CURR-ACTIVE keeps
track of the number of active threads which was assigned to 0 in the initial structure.

The start of every thread increments the value of CURR-ACTIVE by one. If the
value of CURR_ACTIVE is equal to the constant THREADS, no new thread can
be activated. In this state all subsequent subprogram calls are blocked till a thread
is freed. On return the value of CURR-ACTIVE is decremented by 1.

Since functions can be executed lazily, they are compiled into combinators. As
explained in chapter 3, lazy evaluation is automatically supported by combinators.
Therefore, the transition rules for functions will be the reduction rules associated
with the combinators.

Notice that the above discussion applies only to subprograms which are the
start of the thread. An active thread can activate all subprograms it requires and
we do not specify a maximum depth of subroutine calls. The maximum depth of
subprogram calls can be specified as resource restrictions.

To formalize the above stated conditions in the form of transition rules, define
the core meaning of a procedure call as evaluating the parameters, executing the
body and returning to the called unit. For a subprogram q, denote the core meaning
of a call to it by Core( [ q(PARAMS(q)) 1 ). It is to be interpreted as executing
q with the parameters of q. The core meaning of a subprogram call does not involve-
state or thread checking. We do not discuss the transition rules for the core meaning,
as for eager functions, observers and procedures it is a straightforward modification
of the discussion in [65], and for functions it is a modification of the combinator
method described in section 3.2.5.

Consider p € PROCEDURES i.e., an instance of the subprograms prototype
with effect class procedure and q € Subprograms such that q is callable from p.
In this case there is no new thread started. Therefore the semantics of the call is as
usual. When call to q becomes the current executable statement in p the following
transitions rule is executed 1

Core( [ q(PARAMS(q)) T )
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We discuss the activation of new threads. Note that threads are synonymous
with subprogram calls activated by event generation, periodic tasks and causal state-
ments. Recall that these statements queued their request in a structure operated
by ADD_TO_LIST and REMOVE_FROM_LIST. The semantics for the subprogram
involved dequeuing a request via the REMOVE_FROM_LIST operation. To start a
thread based on the execution of a procedure p the following rules are executed.

if (p.state = ready) & (CURR-ACTIVE < THREADS) then

p.state := busy;

CURR-ACTIVE := CURR-ACTIVE + 1;
REMOVE_FROM.LIST( Q-LAB(MY_SELF),params, REPLY_TO,

WHO_CALLED) ;
Core [[ p(params) 1|

In the above rule, if the automaton is ready and a thread of execution is available,
the automaton becomes busy, extracts the parameters from its queue and executes
the body. If p were an element of Functions or Observers not mentioned in any
exclusive access lists, the transition rules that will be executed are

if (p.state = ready) & (CURR-ACTIVE < THREADS) then

CURR-ACTIVE := CURR.ACTIVE + I;
p-LOCAL_.THREADS := p.LOCAL_.THREADS - 1;
if (p. LOCAL.THREADS = 0) then
p.state := busy;
end if
REMOVE_FROM.LIST( Q-LAB(MY_SELF),params, REPLY_TO,

WHO_CALLED);
Core [ p(params) ]|

In this case, also the automaton has to be ready. If it is, it extracts the pa-
rameters and executes the body. However, the automaton becomes busy only if the
maximum permissible number of concurrent threads has been attained.

The meaning of the return statement is now presented. If a return statement is
not explicitly present the end of the routine can be treated as a return statement.
The first action taken is to decrement CURR-ACTIVE and change the state to
ready. If the automaton is a function or an observer not in any exclusive access list,
its LOCAL.THREADS is incremented. The other action concerns the semantics of
the causal statement. The event handler state has to be set appropriately, and if
the right hand side of the causal statement returned false an event of type disaster
has to be generated.

These actions involve a new dynamic constant VAL.RET which has the value to
be returned. The core meaning of the subprogram assigns a value to VAL.RET. If
no value is to be returned, VAL_RET is undefined (.L).The rules are
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if WHO_CALLED € EVENT_LABELS then
if VAL_RET = false then
EVHAN_STATE := EVHAN_STATE'
end if
elsif WHO.CALLED € CAU_LABELS then
if VAL_RET = false then
IL generate(disaster, MY_-MODULE) ]
end if
end if

Recall that EVHAN_STATE was a dynamic function indicating the activeness
or passiveness of an event handler. In the case of the subprogram returning false,
the state of the handler must be made passive. In the above rule, EVHAN_STATE’
is the new function derived from EVHAN_STATE. Its behavior is defined as

passive if el = WHO.CALLED

active otherwise

EVHAN_STATE!(el) = {

5.7 Periodic Tasks

The transition rules for a periodic task (subprogram calls at fixed time inter-
vals), is presented. It has a dynamic constant named LAST_TIME which denotes
the last time the task was scheduled. As the task’s periodicity is specified with
respect to a clock which is not necessarily the clock assigned to the module in which
the task is declared, it is necessary to calculate the time with respect to the lo-
cal clock against the specified clock. This is stored in the variable ‘temp-time’.
If the difference between temp_time and LAST.TIME is greater than or equal to
the specified period, the task is activated. The activation is represented by queu-
ing it on the relevant subprogram using an ADD_TO_LIST. In the transition rule
described below, let parameters represent the evaluation of the expr projection of
PT_PARAM(MY.SELF), i.e., the parameters to the periodic task. Also recall that
PT_NAME(MY_SELF) returns the name of the subprogram specified in the periodic
task.

temp.time := REMOTE_TIME_FUNCTION (MY_CLOCK,
current_time, PT_CLK)
if ( temp-time - PTLAB(MY_SELF).LAST_TIME) >
PT_INTERVAL(MY_SELF) then
ADD_TO_LIST(Q-LAB(PT_NAME(MY_SELF)), (parameters,.L,
PTLAB(MY.SELF)))

PTLAB(MY.SELF).LAST_TIME := temp-time

end if
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The above rule by itself is not sufficient. It does not prevent a scheduler from
executing the rule only every nth (n > 1) interval. If one has to guarantee the
scheduling every interval, at the semantic level one must add the scheduling as an
axiom. This can be done in a fashion similar to the axiom governing the environ-
ment. It is not obvious that is it appropriate to specify that an interval violation
should neve occur. Certain situations might require the postponing of the periodic
task for something determined to be more urgent. As a consequence, an event of
type periodic_violation is generated whenever the task is not scheduled within the
specified period. To effect this is the following check is made in the above transition
rule.

if ((current.time - PTLAB(MY.SELF).LAST_TIME) div PT_INTERVAL>1) &
( PTLAB(MY.SELF).LAST_TIME > PTLAB(MY.SELF).ERR_TIME)
then
PTLAB(MY.SELF).ERR-TIME := current_time
[L generate(periodic_violation, PT.NAME) 7|
end if

The antecedent 'of the above rule has two components to it. The first checks if
the elapsed time is greater than the period associated with the task. The second
component ensures that only one violation is indicated for the non-scheduling of the
task. This check is performed by comparing the time when an error was signaled
(ERR-TIME) and the time of last scheduling (LAST_TIME). If both the conditions
are satisfied, the time of signaling the error is updated and an error signaled.

The above described semantics can be better achieved using timers. That is the
execution of periodic tasks can be made more efficient by queuing up on a periodic
task timer. However in the semantics the timers were event based. Instead of
defining a new type of timer, we opted for the simpler definition. An implementation
can choose to activate the above transition rule when a timer expires thus improving
the efficiency.

5.8 Distributed Semantics

Having defined all the relevant transition rules for ARL, we justify our claim that
ARL and its semantics do constitute a distributed language. We have characterized
a distributed sytem using multiple clocks and permitting the mapping of clocks to
modules. Described below is a precise characterization of ‘distributed semantics’,

Define a function CLK_ASSIGN captures the mapping of a clock to modules.
That is, CLK-ASSIGN can be typed as MODULES — P(CLOCKS). Note that if
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a map for a module is specified then CLK_ASSIGN for that module will have only
one element. That is if for M use C is present in the definition of the module,
CLK-ASSIGN(M) = { C }. A module can be assigned more than one clock if a
specific map is not defined. This is to be interpreted as capturing all permissible
implementations.

Define a MODULES indexed function TSPEC_CLK which assigns a clock to
a temporal specification in the module. TSPEC.CLK can be typed as TEMPO-
RAL_.LABELS — CLOCKS. From this definition it is clear that we permit only
one clock to be assigned to a given temporal specification. Therefore, a temporal
specification is an indivisible unit. Clearly, the clock that is assigned to a temporal
specification must be one of the clocks that was assigned to the module. Hence the
following constraint must be satisfied by TSPEC_.CLK:

if M.TSPEC_CLK((tlab) = C then
C € CLK-ASSIGN(M)

To specify the mapping of a clock to other elements define a function REST_CLK:
NODES — CLOCKS. REST_CLK satisfies the same constraint as TSPEC_CLK.
The reason for defining REST_CLK separately from TSPEC_CLK is only to differ-
entiate between temporal constraints and other elements.

Note that the functions defined above are non-trivial only if a mapping of clocks
to modules is not completely defined. The distributed semantics of a given program
is the operational semantics (as defined by the transition rules) indexed by the three
functions defined above.

5.9 Summary

This concludes the development of the operational semantics of the language.
At first the meaning of evolution using the transition rules of the ARL machine
was developed. The initial structure of an ARL program along with assumptions
about the environment was presented. Finally, the transition rules for the syntactic
elements in ARL was presented. Appendix B has the list of all the functions used
in the semantics. Examples of programs in ARL is presented in the next chapter.



CHAPTER 6

EXAMPLES

One of the principal goals of this research was to design a language that was to
be used in prototyping systems. Expressiveness is the key concern of prototyping
languages and attention was paid to this in the design of ARL. In this chapter we
demonstrate the expressiveness of ARL by programming systems whose specifica-
tions are found in the literature. Note that we use an informal technique as there is
no formal measure of the expressiveness of a language. Our approach to show that
the language has expressiveness consists of two components. Both the components
actually develop programs or program fragments in ARL. The first component deals
with specifications for problems discussed in the literature in ARL, while the second
is about comparing ARL with other languages.

Initially, specifications to certain problems discussed in the literature are dis-
cussed. The first problem consists of two related sub-problems. These are two basic
problems in real-time computation and solutions for them are presented. The first
sub-problem is to specify a tight control loop, while the second sub-problem is to
specify a jitter free computation. The other problems selected from the literature
are 1) the dining philosophers problem [70] 2) specifying a train system [61] and 3)
Semantics of the timed entry call in Ada [1].

The second component compares ARL with other existing languages. We use
ESTEREL [10] and real-time Prolog [30] as two languages to compare with ARL.
A program in ESTEREL is presented first followed by an equivalent ARL program.
Following this, the differences between the two approaches is discussed. Similarly, a
real-time Prolog program is followed by the ARL program and their comparison.

6.1 Solutions to Two Basic Problems

ARL solutions to two common problems in real-time computation are presented.
Both these problems are in the context of periodic tasks. The first problem concerns
the specification of a tight control loop. That is, the time for the control loop must
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be as small as possible. This is to be interpreted by the scheduler (defined by the
implementation) as a non-preemptable section of the task. Such a case is shown
in figure 6.1. In the figure, ‘start’ and ‘finish’ indicate the start and finish of the
control loop (the non-preemptable section of the task) and not of the task itself.
The task has to start and finish within the period shown.

Period

Start Finish

Figure 6.1. Limit Case

The second problem is also in the context of a periodically executed task. In
this case the duration of the control loop is not crucial. This gives the scheduler
a certain amount of freedom in when to schedule and preempt the task within the

period. However the task performs a specific function which must be performed at

a fixed interval i.e., relatively jitter free. Such a case is shown in figure 6.2. In this
case ‘start’ and ‘finish’ could denote the start and finish of some time critical section
of the periodic task, while ‘sampling’ denotes the point where the sampling actually

takes place.

6.1.1 Limit

In this paragraph, we show how to specify temporal constraints for the tight

scheduling case. The task which is to be executed periodically is augmented with

Period
Start Finish Start Finish
Sampling Constant Interval Sampling

Figure 6.2. Fixed Offset
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two events ‘start’ and ‘finish’. Refer to figure 6.1. The ‘start’ event indicates the
start of the tight control loop, while the ‘finish’ event indicates the finish of the loop.
Let the task be called ‘periodic-task’ and let there be only one clock in the system.

module limit is
auto (cl :=cl + 1) init 0
auto (cl >> T) periodic_task
{Periodic task scheduled for execution every T units of time}
event start, finish

procedure periodic._task is
begin
{ Body }

generate(start)
generate(finish)

end

{ Temporal Constraint }

occur(start,*,$) wrt c1 before occur(finish,*,$$) wrt c1 atmost ¢,
end limit;

In the temporal specification above, €, represents the maximum permissible time
the sub-task can take. Note that in the above specification there is no minimum
time specified. One could add such a specification using the atleast operator.

6.1.2 Jitter Control

The following is a solution to the second problem discussed above. Refer to
figure 6.2. The example program for this case is almost identical as above. The main
difference is that only one event is used to indicate the offset and is generated at the
sampling point. Call that event ‘signal.’ This event will be generated somewhere
between the generation of ‘start’ and ‘finish’ (i.e. within the critical section.) Let
the error margins which control the jitter in scheduling and execution of the task
be (sig-mar.1 and sig-mar-2). The following requirements can be augmented with
bounds on ‘start’ and ‘finish’ as shown above. The skeleton of the periodic task and
the temporal constraints for the jitter control are as follows.

procedure periodic_task is
begin
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{ Body }

:generate(start)
'generate(signal)
.generate(ﬁnish)

end
occur(signal,*,$) wrt cl before occur(signal,*+1,$3) wrt cl
atmost(T + errorsig_mar_1)

occur(signal,*;$) wrt cl before occur(signal,*+1,38) wrt cl
atleast(T - errorsiz_mar.2)

6.2 Dining Philosophers

The following program illustrates the use of the functional aspect of the language
as a major part of the solution for a concurrent problem. We chose the dining
philosophers problem [70] to show how a solution in the purely functional language
(Miranda) can be specified. This solution is a direct translation of the algorithm in
[70] where at no time does a philosopher wait with just one fork. It is possible to
code the waiting with one fork case in Miranda but it complicates the program. The
scheduling of when a philosopher wants to eat, finish eating etc. is not specified.
The Miranda (ARL) program is as follows. '

{ Number of philosophers }
num.phil = 5

{ The various states that a Philosopher can be is defined below. The state of a
computation is a sequence (of ‘num_phil’ elements) consisting of the state of the
philosophers in the system }

phil_state :: Hungry | Eating | Waiting | Thinking

{ nth is a function that has a sequence x and an integer i as its argument. It
returns the ith value in the sequence. }
nth x i = xli

{ from is a function similar to nth. It has three arguments a sequence x, i and
j- It returns a subsequence starting at i and ending at j. }
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fromxij = [xn | n<-fi ..j] ]

{ Test determines whether the required forks for philosopher i in state ‘state’ are
free} _

test state i = True,
(nth state ((i -1) mod (num_phil-1)) ~= Eating) &
(nth state i = Hungry) &
(nth state ((i + 1) mod (num-phil-1)) ~= Eating)
= False, otherwise

{ Pickup returns a state after philosopher i has requested the forks.}

pickup state i = (from state 0 (i-1)) ++ [Eating] ++ (from state (i+1) (num_phil-1)) ,
test (from state 0 (i -1) ++ [Hungry]
++ from state (i+1) (num-phil-1)) i
{ test failed hence wait }
= from state 0 (i -1) ++ [Waiting] ++
from state (i+1) (num._phil-1), otherwise

{ Philosopher i has finished eating. Wake up a waiting neighbor if any}

putdown state i = pickup new.state prev, nth new.state prev = Waiting
= pickup new_state next, nth new_state next = Waiting

= new_state, otherwise

where

new.state = from state 0 (i -1
++ from state (i+1
next = (i+1)mod(num_phil-1
prev = (i-1) mod(num.phil-1

++ [Thinking]
(num_phil-1)

vvvv

As the program is in a purely functional language, the state of the computation
is passed as an argument to all the functions, which return the modified state as the
result. For this example it is clear that the functions ‘pickup’ and ‘putdown’ should
not be executed concurrently. This can be specified in ARL by using the exclusive
access lists as ‘excl{pickup, putdown}’.

6.3 A Train System

The problem presented in this section, was originally described in [61]. The
principal concern is to specify a railway system consisting of a network of tracks on
which an arbitrary number of trains may run asynchronously. The restrictions are
1) Only one train may occupy a particular track. 2) If the track required by a train
is occupied it waits for it on its current track, i.e., there is no buffer zone between
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the tracks. 3) All solutions must be independent of the number of trains/tracks in
the system. 4) There is an initial track assignment to each train in the system.

The input to the system will be the layout of the network and the route various
trains take. The input will be assumed to be consistent and hence no checking for
validity is performed. We add temporal constraints regarding the waiting for tracks
and occupancy of tracks. We assume that the route of each train is given as a
sequence of track numbers.

The general structure of our solution is as follows. Each train is considered to
be a separate module having knowledge of the path it requires. But as the behavior
of all the trains is similar, we use a parametrized module to denote them. The as-
signment of trains to tracks is maintained by a module called ‘resource_manager.” A
train requests the next track it requires by generating an event of type ‘want_track.’
If the request can be granted (i.e., there is no train on the requested track), ‘re-
source-manager’ allocates the track to the train and informs the train via an event
of type ‘ack’. In the case that the requested cannot be granted, the train is said
to be blocked. The set of blocked trains and the tracks on which they are blocked
is maintained by a module called ‘task-control’. ‘task-control’ is informed by ‘re-
source_manager’ about the blocking of a train via an event of type ‘wait_track’.
When a track becomes available, a message to activate a waiting train (if any) is
sent to ‘task._control’ from ‘resource_manager’. Note that there is no main program
per se as the trains by executing their initialization code (requesting the first track)
activate the whole program.

The system described here is a single clock system. It can be extended to a
multi-clock system with each train, the resource_manager and task_control having
their own clock.

type_pool tl is

track-assignment :: (integer, integer)
{ A tuple representing the track number and the train number }
end tl ' :

with tl

event_pool el is

{ Definition of event types }
event want_track :: track_assignment
event wait_track :: track_assignment
event wake_up :: integer
event ack :: integer

end el

{ Clock definition }
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clock_pool cl is
auto (timerl := timerl + 1) init 0
end cl

with el,cl,t1
module resource_manager is
{ This module is in charge of assigning tracks to trains }

{ Variable Declaration }

track-assign: [integer] {assignment of tracks to train. A value of -1 indicates the
track of the index is free }

train_assign: [integer] {assignment of trains to track.}

{ Procedure update is invoked when an event of type want_track occurs. As want.track
does not signify a fault, the right hand side of the causal statement can be null }
update(want_track) causes null

procedure update (track-no,train-no) return boolean is
{ Note the use of pattern matching and lack of parameter type declaration }
old.track : integer; begin
if track_assign[track_no] = -1 then
{ Track is free }
old.track := train.assign[train_no]
track_assign[old_track] := -1 || Free old track
train_assign[train_no] := track.no
track_assign[track-no] := train_no
reply(ack(train-no)) { train can continue}
{ The delay below is to wait for time to let train leave the track. This can be better
achieved by a sequence of events but it complicates the example }
delay move._time
{ Wake up any train waiting for the track }
generate(wake_up(old-track))
else
{ Track not free. Wait for it }
generate(wait.-track(track_no,train_no))
end if
return true{ to avoid becoming passive}
end { update }

end resource_manager
{ The train system is defined as a parametrized module. This is done as the behav-

iors of all the trains are similar }
with el,cl
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module train.system [trainno : 1 .. N]

path : [integer]

{ Sequence of integers indicating path of the train}
next : integer

{ Signifies the index of the track the train is go next. }

{ Event Handler: When an ack is received, can continue }
check(ack) causes null

procedure check(who_to) return boolean is
{ Note the requirement of type inferencing for parameters also}
begin
if (who-to = train.no) then
{ If relevant go to next track }
next = next + 1;
{ Let some_time(i) represent the time it occupies the ith track }
delay some_time(next - 1);
{ Request the new track }
generate(want_track(path[next],train_no))
end if
return true
end { check }

{ Timing Constraint: Let limit(i) represent the limit for train i. It has to be a
compile time constant in keeping with the definition of the language. }
occur(want_track,*;$) before occur(ack,*,$$) atmost limit(train_no).

{ The above specification assumes, that each train has the an identical upper limit
for all the tracks in its journey. If not, a different timing requirement for each track
segment has to be specified. }

init{ The initialization of the train module }
path := get_path(train_no)
next := 0;
generate(want_track(path[next], train-no))
end train_system

with el,t1
module task.control
{ Controls the activation of waiting trains }

waiting : [track_assignment]
{ Sequence of waiting trains along with the tracks for which they are waiting}
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sleep(wait-track) causes null

awaken(wake_up) causes null
{ Event Handlers: The event wait.track causes a train to be added to waiting, while
the event wake.up causes a train waiting for the specified track to be awakened. }

{ Sleep is invoked to add a train to the waiting list }
procedure sleep(track.no, train_no) return boolean is
begin

waiting := waiting ++ [(track-no,train_no))
return true
end { sleep }

{ when a track becomes free, awaken is called. A train waiting for the track is
activated }
procedure awaken(track_no) return boolean is
begin
{ Select the first train which is waiting on track.no. The Z-F notation is used. If
the expression is evaluated lazily, the iteration will terminate when the first element
is found. }
chosen := [(x,y) | (x,y)<-waiting, x=track.no]!0
waiting := waiting —~ [chosen] { delete the chosen element}
{ Inform the resource.manager about the activation. }
generate(want_track(chosen))
return true; || To avoid becoming passive end { awaken }

{ This module has no initialization code to be executed. }
end task_control

6.4 Timed Entry Call in Ada

The examples discussed above did not use the semantics associated with multiple
clocks in ARL. In this section, we discuss possible semantics of the timed entry call
in Ada [1] using ARL. The timed entry call in Ada specifies an upper-bound on the
time it takes to accept an entry call. Consider the following example.

select
SERVER.FAST_CALL(p);
—— an entry call which has as associated deadline
or
delay D; —— time limit for accepting the call
ALTERNATE;
end select
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Calling Unit Called Unit

req_sent

req_sent

cl 2

“Tesp

Figure 6.3. Request and Response for Timed Entry Call

The unit issuing the timed entry call will wait for D units of time for the entry
call to be accepted. If the entry call cannot be accepted with that time, the entry call
is canceled and the task executes ‘ALTERNATE’. We discuss the effect of various
ways of measuring time on the entry call. This is important when such calls are
made in a distributed setting. What follows is a summary of suggestions made in
[94] translated into ARL.

We represent the issuing of the entry call by an event ‘req.sent’. The time within
which the call is to be accepted is the value associated with the event. The called
task responds with an event ‘reqresp’. If it can accept the call the enumerated
value ‘accepted’ is associated with the event. Otherwise the value ‘rejected’ is sent.
Assume that the system has two clocks cl and ¢2. Also assume that one of the
clocks is associated with the calling site while the other is associated with the called
site. All event occurrences can be measured with respect to either of the clocks. For
example, the occurrence of ‘reqsent’ can be measured with respect to either cl or
c2; similarly for ‘req.resp’. It is possible to generate an event indicating the time
at which an event occurred. This new event conveys the time of occurrence of an
event at a different module. For the purposes of this example let an event called
‘time_recd’ be generated by the called unit just after it receives ‘req.sent’. All the
possible variations are shown in figure 6.3.

Recall that in a multi-clock environment, the semantics created a map of clocks
as viewed from one of the clocks. For example, let C1, C2 and C3 be the clocks in
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the system. Associated with Cl is a table which contains an approximate value for
clocks C2 and C3 for certain values of C1. Similarly for C2 and C3. Thus, when
a reference to a potentially remote clock is made, a message is not dispatched, but
rather the clock’s map is consulted.

We discuss various temporal specifications that can be stated using the two
events and clocks. First we consider specifications on the calling unit. The first
possible temporal specification is

occur(req-sent,*,$) wrt cl before occur(req_resp,*,$$) wrt cl1 atmost D

Here the maximum time the module can wait after issuing a request before it receives
an acknowledgment regarding the request’s acceptance is equal to the deadline in the
original task. If acknowledgment is not received, a timer will expire. The handler
for timer expiration will then execute the alternate action. We present the causal
statement along with an equational specification of the handler for the timer case.
Let the temporal specification be labeled ‘I’ and x represent the instance number of
‘req.resp’ in question. The ARL specification will be as follows.

FALSE(temporal.violation) causes handler
handler (1, timer_expired,req-resp,x) = ALTERNATE; return true

The specification described above can be modified to

occur(req.sent,*,$) wrt c1 before occur(reqresp) wrt c2 atmost D

In this case, the error in the map of the relevant clock is also taken into account. In
both these cases, one could use either the point or the interval nature of time. The
precise meaning (as described by the transition rules) of the timed entry call will
depend on the chosen notion of time. For example, let C1 be associated with the
calling unit and C2 be associated with the called site. Note that this is not specified
by the program, rather it is an instance of the distributed semantics. Consider point
time for the following explanation. Let the map associated with C1 be as follows.

10 | 11
15 | 15
20 | 18

Let req.sent be generated at the calling site at time 10 with respect to cl and
req-resp be received at the calling site at time 20 with respect to c1. As the above
specification requires req.resp to be measured with c2, the time to be used is actually
18 as returned by the map. If the deadline were 19, the first specification (with
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both events measured with respect to clock cl) will be violated while the second
specification wil be satisfied. Notice that a message requesting time from C2 was
not dispatched to know at what time reqresp occurred.

The following specification requires that an acknowledgement of the request be
received within the deadline:

occur(reg-sent,*,$) wrt cl before occur(time.recd,*,$$) wrt c1 atmost D

This specification can also be modified to account for the discrepancies between
clocks cl1 and c2. Certain plausible specifications on the called unit are now pre-
sented. Consider

occur(req-sent) wrt cl before occur(req.resp) wrt cl atmost D

It is identical to the first specification discussed but refers to the called site. Note
that in the above specifications the temporal limit is equal to the maximum permis-
sible delay. This can be altered depending on the network characteristics expected.
So, if the average message transfer time is T units, the ‘D’ in the above specifi-
cation can be changes to D-T. Of course, this is meaningful only if T is less than
D. The specification described below, specifies a deadline (F) on the generation of
‘time_recd’ after a request has been received:

occur(req-sent,*,$) wrt cl before occur(time.recd,*,$$) wrt cl atmost F

If one wants to relate the time at which the request was sent by the calling site
and the time at which the call was accepted at the called site, the value field of
‘req-resp’ is éugmented to return the time the call was accepted. As timing errors
depend on the value field a temporal specification cannot be defined. The event
handler for ‘req.resp’ will check the value field and take the appropriate action. As
the evens req.sent, req-resp and timerecd are generated on both the calling sites
and the called sites, the specifications can be replicated on both the sites.

This concludes the first part of our discussion to demonstrate the expressiveness
of ARL. In the next two sections we compare ARL with ESTEREL and real-time
Prolog.

6.5 Comparison between ARL and ESTEREL

The purpose of this example from [10] is to compare the language ESTEREL
and ARL. We describe the problem and present both the ESTEREL code and the
ARL code. We conclude by justifying our claim that ARL is more expressive than
ESTEREL. The problem for which solutions are presented is described below.
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6.5.1 A reflex game

The game starts when a reset button is pressed and is composed of ten reflex
measures. Each measure starts when the player presses the button a. After a
random time a green lamp is lit after which the player must press a button b as fast
as possible. The green lamp is then turned off and the reflex time displayed. A new
measure starts when the player presses @ again. When the cycle of ten measures is
completed, the average reflex time is displayed after a pause of 3 seconds. During the
process, it is possible to commit mistakes on which a bell sounds. Ii is also possible
to cheat, upon which the game is reset. The possible list of mistakes/cheating
together with the actions taken upon the occurrence is given below.

o b instead of a to start : Bell
¢ a during measure : Bell

o b before green lamp : Cheating: start a new game

a or b not pressed within 10 seconds : Cancel current game and restart

reset anytime : Start new game

6.5.2 The ESTEREL Program

The following is a verbatim reproduction of the program given in [10]. The
general idea is that at any point in time one is expecting a particular event. If an
unexpected event occurs, the error action is taken and the wait for the required
event continues. When the event does occur, appropriate action is taken. There are
deadlines attached to each of these waits. If the deadline is violated the game is
restarted (as per specification. )

input pure signal RESET, A, B, MS
output pure signal GREEN.OFF, GREEN_ON, RED_OFF, RED.ON, RING_BELL
output single signal DISPLAY (int) IN
every reset do
emit RED_OFF;
trapfailure
var AVERAGE := 0 int in
% measure loop
repeat 10 times
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% waiting for A
do
do
every B do emit RING_BELL
upto A
watching 10000ms abnormal failwith END_.GAME end;
% delay and waiting for B A rings the bell

{
everynext A do emit RING_BELL end

I
% random delay -B may not be pressed
do
awaitnext random() MS
watching B abnormal failwith END_.GAME end;
emit GREEN_ON
% waiting for B and displaying result
var time := 0 int in
do
do
every MS do time := time + 1 end
upto B
watching 10000ms abnormal failwith END.GAME end
emit GREEN_OFF
emit DISPLAY(TIME)
AVERAGE := AVERAGE + TIME
end
}
end;
%final display of the average time
await 3000MS '
emit DISPLAY(AVERAGE/10)
end
failure END_.GAME do emit RED_ON end
end
end

6.5.3 The equivalent ARL program

A general overview of the ARL solution is described following which the ARL
program is developed. Associated with each button and lamp is an event type.
Events of the appropriate type are instantiated when the buttons are pressed or
the lamp is switched on/off. In order to filter out erroneous events (like pressing B



174

before A etc.), a module called ‘filter’ is introduced. It takes appropriate action for
erroneous events. It communicates the events in the expected sequence to a module
called ‘main’. This is achieved by introducing two new events ‘A.sig’ and ‘B_sig’
which represent the correct A and B respectively. There are three temporal speci-
fications dealing with the occurrence of A_sig, B.sig and the green light. Described
below is the ARL program. '

clock_pool c is
(auto clock := clock + 1)
end c

type_pool signal_value is
values :: On | Off
end signal_value

with signal_value
event_pool signals is
{ A : button a, B : button b, reset_game : the reset button
GI: green light, Bell: bell}
event Gl :: values
event A,B,Bell,reset_game ;
end signals

event_pool signif_signals is
{ These signals represent the actual signals after the spurious signals have been
filtered out.}
event A_sig, B_sig
end signif_signals

with signals, signif_signals

module filter is

{ This module filters the unexpected events (like the occurrence of A when B is
expected and vice-versa) after issuing the appropriate error message. The correct
events are passed onto the module ‘main’. }

A_occ : boolean { A.occ if true is to be interpreted as that only event A should
occur, occurrence of B is an error. }

a.handler(A) causes true

b_handler(B) causes true

a-handler = A_occ := false; generate(A_sig), A_occ
= generate(Bell),otherwise

b-handler = A-occ := true; generate(b_sig), A-occ = false
= generate(Bell),otherwise
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{ Note the equational style of the above two functions. The body of the function
follows the ‘=’ sign and the condition following the ‘,”. But it uses the ‘:=’ operator
and hence not a function.}

init

{ Initialization code for the module }
{ At first event A should occur}
A_occ := true;

end filter

{ The following is the main module}
with c, signals, signif_signals
module main is

t: integer;

sum_t: integer;

indx : integer

limit : integer constant := 10

{ The temporal requirements: default use of wrt field }
labell : occur(Asig,*,$) before occur(B_sig,*,$$) atmost 10
label2 : occur(B.sig,*,$) before occur(A_sig, *+1,38) atmost 10
label3 : occur(B_sig,*,$) after occur(Gl,0n,$$) atmost 10

procedure reset return boolean is
begin

t 1= 0;

sum.t := 0;

indx := 0;

return true;
end; || reset

{ Procedure start is invoked when an event of type A_sig has been received. It
switches on the green light after a random delay.}
procedure start return boolean is
begin
delay random;
t := clock.current.time;
generate(Gl1,0n);
return true;
end; || start

{ Procedure stop is invoked when an event of type B_sig has been received}
procedure stop is
begin
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{ Switch off the light}
generate(Gl, Off)
t := clock.current_time - t
sum-t := sum.t 4 t
indx := indx + 1
if indx = limit then
{ I the required number of readings have been obtained, display the result and
prepare for next game}
delay 3;
display(sumt._t /limit);
reset;
end if;
return true;
end;|| stop

{ Event handler for temporal violation}
tv_handler(temporal_violation) causes true

{ Event handler for reset_game }
reset(reset_game) causes true

{ Handler definitions for events A_sig and B_sig }
false(A_sig) causes start
false(B_sig) causes stop

{ Equational with pattern matching definition of tv_handler }
tv_handler (labell,order) = generate(Bell)

{ The above will never occur due to the filter but present for completeness }
tv-handler (labell,time_out) = reset
tv-handler (label2,order) = generate(Bell)

{ The above also will never occur due to the filter but present for completeness }
tv_handler (label2,time_out) = reset
tv-handler (label3,order) = reset

{ The above indicates cheating.}
tv_handler (label3,time_out) = reset

end main

6.5.4 Analysis

Having written a program in two languages viz., ESTEREL and ARL, we analyze
the two languages for expressiveness of constructs, programming style and flexibility.
As it is not possible to demonstrate all the features of ARL in a program, our analysis
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consists of two parts. The first compares the constructs used in the program, while
the second discusses features present in one but not the other.

The main point to observe from the programs is that in ARL, the specification
of procedural control and the timing requirements are decoupled. Therefore it is
possible to expand a program with more event handlers and temporal specifications
without drastically affecting the existing program. In other words this decoupling
leads to flexible programming, which is essential for prototyping systems.

For example, let there be an outer loop with a number of nested loops. Each of
the nested loops has a time bound, while the outer loop also has a time bound. In
ESTEREL this would be implemented with a number of watching statements. In
ARL it would be implemented using events and the timing requirements would use
these events. Any change in the timing requirements results in a change only to
the temporal specifications without having to follow the control flow. In ESTEREL

_however, one has to know identify the temporal requirements with each loop. This
is mainly because of the synchronous nature of events in ESTEREL due to which
constructs like ‘watching’ etc., have to be used with the control flow.

However in ARL, due to the declarative style of event handling and the starting
of a new thread on the occurrence of an event, a filter module is necessary to ignore
erroneous events. This was not essential in ESTEREL as one could look out for
events within a control loop (the ‘every’ statement.) But it is difficult to incorporate
them in temporal specifications as they are not a part of the ‘watching’ statement.

Due to the de-coupling of the timing requirements and control flow in ARL, the
construction of a temporal model is easier. Only the temporal statements have to
be considered. Of course, determining whether they will be satisfied will be difficult
in both the languages as satisfaction depends on the behavior of the program in
question. In the ARL style of temporal specification, it is easier to check off that
the list of timing requirements specified by the informal specification are provided
by the program.

Certain other drawbacks such that the semantics of ‘await’ etc. were discussed in
section 2.5 (chapter 4). Features present in ARL which have no corresponding fea-
ture in ESTEREL are polymorphisms, type inferencing, multiple clocks, quantified
timing specifications.

6.6 A Lift System

This example, chosen from [30], concerns the specification of a lift system. The
authors present the specification informally and develop a logic program for it. The
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system whose behavior is to be specified consists of a N lift system to be installed
in a M floor building. The movement of lifts between floors is governed by the
following constraints

o Each lift has a set of buttons one, for each floor. When pressed these cause
the lift to visit the corresponding floor.

o Each floor has two buttons one to request an up-lift and one to request a down
lift. The top and the first floor have only 1 button.

o When a lift has no requests to service it should remain at its final destination
and await further requests.

e All requests for lifts from floors must be serviced eventually, with all floors
given equal priority

o All requests for floors within lifts must be serviced eventually, with floors being
serviced sequentially in the direction of travel

6.6.1 Logic Program

The specification as given by the authors is not a real-time system because there
are no timing constraints that are to be satisfied. The specification however does
involve time. For example, arrived(L,F,T) means that lift L arrived at floor F at
time T. It does not require the lift to arrive at time T. The complete logic program
along with a commentary is as follows.

departure(L,F,up,T,)<- arrival(L,F,T,), queue(L,Q,T,T,), not (Q=[]), head(Q) >
F.

If the queue is not empty, and floor F need not be serviced, the lift moves ahead.
There is a similar rule for the lift going downwards. In this and and subsequent
specifications, queue(L,Q,t1,t2) stands for the fact that a queue Q is associated
with the lift L for the time period [t1, t2]

stop(L,F,T,)<- arrival(L,F,T,), queue(L,Q,T,T,), head(Q) = F.
If floor F needs service, an arriving lift waits there.

stop(L,F,T,)<- arrival(L,F,T,), queue(L,[ ],T,T,)

A lift halts at the floor where an empty queue is detected. This is because there
could be more than one lift in motion and the last request is serviced by one of
them. The rest of the lifts come to a halt.
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departure(L,F,up,T,+dts) <- stop(L,F,T,), queue(L,Q,T,T,+dts), head(Q) > F.
After stopping for a fixed amount of time(dts), a lift moves upwards if there is a
floor greater than the current floor to be serviced. There is a similar rule for a
downward motion.

departure(L,F,up,T,)<- stop(L,F,T,),queue(L,Q,T,,T—a), T, > T,-+dt,,
queue(L,[ ],T,+dt,,T,), head(Q)>F.

If no floors are to be serviced, the lift will halt at the current floor (where it has

halted) only move when the queue becomes non-empty. It will leave in the direction

of the request. Shown above is the rule for an upward motion. A similar rule will

govern the downward motion.

arrival(L,F+1,T+dt)<-departure(L,F,up,T)
arrival(L,F-1,T+dt)<-departure(L,F,down,T)
These rules specify the time it takes to move up/down a floor after departure.

standing(L,F,T,T+dt,)<-stop(L,F,T).
If a lift stops it waits atleast for dt,.

standing(L,F,T,,T)<-stop(L,F,T,),queue(L,[ ).T,+ dt,,T)
A lift is standing as long as no floors are to be serviced.

moving(L,F,D,T,T + dt)<- departure(L,F,D,T).
On departure at time T, the lift enters the moving state after time T + dt.

standing(L,F,T3,T4) <- standing(L,F",T;,T3), T1 <T3 < T4 < T,.
moving(L,F,T3,T4) <- moving(L,F,Tl,Tg), Ty <T3 < Ty < Ts.

If a state is proven to hold in time interval [T1,T2], it is possible to infer that it
holds for all time intervals [T3,T4] included therein.

6.6.2 Discussion

The program while specifying the properties of the lift system, does not mention
how the queues should be manipulated. The assumption that head(Q) has the
relevant data is made. The authors justify this by claiming that manipulation of
the queue is a scheduling policy. In our opinion, the scheduling policy was omitted
because it is difficult to write a logic program to do so. Every rule developed
above has to be augmented with calls to the routine which manipulate the queue.
This could make the resulting program difficult to read. It also obscures the logic
associated with the system, which is the principal goal of logic programming. In the
next section we present the ARL program followed by a comparison between the
two languages.
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Check —
it
: Check_floor
Move_check rep_info
‘ req_accept
Move_lift Rm_from_q

Figure 6.4. Possible Communications between a lift and the floor

6.6.3 The ARL program

The general structure of the ARL program is described below. Each lift is
mapped onto a module. The floor system is mapped onto one module. The state
of the lift is characterized by whether it moving or stationary, the floor it is at,
the direction it is moving in (up/down) and the next floor it is to service. Each
lift also has a list of floors to be serviced. This list (list_queue) is generated due
to requests from the lift itself. When a lift comes to a halt, it generates an event
called ‘halted’. This causes it to check if it has any floors to service from an internal
request. If so, its direction of further motion is fixed. Otherwise it can move in any
direction. The lift then requests information from the floor database (called floor)
regarding any service necessary by generating an event called ‘want_info’. The floor
database responds to the request by searching its data-base and replying to the
original message via an event ‘reply.info’. The lift selects the closest floor (either
in the fixed direction or from current position) and services it. If the floor serviced
was due to a request from the ‘floor’, a message (via an event called ‘req-accept’)
indicating that the request was accepted is sent to the floor. The floor database
assumes that a floor is not serviced until it has received a message indicating so.
The communications between a lift and the floor data base is shown in figure 6.4.

The ARL program is described below.

type_pool comm_type is
how.comm :: Any | Fixed
{ ‘Any’ indicates that the lift can change direction, while ‘Fixed’ indicates that the
lift must continue in its current direction }
end comm_type

with comm_type
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event_pool communication is

event want_info:: (integer,integer,how_comm)
{ want_info specifies the direction of current motion, the floor at which a lift has
halted and the direction the lift can move next }

event rep-info, req-accept :: (integer,integer)
{ the first field represents the direction with 1 being up -1 being down and 0 pre-
senting halt, while the second field represents the floor number }
end communication

with communication,comm-type
module lift_handler[i: 1 .. MAXLIFT)] is
{ A parametrized Module }
input rep-info
output want_info
{ The above defines a restriction on the use of events }
event halted :: (integer, integer) {local event}

state :: Moving | Stationary

{ Local enumerated type indicating whether the lift is in motion }
my_state : state;

my_floor : integer;

my-dir : integer;

next_floor : integer;

{ The above variables define the state of the lift }

{ Move the lift in direction dir and halt at floor number hlt }
procedure move.lift (dir,hlt:integer) return boolean is

begin
my_state := Moving
my-dir := dir

while (myfloor /= hlt) loop
my-floor := my.floor + dir
{ Moving to next floor takes time dt}
delay dt
end loop
{ Come to a halt and take appropriate action }
my_state ;= Stationary
generate(halted, (dir,hlt))
delay wt { wait at the floor for some time }
return true
end

false(halted) causes check(halted)
{ Lift has halted and want to know where to move next }
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procedure check(dir, hlt : integer) return boolean is
begin
next_floor := lcl_check(dir,hlt)
if next_floor = 0 then
generate(want.info(dir,hlt,Any))
{ No floor to be serviced from the lift. Can move in any direction }
else
generate(want.info(dir,hlt,Fixed))
{ Has a floor to service and can move only in the fixed direction }
end if
return true { to prevent generation of disaster }
end

{ On reply from ‘floor’ check what to do next }
false(rep_info) causes move_check(rep_info)

{ Equational definition of checking where to move next when
request from floor has been received }
move.check (dir,hlt) = move.lift(dir,hlt); generate(req-accept(dir,hlt));
return true, dir /= my.dir
= move.lift(my_dir,next), my-dir = dir
where
next = best_max(next_floor,hlt), dir = -1
{ If moving down the highest requested floor is closest to the lift }
next = best_min(next_floor,hlt), dir = 1
{ If moving up the lowest requested floor is closest to the lift }

{ best_max selects the closest floor when moving downwards, i.e. the floor with the
maximum floor number. If the floor selected was due to the request from the floor
data base, the floor data base is informed about it.}

best.max x y = x; rmlclq x, x > y
= y; generate(req_accept(my.dir,y)) ,y > x
= y; rmclq x; generate(req-accept(my-dir,y)) , y = x

{ best.min selects the closest floor when moving upwards, i.e. the floor with the
minimum floor number. The floor data base is informed if necessary. }

best_.min x y = x; rm.Iclq x, x < y
= y; generate(req_accept(my.dir,y)) , y < x
= y; rm-clq x; generate(req.accept(my-dir,y)) ,y = x

{ Check if any locally generated floor is to be serviced }
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lcl_check (dir,floor) =0, tg =[]
= max tg, dir = -1 & tg /=[]
= min tg, dir =1 & tg /=[]
where
tg = [x[x<-lift_queue, (x > hlt & dir =1) or
(x < hlt & dir = -1)]

false(floor-but) causes add.lclq(floor_but)
{ floor_but is to be generated “externally” and represents floor selection from lift }

add.lclq x = lift_queue := lift_queue ++ [x]
rm clq x = lift_queue := lift_queue — [x]

{ add.lclq and rm.clq have a shared object and their execution cannot be inter-
leaved }
excl { addlclq, rmlcl-q}

{ There is no initialization code as an external request from the floor will acti-
vate the lift }
end

{ The floor data base manager }
with Communication,Comm_type
module Floor_dbase is

output rep.info
input want_info, req-accept
{ Restriction of events }

{ A lift requests information }
false(want_info) causes check flr_req(want.info)

{ check the queues for relevant information }
chk -1 x how = [ ], queue = [ ]
= tg(1), tg /= []
= chk 1 x Fixed, how = Any || to avoid infinite recursion
=[], otherwise
where
tg = [(-1,2) | (-1,2) <- queue; z < x ]

chk 1 x how = [ ], queue = []

= tg(1), tg /=]
= chk -1 x Fixed, how = Any || to avoid infinite recursion
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=[], otherwise
where
tg = [(-1,2) | (-1,2) <- queue; z < x ]

{ The following sub-program is invoked by the event want.info }
check flr_req (dir,hlt,how) = reply(reply-info, res); return true
where
res = chk dir hlt how, chk dir hlt how /=[]
= (0,hlt) , otherwise

{ floor.req is a request from the floor. Save the request and activate lift }
false(floor.req) causes add-to_q(floor_req)

add_-to.q (dir,hlt) = queue := queue ++ [(dir,hlt)]
generate(rep.info,(dir,hlt))
{ the generate activates the lift if idle }

{ the request from floor was accepted. So remove from queue }
false(req-accept) causes rm_from_g(reg-accept)

rm_from_q (dir,hlt) = queue := queue —— [(dir,hlt)]

{ As queue manipulation cannot proceed concurrently the following restriction is
essential }

excl {add-to_q, rm_from_q}

end

6.6.4 Analysis

Though the ARL program is greater in size than the logic program, most of the
code is to manipulate the queues which the logic program does not deal with. If
one was not concerned about the executability of the program, it would be possible
to characterize state changes by events and have temporal constraints involving
them. In that case there will be a one-to-one map between the ARL program the
logic program. For example, arrival(L,F+1,T+dt)<-departure(L,F,up,T) can be
translated into occur(arrival L_D,*,$+1) after occur(departure_L_U,*,$) atmost
dt. In the above translation, arrival_L_D is to be interpreted as arrival of lift L from
down, and departure_L_U is to be interpreted as lift L departing upwards, while dt
is the maximum time it should take.

We have not added any temporal constraint. In our scheme, it is possible to
augment the program with timing constraints by using the events generated by the
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program. Once again we emphasize that it is not essential to follow the control of the
program in order to add these constraints. This has been stated repeatedly because
we feel that it enhances the expressiveness of the language for rapid prototyping.
The interpretation of the time field in the logic program is not specified. They
could be considered to be either upper or lower bounds. It is possible to extend
the language in order to be able to specify both an upper bound and a lower bound.
For example, it is possible to specify arrival(L,F+1,T1)<-departure(L,F,up,T0), T1-
T0 < Upper-bound and also arrival(L,F+1,T2)<-departure(L,F,up,T0), T2-T1->
Lower_bound.

The logic program becomes more complex if one has to specify recovery actions
for temporal violations. As ARL generates pre-defined events in the case of tim-
ing errors, it is easy to specify subprograms which handle recovery from timing
errors. In the logic program however, one has to detect timing errors explicitly.
For example, temporal violation regarding the arrival and departure of lifts can
be specified as temporal-viol(late)<-arrival(L,F+1,T1), departure(L,F,up,T0),T1-
TO > Upper-bound. Here the interpretation requires the system to assign values
to T0 and T1. In short, as timing errors are related to control and time is to be
maintained by the system, temporal specification are difficult to handle in a logic
program.

Also note that features related to typing, general use of events (fault tolerance
specification), multiple clocks etc., are not discussed in the logic language.

6.7 Conclusion

We have shown how our language can be used in various situations by specifying
various systems in it. In each of the examples we have a varied amount of functional
components and a varied number of temporal specifications. Though we did not
specify the mapping of clocks to modules, their addition is a trivial task. We have
also compared ARL with two of the existing languages and explained how it has
overcome their deficiencies. In the next chapter we summarize the achievements of
" this research and outline areas that require further research.



CHAPTER 7

CONCLUSIONS

We summarize the main points of the thesis and present the significant achieve-
ments. We also identify certain areas where more research is necessary towards
satisfying our goal of having a good formal model for distributed real-time compu-
tation.

7.1 Achievements

In this thesis, we have defined a language for distributed real-time programming
called ARL. The main emphasis in the design of the language has been to enhance
the expressiveness over existing languages for distributed real-time systems. There-
fore, we have borrowed ideas from functional a language (Miranda) and incorporated
them with other features essential for distributed real-time programming to create
a wide-spectrum language.

ARL supports the whole of Miranda and hence features like polymorphic types
and functions, type inferencing, abstract data types, higher order functions, lazy
evaluation, Z-F iterators and pattern matching. The type inferencing mechanism
has been extended to support inferencing in the presence of heterogeneous types
which is useful in exploratory programming [85]. Even though purely functional
languages have a good theoretical foundation they cannot be used to specify real-
time computation. So, ARL is not restricted to a functional language. Rather, it is
an imperative language with a identifiable purely functional subset. The identifica-
tion is achieved by categorizing a program into functions, observers and procedures
using inference rules similar to the ones described in [31].

ARL supports the definition of explicit time in a program. The meaning of
time is such that it is incremented independent of the flow of the program. In
order to characterize distribution, ARL permits the definition of multiple clocks.
The rationale being that if two different clocks are associated with two different
syntactic units, the syntactic units can be assumed to be residing on different sites.

186
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This view is not present in any language that we know of. This view is also used
to distinguish concurrent systems from distributed systems. ARL by permitting
mapping of modules to a clock allows the programmer to define a virtual node, using
modules as the unit of distribution. But having multiple completely independent
notions of time is not desirable. The various times are to be kept in synchrony with
each other. The language provides constructs to specify which clocks are kept in
synchrony and how often to synchronize. But ARL does not prescribe any algorithm
to do so.

A distributed language must support a communication paradigm. We have cho-
sen the asynchronous paradigm as it is inappropriate for a process in a real-time
system to wait (when it could continue) for another process which has been delayed.
Communication is achieved by instantiating an event. An event belongs to a par-
ticular type and has an occurrence number per module and a value associated with
it. Events are also used in timing requirements. A declarative syntax is used to
specify event handling. The semantics of the handler statement is powerful as to
enable one to specify fault tolerance. However, we do not dictate any fault tolerance
mechanisms.

Being a real-time language, ARL permits the specification of timing predicates.
The timing predicates involve only the after and before operator. The predicates
are based on event types and can depend on particular event values and occurrence
numbers. They may also be universally quantified over the value and the occurrence
fields. This idea can be considered to be an extension of polymorphic types and
functions. The notion of events and universal quantification is also related to RTL
[46] but the quantification in ARL is over both the value and the occurrence fields
of the event type.

On the theoretical front, we have defined an operational semantics for the lan-
guage based on dynamic algebras. We have demonstrated how resource restrictions,
which play an important role in real-time computation, can be modeled. The se-
mantics have been defined in a manner as to avoid any bias towards any imple-
mentation. This is achieved by parametrizing all implementation features such as
nature of queues, scheduling policy etc. An implementation is free to choose the
characteristics of such parameters to the semantics. The precise definition of these
parameters will determine the goodness of the implementation. This abstraction
does not sacrifice the operational nature of the semantics. It is our belief that an
implementation of the language can be derived directly from the semantics.

In more detail, our key contribution has been in the semantic definition of a
multi-clock system. We have shown how to model a system of clocks under clock
synchronization in a functional way and also in a purely operational fashion. We



188

have also discussed the representation of time when more than one clock is involved.
The semantics maintains an interval representation of time. However, depending
on the users needs, we have provided two options for representation of time in a
program. The simple characterization of integer time is achieved by applying an
averaging function to the interval, while an interval representation can be obtained
by taking a sub-interval of the interval maintained by the semantics. We have also
defined the meaning of distributed semantics by abstracting the mapping of clock(s)
onto syntactic terms.

The meaning of the temporal constructs depends on the notion of time chosen.
The use of integer time results in the standard definition of before and after, while
the use of interval time one has to use interval temporal logic. Finally, we have
shown how multiple clocks defined in a program can be used to define a distributed
semantics by indexing the meaning of a program with the clock assignment function.

7.2 Future Directions

The development of a distributed real-time language and its semantics is only
the first step to characterize distributed real-time computation. To really prove its
usefulness in practice, the language has to be implemented. An implementation can
either be directly based on the transition rules, or one could design an implementa-
tion by developing transformation rules to convert an ARL program into a readily
available language like Ada. The second task appears to be easier, especially given
our experience in building a distributed Ada system [95, 93, 56].

From a theoretical standpoint, one can study the relationship between the formal
issues addressed by this thesis and other work to see how to derive models which
have been used by others. This would simplify the task of building a model using the
transition rules for ARL. In the following two sub-sections, some preliminary work
in the above mentioned topics is discussed. First, we examine the translation of one
of the ARL constructs to Ada. We also preéent preliminary definitions towards the
generation of partial orders [74] from the transition rules for ARL.

7.2.1 ARL to Ada

Based on our experience in building distributed systems [95, 93, 56), it is our
feeling that translating ARL programs to Ada programs is easier (from the view
point of an implementor) than developing a full fledged ARL implementation. A
reason for choosing Ada over other languages like C is that constructs for parallelism
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and time are available in Ada. This should ease the mapping from ARL to Ada.
Of course, there is no one-to-one map between the features of ARL and Ada. For
example, the notion of time is richer in ARL than in Ada. Therefore, one must
used an extended definition of Ada (or atleast have a run-time system) to deal with
multiple clocks and clock synchronization.

Note that one can always rewrite the transition rules in an Ada syntax, thereby
achieving an ARL to Ada translator. However, this does not use all the Ada features
and the translation is not very efficient. In the following paragraphs we illustrate
how the Ada features of generics and tasking can be used effectively. We emphasize
that more work needs to be done before the translation is complete and efficient.

7.2.1.1 Use of Generics

Polymorphic functions in ARL can be translated to generic functions in Ada.
We explain how this translation can be achieved using an example. Recall, that a
polymorphic higher order function until was defined as

until final trans state = state, final state
= until final trans (trans state),otherwise

The type of this function can be represented as (* — boolean) — (* — *) —
* — *  As there is one type variable, the generic will have one type parameter.
Being a higher order function, the generic will also take functions as parameters.
The equivalent Ada generic is

generic
type star is private;
with function final(paraml : star) return boolean;
with function trans(paraml : star) return star;
function until(state : star) return star;

end;

function until(state : star) return star is
begin
if (final (state)) then
return state;
else
return until(trans(state));
end if;
end;
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All instances of until as a concrete function (as opposed to a polymorphic func-
tion), results in a generic instantiation of the appropriate type. The above transla-
tion is valid only if until is instantiated with data types. But in Miranda, and hence
ARL, ‘state’ can be a function. In such a situation, a different scheme is necessary.
Such a scheme requires further research and is not explored in this thesis.

7.2.1.2 Use of Tasks

In this section, we show how the causal statement can be translated using tasks.
Let {gi(e;): 2€1.n,j€ 1. m} causes f(eir,€i2y- - - ;1) be a casual statement.
For each of the g;’s there is an Ada task defined as

task body for_g; is
Iclv : val_typedi;

begin
loop

loop

accept e;(v:val_type.i) do
Iclv := v;
end;
if (not g;(Icl-v) ) then
exit;

end if;

end loop;

rh_l.passive(i,to_glob(lclv));
accept reactivate;
end loop;
end;

The right hand side of the causal statement is handled by the following task.

task body rh.l is
param : array ( 1 .. k) of glob_type;
begin
loop
for indx in 1 .. n loop
select

or accept(i : integer;v: glob_type) do
if (i <= k) then
param(i) := v;
end if;
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end;

end select
end loop;
if (not f(to_type_1(param(1)), ..., to_type k(param(k)))) then
generate(disaster,name);
end if;
for.g.1.reactivate;
for_g_2.reactivate;

for_g-n.reactivate;
end loop;
end;

If there is a limit on the number of active threads, the number of tasks can be
reduced, with each task performing more functions. Note that some of the semantic
parameters are implicitly defined by the above translation. For example, the rules
regarding the accept statement force a FIFO handling of events, while the semantics
left the handling of events as a scheduling decision.

7.2.2 Partial Orders

In this section, it is our aim to derive a relationship between the work done
by others in modeling systems and our definitions. While there are a wide variety
of models to choose from, we select the work of Pratt [74] in using partial orders
to characterize concurrency as it is a fairly simple yet powerful model. Before we
introduce our definitions, we describe Pratt’s model briefly.

Pratt in [74] models concurrency (processes) using partially ordered multisets or
pomsets. Rather than discuss the model in detail we present a precis. By process,
an event oriented or state oriented computation is presumed in contrast with a
functional style. A large number of operations on pomsets‘ are defined, thus creating
a pomset algebra. Just as strings model sequential computation, concurrency can
be represented by partial orders. All the components that can occur concurrently
have no temporal ordering imposed on them i.e., they are not comparable in the
partial order. To be able to model realistic systems, the partial order has to be
over a multiset as there could be repetitions in the computations. For example, a
particular communication channel could be used repeatedly. A process can be looked
upon as a collection of pomsets i.e., a set of pomsets. This is to be interpreted as a

non-deterministic choice of one of the pomsets.
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7.2.2.1 Partial Orders from Transition Rules

Introduced here are definitions which help build a partial order between events in
a program from the semantics of ARL. Note that our characterization is based only
on events. We do not consider mutable variables used by the program in the char-
acterization. This is because events used in the a program signify important states.
Towards that, let P be the given program. Define the set of configurations B (for be-
haviors) to be the function space from MODULES x EVENT.TYPES x INTEGER
to VALUES x CLOCKS x INTEGER. That is it represents the function space of
EVENT_OCCUR for each module. An element b of B of the form <(m,e,i) (v,c,t)>
and is to be interpreted as the ith occurrence of event type e in module m occurs at
time t when measured with respect to clock c and has value v. Let M, represent all
possible behaviors of the program P when started in state . Clearly the elements
of M, C B,ie, M, CP(B).

Intuitively it is clear that the notion of causality should determine the partial
order. A formal definition of ‘causality’ is defined below. Let p,q,r be instances of
subprogram invocations and let e,f,g be event types. An event is characterized by
its type and occurrence number in a specified module. Let x, y denote events. For
the purposes of the definition below assume that parameters to a subprogram can
be represented by a single term.

Definition 7.1 A subprogram p t_calls (for transitive calls) another subprogram q
with arguments ‘param.1’if [ q(param-1) J| is executed by p or if there exist a
subprogram r and parameters ‘param._2’ and p executes [[ r(param2) J] and r
t_calls q.

Definition 7.2 Similarly a procedure p generates x, if p executes || generate(x)
1 orif there is a q such that p ¢_calls q and q generates x.

Definition 7.3 An event x is said to cause a subprogram p, if the instantiation of
x invokes p, or if there is a q such that x causes q and q t_calls p.

Definition 7.4 An event x is causally before an event y if there is a subprogram p
such that x causes p and p generates y.

Definition 7.5 Define an ordering < on B such that <(m,e,i) (v,c,t)> < <(m’/f,j)
(w,e",t")> iff <e,i,t,c> is causally before <fjt’,c’>.

Proposition 7.1 =< is an irreflexive partial order
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Proof 7.1 The irreflexivity and anti-symmetry are obvious. Assume towards a
contradiction that there exists events x, y and z such that x<y=z but not x<z. As
X =y, there is a subprogram p such that x causes p and p generates y. And asy <z,
there is a subprogram q such that y causes q and q generates z. By the definition
of cause, x causes q. Therefore x < z, a contradiction.

In the above definition we have only shown how partial orders can be generated.
We have not shown how the operators introduced in Pratt’s model can be used. This
requires further research. However, it is our belief that the definition of generates
and cause can be extended to model the operators.

7.2.3 Replaceability

In this section we introduce a notion of replaceability. A notion of equivalences
(of terms in the semantic language for ARL) will be useful in the development of a
proof theory. Pragmatically, the idea of equivalences can be used to design fault-
tolerant systems. For example, assume that processes P1 and P2 are equivalent.
If due to a fault P1 cannot be executed, P2 can be used as a replacement for P1.
The theory of equivalences has been studied in detail for concurrent systems [40].
However, the idea of equivalences is difficult to define in a real-time setting, as when
an action is taken is important. We define a concept of replaceability which is similar
to that of equivalence.

First, we assume that a real-time system can be characterized solely by events.
Recall that an event is an instantiation of an event type and has a specific data
value. Associated with the event is the time of occurrence as measured with a local
clock. An event is therefore of the form < M,E,ILV,C,T>, where M is a module,
E is the event type, I the instance number, V the value of the Ith instance, C the
clock used to measure time of event occurrence and T the time with respect to C.
Also recall the definition of a function called REMOTE_TIME_FUNCTION, which
when presented with a time at a local clock returns the time at another local clock.
For example, REMOTE_.TIME_FUNCTION ¢ cl ¢2 = | t1,t2] is to be interpreted as
that when local clock cl shows time t, the local clock c2 could show a time anywhere
between t1 and t2. Also note that a set of temporal predicates (involving events),
which had to be satisfied could be derived from the program.

For the purposes of this thesis, assume that all relevant events are in the same
module. Though all events occur in the same module, they can be measured with
respect to different clocks. Hence, we drop the module part of the event and retain
the clock field. Thus an event is represented by <E,I,V,C,T> where E,LLV,C and T
are as before.
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Definition 7.6 A pair < e,i.,%,c,t. > and < f, if,v5,¢5,ty > is said to be
relevant to a temporal ordering formula occur(z, i, v.) wrt ¢; ® occur(y, i,,v,)
wrt ¢y limit n iff

[ (z = e)&(ic = i, Vi € i:)&(y = f)&(iy = iy Vig € iy))&(ve = v, Vv, € v,)&(v) =
Vs €ry)]V

[(z = F&(is =i Vis € i.)&(y = e)&(ic =iy V ic € 1,)&(vs = v, Vv € v,)&(v, =
vy Vv Evy) |

In the above definition the ‘element relation’ is necessary to handle univer-
sally quantified formulae. Also note that the clocks associated with the formu-
lae and the events need not be identical. Recall that the semantics used RE-
MOTE.TIME_FUNCTION to relate the various clocks. We define satisfaction of
a temporal formula for a pair of elements < e,i,v,c,t > and < f,j,w,c,t >.
Define [t1,t2] to be REMOTE.TIME_ FUNCTION(c,,¢c,) and [t3,t4] to be RE-
MOTE.TIME_FUNCTION(¢, t, ¢f).

Definition 7.7 The pair < e,i,v,¢,t > and < f,j,w,c,t' > is said to satisfy a
temporal formula f of the form occur(e,oc;,v;) wrt c. before occur(f,ocz,v;) wrt
cs atmost n iff (if they are relevant then (t2 < t3) and ( (t4 - t1) < n)).

The first term in the conjunction ensures ‘before’, while the second term requires
that the maximum error in timing does not violate the condition. The definition of
satisfaction for the after and atleast operator can be defined in a similar fashion.
Note that the above definition is identical to the definition used in the semantics
associated with interval time.

Definition 7.8 Let S be a set of events. § is said to satisfy a formula f iff: V X,y
€ S: (x,y) satisfy f. Similarly, let F be a set (possibly infinite) of formulae. Then S
satisfy F iff Vf €F S satisfy f.

Example 7.1 Let the system contain the event types E, F and G. Let (E,10,) be-
fore (F,,) atmost 5 be a temporal formula. Let S1 be the following set of events {
<E,10,V,C,[1,2]>, <F,J,W,C,[4,5]> } and let S2 be the following { <E,11,V’,C,[10,11]>,
<G,K,U,C,[9,10]> }. By our definition of satisfy, both S1 and S2 satisfy the for-
mula. 51 has relevant events which are within time bounds, while the events in S2
are not relevant.

Recall that temporal_violations was an event type such that events of its type
indicate the occuisence of a temporal violation.
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Definition 7.9 Define the badness of a set of events as the number of events
of type temporal_violation. The badness of a set of such sets is the maximal
number of the badness of each of the individual sets.

We define a notion of replaceability. It has two major components to it. The
first component depends on a given set of input events and sets of output events.
We allow sets of output events to handle non-deterministic behavior of program.
In a non-deterministic program, it is possible to get various outputs given a single
input.

Definition 7.10 For given non-empty sets O and S, whose elements are sets of
events, S is said to be acceptable with respect to O iff (O CSV S C O).

This definition is to ensure that the behavior of the system we are modeling is
“not changed drastically” but can characterize non-determinism. The first part of
the disjunction is to be interpreted as the system associated with S exhibiting more
non-determinism than O while the second part is to be interpreted as the system
exhibiting less non-determinism. This definition is similar to the one in [67].

Example 7.2 Let O = { {E,F}, {F,G}, {E,G} }. Let S1 = { {E,F}, {F,G} } and
S2 = { {F,H} }. Sl is acceptable with respect to O, while 52 is not.

Definition 7.11 Define the good_set of a set of events E, as the mazimal subset
of E containing no temporal_violations.

The second component in the definition replaceability depends on the definition
of satisfaction. For this assume, that states in a computation graph have information
regarding events that have occurred. Also assume the temporal formulae that need
to be satisfied by all states is defined. Let the set of formulae to be satisfied by the
computation be F.

Definition 7.12 A node N1, in a computation graph is formula_replaceable by
another N2, iff (for every formula f in F: if the events in N1 satisfy f then the
events in N2 satisfy f).

In the above definition, events in N2 may satisfy more formulae than in NI1.
What is required is that replacement does not invalidate valid formulae. Therefore
N1 and N2 may not be equivalent.

Definition 7.13 Let the computation graph obtained by replacing an event E in a
given state & by another event F and re-executing the transition rules be called a
substitution graph.
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Definition 7.14 A graph Gl is said to be replaceable by Graph G2 iff ( The
good_set of events associated with the root node of G2 (R2) is acceptable with
respect to the root node of G1 (R1) and the badness of set of events of R2 is no
more than the badness of the set of event of R1 and R1 is formula_replaceable
by R2 and either for every successor of R1 there is a successor of R2 such that the
sub-graph rooted at these successors are replaceable or for every successor of R2
there is a successor of R1 such that the condition holds.

As in the definition of formula_replaceable, the idea of replaceable is that the
new node can take the place of the old node, if it is “no worse” than the old node.
“No worse” has two components to it. The first is that the number of temporal
violations are no more than before while the second is that all the original formulae
are satisfied.

Definition 7.15 An event is said to be replaceable by another in a state S iff the
original computation graph is replaceable by the substitution graph.

It is our opinion that these definitions form a basis for the development of a
theory regarding real-time equivalence. However this requires further research and
is out of the scope of this thesis.

Potential research in other areas can also be linked to our work. One other area
is in the development of a ‘theory of implementations’ for real-time languages. For
example, one can define a program to be completely implementable if for all “degrees
of safety” there is an implementation, where a degree of safety can be considered to
be the probability of a certain number of timing errors. The above can be expressed
formally as VP € L,Vé €[0,]] Vn € w 31 € Implementation probability(I
generates greater than n temporal violations) < §

The difficult part in the above formula is to formally define the set of all imple-
mentations and how to measure the probability of a program generating temporal
violations.

Another important topic not discussed explicitly in the thesis is the concept
of fairness. A scheduler is said to be fair, if processes that are enabled infinitely
often are executed infinitely often. This concept is too general to be useful for real
time systems. For example, in a particular execution sequence only a subset of
possible events could be relevant while there could be processes which are enabled
but generate irrelevant events. What is necessary is a definition of fairness which is
function on the number of timing violations. This concept could be closely related
to be above mentioned theory of implementation.
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APPENDIX A

BNF-like Grammar for ARL

type.def :: id :: definition

definition :: tuple_def | constructor_def | sequence.def | abstype
tuple-def :: id :: (id[,id])

_ tuple_def :: type id is record fields | fields | end record
fields :: id : id terminator

constructor.def :: id :: constructor [ | constructor]

constructor :: cap-id [ id |

constructor_def :: type id (id : id ) is record fields [ fields | case-opt end record
case_opt :: case id is case_field [ case_field ] end case
casefield :: when id => fields [ fields ]

sequence.def :: id [ id ]

sequence-def :: type id is array ( range )

zf_expr :: [ expr iterator qualifier [ qualifier ] ]

zf_expr :: [ generator | qualifier [ qualifier | ]

iterator :: || //

generator :: pattern <- expr [, expr ]

qualifier :: expr | generator

abstype :: abstype id [ poly ] with signature
abstype :: constructor_def [ law ] local.declaration
poly :: string_of_stars

signature :: [ absfunc ] implement absdefin
absfunc :: id :: type.indication

absdefin :: subprogram_decl

type-indication :: id | type.indication -> id

law :: pattern => expr [, expr |
local_declaration :: where [ declaration ]
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clock_def :: auto id := id + expr init expr
clock_sync :: auto (id >> expr ) id := id
broadcast-sync :: auto (id [, id] : expr )

periodic_task :: id-opt auto id >> expr subprogram.call
id_opt :: | id

delay_stat :: delay untilopt expr wrt clock_spec.opt
clock_specopt :: id | id [ expr ]

until.opt :: | until

event_type.decl :: event id [ ,id ] | event id [,id ] :: id
event_restrict :: input id [, id] | output id [, id]
genstat :: generate ( id , expr )

reply-stat :: reply ( id , expr )

causal stat :: handler [ , handler ] causes subprogram_call
handler :: id (id )

temporal_spec :: id : predicate binary_opt

binary.opt :: limit | temp_oper predicate limit
temporal.oper :: before | after

limit :: atmost expr | atleast expr

predicate :: occur ( id , oc_option , val-option ) time_option
time_option :: | wrt clock-spec_opt oc_option :: expr | star-opt | dstar-opt
staropt :: * | expr + * | * 4- expr

dstar.opt :: ** | expr 4 ** | ** 4 expr

val-option :: expr | dollar_opt | ddollar_opt

dollar_opt :: $ | expr operator $ | $ operator expr
ddollar_opt :: 8% | expr operator $$ | $$ operator expr

subprogram._decl :: subprogram_keyword-opt id parameter_spec is declarations be-
gin body end

subprogram_keyword_opt :: | function | efunction | observer | procedure | sub-
program

subprogram.decl :: subprogram_keyword-opt id eqn_parameter_spec = body lo-
cal_declaration

local_declaration :: where [ declaration ]

body :: [ statments terminator ]

exclusivedef :: excl {id [,id] }

objdecl :: id ¢ id | id | id : definition

declaration :: [ type_def | event_type_decl | subprogram-decl | obj_decl ]
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subprogram._call :: id (expr [, expr])
subprogram._call :: id [ expr ]

type_pl-decl :: import type_.pool id is [ type.def] end type_pool_opt
type-pool.opt :: | id

event_pl-decl :: import event-pool id is [event_type.decl] end event_poolopt
event_pool.opt :: | id

clock-pl-decl :: clock_pool id is [ clock_-def] end clk_pool-opt
clock.poolopt :: | id

import :: [withid [,id ]]

module :: import module_spec module_body init_opt
init-opt :: endm_opt | init body endm_opt
endm_opt :: end | end id

module_spec :: module param._spec.opt is
param.spec_opt :: id | id mod_param

mod-param :: [ modseq ]

mod.seq :: id : expr .. expr [, mod_seq]
module-body :: distribution-map [ declaration ] [ subprograms | clock.sync | causal_stat
|, temporal_spec | periodic_task | event_restrict]
terminator :: NEWLINE | ;

distribution.map :: for module-map use clock-map
module.map :: id | id [ id ]

clock-map :: id | id [ id ]
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APPENDIX B

Functions used by the Semantics

The following are the functions used in the semantics.

o ADD_TO_LIST

o ADD_TO-TIME.TABLE

o AVERAGE

e CAUSED : causation — subprograms

o CAUSER : causation — P (subprograms)

e CAU_EV : causation — P (event_types)

e CAU.ID

o CAU_LAB

CLK-ASSIGN

ESTIMATION

EVENT.OCCUR: (POSITIVE — ( (VALUES x CLOCKS x POSITIVE) U
{L})

¢ EVENT_SCOPE : causation x event_types — P(subprograms)
e EVHAN.ID

o EVHANSTATE

e FIRST_CLK : temporal_specification — clocks

FIRST-EV : temporal_specification — event_types

o FIRST_OC : temporal_specification — INTEGER U { *, ** }
FIRST.VAL : temporal_specification — values U { §, $$ }
GEN_NAME : generate — event_types

GEN_VALUE : generate — values

GET_EVENT_ENTRY

INCR : clocks — INTEGER
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e INITIAL : clocks — INTEGER

o INTERP_.FROM

o INTERP.TO

o LIMIT : temporal_specification — { UPPER, LOWER }
o LIMIT_.VAL : temporal_specification — INTEGER
e MY_MODULE : NODES — MODULES

e MY_SELF

o NEXT

e PARAMS

e PARENT

e PT_CLK : periodic-tasks — clocks

e PT_INTERVAL : periodic_tasks — INTEGERS

e PT_NAME : periodic.tasks — subprogram

e PT_PARAM : periodic_tasks — INTEGER (expr)

¢ RECEIVE_MESSAGE

e REMOTE_-TIME_.FUNCTION: CLOCKS x INTEGER x CLOCKS — IN-
TEGER

e REMOVE.FROM_LIST

e RESET

e REST_CLK

e ROOT

e SECOND-EV : temporal_specification — event_types

e SECOND_CLK : temporal_specification — clocks

o SECOND.OC : temporal.specification — INTEGERU { *, ** }
o SECOND.VAL : temporal_specification — values U { $, $$ }
o SEND_MESSAGE

e SET

o SPGM_PARAM : subprograms — INTEGER (expr)

o SPGM_TYPE : subprograms — { Procedures, Observers, Functions, Efunc-
tions }

e SYNCED : clk_sync — clocks

e SYNCER : clk_sync — clocks

e SYNCINT : clk_sync — INTEGERS
e SYNC_FUNC
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e SUBPR_SCOPE: SUBPROGRAMS — P(EVENT_-TYPES)
o SUFF

o TERM_TYPE

o TS_LAB : temporal_specification — temporal_labels

e TSPEC_CLK

e VISIBLE: MODULES x EVENTS — BOOLEAN.
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