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ABSTRACT

Of Limitsand Mythsin Branch Prediction
by
Avinoam Nomik Eden
Chair: Trevor N. Mudge
The need to flush pipelines when miss-predicting branches occur can throttle the
performance of a pipelined super-scalar microprocessor. It is argued that by the year 2010
branch prediction will become the most limiting factor in processor performance[1]. A
plethora of research has been done on the subject of branch prediction. While many
branch prediction structures have been proposed, their performance is usually
demonstrated empirically through ssimulations that provide little insight into the

underlying principle that enables their behavior.

Since the introduction of the two-level dynamic branch prediction scheme, research into
branch prediction has followed four different paths. The first attempts to improve predic-
tion by reducing aliasing in the second level table, which was shown to adversely affect
prediction accuracy. The second attempts to improve prediction accuracy by combining
two or more different components in the branch prediction structure. The third attempts
to improve prediction by changing the configuration of a particular predictor. Lastly, the
fourth, triesto find new schemes to improve branch prediction. Most papers on research
along one path ignored comparisons with other paths on the basis that the different paths

are orthogonal.



A set of studiesis presented that consolidate the different research paths by showing
that the advantage gained by most of them isto reduce aliasing. After showing that
reducing aiasing is the prevailing factor in prediction gain regardless of which path of
research is followed, we highlight a set of criteriathat a predictor should embrace, to
have agood prediction. The criteria emerge from the studies we performed and previous

work on the subject.

The set of criteria, a predictor should follow to achieve good prediction accuracy, is used
to build anew predictor — YAGS. YAGS outperforms the leading branch predictor
structures from the different paths of research. It provides the micro-architect with a set

of parameters that can be used to meet different restrictions, such as size and latency.

Thiswork highlights misconceptions that resulted from the work done on the topic. It
especially stresses the importance of arelevant limit study for understanding a new

branch prediction scheme and structure.
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Chapter 1 - Introduction

AsVLSI technology continues to improve, more resources become available for the
branch prediction module. Concurrently, newer high-performance machines are
implementing deeper pipelines and greater issue-widths. This, in turn, increases the
number of branches predicted and not yet retired, and increases the branch misprediction
penalty. Code sizeis expected to increase [2], and the memory state reached in one cycle
to decrease [63][65]. Although more resources are available to computer architects, the
decreasing state reached in one cycle dictates the usage of smaller branch predictors, if
the prediction is going to happen in one cycle. Thus the need to predict more branches

with higher accuracy employing a smaller amount of resources continues to grow.

1.1 TheBranch Irony

The branch instruction is thing that separates a computer from a calculator. It facilitated
the leap from simple sequential calculations performed by a calculator to complex
calculations and tasks performed by computers today.

At first, computers executed programs sequentially — one instruction was
executed before the next instruction started. By the time the instruction following the
branch was fetched, the outcome of the branch instruction was known and it was clear
which instruction was to follow. Micro-architectural mechanisms to speed execution led
to pipelining and super-scalar cores. With these innovations, more than one instruction is

executed concurrently, and possibly, execution is not completed in sequential order.
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Pipelining and super-scalar architectures have resulted in several complications.
One of the more prominent onesis the control hazard. This arises when the instruction
following a branch is fetched before the branch instruction is fully executed. When that
instruction is executing, it is not clear whether the branch is going to be taken or not. If
the branch istaken, the address of the next instruction (the branch target address) is not
yet calculated. One solution to the control hazard problem is to stop further instruction
fetching until the branch isfinished executing. This, however, reduces the advantage
gained by pipelined and super-scalar architectures, and therefore is not a desirable
solution. A better solution would be to make an educated guess at the branch direction
and target address and to follow the execution accordingly. If the guessis correct,
pipelining and super-scalar architectures would be allowed to fulfill their potential. If an
incorrect guess is made, arecovery mechanism would need to be in place to roll back the
machine to the state just after the miss-predicted branch finished executing. This process
isthe process of branch prediction.
It is estimated that 1 out of 5 instructionsis a branch instruction. Current
microprocessors demand instructions at a high rate, and attempt to fetch 4 and 6
instructions per cycle. With a pipeline of up to 15 stages deep, the number of instructions
that can be executed concurrently iswell over the 5 mentioned above. In order to feed
such engines, an accurate branch prediction is needed. It is argued that by the year 2010
branch prediction will become the most limiting factor in processor performance,

surpassing even the limitations imposed by memory systems[1].
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The branch irony is that the same mechanism that helped computers evolve past the
functions of amere calculator becomes the limiting factor for future generations of

computers.

1.2 Solutionsto the Branch Problem

A number of ways have been devised to overcome the control flow problem imposed by
sequential code. Eliminating false control dependencies allows unnecessary stallsto be
eliminated [3][4]. Code transformation by compilers to enlarge basic blocks reduces the
occurrence of some branches. Loop unrolling, aform of basic block enlargement, isa
popular technique employed by compilersto alleviate the cost of branches. Guarded
(predicated) execution also allows basic blocks to be enlarged [5][6][7]. However,
methods like guarded execution suffer from the need to change the instruction set
architecture (1SA), which poses a problem for backward compatibility.

Another group of techniques relies on branch prediction. The machine speculates on the
direction of the branch, and then executes the predicted path. One way of doing
prediction isto profile the program and then to include a prediction bit in the branch
instruction. Thisisreferred to as static branch prediction. It suffers from the need to
change the ISA like guarded executing, which is also done by the compiler. Dynamic
branch prediction, on the other hand, records the outcome of the previous branches
during the run of the program, and based on this statistic, predicts the outcome of the
following branches. It has been shown that dynamic branch prediction achieves better

performance than other methods [8].
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In order to overcome the control dependency imposed by conditional branches using
dynamic branch prediction, the direction of the branch and the target address need to be
predicted. In most cases, the target address can be predicted accurately by utilizing a
branch target buffer (BTB) — a cache that records the target address during the previous
execution of the branch. A hit in the BTB ensures agood prediction in the case of a
direct branch. The target address of indirect branchesis harder to predict, but indirect
branches constitute a small portion of the overal branches. This dissertation concentrates
on predicting the branch direction. Moreover, this dissertation is limited to dynamic
branch prediction. Those dynamic predictors might employ a static method, but pure

static predictors are ignored.

1.3 Directionsin Dynamic Branch Prediction

The first branch prediction schemes were static ones, where the branch prediction was
hard-coded within the processor. The need for better branch prediction led to dynamic
branch predictors, where branch prediction is determined by examining past behavior of
the running program. The introduction of the bimodal structure was one of the first to
utilize dynamic branch prediction, and it put the field of dynamic branch prediction on
the research map [35][36]. Most processors in the past few years have contained a
dynamic branch prediction module.

The introduction of two-level dynamic branch prediction [61][22] was a major step in the

advancement of dynamic branch predictors. From that point, research in the field has
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taken four different paths™. Thefirst path attempted to improve on the two-level
branch prediction scheme by incorporating different kinds of branch-related information
into the dynamically collected statistics that decide the prediction. Thiswill be referred
to here asthe ‘ scheme path’. Once it was understood that aliasing presented a major
hurdle to correct prediction, numerous branch prediction structures that aleviate the
aliasing problem were conceived. The second path of research we will refer to here as
the ‘aliasing path.” The third path, the *hybrid path,” is based on the observation that
different branches are best predicted by different kind of predictors. Predicting each
branch with its respective best predictor, should enhance prediction accuracy. The fourth
path isthe one least studied. It involves a‘third-level of adaptivity’. This claims that
different branches are better predicted by different configurations of the same branch
prediction scheme, or that different phases of the program are better predicted by
different configurations of the same branch prediction scheme. We termed this path the
‘third-level’ path, and we note that some papers also claim that the third-level path helps
prediction by reducing aliasing.
The different branch prediction research paths have been kept separate in most cases.
Thisis apparent in the lack of comparison between the different structures. For example,

the agree [9] predictor which is designed to reduce aliasing was never compared to the

! Using value prediction to predict branches can be viewed as afifth path that research took, or it can be
conceived of as part of the scheme path. In any case, in preliminary studies not presented here, we learned
that most branches predicted well by incorporating value prediction are predicted just as well by other
known predictors. We have therefore chosen not to address branch prediction using value prediction in this
dissertation.
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McFarling hybrid predictor [14]. The hybrid and aliasing paths were considered to
be orthogonal, and a hybrid predictor, where each component reduces aiasing could be
easily devised. Another example isthe bi-mode predictor. When it was introduced, there
was no mention of the classification method (discussed later) despite the striking
structural similarity between the bi-mode and classification method. Asaresult of this
line of thinking, thereis very little knowledge regarding the interaction between the
different paths.

Another problem becomes apparent when, in the rush to publish new branch prediction
structures, researchers often failed to understand the reasons why the branch prediction
structure worked. Instead, empirical results showing the superiority of the branch
predictor have often been presented. These publications often lacked a simple limit study,
which would have helped explain the underlying reasons why the branch prediction
structure worked well. This omission could lead microarchitects to make poor choices of

the branch predictor structure needed for a microprocessor.

1.4 Thesis Statement
The need for accurate branch prediction isincreasing as processors implement deeper and
wider instruction fetching. Understanding why known branch predictor structures work
is essential to the decision-making process of the micro-architect. It isalso important to
find feasible solutions to the branch prediction problem without ignoring constraints
imposed by the underlying technology.
This dissertation presents a series of studies aimed at understanding why the different

paths taken by dynamic branch prediction work, and what sorts of interaction have
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existed between those paths. Presented here are results that show an unexpected
amount of consolidates among the different paths taken in branch prediction. Those
results, combined with a detailed analysis of previous studies and alook at trendsin the
underlying technology, lead to a set of criteriathat produce an ideal model for atwo-level
dynamic branch prediction structure. Using those criteria, a new dynamic branch
prediction structure is constructed that outperforms other known predictors from the other
three paths. The microarchitect is presented with different configurations of the new

predictor that fit different architectures and constraints.

1.5 Contributionsof ThisDissertation

This dissertation makes several contributionsto the field of branch prediction. First, it
consolidates the hybrid and aliasing research paths in branch prediction by showing that
most of the advantage gained in combining branch predictorsis due to the selection
mechanism’ s ability to reduce aliasing. The myth that a branch changes its best predictor
during the execution of a program is refuted.

Second, this dissertation shows that a dynamic and a properly profiled static selection
mechanism in hybrid predictors work well for the same main reasons. They both reduce
aliasing. The prevailing factor in increasing prediction accuracy is aliasing reduction.
The advantages and disadvantages of static and dynamic selection mechanisms are
highlighted.

This dissertation also consolidates the third-level and aliasing research pathsin the
branch prediction field. Showing that most of the advantage gained by the third-level

branch prediction structures is due to filtering, the third-level path is reduced to the
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aliasing path. Animportant observation made here is that the same advantage
depicted in the third-level path can be gained by picking the best history size
configuration for each benchmark.
The lessons learned in this dissertation combined with a thorough analysis of the
advantages and disadvantages of previously proposed branch prediction structures are
used to draw a set of criteriathat branch prediction structures should follow.
Drawing on this proposed set of criteria, a new branch prediction structures is proposed —
YAGS. Utilizing the set of criteriaalows Y AGS to provide a significant performance
improvement over existing structures at modest cost. A comparison between YAGS and
previously proposed structures is presented.
A profile version of YAGS isintroduced. Thisversion makes better use of resources by
allowing the branch bias to be determined statically, but might require some ISA change
for certain architectures. Arguably, the best attribute of the profile version of YAGS s
the ability to use it as a cascading predictor. A cascading predictor supplies a prediction
in one cycle and a more accurate prediction after two cycles.
This thesis stresses the importance of arelevant limit study for research done on branch
prediction. Most of the misconceptions/myths revealed in this dissertation resulted

directly from the lack of arelevant limit study.

1.6 Organization

This dissertation is organized as follows. Chapter 2 elaborates on the four different paths

discussed above, and walks the reader through previous work performed in each path,
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highlighting the pros and cons of each method. Chapter 3 discusses the
experimental methodology and benchmarks used in the studies.
The next 3 chapters are each dedicated to one of the four paths discussed above. Chapter
4 presents alimit study on the different schemes belonging to the scheme path. Chapter 5
investigates what makes a hybrid predictor work well and evaluates the benefits of
incorporating a hybrid predictor with a structure to reduce diasing. Finally, Chapter 6
investigates the possibilities and limitations of the third-level path.
The remainder of the dissertation capitalizes on the conclusion of the previous chapters.
First, Chapter 7 introduces atrend in micro-architecture that has generally been ignored
within the branch prediction research community. Utilizing previous work and studies
done earlier chapters, Chapter 8 summarizes the criteria necessary for a good dynamic
branch predictor. This chapter goes on to introduce a predictor that capitalizes on these
criteriato produce a better prediction compared to previous known predictors. Chapter 9

provides a summary and possible future work.
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Chapter 2 - PreviousWork

2.1 Prediction Schemes

4This section walks through previous work done on the scheme path. While the first two

subsections discuss one level rather than two level dynamic branch prediction schemes,

they provide afoundation for the two-level branch prediction schemes discussed in the

rest of this chapter.

2.1.1 Bimodal

PHT

%

entry per branch

+
pradicion

Figure2.1 - Diagram
for the bimodal
Scheme

A table of two bit saturating counters (2bc) called a pattern
history table (PHT), indexed by the branch address, was
proposed early in the history of branch prediction research field
[35][36]. Thiswas one of the earliest dynamic schemes, and
was later referred to as the bimodal scheme (Figure 2.1)%. The
2bc became the standard state machine and the bimodal branch

predictor is frequently used asa*lower bound” branch

prediction benchmark against which to judge other branch prediction structures. In other

words, a branch prediction scheme should not, under any circumstances, perform worse

than the bimodal scheme. The bimodal attempts to predict the direction of a branch

according to the past behavior of that branch during program execution. The 2bc

2 The Figuresin Section 2.1 show a diagram for the branch prediction scheme, although those schemes

were introduced by specific branch prediction structures (see sec 4.1 for more).
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provides some hysteresis so that one spurious prediction does not alter the next
prediction. The branch should behave the same at least two times consecutively in order
for the prediction to change. The bimodal can be seen as capturing the dynamic bias of

the branch.

2.1.2 History Only Branch Predictor

A special case of the global branch prediction schemeisthe history

e~ branch prediction scheme [44] (Figure 2.2). A table of 2bcs, indexed
% by a global history register, provides the prediction. History branch
—~
EN prediction schemes assume that a correlation exists between the last
pr'ejicﬁu:-n n branches and the current branch. Since the branch addressis not
Figure2.2 involved in determining the prediction, the assumption is that the

Diagram for the

history scheme  orrel gtion works regardiess of which branch isinvolved. In other

words, if the n branches preceding branch A and branch B behave the same, branches A

and B will behave the same as well.

2.1.3 Two-level Adaptive Branch Predictors

A major milestone in the branch prediction research field was the introduction of the
local two-level adaptive branch predictor [22]. It was shown to achieve up to 97%
correct prediction accuracy on the early SPEC89 benchmarks. Later analysis has shown
that the SPEC89 benchmarks are not hard to predict, even the bimodal predictor achieves
over 90% prediction accuracy on the same set of benchmarks. The authors varied the
associativity in the history table, and examined different state machines as the predictors

inthe PHT. This study found that the 2bc state machine performed the best among the
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state machines tested. It isimportant to note that since that study, this assertion has
not been challenged and the 2bc been accepted as a standard.
Three different classes of two-level adaptive branch predictors were identified [23], and a
terminology based on taxonomy was proposed. For example, the term GAg indicates a
global history register with a shared (global) PHT. The size of the PHT jg 2Mst register size
inthiscase. PAg indicates atable of history registersindexed by the program counter,
where the PHT is shared. In contrast, PAp indicates atable of history registers, each of
which hasitsown PHT. In practice, the PAp scheme can only be realized for very small
history sizes. Separate work showed that PAp is the best predictor and GAg is the worst

[24]. Notice, however, that GAg consumed the least amount of resources.

Today, the common opinion

| address || history | address | E?SED""' -
istory | G . .
— story | isthat the global family of
R ..

historp | = branch prediction can offer a

history ‘EE__'
H histary better prediction accuracy
[
-
£ PR than the local branch predic-
=
]

5 g tors for an integer workload
"= predidion };::“',.;E E
% “% - because the branches in
R T
- Y integer workloads tend to be
=i
E n
"5 pradidion highly correlated [25]. On the
Figure 2.3 - Diagram of the _ _
global scheme Figure2.4 - Diagramfor the  qther hand, the local family of
local scheme

branch predictors offers better

prediction accuracy for scientific workloads.
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2.1.4 Global Two-level Branch Predictors
The global two-level branch prediction scheme depicted in Figure 2.3 attempts to predict
the branch based on the pattern of outcomes of the n preceding branches. When the
program has alot of if-then-else statements, the results are usually good. When the
global branch prediction scheme was introduced arguments about program behavior, and
snippets of high-level languages code were used to justify its merit [44]. In trace driven
simulations it was shown that an implementation of the global branch prediction scheme
performed better than abimodal scheme implementation for the same amount of

resources.

2.1.5 Local Two-level Branch Predictors

Thelocal two-level branch prediction scheme shown in Figure 2.4 attempts to predict a
specific branch according to the last n preceding outcomes of the predicted branch. A
common notion is that local schemes are better than global schemes at predicting
branchesin scientific code. Thisis attributable to the presence of alarge number of loops

in scientific code. Having a per branch history register is beneficial for loop constructs.

2.1.6 Path-Based Branch Predictors

The correlated schemes described thus far record the branch outcome in the history
register. The information reflecting which branches resulted in those outcomes, is
therefore lost. Theinclusion of thisinformation might be beneficial for prediction

accuracy. If the last n branches preceding branch A resulted in a certain pattern, it is not
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necessarily the case that when a different set of branches precedes branch A form the
same pattern, branch A will behave the same.
To rectify thisloss of information problem it was suggested that the addresses aong the
path leading to the branch be factored into the information stored in the history register
[26]. Using the branch address path explicitly captures information about the addresses
of the branches leading to the one being predicted, and implicitly captures the outcomes
of the branches on that path as well. The mechanism proposed is a static mechanism,
which is performed by software.
The next development was a dynamic path-based branch prediction mechanism [26].
This structure is similar to the global two-level branch prediction structure. It was
observed that when a branch target address falls inside the branch’s basic block, the
branch outcome islost in the history register, because the path leading to the branch is
identical whether or not the branch wastaken. Thisled to the idea of using the branch
target address, instead of the branch address, as the information stored inside the history
register.
One weakness of path-based correlation in dynamic branch predictorsis that the history
register needsto hold alot of information, typically aword per branch, much more than
the one bit per branch of competing schemes. Since the most important information are
the least significant bits (LSBs) of the branch address, only asmall portion of the address
is pushed into the history register.
Path-based prediction schemes resulted in very similar prediction accuracy as did global

two-level branch prediction structures of the same size. However, it was noted that the
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path-based branch prediction scheme, while requiring about the same amount of

resources, used less branches for the history than the global branch prediction structure.

2.1.7 Other Schemes

Asaresult of the work mentioned so far researchers observed that capturing more
branch-related information improves the prediction potential of the branch prediction
scheme. An attempt was made to identify the branch by the branch address, global
history, and path-based history [46]. Information related to the above is“ exclusive-or”
(xor) together and used as the index to the PHT. A dlightly better prediction accuracy

was accomplished than the gshare scheme. No limit study was performed to assess the

potential of such a scheme, and the gain in performance is so minute that it could be due

to experimental error rather to the inherent capability of the prediction scheme.

2.1.8 Summary

A trend was established that the more information that is recorded about a branch to

distinguish it from other branches, the better the prediction accuracy that will be achieved

for that branch. However, more information entails more hardware dedicated to the
branch prediction structure. Therefore, it might be the case that the best branch
prediction scheme available does not necessary result in the most cost-effective branch

prediction structure.

2.2 Aliasingin Global Predictors
2.2.1 TheProblem
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The main problem that causes
h2 h2

prediction degradation in global
h.1 » branch prediction structuresis

aliasing [15][16] (Figure 2.5).

Aliasing - since Aliasing occurs when two indices,
,_f b1 war bl = b2 xar h2

typically formed from history and

address bits, map to the same entry in

i the PHT. Since the information
predicion

stored in the PHT entriesis either
Figure 2.5 - Aliasing in the gshare predictor “taken” or “not taken,” two aliased
indices whose corresponding information is the same, will not result in mispredictions.
We refer to thisas neutral aliasing. On the other hand, two aliased indices with

contradictory entries might interfere with each other and result in amisprediction. We

call this destructive aliasing.

2.2.2 Aliasing Reducing Branch Prediction Structures

A lot of work has been done to reduce aliasing in the PHT. In what follows, we describe

some of the more notable structures and highlight their strengths and weaknesses.

2.2.2.1 Gshare
25



The first structure to address the aliasing problem in two-
[ address || history |

BHT level adaptive branch predictors was gshare [14] (Figure

2.6). The observation that the usage of the PHT entriesis

not uniform when indexed by concatenations of the global

* . . .
‘ prediction history and the branch address, led to idea of using the xor
Figure 2.6 — Diagram for function instead of concatenation to more evenly use the
thegshare structure
entriesin the PHT. Moreover, the usage of the xor function enables more history bits to
be incorporated into the prediction and as aresult, enables the predictor to increase its

correlation. Detailed studies have shown that this yields a slight advantage [19].

2.2.2.2 AgreePredictor
The agree predictor displayed in Figure 2.7 assigns a biasing bit to each branch in the
BTB according to the branch direction just before it is written into the BTB [9]. The
PHT information is then changed from “taken” or “not taken” to “agree”’ or “disagree’
with the prediction of the biasing bit. The idea behind the agree predictor is that most

branches are highly biased to be either taken or not

ETE
[address |[ histoy | taken and the hopeisthat the first time abranchis
PR introduced into the BTB it will exhibit its biased
behavior. If thisisthe case, most entriesin the PHT
will “agree,” so that if aliasing does occur it will more
]
agree; . . - . - .
hias hi@ disagree likely be neutral aliasing, which will not result in a
E2 misprediction. This observation suggests redundancy
predichon
Figure 2.7 — Diagram for the in the PHT.
agreestructure
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A patent registered by HP [67] preceded the agree

[ address || history |
. — predictor in taking advantage of a branch’s biased

behavior to reduce destructive aliasing by replacing

destructive aliasing with neutral aliasing. The agree

predictor considerably reduces destructive aliasing.

However, thereis no guarantee that the first time a

branch isintroduced to the BTB its behavior will

predichon

correspond to its bias. When such cases occur, the
Figure 2.8 — Diagram for the

skew structure biasing bit will stay the same until the branchis

replaced in the BTB by adifferent branch. Meanwhile, it will pollute the PHT with
“disagree” information. Also, thereis still aliasing occurring between instances of a
branch that do not comply with the bias, and instances where the branch does comply

with the bias. When a branch is not cached in the BTB, no prediction is available.

2.2.2.3 Skew Predictor

The skew branch predictor seen in Figure 2.8 is based on the observation that most
aliasing occurs not because of asmall PHT size, but because of alack of associativity in
the PHT. In other words, the major contributor to aliasing is conflict aliasing and not
capacity aliasing. The best way to deal with conflict aliasing isto make the PHT set-
associative, but this requirestags and is not cost-effective. Instead, the skew predictor
emulates associativity using a special skewing function [11].

The skew branch predictor splitsthe PHT into three equal banks and hashes each index to

2bc in each bank using a unique hashing function per bank (f1, f2 and f3). The prediction
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is made according to a mgjority vote among the three banks. If the predictionis
wrong all three banks are updated. If the prediction is correct, however, partial updating

will occur, which means that only the banks that made a correct prediction will be

updated.
: The skewing function should have inter-bank
[ address | [ history |
dispersion. Thisisnecessary in order to make sure
choice PHT
L that if abranchisaliased in one bank, it will not be
direction PHT HT direction PHT T

adliased in the other two banks. This ensures that

the maority vote will produce a un-aliased

prediction. The reasoning behind partial updating

]
|
35 isthat if abank gives a misprediction when the

predichion

other two give correct predictions, the bank with
Figure 2.9 — Diagram for the bi-

mode structure the misprediction probably holds information

belonging to a different branch. In order to maintain the accuracy of the other branch,
this bank is not updated.

The skew branch predictor triesto eliminate all instances of aliasing and thus al
destructive aliasing. Unlike the other methods, it tries to eliminate destructive aliasing
between branch instances that obey the bias and those that do not. However, to achieve
this, the skew predictor stores each branch outcome in two or three banks. This
redundancy of 1/3to 2/3 of the PHT size creates capacity aliasing by putting more
information in the PHT, but eliminates by a greater degree conflict aliasing, resulting in a
lower misprediction rate. However, the increase in size slows warm-up on context

switches.
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2.2.24 Bi-Mode Predictor
The bi-mode predictor shown in Figure 2.9, similar to the agree predictor, replaces
destructive aiasing with neutral aliasing [12]. The bi-mode PHT gets split into three
even parts. One of the partsisthe choice PHT, which isjust abimodal predictor (an
array of 2bcs) with a slight change in the updating procedure. The other two parts are
direction PHTSs; oneisa*“taken” direction PHT and the other isa*“not taken” direction
PHT. Thedirection PHTs are indexed by the branch address xored with the global
history. When a branch is present, its address points to the choice PHT entry, whichin
turn chooses between the “taken” and “not taken” direction PHTs. The prediction of the
direction PHT chosen by the choice PHT serves as the prediction. Only the direction
PHT chosen by the choice PHT isupdated. The choice PHT is normally updated too, but
not when it gives a prediction that contradicts the branch outcome and the direction PHT
chosen gives the correct prediction.
During operation, branches that are biased to be taken will have their predictions in the
“taken” direction PHT, and branches that are biased not to be taken, will have their
predictions in the “not taken” prediction PHT. So at any given time most of the
information stored in the “taken” direction PHT entriesis “taken” and any aliasing is
more likely not to be destructive. The same phenomenon happens in the “not taken”
direction PHT. The choice PHT servesto dynamically choose the branches' biases.
In contrast to the agree predictor, if the biasisincorrectly chosen the first time the branch
isintroduced to the BTB, it is not bound to stay that way while the branch isin the BTB
and pollute the direction PHTs with destructive aliasing. It should be noted, however,

that the choice PHT takes athird of all PHT resources just to dynamically determine the
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bias. It also failsto solve the aiasing problem between instances of a branch that do
not agree with the bias and instances that do, because both are stored in the same

direction PHT.

2.2.25 Filter Mechanisms

Reducing the amount of necessary information stored in the PHT is the main point of
filter mechanisms[10]. Theideaisthat highly biased branches can be predicted with
high accuracy using just one bit. Easy-to-predict branches are filtered out of the PHT by
a combination of a bias bit and a saturating counter for each BTB entry, which can be
seenin Figure 2.10. When a branch isintroduced to the BTB, the bias bit is set to the

1B direction of the branch when it is resolved and

Laddress |[ histary | the counter isinitialized. When every branch
PHT

instance is resolved, if the direction of the branch

is the same as the bias hit, the counter is

incremented. If not, the counter is zeroed and the

FPHT prediction

biashit istoggled. A branch is predicted using
prediction the PHT if the counter is not saturated. If the
Figure 2.10 - Diagram for thefilter counter is saturated, it means that the branch is
mechanism structure
highly biased in the direction indicated by the bias bit, and therefore that the bias bit is
used as a prediction. In this case, when the counter is saturated, the PHT is not updated
with the branch outcome — the saturated counter filters this information from the PHT.

The size of the counter has to be tuned to the size of the PHT. If the PHT sizeislarge,

the amount of filtering needed is small, and therefore the size of the counters should be
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large. When abranch isfirst introduced in the BTB, the counter isinitialized. It
was found that it is best to initialize the counter to its maximum value so that the filtering
will start to work immediately. If the branch isnot highly biased, the bias bit will flip
fairly quickly and the counter will be zeroed. On the other hand, if the counter is
initialized to zero and the branch is highly biased, it will take time for the filtering
mechanism to start working and the PHT will be polluted in the meantime.
The filter mechanism attempts to eliminate all aliasing instances by considerably
reducing the amount of information stored in the PHT. However, this mechanism has
difficulty predicting instances of highly biased branches, which do not comply with the
bias. Dueto filtering, asthe PHT size increases the predictor will never reach the full

potential of the global scheme that it implements.

2.2.3 Summary
The branch prediction structures discussed above use three techniques to reduce aliasing.
The first takes advantage of the underlying information stored in the PHT, and converts
destructive aliasing to neutral aliasing as a means of improving prediction. The second
method to remove aliasing is associativity. Classical associativity (by an inclusion of
tags) was determined as not cost-effective. Pseudo associativity, a different way to
achieve the same effect, was devised. Third, filtering information selectively allocates
greater resources for the more important information.
Those advantages come at a cost. Most of the structures carry some redundancy. For
examplein the skew predictor, the same information is stored in up to three different

counters. This redundancy can exacerbate the negative effects of a cold start. In all the
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above branch prediction structures, certain types of aliasing are neglected or some

branches' accuracy isjeopardized.

2.3 Hybrid Predictors

predictor 1 predictor 2 predictor N

— — —

— |

- selection
mechanism

1

prediction

Figure 2.11 — Diagram of general Hybrid
Structure

The notion that a certain kind of predictor
better predicts one class of branches, while a
different kind of predictor better predicts a
different class of branches led to the idea of
combining branch predictors. This class of
branch predictors are known as the hybrid
branch predictors.

Figure 2.11 depicts ageneral drawing of a

hybrid branch predictor. A selection mechanism is used to choose between two or more

branch predictor structures to be used for the prediction of a specific branch instance.

2.3.1 Hybrid Branch Predictors

Thefirst hybrid structure suggested combining the bimodal and gshare structures [14].

The selection mechanism is atable of 2bcs and is very similar to abimodal structure.

The selection counter is updated only if the prediction given by the two predictorsis

different. If only the bimodal predictor gives a correct prediction, the counter is

decremented. The counter isincremented if only the gshare structure gives a correct

prediction. If both predictors either give acorrect or an incorrect prediction, the selection

counter is not updated. Consequently, state 0 and 1 of the 2bc state machine entails a

selection of the bimodal predictor, while state 2 and 3 result in the use of the gshare
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structure for prediction purposes. This hybrid structure was shown to outperform all
other single schemes known at that time.
It isinteresting to observe the percentage of times each predictor was used. For most
benchmarks, the bimodal was used significantly more than the gshare scheme. This
might indicate that the this hybrid predictor performs well because it filters the easy-to-
predict branches out of the gshare structure, and not due to the fact that each of its
components better predict a different class of branches. Thisway, asmall amount of
resources are used to predict the easy-to-predict branches, leaving the mgjority of
resources to predict the hard to predict branches.
The same study proposed that a hybrid predictor combine gshare and PAs structures.
This hybrid predictor is known as the McFarling predictor, named after the author of the
paper. The combination of global and local schemes outperformed the bimodal-gshare
hybrid predictor only for predictors larger than 16KB. The simulations were done on the
SPEC89 benchmark suite that is notorious for a small branch signature. A branch
classification method was suggested to enable a branch to be predicted by a predictor best
suited to predict it [13]. Branch classification was based on the observation that branches
that are highly biased can be predicted well with a short history predictor, while the rest
of the branches typically require alonger history. This observation led to a combination
of predictors with different history lengths. The classification predictor outperformed the
gshare scheme. The selection mechanism for the classification predictor is done via
profiling.
The classification predictor does not clearly belonging to just one of the research paths.

It can be seen instead as a hybrid predictor, and is therefore discussed in this section, but
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can also be seen as belonging to the ‘third-level’ path. The two components and a
selection mechanism associate it with the hybrid path. On the other hand, the two
different correlation depths of the same branch prediction scheme associate it with the
third-level path.

As an aternative selection mechanism to the bimodal structure, the two-level structure
was proposed [48]. The hybrid predictor under examination was the McFarling predictor.
The assumption was that since the two-level branch predictor could better predict the
direction of branches, it would also be better able to select between the different branch
prediction structures of the hybrid predictor. It was shown that using a two-level global
structure to select between the local and global schemes yielded avery small
improvement. However, this was not shown to be cost-effective, and the results were far
from the ideal oracle selection mechanism.

A conglomeration of predictors was incorporated into the multi-hybrid predictor [49].
The multi-hybrid consists of the bimodal, two variations of the global predictor, and two
variations of the local predictor, aloop predictor, and a static predictor. It was shown to
have a dlightly better prediction accuracy than the bimodal-global and the McFarling
hybrid predictors when tested under context switching. No explanation was given asto
why those particular predictors were chosen, or why there was a need for more than one
global and local predictor. The comparison was not done against the original McFarling
predictor, but rather against arevised version of it, where the sel ection mechanism was
tied to the BTB. Asthe size of the predictor grew, the selection mechanism size could
not grow because it was tied to the BTB. This gave an unfair advantage to the muilti-

hybrid predictor because its elaborate sel ection mechanism had to be tied to the BTB.
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2.3.2 Selection M echanisms

Selection mechanisms for hybrid branch predictors followed the same line of
development as did single scheme branch predictors. The classes consist of a static

sel ection mechanism, a dynamic per branch sel ection mechanism, and finally, atwo-level
selection mechanism as discussed above.

Possibly the only contribution of the multi-hybrid predictor isits selection mechanism
[49]. Before the multi-hybrid hybrid predictors consisted of only two separate branch
predictor components. The multi-hybrid consists of a selection mechanism that can
select between an arbitrary numbers of predictors.

This selection mechanism consists of multiple 2bc per entry. The exact number of 2bc is
determined by the different components of the multi-hybrid predictor. The predictor to
be used is determined by the 2bc with the value of threeinit. If multiple 2bcsin the
selector entry have the value three, a priority encoder is used to determine which
predictor to use. Once the branch isresolved, the 2bc, which corresponds to the
predictors giving a correct prediction, isincremented. If one of the predictors, which had
the value of 3, was correct, al 2bc that would correspond to all other predictors are

decremented.

2.4 Third-level of Adaptivity

It was suggested that having the depth of correlation (i.e. the size of the BHR in the
global scheme) adapt to the program execution or branch behavior could improve branch

prediction. This observation spawned the third-level of adaptivity path.

2.4.1 Third-level of Adaptivity Structures
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The first structure suggested was the Elastic History Buffer (EHB) [20]. The EHB
took branch classification [13] to afiner granularity. Instead of having the option of
choosing between two lengths of history register, the EHB gave the option for each
branch to useits optimal history length. Moreover, it facilitated filtering of some easy-to-
predict branches from the PHT, by using a profiled bias bit instead of the PHT. Filtering
the easy-to-predict branches from the PHT reduces aliasing, which in turn increases
prediction accuracy. Profiling determines the history length to use for each branch, and
requires amodification to the ISA. Asinall profiling, thereis no guarantee that the data
collected during profiling is representative of the actual branch behavior during
execution. The EHB structure operates under the assumption that there is an optimal
history size per branch without investigating the possibility that a branch could have a
different optimal history size in different phases of the program execution.

The Dynamic History Length Fitting (DHLF) dynamically determines the size of the
history size used [21]. DHLF divides the dynamic stream of branches into sub-streams
termed steps of severa thousands instructions. In every other step, the length of the
history register is evaluated and might change if the evaluation method finds the change
beneficial. The evaluation is done only every other step to omit the effects of cold starts
from getting in the way of the evaluation method. The step was set to 16K branch
instructions.

In another development, a similar idea was entertained, but instead of using branch
outcomes, the variable length path branch predictor used target address in the history

register [54]. Profiling was used to determine how much history to use for each static
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branch. The predictor was shown to be especially useful with indirect branches, but

it was not compared against the EHB [20].

2.4.2 Selection M echanisms

Similar to selection mechanisms present in hybrid predictors, selection mechanisms for
third-level of adaptivity can be divided into dynamic and static selection mechanisms.
While ahybrid static selection mechanism usually only needs one bit of information in
the ISA’ s branch instructions, the presence of third-level of adaptivity requireslog2 bits
of the BHR size.

Dynamic selection mechanism was not attempted on per branch granularity asin the
hybrid dynamic selection mechanism. Instead, the dynamic BHR size is on program

granularity and is examined and changed every certain number of instructions [21].
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Chapter 3 -

Experimental M ethodology and

Benchmark Description

3.1 Experimental Methodology

4Throughout this work, trace driven simulations have been used to evaluate

different branch prediction schemes and structures. For simplicity’s sake, most

simulations predict and resolve a branch, and update the branch predictor before fetching

the next branch. Although this approach sacrifices some accuracy because not always the

branch outcome can be used to update the history register before the next branch is

fetched and predicted, studies have shown that such simulations provide a tight

estimation to finer, cycle level, simulations [55][56].

Scheme Description Design Space Unlimited Size
Bimodal A table of 2bc accessed by the None # branches
branch address
. A table of 2bc accessed by agloba | History size Qhistory size
History history register from1to 64
A table of 2bc accessed by the History size # branches x 2"V sz
Global branch address and aglobal history | from 1to 64
register
A table of history registers History size Number of branches x
accessed by the branch address. from 1 to 64 (2SO Sz 1 # branches)
L ocal The result is used with the branch
address to access atable of 2bc.
Same as global but the information | History size # branchesx
Path- in the history register isprevious | from 1 to 64 history size x word size
Branch branch addresses and not their
outcomes
Same as global but the information | History size # branchesx
Path- in the history register isprevious | from 1 to 64 history size x word size
Target branch target addresses and not

their outcomes

Table 3.1 —Branch Prediction Schemes and Their Attributes
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All through this dissertation extensive limit studies of branch prediction schemes
and combinations of multiple schemes were performed. Table 3.1 depicts the different
branch prediction schemes considered in the course of thiswork. Table 3.1 gives a short
description, the design space, and the size of the predictor if no size restriction isimposed
for each branch prediction scheme.

_ To facilitate such processor and
typedef struct hybridStruct {

unsigned long long global Pred;
unsigned long long local Pred;
unsigned long long pathBranchPred;
unsigned long long pathTargetPred; trace termed the hybrid trace was
unsigned long long historyPred;
unsigned int bimodal Pred;
unsigned int baddr;
unsigned int btarget; . . .
unsigned int taken; entry in the hybrid trace contains
} hybridElement;

memory intensive simulations, a new

created for each benchmark. Each

predictions for every type of scheme
Figure 3.1 —Hybrid Trace Structure for multiple correlation depth,
ranging from O to 63. Figure 3.1 depicts the structure used for each entry in the hybrid
trace. For example, the 3% bit in the global variable represents the prediction a global

branch prediction scheme made with a correlation depth of 3.

3.2 Benchmarks' Description

This dissertation conducted studies on a set of 16 benchmarks. Eight of these are
SPECINT95 and six are SPECFP95. Two more of these benchmarks, the s390 and the
PowerPC, were provided by IBM. Table 3.2 lists the characteristics of all benchmarks.
The SPEC95 benchmark suite represents the typical workload a computer might expect.
The IBM traces are of database applications, and are interesting for their large branch

footprints compared to the SPEC95 traces.
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SPECFP95

Regular Set Train Set
Benchmark |Static Branches |Dynamic Branches |Indirect Branches |Dynamic Branches
applu 1498 31,843,665 291 17,867,895
apsi 3006 41,370,429 581 126,828,375
fpppp 1089 14,550,247, 188 4,540,419
hydro2d 2128 133,675,998 438 238,609,181
mgrid 1449 13,901,572 274 208,359,079
turb3d 1626 52,785,185 305 238,609,181

SPECINT95

Regular Set Train Set
Benchmark |Static Branches |Dynamic Branches |Indirect Branches |Dynamic Branches
gcc 13,763 49,193,611 3317 52,277,032
compressos 196,295,114 49 6,145,300
go 7401 147,352,115 3278 80,274,927
ijpeg 2760 71,798,033 478 173,576,042
li 1701 233,260,230 315 41,801,717
m88ksim 1646 160,658,276 343 20,530,078
perl 3443 191,717,635 647 2,144,594
vortex 7581 158,719,765 765 238,609,181

IBM

Regular Set Train Set
Benchmark |Static Branches |Dynamic Branches |Indirect Branches |Dynamic Branches
s390 21,727 2,360,458 631 1,360,459
powerpc 16,710 32,497,139 N/A 19,000,001,

Table 3.2 - Benchmark Char acteristics

Table 3.3 shows the datasets used as inputs for the different benchmarks. Each

SPEC95 benchmark has two datasets. The first is used in most simulations, while the test

dataset is used to obtain profiling information when appropriate. The IBM benchmarks

were provided as traces and without an accompanying test trace. Asaresult, whenever

profiling information was needed, the first half of the trace was used to obtain profiling

and the second half was used to obtain simulations statistics. The reader istherefore
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advised to place less confidence in results that used those traces in studies that

include profiling.

Benchmark Description Training Test Set
Set

gce GNU C compiler version 2.5.3 stmt.i jump.i
go Computer program playing go short.in 2stone9.in
compress Data compression program prof.in test.in
ijpeg Image compression program vigo.ppm speicmun.ppm
xlisp XLISP interpreter 7queen.lsp | train.lps
vortext Object-Oriented database vortex.35M | vortes.in
M88ksim Motorola 88100 simulator dhry.test.big | dcrand.train.big
perl Train interpreter primes.pl scrabbl.pl
applu Solves matrix system with pivoting.
apsi Calculates statistics on temperature

and pollutantsin agrid.
fppp Performs multi-electron derivatives.
hydro2 Hydrodynamical Navier Stokes

equations are used to compute

galactic jets.
mgrid Calculation of a 3D potential field.
swims390 Solves shallow water equations
S390 N/A N/A Not specified
powerPC N/A N/A Not specified

Table 3.3 —Benchmark description and datasets

The studiesin this dissertation were conducted using the SPEC95 benchmark suite. As
the name implies, those benchmarks were available in 1995. A newer version of the
SPEC is available — SPEC2000. However, simulations done on the newer benchmarks
revealed no indication of harder to predict branches, nor alarger number of static
branches. For the most part, it seems that SPEC2000 is just arevised version of the
benchmarks present in the SPEC95 suite. We therefore continued conducting the studies

in this dissertation with the SPEC95 as we did before the SPEC2000 became available.
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3.3 Performance Metrics

The studiesin this dissertation are evaluated using the metric of branch prediction
accuracy. The main disadvantage of this metric is the inability to directly convert
improvement in branch prediction accuracy to improvementsin overall system
performance. Overall improvement in system performance can be better achieved by
using ametric like Cycles Per Instruction (CPI). Previous studies have shown that a
strong correlation exists between branch prediction accuracy and overall system
performance [57][58][59]. Asaresult, the disadvantage of using branch prediction
accuracy as a guide to system performanceis minimal.

There are numerous advantages of using branch prediction accuracy asametric. Using
prediction accuracy detaches the evaluation of the branch predictors performance from
system dependent parameters, such as the misprediction penalty. Moreover, it facilitates
concentration on improving the branch prediction mechanism without the interference of
other potential system bottlenecks, such as cache misses.

In summary, using branch prediction accuracy enables concentration on global factorsin

branch prediction that will facilitate a better branch predictor in every system.

3.4 Results Presentation

This dissertation presents 20 possible graphs. the SPEC95 benchmarks (16 different
benchmarks), the PowerPC benchmark, the S390 benchmark, the arithmetic average of

the SPECINT95, and the arithmetic average of the SPECFP95.
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Chapter 4 - The Scheme of Schemes

4.1 TheDifference Between Schemes and Structures

4Past work on branch prediction has failed to distinguish clearly between branch
prediction schemes and branch prediction structures—in fact, those words have been used
interchangeably. A branch prediction structure is the mechanism that implements the
algorithm, which is the branch prediction scheme. For example, the global branch
prediction mechanism described in Section 2.2.4 isimplemented by many branch
prediction structures (Sections 2.2.2.1 — 2.2.2.5). If abranch prediction structure is not
limited in resources, it will reach the branch prediction scheme's peak potential. Asa
result, with no limits on resources, all branch prediction structures implementing the
same branch prediction scheme will achieve the same prediction accuracy.

The distinction between branch prediction structures and schemesisinstrumental in
choosing an appropriate branch predictor. Regardless of how many resources will be
dedicated to the gshare structure, the gshare structure will never surpass the prediction
potential of the global branch prediction scheme. It isimportant to be aware of the global
scheme’slimits. If acertain branch prediction structure approaches the prediction limits
of the branch prediction scheme, Amdahl’ slaw dictates that work should be directed
towards finding new and improved branch prediction schemes, as opposed to finding new

branch prediction structures that will approach the limits of the branch prediction scheme.
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Throughout this dissertation, this convention of distinguishing between branch
prediction structures and branch prediction schemesisfollowed. Next, the limits of

known branch prediction schemes are studied.

4.2 Limitson Branch Prediction Scheme

Figure 4.1 displays prediction accuracy as afunction of correlation depth for four major
branch prediction schemes. The four branch prediction schemes are the globa scheme,
the local scheme, history scheme and the bimodal scheme. All four schemes are
discussed in detailsin Section 2.1. The graphs are presented for a) the SPECINT95
benchmarks, b) the SPECFP95 and the IBM benchmarks and c¢) the SPEC95 averages.
Notice that the y-axis coordinates are not uniform for al graphs. For purposes of clarity,
the grid lineis held constant at 1% prediction accuracy for easy comparison. Correlation
depth applies to the two-level schemes, but it does not apply to the bimodal scheme,
which utilizes only one level. The bimodal plot is therefore constant across correlation
depth. Because thisisalimit study, thereis no limit on resources and therefore the graph
does not represent resource allocation.

It is clear that the two-level branch prediction schemes are superior to the bimodal
scheme. On the other hand, the history scheme, which doesn’t make use of the branch
address, surpass the bimodal scheme only for large correlation depths. The global and
local schemes surpass the bimodal scheme starting with correlation size of one across
nearly al benchmarks. It istherefore imperative to use the two-level scheme to achieve

high accuracy of branch prediction.



The ability of the history scheme to approach the prediction of the global scheme

raises the question of what causes two-level branch prediction to work. Traditionally it
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has been thought that the two-level branch prediction schemes work well because the
prediction of abranch is correlated to either previous branchesin the global scheme, or to
previous instances of the same branch in the local scheme. Thistraditional explanationis
brought in question in light of ability of the history scheme to outperform the global or
local scheme for severa benchmarks. Remember that the history scheme applies
correlation regardless of which branchisin question. One explanation could be that after
acertain correlation is encountered, all branches will tend to have the same behavior,
regardless of which branch is predicted and what branches came beforeit. However, one
could easily draw different conclusions from this, and we refrain from fully addressing
the topic.

It is believed that the global branch prediction scheme predicts integer programs
better than the local branch prediction scheme due to the greater frequency of if-then-else
statements that will cause branchesto correlate to preceding branches. On the other
hand, the local scheme predicts scientific programs better than the global scheme dueto

the large loop constructs in the program. Loops cause branches to be correlated to
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previous instances of the same branch. Therefore, the local scheme will outperform
the global scheme for scientific code. The averages of the SPEC95 support this
conventional wisdom, but it happens only at a correlation depth of 16. Looking at
individual benchmarks, on the other hand, this conventional wisdom is not aways the
case. For example, the go benchmark, which is a prominent integer benchmark for its
large branch signature, is better predicted by the local scheme. On the other hand, apsi
and mgrid, which are scientific benchmarks, are better predicted by the globa scheme.

The limit study presented in Figure 4.1 ignores two major considerations. The first
relates to the size of a potentia implementation of the scheme. Due to the mount of
information stored, the local scheme is more expensive to implement in terms of
hardware than the global scheme. For the local scheme correlation needs to be stored for
every branch compared to only one correlation register for the global scheme. Of course
an actual implementation cannot have a history register for each branch and therefore
different branches must share the same history register. Thisaiasing effect will degrade
performance. Second, the limit study ignored the warm-up effect. A static branch
prediction scheme takes no time to warm up on a context switch, while the bimodal
scheme needs to warm up 2bc per branch. The warm-up effect is aggravated for the
global scheme that needs to warm up multiple 2bcs according to the depth of correlation
used. In general, the deeper the correlation utilized, the greater the warm up time. The
local scheme suffers even further due to the need to warm up the history register per
branch. Nevertheless, Figure 4.1 gives an accurate indication of the maximum prediction
achievable when implementing a certain branch prediction scheme.

Another notable observation is that every benchmark reaches its peak prediction
performance for different correlation depths. Two extreme examples are the ijpeg
benchmark that reaches its peak performance for the globa scheme at a correlation depth
of 2, and the cclbenchmark, which peaks at a at correlation depth of 29. If the
microarchitect is able to choose the best correlation depth for each program, an overall
better prediction average can be achieved.

In general, we can draw the relationship between correlation and prediction accuracy
from Figure 4.1. Increasing the size of the history register increases the correlation
depth, which in turn, increases prediction accuracy. This relationship has one caveat— it

holds true only until a certain correlation depth is reached. For most programs the depth
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of correlation where thisrelationship failsislarge enough that it is not likely to be
realized in hardware in the near future. Therefore, we can accept this relationship as true.
The discussed drop in prediction accuracy is due to cold start effect and for long
programs, increases correlation depth will entail increased prediction accuracy for even

larger correlation depths than depicted in Figure 4.1.

4.3 Global Branch Prediction Schemes

When a branch outcome is saved in the BHR, the predictor can tell whether the last few
branches were taken or not, but it cannot distinguish which branches they were. If the
branch address rather than the branch outcome is to be pushed into the BHR, as discussed
in Section 2.1.6, the predictor will retain this lost information (pathBranch in graphs).
There is even some loss of information for the pathBranch scheme. If the target address
and the fall-through address both falls in the same basic block, the prediction schemeis
unaware whether the branch is taken or not. To solve this problem, the pathTarget
scheme pushes the branch target address instead of the branch address to the BHR as
discussed in Section 2.1.6.

Figure 4.2 compares the prediction accuracy of pathBranch and pathTarget schemes
against the global scheme without the imposition of any resource limitations. As
discussed above, the pathBranch scheme captures more information about previous
branches than the global scheme, and the pathTarget scheme captures more information
than both pathBranch scheme and the global scheme. It isnot clear, however, that
capturing the extrainformation always helps prediction accuracy. Comparing pathTarget

to pathBranch it becomes clear that in most cases the difference between the two schemes
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isnegligible. Previous studies have claimed that pathTarget is better than path
branch because it suffers no loss of information when the branch target address is within
the basic block of the branch. However, those studies ignored that pathTarget |ost
information when two or more branches have the same target address. Inasimilar
scenario pathBranch will not lose information.
The vortex benchmark is the exception in the sense that the pathTarget outperforms the
pathBranch scheme. The vortex benchmark demonstrates that the global scheme, while
under-performing for small correlation depth, outperforms the pathBranch and pathTarget
schemes for larger depth of correlation. Moreover, the global schemeis able to reach the
highest prediction accuracy across correlation depth.
The limit study presented in Figure 4.2 pushes 32 bit address entries into the BHR. A
real implementation of either pathBranch or pathTarget can only push afew of the
address' LSB due to hardware restrictions. Thisis bound to cause loss of information
and degradation in the performance of the pathBranch and pathTarget schemes.
Assuming however, that the pathBranch and pathTarget information is not lost even

when using as few as 3 LSB of the address, a pathBranch or pathTarget scheme can only
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use correlation depth of 3 when a0.5K entry PHT isavailable. In comparison the global
schemeis able to utilize a correlation depth of 9 for the same size PHT. For the same
reason, a correlation depth of 4 for the pathBranch and pathTarget is comparable to a
correlation depth of 12 in the global scheme, and so on. Figure 4.3 shows the adjusted
comparison between the pathBranch and pathTarget schemes to the global scheme for the
SPECINT95 average and the SPECFPO5 average, assuming thereis no loss in prediction

for the pathBranch and pathTarget schemes due to the usage of only 3 LSB of the
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Figure 4.3 - Limit study of global branch prediction size adjusted for the SPECFP95 and
SPECINT95 averages. The study assumesthat thereisno lost of information when only the 3L SB
of the address are used
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address. From Figure 4.3, it is clear that the pathBranch and pathTarget schemes
lose their edge when adjusted in size to the global scheme. In other words, it is more cost
effective to increase the correlation depth than to retain the path information when no
[imit on resources is imposed.
Thisisnot an indication that pathBranch and pathTarget under resource restrictions do
not perform better than the global scheme as indicated by previous studies. What is
indicated here is merely that the pathBranch and pathTarget, while performing alittle
better than the global scheme, when adjusted in size as scheme is outperformed by the
global scheme. If under size restrictions the pathBranch and pathTarget outperform the
global scheme for better indexing method or resource utilization, it makes it a better
structure implementation, not a better scheme. Therefore, for the rest of the thesiswe
will not conduct studies using the pathBranch and pathTarget schemes as the global

scheme has emerged as the more cost effective choice.

4.4 The Effect of Aliasing

Once the scheme is chosen, the reduction of aliasing is the only known method to
improve prediction accuracy. It istherefore beneficial to know how close to fulfilling the
full scheme’s potential the structuresimplementing it are. If thereis a gap between the
scheme’ s potential and structures that implement the scheme prediction accuracy, it is
because of aliasing.

Figure 4.4 shows the gshare and the bi-mode predictors compared to an aiasing-free
version of the global scheme. As expected, as the size of the predictor increases, the

adverse effects of aliasing diminish. The critical size where aliasing isno longer a
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problem varies between different programs, and for some is not even reached for 2%

entries predictor.

The gshare predictor achieves 93.7% prediction accuracy for arealistic size of 2

entries, and the bi-mode predictor achieves 95.3% prediction accuracy for the same size

predictor. The potentia of the global scheme for correlation depth of 14 is 96%

prediction accuracy. Both implementations of the global scheme are short of achieving

the global scheme potential. The gshare predictor is short by 2.3% and the bi-mode is

short by 0.7% prediction accuracy. Traces with alarge static branch signature suffer

more from the degrading effect of aliasing. The bi-mode predictor is short by 4.1%

HistowI/

™~ Aliasing‘[ -+ Prediction J'ff

CorrelationI = Prediction T\

Tradeoff

Figure 4.5 —Correlation vs. Aliasing tradeoff.
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prediction accuracy from the global scheme potential for the go benchmark, and by
2.7% for the s390 benchmark.
Whether aliasing is a problem depends on the size of the predictor, the program that is
running, and the branch prediction structure used. It is obvious that for alarge enough
predictor aliasing ceases to be a problem. However, as Section 7.1 will show, predictor
sizes that were assumed to be realistic for future processors are not. Moreover, future
processors will be forced to use smaller predictors than current microprocessors. This

trend will aggravate the aliasing problem even further.

45 Correation vs. Aliasing Tradeoff

The correlation depth in two level branch prediction schemesis determined by the size of

the BHR. The BHR isusually combined with the program counter in some way to index

the PHT. Deeper branch correlation is beneficia when resources are unlimited, as

discussed in Section 4.2. When the PHT islimited in size, on the other hand, the best

correlation depth is smaller

BranchesT than the equivalent limitless

™~ Aliasing I = Prediction l one. Moreover, the best
correlation depth is program
Figure 4.6— Corrélation vs. Aliasing tradeoff tradeoff.

dependent as discussed in

Section 4.4.

Asthe size of the BHR increases, the correlation depth increases. This correlates the

branch in question to a greater number of previous branches, which further separates the
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current instance of the branch from other instances of the branch. Thiswas shown to
improve the prediction in Section 4.2. On the other hand, increasing the BHR size
increases the density of information stored in the PHT. This increases the amount of
aliasing, which impairs prediction. Increasing the size of the history register, therefore,
has two competing effects on prediction asillustrated by Figure 4.5.
The greater the number of static branchesin a program, the greater the amount of

information the PHT has to store, and therefore the greater the aliasing effect (Figure

PHT Capacity = 2" x # of branches

Figure4.7 PHT capacity equation
4.6). Thissuggests that the more static branches that are in the program, the more
destructive the dliasing effect is. Indeed, the benchmarks suffering from aliasing al have
a high static branch signature. Such is the case with the s390 with 21,727 branches, the
PowerPC with 16,710 branches, and the go benchmark with 7,401 branches. Compress,
on the other hand, with its 495 branches, does not suffer considerably from aliasing.
Figure 4.7 depicts the equation dictating PHT capacity, where PHT capacity isthe
possible amount of information that could be stored in the PHT. From the equation, it
seems like PHT capacity is dominated by the size of the history sincethetermis
exponential. However, thisterm of the equation represents an upper bound, and we
expect that as the history size increases, the percentage of actual patterns out of the
possible 2"V \wil| decrease. We therefore expect the term 2" to much slower than
the exponential maximum, and not to entirely dominate the number of branchesin this

equation. To verify this assertion the amount of unique vectors stored in the PHT was
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recorded for increasing correlation depth. Figure 4.8 empirically shows that as the

depth

61



ccl go
1E44 _ 1E44 =
1E42 1E42 -
1E+40 - 1E40
1E408 - 1E408 3
100000 100000 {
0 W 0 W
) — 10000 ] —
10000 —aA—# unique ——# unique
100 100 —
#total #total
1 - - - possible —— 1 T T T possible ——
0 5 10 15 20 25 30 35 0 5 10 15 20 2 30 35
correlationdepth correlationdepth
compress ijpeg
1E414 1E44 3
1E42 yo—— 1E42 -
1E40 4 1E40 -
1E408 1 1E408 3
100000 | 100000
0 0
10000 - 10000 + M
M ——# unique
100 ——# unique —— 100 —
#total
N v m e ted T L e e S
5 1 15 : 5 5 1 15 5 5
correlationdeg ... possible correlationdepth
li vortex
1E44 1E44 -
1E42 - 1E42 4
1E410 - 1E40 4
1E+08 y 1E+08 -
100000 . 100000 »
0 0
‘_‘_.A_._k‘_‘_r‘_._‘_._k._._._._kl—l—l—l—l—ﬂ
10000 Wﬁhﬁb‘ﬁ% 10000 |- 8% aa
——# unique ——# unique
100 — 100 —
#total #total
1 T T T T . — 1 T T T T .
possible possible
0 5 10 15 20 w~ 0 5 10 15 2 o w 35
correlationdepth correlationdepth
m88 perl
1E+14 1E+14
1E+12 1E+12
1E+10 1E+10 4
1E+08 - 1E+08 4
1E+06 - 1E+06 4
e p—y P *WM
10000 Qs sa AT ——# unique 10000 —a—# unique
100 e 100 e
#total #total
1 ; ; ; possible — 1 ; ; ; possible —
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

correlation depth

correlation depth

Figure 4.8 - a) The amount of information to be stored in the PHT compar ed to the maximum
possibleinformation for the SPECINT95.




Applu

Apsi
1E44 4
1E42 4 1E42 -4
1E410 !
1E409 |
1E408
100000 100000 |
0 a 0
A4—AA
10000 | @ 4 4 aassasaat
O aasaas
1000
——# unique 100 # unique ——
. ‘ ‘ ‘ ‘ #tota : ‘ ‘ ‘ ‘ #tota
0 5 10 15 20 : 35 0 5 10 15 20 i 35
. . ossible
correlationdeptt. possible correlationdeptl, P
Fppp Hydro2
1E42 y 1E42 !
1E09 y 1E409 2
100000 | 100000 |
0 0
1000 W - W
——# Unique ——# unique
1 ; ; ; ; #total - 1 ; ; ; ; #total
0 5 10 15 20 possible 35 0 5 10 15 20 possible 55
correlationdepth correlationdepth
M grid Swim
1E42 1E42 y
1E409 4 1E409
100000 | 100000 |
0 0
0 saaaataaat b
-h A A A A
10007 1000 —a—# unique
——# unique a
1 T T T T 1 T T T T
0 5 10 15 20 #total 15 0 5 10 15 20 #mt'atlﬂ ;5
] possible
correlationdept!. possible correlationdepth
S390 powerPC
1E44 1 1E44 1
1E42 1E42 a
1E40 1E40 2
1E408 1E408
100000 y 100000 y
0 W o W
10000 - 10000
——# unique
100 — 100 —+—# unique
#total
1 T T T possible —— 1 T T T T #total A
0 5 10 15 20 25 30 35 0 5 10 15 20 possible 35

correlationdepth

correlationdepth

Figure 4.8 - b) The amount of information to be stored in the PHT compared to the maximum
possibleinformation for the SPECFP95 and IBM traces.




of correlation increases, the amount of information much slower than the
exponential maximum possible, as suggested by the upper bound function of Figure 4.7.
According to equation 4.7, if the number of static branchesin aprogramislarge, the size
of the history register should be small, and vise versa. It is known that the number of
static branches in a program varies and therefore, in accordance to the PHT capacity
eguation, the size of the history register should vary aswell. The observation that
different programs perform better for different history sizes was made before [19].
However, that work failed to give an explanation for this phenomenon. Followingisan
example, which illustrates how poor the understanding of the history size tradeoff has
been thus far. The bi-mode predictor, a predictor conceived to reduce adiasing, was
compared against gshare when it was introduced [12]. This comparison reveals the
problematic fact that different prediction structures, due to their underlying structure,
utilize different size history register. So, for example, a 1K entries gshare utilizing 10
bits BHR is compared to a 0.75K entries bi-mode predictor utilizing 8 bitsBHR size. As
aresult, the bi-mode predictor, which is supposed to reduce aliasing, has less aliasing
than the gshare predictor. A better comparison would be to utilize 8 bits BHR in the 1K

entry gshare.

4.6 Decoupling Correlation from PHT size

Traditionally, the depth of the correlation is coupled with the size of the PHT. For
example, agshare predictor with a 1K entry PHT employs 10 bits of correlation. If a2K

entriessize PHT isavailable, 11 bits BHR isused. The only attempt to decouple the
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depth of correlation from the PHT size was done by reducing the number of BHR bits
below the maximum depth of correlation that can be used for a given size PHT [19].

It has been shown before that prediction of programs’ branches benefits from deeper
correlation (Section 4.2). What might interfere with better prediction when using a
deeper correlation isaliasing. Section 4.1 explains why thisis the case and concludes
that benchmarks with small number of static branches would benefit from deeper
correlation without being as adversely effected by aliasing as might benchmarks with
large numbers of static branches.

Because different programs can benefit from different size of correlation, It is beneficial
to decouple the depth of correlation from the size of the PHT, and provide each program
its optimal depth of correlation. Decoupling correlation from the size of the PHT entails
aBHR of an optimal size regardless of whether it issmaller or larger than the log2 of the
PHT size. If 22HR9%%js smaller than the PHT, the rest of the bitsindexing the PHT will
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ZBHR sizeiS

come from the PC only as shown in Figure 4.9.a on the other hand, if
greater than the PHT, the BHR will be folded as needed to form an index of size log 2 of

the PHT, as seen in Figure 4.9.b. This simple idea has never been considered
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because in most studies the size of the PHT and the depth of correlation were considered
the same.

Figure 4.10 shows prediction accuracy when varying the BHR depth for different PHT
sizes. The different plots represent different sizes of PHT starting from 0.5K entries and
going up to 32K entries by factors of 2. Each plot has 9 points where the middle point
represents the “classical fit” for gshare. For example, the “classical fit” for gshare with
PHT 1024 is 10 bits BHR. The other points on each plot represent BHRs of sizes—1,-2,-
3 and 4 from the “classical fit” asshown in Figure 4.9.a, and +1, +2, +3,and +4 BHR
size as depicted in Figure 4.9.b. The plots are ordered by size indicating that an easy way
of achieving better prediction accuracy is dedicating more resources to the branch
predictor. In benchmarks with alarge number of static branches like go, s390, and
PowerPC, it is not a good tradeoff to add more correlation than the “classical fit.” In fact,
the smallest BHR always achieve the best prediction. Itislikely that a smaller BHR than
what is recorded in Figure 4.9 will achieve even better prediction accuracy for those
benchmarks. While it istrue that more correlation adversely effects prediction in
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benchmarks with a high number of static branches, notice that as the size of the PHT
increases, the negative effects seem to fade. It is possible that even for those
benchmarks, if the PHT of sizes greater than 32K entries are considered, more correlation
will become a good choice.
The perl benchmark is a good example of a benchmark that for small PHT, alarge BHR
isnot agood choice, while for larger PHT sizesit isagood choice. It isexpected that for
most benchmarks alarge enough PHT will have the same effect.
If acertain BHR size needs to be chosen, as traditional implementation of branch
predictor are required, the size of the BHR needs to be chosen according to the size of the
PHT. The SPECINT95 average and SPECFP95 average follow the same path described
above. For a0.5K entriesless correlation prevails, while at a PHT of size 32K, more

correlation turns out to be a good choice.
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Chapter 5 - Mythsof Hybrid Predictors

5.1 Issuesin Hybrid Predictors

4Visua comparison between the bi-mode [12] structure and the McFarling hybrid
predictor [14] reveals a striking similarity, even though the two branch predictors were
conceived for different purposes. The bi-mode was created to reduce aliasing, and the
McFarling predictor to combine the advantages of the local and global branch prediction
schemes.

Within the hybrid path, some studies promote a static selection mechanism while others
studies prefer to use a dynamic selection mechanism. The advantage of using a static
selection mechanism over a dynamic selection mechanism is reduction of information
stored in the predictor in two ways. First, the selection mechanism does not take
hardware resources, but conveyed to the branch predictor viathe ISA. Second, since
each branch only uses one of the hybrid components, it is unnecessary to update both
components for each branch. Using a dynamic selection mechanism, on the other hand,
is useful because some branches might change their best predictor throughout the
execution of the program.

This study was initiated in order to better understand how to best combine branch
predictors that reduce aliasing and hybrid branch predictors. However, during the
investigation it was reveal ed that those two paths are one and the same, as this chapter
will demonstrate. First, this chapter will discuss the simulation methodol ogies used
specificaly for this chapter.
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5.2 Simulation M ethodology

In all smulations performed for this chapter, the depth of correlation, or the size of the
history register/s, follows directly from the size of the PHT. For example, if the global
component in the hybrid predictor had 1K entriesin its PHT, the history register size
would be 10 bits. Throughout this chapter, the McFarling local-gshare hybrid predictor
isused because in preliminary simulations it was found to be the best true hybrid
behavior.

In the limited size simulations, atwo-way set associative BTB with 4K entries was used.
Thisislarge enough to prevent it from being a performance bottleneck and enabled
concentration on the tradeoffsin the PHTs.

The McFarling hybrid predictor simulated had two components— a gshare structure
implementing the global branch prediction scheme, and a PAs structure implementing the
local branch prediction scheme. In cases where a dynamic selection mechanism was
employed, the bimodal structure was used.

Unless stated otherwise, profiling was done on the same data sets that were used for
running the smulations. This enabled us to obtain an upper limit on the prediction
accuracy. Asisshown in one of this chapter’s studies, it is anticipated that using a
different data set (the more realistic situation) for profiling would degrade the

performance of the hybrid predictor with a static selection mechanism.

5.3 Selection M echanism

First, the relative merits of using static versus dynamic selection mechanism to choose

between the different components of a hybrid predictor are examined. As noted earlier, a
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static selection mechanism requires less information to be stored in the predictor
structure because each branch utilizes only one component. This reduces contention,
which reduces aliasing and helps prediction accuracy. Moreover, hardware resources that
would have been used for the selection mechanism are now available for increasing the
size of the predictor’s components. The main problem with static selection isthe
additional bits needed inthe ISA. Although some ISAs have this bit in place, others will
require that the ISA be altered. Dynamic selection mechanisms are thought to have an
edge over static ones because it has been suggested that the best component for predicting

abranch can change during the execution of a program.

5.3.1 TheMerit of Dynamic Selection M echanism

It is unclear whether there is an inherent benefit in choosing the component used by a
specific branch dynamically. If the best component to predict a branch dynamically
changes during the program run, of course it would be better to dynamically select the
component used by a branch. However, if there is no inherent benefit in choosing the
component used by a branch dynamically, it is better to choose it statically and avoid the
extra cost of using both components for each branch, and the cost of the selection
mechanism.

Figure 5.1 shows the prediction accuracy for a global-local hybrid predictor with
unlimited resources. The three plots represent three types of selection mechanisms: per-
branch oracle, per-instance oracle, and an implementation of areal selection mechanism -
the bimodal. The per-branch oracle records prediction accuracy for both components.

When the program terminates, it chooses the best component as the predictor for each
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branch. The per-instance oracle gets a prediction from both components, and if
either of them is correct, it records a correct prediction. It isinteresting to note that the
per-instance oracle is an overestimation and that even for arandomly generated
prediction, it probability dictates a 75% correct prediction.
Determining whether the best component to predict a branch changes during program
execution is difficult. One approach to assist in this determination is to slice the dynamic
stream of a specific branch into n subsets of branch instances, and then to choose the best
component for each set [52]. The problem with doing thisis that a small nleadsto an
optimistic outcome, while alarge n might erase the benefit of having a dynamic selection
mechanism. Using either alarge n or asmall n can lead to erroneous conclusions.
Clearly, it does not matter whether the best component for each branch changes
throughout the program run if a known selection mechanism cannot identify the best
component dynamically.
In our experiments, we used an unbounded hybrid predictor with an unbounded bimodal
selection mechanism. This eliminated the adverse effects of aliasing and allowed a check
on whether the bimodal selection mechanism could capture the changing best predictor
throughout the program execution. Figure 5.1 shows that there is no inherent gain in
using adynamic selection mechanism. In other words, if thereisagain to be madein
changing the component used for each branch during the program execution, the bimodal
sel ection mechanism does not captureit. Thisis clearly demonstrated in the graphs of
Figure 5.1 where it can be seen that the bimodal selection mechanism always under-
performs the per-branch oracle. Moreover, it appears that the bimodal selection

mechanism makes mistakes in selecting the proper components, which degrades the
74



overall performance. This phenomenon is accentuated in programs with alarge

number of branches like the S390 and PowerPC. They display a significant gap
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between the prediction of the oracle static selection mechanism and the prediction when

using the bimodal selection mechanism.

5.3.2 Dynamic vs. Static Selection M echanism
Figure 5.1 depicts the inability of the dynamic selection mechanism to dynamically adapt
to the changing behavior of branches, even if such transient behavior exists. There does
not appear to be any advantage to employing dynamic sel ection mechanisms instead of
static ones. It isthus expected that in alimited resource setting, a static selection
mechanism would outperform a dynamic selection mechanism for the reasons mentioned
above. Figure 5.2, however, shows the exact opposite. In alimited resources setting, the
hybrid predictor with a dynamic selection mechanism outperforms a hybrid with a perfect
static selection mechanism.
Holding the heel of this observation a question is born: What is it about the dynamic
selection mechanism that boosts the performance of a hybrid predictor with adynamic

selection mechanism when working in a size-restricted structure? Alternatively,
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what isit about the static selection mechanism that in alimited-resource setting degrades

the performance of a hybrid predictor?

5.3.3 The Omniscient Dynamic Selection M echanism

One possible hypothesis to explain this question is that a dynamic selection mechanism
reduces aliasing. For example, consider the case where two branches A and B are both
better predicted by the global component of the hybrid predictor. In an unlimited
resource setting, a dynamic selection mechanism will choose the global component to
predict them. In aresource limited setting, branch A will suffer from aliasing, which
considerably degrades the prediction of its global component. Asaresult, the dynamic
sel ection mechanism chooses the local component to predict branch A’s outcomes.
Although both branches A and B are inherently predicted more accurately by a global
component, branch A will be better predicted by the local component in alimited
resources environment. We next examine how much aliasing reduction helps a hybrid

predictor.
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Figure 5.3 shows the extent to which reducing aliasing helps boost the performance
of hybrid prediction. It compares a resource bound local-global hybrid predictor
(hybrid), with aresource bound local-global hybrid (aliasing hybrid), whose selection
mechanism does not take into consideration the effects of aliasing. To simulate this
effect, arun of the local-global hybrid predictor was made with no limits on resources.
The selection pattern for the entire run was logged and later served as the selection
mechanism in the limited hybrid version. The selection mechanism in this case is that for
the true hybrid behavior with no regardsto aliasing, since it was recorded in an aliasing-
free setting. The conclusion from Figure 5.3 isthat alarge portion of the benefits brought
by hybrid predictors with dynamic sel ection mechanisms comes from reducing aliasing.
Moreover, comparing the hybrid predictor to an unlimited version of the global scheme
(UL global), shows that the local-global hybrid predictor never fulfils its promise of
improving prediction beyond that of a single scheme, even for generous resource
allocation. Notice that the difference between UL Hybrid and UL global is the potential
difference between the hybrid predictor (global-local) and the global scheme. This
difference pales in comparison to the difference between UL global and hybrid that
represents the remaining aliasing after the bimodal selection mechanism was able to
reduce some of them (the difference between hybrid and aliasing-hybrid).

In summary, alarge portion of the benefits brought by hybrid predictors with dynamic
sel ection mechanism comes from reducing aliasing. Moreover, the benefit of combining
predictors to increase the potential prediction is questioned in this section, even though
the studies were conducted in this section ignoring the size overhead of implementing the

PAs structure (i.e. the table of history registers).
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5.3.4 Static Aliasing Awar e vs. Dynamic Selection M echanism
At this point we have shown that both static and dynamic selection mechanisms reduce
aliasing in hybrid branch predictors. The former does so by reducing contention in the
structure and by eliminating the hardware cost in the selection mechanism. The later
does so by dynamically distributing the branch stream across the two components, which
alleviates contention in the PHT. The dynamic selection mechanism performs much
better than an ideal static selection mechanism. In the ideal static selection mechanism,
profiling was done with no limitation on resources. Thisled to branches that are better
predicted by the global scheme to be mapped to the gshare component, and branches that
are better predicted by the local scheme to be mapped to the PAs component. Notice that
the ideal static selection mechanism does not take aliasing into consideration.
One way of considering aliasing isto use the actual table size when profiling. Figure 5.4
shows the importance of taking into consideration the size of the predictor structure when

profiling. When taking size into consideration during profiling, the branches get
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distributed not just by their true hybrid behavior, but also by taking aliasing into
consideration. Figure 5.4 shows that while a dynamic selection mechanism is better than
a static selection mechanism with perfect profiling, employing profiling that takes the
size of the structure into consideration (static limited) results in even better performance
than dynamic selection. The fact that the difference between the prediction percentages
diminishes with size indicates that the difference is due mostly to better aliasing
reduction. Using this profiling method combines the advantage of static and dynamic
selection mechanisms as explained previously.
The advantages of using a static selection mechanism with aliasing-bound profiling are as
follows: the branches are distributed among the components according to contention in
the structure; the selection hardware is eliminated; and only one component is used per

branch, which further reduces contention.

5.3.5 Shortcomings of Static Selection

The question arises whether such good prediction can be achieved when profiling from a
test data set. As Figure 5.4 shows, when using a different data set to profile the program,
the static selection mechanism (static limited test) suffers degradation in performance.
For small predictors, the static selection mechanism still performs better than the
dynamic selection mechanism, but the dynamic selection mechanism eventually
surpassesit.

This problem can be accentuated when code that is compiled and profiled for a certain
size of predictor is used to run on a different implementation of the same ISA. Since

profiling is done on a different size of predictor than the one, which the code is run
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on, the aliasing reduction will fall below optimal. This phenomenon might be aggravated
when the predictor on which the code is run on and the predictor on which profiling was
done implement different structure/s. All that is under the assumption that the ISA was
designed to convey the selection information to the processor. Otherwise, changing the
ISA is not inconsequential.

In summary, there appears to be no reason why a hybrid predictor should utilize a static
selection mechanism over adynamic one. While both dynamic and static selection
mechanisms reduce aliasing, the static sel ection mechanism has some shortcomings that

are hard to make up for.

5.3.6 In Depth Analysis
We have shown that the selection mechanism in hybrid predictors enables hybrid
predictors to outperform some generic two-level predictors by reducing aliasing. We

next present a serious of studies that shed light on the behavior of the selection
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mechanism throughout the program execution. We choose to only show the results
for the gcc benchmark. Results for al other benchmark are similar.
Figure 5.5 depicts the number of switches each static branch goes through for a perfect
selection mechanism and areal implementation of the selection mechanism. The perfect
selection mechanism is an oracle that after the branch is executed, if the selected
component miss predicted the branch and the other component predicted the branch
correctly, the oracle registers aswitch. The real selection mechanism isimplemented as
the bimodal selection mechanism. Both the perfect and the real selection mechanism are
simulated with no resource limit and with resource limit of 6 KB entry hybrid predictor.
Only about 1% of the total static branches show on the x-axis. The static branches are
sorted according to the number of switches, and this 1% of static branches represents the

majority of overall switches.

4 el The perfect selection mechanism
14000 -
12000 L l\\ performs many more switches under
o 1uoao '1‘ ———— perfect limited limit b b
: oy T perfect imi resource limit as can be seen by
£ go0o = 5‘.\ \..‘q- ———— perfect unlimited
a i lunlimited . L.
3 s it realummte comparing the perfect-limited and
= +
4000 - _ :
perfect-unlimited plots. The difference
2000 4
0 - between those two plots represent the
0 zi0 qn EQ 0 100 120 140 160
static branches

amount of work the selection
Figure5.5 - per branch switchesfor the
M cFarling hybrid predictor mechanism will do to reduce aliasing.

Similarly, the work the selection mechanism does to reduce aliasing when resources are

limited can be viewed when comparing the real-limited and real-unlimited plots.
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Comparing the real and the perfect selection mechanism, either for limited or
unlimited resources, reveal the potential of the hybrid predictors that is not realizable by

the bimodal selection mechanism.

Figure 5.6 displays the accumul ated number of switches as the program progresses for a
[imited and unlimited bimodal selection mechanism. Data was collected for increments
of 100,000 dynamic instructions. Each selection mechanism is simulated for history size
of 3,6 and 9 for both the local and global components. There is no obvious correlation
between the accumulated number of switches and the correlation depth. Correlation

depth of 3 has the highest number of

2000000
1 . .
1500000 = switches followed by correlation depth
1gaooon H :imite: corrc:ation g
—— limited correlakion - .
1';" 400000 H —+—— Unlimited correlation 3 Of 6 and 9 HOWGVGI‘, th'SvaneS
= —=— Unlimited correlation &
‘% 1200000 H —=— Unlimited correlation 3 7L . .
T 1000000 /’if considerably between different
L:u a00oaon
2 00000 v el benchmarks. On the other hand, the
" 400000 //// /’-—-’ . . . . .
200000 { selection mechanism restricted in size
04 T T T T T 3
0 1E+OT  2E+07 SE+0T  4E+07 5SE+07  GE+0OT always has a |arger number of SNItCheS
dynamic instructions executed

Figure 5.6 — Accumulated # of switches as than the unlimited selection mechanism

program progress . ) . .
with the same size of correlation. This,

once again, suggest that alarge number of switchesis attributed to aliasing.

The linearity of the plotsin Figure 5.6 suggests that switches occur throughout the
execution of the program evenly, and do not just occur in awarm-up phase only. This

coincides with a different experiment we run where we employed a dynamic selection
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mechanism in the beginning of the program and froze it after an initial warm-up. If
most switches occur only in the warm-up phase, such a mechanism will be able to take
the advantages of both static and dynamic selection mechanism. Theinitial dynamic
phase will conduct akind of profiling on the current dataset. The second phase, the static
one, will be able to only update one the components for each branch and as a
consequence reduce the amount of information stored in the PHTs. This mechanism
failed to outperform a conventiona dynamic selection mechanism. Asfigure 5.6 depicts,
this static-dynamic selection mechanism failed because the dynamic switches occur

evenly throughout the execution of the program.

Figure 5.7 shows the number of switches performed by the selection mechanism asa
function of correlation depth for alimited resources and unlimited resources McFarling
predictor. Figure 5.6 shows the same date but only for correlation depth of 3,6 and 9, and
atrend could not be established. In Figure 5.7, however, the trend is clear. The number

of switches decreases as correlation

e cel depth increases. For the unlimited
o N sel ection mechanism this decrease in
= S l\\ —— limited _ i ) .
2 5 R switches is moderate and the reason is
L; 00000 l\ H H
* . that as the depth of correlation increases,
annonn F= \\\ .. .
. e ‘“\:E_ _ the prediction accuracy in both the
I ;I;, @d 1'1h1'z e 4=« n e | globa andloca increases. Asthe
correlation deptl

Figure 5.7 —number of switches asa function of prediction accuracy increases, the need

correlation for limited and unlimited predictor s

93



for switches decreases.

In the limited resources simulation the decrease in switches as correlation increasesis
much more pronounce than in the unlimited simulations. On top of the increase in
prediction accuracy as correlation depth increases, as in the unlimited simulation, the size
of the predictor increases as well in the limited resource ssmulation. The increase in the
size of the predictor reduces the amount of aliasing, and as a consequence the number of
switches due to aliasing decreases. When aliasing cease to be a problem, the limited and
unlimited resources predictors’ switches converges. The moderate decrease of switches
in the unlimited predictor represents the elimination of switches due to increase in
prediction accuracy as correlation depth increases. The difference between this moderate
decrease and the rapid decrease in switches of the limited predictor is due to elimination

of aliasing.

5.4 TheNotion of Hybrid Predictors

The next issue to address is whether there is an inherent gain in the local-global
hybrid predictor over a single scheme, or whether the gain realized by the hybrid
predictor islimited to reducing aliasing. Figure 5.8 shows the improvement of the
program’s prediction for each branch (x-axis) when using the local predictor versusthe
global predictor with no limits on resources. Positive percentages indicate that the branch
is better predicted by the local scheme, while negative percentages indicate the branch is

better predicted by the global scheme. The branches are sorted on the x-axis according to
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the percentage improvement. Figure 5.8 shows that the number of branches that
contribute to the true hybrid behavior of the local-global hybrid predictor issmall. These
small number of branches will be referred to hereinafter as the hybrid branches. For most
branches, the improvement obtained by using the global component instead of the local
component or vice versaisinsignificant.
Only afew of the hybrid branches are responsible for the improvement of alocal-global
hybrid predictor over a single scheme predictor. If the predictor component for the other
branches, which make up the mgjority, changes dynamically to reduce aliasing, it remains
to make sure that the hybrid branches are predicted by the component that does it best.
Thiswill allow the predictor to take advantage of both alias reduction and true hybrid
behavior. When employing a static selection mechanism, this can be done at profile time.
In the case of a dynamic selection mechanism, it seems that an explicit way of indicating
the appropriate component for the hybrid branches is needed. However, a study
conducted but not shown here indicated that the dynamic selection mechanism already
performs the task of mapping the hybrid branches into their respective best components.
Attempting to lock the hybrid branches into their respective best components, while
letting the rest of the branches' components to be chosen dynamically, resulted in
degraded performance.
Despite the potential embedded in hybrid predictors and the ability of the selection
mechanism to identify the hybrid branches, this potential is not fulfilled. Performance

degradation due to aliasing dominates the hybrid potential.
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5.5 Updating Policies and Aliasing

Aswas mentioned before, a static selection mechanism has serious shortcomings. One
mechanism to overcome these shortcomings might be to bring the advantage of the static
selection mechanism into hybrid predictors with a dynamic selection mechanism. An
attempt is made to accomplish this using a modified updating mechanism. When a
branch is resolved, the branch predictor is updated with the branch outcome. In a hybrid
structure, this entails updating both the global history register and the respective local
history register, and the PHT for both of the hybrid components. In order to reduce
contention in the PHT, the updating mechanism should update only the PHT for the
component currently selected. Figure 5.9 depicts the prediction percentage as a function
of the log, of the PHT size and the correlation depth for three updating policies. The
updating policies are: 1) both, where both PHTs are updated; 2) Igt - stands for Local-
Global hybrid with a“this’ updating mechanism. With the “this’ updating mechanism
only the current PHT pointed by the selection mechanism is being updated; and 3) our
proposed new updating policy, Ignt - stands for Local-Global hybrid with the “this &
next” updating mechanism. This updating mechanism will be described later. Figure 5.9
shows that for small size predictors, it is beneficia to update only the current PHT. This
update policy reduces the amount of information stored in the PHT and therefore reduces
contention, which in turn helps the prediction accuracy. Asthe size of the predictor
increases, updating both components hel ps the prediction accuracy. This suggests that
updating both components produces helpful information for prediction. This observation

leads to the question of whether this helpful information can be captured without
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recording double the information for each branch instance. Notice that for programs with
large numbers of branches like the S390 and the PowerPC traces, the tradeoff between
aliasing and incorporating the additional useful information favors adding the useful
information only for structures of infeasible size.

The new updating policy (Ignt) described next was devel oped to resolve the problem
defined above, and attempted to capture the useful information of the “both” update
policy, while alleviating contention in the PHT. The Ignt policy updates only the PHT
being used currently unless the selection mechanism isin atransition mode where it
updates both PHTs. A transition mode is defined when a branch selection points to one
component in the hybrid predictor, but the branch resolution will shift it to point to the
other component. As demonstrated in Figure 5.9, the updating policy achieves good
prediction for small predictors compared to the other two policies, and does not lose its
effectiveness for larger predictors. For traces with alarge branch signature like the S390

and the PowerPC, Igtn stills falls short of the Igt, but it cushions the worst case compared
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to the “both” updating policy. In summary, the Ignt updating policy serves as good

middle ground between the other two updating policies.

5.6 Combining Aliasing and Hybrid Paths

This dissertation shows that the hybrid and aliasing paths are one and the same. Prior to
the studies conducted here, it was believed that because those two paths were orthogonal
that their advantages would be easily combined. To double check on this premise, we
next try to combine the hybrid path with the bi-mode predictor. Figure 5.10 depicts the
performance of a McFarling predictor, where both the local and global components are
implemented as a bi-mode structure. If the hybrid and the aliasing paths were orthogonal,
such a predictor would have had the potential to take advantage of both paths.
Specifically, if the selection mechanism is static and uses an unlimited structure when
profiling, each branch will be mapped to the component which best predictsit. Within
each component, the bi-mode structure should perform the task of reducing aliasing. The
performance of such predictor is shown in Graph 5.7 under “ static-unlim-bimode’. The
static-unlim indicates that selection is done statically with profiling performed on a
structure of unlimited size. This structure is compared against several other predictors
and consistently does worse than most. In fact the static-unlim-bimode consistently
outperforms the same predictor without the bi-mode structures in each component,
referred to as static-unlim-normal. Thisindicates that the bi-mode structure in each
component of the McFarling predictor, helps performance by reducing aliasing. More
importantly, however, it indicates that using no limit on the structure size during profiling

degrades performance considerably. The inability of this combined predictor to
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approach the prediction accuracy of the classic McFarling predictor (dynamic-normal)
demonstrates that contrary to common belief, combining the advantages of the hybrid and

aliasing paths of research is not trivial.

5.7 McFarling vs Bi-M ode Predictor

Finally, after discovering that the main strength of hybrid predictorsis reducing aliasing,
this study makes a direct comparison between one of the most used aliasing reduction
implementations, the bi-mode predictor, and the McFarling hybrid predictor. For the
study conducted here, the McFarling predictor was implemented with a 2K entry BTB.
The size of thelocal history registers was accumulated into the overall predictor size.
However, the BTB tags were not considered when calculating the predictor size. This
was done under the assumption that the BTB tags were already in place for predicting the
branch target address, and therefore could be used for predicting the direction with at no

extra cost.
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Figure 5.11 makes a direct comparison between the McFarling predictor and the bi-mode
predictor. Two versions of the McFarling predictor are shown. Thefirst version has
increasing local correlation depth corresponding to the correlation increase of the global
history register. The second version of the McFarling predictor utilizes the best |ocal
correlation depth for each benchmark.

The bi-mode predictor outperforms the McFarling predictor for small predictor size
across al benchmarks. The size overhead of the local registers, which are part of
implementing the local scheme, cannot be offset for small predictors, and therefore the
bi-mode outperforms the McFarling predictor for small predictors. Asthe size of the
predictors increases, the McFarling prediction accuracy caches up with the bi-mode
predictor. On average for the SPECINT95 average, the McFarling predictor outperforms
the bi-mode predictor only for sizes larger than 26KB. Thisis much larger than can be

implemented in future processors, as will be discussed in Chapter 7. For benchmarks

108



with large static branch signatures, such as the s390 and PowerPC, the bi-mode

predictor outperforms the McFarling predictor even for predictors as large as 180K B.

5.8 Summary

This chapter eliminates the notion of the hybrid path as an independent research path in
branch prediction research. It shows that most of the gains achieved in hybrid predictors
are attributable to the ability of the selection mechanism to reduce aliasing, and not to
true hybrid behavior. It follows that hybrid predictors should be compared against
aliasing-reducing structures and vise versa, because they both achieve their goals by
attacking the same problem. True hybrid behavior can be attributed to alimited number
of branches, but both dynamic and properly profiled static sel ection mechanisms map
those branches into their respective best components. It is shown that both dynamic and
static selection mechanism achieve the same goals, namely, reducing aliasing, in different
ways. This chapter also shows that the advantages of dynamic selection mechanisms can
be applied to static selection mechanisms by a profiling method, and that the advantages
of static selection mechanisms to the dynamic ones by means of a new updating policy.
This chapter concludes by comparing the bi-mode predictor with the McFarling predictor.
This comparison between awell-known aliasing-reducing structure and an equally well-

known hybrid predictor shows that the bi-mode is a considerably better predictor.
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Chapter 6 - Filtering Characteristic of the
Third-Level of Adaptivity

4Compared to the hybrid research path, the third-level path is understudied. Those few
studies that have addressed it show empirical results that prove the respective third-level
of adaptivity structure outperforms gshare. It isnot clear from those studies whether
applying athird-level of adaptivity improves prediction because of better usage of
resources and aliasing reduction, or whether the improvements show that the third-level
of adaptivity is a better branch prediction scheme. In this chapter we attempt to answer
this question.

The literature describes four third-level-of-adpativity structures. Thefirst, the Elastic
History Buffer (EHB), statically determines, via profiling, the correlation size used for
each static branch [20]. The second, branch classification, decides statically between two
predetermined correlation sizes for each branch [13]. The third structure, Dynamic
History Length Fitting (DHLF), dynamically adjusts the correlation size for al the
branches[21]. Lastly, avariable length path branch predictor was considered [54].
Similar to the EHB, profiling is used to determine the depth of correlation for each
branch. The interested reader should refer to Section 1.5 for a detailed description of the
above methods.

Next branch classification and the DHLF are considered. Limit studies were performed
for each to determine whether they represent a better branch prediction scheme or just a

better branch prediction structure. We didn’t consider the fourth structure, aswe
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consider it to be somewhat orthogonal to other structures, and the improvements
discussed for this structure were for indirect branches only. Different branch prediction
structures can therefore incorporate a similar structure that predicts only the indirect
branches and enhance the predictors performance. The EHB was not considered because
it spans two different research paths. Not only does the EHB alow each static branch to
use its best correlation, but it also filters easy-to-predict branches out of the PHT. This
places the EHB in both the third-level path and the aliasing path®. No breakdown of the
accuracy improvement was given in the EHB study to determine what percentage of the
prediction improvements is due to filtering and what percentage of it is due to the third-
level of adaptivity scheme employed.
To the best of our knowledge, all third-level adaptivity structures implement the global
two-level branch prediction scheme. All simulations in this chapter, therefore, consider

only the global two-level branch prediction scheme.

6.1 Branch Classification

Aswas mentioned before, branch classification can be viewed as belonging to the hybrid
path or to the third-level path. Using the conclusions drawn in chapter 4, one can get a
good idea of what makes branch classification work when it has static or dynamic

sel ection mechanism.

? Interestingly enough, since the EHB presented itself as a third-level path, it was not regarded as
employing filtering as well. When the filter mechanism was introduced, there was no mention of the EHB,
or aproper comparison between the filter mechanism and the EHB, which appeared first.
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We next however, check the validity of the third-level adaptivity motif in branch
classification. Figure 6.1 depictsalimit study of different possible configurations of
branch classification ranging from a correlation depth of 1 to a correlation depth of 25 for
a) adynamic oracle b) a static oracle, and c) areal selection mechanism for the PowerPC
benchmark. The real selection mechanism isimplemented as the bimodal selection
mechanism, similar to the one used in the hybrid studies. Each point represents the
prediction accuracy for a classification method with one component having correlation
depth of x on the x-axis, and the other component having a correlation depth of y on the
y-axis. The components are not restricted in size and each vector has its own unique 2bc
state machine for the bimodal selection mechanism.

Figure 6.1 shows that the dynamic oracle selection mechanism performs better than the
static oracle. Thisisto be expected since the dynamic oracle represents an upper limit on
prediction that is not likely to be realized. Once again, similar to Section 5.3.1, we
encounter the problem of how to cancel the noise produced by two different lists as
oppose to capturing the real advantage of using two different sizes of correlation. This
problem will be discussed later.

Both the dynamic oracle and the static oracle selection mechanisms depict ajump
in prediction accuracy when using different correlation depth for each component
compared to using the same correlation depth for both components. Using the same
correlation depth for both components is represented by the middle diagonal. This
accuracy jump might lead to the conclusion that third-level adaptivity has merit asa
scheme and not only as a structure. It was aso found that the prediction accuracy of two

widely spaced correlation depths, such as 1 and 25 is higher than that of adjacent
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correlation depths, such as 24 and 25. We know that deeper correlation resultsin
better prediction. Therefore, having combination of low and high correlation depths
surpass a configuration where both components are of high correlation suggests the merit
of third-level adaptivity as a scheme.
The results presented in the real selection mechanism graph in figure 6.1, however, result
in exactly the opposite conclusion. In the rea selection mechanism, thereis no
degradation in performance when both components use the same correlation depth. The
real selection mechanism performs as well whether the two components use the same or
different depths of correlation. This suggests that there is no merit attributable to the
third-level path as a branch prediction scheme. Further proving this point, the relation
that deeper correlation results in better prediction holds for the real selection mechanism.
As aresult, the best prediction accuracy is obtained for the degpest correlation size — the
best prediction is achieved when both components are of depth 25. There is no advantage
of using two different correlation sizes for the two components in the branch
classification scheme, when areal selection mechanism is employed. When thereisno
Size restriction on the predictor, there is no advantage to using two different components
at all.
What isit about the dynamic oracle and static oracle limit studies that suggested to a
different assumption? The introduction of two lists enhances the prediction accuracy
even if the two lists are random and have nothing to do with prediction as discussed in
Section 5.3.1. Thereason it seems that two very different correlation sizes can enhance
prediction is because those two components are so different from one another. It isclear

that this phenomenon is more pronounced for the dynamic selection oracle than for the
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static selection oracle. Again, this supports the assertion that the improved accuracy
comes from random lists rather from inherent potential in the third-level branch
prediction scheme.
We were unable to find away to separate any potential advantage in introducing two
different lists of prediction from the actua advantage held by the third-level scheme. Itis
possible that such separation cannot be done and that the only potential merit of the third-
level path liesin anovel real selection mechanism that would exposeit. If no such
selection mechanism exists, any merit that it might have exhibited will be moot.
It is clear, however, that known selection mechanisms cannot take advantage of this
elusive inherent advantage of using classification with no limits on resources. However,
it can be inferred from results obtained in Chapter 4 that when a size restriction is
involved, branch classification will work due to the ability of the selection mechanism,
either static or dynamic, to reduce aiasing.
Throughout this dissertation, we demonstrate how the lack of alimit study can result in
misleading conclusions for researchers. This Section shows, however, how alimit study

might itself lead to erroneous conclusions. We advocate using limits studies cautioudly.

6.2 Dynamic History Length Fitting

The motivation behind the Dynamic History-Length Fitting (DHLF) is the empirical

observation that different programs achieve maximum prediction accuracy by

115



21 14

specINT95

2 1

g e
R A=
AN L m 2
o ALLLAMMMHMHIHTmmumivgg w SL8E8428
%, 5 BEDEOQN
% z
\ ]
£2 AMMNN._.-.-.aege N\
@ 5
E
...w,\«o\\
hel
g
<
S
(2
IS
P R e
7 o
g 2 |z
: s
o o %]
(73]
6.
Wi % W
o,
6
G
S \
M. © 7////
%@@9 - m
%, " :
T R % IW
[
2,
-~ g 8 5 8§ 8 §
s 232 2 2 3
alel Co_wo_cm‘_g [ ]

116

DHLF comparison in asa scheme and structure

Figure6.2




employing different sizes of history register [21]. This observation was made before
in [19] without the proper explanation. In Section 4.5 we provided an explanation as to
why predictors have different optimal history sizesfor different programs. The example
given that i and go have different optimal history register holds true, as Figure 6.2
depicts. The gshare predictor achievesits best prediction accuracy for the li benchmark
when the history size is set to 14, in comparison to history size of 3 for the go benchmark
for an 8K entries gshare.
To take advantage of this observation, the DHLF dynamically adjusts the size of the
history register during program execution to optimize the register for each program. This
is achieved by dividing the dynamic stream of branches into sub-streams termed steps. In
every other step the length of the history register is evaluated and might change if the
evaluation method finds the change beneficial. The evaluation is done only every other
step to omit the effects of cold starts from getting in the way of the evaluation. The step
isset to 16K branch instructions.
While the DHLF adheres to the empirical results discussed above, an examination of a
limit study indicates that both the li and the go benchmarks could benefit from longer
history sizes. The go benchmark can benefit from a history size of up to 21, and the li
benchmark can use up to 35. This phenomenon is consistent with the relationship
depicted in Figure 4.5 and described in Section 4.6. In other words, more branches and
deeper correlation result in more information, which resultsin more aliasing. More
aliasing, in turn, tends to reduce prediction. On the other hand, deeper correlation tends
to improve prediction. Asaresult of those two conflicting relationships, benchmarks

with fewer branches can usually benefit more from deeper correlation depth.
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Figure 6.2 depicts alimit study and 8K entries gshare that give some insight into the
inherent advantage of using the DHLF scheme and structure. The first three bars
compare the best global scheme across benchmarks (global-avg), the DHLF (dhlf-global),
and the best global history size for each benchmark (global-best), in that order. All of the
first three graphs depict alimit study, and the structures therein were not subject to size
restrictions. Barsfour to six, on the other hand, depict the same information, but for
resource limit of 8K entries gshare. Thisisthe same size used in the original DHLF
paper [21]. Results seem to vary from one benchmark to another, however afew
observations are possible. First, on average, the DHLF performs worse than the global-
avg when no resource limit isimposed and better when resource limit isimposed. Notice
that in the global-avg we use an oracle to determine the best history size for each
benchmark. Thiskind of oracleisnot realistic. The comparison between the global-avg
and global-dhif, though, highlights the role of the DHLF in reducing aliasing. When no
resource isimposed the DHLF has no advantage over the overall best history size. On
the other hand, when resources are limited, and aliasing is afactor, the DHLF gains an
advantage. Whilethisistrue across the averages, different benchmarks show different
behavior. For example, for the mgrid benchmark, the DHLF performs better than the
global-avg, even when there are no resource restrictions. Other phenomena might
explain the fluctuation in behavior. The DHLF starts with a short history size and grows
accordingly. It can therefore better bear the negative effect of a cold start. On the other
hand, the dynamic size of the history register can cause a degradation in performance if

the history size keeps thrashing between different history sizes.
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The second observation derived from Figure 6.2 is that when comparing the DHLF
to the best history size for each benchmark (global-best), the DHLF has no advantage.
Of course, global-best or its restricted counterpart gshare best, is not realizable, because
it uses an oracle to determine the best history size for each benchmark. However,
profiling a dataset can achieve performance very closeto an oracle. Not only that, but
using the number of static branches in the program to decide on the depth of correlation
used when running the program, can resultsin a very good approximation of the oracle
[59]. Using this method doesn’t require profiling but it does require some mechanism in
the ISA to convey to the processor the BHR size decision made by the compiler.

The conclusions drawn here are consistent with results depicted in the original DHLF
paper [21]. Graphing the size of the BHR as a function of time, it was shown that in the
beginning of the program there was fluctuation in the size of the BHR, but that after this
initial fluctuation, the BHR stabilized on a specific size for each benchmark. This
suggests that there is no inherent advantage in changing the size of the BHR dynamically,
but rather that the DHLF takes advantage of the fact that each benchmark as an ideal

BHR size where the best prediction is achieved.

6.3 Paths Comparison

After showing that with known selection mechanisms the third-level path has no merit,
and assuming that the performance gain by third-level structures demonstrated in
previous studies is attributable to reducing aliasing, a comparison between the different

pathsis straight forward. It isout of the scope of this dissertation to conduct a thorough
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comparison between all known branch prediction structures that have been studied as part
of different research paths. Instead, and because of the similarity of the classification
structure to hybrid branch predictors, we have chosen the DHLF branch prediction
structure as a point of comparison for other branch prediction structures.

Figure 6.3 compares the DHLF to gshare and the bi-mode branch prediction structures
for varying size resources. The advantage of the DHLF for small predictor sizesis clear.
This advantage is an indication that when resources are limited and aliasing degrades
prediction, the DHLF improves prediction by reducing aliasing. However, this advantage
islost for predictors above 0.5KB for most benchmarks. For benchmarks with alarge
number of static branches the advantage continues even for a 2KB predictor over gshare.
Contrary to what might be expected from two different branch prediction structures that
implement the same branch prediction scheme, the DHLF and gshare do not converge as
resourcesincrease. Instead the gshare prediction surpasses the prediction achieved by

the DHLF. Thelack of convergence might be due to the DHLF filtering large correlation
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sizes out of the PHT in order to alleviate aliasing, but as resources increase, this
filtering becomes unnecessary. A similar phenomenon is present in the filter branch
prediction structure. 1t might be the case that for different sizes of PHT, the step size
needs to vary in order to alleviate the degradation in performance. Alternatively, itis
possible that changing the BHR causes thrashing in the PHT, which cause thislossin

performance.

6.4 Summary
The conclusions presented in Chapter 5 led us to question the merit of third-level
adaptivity as an orthogonal branch prediction research path to the aliasing path. This
chapter confirms that assertion. Third-level adaptivity does not represent a better branch
prediction scheme, but rather a better branch prediction structure under certain
conditions. A better use of resources, specifically through filtering, leads to more
accurate prediction for small branch prediction structures. Since some branches can be
predicted with asmall depth of correlation just as well as with alarge depth of
correlation, the small depth of correlation is chosen for filtering purpose. Consequently,
it isimportant to compare third-level structuresto aliasing structures and hybrid
structures. When comparing the bi-mode predictor to the DHLF we observed that the bi-
mode predictor achieves a better prediction accuracy.
A more efficient method of capturing the gain introduced by the DHLF was proposed.
The method sets the depth of the history register for each benchmark, as opposed to

having it constant asit isimplemented in current processors, or dynamically changing it
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as proposed by third-level structures. The drawback of this method is the need to
implement a new ISA instruction to set the length of the history register.
It isimportant to emphasize that it was not proven that the third-level adaptivity’s lack
the potentia to be a better branch prediction scheme, but rather the inability of current
structures to take advantage of any merit that may exist. We specifically showed that
structures known to us do not improve prediction by exploiting the third-level adaptivity,

but rather by drawing upon the underlying concept of reducing aliasing.
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Chapter 7 - TheDo'sand Don’tsof Branch
Predictor Sructures

3In this chapter we identify good criteria for building branch predictors. The criteriaare
deduced from three different sources. First, previous branch prediction structuresin the
literature are considered. This section serves only to summarize the highlights of the
studies discussed previously in Section 2.2.2, and to address any different conclusions
reached in light of studies done in this dissertation. The second source is the group of
studies conducted for this thesis and presented in previous chapters. Those studies reveal
an array of misconceptions regarding branch prediction practices, and should be
considered in future predictors. Lastly, two micro-architectural trends introduced in
previous studies that profoundly impact future branch predictors are considered. We

choose to start from the | ater.

7.1 Micro-architectural Trends

7.1.1 WireDelay

Several recent studies have shown that in the near future, wire delay will need to be
considered in the design of future processors [63][64][65]. It was noted that for the most
part wire quality does not degrade and the number of reachable transistorsin afixed
cyclewill stay constant. The conclusion of these early studies was that, in fact, thereis
no wire problem. However, this conclusion ignored the exponentially increasing number

of transistors inside a chip.
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It was observed that technology has reached a point where the distance asignal can
travel in one cycle becomes smaller than the width of achip [63]. The distance asignal
can travel in one cycle compared to the width of a chip has been decreasing rapidly for a
long time. However, such afact was of little consequence because this distance was
always larger than the width of one chip. Thisis changing in current technologies and
will continue to deteriorate in the future. This has severa immediate implications. First,
global communication between on-chip modules will take longer than one cycle, and the
number of transistors reachable in one cycle will stop increasing. The ever-increasing
disparity between wire and gate delays will cause microarchitects, who have never before
needed to concern themselves with wire latency, to attend to this matter [63].

Building on these observations, a scaling experiment was done on two different
architecture types [64]: an architecture that aims for fast clock cycle, such as Compaqg's
Alpha; and an architecture type that aimsfor large IPC, such as HP' s PA-RISC. It was
shown that due to the wire technology’ s inability to scale, microarchitects will soon face
the unattractive tradeoff between slowing down the clock cycle and smaller IPC. Asa
result, both of those architecture types will only be able to sustain performance
improvements of 12.5% annually, afar cry from the annual rate we got accustomed to of
50-60%. The reason isthat asfeature size shrinks, and wires become slower compared to
gates, the amount of state reached in a cycle decreases.

This new observation has been, for the most part, ignored in the branch prediction
research community. Elaborate structures with sizes of up to 64KB have been proposed
[49]. The assumption that in the future more transistors will be available to the branch

prediction module has given the illusion that aliasing will cease to degrade prediction
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accuracy in future chip generations. It was shown, however, that in 35nm
technology, expected by the year 2012, it might be that only PHT of sizes between 512
entries and 4K entries will be accessible in one cycle [64]. For these modest sizes, even
benchmarks from SPECFP95, which are traditionally easy to predict and do not suffer
much from aliasing, suffer significantly in performance. For example, a512 entry PHT
achieves less than 96% prediction accuracy compared to 99% prediction accuracy for an
aliasing free scheme for the hydro2 benchmark (see Figure 4.4). Notice that the aliasing
freeideal accuracy isamost achieved by a PHT of 2K entries. The hydro2 is usually not
included in branch prediction studies sinceit is easy to predict and usually does not suffer
from performance degradation due to resource constraints. We conclude that even
benchmarks that are currently not considered to run slower due to poor branch prediction,
will suffer performance degradation in the future due to aliasing.
Corporations rarely reveal complete details of the branch prediction structure used in
commercia chips. Itiseven more rareto find awindow into the decision-making
process foregone an actual implementation of a branch predictor. It is, therefore, hard to
evaluate whether the disparity between wire and gate delays has shown itself to be a
problem in present chip designs. One example of an exception to corporate secrecy isthe
G4 PowerPC microprocessor. A 2K entry gshare branch predictor was evidently
considered but eventually replaced by a 2K entry bimodal predictor. The reason behind
the switch was to remove the XOR gate in front of the predictor, because it wasin the
critical path [58]. Noticethat a 2K entry predictor isavery small predictor but was still
in the critical path. Aswe have seen, it has been suggested that the growing disparity

between gate and wire delays must be taken into consideration by microarchitectsin their
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design of new chips. One study to take this advice in the branch prediction field
discussed the impact of delay on the design of branch predictors [65]. This study showed
that trading prediction gains, which come with increasing the predictor size, with
increasing delay is never agood idea. In other words, the pipeline should never be halted
because a branch instruction is awaiting a decision from the branch predictor even if the
prediction will be more accurate than a prediction produced in one cycle. Thisis
somewhat intuitive, since halting the pipeline just to get a prediction defeats the purpose
of having a predictor to begin with. After highlighting thisimpractical tradeoff,
alternatives to improve prediction without increasing the size of the predictor were
investigated [65]. Observing that 57% of dynamic branches have more than one cycle to
be predicted, a cascading |ook-ahead predictor was suggested. The cascading predictor
uses asmall predictor for dynamic branches that need to be predicted in one cycle, while
using alarger predictor to predict branches that have more than one cycle to be predicted.
The cascading branch predictor was able to alleviate the degradation of IPC compared to
agshare predictor, but it was not able to compensate for it completely. The same study
learned an aready used approach of an overriding predictor. The overriding predictor
allowsthe larger structure to override the prediction made by the smaller structure for a
small misprediction penalty. The overriding approach showed to outperform the

cascading predictor [65].

7.1.2 Software Development

As computers become faster and are able to process more information in lesstime,

software devel opers take advantage of the newly acquired processing power to develop
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ever-more demanding software. Thisisthe main reason why most computers
become obsolete after afew years. The size of programs has been shown to increase
constantly and consequently, the I-cache performance degrades[2]. Itiseasy to believe
that as code bloats, the number of static branches in the program increase.
The adverse effects of alarger number of static branchesin a program should be obvious
by now and is summarized in Figure 4.6. It is peculiar, therefore, that studies which
consider future structures by assuming hardware real estate that will only be availablein
the future, are conducted with current and past software”.
The difficulty of predicting what software will be available in the future is obvious.
However one remedy for this difficulty isto choose a set of benchmarks that is especialy
heavy with branches as away of anticipating the increased number of static branches will
be common in future software®. With that in mind, the reader is encouraged to consider
benchmarks that are heavy with static branches like go, gcc, PowerPC, and S390, to

better represent future software than other benchmarks.

7.2 Observing Past Work
The background presented in Section 2.2 highlights the advantages and disadvantages of
current branch prediction structures that aim to reduce aliasing. Those methods are able
to reduce aliasing as a result of following good practices and avoiding the following bad

practices.

* See chapter 3 for why this dissertation is using the SPEC95 and not the SPEC2000 benchmark suite.
® While not the first ones to note this, we suspect that the low number of branches present in some of the

SPEC benchmarks does not represent current software, let alone future software that will become available.
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7.2.1 Good Practices

A few good practices for building a structure to reduce aliasing can be extracted from the
observation of past work that has been done on the subject. The first and foremost of
these practicesis reducing negative aliasing. The agree, and bi-mode predictors do so by
splitting the PHT into two. One PHT serves the branches that are mostly taken, and the
other one serves those that are mostly not taken. By splitting the branch streams into
branches that are biased to be taken and branches that are biased not to be taken, negative
aliasing is significantly reduced, and prediction isimproved. The classical solution to
reduce aliasing is the introduction of tags into the PHT. Thiswas not found to be cost
effective. The only structure that is close to utilizing associativity is the skew predictor.
The skew predictor achieves pseudo-associativity by means of redundancy. Finally by
filtering easy-to-predict branches out of the PHT, the filter mechanism was able to reduce

aliasing in the PHT, while retaining good prediction for the filtered branches.

7.2.2 Bad Practices

In the past, work done on reducing aliasing in branch prediction has resulted in severd
pitfalls. Thefirst of theseisthat all branch prediction structures that reduce aliasing have
demonstrated redundancy associated with the structure. For example, in the bi-mode
structure, the redundancy isin the form of the choice PHT. The skew predictor has the
same information stored in two or three different places, and so on. Branch prediction

structures that reduce negative aliasing neglect to address the other kind of aliasing—that
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is, aliasing between instances that do agree and do not agree with the branch’ s bias.
This negligence is present in the agree and the bi-mode predictors. When implementing
the scheme in a branch prediction structure, it is essential to retain al the information that
hel ps the branch prediction scheme achieve its peak performance. The filter mechanism
filters easy-to-predict branches out of the PHT, but at the same time loses the special
instances of those easy-to-predict branches that do not comply with the bias, such asloop
exist branch instance. Consequently, even with alarge amount of hardware dedicated to
the filtering mechanism, it will never reach the peak performance of the global scheme it

supposed to implement.

7.3 StudiesDonein This Dissertation

7.3.1 The Omniscient Dynamic Selection M echanism

Through Chapter 5’ s discussion of hybrid predictors, the wonders of the dynamic

sel ection mechanism were revealed when the need to bal ance between two unrelated
information arises. The dynamic selection mechanism was proven to be instrumental in
reducing aliasing. Moreover, its ability to reduce aliasing by mapping branches that are
predicted better by component A into component B, the dynamic selection mechanism
was able to map the ‘hybrid branches' to their respective best component.

It is tempting to conclude that the dynamic selection mechanism in the bi-mode predictor
explains why it performs better than the agree predictor that utilize a static selection
mechanism. However, thiswill be shown to be afalse conclusion. The differencein
performance results from the agree predictor attaching the biasto the BTB. Asthesize

of the agree predictor grows, the number of entries dedicated to the bias cannot grow
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since they are attached to the BTB. In other words, the agree predictor throttles the
resources dedicated to the bias, while the bi-mode predictor does not.®
The value of the dynamic selection mechanism may be seen when either abias bit is not
present in the ISA and a dynamic selection mechanism therefore becomes imperative, or
when there is large disparity of branch behavior between different datasets. Such
disparity is more prevalent when choosing between two different schemes, asin the
McFarling predictor, than when selecting the bias of a branch, as in the bi-mode

predictor.

7.3.2 Compile Time Information
Throughout the history of the branch prediction field, it seems asif a dynamic approach
to data collection and decision making during run time has always prevailed over the
static approach, where the decision making is done during compile time. Dynamic
branch predictors are more accurate than static branch predictors. The bi-mode predictor
outperforms the agree predictor because it was thought to select the bias of the branch
dynamically. And dynamic selection mechanisms perform better than static selection

mechanisms because the best predictor might change throughout the program execution.’

® The bias/selection throttling effect has been ignored in multiple studies. It degraded the performance of
the bi-mode and Y AGS predictors when compared against a branch predictor that utilized value prediction
[66]. We speculate here that it likely caused a similar degradation to the McFarling predictor when
compared to the multi-hybrid predictor [49].

" For the later two examples, we indicate what was thought before this dissertation showed it not to be the

true.
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In the rush to dynamically determine more and more information, it has been
forgotten that some information that is very difficult to determine dynamically during run
time can be very easily obtained statically during compile time. In such cases, compile
time optimization can be very useful. The most obvious example of thisin the branch
prediction field is the number of static branches present in a program.

Aswe have seen in Chapter 5, the number of static branches present in a program has a
significant effect on the amount of aliasing present in the PHT. We believe this
information is crucial to tune the size of the BHR for the best tradeoff between aliasing

and correlation.

7.3.3 The Dependence of Correlation on Structure Size

Chapter 4 highlighted the dependence between correlation and aliasing. It isclear now
that deeper correlation entails better prediction. It isalso clear that deeper correlation
entails more aliasing. We observed that every program, depending on the amount of
aliasing it experiences, has a unique sweet spot of correlation where it achieves the best
tradeoff between higher prediction due to correlation and lower prediction due to
aliasing. We also observed that some programs, like li and compress, experience very
little aliasing, and therefore can achieve their peak prediction performance by utilizing as
much correlation as possible.

The problem is that the amount of correlation is tightly bound to the size of the predictor.
Take, for example, agshare structure of 1K entries (0.25KB). The most correlation one
can achieveis 10 deep. Aswe mentioned before, some programs are best predicted using

less than 10 bits of correlation, but this does not accommodate programs that can utilize
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more than 10 bits of correlation. Those are forced to use only the 10 bits a 1K entry
gshare can accommodate.
The problem is accentuated in structures that attempt to reduce aliasing like the skew and
bi-mode predictors. The closest bi-mode structure in sizeto a1KB entry gshareisa
0.75K B entry bi-mode, out of which 0.25K B entries are dedicated to each choice PHT.
As aresult, the most correlation that can be exploited in such astructure is a history of 8
bits deep.
It istherefore beneficial to alleviate, if not eliminate, the correlation depth dependence on
the structure size. Such de-coupling will enable the pursuit of better predictors without

placing limitations on the size of the structure.
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Chapter 8 - Solutions

This chapter introduces YAGS - anew branch prediction structure that capitalizes on the
criteria and observations introduced in the previous chapters. The chapter goes on to
identify aliasing in the first-level table as the primary impediment of prediction accuracy.
Lastly the chapter proposes a static, profile based, choice PHT to reduce adiasing in the
first-level table. The profile-based choice PHT is presented in the context of YAGS, but
can be incorporated into other predictors aswell. The profile based choice PHT not only
reduces aliasing in the first-level structure, but also facilitates transforming YAGS into a

cascading predictor.

8.1 Yet Another Global Structure (YAGS)

In this section we introduce Y AGS, a branch prediction structure that implements the
global scheme and that is designed to reduce aliasing. First, we introduce the motivation
behind this predictor and explain the need for a new branch prediction structure after so
many have been proposed already. Then, we introduce YAGS, compare it to previous

branch prediction structures, explain its advantages, and explore its design space.

8.1.1 Motivation

So far it has been observed that the ‘third-level of adaptivity path’ and *hybrid path’ are
really just techniques that reduce aliasing. And therefore all branch prediction structures
that implement those paths should be compared to each other and not treated as a separate

path of research in the branch prediction field. Elaborate and large branch prediction
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structures have caused the illusion that aliasing ceases to degrade performancein
branch prediction structures. Not only does aliasing still degrade performance, but it will
only get worse in future chip technologies. As the disparity between wire and transistors
increases, and the cycle time shrinks, predictors will have to decrease in sizein order to
be able to produce a prediction in one cycle. Smaller tables entail alarger number of
aliasing. This problem is exacerbated by the growing code size of applications and might
cause aliasing to significantly degrade performance even for simple predictors like the
bimodal.

Despite the numerous branch predictors devised to alleviate the negative effects of
aliasing on prediction accuracy, the aliasing problem is not completely solved (Section
4.4). The micro-architectural trends discussed in Section 7.1 are bound to aggravate the
aliasing problem even further in the future. It is clearly necessary to try and further
reduce aliasing by devising future structures that carefully consider such issues as size

and delay.

8.1.2 YAGS

YAGS is based on the observation that some redundant information is stored in the PHT.
For a predictor to be able to reach the full potential of the global branch prediction
scheme, it is enough to store the branch’ s bias and those branch instances that do not
comply with the bias. Traditionally, branch predictors have stored all branch instances.
Figure 8.1 depicts adiagram of the Y AGS branch predictor. We chose the bimodal
structure to store the branches' bias and termed it, as in the bi-mode predictor, the choice

PHT. Two direction caches were then added to store the instances of the branch that do
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not comply with the bias. Each entry in the direction caches contains an address tag,
a history tag, and 2bc state machine. The address tag is needed to distinguish the entry as
belonging to a specific branch. Notice that unlike to traditional caches, the addresstag is
taken from the LSBs of the branch address. The reason for thisis that the cacheis
indexed by the branch address xored with the history register, which leads to aloss of the
address information. Due to the nature of the xor function, aliasing may occur between
two consecutive branches. Using the branch address as the tag will allow aliasing to
occur only in the case of some spatial locality.
The reason for having two direction caches rather than a consolidated oneis the aliasing-
reducing property of the choice PHT, discussed in Chapter 5. Having two direction PHTs
allows the choice PHT to move branch instances between them if one of the direction
PHTsis overcrowded with information.
Experiments have shown that an address tag of 6 to 10 bits will suffice. Too small of an
address tag might cause some branch instances to be associated with one branch, in
practice they belonging to another branch. In most cases, 6 to 10 bits of address tags are
enough to identify the branch. Extending the address tag to the size of the word is not
cost effective. In contrast to traditional caches, thisrisk can be taken since the
information stored in those caches is branch prediction. The worst that can happenisa
wrong prediction; in traditional caches erroneous execution can result.
When comparing Y AGS to the bi-mode branch predictor, two distinctions become
apparent. First, the choice PHT is used not only for saving the branch bias but also for
predicting the branch when no specia instance of the branch isidentified in the direction

caches. Second, since the direction caches only store the special instances of the branch
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Figure 8.1 —Diagram for the YAGS predictor
which do not comply with the bias, the direction caches can be much smaller than the
direction PHTsin terms of entries. The problem with having a smaller number of entries
in the direction caches as compared to the choice PHTsis that less history is used to
index the structure and as aresult, less correlation is taken advantage of. On the other
hand, utilizing less history means that less information is stored in the direction caches,
which leadsto less dliasing.
The addition of the history tag solves this problem, but even more importantly, the
history tags decoupl e the correlation depth used by the predictor from the size of the
predictor. Whilein previously proposed predictors the depth of correlation is bound by
the size of the PHT, the introduction of the history tag in the direction caches ailmost
completely decouples the depth of correlation from the size of the direction cachesin

YAGS. Obviously, the same method can be used in other predictors as well, but the size
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of the correlation is more tightly coupled to the size of the predictor in other branch
prediction structures. Table 8.1 shows the size increase for different predictorsif a

history tag of increasing correlation is added to them.

# of bits | gshare Skew bi-mode | filter agree YAGS
2 100% 100% 66.6% <100% <100% 22%
3 150% 150% 100% <150% <150% 33%
4 200% 200% 133.3% <200% <200% 44%
5 250% 250% 166.6% <250% <250% 55%

Table 8.1. — Therelationship between correlation depth and predictor size increment

The configuration of YAGS presented in Table 8.1 includes a 6 bits address tag and
direction caches, which have a quarter the number of entries that the choice PHT has.
While adding 5 bits of history tagsto Y AGS requires an addition of 55% in size, adding
it to most other predictors would require an addition of 250% to resources. Thisis
another of the advantages of YAGS.

When a branch shows up in the instruction stream, the choice PHT is accessed. If the
choice PHT indicates “taken,” the “ not taken” direction cache is accessed to check if itis
aspecial case where the prediction does not comply with the bias. If amiss occursin the
“not taken” direction cache, the choice PHT is used for the prediction. The same happens
if the choice PHT indicates “not taken” but this time the check is done in the “taken”
cache. The choice PHT is addressed and updated as in the bi-mode choice PHT. The

“not taken” cache is updated if a prediction from it was used. Further more, an entry is
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added to the “not taken” cacheif the choice PHT indicates “taken” and the branch
outcomeis “not taken.” The same happens with the “taken” cache.
The classic way to reduce aliasing is to make the cache set associative. Until now, the
introduction of tags was not afeasible solution. Y AGS makes the introduction of tags
cost effective. When making the caches set-associative, there is some extra cost for
keeping a correct replacement policy. For example, in atwo-way Set-associétive cache,
one bit for every two entries will suffice to keep track of which entry was replaced | ast.
We suggest a Least Recently Used (LRU) replacement policy with one exception: an
entry in the “taken” cache which indicates “ not taken” will be replaced first to avoid
redundant information. The reasoning behind thisisthat if an entry in the “taken” cache
is set to “not taken,” thisinformation is aready in the choice PHT and thereforeis
redundant and can be replaced.
Making the direction caches set associative pays off for selected benchmarks, but overall,
isnot cost effective. Reducing the amount of information stored in the direction caches
reduces aliasing in the direction caches to the point that does not contribute much to
performance degradation and does not justify the extra bit associated with a 2-way set
associative and the added latency. Making the direction caches set-associative might
help to reduce aliasing for future programs that have more static branches. The set-
associ ative option was not investigated any further in thisthesis.
Notice that when increasing the size of the direction caches, the size of the history
register can be increased to better exploit correlation between branches. However, when
making the direction caches two-way set-associative, one less bit is used to index them

than if the direction caches were direct-mapped. Thisloss of correlation has a negative
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effect on prediction accuracy. In order to maintain the same level of correlation
when comparing two-way Set-associative caches against a direct-map caches Y AGS of

the same size, one bit of history must be added to the history tag.

8.1.2.1 Prediction Accuracy
YAGS is compared against the gshare and bi-mode predictors. The gshareisthe base
predictor and is shown for reference. The bi-mode predictor, on the other hand, has been
established as the best predictor in the ‘aiasing’ path of research, and has been compared
many times to the agree, filter, and skew predictors. In Chapter 5, we compared the bi-
mode to the McFarling predictor and established that the bi-mode predictor is more cost
effective. The McFarling predictor has been established as one of the better predictorsin
the *hybrid’ path of research.
Figure 8.2 shows the prediction accuracy for gshare, the bi-mode predictor and YAGS.
As can be seen, YAGS outperforms all other structurestested. Asthe size of the PHT
increases, YAGS' advantage over the other schemes decreases. Thisis expected since all
structures examined implement the global branch prediction scheme. Asthe size of those
structures increases, the aliasing problem in the PHT decreases, and therefore the
performance of all predictors converges.
One of the pitfalls of the SPEC95 benchmark suite is that most traces have avery small
static branch signature [12]. For example, the compress benchmark has only 495 static
branches. Those branches are executed over and over again throughout the course of the
program. Because of this small static branch signature, each branch is more likely to

have a unique entry in the PHT for each history instance. A small static branch
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Figure 8.2 c) comparing YAGS for the SPECINT95 and SPECFP95 aver ages
signature results in avery small amount of aliasing in the PHT, and therefore boosts the
performance of the branch prediction structure.

The gcc, go, and the IBM benchmarks are thus of special interest because of their large
static branch signatures. Ascan be seenin Figure 8.2, Y AGS outperforms the other
structures for the go, gcc and IBM benchmarks. The benchmarks suffers considerably
from destructive aliasing. The gshare scheme for small predictors achievesa71.7%
correct prediction accuracy while the aliasing-free potential of the global schemeis
97.4% correct prediction accuracy in the case of the S390 benchmark. For about the
same amount of resources that allows gshare to achieve a 71.7% accuracy, YAGS
achieves 85%. The bi-mode, which is designed to reduce destructive aliasing, achieves

only a 78.5% accuracy.

8.1.2.2 Amount of Information Stored in Prediction Structures

The main advantage of Y AGS over other predictorsisits ability to store less information
without compromising the potential prediction accuracy of the global scheme, asis done

by filter mechanisms. To check on that premise, we tapped the wires
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Figure 8.3 a) Amount of infor mation stored for the SPECINT95 benchmarks
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used to index the different structures in the bi-mode, gshare, and Y AGS predictors for
distinct information stored in those structures throughout the program execution. For
every piece of information stored, we checked whether it was duplicated. If the
information tapped was new, we incremented the amount of information stored in the
predictors. For gshare, the line accessing the PHT was tapped. For the bi-mode and
YAGS, we tapped both the choice PHT and the direction PHTs or caches, respectively.
Figure 8.3 shows the amount of information stored in the different predictors. YAGS
consistently stores less information than the bi-mode and gshare predictors. Asthe depth
of correlation increases in the predictors, the amount of information stored in YAGS
increases very moderately compared to the amount of information stored in the bi-mode
and gshare predictors. As Figure 4.5 demonstrates, Y AGS main strength is that less
information translates directly to less aliasing and better prediction accuracy.

It iswell known that the bi-mode predictor is more accurate in predicting branches than
the gshare predictor. Though this may be true, Figure 8.3 shows that the bi-mode

predictor stored more information that the gshare predictor. The information gap
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between the two predictors does not change considerably across different correlation
depths. Thisgap is due to the fact that the choice PHT in the bi-mode predictor stores the
bias of the different branches on top of the correlated information stored in the PHTSs.
The bi-mode predictor achieves better prediction accuracy than the gshare predictor, not
by reducing aliasing, but by reducing destructive aliasing only. The extrainformation the
bi-mode stores on top of what the gshare predictor stores indicates that the bi-mode
predictor suffers more aliasing. If we wereto check for destructive aliasing, we would
expect the bi-mode predictor to have less than the gshare predictor. Since YAGS hasthe
same mechanism to reduce destructive aliasing as the bi-mode predictor has, this

comparison holds.

8.1.2.3 Testing Under Context Switching

Throughout consecutive generations of microprocessors, the amount of hardware used for
the branch prediction structures has grown. Ideally, the prediction accuracy should be
proportional to the amount of hardware invested in the structure. One drawback of
increasing the hardware size is the time it takes the branch predictor to reach its peak
performance, otherwise known as acold start. In the presence of intensive context
switching, the warm-up time of the branch prediction scheme might have a significant
influence on the misprediction rate. Furthermore, due to long warm-up times, some
complex structures might end up achieving less accurate predictions than less
sophisticated structures. It has been shown that a hybrid predictor, composed of gshare
and the bimodal, has good performance in the presence of a context switch [10]. Thisis

due to a short warm-up time of the bimodal component. Each branch is mapped to only
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one entry in the PHT of the bimodal structure. Therefore, it takes only afew
executions of a branch for its respective entry to reflect the information stored the branch.
On the other hand, the ghsare structure has to execute a branch several times for each
history instance before it warms up. The potentially large number of history instances,
given by 2" |ength, will result in a very long warm-up time and that, in return, will
cause the degradation of performance in the presence of context switches. Other
predictors, such as the skew predictors, suffer from the same problem.
On the other hand, one would expect the bi-mode predictor and Y AGS to be more
tolerant of context switches. Most of the information in the “not taken” direction PHT of
the bi-mode predictor is “not taken”. So once the choice PHT points to the “not taken”
direction PHT, the probability of a*“taken” prediction isvery smal. Thus, only few
executions of each branch are needed to warm up the choice PHT, which is essentially
the bimodal predictor. After that, it will take more executions to warm up the branch’s
history instances, which do not comply with the branch bias. But for the most part, the
predictor should not perform worse than the bimodal predictor. The same phenomenon
occursin YAGS. Thistime the short warm-up timeis due to the addresstags. Thereisa
low probability that the tags will match after a context switch. Therefore, until some tags
match, the choice PHT will serve as the predictor.
In asense, YAGS and the bi-mode predictors are hybrid predictors, which combine the
gshare scheme with the bi-model. In the presence of a context switch, they should
exhibit the short warm-up time of the bimodal predictor.
In order to sSimulate a context switch, a new trace file was created by interleaving all eight

SPECINT95, the six SPECFPO5, and the IBM benchmarks every 60,000 instructions.
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This number was chosen not to reflect areal context switch interval, but to exagerate

the effect of context switching on the various predictors.
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Figure 8-4 — Context Switching Effect on the Different Predictors
Figure 8.4 shows the performance of the predictors tested in the presence of context
switches. As expected, Y AGS performs much better than gshare because of its short
warm-up times. The difference between the accuracy of the different predictors is much
more pronounced in the presence of context switches. The gshare structure would
converge with YAGS only if the PHT was large enough to accommodate most of the
branch instances from all the SPEC95 benchmarks. Without context switches, the
predictor’ s performance would converge if the gshare PHT were big enough to

accommodate the benchmark with the largest branch signature.

8.2 In-Depth Analysis
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Figure 8.5 —aliased and not-aliased instances usage and prediction accuracy for the choice
PHT and taken direction cache

Y AGS outperforms leading branch predictors because of its ability to reduce aliasing.
How much aliasing still exist in each of YAGS' structures and the inter-working of the
choice PHT with the direction cachesis not clear. We next present a series of studies that
gives an insight to the inter-working of YAGS. We chose to show only the results for the
gcc benchmark because results for other benchmarks are similar and do not result in a
better insight into YAGS.

Figure 8.5 shows the prediction accuracy and the usage of the taken direction cache and

the choice PHT for the gcc benchmark in agrid of four graphs. Results for the not taken
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direction cache are not shown for they are very similar to the result of the taken
direction cache.
For the choice PHT, prediction accuracy of not-aliased instancesis expectedly higher
than the overall prediction accuracy and the prediction accuracy of the aliased instances.
Asthe predictor size increases not-aliased prediction accuracy and overall prediction
accuracy converges. Thereason isthat the percentage of aliased instances is approaching
zero. Asthe size of the predictor increases, the number of choice PHT hitsis decreasing.
The reason is that increase predictor size comes with increased correlation depth. Asa
result the number of instances, which do not comply with the bias, increase, and the
direction caches are utilized more heavily. Because a hit in the choice PHT only occur
when there is amissin the direction cache, the increase utilization of the direction caches
result in asmaller utilization of the choice PHT.
In the direction cache, the number of hitsincreases as the predictor increasein size. The
reason is an increase utilization of correlation depth and was discussed above. Asinthe
choice PHT the prediction accuracy of the not-aliased instancesis greater than the
prediction accuracy overal for small predictors. The prediction accuracy of the two
converges for larger predictors. Interestingly enough, the prediction accuracy of the
aliased instances increases as the predictor size increases. At certain predictor size it
surpass the prediction accuracy of the not-aliased instances. However, the increasein
accuracy as little effect on the overall prediction accuracy because the number of aliased
instances decreases as the predictor sizeincreases. The explanation for that is hinted in
chapter 4. Notice that aliased instances in some why implement the history only scheme.

In chapter 4 it was shown that with larger correlation the history scheme surpass the
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global scheme in prediction accuracy. In contrast to what this result might suggest,
aYAGS version that implement the history only scheme doesn’t work as well and the

Y AGS that implement the global scheme.

8.3 And Yet MoreAliasing

The introduction of the two-level branch predictor [22] made the bimodal branch
predictor obsolete in the eyes of researchers. The promising potential of the two-level
branch predictors led to an outpouring of research into correlating branch predictors.
When aliasing was discovered to degrade performance in the two-level branch predictors,
its negative effect on one-level branch predictors, such as the bimodal structure, was no
longer apriority. While it was established that aliasing in the bimodal structure did not
occur often asin the second-level PHT, it appears that its adverse effect on prediction
was never investigated, and no solution to aliasing in the first-level table was ever
proposed.

The effect of aliasing in one-level branch predictorsis of interest for few reasons. For
one, micro-architectural trends, such as increasing code size and decreasing state
reachable in one cycle, might force processors to scale down their branch predictorsto
one-level branch predictors. Evenif it ispossible to avoid the bimodal structure, some
aliasing reducing structures has a bimodal structure embedded in them. Examples for

such predictors are the bi-mode, Y AGS and the sel ection mechanism in most hybrid
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predictors. If aliasing degrades performance in the bimodal structure, it ought to
degrade the performance of those branch predictors too.
In the bimodal scheme, each branch needs only one entry, compared to the global scheme
with aBHR of size 10, where each branch theoretically needs 1024 entries. This suggest
there will be much less aliasing in the bimodal predictor compared to the gshare
predictor. However, since each aliasing instance in the bimodal predictor adversely

effects all instances of this branch, we expect each aliasing instance in the bimodal
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Figure 8.6 a) Aliasing in the bimodal predictor for the SPECINT95 benchmarks
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Figure 8.6 c) Aliasing in the bimodal predictor for the SPECINT95 and SPECFP95 aver ages

predictor to have a much more destructive effect than an aliasing instance in the gshare
predictor.

Figure 8.6 depicts the adverse effects of aliasing in the bimodal structure. It compares a
bimodal implementation that has a dedicated entry for each branch (UL- bimodal) to a
regular bimodal structure. The x-axis represents log to the base 2 of the number of
entries for the bimodal structure, but has no significant for the UL-bimodal. For small
tables, aliasing degrades performance for all benchmarks. However, the point where
aliasing ceases to be a problem varies significantly across benchmarks. While for the
compress benchmark, aliasing does not degrade performance for tables as small as 64
bytes, for the s390 benchmark, aliasing persists as a problem even for tables as large as
16KB. If s390 and other benchmarks with large number of static branches represent
future programs, aiasing in one-level branch predictors will significantly degrade
prediction accuracy. But even for the average of the SPECINT95, aliasing degrades

prediction accuracy for 2KB tables.
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Figure 8.7 b) Choice PHT aliasing effect in YAGS for the SPECFP95 and IBM benchmarks
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Because adiasing in the bimodal predictor degrades prediction accuracy, it could be
expected to similarly degrade the prediction accuracy in two-level branch predictors that
have an embedded bimodal structure. This premise is checked in the context of the
proposed YAGS predictor. Figure 8.7 compares the basic Y AGS structure against a
hypothetical Y AGS structure with no resource limit on the choice PHT. Notice that the
direction caches in this hypothetical YAGS are still restricted in size. Comparing this
hypothetical YAGS to the regular Y AGS enables us to quantify the adverse effects that
aliasing in the choice PHT has on the prediction accuracy of YAGS. As can be seen, the
prediction accuracy degradation dueto aliasing in the choice PHT is significant, and for
benchmarks with large numbers of static branches, like the s390, aliasing in the bimodal
structure is only resolved for choice PHTs of 4KB in size. For smaller predictors, the
adverse effects of aliasing in the choice PHT overwhelms the benefits the predictor
achieves from implementing the global scheme viathe direction caches.

Obvioudly, aliasing in the bimodal structure is a prominent source of prediction accuracy

degradation that has so far been overlooked. Finding ways to remove some of the
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aliasing from the bimodal structure could bring significant benefits to prediction,

especially for smaller size predictors.

8.4 ProfileYAGS

Removing aliasing from the choice PHT of YAGS isimportant for two reasons. Firgt, it
will increase prediction accuracy. Second, it will facilitate a reduction in the size of the
choice PHT compared to the direction caches. This, in turn, facilitates turning YAGS
into a cascading predictor where asmall choice PHT is used when only one cycleis
available for prediction. When more than one cycle is available for prediction, the
direction caches can then be accessed.

Attempts to create a dynamic structure that alleviates aliasing in the first-level structure,
in this dissertation, have failed. Thisfailed attempt is described next. Borrowing from
the bi-mode structure, the choice PHT was split into two choice PHTs. One serves
branches that are mostly biased to be taken and the other serves branches that are biased
to be not taken. The determining factor of which choice PHT will server each branch
was whether the branch is aforward or a backward branch. The reasoning behind this
choiceis similar to the static branch prediction scheme that states “backward taken,
forward not taken.” However, this attempt failed.

Next, aprofiled version of YAGS is presented. The direction caches are similar to the
onesin YAGS. The choice PHT, on the other hand, is replaced by a bit in the branch
instruction that indicates the branch’s bias. Using a profiling bit to help in the prediction
of atwo-level branch predictor was described before in the context of an agree like

predictor [67], however, this does not exclude profile YAGS as anovel predictor.
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Figure 8.8 compares the regular Y AGS with profile Y AGS when atest dataset is used for
profiling (profile-yags) and when the same dataset is used for profiling and real
simulations (profile-yags-best). The later is an overestimation and marks the upper
bound that can be achieved by profiling. Surprisingly, the omniscient profile YAGS and
the feasible profile Y AGS produce very similar results.

That static selection mechanism work so well with Y AGS as opposed to the serving as
the selection mechanism for the McFarling predictor, stems from the underlying
information profiled. With the McFarling predictor, the profiled information indicates
which predictor better predicts the branch. Thisinformation is not balanced and is
heavily biased toward either the local or the global component, depending on the
benchmark. On the other hand, with YAGS, the profiled information indicates the
branch’s bias. Thistends not to change for different datasets and isfairly balanced
between branches that are biased to be taken, and branches that are biased not to be taken.
Figure 8.8 shows that profiling the branches’ biasfor YAGS entails large prediction
benefits for small predictors. The reasons are twofold. First, the cost of the choice PHT
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is zero because this information is stored in the branch instruction. Second, thereis
no aliasing in the first-level structure. Aliasing was shown in Section 8.2 to considerably
degrade performance of global two-level branch predictors.
Asthe size of the predictor increases, the benefits of using profile YAGS over YAGS
diminish until they are nonexistent for most benchmarks. It is worthwhile to note the
predictor size where this benefit diminishes. For the applu benchmark the critical sizeis
assmall as 128 Bytes. For the s390 benchmark it occurs for predictors as large as 256K B
insize. On average for the SPECINT95, the critical point is 18KB. Thisisby far larger
than the conservative estimate of the PHT of 1KB that would be accessible in one cycle
for the 35nm technology available in the year 2012 [64]. For a 1KB PHT, the prediction
accuracy of profile YAGS is 93.9% for the SPECINT95 average compared to only 92.5%
prediction accuracy for YAGS. If the more conservative estimate for future technology is
considered, aPHT of size 0.125KB will be available in the year 2012 and the prediction
accuracy of profile YAGS will be 92.7% compared with only 87.6% prediction accuracy
for YAGS.
The benefit of using profiling to determine the branches’ bias in future technologiesis
obvious. However, profiling is not as easy implemented and some major hurdles were
overlooked in the past when profiling was studied in branch predictors. The next section

addresses those problems.

8.5 TheFutureof Profiling

Profiling has been used for static methods in branch prediction for aslong as the branch

prediction field of research has existed. Profiling allows the acquisition of information
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before the program isrun. In contrast, dynamic methods acquire their information
while the program runs. This difference between dynamic and static methods imposes
less time constraints on static profiling than on dynamic methods. The profiled
information is conveyed to the microarchitecture viathe ISA. A well-known pitfall of
profiling is that the ISA must have a mechanism to convey the profile information to the
processor. This mechanism usually comesin the form of dedicated bits in the branch
instructions. The lack of such a mechanism requires achangeinthelSA. A changeto
the ISA isnot trivial in most cases and might cause problems with backward
compatibility.
Next, three other pitfalls are discussed that, we think, will force other means of profiling
to be devised. The creators of the SPEC benchmark suite, recognized that different
datasets must be supplied. Most studies, therefore, profile with one dataset and then use
the profiled information to measure the prediction accuracy when running on a different
dataset. More than 97% of the static branches are profiled with the test dataset, and
therefore when running the real dataset those branches already have prediction

information.

8.5.1 Profiling Pitfalls

Thefirst profiling pitfall isthat SPEC95 benchmarks are very small programs compared
to today’ s software. Additionally, the active regions of the program are used regardless
of the dataset. Thisis not the case for large programs such as MS-WORD or EXCEL.
The amount of code for those applications is enormous compared to the SPEC95

benchmarks and the active regions of such program will change considerably with
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different datasets. Asaresult, coming up with a dataset that will profile most of the
static branchesin the program is an almost impossible task. Those un-profiled regions of
the program are not necessary less used. It might be the case that those regions will be
used over and over again by the same user. Asaresult, this user will experience
considerable slowness when running those un-profiled portions of the applications.
The second pitfall relates to legacy code. Legacy code refersto programsthat were
compiled and are running on older implementations of the same ISA. When legacy code
isinstaled on a new implementation of the ISA that relies on profiling for branch
prediction, it can considerably degrade its performance. This might lead to the
disconcerting situation that an older processor will run legacy code faster than a newer
implementation of the same ISA.
Thelast pitfall of profiling is the commitment to a branch prediction implementation.
Suppose one version of the ISA isimplemented with the McFarling branch predictor
where the selection mechanism relies on profiling. Programs are compiled after profiling
sample datasets for optimal accuracy for the McFarling predictor. A new implementation
of the same ISA cannot change the McFarling predictor to the bi-mode predictor because
previous profiled and compiled programs will suffer considerable performance
degradation. The same problem can occur even if the new processor implements the
McFarling predictor with adifferent PHT size than the older version.
Those overlooked pitfalls of profiling in branch prediction can be easily generalized to
profiling in different structures of a microarchitecture. This suggests that dynamic
structures should be used because they do not suffer from the pitfalls mentioned above.

However, as we have seen before, due to micro-architectural trends, dynamic structure
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will be forced to decrease in size and will therefore suffer areduction in
performance. Profiling, on the other hand, is not limited in size and does not suffer from

aliasing.

8.5.2 Dynamic Profiling

The solution to this problem might be a different way of profiling. Profiling needsto be
done during run time rather then compile time to avoid all the above pitfalls. This can be
done either by the processor or the OS. A simple example might be the bias of a branch.
A bit in the branch instruction indicates whether the branch was profiled or not. If the
branch has not yet been profiled, when the branch is evicted from the BTB, the processor
could interject an instruction to write the branch back into memory with the profile
information obtained by a 2bc attached to the BTB. Thefirst time the programisrun, it
might encounter delays due to large dynamic structure. The next time the program is
executed, branches with profile information in the ISA obtained in the previous run will
be predicted by this profile information. This bypasses the delay due to alarge dynamic
structures and at the same time avoids the above mentioned pitfals. This approach was
proposed before albeit serious structure limitations [62].

The profiling done by the processor isrestricted to very simple profiling. Some profiling
needs elaborate data structures that are not cost effective to implement in hardware. If
profiling is done by the OS, in asimilar manner described for processor profiling,
elaborate data structures can be used and the cost of on-chip dynamic structures can be

avoided. Thiswill require an upgrade to the OS for each processor, but can be easily
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done. The OSwill maintain alist of profiled programs and on every program that
was not profiled, the OS will invoke the profiling module.
Dynamic profiling is not an easy ideato implement. It requires the cooperation of the
microarchitecture and the OS. It is clear that future microprocessors will have to be more

tightly coupled with the OS in order to maintain increasing processor performance.
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Chapter 9 - Conclusion

9.1 Contributions

4The initial objective of the research leading to this dissertation was to improve branch
prediction accuracy by combining different advances made in the branch prediction field.
In the process of investigating the feasibility of this approach, severa myths and
misconceptions were debunked. Throughout this dissertation, those misconceptions have
been clarified, and ways were devised to improve the accuracy of branch predictors.

The branch prediction research community has taken three different paths in its attempts
to improve branch prediction. In aninitial attempt to combine the benefits of a hybrid
branch predictor with the benefits of abranch prediction structure which reduces aliasing,
we observed that both predictors showed improved branch prediction for the same
reason— namely reducing aliasing. In aseries of studies we consolidated the three
different branch prediction paths by reducing the hybrid and the third-level pathsto the
‘diasing path’. Thisreduction is done by showing that hybrid predictors improve
prediction by reducing aliasing, and by showing that the third-level of adaptivity isa
filtering mechanism that aso reduces aiasing.

In the process of investigating what makes the hybrid path work, we shed light on some
myths in the ongoing debate between static and dynamic selection mechanismsin hybrid
predictors. We found that known dynamic sel ection mechanisms fail to choose the best
component for each branch dynamically and we questioned whether a branch changesiits

best predictor during execution. It was found that the strength of dynamic selection

170



mechanisms does not lie in dynamically choosing the best predictor for each branch,
but in reduction aiasing. The dynamic selection mechanism serves as aload balancer
between the two components of the hybrid predictor. Once one of the componentsis
congested, the sel ection mechanism moves some branches to the other component. This
load balancing process reduces aliasing, which in turn translates into better prediction
accuracy. While thisrole of the dynamic selection mechanism in reducing aliasing has
not been noted before, it has been well established that a static selection mechanism
reduces aliasing by not taking any hardware resources for the selection mechanism and
by reducing information for the reason that only one component is updated for each
branch. For static selection mechanism, we showed that profiling must be done with
aliasinginmind. If profiling isfocused on the benefits of using the hybrid scheme
instead of aliasing aware profiling, the degradation in performance can be considerable.
After concluding that reducing aliasing is the only way to improve prediction in two-
level branch predictors, we categorized the different ways reducing aliasing was done in
the past. The different ways are reducing the information stored in the PHT (and its
simplified case — filtering), reducing negative aliasing, and pseudo-associativity. Studies
conducted for this dissertation were then used to list the attributes found to help
prediction
We laid out the tradeoff of increasing the size of the BHR, which has been empirically
observed before but never adequately explained. We further showed that the size of the
BHR and the number of static branches, present in a program, have more or less equal
effect on the extent of aliasing. Thisistruein spite of the fact that the size of the BHR is

the dominant term in the theoretical equation dictating the amount of information stored
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inthe PHT (Section 4.5). By explaining the relationship between correlation and
aliasing, we noted misinterpretations made in the past when two branch predictors that
reduce aliasing, were compared. To take advantage of this observation, we proposed a
way to decouple correlation from the size of the PHT even when the size of the PHT has
fewer than 22" 5% entries. While this method is not successful in most cases, it was the
basis for further improvement of YAGS. YAGS isanew branch predictor proposed that
takes advantage of 1essons learned while gathering the results for this dissertation.
Aliasing in the second level table of two-level branch predictors, and structures to
aleviate the aliasing problem has been the subject of extensive research. However, to
our knowledge, aliasing was never considered in the bimodal structure. We discovered it
degrades performance. Bimodal aliasing currently degrades prediction for programs with
large branch signatures. As program size increases, and the amount of state accessiblein
acycle decreases, this problem is aggravated and most programs will suffer its negative
effects. Since the bimodal structureis used as the choice PHT in the bi-mode and YAGS
branch prediction structures and as a selection mechanism for different hybrid branch
prediction structures, the aliasing problem in the bimodal structure can be expected to
degrade performance for all those structures. We verified thisfor YAGS.
We propose a static selection mechanism to replace the choice PHT in the YAGS branch
predictor based on profiling. Because we considered aliasing during the profiling
process, and most branches' bias does not change between different datasets, profiling
Y AGS works extremely well even for small size alocation.
The strength of profiling YAGS isnot only in amore cost effective use of resources, but

also initsability to eliminate the choice PHT to nothing. In the future, this ability can be
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used to transform Y AGS and the bi-mode predictors into cascading predictors as a
mean of tolerating the decreasing state accessed in acycle.
This dissertation does not paint an optimistic picture of the branch prediction field. Even
with generous resource allocation and no limit on the amount of state reached in one
cycle, branch prediction is expected to create the most limiting bottleneck in future
processors[1]. Moreover, code sizeisincreasing [2] and the amount of state reached in a
cycleisdecreasing [63][64]. This means that future branch predictors will need to be
smaller, and to predict more branches with better accuracy. This dissertation took the
branch prediction field a step backward, in one sense, by consolidating three different
paths of research into one, and as a result showed that advantages previously assumed
were misleading and will not result in a better prediction. In addition to identifying these
flaws, this thesis has identified and presented the new problem of aiasing in the bimodal
structure. This problem will only get worse with the micro-architectural trends discussed
above.
We hope that these observations will help to better direct future research in the branch
prediction field. Since most of the myths uncovered in this dissertation could have been
avoided by performing an adequate limit study, we look forward to seeing more studies
that give insight into why a particular branch prediction structure/scheme works, moving
beyond ad hoc empirical results which show that a particular branch predictor is more
accurate than previoudy proposed ones.
On the positive side, we introduced Y AGS, anew branch prediction structure that attacks
the aliasing problem. Y AGS utilized the criteriathat we introduced (Chapter 7). Those

techniques include but are not limited to decoupling correlation depth from PHT size,
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reducing the amount of information stored in the PHT, and load balancing. We
facilitated the use of Y AGS as a cascading predictor by utilizing profiling to determine
the branch’s bias. We stopped short of testing Y AGS as a cascading predictor.
We acknowledge that Y AGS, similar to previous branch prediction structures, does not
completely solves the aliasing problem nor eliminates control dependency from being the
bottleneck in future processors. However, any improvement in branch prediction
accuracy will help to open up the control dependency bottleneck. For that, we believe
that further research and novel branch predictor structures are needed in order to facilitate

faster processors.

9.2 FutureWork

Trends in microarchitecture and software development dictate that control dependency
will continue to be a problem in the foreseeable future. This provides an exciting
opportunity for future research.

Note that while we have shown that hybrid predictors improve prediction accuracy by
eliminating aliasing, we have not ruled out hybrid schemes altogether. Rather we have
pointed out that current hybrid predictors are unable to fulfill this potential. Once
dliasing is eliminated, or away isfound to separate those two competing potentials,
predictors can start taking advantage of the hybrid scheme potential.

The only existing study pertaining to cascading predictors [65] used the gshare structure
and specifically mentioned that it would be beneficial to incorporate a structure that
reduces aliasing with a cascading predictor. One criticism of the cascading predictor

proposed is that it stores redundant information. We believe in the potential of YAGS to
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serve as a cascading predictor where the choice PHT is eliminated by the use of
profiling information. When another cycle is available for prediction, the direction
caches can than be accessed. While not pursuing thisin its entirety, we made the first
step by alowing the first cycle prediction to have no latency, while still taking advantage
of the two-level structure when a second cycle is available for the prediction of the
branch. Note that in order for the bi-mode structure to serve as a cascading branch
predictor, the choice PHT will need to supply predictions, taking the bi-mode structure
one step closer to the Y AGS branch predictor.
We predict that compile/profile time information will need to be more closely coupled
with dynamic predictors. Thistrend isnot new and different ISAsincorporate bitsin the
ISA to do just that. For examplein the IA64 ISA thereisone bit in the branch
instructions to indicate whether dynamic or static prediction isto be used for filtering
purposes. Another bit is present to indicate the prediction in case a static prediction is
used. Thislast bit can be easily used to indicate the branch’sbiasin profiling YAGS.
Such compile and profile time cooperation will need to be increased in order for branch
predictors to keep up with future processors. This might require ISA changes, and as
painful as that might be to implement, we feel that it will be necessary. An obvious

exampleisthe loop instruction in the PowerPC ISA, which other ISAs are lacking.

Happy hunting.
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