

0

Of Limits and Myths in Branch Prediction

by

Avinoam Nomik Eden

A dissertation submitted in partial fulfillment
of the requirement for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2001

Doctoral Committee:
Professor Trevor N. Mudge, Chair
Professor Richard B. Brown
Associate Professor Marious Papaefthymiou
Assistant Professor Steven Reinhardt
Assistant Professor Gary Tyson

1

ABSTRACT

Of Limits and Myths in Branch Prediction

by

Avinoam Nomik Eden

Chair: Trevor N. Mudge

The need to flush pipelines when miss-predicting branches occur can throttle the

performance of a pipelined super-scalar microprocessor. It is argued that by the year 2010

branch prediction will become the most limiting factor in processor performance [1]. A

plethora of research has been done on the subject of branch prediction. While many

branch prediction structures have been proposed, their performance is usually

demonstrated empirically through simulations that provide little insight into the

underlying principle that enables their behavior.

Since the introduction of the two-level dynamic branch prediction scheme, research into

branch prediction has followed four different paths. The first attempts to improve predic-

tion by reducing aliasing in the second level table, which was shown to adversely affect

prediction accuracy. The second attempts to improve prediction accuracy by combining

two or more different components in the branch prediction structure. The third attempts

to improve prediction by changing the configuration of a particular predictor. Lastly, the

fourth, tries to find new schemes to improve branch prediction. Most papers on research

along one path ignored comparisons with other paths on the basis that the different paths

are orthogonal.

2

A set of studies is presented that consolidate the different research paths by showing

that the advantage gained by most of them is to reduce aliasing. After showing that

reducing aliasing is the prevailing factor in prediction gain regardless of which path of

research is followed, we highlight a set of criteria that a predictor should embrace, to

have a good prediction. The criteria emerge from the studies we performed and previous

work on the subject.

The set of criteria, a predictor should follow to achieve good prediction accuracy, is used

to build a new predictor – YAGS. YAGS outperforms the leading branch predictor

structures from the different paths of research. It provides the micro-architect with a set

of parameters that can be used to meet different restrictions, such as size and latency.

This work highlights misconceptions that resulted from the work done on the topic. It

especially stresses the importance of a relevant limit study for understanding a new

branch prediction scheme and structure.

ii

ACKNOWLEDGEMENTS

I would like to thank my parents, which provided a worry free environment for pursuing
my higher education, and in the process turned me into an over-educated spoiled brat.
Thank you.

Thanks to my advisor, professor Trevor Mudge, for deciding I should pursue my Ph.D.
Thank you for the pets on the back and kicks in the butt you provided as necessary, and,
of course, for translating my papers into English. Thank you.

Thanks to my boss and my friend Vik Kheterpal for providing a flexible work
environment and support that allowed me to pursue my PhD while holding a job.

Special thank you to Professor Kevin Compton and Robin Rennie for providing mental
support and concrete advice during my early stages of education. Thank you.

Thank you to Jeff Ringenberg and Adam Freund. It was a pleasure working with you.

Moreover ☺, thanks to Amy Claire Harfeld for editing this dissertation and coping with
the bore.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENT………………………………….……………….….….……ii
LIST OF TABLES………………………………………………….………….….…….vi
LIST OF FIGURES………………………………………………………….…..……..vii
Chapter 1 - Introduction 9

1.1 The Branch Irony 9

1.2 Solutions to the Branch Problem 11

1.3 Directions in Dynamic Branch Prediction 12

1.4 Thesis Statement 14

1.5 Contributions of This Dissertation 15

1.6 Organization 16

Chapter 2 - Previous Work 18

2.1 Prediction Schemes 18

2.1.1 ...Bimodal
... 18

2.1.2 History Only Branch Predictor ... 19

2.1.3 Two-level Adaptive Branch Predictors... 19

2.1.4 Global Two-level Branch Predictors... 21

2.1.5 Local Two-level Branch Predictors ... 21

2.1.6 Path-Based Branch Predictors... 21

2.1.7 Other Schemes... 23

2.1.8 Summary.. 23

2.2 Aliasing in Global Predictors 23

2.2.1 The Problem .. 23

2.2.2 Aliasing Reducing Branch Prediction Structures........................ 24

2.2.2.1 Gshare ... 24

iv

2.2.2.2 Agree Predictor 25
2.2.2.3 Skew Predictor .. 26
2.2.2.4 Bi-Mode Predictor .. 28
2.2.2.5 Filter Mechanisms... 29

2.2.3 Summary.. 30

2.3 Hybrid Predictors 31

2.3.1 Hybrid Branch Predictors.. 31

2.3.2 Selection Mechanisms... 34

2.4 Third-level of Adaptivity 34

2.4.1 Third-level of Adaptivity Structures... 34

2.4.2 Selection Mechanisms... 36

Chapter 3 - Experimental Methodology and Benchmark Description 37

3.1 Experimental Methodology 37

3.2 Benchmarks’ Description 38

3.3 Performance Metrics 41

3.4 Results Presentation 41

Chapter 4 - The Scheme of Schemes Error! Bookmark not defined.

4.1 The Difference Between Schemes and Structures Error! Bookmark not defined.

4.2 Limits on Branch Prediction Scheme Error! Bookmark not defined.

4.3 Global Branch Prediction Schemes Error! Bookmark not defined.

4.4 The Effect of Aliasing Error! Bookmark not defined.

4.5 Correlation vs. Aliasing Tradeoff Error! Bookmark not defined.

4.6 Decoupling Correlation from PHT size Error! Bookmark not defined.

Chapter 5 - Myths of Hybrid Predictors Error! Bookmark not defined.

5.1 Issues in Hybrid Predictors Error! Bookmark not defined.

v

5.2 Simulation Methodology Error! Bookmark not defined.

5.3 Selection Mechanism Error! Bookmark not defined.

5.3.1 The Merit of Dynamic Selection Mechanism ..Error! Bookmark not
defined.

5.3.2 ...Dynamic vs. Static Selection Mechanism
..Error! Bookmark not defined.

5.3.3 ...The Omniscient Dynamic Selection Mechanism
..Error! Bookmark not defined.

5.3.4 Static Aliasing Aware vs. Dynamic Selection MechanismError!
Bookmark not defined.

5.3.5 Shortcomings of Static Selection.........Error! Bookmark not defined.

5.3.6 In Depth Analysis.................................Error! Bookmark not defined.

5.4 The Notion of Hybrid Predictors Error! Bookmark not defined.

5.5 Updating Policies and Aliasing Error! Bookmark not defined.

5.6 Combining Aliasing and Hybrid Paths Error! Bookmark not defined.

5.7 McFarling vs Bi-Mode Predictor Error! Bookmark not defined.

5.8 Summary Error! Bookmark not defined.

Chapter 6 -Filtering Characteristic of the Third-Level of Adaptivity Error!
Bookmark not defined.

6.1 Branch Classification Error! Bookmark not defined.

6.2 Dynamic History Length Fitting Error! Bookmark not defined.

6.3 Paths Comparison Error! Bookmark not defined.

6.4 Summary Error! Bookmark not defined.

Chapter 7 -The Do’s and Don’ts of Branch Predictor Structures Error!
Bookmark not defined.

7.1 Micro-architectural Trends Error! Bookmark not defined.

7.1.1 Wire Delay ..Error! Bookmark not defined.

vi

7.1.2 Software Development Error! Bookmark not defined.

7.2 Observing Past Work Error! Bookmark not defined.

7.2.1 Good Practices......................................Error! Bookmark not defined.

7.2.2 Bad Practices ..Error! Bookmark not defined.

7.3 Studies Done in This Dissertation Error! Bookmark not defined.

7.3.1 The Omniscient Dynamic Selection Mechanism...Error! Bookmark
not defined.

7.3.2 Compile Time InformationError! Bookmark not defined.

7.3.3 The Dependence of Correlation on Structure SizeError! Bookmark
not defined.

Chapter 8 -Solutions Error! Bookmark not defined.

8.1 Yet Another Global Structure (YAGS) Error! Bookmark not defined.

8.1.1 Motivation...Error! Bookmark not defined.

8.1.2 YAGS ..Error! Bookmark not defined.

8.1.2.1 Prediction Accuracy...............................Error! Bookmark not defined.
8.1.2.2 Amount of Information Stored in Prediction Structures................ Error!
Bookmark not defined.

8.1.2.3 Testing Under Context Switching..........Error! Bookmark not defined.
8.2 In-Depth Analysis Error! Bookmark not defined.

8.3 And Yet More Aliasing Error! Bookmark not defined.

8.4 Profile YAGS Error! Bookmark not defined.

8.5 The Future of Profiling Error! Bookmark not defined.

8.5.1 Profiling PitfallsError! Bookmark not defined.

8.5.2 Dynamic ProfilingError! Bookmark not defined.

Chapter 9 - Conclusion Error! Bookmark not defined.

9.1 Contributions Error! Bookmark not defined.

vii

9.2 Future Work Error! Bookmark not defined.

Bibliography Error! Bookmark not defined.

viii

LIST OF TABLES

TABLE 3.1 – BRANCH PREDICTION SCHEMES AND THEIR ATTRIBUTES 37

TABLE 3.2 - BENCHMARK CHARACTERISTICS 39

TABLE 3.3 – BENCHMARK DESCRIPTION AND DATASETS 40

TABLE 8.1. – THE RELATIONSHIP BETWEEN CORRELATION DEPTH AND PREDICTOR SIZE

INCREMENT ERROR! BOOKMARK NOT DEFINED.

ix

LIST OF FIGURES

10

Chapter 1 - Introduction

As VLSI technology continues to improve, more resources become available for the

branch prediction module. Concurrently, newer high-performance machines are

implementing deeper pipelines and greater issue-widths. This, in turn, increases the

number of branches predicted and not yet retired, and increases the branch misprediction

penalty. Code size is expected to increase [2], and the memory state reached in one cycle

to decrease [63][65]. Although more resources are available to computer architects, the

decreasing state reached in one cycle dictates the usage of smaller branch predictors, if

the prediction is going to happen in one cycle. Thus the need to predict more branches

with higher accuracy employing a smaller amount of resources continues to grow.

1.1 The Branch Irony

The branch instruction is thing that separates a computer from a calculator. It facilitated

the leap from simple sequential calculations performed by a calculator to complex

calculations and tasks performed by computers today.

At first, computers executed programs sequentially – one instruction was

executed before the next instruction started. By the time the instruction following the

branch was fetched, the outcome of the branch instruction was known and it was clear

which instruction was to follow. Micro-architectural mechanisms to speed execution led

to pipelining and super-scalar cores. With these innovations, more than one instruction is

executed concurrently, and possibly, execution is not completed in sequential order.

11

Pipelining and super-scalar architectures have resulted in several complications.

One of the more prominent ones is the control hazard. This arises when the instruction

following a branch is fetched before the branch instruction is fully executed. When that

instruction is executing, it is not clear whether the branch is going to be taken or not. If

the branch is taken, the address of the next instruction (the branch target address) is not

yet calculated. One solution to the control hazard problem is to stop further instruction

fetching until the branch is finished executing. This, however, reduces the advantage

gained by pipelined and super-scalar architectures, and therefore is not a desirable

solution. A better solution would be to make an educated guess at the branch direction

and target address and to follow the execution accordingly. If the guess is correct,

pipelining and super-scalar architectures would be allowed to fulfill their potential. If an

incorrect guess is made, a recovery mechanism would need to be in place to roll back the

machine to the state just after the miss-predicted branch finished executing. This process

is the process of branch prediction.

It is estimated that 1 out of 5 instructions is a branch instruction. Current

microprocessors demand instructions at a high rate, and attempt to fetch 4 and 6

instructions per cycle. With a pipeline of up to 15 stages deep, the number of instructions

that can be executed concurrently is well over the 5 mentioned above. In order to feed

such engines, an accurate branch prediction is needed. It is argued that by the year 2010

branch prediction will become the most limiting factor in processor performance,

surpassing even the limitations imposed by memory systems [1].

12

The branch irony is that the same mechanism that helped computers evolve past the

functions of a mere calculator becomes the limiting factor for future generations of

computers.

1.2 Solutions to the Branch Problem

A number of ways have been devised to overcome the control flow problem imposed by

sequential code. Eliminating false control dependencies allows unnecessary stalls to be

eliminated [3][4]. Code transformation by compilers to enlarge basic blocks reduces the

occurrence of some branches. Loop unrolling, a form of basic block enlargement, is a

popular technique employed by compilers to alleviate the cost of branches. Guarded

(predicated) execution also allows basic blocks to be enlarged [5][6][7]. However,

methods like guarded execution suffer from the need to change the instruction set

architecture (ISA), which poses a problem for backward compatibility.

Another group of techniques relies on branch prediction. The machine speculates on the

direction of the branch, and then executes the predicted path. One way of doing

prediction is to profile the program and then to include a prediction bit in the branch

instruction. This is referred to as static branch prediction. It suffers from the need to

change the ISA like guarded executing, which is also done by the compiler. Dynamic

branch prediction, on the other hand, records the outcome of the previous branches

during the run of the program, and based on this statistic, predicts the outcome of the

following branches. It has been shown that dynamic branch prediction achieves better

performance than other methods [8].

13

In order to overcome the control dependency imposed by conditional branches using

dynamic branch prediction, the direction of the branch and the target address need to be

predicted. In most cases, the target address can be predicted accurately by utilizing a

branch target buffer (BTB) — a cache that records the target address during the previous

execution of the branch. A hit in the BTB ensures a good prediction in the case of a

direct branch. The target address of indirect branches is harder to predict, but indirect

branches constitute a small portion of the overall branches. This dissertation concentrates

on predicting the branch direction. Moreover, this dissertation is limited to dynamic

branch prediction. Those dynamic predictors might employ a static method, but pure

static predictors are ignored.

1.3 Directions in Dynamic Branch Prediction

The first branch prediction schemes were static ones, where the branch prediction was

hard-coded within the processor. The need for better branch prediction led to dynamic

branch predictors, where branch prediction is determined by examining past behavior of

the running program. The introduction of the bimodal structure was one of the first to

utilize dynamic branch prediction, and it put the field of dynamic branch prediction on

the research map [35][36]. Most processors in the past few years have contained a

dynamic branch prediction module.

The introduction of two-level dynamic branch prediction [61][22] was a major step in the

advancement of dynamic branch predictors. From that point, research in the field has

14

taken four different paths1. The first path attempted to improve on the two-level

branch prediction scheme by incorporating different kinds of branch-related information

into the dynamically collected statistics that decide the prediction. This will be referred

to here as the ‘scheme path’. Once it was understood that aliasing presented a major

hurdle to correct prediction, numerous branch prediction structures that alleviate the

aliasing problem were conceived. The second path of research we will refer to here as

the ‘aliasing path.’ The third path, the ‘hybrid path,’ is based on the observation that

different branches are best predicted by different kind of predictors. Predicting each

branch with its respective best predictor, should enhance prediction accuracy. The fourth

path is the one least studied. It involves a ‘third-level of adaptivity’. This claims that

different branches are better predicted by different configurations of the same branch

prediction scheme, or that different phases of the program are better predicted by

different configurations of the same branch prediction scheme. We termed this path the

‘third-level’ path, and we note that some papers also claim that the third-level path helps

prediction by reducing aliasing.

The different branch prediction research paths have been kept separate in most cases.

This is apparent in the lack of comparison between the different structures. For example,

the agree [9] predictor which is designed to reduce aliasing was never compared to the

1 Using value prediction to predict branches can be viewed as a fifth path that research took, or it can be

conceived of as part of the scheme path. In any case, in preliminary studies not presented here, we learned

that most branches predicted well by incorporating value prediction are predicted just as well by other

known predictors. We have therefore chosen not to address branch prediction using value prediction in this

dissertation.

15

McFarling hybrid predictor [14]. The hybrid and aliasing paths were considered to

be orthogonal, and a hybrid predictor, where each component reduces aliasing could be

easily devised. Another example is the bi-mode predictor. When it was introduced, there

was no mention of the classification method (discussed later) despite the striking

structural similarity between the bi-mode and classification method. As a result of this

line of thinking, there is very little knowledge regarding the interaction between the

different paths.

Another problem becomes apparent when, in the rush to publish new branch prediction

structures, researchers often failed to understand the reasons why the branch prediction

structure worked. Instead, empirical results showing the superiority of the branch

predictor have often been presented. These publications often lacked a simple limit study,

which would have helped explain the underlying reasons why the branch prediction

structure worked well. This omission could lead microarchitects to make poor choices of

the branch predictor structure needed for a microprocessor.

1.4 Thesis Statement

The need for accurate branch prediction is increasing as processors implement deeper and

wider instruction fetching. Understanding why known branch predictor structures work

is essential to the decision-making process of the micro-architect. It is also important to

find feasible solutions to the branch prediction problem without ignoring constraints

imposed by the underlying technology.

This dissertation presents a series of studies aimed at understanding why the different

paths taken by dynamic branch prediction work, and what sorts of interaction have

16

existed between those paths. Presented here are results that show an unexpected

amount of consolidates among the different paths taken in branch prediction. Those

results, combined with a detailed analysis of previous studies and a look at trends in the

underlying technology, lead to a set of criteria that produce an ideal model for a two-level

dynamic branch prediction structure. Using those criteria, a new dynamic branch

prediction structure is constructed that outperforms other known predictors from the other

three paths. The microarchitect is presented with different configurations of the new

predictor that fit different architectures and constraints.

1.5 Contributions of This Dissertation

This dissertation makes several contributions to the field of branch prediction. First, it

consolidates the hybrid and aliasing research paths in branch prediction by showing that

most of the advantage gained in combining branch predictors is due to the selection

mechanism’s ability to reduce aliasing. The myth that a branch changes its best predictor

during the execution of a program is refuted.

Second, this dissertation shows that a dynamic and a properly profiled static selection

mechanism in hybrid predictors work well for the same main reasons. They both reduce

aliasing. The prevailing factor in increasing prediction accuracy is aliasing reduction.

The advantages and disadvantages of static and dynamic selection mechanisms are

highlighted.

This dissertation also consolidates the third-level and aliasing research paths in the

branch prediction field. Showing that most of the advantage gained by the third-level

branch prediction structures is due to filtering, the third-level path is reduced to the

17

aliasing path. An important observation made here is that the same advantage

depicted in the third-level path can be gained by picking the best history size

configuration for each benchmark.

The lessons learned in this dissertation combined with a thorough analysis of the

advantages and disadvantages of previously proposed branch prediction structures are

used to draw a set of criteria that branch prediction structures should follow.

Drawing on this proposed set of criteria, a new branch prediction structures is proposed –

YAGS. Utilizing the set of criteria allows YAGS to provide a significant performance

improvement over existing structures at modest cost. A comparison between YAGS and

previously proposed structures is presented.

A profile version of YAGS is introduced. This version makes better use of resources by

allowing the branch bias to be determined statically, but might require some ISA change

for certain architectures. Arguably, the best attribute of the profile version of YAGS is

the ability to use it as a cascading predictor. A cascading predictor supplies a prediction

in one cycle and a more accurate prediction after two cycles.

This thesis stresses the importance of a relevant limit study for research done on branch

prediction. Most of the misconceptions/myths revealed in this dissertation resulted

directly from the lack of a relevant limit study.

1.6 Organization

This dissertation is organized as follows: Chapter 2 elaborates on the four different paths

discussed above, and walks the reader through previous work performed in each path,

18

highlighting the pros and cons of each method. Chapter 3 discusses the

experimental methodology and benchmarks used in the studies.

The next 3 chapters are each dedicated to one of the four paths discussed above. Chapter

4 presents a limit study on the different schemes belonging to the scheme path. Chapter 5

investigates what makes a hybrid predictor work well and evaluates the benefits of

incorporating a hybrid predictor with a structure to reduce aliasing. Finally, Chapter 6

investigates the possibilities and limitations of the third-level path.

The remainder of the dissertation capitalizes on the conclusion of the previous chapters.

First, Chapter 7 introduces a trend in micro-architecture that has generally been ignored

within the branch prediction research community. Utilizing previous work and studies

done earlier chapters, Chapter 8 summarizes the criteria necessary for a good dynamic

branch predictor. This chapter goes on to introduce a predictor that capitalizes on these

criteria to produce a better prediction compared to previous known predictors. Chapter 9

provides a summary and possible future work.

19

Chapter 2 - Previous Work

2.1 Prediction Schemes

4This section walks through previous work done on the scheme path. While the first two

subsections discuss one level rather than two level dynamic branch prediction schemes,

they provide a foundation for the two-level branch prediction schemes discussed in the

rest of this chapter.

2.1.1 Bimodal

A table of two bit saturating counters (2bc) called a pattern

history table (PHT), indexed by the branch address, was

proposed early in the history of branch prediction research field

[35][36]. This was one of the earliest dynamic schemes, and

was later referred to as the bimodal scheme (Figure 2.1)2. The

2bc became the standard state machine and the bimodal branch

predictor is frequently used as a “lower bound” branch

prediction benchmark against which to judge other branch prediction structures. In other

words, a branch prediction scheme should not, under any circumstances, perform worse

than the bimodal scheme. The bimodal attempts to predict the direction of a branch

according to the past behavior of that branch during program execution. The 2bc

2 The Figures in Section 2.1 show a diagram for the branch prediction scheme, although those schemes

were introduced by specific branch prediction structures (see sec 4.1 for more).

Figure 2.1 - Diagram
for the bimodal

Scheme

20

Figure 2.2
Diagram for the
history scheme

provides some hysteresis so that one spurious prediction does not alter the next

prediction. The branch should behave the same at least two times consecutively in order

for the prediction to change. The bimodal can be seen as capturing the dynamic bias of

the branch.

2.1.2 History Only Branch Predictor

A special case of the global branch prediction scheme is the history

branch prediction scheme [44] (Figure 2.2). A table of 2bcs, indexed

by a global history register, provides the prediction. History branch

prediction schemes assume that a correlation exists between the last

n branches and the current branch. Since the branch address is not

involved in determining the prediction, the assumption is that the

correlation works regardless of which branch is involved. In other

words, if the n branches preceding branch A and branch B behave the same, branches A

and B will behave the same as well.

2.1.3 Two-level Adaptive Branch Predictors

A major milestone in the branch prediction research field was the introduction of the

local two-level adaptive branch predictor [22]. It was shown to achieve up to 97%

correct prediction accuracy on the early SPEC89 benchmarks. Later analysis has shown

that the SPEC89 benchmarks are not hard to predict, even the bimodal predictor achieves

over 90% prediction accuracy on the same set of benchmarks. The authors varied the

associativity in the history table, and examined different state machines as the predictors

in the PHT. This study found that the 2bc state machine performed the best among the

21

state machines tested. It is important to note that since that study, this assertion has

not been challenged and the 2bc been accepted as a standard.

Three different classes of two-level adaptive branch predictors were identified [23], and a

terminology based on taxonomy was proposed. For example, the term GAg indicates a

global history register with a shared (global) PHT. The size of the PHT is 2history register size

in this case. PAg indicates a table of history registers indexed by the program counter,

where the PHT is shared. In contrast, PAp indicates a table of history registers, each of

which has its own PHT. In practice, the PAp scheme can only be realized for very small

history sizes. Separate work showed that PAp is the best predictor and GAg is the worst

[24]. Notice, however, that GAg consumed the least amount of resources.

Today, the common opinion

is that the global family of

branch prediction can offer a

better prediction accuracy

than the local branch predic-

tors for an integer workload

because the branches in

integer workloads tend to be

highly correlated [25]. On the

other hand, the local family of

branch predictors offers better

prediction accuracy for scientific workloads.

Figure 2.3 - Diagram of the
global scheme Figure 2.4 - Diagram for the

local scheme

22

2.1.4 Global Two-level Branch Predictors

The global two-level branch prediction scheme depicted in Figure 2.3 attempts to predict

the branch based on the pattern of outcomes of the n preceding branches. When the

program has a lot of if-then-else statements, the results are usually good. When the

global branch prediction scheme was introduced arguments about program behavior, and

snippets of high-level languages code were used to justify its merit [44]. In trace driven

simulations it was shown that an implementation of the global branch prediction scheme

performed better than a bimodal scheme implementation for the same amount of

resources.

2.1.5 Local Two-level Branch Predictors

The local two-level branch prediction scheme shown in Figure 2.4 attempts to predict a

specific branch according to the last n preceding outcomes of the predicted branch. A

common notion is that local schemes are better than global schemes at predicting

branches in scientific code. This is attributable to the presence of a large number of loops

in scientific code. Having a per branch history register is beneficial for loop constructs.

2.1.6 Path-Based Branch Predictors

The correlated schemes described thus far record the branch outcome in the history

register. The information reflecting which branches resulted in those outcomes, is

therefore lost. The inclusion of this information might be beneficial for prediction

accuracy. If the last n branches preceding branch A resulted in a certain pattern, it is not

23

necessarily the case that when a different set of branches precedes branch A form the

same pattern, branch A will behave the same.

To rectify this loss of information problem it was suggested that the addresses along the

path leading to the branch be factored into the information stored in the history register

[26]. Using the branch address path explicitly captures information about the addresses

of the branches leading to the one being predicted, and implicitly captures the outcomes

of the branches on that path as well. The mechanism proposed is a static mechanism,

which is performed by software.

The next development was a dynamic path-based branch prediction mechanism [26].

This structure is similar to the global two-level branch prediction structure. It was

observed that when a branch target address falls inside the branch’s basic block, the

branch outcome is lost in the history register, because the path leading to the branch is

identical whether or not the branch was taken. This led to the idea of using the branch

target address, instead of the branch address, as the information stored inside the history

register.

One weakness of path-based correlation in dynamic branch predictors is that the history

register needs to hold a lot of information, typically a word per branch, much more than

the one bit per branch of competing schemes. Since the most important information are

the least significant bits (LSBs) of the branch address, only a small portion of the address

is pushed into the history register.

Path-based prediction schemes resulted in very similar prediction accuracy as did global

two-level branch prediction structures of the same size. However, it was noted that the

24

path-based branch prediction scheme, while requiring about the same amount of

resources, used less branches for the history than the global branch prediction structure.

2.1.7 Other Schemes

As a result of the work mentioned so far researchers observed that capturing more

branch-related information improves the prediction potential of the branch prediction

scheme. An attempt was made to identify the branch by the branch address, global

history, and path-based history [46]. Information related to the above is “exclusive-or”

(xor) together and used as the index to the PHT. A slightly better prediction accuracy

was accomplished than the gshare scheme. No limit study was performed to assess the

potential of such a scheme, and the gain in performance is so minute that it could be due

to experimental error rather to the inherent capability of the prediction scheme.

2.1.8 Summary

A trend was established that the more information that is recorded about a branch to

distinguish it from other branches, the better the prediction accuracy that will be achieved

for that branch. However, more information entails more hardware dedicated to the

branch prediction structure. Therefore, it might be the case that the best branch

prediction scheme available does not necessary result in the most cost-effective branch

prediction structure.

2.2 Aliasing in Global Predictors

2.2.1 The Problem

25

Figure 2.5 – Aliasing in the gshare predictor

The main problem that causes

prediction degradation in global

branch prediction structures is

aliasing [15][16] (Figure 2.5).

Aliasing occurs when two indices,

typically formed from history and

address bits, map to the same entry in

the PHT. Since the information

stored in the PHT entries is either

“taken” or “not taken,” two aliased

indices whose corresponding information is the same, will not result in mispredictions.

We refer to this as neutral aliasing. On the other hand, two aliased indices with

contradictory entries might interfere with each other and result in a misprediction. We

call this destructive aliasing.

2.2.2 Aliasing Reducing Branch Prediction Structures

A lot of work has been done to reduce aliasing in the PHT. In what follows, we describe

some of the more notable structures and highlight their strengths and weaknesses.

2.2.2.1 Gshare

26

The first structure to address the aliasing problem in two-

level adaptive branch predictors was gshare [14] (Figure

2.6). The observation that the usage of the PHT entries is

not uniform when indexed by concatenations of the global

history and the branch address, led to idea of using the xor

function instead of concatenation to more evenly use the

entries in the PHT. Moreover, the usage of the xor function enables more history bits to

be incorporated into the prediction and as a result, enables the predictor to increase its

correlation. Detailed studies have shown that this yields a slight advantage [19].

2.2.2.2 Agree Predictor

The agree predictor displayed in Figure 2.7 assigns a biasing bit to each branch in the

BTB according to the branch direction just before it is written into the BTB [9]. The

PHT information is then changed from “taken” or “not taken” to “agree” or “disagree”

with the prediction of the biasing bit. The idea behind the agree predictor is that most

branches are highly biased to be either taken or not

taken and the hope is that the first time a branch is

introduced into the BTB it will exhibit its biased

behavior. If this is the case, most entries in the PHT

will “agree,” so that if aliasing does occur it will more

likely be neutral aliasing, which will not result in a

misprediction. This observation suggests redundancy

in the PHT.

Figure 2.6 – Diagram for
the gshare structure

Figure 2.7 – Diagram for the
agree structure

27

A patent registered by HP [67] preceded the agree

predictor in taking advantage of a branch’s biased

behavior to reduce destructive aliasing by replacing

destructive aliasing with neutral aliasing. The agree

predictor considerably reduces destructive aliasing.

However, there is no guarantee that the first time a

branch is introduced to the BTB its behavior will

correspond to its bias. When such cases occur, the

biasing bit will stay the same until the branch is

replaced in the BTB by a different branch. Meanwhile, it will pollute the PHT with

“disagree” information. Also, there is still aliasing occurring between instances of a

branch that do not comply with the bias, and instances where the branch does comply

with the bias. When a branch is not cached in the BTB, no prediction is available.

2.2.2.3 Skew Predictor

The skew branch predictor seen in Figure 2.8 is based on the observation that most

aliasing occurs not because of a small PHT size, but because of a lack of associativity in

the PHT. In other words, the major contributor to aliasing is conflict aliasing and not

capacity aliasing. The best way to deal with conflict aliasing is to make the PHT set-

associative, but this requires tags and is not cost-effective. Instead, the skew predictor

emulates associativity using a special skewing function [11].

The skew branch predictor splits the PHT into three equal banks and hashes each index to

2bc in each bank using a unique hashing function per bank (f1, f2 and f3). The prediction

Figure 2.8 – Diagram for the
skew structure

28

is made according to a majority vote among the three banks. If the prediction is

wrong all three banks are updated. If the prediction is correct, however, partial updating

will occur, which means that only the banks that made a correct prediction will be

updated.

The skewing function should have inter-bank

dispersion. This is necessary in order to make sure

that if a branch is aliased in one bank, it will not be

aliased in the other two banks. This ensures that

the majority vote will produce a un-aliased

prediction. The reasoning behind partial updating

is that if a bank gives a misprediction when the

other two give correct predictions, the bank with

the misprediction probably holds information

belonging to a different branch. In order to maintain the accuracy of the other branch,

this bank is not updated.

The skew branch predictor tries to eliminate all instances of aliasing and thus all

destructive aliasing. Unlike the other methods, it tries to eliminate destructive aliasing

between branch instances that obey the bias and those that do not. However, to achieve

this, the skew predictor stores each branch outcome in two or three banks. This

redundancy of 1/3 to 2/3 of the PHT size creates capacity aliasing by putting more

information in the PHT, but eliminates by a greater degree conflict aliasing, resulting in a

lower misprediction rate. However, the increase in size slows warm-up on context

switches.

Figure 2.9 – Diagram for the bi-
mode structure

29

2.2.2.4 Bi-Mode Predictor

The bi-mode predictor shown in Figure 2.9, similar to the agree predictor, replaces

destructive aliasing with neutral aliasing [12]. The bi-mode PHT gets split into three

even parts. One of the parts is the choice PHT, which is just a bimodal predictor (an

array of 2bcs) with a slight change in the updating procedure. The other two parts are

direction PHTs; one is a “taken” direction PHT and the other is a “not taken” direction

PHT. The direction PHTs are indexed by the branch address xored with the global

history. When a branch is present, its address points to the choice PHT entry, which in

turn chooses between the “taken” and “not taken” direction PHTs. The prediction of the

direction PHT chosen by the choice PHT serves as the prediction. Only the direction

PHT chosen by the choice PHT is updated. The choice PHT is normally updated too, but

not when it gives a prediction that contradicts the branch outcome and the direction PHT

chosen gives the correct prediction.

During operation, branches that are biased to be taken will have their predictions in the

“taken” direction PHT, and branches that are biased not to be taken, will have their

predictions in the “not taken” prediction PHT. So at any given time most of the

information stored in the “taken” direction PHT entries is “taken” and any aliasing is

more likely not to be destructive. The same phenomenon happens in the “not taken”

direction PHT. The choice PHT serves to dynamically choose the branches’ biases.

In contrast to the agree predictor, if the bias is incorrectly chosen the first time the branch

is introduced to the BTB, it is not bound to stay that way while the branch is in the BTB

and pollute the direction PHTs with destructive aliasing. It should be noted, however,

that the choice PHT takes a third of all PHT resources just to dynamically determine the

30

bias. It also fails to solve the aliasing problem between instances of a branch that do

not agree with the bias and instances that do, because both are stored in the same

direction PHT.

2.2.2.5 Filter Mechanisms

Reducing the amount of necessary information stored in the PHT is the main point of

filter mechanisms [10]. The idea is that highly biased branches can be predicted with

high accuracy using just one bit. Easy-to-predict branches are filtered out of the PHT by

a combination of a bias bit and a saturating counter for each BTB entry, which can be

seen in Figure 2.10. When a branch is introduced to the BTB, the bias bit is set to the

direction of the branch when it is resolved and

the counter is initialized. When every branch

instance is resolved, if the direction of the branch

is the same as the bias bit, the counter is

incremented. If not, the counter is zeroed and the

bias bit is toggled. A branch is predicted using

the PHT if the counter is not saturated. If the

counter is saturated, it means that the branch is

highly biased in the direction indicated by the bias bit, and therefore that the bias bit is

used as a prediction. In this case, when the counter is saturated, the PHT is not updated

with the branch outcome – the saturated counter filters this information from the PHT.

The size of the counter has to be tuned to the size of the PHT. If the PHT size is large,

the amount of filtering needed is small, and therefore the size of the counters should be

Figure 2.10 – Diagram for the filter
mechanism structure

31

large. When a branch is first introduced in the BTB, the counter is initialized. It

was found that it is best to initialize the counter to its maximum value so that the filtering

will start to work immediately. If the branch is not highly biased, the bias bit will flip

fairly quickly and the counter will be zeroed. On the other hand, if the counter is

initialized to zero and the branch is highly biased, it will take time for the filtering

mechanism to start working and the PHT will be polluted in the meantime.

The filter mechanism attempts to eliminate all aliasing instances by considerably

reducing the amount of information stored in the PHT. However, this mechanism has

difficulty predicting instances of highly biased branches, which do not comply with the

bias. Due to filtering, as the PHT size increases the predictor will never reach the full

potential of the global scheme that it implements.

2.2.3 Summary

The branch prediction structures discussed above use three techniques to reduce aliasing.

The first takes advantage of the underlying information stored in the PHT, and converts

destructive aliasing to neutral aliasing as a means of improving prediction. The second

method to remove aliasing is associativity. Classical associativity (by an inclusion of

tags) was determined as not cost-effective. Pseudo associativity, a different way to

achieve the same effect, was devised. Third, filtering information selectively allocates

greater resources for the more important information.

Those advantages come at a cost. Most of the structures carry some redundancy. For

example in the skew predictor, the same information is stored in up to three different

counters. This redundancy can exacerbate the negative effects of a cold start. In all the

32

above branch prediction structures, certain types of aliasing are neglected or some

branches’ accuracy is jeopardized.

2.3 Hybrid Predictors

The notion that a certain kind of predictor

better predicts one class of branches, while a

different kind of predictor better predicts a

different class of branches led to the idea of

combining branch predictors. This class of

branch predictors are known as the hybrid

branch predictors.

Figure 2.11 depicts a general drawing of a

hybrid branch predictor. A selection mechanism is used to choose between two or more

branch predictor structures to be used for the prediction of a specific branch instance.

2.3.1 Hybrid Branch Predictors

The first hybrid structure suggested combining the bimodal and gshare structures [14].

The selection mechanism is a table of 2bcs and is very similar to a bimodal structure.

The selection counter is updated only if the prediction given by the two predictors is

different. If only the bimodal predictor gives a correct prediction, the counter is

decremented. The counter is incremented if only the gshare structure gives a correct

prediction. If both predictors either give a correct or an incorrect prediction, the selection

counter is not updated. Consequently, state 0 and 1 of the 2bc state machine entails a

selection of the bimodal predictor, while state 2 and 3 result in the use of the gshare

Figure 2.11 – Diagram of general Hybrid
Structure

33

structure for prediction purposes. This hybrid structure was shown to outperform all

other single schemes known at that time.

It is interesting to observe the percentage of times each predictor was used. For most

benchmarks, the bimodal was used significantly more than the gshare scheme. This

might indicate that the this hybrid predictor performs well because it filters the easy-to-

predict branches out of the gshare structure, and not due to the fact that each of its

components better predict a different class of branches. This way, a small amount of

resources are used to predict the easy-to-predict branches, leaving the majority of

resources to predict the hard to predict branches.

The same study proposed that a hybrid predictor combine gshare and PAs structures.

This hybrid predictor is known as the McFarling predictor, named after the author of the

paper. The combination of global and local schemes outperformed the bimodal-gshare

hybrid predictor only for predictors larger than 16KB. The simulations were done on the

SPEC89 benchmark suite that is notorious for a small branch signature. A branch

classification method was suggested to enable a branch to be predicted by a predictor best

suited to predict it [13]. Branch classification was based on the observation that branches

that are highly biased can be predicted well with a short history predictor, while the rest

of the branches typically require a longer history. This observation led to a combination

of predictors with different history lengths. The classification predictor outperformed the

gshare scheme. The selection mechanism for the classification predictor is done via

profiling.

The classification predictor does not clearly belonging to just one of the research paths.

It can be seen instead as a hybrid predictor, and is therefore discussed in this section, but

34

can also be seen as belonging to the ‘third-level’ path. The two components and a

selection mechanism associate it with the hybrid path. On the other hand, the two

different correlation depths of the same branch prediction scheme associate it with the

third-level path.

As an alternative selection mechanism to the bimodal structure, the two-level structure

was proposed [48]. The hybrid predictor under examination was the McFarling predictor.

The assumption was that since the two-level branch predictor could better predict the

direction of branches, it would also be better able to select between the different branch

prediction structures of the hybrid predictor. It was shown that using a two-level global

structure to select between the local and global schemes yielded a very small

improvement. However, this was not shown to be cost-effective, and the results were far

from the ideal oracle selection mechanism.

A conglomeration of predictors was incorporated into the multi-hybrid predictor [49].

The multi-hybrid consists of the bimodal, two variations of the global predictor, and two

variations of the local predictor, a loop predictor, and a static predictor. It was shown to

have a slightly better prediction accuracy than the bimodal-global and the McFarling

hybrid predictors when tested under context switching. No explanation was given as to

why those particular predictors were chosen, or why there was a need for more than one

global and local predictor. The comparison was not done against the original McFarling

predictor, but rather against a revised version of it, where the selection mechanism was

tied to the BTB. As the size of the predictor grew, the selection mechanism size could

not grow because it was tied to the BTB. This gave an unfair advantage to the multi-

hybrid predictor because its elaborate selection mechanism had to be tied to the BTB.

35

2.3.2 Selection Mechanisms

Selection mechanisms for hybrid branch predictors followed the same line of

development as did single scheme branch predictors. The classes consist of a static

selection mechanism, a dynamic per branch selection mechanism, and finally, a two-level

selection mechanism as discussed above.

Possibly the only contribution of the multi-hybrid predictor is its selection mechanism

[49]. Before the multi-hybrid hybrid predictors consisted of only two separate branch

predictor components. The multi-hybrid consists of a selection mechanism that can

select between an arbitrary numbers of predictors.

This selection mechanism consists of multiple 2bc per entry. The exact number of 2bc is

determined by the different components of the multi-hybrid predictor. The predictor to

be used is determined by the 2bc with the value of three in it. If multiple 2bcs in the

selector entry have the value three, a priority encoder is used to determine which

predictor to use. Once the branch is resolved, the 2bc, which corresponds to the

predictors giving a correct prediction, is incremented. If one of the predictors, which had

the value of 3, was correct, all 2bc that would correspond to all other predictors are

decremented.

2.4 Third-level of Adaptivity

It was suggested that having the depth of correlation (i.e. the size of the BHR in the

global scheme) adapt to the program execution or branch behavior could improve branch

prediction. This observation spawned the third-level of adaptivity path.

2.4.1 Third-level of Adaptivity Structures

36

The first structure suggested was the Elastic History Buffer (EHB) [20]. The EHB

took branch classification [13] to a finer granularity. Instead of having the option of

choosing between two lengths of history register, the EHB gave the option for each

branch to use its optimal history length. Moreover, it facilitated filtering of some easy-to-

predict branches from the PHT, by using a profiled bias bit instead of the PHT. Filtering

the easy-to-predict branches from the PHT reduces aliasing, which in turn increases

prediction accuracy. Profiling determines the history length to use for each branch, and

requires a modification to the ISA. As in all profiling, there is no guarantee that the data

collected during profiling is representative of the actual branch behavior during

execution. The EHB structure operates under the assumption that there is an optimal

history size per branch without investigating the possibility that a branch could have a

different optimal history size in different phases of the program execution.

The Dynamic History Length Fitting (DHLF) dynamically determines the size of the

history size used [21]. DHLF divides the dynamic stream of branches into sub-streams

termed steps of several thousands instructions. In every other step, the length of the

history register is evaluated and might change if the evaluation method finds the change

beneficial. The evaluation is done only every other step to omit the effects of cold starts

from getting in the way of the evaluation method. The step was set to 16K branch

instructions.

In another development, a similar idea was entertained, but instead of using branch

outcomes, the variable length path branch predictor used target address in the history

register [54]. Profiling was used to determine how much history to use for each static

37

branch. The predictor was shown to be especially useful with indirect branches, but

it was not compared against the EHB [20].

2.4.2 Selection Mechanisms

Similar to selection mechanisms present in hybrid predictors, selection mechanisms for

third-level of adaptivity can be divided into dynamic and static selection mechanisms.

While a hybrid static selection mechanism usually only needs one bit of information in

the ISA’s branch instructions, the presence of third-level of adaptivity requires log2 bits

of the BHR size.

Dynamic selection mechanism was not attempted on per branch granularity as in the

hybrid dynamic selection mechanism. Instead, the dynamic BHR size is on program

granularity and is examined and changed every certain number of instructions [21].

38

Chapter 3 - Experimental Methodology and
Benchmark Description

3.1 Experimental Methodology

4Throughout this work, trace driven simulations have been used to evaluate

different branch prediction schemes and structures. For simplicity’s sake, most

simulations predict and resolve a branch, and update the branch predictor before fetching

the next branch. Although this approach sacrifices some accuracy because not always the

branch outcome can be used to update the history register before the next branch is

fetched and predicted, studies have shown that such simulations provide a tight

estimation to finer, cycle level, simulations [55][56].

Scheme Description Design Space Unlimited Size

Bimodal
A table of 2bc accessed by the
branch address

None # branches

History
A table of 2bc accessed by a global
history register

History size
from 1 to 64

2history size

Global
A table of 2bc accessed by the
branch address and a global history
register

History size
from 1 to 64

branches x 2history size

Local

A table of history registers
accessed by the branch address.
The result is used with the branch
address to access a table of 2bc.

History size
from 1 to 64

Number of branches x
(2history size + # branches)

Path-
Branch

Same as global but the information
in the history register is previous
branch addresses and not their
outcomes

History size
from 1 to 64

branches x
2history size x word size

Path-
Target

Same as global but the information
in the history register is previous
branch target addresses and not
their outcomes

History size
from 1 to 64

branches x
2history size x word size

Table 3.1 – Branch Prediction Schemes and Their Attributes

39

All through this dissertation extensive limit studies of branch prediction schemes

and combinations of multiple schemes were performed. Table 3.1 depicts the different

branch prediction schemes considered in the course of this work. Table 3.1 gives a short

description, the design space, and the size of the predictor if no size restriction is imposed

for each branch prediction scheme.

To facilitate such processor and

memory intensive simulations, a new

trace termed the hybrid trace was

created for each benchmark. Each

entry in the hybrid trace contains

predictions for every type of scheme

for multiple correlation depth,

ranging from 0 to 63. Figure 3.1 depicts the structure used for each entry in the hybrid

trace. For example, the 3rd bit in the global variable represents the prediction a global

branch prediction scheme made with a correlation depth of 3.

3.2 Benchmarks’ Description

This dissertation conducted studies on a set of 16 benchmarks. Eight of these are

SPECINT95 and six are SPECFP95. Two more of these benchmarks, the s390 and the

PowerPC, were provided by IBM. Table 3.2 lists the characteristics of all benchmarks.

The SPEC95 benchmark suite represents the typical workload a computer might expect.

The IBM traces are of database applications, and are interesting for their large branch

footprints compared to the SPEC95 traces.

typedef struct hybridStruct {
 unsigned long long globalPred;
 unsigned long long localPred;
 unsigned long long pathBranchPred;
 unsigned long long pathTargetPred;
 unsigned long long historyPred;
 unsigned int bimodalPred;
 unsigned int baddr;
 unsigned int btarget;
 unsigned int taken;
} hybridElement;

Figure 3.1 – Hybrid Trace Structure

40

Table 3.2 - Benchmark Characteristics

Table 3.3 shows the datasets used as inputs for the different benchmarks. Each

SPEC95 benchmark has two datasets. The first is used in most simulations, while the test

dataset is used to obtain profiling information when appropriate. The IBM benchmarks

were provided as traces and without an accompanying test trace. As a result, whenever

profiling information was needed, the first half of the trace was used to obtain profiling

and the second half was used to obtain simulations statistics. The reader is therefore

 SPECFP95

 Regular Set Train Set

Benchmark Static Branches Dynamic Branches Indirect Branches Dynamic Branches

applu 1498 31,843,665 291 17,867,895
apsi 3006 41,370,429 581 126,828,375
fpppp 1089 14,550,247 188 4,540,419
hydro2d 2128 133,675,998 438 238,609,181
mgrid 1449 13,901,572 274 208,359,079
turb3d 1626 52,785,185 305 238,609,181

 SPECINT95

 Regular Set Train Set

Benchmark Static Branches Dynamic Branches Indirect Branches Dynamic Branches

gcc 13,763 49,193,611 3317 52,277,032
compress95 495 196,295,114 49 6,145,300
go 7401 147,352,115 3278 80,274,927
ijpeg 2760 71,798,033 478 173,576,042
li 1701 233,260,230 315 41,801,717
m88ksim 1646 160,658,276 343 20,530,078
perl 3443 191,717,635 647 2,144,594
vortex 7581 158,719,765 765 238,609,181

 IBM

 Regular Set Train Set

Benchmark Static Branches Dynamic Branches Indirect Branches Dynamic Branches

s390 21,727 2,360,458 631 1,360,459
powerpc 16,710 32,497,139 N/A 19,000,001

41

advised to place less confidence in results that used those traces in studies that

include profiling.

Benchmark Description Training
Set

Test Set

gcc GNU C compiler version 2.5.3 stmt.i jump.i
go Computer program playing go short.in 2stone9.in

compress Data compression program prof.in test.in
ijpeg Image compression program vigo.ppm speicmun.ppm
xlisp XLISP interpreter 7queen.lsp train.lps
vortext Object-Oriented database vortex.35M vortes.in
M88ksim Motorola 88100 simulator dhry.test.big dcrand.train.big
perl Train interpreter primes.pl scrabbl.pl
applu Solves matrix system with pivoting.
apsi Calculates statistics on temperature

and pollutants in a grid.

fppp Performs multi-electron derivatives.
hydro2 Hydrodynamical Navier Stokes

equations are used to compute
galactic jets.

mgrid Calculation of a 3D potential field.
swims390 Solves shallow water equations
S390 N/A N/A Not specified
powerPC N/A N/A Not specified

Table 3.3 – Benchmark description and datasets

The studies in this dissertation were conducted using the SPEC95 benchmark suite. As

the name implies, those benchmarks were available in 1995. A newer version of the

SPEC is available – SPEC2000. However, simulations done on the newer benchmarks

revealed no indication of harder to predict branches, nor a larger number of static

branches. For the most part, it seems that SPEC2000 is just a revised version of the

benchmarks present in the SPEC95 suite. We therefore continued conducting the studies

in this dissertation with the SPEC95 as we did before the SPEC2000 became available.

42

3.3 Performance Metrics

The studies in this dissertation are evaluated using the metric of branch prediction

accuracy. The main disadvantage of this metric is the inability to directly convert

improvement in branch prediction accuracy to improvements in overall system

performance. Overall improvement in system performance can be better achieved by

using a metric like Cycles Per Instruction (CPI). Previous studies have shown that a

strong correlation exists between branch prediction accuracy and overall system

performance [57][58][59]. As a result, the disadvantage of using branch prediction

accuracy as a guide to system performance is minimal.

There are numerous advantages of using branch prediction accuracy as a metric. Using

prediction accuracy detaches the evaluation of the branch predictors’ performance from

system dependent parameters, such as the misprediction penalty. Moreover, it facilitates

concentration on improving the branch prediction mechanism without the interference of

other potential system bottlenecks, such as cache misses.

In summary, using branch prediction accuracy enables concentration on global factors in

branch prediction that will facilitate a better branch predictor in every system.

3.4 Results Presentation

This dissertation presents 20 possible graphs: the SPEC95 benchmarks (16 different

benchmarks), the PowerPC benchmark, the S390 benchmark, the arithmetic average of

the SPECINT95, and the arithmetic average of the SPECFP95.

43

Chapter 4 - The Scheme of Schemes

4.1 The Difference Between Schemes and Structures

4Past work on branch prediction has failed to distinguish clearly between branch

prediction schemes and branch prediction structures—in fact, those words have been used

interchangeably. A branch prediction structure is the mechanism that implements the

algorithm, which is the branch prediction scheme. For example, the global branch

prediction mechanism described in Section 2.2.4 is implemented by many branch

prediction structures (Sections 2.2.2.1 – 2.2.2.5). If a branch prediction structure is not

limited in resources, it will reach the branch prediction scheme’s peak potential. As a

result, with no limits on resources, all branch prediction structures implementing the

same branch prediction scheme will achieve the same prediction accuracy.

The distinction between branch prediction structures and schemes is instrumental in

choosing an appropriate branch predictor. Regardless of how many resources will be

dedicated to the gshare structure, the gshare structure will never surpass the prediction

potential of the global branch prediction scheme. It is important to be aware of the global

scheme’s limits. If a certain branch prediction structure approaches the prediction limits

of the branch prediction scheme, Amdahl’s law dictates that work should be directed

towards finding new and improved branch prediction schemes, as opposed to finding new

branch prediction structures that will approach the limits of the branch prediction scheme.

44

Throughout this dissertation, this convention of distinguishing between branch

prediction structures and branch prediction schemes is followed. Next, the limits of

known branch prediction schemes are studied.

4.2 Limits on Branch Prediction Scheme

Figure 4.1 displays prediction accuracy as a function of correlation depth for four major

branch prediction schemes. The four branch prediction schemes are the global scheme,

the local scheme, history scheme and the bimodal scheme. All four schemes are

discussed in details in Section 2.1. The graphs are presented for a) the SPECINT95

benchmarks, b) the SPECFP95 and the IBM benchmarks and c) the SPEC95 averages.

Notice that the y-axis coordinates are not uniform for all graphs. For purposes of clarity,

the grid line is held constant at 1% prediction accuracy for easy comparison. Correlation

depth applies to the two-level schemes, but it does not apply to the bimodal scheme,

which utilizes only one level. The bimodal plot is therefore constant across correlation

depth. Because this is a limit study, there is no limit on resources and therefore the graph

does not represent resource allocation.

It is clear that the two-level branch prediction schemes are superior to the bimodal

scheme. On the other hand, the history scheme, which doesn’t make use of the branch

address, surpass the bimodal scheme only for large correlation depths. The global and

local schemes surpass the bimodal scheme starting with correlation size of one across

nearly all benchmarks. It is therefore imperative to use the two-level scheme to achieve

high accuracy of branch prediction.

45

The ability of the history scheme to approach the prediction of the global scheme

raises the question of what causes two-level branch prediction to work. Traditionally it

46

Figure 4.1 - a) Limits study of common branch prediction schemes for the SPECINT95

cc1

92

93

94

95

96

97

98

99

0 5 10 15 20 25 30 35 40
correlat ion dept h

global:
local:
history:
bimodal:

go

91

92

93

94

95

96

0 5 10 15 20 25 30 35 40
correlat ion depth

global:
local:
history:
bimodal:

co mpress

83
84
85

86
87
88
89
90

91
92
93
94
95

96
97
98

0 5 10 15 20 25 30 35 40
correlat ion dept h

global:
local:
history:
bimodal:

ijpeg

99.92

0 5 10 15 20 25 30 35 40
correlat ion dept h

global:
local:
history:
bimodal:

li

93

94

95

96

97

98

0 5 10 15 20 25 30 35 40

correlat ion dept h

global:
local:
history:
bimodal:

vo rtex

98

99

0 5 10 15 20 25 30 35 40

correlat ion dept h

global:
local:
history:
bimodal:

m88

97.5

98.5

99.5

0 5 10 15 20 25 30 35 40
correlat ion dept h

global:
local:
history:
bimodal:

perl

93

94

95

96

97

98

99

0 5 10 15 20 25 30 35 40
correlat ion dept h

global:
local:
history:
bimodal:

47

Figure 4.1 - b) Limits study of common branch prediction schemes for the SPECFP95 and IBM
benchmarks

A pplu

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

0 5 10 15 20 25 30 35 40
correlat ion depth

global:
local:
history:
bimodal:

A psi

95

96

97

98

99

0 5 10 15 20 25 30 35 40
correlat ion dept h

global:
local:
history:
bimodal:

F ppp

92.5

93.5

94.5

95.5

96.5

97.5

98.5

0 5 10 15 20 25 30 35 40
correlat ion depth

global:
local:
history:
bimodal:

H ydro 2

97.7

98.7

99.7

0 5 10 15 20 25 30 35 40
correlat ion dept h

global:
local:
history:
bimodal:

M grid

98

99

0 5 10 15 20 25 30 35 40

correlat ion dept h

global:
local:
history:
bimodal:

Swim

97.8

98.8

99.8

0 5 10 15 20 25 30 35 40

correlat ion dept h

global:
local:
history:
bimodal:

S390

95

96

97

98

0 5 10 15 20 25 30 35 40
correlat ion depth

global:
local:
history:
bimodal:

po werP C

94.5

95.5

96.5

97.5

0 5 10 15 20 25 30 35 40
correlat ion dept h

global
local
history
bimodal

48

has been thought that the two-level branch prediction schemes work well because the

prediction of a branch is correlated to either previous branches in the global scheme, or to

previous instances of the same branch in the local scheme. This traditional explanation is

brought in question in light of ability of the history scheme to outperform the global or

local scheme for several benchmarks. Remember that the history scheme applies

correlation regardless of which branch is in question. One explanation could be that after

a certain correlation is encountered, all branches will tend to have the same behavior,

regardless of which branch is predicted and what branches came before it. However, one

could easily draw different conclusions from this, and we refrain from fully addressing

the topic.

It is believed that the global branch prediction scheme predicts integer programs

better than the local branch prediction scheme due to the greater frequency of if-then-else

statements that will cause branches to correlate to preceding branches. On the other

hand, the local scheme predicts scientific programs better than the global scheme due to

the large loop constructs in the program. Loops cause branches to be correlated to

specIN T

93.5

94.5

95.5

96.5

97.5

0 5 10 15 20 25 30 35 40
correlat ion dept h

global:
local:
history:
bimodal:

specF P

95.5

96.5

97.5

98.5

99.5

0 5 10 15 20 25 30 35 40
correlat ion dept h

global:
local:
history:
bimodal:

Figure 4.1 - c) Limits study of common branch prediction schemes for the SPECFP95 and
SPECINT95 averages

49

previous instances of the same branch. Therefore, the local scheme will outperform

the global scheme for scientific code. The averages of the SPEC95 support this

conventional wisdom, but it happens only at a correlation depth of 16. Looking at

individual benchmarks, on the other hand, this conventional wisdom is not always the

case. For example, the go benchmark, which is a prominent integer benchmark for its

large branch signature, is better predicted by the local scheme. On the other hand, apsi

and mgrid, which are scientific benchmarks, are better predicted by the global scheme.

The limit study presented in Figure 4.1 ignores two major considerations. The first
relates to the size of a potential implementation of the scheme. Due to the mount of
information stored, the local scheme is more expensive to implement in terms of
hardware than the global scheme. For the local scheme correlation needs to be stored for
every branch compared to only one correlation register for the global scheme. Of course
an actual implementation cannot have a history register for each branch and therefore
different branches must share the same history register. This aliasing effect will degrade
performance. Second, the limit study ignored the warm-up effect. A static branch
prediction scheme takes no time to warm up on a context switch, while the bimodal
scheme needs to warm up 2bc per branch. The warm-up effect is aggravated for the
global scheme that needs to warm up multiple 2bcs according to the depth of correlation
used. In general, the deeper the correlation utilized, the greater the warm up time. The
local scheme suffers even further due to the need to warm up the history register per
branch. Nevertheless, Figure 4.1 gives an accurate indication of the maximum prediction
achievable when implementing a certain branch prediction scheme.

Another notable observation is that every benchmark reaches its peak prediction
performance for different correlation depths. Two extreme examples are the ijpeg
benchmark that reaches its peak performance for the global scheme at a correlation depth
of 2, and the cc1benchmark, which peaks at a at correlation depth of 29. If the
microarchitect is able to choose the best correlation depth for each program, an overall
better prediction average can be achieved.

In general, we can draw the relationship between correlation and prediction accuracy

from Figure 4.1. Increasing the size of the history register increases the correlation

depth, which in turn, increases prediction accuracy. This relationship has one caveat— it

holds true only until a certain correlation depth is reached. For most programs the depth

50

of correlation where this relationship fails is large enough that it is not likely to be

realized in hardware in the near future. Therefore, we can accept this relationship as true.

The discussed drop in prediction accuracy is due to cold start effect and for long

programs, increases correlation depth will entail increased prediction accuracy for even

larger correlation depths than depicted in Figure 4.1.

4.3 Global Branch Prediction Schemes

When a branch outcome is saved in the BHR, the predictor can tell whether the last few

branches were taken or not, but it cannot distinguish which branches they were. If the

branch address rather than the branch outcome is to be pushed into the BHR, as discussed

in Section 2.1.6, the predictor will retain this lost information (pathBranch in graphs).

There is even some loss of information for the pathBranch scheme. If the target address

and the fall-through address both falls in the same basic block, the prediction scheme is

unaware whether the branch is taken or not. To solve this problem, the pathTarget

scheme pushes the branch target address instead of the branch address to the BHR as

discussed in Section 2.1.6.

Figure 4.2 compares the prediction accuracy of pathBranch and pathTarget schemes

against the global scheme without the imposition of any resource limitations. As

discussed above, the pathBranch scheme captures more information about previous

branches than the global scheme, and the pathTarget scheme captures more information

than both pathBranch scheme and the global scheme. It is not clear, however, that

capturing the extra information always helps prediction accuracy. Comparing pathTarget

to pathBranch it becomes clear that in most cases the difference between the two schemes

51

is negligible. Previous studies have claimed that pathTarget is better than path

branch because it suffers no loss of information when the branch target address is within

the basic block of the branch. However, those studies ignored that pathTarget lost

information when two or more branches have the same target address. In a similar

scenario pathBranch will not lose information.

The vortex benchmark is the exception in the sense that the pathTarget outperforms the

pathBranch scheme. The vortex benchmark demonstrates that the global scheme, while

under-performing for small correlation depth, outperforms the pathBranch and pathTarget

schemes for larger depth of correlation. Moreover, the global scheme is able to reach the

highest prediction accuracy across correlation depth.

The limit study presented in Figure 4.2 pushes 32 bit address entries into the BHR. A

real implementation of either pathBranch or pathTarget can only push a few of the

address’ LSB due to hardware restrictions. This is bound to cause loss of information

and degradation in the performance of the pathBranch and pathTarget schemes.

Assuming however, that the pathBranch and pathTarget information is not lost even

when using as few as 3 LSB of the address, a pathBranch or pathTarget scheme can only

52

Figure 4.2 - a) Limits study of global branch prediction schemes for the SPECINT95

cc1

92

93

94

95

96

97

98

99

0 5 10 15 20 25 30 35 40
correlat ion dept h

global:

pathBranch:

pathTarget:

go

90

91

92

93

94

95

96

0 5 10 15 20 25 30 35 40
correlat ion dept h

global:

pathBranch:

pathTarget:

co mpress

82

83

84
85

86

87

88
89

90

91

92

93
94

95

96

0 5 10 15 20 25 30 35 40
correlat ion depth

global:

pathBranch:

pathTarget:

ijpeg

99.95

0 5 10 15 20 25 30 35 40
correlat ion depth

global:

pathBranch:

pathTarget:

l i

92

93

94

95

96

97

98

0 5 10 15 20 25 30 35 40

correlat ion dept h

global:

pathBranch:

pathTarget:

vo rt ex

97.5

98.5

0 5 10 15 20 25 30 35 40

correlat ion dept h

global:

pathBranch:

pathTarget:

m88

97

98

99

100

0 5 10 15 20 25 30 35 40
correlat ion depth

global:

pathBranch:

pathTarget:

perl

93

94

95

96

97

98

0 5 10 15 20 25 30 35 40
correlation depth

global:

pathBranch:

pathTarget:

53

Figure 4.2 - b) Limits study of global branch prediction schemes for the SPECFP95 and IBM
traces

A pplu

90

91

92

93

94

95

96

97

98

99

100

0 5 10 15 20 25 30 35 40
correlat ion depth

global:

pathBranch:

pathTarget:

A psi

95

96

97

98

99

0 5 10 15 20 25 30 35 40
correlat ion dept h

global:

pathBranch:

pathTarget:

F ppp

93

94

95

96

97

98

0 5 10 15 20 25 30 35 40
correlat ion dept h

global:

pathBranch:

pathTarget:

H ydro 2

97

98

99

100

0 5 10 15 20 25 30 35 40
correlat ion dept h

global:

pathBranch:

pathTarget:

M grid

98

99

0 5 10 15 20 25 30 35 40

correlat ion dept h

global:

pathBranch:

pathTarget:

Swim

97

98

99

100

0 5 10 15 20 25 30 35 40

correlat ion dept h

global:

pathBranch:

pathTarget:

S390

95

96

97

98

0 5 10 15 20 25 30 35 40
correlat ion depth

global:

pathBranch:

pathTarget:

po werP C

94

95

96

97

98

0 5 10 15 20 25 30 35 40
correlat ion dept h

global

54

use correlation depth of 3 when a 0.5K entry PHT is available. In comparison the global

scheme is able to utilize a correlation depth of 9 for the same size PHT. For the same

reason, a correlation depth of 4 for the pathBranch and pathTarget is comparable to a

correlation depth of 12 in the global scheme, and so on. Figure 4.3 shows the adjusted

comparison between the pathBranch and pathTarget schemes to the global scheme for the

SPECINT95 average and the SPECFP95 average, assuming there is no loss in prediction

for the pathBranch and pathTarget schemes due to the usage of only 3 LSB of the

specIN T

93

94

95

96

97

98

0 5 10 15 20 25 30 35 40
correlat ion depth

global:

pathBranch:

pathTarget:

specF P

95

96

97

98

99

0 5 10 15 20 25 30 35 40
correlat ion dept h

global:

pathBranch:

pathTarget:

Figure 4.2 - c) Limits study of global branch prediction schemes for the SPECFP95 and
SPECINT95 averages

specIN T

93.5

94.5

95.5

96.5

97.5

0 5 10 15 20 25 30 35 40
correlat ion dept h

global:

pathBranch:

pathTarget:

specF P

95.5

96.5

97.5

98.5

99.5

0 5 10 15 20 25 30 35 40
correlat ion dept h

global:

pathBranch:

pathTarget:

Figure 4.3 – Limit study of global branch prediction size adjusted for the SPECFP95 and
SPECINT95 averages. The study assumes that there is no lost of information when only the 3 LSB

of the address are used

55

address. From Figure 4.3, it is clear that the pathBranch and pathTarget schemes

lose their edge when adjusted in size to the global scheme. In other words, it is more cost

effective to increase the correlation depth than to retain the path information when no

limit on resources is imposed.

This is not an indication that pathBranch and pathTarget under resource restrictions do

not perform better than the global scheme as indicated by previous studies. What is

indicated here is merely that the pathBranch and pathTarget, while performing a little

better than the global scheme, when adjusted in size as scheme is outperformed by the

global scheme. If under size restrictions the pathBranch and pathTarget outperform the

global scheme for better indexing method or resource utilization, it makes it a better

structure implementation, not a better scheme. Therefore, for the rest of the thesis we

will not conduct studies using the pathBranch and pathTarget schemes as the global

scheme has emerged as the more cost effective choice.

4.4 The Effect of Aliasing

Once the scheme is chosen, the reduction of aliasing is the only known method to

improve prediction accuracy. It is therefore beneficial to know how close to fulfilling the

full scheme’s potential the structures implementing it are. If there is a gap between the

scheme’s potential and structures that implement the scheme prediction accuracy, it is

because of aliasing.

Figure 4.4 shows the gshare and the bi-mode predictors compared to an aliasing-free

version of the global scheme. As expected, as the size of the predictor increases, the

adverse effects of aliasing diminish. The critical size where aliasing is no longer a

56

Figure 4.4 - a) The effect of aliasing for the SPECINT95.

cc1

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion dept h

bi-mode

gshare

global

go

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion dept h

bi-mode

gshare

global

co mpress

0.7

0.75

0.8

0.85

0.9

0.95

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlation depth

bi-mode

gshare

global

ijpeg

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion depth

bi-mode

gshare

global

l i

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

correlat ion depth

bi-mode

gshare

global

vo rt ex

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

correlat ion dept h

bi-mode

gshare

global

m88

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion depth

bi-mode

gshare

global

perl

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122 23 24 25
correlat ion depth

bi-mode

gshare

global

57

Figure 4.4 - b) The effect of aliasing for the SPECFP95 and IBM traces.

A pplu

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion dept h

applu bi-
mode
applu gshare

A psi

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion dept h

bi-mode

gshare

global

F ppp

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion depth

bi-mode

gshare

global

H ydro 2

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion dept h

bi-mode

gshare

global

M grid

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

correlat ion depth

bi-mode

gshare

global

Swim

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

correlat ion dept h

bi-mode

gshare

global

S390

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion dept h

bi-mode

gshare

global

po werP C

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion dept h

bi-mode

gshare

global

58

problem varies between different programs, and for some is not even reached for 220

entries predictor.

The gshare predictor achieves 93.7% prediction accuracy for a realistic size of 214

entries, and the bi-mode predictor achieves 95.3% prediction accuracy for the same size

predictor. The potential of the global scheme for correlation depth of 14 is 96%

prediction accuracy. Both implementations of the global scheme are short of achieving

the global scheme potential. The gshare predictor is short by 2.3% and the bi-mode is

short by 0.7% prediction accuracy. Traces with a large static branch signature suffer

more from the degrading effect of aliasing. The bi-mode predictor is short by 4.1%

Figure 4.4 - c) The effect of aliasing for the SPECINT95 and SPECFP95 averages.

specINT

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlation depth

pr
ed

ic
tio

n

bi-mode

gshare

global

specF P

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion dept h

bi-mode

gshare

global

Figure 4.5 – Correlation vs. Aliasing tradeoff.

59

prediction accuracy from the global scheme potential for the go benchmark, and by

2.7% for the s390 benchmark.

Whether aliasing is a problem depends on the size of the predictor, the program that is

running, and the branch prediction structure used. It is obvious that for a large enough

predictor aliasing ceases to be a problem. However, as Section 7.1 will show, predictor

sizes that were assumed to be realistic for future processors are not. Moreover, future

processors will be forced to use smaller predictors than current microprocessors. This

trend will aggravate the aliasing problem even further.

4.5 Correlation vs. Aliasing Tradeoff

The correlation depth in two level branch prediction schemes is determined by the size of

the BHR. The BHR is usually combined with the program counter in some way to index

the PHT. Deeper branch correlation is beneficial when resources are unlimited, as

discussed in Section 4.2. When the PHT is limited in size, on the other hand, the best

correlation depth is smaller

than the equivalent limitless

one. Moreover, the best

correlation depth is program

dependent as discussed in

Section 4.4.

As the size of the BHR increases, the correlation depth increases. This correlates the

branch in question to a greater number of previous branches, which further separates the

Figure 4.6– Correlation vs. Aliasing tradeoff tradeoff.

60

current instance of the branch from other instances of the branch. This was shown to

improve the prediction in Section 4.2. On the other hand, increasing the BHR size

increases the density of information stored in the PHT. This increases the amount of

aliasing, which impairs prediction. Increasing the size of the history register, therefore,

has two competing effects on prediction as illustrated by Figure 4.5.

The greater the number of static branches in a program, the greater the amount of

information the PHT has to store, and therefore the greater the aliasing effect (Figure

4.6). This suggests that the more static branches that are in the program, the more

destructive the aliasing effect is. Indeed, the benchmarks suffering from aliasing all have

a high static branch signature. Such is the case with the s390 with 21,727 branches, the

PowerPC with 16,710 branches, and the go benchmark with 7,401 branches. Compress,

on the other hand, with its 495 branches, does not suffer considerably from aliasing.

Figure 4.7 depicts the equation dictating PHT capacity, where PHT capacity is the

possible amount of information that could be stored in the PHT. From the equation, it

seems like PHT capacity is dominated by the size of the history since the term is

exponential. However, this term of the equation represents an upper bound, and we

expect that as the history size increases, the percentage of actual patterns out of the

possible 2history will decrease. We therefore expect the term 2history to much slower than

the exponential maximum, and not to entirely dominate the number of branches in this

equation. To verify this assertion the amount of unique vectors stored in the PHT was

Figure 4.7 PHT capacity equation

61

recorded for increasing correlation depth. Figure 4.8 empirically shows that as the

depth

62

Figure 4.8 - a) The amount of information to be stored in the PHT compared to the maximum
possible information for the SPECINT95.

cc1

1

100

10000

100000

0

1E+08

1E+10

1E+12

1E+14

0 5 10 15 20 25 30 35
correlat ion dept h

unique

total
possible

co mpress

1

100

10000

100000

0

1E+08

1E+10

1E+12

1E+14

0 5 10 15 20 25 30 35
correlat ion depth

unique

total
possible

ijpeg

1

100

10000

100000

0

1E+08

1E+10

1E+12

1E+14

0 5 10 15 20 25 30 35
correlation depth

unique

total
possible

l i

1

100

10000

100000

0

1E+08

1E+10

1E+12

1E+14

0 5 10 15 20 25 30 35

correlat ion dept h

unique

total
possible

vo rt ex

1

100

10000

100000

0

1E+08

1E+10

1E+12

1E+14

0 5 10 15 20 25 30 35

correlat ion depth

unique

total
possible

m88

1

100

10000

1E+06

1E+08

1E+10

1E+12

1E+14

0 5 10 15 20 25 30 35
correlat ion depth

unique

total
possible

perl

1

100

10000

1E+06

1E+08

1E+10

1E+12

1E+14

0 5 10 15 20 25 30 35
correlat ion depth

unique

total
possible

go

1

100

10000

100000

0

1E+08

1E+10

1E+12

1E+14

0 5 10 15 20 25 30 35
correlat ion depth

unique

total
possible

63

Figure 4.8 - b) The amount of information to be stored in the PHT compared to the maximum
possible information for the SPECFP95 and IBM traces .

A pplu

1

1000

100000

0

1E+09

1E+12

0 5 10 15 20 25 30 35
correlat ion dept h

unique

total
possible

A psi

1

100

10000

100000

0

1E+08

1E+10

1E+12

1E+14

0 5 10 15 20 25 30 35
correlat ion depth

unique

total
possible

F ppp

1

1000

100000

0

1E+09

1E+12

0 5 10 15 20 25 30 35
correlat ion dept h

unique

total
possible

H ydro 2

1

1000

100000

0

1E+09

1E+12

0 5 10 15 20 25 30 35
correlat ion depth

unique

total
possible

M grid

1

1000

100000

0

1E+09

1E+12

0 5 10 15 20 25 30 35

correlat ion dept h

unique

total
possible

Swim

1

1000

100000

0

1E+09

1E+12

0 5 10 15 20 25 30 35

correlat ion depth

unique

total
possible

S390

1

100

10000

100000

0

1E+08

1E+10

1E+12

1E+14

0 5 10 15 20 25 30 35
correlat ion depth

unique

total
possible

po werP C

1

100

10000

100000

0

1E+08

1E+10

1E+12

1E+14

0 5 10 15 20 25 30 35
correlat ion depth

unique

total
possible

64

of correlation increases, the amount of information much slower than the

exponential maximum possible, as suggested by the upper bound function of Figure 4.7.

According to equation 4.7, if the number of static branches in a program is large, the size

of the history register should be small, and vise versa. It is known that the number of

static branches in a program varies and therefore, in accordance to the PHT capacity

equation, the size of the history register should vary as well. The observation that

different programs perform better for different history sizes was made before [19].

However, that work failed to give an explanation for this phenomenon. Following is an

example, which illustrates how poor the understanding of the history size tradeoff has

been thus far. The bi-mode predictor, a predictor conceived to reduce aliasing, was

compared against gshare when it was introduced [12]. This comparison reveals the

problematic fact that different prediction structures, due to their underlying structure,

utilize different size history register. So, for example, a 1K entries gshare utilizing 10

bits BHR is compared to a 0.75K entries bi-mode predictor utilizing 8 bits BHR size. As

a result, the bi-mode predictor, which is supposed to reduce aliasing, has less aliasing

than the gshare predictor. A better comparison would be to utilize 8 bits BHR in the 1K

entry gshare.

4.6 Decoupling Correlation from PHT size

Traditionally, the depth of the correlation is coupled with the size of the PHT. For

example, a gshare predictor with a 1K entry PHT employs 10 bits of correlation. If a 2K

entries size PHT is available, 11 bits BHR is used. The only attempt to decouple the

65

depth of correlation from the PHT size was done by reducing the number of BHR bits

below the maximum depth of correlation that can be used for a given size PHT [19].

It has been shown before that prediction of programs’ branches benefits from deeper

correlation (Section 4.2). What might interfere with better prediction when using a

deeper correlation is aliasing. Section 4.1 explains why this is the case and concludes

that benchmarks with small number of static branches would benefit from deeper

correlation without being as adversely effected by aliasing as might benchmarks with

large numbers of static branches.

Because different programs can benefit from different size of correlation, It is beneficial

to decouple the depth of correlation from the size of the PHT, and provide each program

its optimal depth of correlation. Decoupling correlation from the size of the PHT entails

a BHR of an optimal size regardless of whether it is smaller or larger than the log2 of the

PHT size. If 2BHRsize is smaller than the PHT, the rest of the bits indexing the PHT will

Figure 4.9 - a) Decoupling correlation from PHT
size for sizes BHR size less than log2 of PHT size

Figure 4.9 - b) Decoupling correlation from PHT
size for sizes BHR size greater than log2 of PHT size

66

come from the PC only as shown in Figure 4.9.a on the other hand, if 2BHR size is

greater than the PHT, the BHR will be folded as needed to form an index of size log 2 of

the PHT, as seen in Figure 4.9.b. This simple idea has never been considered

67

Figure 4.10 a) Decoupling correlation from PHT size for the SPECINT95 benchmarks

cc1

0.8

0.85

0.9

0.95

4 6 8 10 12 14 16 18 20
correlat ion dept h

.5K
1K
2K
4K
8K
16K
32K

go

0.65

0.7

0.75

0.8

0.85

0.9

4 6 8 10 12 14 16 18 20
correlat ion dept h

.5K
1K
2K
4K
8K
16K
32K

co mpress

0.8

0.85

0.9

4 6 8 10 12 14 16 18 20
correlation depth

.5K
1K

2K
4K
8K
16K

32K

ijpeg

0.9

0.95

4 6 8 10 12 14 16 18 20
correlat ion depth

.5K
1K
2K
4K
8K
16K
32K

l i

0.9

0.95

4 6 8 10 12 14 16 18 20

correlat ion depth

.5K
1K

2K
4K
8K
16K

32K

vo rt ex

0.8

0.85

0.9

0.95

1

4 6 8 10 12 14 16 18 20

correlat ion dept h

.5K
1K
2K
4K
8K
16K
32K

m88

0.85

0.9

0.95

1

4 6 8 10 12 14 16 18 20
correlat ion depth

.5K
1K
2K
4K
8K
16K
32K

perl

0.8

0.85

0.9

0.95

1

4 6 8 10 12 14 16 18 20
correlat ion depth

.5K
1K
2K
4K
8K
16K
32K

68

Figure 4.10 b) Decoupling correlation from PHT size for the SPECFP95 ande IBM benchmarks

A pplu

0.9

0.95

1

4 6 8 10 12 14 16 18 20
correlat ion dept h

.5K
1K

2K
4K

8K
16K

32K

A psi

0.94

0.99

4 6 8 10 12 14 16 18 20
correlat ion dept h

.5K
1K

2K
4K
8K
16K

32K

F ppp

0.85

0.9

0.95

1

4 6 8 10 12 14 16 18 20
correlat ion depth

.5K

1K

2K

4K

8K

16K

32K

H ydro 2

0.94

0.99

4 6 8 10 12 14 16 18 20
correlat ion dept h

.5K

1K
2K

4K
8K

16K
32K

M grid

0.975

4 6 8 10 12 14 16 18 20

correlat ion dept h

.5K

1K

2K

4K

8K

16K

32K

Swim

0.95

1

4 6 8 10 12 14 16 18 20

correlat ion dept h

.5K
1K

2K
4K

8K
16K

32K

S390

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

4 6 8 10 12 14 16 18 20
correlat ion dept h

.5K

1K

2K

4K

8K

16K

32K

po werP C

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

4 6 8 10 12 14 16 18 20
correlat ion dept h

.5K

1K

2K

4K

8K

16K

32K

69

because in most studies the size of the PHT and the depth of correlation were considered

the same.

Figure 4.10 shows prediction accuracy when varying the BHR depth for different PHT

sizes. The different plots represent different sizes of PHT starting from 0.5K entries and

going up to 32K entries by factors of 2. Each plot has 9 points where the middle point

represents the “classical fit” for gshare. For example, the “classical fit” for gshare with

PHT 1024 is 10 bits BHR. The other points on each plot represent BHRs of sizes –1,-2,-

3 and –4 from the “classical fit” as shown in Figure 4.9.a, and +1, +2, +3,and +4 BHR

size as depicted in Figure 4.9.b. The plots are ordered by size indicating that an easy way

of achieving better prediction accuracy is dedicating more resources to the branch

predictor. In benchmarks with a large number of static branches like go, s390, and

PowerPC, it is not a good tradeoff to add more correlation than the “classical fit.” In fact,

the smallest BHR always achieve the best prediction. It is likely that a smaller BHR than

what is recorded in Figure 4.9 will achieve even better prediction accuracy for those

benchmarks. While it is true that more correlation adversely effects prediction in

Figure 4.10 c) Decoupling correlation from PHT size for the SPECINT95 and SPECFP95
benchmarks

specIN T

0.8

0.85

0.9

0.95

4 6 8 10 12 14 16 18 20
correlat ion dept h

.5K

1K

2K

4K

8K

16K

32K

specF P

0.93

0.98

4 6 8 10 12 14 16 18 20
correlat ion dept h

.5K

1K

2K

4K

8K

16K

32K

70

benchmarks with a high number of static branches, notice that as the size of the PHT

increases, the negative effects seem to fade. It is possible that even for those

benchmarks, if the PHT of sizes greater than 32K entries are considered, more correlation

will become a good choice.

The perl benchmark is a good example of a benchmark that for small PHT, a large BHR

is not a good choice, while for larger PHT sizes it is a good choice. It is expected that for

most benchmarks a large enough PHT will have the same effect.

If a certain BHR size needs to be chosen, as traditional implementation of branch

predictor are required, the size of the BHR needs to be chosen according to the size of the

PHT. The SPECINT95 average and SPECFP95 average follow the same path described

above. For a 0.5K entries less correlation prevails, while at a PHT of size 32K, more

correlation turns out to be a good choice.

71

Chapter 5 - Myths of Hybrid Predictors

5.1 Issues in Hybrid Predictors

4Visual comparison between the bi-mode [12] structure and the McFarling hybrid

predictor [14] reveals a striking similarity, even though the two branch predictors were

conceived for different purposes. The bi-mode was created to reduce aliasing, and the

McFarling predictor to combine the advantages of the local and global branch prediction

schemes.

Within the hybrid path, some studies promote a static selection mechanism while others

studies prefer to use a dynamic selection mechanism. The advantage of using a static

selection mechanism over a dynamic selection mechanism is reduction of information

stored in the predictor in two ways. First, the selection mechanism does not take

hardware resources, but conveyed to the branch predictor via the ISA. Second, since

each branch only uses one of the hybrid components, it is unnecessary to update both

components for each branch. Using a dynamic selection mechanism, on the other hand,

is useful because some branches might change their best predictor throughout the

execution of the program.

This study was initiated in order to better understand how to best combine branch

predictors that reduce aliasing and hybrid branch predictors. However, during the

investigation it was revealed that those two paths are one and the same, as this chapter

will demonstrate. First, this chapter will discuss the simulation methodologies used

specifically for this chapter.

72

5.2 Simulation Methodology

In all simulations performed for this chapter, the depth of correlation, or the size of the

history register/s, follows directly from the size of the PHT. For example, if the global

component in the hybrid predictor had 1K entries in its PHT, the history register size

would be 10 bits. Throughout this chapter, the McFarling local-gshare hybrid predictor

is used because in preliminary simulations it was found to be the best true hybrid

behavior.

In the limited size simulations, a two-way set associative BTB with 4K entries was used.

This is large enough to prevent it from being a performance bottleneck and enabled

concentration on the tradeoffs in the PHTs.

The McFarling hybrid predictor simulated had two components— a gshare structure

implementing the global branch prediction scheme, and a PAs structure implementing the

local branch prediction scheme. In cases where a dynamic selection mechanism was

employed, the bimodal structure was used.

Unless stated otherwise, profiling was done on the same data sets that were used for

running the simulations. This enabled us to obtain an upper limit on the prediction

accuracy. As is shown in one of this chapter’s studies, it is anticipated that using a

different data set (the more realistic situation) for profiling would degrade the

performance of the hybrid predictor with a static selection mechanism.

5.3 Selection Mechanism

First, the relative merits of using static versus dynamic selection mechanism to choose

between the different components of a hybrid predictor are examined. As noted earlier, a

73

static selection mechanism requires less information to be stored in the predictor

structure because each branch utilizes only one component. This reduces contention,

which reduces aliasing and helps prediction accuracy. Moreover, hardware resources that

would have been used for the selection mechanism are now available for increasing the

size of the predictor’s components. The main problem with static selection is the

additional bits needed in the ISA. Although some ISAs have this bit in place, others will

require that the ISA be altered. Dynamic selection mechanisms are thought to have an

edge over static ones because it has been suggested that the best component for predicting

a branch can change during the execution of a program.

5.3.1 The Merit of Dynamic Selection Mechanism

It is unclear whether there is an inherent benefit in choosing the component used by a

specific branch dynamically. If the best component to predict a branch dynamically

changes during the program run, of course it would be better to dynamically select the

component used by a branch. However, if there is no inherent benefit in choosing the

component used by a branch dynamically, it is better to choose it statically and avoid the

extra cost of using both components for each branch, and the cost of the selection

mechanism.

Figure 5.1 shows the prediction accuracy for a global-local hybrid predictor with

unlimited resources. The three plots represent three types of selection mechanisms: per-

branch oracle, per-instance oracle, and an implementation of a real selection mechanism -

the bimodal. The per-branch oracle records prediction accuracy for both components.

When the program terminates, it chooses the best component as the predictor for each

74

branch. The per-instance oracle gets a prediction from both components, and if

either of them is correct, it records a correct prediction. It is interesting to note that the

per-instance oracle is an overestimation and that even for a randomly generated

prediction, it probability dictates a 75% correct prediction.

Determining whether the best component to predict a branch changes during program

execution is difficult. One approach to assist in this determination is to slice the dynamic

stream of a specific branch into n subsets of branch instances, and then to choose the best

component for each set [52]. The problem with doing this is that a small n leads to an

optimistic outcome, while a large n might erase the benefit of having a dynamic selection

mechanism. Using either a large n or a small n can lead to erroneous conclusions.

Clearly, it does not matter whether the best component for each branch changes

throughout the program run if a known selection mechanism cannot identify the best

component dynamically.

In our experiments, we used an unbounded hybrid predictor with an unbounded bimodal

selection mechanism. This eliminated the adverse effects of aliasing and allowed a check

on whether the bimodal selection mechanism could capture the changing best predictor

throughout the program execution. Figure 5.1 shows that there is no inherent gain in

using a dynamic selection mechanism. In other words, if there is a gain to be made in

changing the component used for each branch during the program execution, the bimodal

selection mechanism does not capture it. This is clearly demonstrated in the graphs of

Figure 5.1 where it can be seen that the bimodal selection mechanism always under-

performs the per-branch oracle. Moreover, it appears that the bimodal selection

mechanism makes mistakes in selecting the proper components, which degrades the

75

overall performance. This phenomenon is accentuated in programs with a large

number of branches like the S390 and PowerPC. They display a significant gap

76

cc1

93

94

95

96

97

98

99

0 2 4 6 8 10 12 14 16
correlat ion dept h

per branch oracle

per instance oracle

bimodal selection

go

93

94

95

96

97

98

99

0 2 4 6 8 10 12 14 16
correlat ion dept h

per branch oracle

per instance oracle

bimodal select ion

co mpress

83

85

87

89

91

93

95

97

99

0 2 4 6 8 10 12 14 16
correlat ion dept h

per branch oracle

per instance oracle

bimodal select ion

ijpeg

99.9

99.91

99.92

99.93

99.94

99.95

99.96

99.97

99.98

99.99

100

0 2 4 6 8 10 12 14 16
correlat ion dept h

per branch oracle

per instance oracle

bimodal select ion

li

94

95

96

97

98

99

0 2 4 6 8 10 12 14 16

correlat ion depth

per branch oracle

per instance oracle

bimodal selection

vo rtex

98.5

99.5

0 2 4 6 8 10 12 14 16

correlat ion dept h

per branch oracle

per instance oracle

bimodal select ion

m88

97.5

98.5

99.5

0 2 4 6 8 10 12 14 16
correlat ion dept h

per branch oracle

per instance oracle

bimodal select ion

perl

95

96

97

98

99

0 2 4 6 8 10 12 14 16
correlat ion dept h

per branch oracle

per instance oracle

bimodal select ion

Figure 5.1 – a) Testing the potential of static vs. dynamic selection mechanisms in a unlimited
resource environment for the SPECINT95

77

applu

90

91

92

93

94

95

96

97

98

99

100

0 2 4 6 8 10 12 14 16
correlat ion depth

per branch oracle

per instance oracle

bimodal selection

apsi

97

98

99

100

0 2 4 6 8 10 12 14 16
correlat ion dept h

per branch oracle

per instance oracle

bimodal select ion

fppp

95

96

97

98

99

100

0 2 4 6 8 10 12 14 16
correlat ion dept h

per branch oracle

per instance oracle

bimodal select ion

hydro 2

99

100

0 2 4 6 8 10 12 14 16
correlat ion dept h

per branch oracle

per instance oracle

bimodal select ion

mgrid

98

99

0 2 4 6 8 10 12 14 16

correlat ion dept h

per branch oracle

per instance oracle

bimodal select ion

swim

99.5

0 2 4 6 8 10 12 14 16

correlat ion dept h

per branch oracle

per instance oracle

bimodal select ion

po werP C

95

96

97

98

99

0 2 4 6 8 10 12 14 16
correlat ion dept h

per branch oracle

per instance oracle

bimodal select ion

s390

96

97

98

99

0 2 4 6 8 10 12 14 16
correlat ion dept h

per branch oracle

per instance oracle

bimodal select ion

Figure 5.1 – b) Testing the potential of static vs. dynamic selection mechanisms in a unlimited
resource environment for the SPECFP95 and IBM benchmarks

78

between the prediction of the oracle static selection mechanism and the prediction when

using the bimodal selection mechanism.

5.3.2 Dynamic vs. Static Selection Mechanism

Figure 5.1 depicts the inability of the dynamic selection mechanism to dynamically adapt

to the changing behavior of branches, even if such transient behavior exists. There does

not appear to be any advantage to employing dynamic selection mechanisms instead of

static ones. It is thus expected that in a limited resource setting, a static selection

mechanism would outperform a dynamic selection mechanism for the reasons mentioned

above. Figure 5.2, however, shows the exact opposite. In a limited resources setting, the

hybrid predictor with a dynamic selection mechanism outperforms a hybrid with a perfect

static selection mechanism.

Holding the heel of this observation a question is born: What is it about the dynamic

selection mechanism that boosts the performance of a hybrid predictor with a dynamic

selection mechanism when working in a size-restricted structure? Alternatively,

specIN T

94

95

96

97

98

99

0 2 4 6 8 10 12 14 16
correlat ion depth

per branch oracle

per instance oracle

bimodal select ion

specF P

95.5

96.5

97.5

98.5

99.5

0 2 4 6 8 10 12 14 16
correlat ion depth

Per Branch Oracle Rate

Per Instance Oracle Rate

bimodal select ion

Figure 5.1 – c) Testing the potential of static vs. dynamic selection mechanisms in a unlimited
resource environment for the SPECINT95 and SPECFP95 averages

79

cc1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 2 4 6 8 10 12 14 16
correlat ion dept h

static dynamic

go

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic dynamic

co mpress

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 2 4 6 8 10 12 14 16
correlat ion depth

stat ic dynamic

ijpeg

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic dynamic

li

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16

correlat ion depth

stat ic dynamic

vo rtex

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16

correlat ion dept h

stat ic dynamic

m88

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

static dynamic

perl

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic dynamic

Figure 5.2 – a) Dynamic vs. perfect static selection mechanism in hybrid predictors for the
SPECINT95 benchmarks

80

applu

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic dynamic

apsi

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic dynamic

fppp

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion depth

stat ic dynamic

hydro 2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic dynamic

mgrid

0.95

1

0 2 4 6 8 10 12 14 16

correlat ion depth

stat ic dynamic

swim

0.9

0.95

1

0 2 4 6 8 10 12 14 16

correlat ion dept h

stat ic dynamic

po werP C

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic

dynamic

s390

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic

dynamic

Figure 5.2 – b) Dynamic vs. perfect static selection mechanism in hybrid predictors for the
SPECFP95 and IBM benchmarks

81

what is it about the static selection mechanism that in a limited-resource setting degrades

the performance of a hybrid predictor?

5.3.3 The Omniscient Dynamic Selection Mechanism

One possible hypothesis to explain this question is that a dynamic selection mechanism

reduces aliasing. For example, consider the case where two branches A and B are both

better predicted by the global component of the hybrid predictor. In an unlimited

resource setting, a dynamic selection mechanism will choose the global component to

predict them. In a resource limited setting, branch A will suffer from aliasing, which

considerably degrades the prediction of its global component. As a result, the dynamic

selection mechanism chooses the local component to predict branch A’s outcomes.

Although both branches A and B are inherently predicted more accurately by a global

component, branch A will be better predicted by the local component in a limited

resources environment. We next examine how much aliasing reduction helps a hybrid

predictor.

specIN T

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

static dynamic

specF P

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic dynamic

Figure 5.2 – c) Dynamic vs. perfect static selection mechanism in hybrid predictors for the
SPECINT95 and SPECFP95 averages

82

Figure 5.3 shows the extent to which reducing aliasing helps boost the performance

of hybrid prediction. It compares a resource bound local-global hybrid predictor

(hybrid), with a resource bound local-global hybrid (aliasing hybrid), whose selection

mechanism does not take into consideration the effects of aliasing. To simulate this

effect, a run of the local-global hybrid predictor was made with no limits on resources.

The selection pattern for the entire run was logged and later served as the selection

mechanism in the limited hybrid version. The selection mechanism in this case is that for

the true hybrid behavior with no regards to aliasing, since it was recorded in an aliasing-

free setting. The conclusion from Figure 5.3 is that a large portion of the benefits brought

by hybrid predictors with dynamic selection mechanisms comes from reducing aliasing.

Moreover, comparing the hybrid predictor to an unlimited version of the global scheme

(UL global), shows that the local-global hybrid predictor never fulfils its promise of

improving prediction beyond that of a single scheme, even for generous resource

allocation. Notice that the difference between UL Hybrid and UL global is the potential

difference between the hybrid predictor (global-local) and the global scheme. This

difference pales in comparison to the difference between UL global and hybrid that

represents the remaining aliasing after the bimodal selection mechanism was able to

reduce some of them (the difference between hybrid and aliasing-hybrid).

In summary, a large portion of the benefits brought by hybrid predictors with dynamic

selection mechanism comes from reducing aliasing. Moreover, the benefit of combining

predictors to increase the potential prediction is questioned in this section, even though

the studies were conducted in this section ignoring the size overhead of implementing the

PAs structure (i.e. the table of history registers).

83

84

cc1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

UL hybrid
hybrid

aliasing hybrid
UL global

go

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

UL hybrid
hybrid

aliasing hybrid
UL global

co mpress

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 2 4 6 8 10 12 14 16
correlat ion dept h

UL hybrid
hybrid

aliasing hybrid
UL global

ijpeg

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

UL hybrid
hybrid

aliasing hybrid
UL global

li

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16

correlat ion dept h

UL hybrid
hybrid

aliasing hybrid
UL global

vo rtex

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 2 4 6 8 10 12 14 16

correlat ion dept h

UL hybrid
hybrid

aliasing hybrid
UL global

m88

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

UL hybrid
hybrid

aliasing hybrid
UL global

perl

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic
stat ic limited

stat ic limited test
dynamic

Figure 5.3 – a) The role of Hybrid predictors in reducing aliasing for the SPECINT95 benchmarks

85

applu

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

UL hybrid
hybrid

aliasing hybrid
UL global

apsi

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 2 4 6 8 10 12 14 16
correlat ion dept h

UL hybrid
hybrid

aliasing hybrid
UL global

fppp

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 2 4 6 8 10 12 14 16
correlat ion dept h

UL hybrid
hybrid

aliasing hybrid
UL global

hydro 2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 2 4 6 8 10 12 14 16
correlat ion dept h

UL hybrid
hybrid

aliasing hybrid
UL global

mgrid

0.95

1

0 2 4 6 8 10 12 14 16

correlat ion dept h

UL hybrid
hybrid

aliasing hybrid
UL global

swim

0.9

0.95

1

0 2 4 6 8 10 12 14 16

correlat ion dept h

UL hybrid
hybrid

aliasing hybrid
UL global

s390

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

UL hybrid
hybrid

aliasing hybrid
UL global

po werP C

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

UL hybrid
hybrid

aliasing hybrid
UL global

Figure 5.3 – b) The role of Hybrid predictors in reducing aliasing for the SPECFP95 and IBM
benchmarks

86

5.3.4 Static Aliasing Aware vs. Dynamic Selection Mechanism

At this point we have shown that both static and dynamic selection mechanisms reduce

aliasing in hybrid branch predictors. The former does so by reducing contention in the

structure and by eliminating the hardware cost in the selection mechanism. The later

does so by dynamically distributing the branch stream across the two components, which

alleviates contention in the PHT. The dynamic selection mechanism performs much

better than an ideal static selection mechanism. In the ideal static selection mechanism,

profiling was done with no limitation on resources. This led to branches that are better

predicted by the global scheme to be mapped to the gshare component, and branches that

are better predicted by the local scheme to be mapped to the PAs component. Notice that

the ideal static selection mechanism does not take aliasing into consideration.

One way of considering aliasing is to use the actual table size when profiling. Figure 5.4

shows the importance of taking into consideration the size of the predictor structure when

profiling. When taking size into consideration during profiling, the branches get

specIN T

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

UL hybrid
hybrid

aliasing hybrid
UL global

specF P

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 2 4 6 8 10 12 14 16
correlat ion dept h

UL hybrid
hybrid

aliasing hybrid
UL global

Figure 5.3 – c) The role of Hybrid predictors in reducing aliasing for the SPECINT95 and
SPECFP95 averages

87

distributed not just by their true hybrid behavior, but also by taking aliasing into

consideration. Figure 5.4 shows that while a dynamic selection mechanism is better than

a static selection mechanism with perfect profiling, employing profiling that takes the

size of the structure into consideration (static limited) results in even better performance

than dynamic selection. The fact that the difference between the prediction percentages

diminishes with size indicates that the difference is due mostly to better aliasing

reduction. Using this profiling method combines the advantage of static and dynamic

selection mechanisms as explained previously.

The advantages of using a static selection mechanism with aliasing-bound profiling are as

follows: the branches are distributed among the components according to contention in

the structure; the selection hardware is eliminated; and only one component is used per

branch, which further reduces contention.

5.3.5 Shortcomings of Static Selection

The question arises whether such good prediction can be achieved when profiling from a

test data set. As Figure 5.4 shows, when using a different data set to profile the program,

the static selection mechanism (static limited test) suffers degradation in performance.

For small predictors, the static selection mechanism still performs better than the

dynamic selection mechanism, but the dynamic selection mechanism eventually

surpasses it.

This problem can be accentuated when code that is compiled and profiled for a certain

size of predictor is used to run on a different implementation of the same ISA. Since

profiling is done on a different size of predictor than the one, which the code is run

88

cc1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic
stat ic limited

stat ic limited test
dynamic

go

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic
stat ic limited

stat ic limited test
dynamic

co mpress

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic
stat ic limited

stat ic limited test
dynamic

ijpeg

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic
stat ic limited

stat ic limited test
dynamic

li

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16

correlat ion dept h

stat ic
stat ic limited

stat ic limited test
dynamic

vo rtex

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16

correlat ion dept h

stat ic
stat ic limited

stat ic limited test
dynamic

m88

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic
stat ic limited

stat ic limited test
dynamic

perl

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic
stat ic limited

stat ic limited test
dynamic

Figure 5.4 – a) Dynamic vs. aliasing aware static selection mechanism in hybrid predictors for the
SPECINT95 benchmarks

89

hydro 2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic
stat ic limited

stat ic limited test
dynamic

applu

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

static
static limited

static limited test
dynamic

apsi

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic
stat ic limited

stat ic limited test
dynamic

fppp

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic
stat ic limited

stat ic limited test
dynamic

mgrid

0.95

1

0 2 4 6 8 10 12 14 16

correlat ion dept h

stat ic
stat ic limited

stat ic limited test
dynamic

swim

0.9

0.95

1

0 2 4 6 8 10 12 14 16

correlat ion dept h

stat ic
stat ic limited

stat ic limited test
dynamic

po werP C

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic

stat ic
limited
dynamic

s390

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic

stat ic limited

dynamic

Figure 5.4 – b) Dynamic vs. aliasing aware static selection mechanism in hybrid predictors for the
SPECFP95 and IBM benchmarks

90

on, the aliasing reduction will fall below optimal. This phenomenon might be aggravated

when the predictor on which the code is run on and the predictor on which profiling was

done implement different structure/s. All that is under the assumption that the ISA was

designed to convey the selection information to the processor. Otherwise, changing the

ISA is not inconsequential.

In summary, there appears to be no reason why a hybrid predictor should utilize a static

selection mechanism over a dynamic one. While both dynamic and static selection

mechanisms reduce aliasing, the static selection mechanism has some shortcomings that

are hard to make up for.

5.3.6 In Depth Analysis

We have shown that the selection mechanism in hybrid predictors enables hybrid

predictors to outperform some generic two-level predictors by reducing aliasing. We

next present a serious of studies that shed light on the behavior of the selection

specIN T

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic
stat ic limited

stat ic limited test
dynamic

specF P

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16
correlat ion dept h

stat ic
stat ic limited

stat ic limited test
dynamic

Figure 5.4 – c) Dynamic vs. aliasing aware static selection mechanism in hybrid predictors for the
SPECINT95 and SPECFP95 averages

91

mechanism throughout the program execution. We choose to only show the results

for the gcc benchmark. Results for all other benchmark are similar.

Figure 5.5 depicts the number of switches each static branch goes through for a perfect

selection mechanism and a real implementation of the selection mechanism. The perfect

selection mechanism is an oracle that after the branch is executed, if the selected

component miss predicted the branch and the other component predicted the branch

correctly, the oracle registers a switch. The real selection mechanism is implemented as

the bimodal selection mechanism. Both the perfect and the real selection mechanism are

simulated with no resource limit and with resource limit of 6 KB entry hybrid predictor.

Only about 1% of the total static branches show on the x-axis. The static branches are

sorted according to the number of switches, and this 1% of static branches represents the

majority of overall switches.

The perfect selection mechanism

performs many more switches under

resource limit as can be seen by

comparing the perfect-limited and

perfect-unlimited plots. The difference

between those two plots represent the

amount of work the selection

mechanism will do to reduce aliasing.

Similarly, the work the selection mechanism does to reduce aliasing when resources are

limited can be viewed when comparing the real-limited and real-unlimited plots.

Figure 5.5 - per branch switches for the
McFarling hybrid predictor

92

Comparing the real and the perfect selection mechanism, either for limited or

unlimited resources, reveal the potential of the hybrid predictors that is not realizable by

the bimodal selection mechanism.

Figure 5.6 displays the accumulated number of switches as the program progresses for a

limited and unlimited bimodal selection mechanism. Data was collected for increments

of 100,000 dynamic instructions. Each selection mechanism is simulated for history size

of 3,6 and 9 for both the local and global components. There is no obvious correlation

between the accumulated number of switches and the correlation depth. Correlation

depth of 3 has the highest number of

switches followed by correlation depth

of 6 and 9. However, this varies

considerably between different

benchmarks. On the other hand, the

selection mechanism restricted in size

always has a larger number of switches

than the unlimited selection mechanism

with the same size of correlation. This,

once again, suggest that a large number of switches is attributed to aliasing.

The linearity of the plots in Figure 5.6 suggests that switches occur throughout the

execution of the program evenly, and do not just occur in a warm-up phase only. This

coincides with a different experiment we run where we employed a dynamic selection

Figure 5.6 – Accumulated # of switches as
program progress

93

mechanism in the beginning of the program and froze it after an initial warm-up. If

most switches occur only in the warm-up phase, such a mechanism will be able to take

the advantages of both static and dynamic selection mechanism. The initial dynamic

phase will conduct a kind of profiling on the current dataset. The second phase, the static

one, will be able to only update one the components for each branch and as a

consequence reduce the amount of information stored in the PHTs. This mechanism

failed to outperform a conventional dynamic selection mechanism. As figure 5.6 depicts,

this static-dynamic selection mechanism failed because the dynamic switches occur

evenly throughout the execution of the program.

Figure 5.7 shows the number of switches performed by the selection mechanism as a

function of correlation depth for a limited resources and unlimited resources McFarling

predictor. Figure 5.6 shows the same date but only for correlation depth of 3,6 and 9, and

a trend could not be established. In Figure 5.7, however, the trend is clear. The number

of switches decreases as correlation

depth increases. For the unlimited

selection mechanism this decrease in

switches is moderate and the reason is

that as the depth of correlation increases,

the prediction accuracy in both the

global and local increases. As the

prediction accuracy increases, the need Figure 5.7 – number of switches as a function of
correlation for limited and unlimited predictors

94

for switches decreases.

In the limited resources simulation the decrease in switches as correlation increases is

much more pronounce than in the unlimited simulations. On top of the increase in

prediction accuracy as correlation depth increases, as in the unlimited simulation, the size

of the predictor increases as well in the limited resource simulation. The increase in the

size of the predictor reduces the amount of aliasing, and as a consequence the number of

switches due to aliasing decreases. When aliasing cease to be a problem, the limited and

unlimited resources predictors’ switches converges. The moderate decrease of switches

in the unlimited predictor represents the elimination of switches due to increase in

prediction accuracy as correlation depth increases. The difference between this moderate

decrease and the rapid decrease in switches of the limited predictor is due to elimination

of aliasing.

5.4 The Notion of Hybrid Predictors

The next issue to address is whether there is an inherent gain in the local-global

hybrid predictor over a single scheme, or whether the gain realized by the hybrid

predictor is limited to reducing aliasing. Figure 5.8 shows the improvement of the

program’s prediction for each branch (x-axis) when using the local predictor versus the

global predictor with no limits on resources. Positive percentages indicate that the branch

is better predicted by the local scheme, while negative percentages indicate the branch is

better predicted by the global scheme. The branches are sorted on the x-axis according to

95

the percentage improvement. Figure 5.8 shows that the number of branches that

contribute to the true hybrid behavior of the local-global hybrid predictor is small. These

small number of branches will be referred to hereinafter as the hybrid branches. For most

branches, the improvement obtained by using the global component instead of the local

component or vice versa is insignificant.

Only a few of the hybrid branches are responsible for the improvement of a local-global

hybrid predictor over a single scheme predictor. If the predictor component for the other

branches, which make up the majority, changes dynamically to reduce aliasing, it remains

to make sure that the hybrid branches are predicted by the component that does it best.

This will allow the predictor to take advantage of both alias reduction and true hybrid

behavior. When employing a static selection mechanism, this can be done at profile time.

In the case of a dynamic selection mechanism, it seems that an explicit way of indicating

the appropriate component for the hybrid branches is needed. However, a study

conducted but not shown here indicated that the dynamic selection mechanism already

performs the task of mapping the hybrid branches into their respective best components.

Attempting to lock the hybrid branches into their respective best components, while

letting the rest of the branches’ components to be chosen dynamically, resulted in

degraded performance.

Despite the potential embedded in hybrid predictors and the ability of the selection

mechanism to identify the hybrid branches, this potential is not fulfilled. Performance

degradation due to aliasing dominates the hybrid potential.

96

Figure 5.8 – a) per branch potential of a local-global hybrid predictor for the SPECINT95
benchmarks

97

Figure 5.8 – b) per branch potential of a local-global hybrid predictor for the SPECFP95

benchmarks

98

5.5 Updating Policies and Aliasing

As was mentioned before, a static selection mechanism has serious shortcomings. One

mechanism to overcome these shortcomings might be to bring the advantage of the static

selection mechanism into hybrid predictors with a dynamic selection mechanism. An

attempt is made to accomplish this using a modified updating mechanism. When a

branch is resolved, the branch predictor is updated with the branch outcome. In a hybrid

structure, this entails updating both the global history register and the respective local

history register, and the PHT for both of the hybrid components. In order to reduce

contention in the PHT, the updating mechanism should update only the PHT for the

component currently selected. Figure 5.9 depicts the prediction percentage as a function

of the log2 of the PHT size and the correlation depth for three updating policies. The

updating policies are: 1) both, where both PHTs are updated; 2) lgt - stands for Local-

Global hybrid with a “this” updating mechanism. With the “this” updating mechanism

only the current PHT pointed by the selection mechanism is being updated; and 3) our

proposed new updating policy, lgnt - stands for Local-Global hybrid with the “this &

next” updating mechanism. This updating mechanism will be described later. Figure 5.9

shows that for small size predictors, it is beneficial to update only the current PHT. This

update policy reduces the amount of information stored in the PHT and therefore reduces

contention, which in turn helps the prediction accuracy. As the size of the predictor

increases, updating both components helps the prediction accuracy. This suggests that

updating both components produces helpful information for prediction. This observation

leads to the question of whether this helpful information can be captured without

99

cc1

70

75

80

85

90

95

0 2 4 6 8 10 12 14 16
correlat ion dept h

lg both

new lgt

new lgnt

go

65

70

75

80

85

90

95

0 2 4 6 8 10 12 14 16
correlat ion dept h

lg both

new lgt

new lgnt

co mpress

65

70

75

80

85

90

95

0 2 4 6 8 10 12 14 16
correlat ion dept h

lg both

new lgt

new lgnt

ijpeg

70

75

80

85

90

95

100

0 2 4 6 8 10 12 14 16
correlat ion dept h

lg both

new lgt

new lgnt

li

60

65

70

75

80

85

90

95

0 2 4 6 8 10 12 14 16

correlat ion dept h

lg both

new lgt

new lgnt

vo rtex

65

70

75

80

85

90

95

100

0 2 4 6 8 10 12 14 16

correlat ion dept h

lg both

new lgt

new lgnt

m88

75

80

85

90

95

100

0 2 4 6 8 10 12 14 16
correlat ion dept h

lg both

new lgt

new lgnt

perl

60

65

70

75

80

85

90

95

0 2 4 6 8 10 12 14 16
correlat ion dept h

lg both

new lgt

new lgnt

Figure 5.9 – a) Updating policies in hybrid branch predictors for SPECINT95

100

applu

80

85

90

95

100

0 2 4 6 8 10 12 14 16
correlat ion depth

lg both

new lgt

new lgnt

apsi

65

70

75

80

85

90

95

100

0 2 4 6 8 10 12 14 16
correlat ion dept h

lg both

new lgt

new lgnt

fppp

55

60

65

70

75

80

85

90

95

100

0 2 4 6 8 10 12 14 16
correlat ion dept h

lg both

new lgt

new lgnt

hydro 2

55

60

65

70

75

80

85

90

95

100

0 2 4 6 8 10 12 14 16
correlat ion dept h

lg both

new lgt

new lgnt

mgrid

95

100

0 2 4 6 8 10 12 14 16

correlat ion dept h

lg both

new lgt

new lgnt

swim

90

95

100

0 2 4 6 8 10 12 14 16

correlat ion dept h

lg both

new lgt

new lgnt

po werP C

60

65

70

75

80

85

90

95

0 2 4 6 8 10 12 14 16
correlat ion depth

lg both

new lgt

new lgnt

s390

55

60

65

70

75

80

85

90

95

0 2 4 6 8 10 12 14 16
correlat ion dept h

lg both

new lgt

new lgnt

Figure 5.9– b) Updating policies in hybrid branch predictors for the SPECFP95 and IBM
benchmarks

101

recording double the information for each branch instance. Notice that for programs with

large numbers of branches like the S390 and the PowerPC traces, the tradeoff between

aliasing and incorporating the additional useful information favors adding the useful

information only for structures of infeasible size.

The new updating policy (lgnt) described next was developed to resolve the problem

defined above, and attempted to capture the useful information of the “both” update

policy, while alleviating contention in the PHT. The lgnt policy updates only the PHT

being used currently unless the selection mechanism is in a transition mode where it

updates both PHTs. A transition mode is defined when a branch selection points to one

component in the hybrid predictor, but the branch resolution will shift it to point to the

other component. As demonstrated in Figure 5.9, the updating policy achieves good

prediction for small predictors compared to the other two policies, and does not lose its

effectiveness for larger predictors. For traces with a large branch signature like the S390

and the PowerPC, lgtn stills falls short of the lgt, but it cushions the worst case compared

specIN T

65

70

75

80

85

90

95

100

0 2 4 6 8 10 12 14 16
correlat ion dept h

lg both

new lgt

new lgnt

specF P

70

75

80

85

90

95

100

0 2 4 6 8 10 12 14 16
correlat ion dept h

lg both

new lgt

new lgnt

Figure 5.9– c) Updating policies in hybrid branch predictors for SPECINT95 and SPECFP95
averages

102

to the “both” updating policy. In summary, the lgnt updating policy serves as good

middle ground between the other two updating policies.

5.6 Combining Aliasing and Hybrid Paths

This dissertation shows that the hybrid and aliasing paths are one and the same. Prior to

the studies conducted here, it was believed that because those two paths were orthogonal

that their advantages would be easily combined. To double check on this premise, we

next try to combine the hybrid path with the bi-mode predictor. Figure 5.10 depicts the

performance of a McFarling predictor, where both the local and global components are

implemented as a bi-mode structure. If the hybrid and the aliasing paths were orthogonal,

such a predictor would have had the potential to take advantage of both paths.

Specifically, if the selection mechanism is static and uses an unlimited structure when

profiling, each branch will be mapped to the component which best predicts it. Within

each component, the bi-mode structure should perform the task of reducing aliasing. The

performance of such predictor is shown in Graph 5.7 under “static-unlim-bimode”. The

static-unlim indicates that selection is done statically with profiling performed on a

structure of unlimited size. This structure is compared against several other predictors

and consistently does worse than most. In fact the static-unlim-bimode consistently

outperforms the same predictor without the bi-mode structures in each component,

referred to as static-unlim-normal. This indicates that the bi-mode structure in each

component of the McFarling predictor, helps performance by reducing aliasing. More

importantly, however, it indicates that using no limit on the structure size during profiling

degrades performance considerably. The inability of this combined predictor to

103

cc1

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

10000 100000 1000000
PHT Size

stat ic unlim - normal

stat ic unlim - bimode

stat ic lim - normal

stat ic lim - bimode

dynamic - normal

dynamic - bimode

go

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

10000 100000 1000000
PHT Size

static unlim - normal

static unlim - bimode

static lim - normal

static lim - bimode

dynamic - normal

dynamic - bimode

co mpress

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

10000 100000 1000000
PHT Size

stat ic unlim - normal

stat ic unlim - bimode

stat ic lim - normal

stat ic lim - bimode

dynamic - normal

dynamic - bimode

ijpeg

0.998

0.9985

0.999

0.9995

1

10000 100000 1000000
PHT Size

stat ic unlim - normal

stat ic unlim - bimode

stat ic lim - normal

stat ic lim - bimode

dynamic - normal

dynamic - bimode

li

0.95

0.96

0.97

10000 100000 1000000
PHT Size

stat ic unlim - normal

stat ic unlim - bimode

stat ic lim - normal

stat ic lim - bimode

dynamic - normal

dynamic - bimode

vo rtex

0.94

0.95

0.96

0.97

0.98

0.99

1

10000 100000 1000000
PHT Size

stat ic unlim - normal

stat ic unlim - bimode

stat ic lim - normal

stat ic lim - bimode

dynamic - normal

dynamic - bimode

m88

0.993

0.9935

0.994

0.9945

0.995

10000 100000 1000000
PHT Size

stat ic unlim - normal

stat ic unlim - bimode

stat ic lim - normal

stat ic lim - bimode

dynamic - normal

dynamic - bimode

perl

0.93

0.94

0.95

0.96

0.97

0.98

10000 100000 1000000
PHT Size

stat ic unlim - normal

stat ic unlim - bimode

stat ic lim - normal

stat ic lim - bimode

dynamic - normal

dynamic - bimode

Figure 5.10 – a) Combining McFarling and bi-mode predictors for SPECINT95

104

applu

0.99

0.9905

0.991

0.9915

0.992

0.9925

0.993

10000 100000 1000000
PHT Size

stat ic unlim - normal

stat ic unlim - bimode

stat ic lim - normal

stat ic lim - bimode

dynamic - normal

dynamic - bimode

apsi

0.95

0.96

0.97

0.98

0.99

1

10000 100000 1000000
PHT Size

stat ic unlim - normal

stat ic unlim - bimode

stat ic lim - normal

stat ic lim - bimode

dynamic - normal

dynamic - bimode

swim

0.995

0.996

0.997

0.998

0.999

1

10000 100000 1000000
PHT Size

stat ic unlim - normal

stat ic unlim - bimode

stat ic lim - normal

stat ic lim - bimode

dynamic - normal

dynamic - bimode

fppp

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

10000 100000 1000000
PHT Size

stat ic unlim - normal

stat ic unlim - bimode

stat ic lim - normal

stat ic lim - bimode

dynamic - normal

dynamic - bimode

mgrid

0.98

0.981

0.982

0.983

0.984

0.985

0.986

0.987

0.988

10000 100000 1000000
PHT Size

stat ic unlim - normal

stat ic unlim - bimode

stat ic lim - normal

stat ic lim - bimode

dynamic - normal

dynamic - bimode

hydro 2

0.95

0.96

0.97

0.98

0.99

1

10000 100000 1000000
PHT Size

static unlim - normal

static unlim - bimode

static lim - normal

static lim - bimode

dynamic - normal

dynamic - bimode

po werP C

0.7

0.75

0.8

0.85

0.9

0.95

1

10000 100000 1000000
PHT Size

stat ic unlim - normal

stat ic unlim - bimode

stat ic lim - normal

stat ic lim - bimode

dynamic - normal

dynamic - bimode

s390

0.4

0.5

0.6

0.7

0.8

0.9

1

10000 100000 1000000
PHT Size

static unlim - normal

static unlim - bimode

static lim - normal

static lim - bimode

dynamic - normal

dynamic - bimode

Figure 5.10 – b) Combining McFarling and bi-mode predictors for SPECFP95 and IBM
benchmarks

105

approach the prediction accuracy of the classic McFarling predictor (dynamic-normal)

demonstrates that contrary to common belief, combining the advantages of the hybrid and

aliasing paths of research is not trivial.

5.7 McFarling vs Bi-Mode Predictor

Finally, after discovering that the main strength of hybrid predictors is reducing aliasing,

this study makes a direct comparison between one of the most used aliasing reduction

implementations, the bi-mode predictor, and the McFarling hybrid predictor. For the

study conducted here, the McFarling predictor was implemented with a 2K entry BTB.

The size of the local history registers was accumulated into the overall predictor size.

However, the BTB tags were not considered when calculating the predictor size. This

was done under the assumption that the BTB tags were already in place for predicting the

branch target address, and therefore could be used for predicting the direction with at no

extra cost.

specIN T

0.94

0.95

0.96

0.97

0.98

10000 100000 1000000
PHT Size

stat ic unlim - normal

stat ic unlim - bimode

stat ic lim - normal

stat ic lim - bimode

dynamic - normal

dynamic - bimode

specF P

0.96

0.97

0.98

0.99

1

10000 100000 1000000
PHT Size

stat ic unlim - normal

stat ic unlim - bimode

stat ic lim - normal

stat ic lim - bimode

dynamic - normal

dynamic - bimode

Figure 5.10 – c) Combining McFarling and bi-mode predictors for SPECINT95 and SPECFP95
averages

106

cc1

0.75

0.8

0.85

0.9

0.95

1

100 1000 10000 100000 1000000
predict or size (Byt es)

M cFarling (var. local hist .)
M cFarling (stat ic local hist .)
bimode

go

0.75

0.8

0.85

0.9

0.95

1

100 1000 10000 100000 1000000
predictor size (Byt es)

M cFarling (var. local hist .)
M cFarling (stat ic local hist .)
bimode

co mpress

0.75

0.8

0.85

0.9

0.95

1

100 1000 10000 100000 1000000
predictor size (Byt es)

M cFarling (var. local hist .)
M cFarling (stat ic local hist .)
bimode

ijpeg

0.8

0.85

0.9

0.95

1

100 1000 10000 100000 1000000
predictor size (Byt es)

M cFarling (var. local hist .)
M cFarling (stat ic local hist .)
bimode

li

0.85

0.9

0.95

1

100 1000 10000 100000 1000000
predictor size (Byt es)

M cFarling (var. local hist .)
M cFarling (stat ic local hist .)
bimode

vo rtex

0.85

0.9

0.95

1

100 1000 10000 100000 1000000
predictor size (Byt es)

M cFarling (var. local hist .)
M cFarling (stat ic local hist .)
bimode

m88

0.95

1

100 1000 10000 100000 1000000
predictor size (Byt es)

M cFarling (var. local hist .)
M cFarling (stat ic local hist .)
bimode

perl

0.85

0.9

0.95

1

100 1000 10000 100000 1000000
predictor size (Byt es)

M cFarling (var. local hist .)
M cFarling (stat ic local hist .)
bimode

Figure 5.11 – a) McFarling vs. bi-mode for SPECINT95

107

applu

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

100 1000 10000 100000 1000000
predictor size (Byt es)

M cFarling (var. local hist .)
M cFarling (stat ic local hist .)
bimode

apsi

0.9

0.95

1

100 1000 10000 100000 1000000
predict or size (Byt es)

M cFarling (var. local hist .)
M cFarling (stat ic local hist .)
bimode

fppp

0.8

0.85

0.9

0.95

1

100 1000 10000 100000 1000000
predict or size (Byt es)

M cFarling (var. local hist .)
M cFarling (stat ic local hist .)
bimode

hydro 2

0.85

0.9

0.95

1

100 1000 10000 100000 1000000
predict or size (Byt es)

M cFarling (var. local hist .)
M cFarling (stat ic local hist .)
bimode

mgrid

0.95

1

100 1000 10000 100000 1000000
predict or size (Byt es)

M cFarling (var. local hist .)
M cFarling (stat ic local hist .)
bimode

swim

0.9

0.95

1

100 1000 10000 100000 1000000
predict or size (Byt es)

M cFarling (var. local hist .)
M cFarling (stat ic local hist .)
bimode

po werP C

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

100 1000 10000 100000 1000000
predict or size (Byt es)

M cFarling (var. local hist .)
M cFarling (stat ic local hist .)
bimode

s390

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

100 1000 10000 100000 1000000
predict or size (Byt es)

M cFarling (var. local hist .)
M cFarling (stat ic local hist .)
bimode

Figure 5.11 – b) McFarling vs. bi-mode for SPECFP95 and IBM benchmarks

108

Figure 5.11 makes a direct comparison between the McFarling predictor and the bi-mode

predictor. Two versions of the McFarling predictor are shown. The first version has

increasing local correlation depth corresponding to the correlation increase of the global

history register. The second version of the McFarling predictor utilizes the best local

correlation depth for each benchmark.

The bi-mode predictor outperforms the McFarling predictor for small predictor size

across all benchmarks. The size overhead of the local registers, which are part of

implementing the local scheme, cannot be offset for small predictors, and therefore the

bi-mode outperforms the McFarling predictor for small predictors. As the size of the

predictors increases, the McFarling prediction accuracy caches up with the bi-mode

predictor. On average for the SPECINT95 average, the McFarling predictor outperforms

the bi-mode predictor only for sizes larger than 26KB. This is much larger than can be

implemented in future processors, as will be discussed in Chapter 7. For benchmarks

specIN T

0.85

0.9

0.95

1

100 1000 10000 100000 1000000
predictor size (Bytes)

M cFarling (var. local hist .)
M cFarling (stat ic local hist .)
bimode

specF P

0.85

0.9

0.95

1

100 1000 10000 100000 1000000
predictor size (Bytes)

M cFarling (var. local hist .)
M cFarling (stat ic local hist .)
bimode

Figure 5.11 – c) McFarling vs. bi-mode for SPECINT95 and SPECFP95 averages

109

with large static branch signatures, such as the s390 and PowerPC, the bi-mode

predictor outperforms the McFarling predictor even for predictors as large as 180KB.

5.8 Summary

This chapter eliminates the notion of the hybrid path as an independent research path in

branch prediction research. It shows that most of the gains achieved in hybrid predictors

are attributable to the ability of the selection mechanism to reduce aliasing, and not to

true hybrid behavior. It follows that hybrid predictors should be compared against

aliasing-reducing structures and vise versa, because they both achieve their goals by

attacking the same problem. True hybrid behavior can be attributed to a limited number

of branches, but both dynamic and properly profiled static selection mechanisms map

those branches into their respective best components. It is shown that both dynamic and

static selection mechanism achieve the same goals, namely, reducing aliasing, in different

ways. This chapter also shows that the advantages of dynamic selection mechanisms can

be applied to static selection mechanisms by a profiling method, and that the advantages

of static selection mechanisms to the dynamic ones by means of a new updating policy.

This chapter concludes by comparing the bi-mode predictor with the McFarling predictor.

This comparison between a well-known aliasing-reducing structure and an equally well-

known hybrid predictor shows that the bi-mode is a considerably better predictor.

110

Chapter 6 - Filtering Characteristic of the
Third-Level of Adaptivity

4Compared to the hybrid research path, the third-level path is understudied. Those few

studies that have addressed it show empirical results that prove the respective third-level

of adaptivity structure outperforms gshare. It is not clear from those studies whether

applying a third-level of adaptivity improves prediction because of better usage of

resources and aliasing reduction, or whether the improvements show that the third-level

of adaptivity is a better branch prediction scheme. In this chapter we attempt to answer

this question.

The literature describes four third-level-of-adpativity structures. The first, the Elastic

History Buffer (EHB), statically determines, via profiling, the correlation size used for

each static branch [20]. The second, branch classification, decides statically between two

predetermined correlation sizes for each branch [13]. The third structure, Dynamic

History Length Fitting (DHLF), dynamically adjusts the correlation size for all the

branches [21]. Lastly, a variable length path branch predictor was considered [54].

Similar to the EHB, profiling is used to determine the depth of correlation for each

branch. The interested reader should refer to Section 1.5 for a detailed description of the

above methods.

Next branch classification and the DHLF are considered. Limit studies were performed

for each to determine whether they represent a better branch prediction scheme or just a

better branch prediction structure. We didn’t consider the fourth structure, as we

111

consider it to be somewhat orthogonal to other structures, and the improvements

discussed for this structure were for indirect branches only. Different branch prediction

structures can therefore incorporate a similar structure that predicts only the indirect

branches and enhance the predictors performance. The EHB was not considered because

it spans two different research paths. Not only does the EHB allow each static branch to

use its best correlation, but it also filters easy-to-predict branches out of the PHT. This

places the EHB in both the third-level path and the aliasing path3. No breakdown of the

accuracy improvement was given in the EHB study to determine what percentage of the

prediction improvements is due to filtering and what percentage of it is due to the third-

level of adaptivity scheme employed.

To the best of our knowledge, all third-level adaptivity structures implement the global

two-level branch prediction scheme. All simulations in this chapter, therefore, consider

only the global two-level branch prediction scheme.

6.1 Branch Classification

As was mentioned before, branch classification can be viewed as belonging to the hybrid

path or to the third-level path. Using the conclusions drawn in chapter 4, one can get a

good idea of what makes branch classification work when it has static or dynamic

selection mechanism.

3 Interestingly enough, since the EHB presented itself as a third-level path, it was not regarded as

employing filtering as well. When the filter mechanism was introduced, there was no mention of the EHB,

or a proper comparison between the filter mechanism and the EHB, which appeared first.

112

1

8 15

22

S
1S

8S
15S

22

0.95

0.96

0.97

0.98

0.99

powerPC
real

selection

0.98-0.99

0.97-0.98

0.96-0.97

0.95-0.96

1

7 13

19

25

S
1S

7S
13S

19S
25

0.95

0.96

0.97

0.98

0.99

powerPC
dynamic
selection

0.98-0.99

0.97-0.98

0.96-0.97

0.95-0.96

1

8 15

22

S
1S

8S
15S

22

0.95

0.96

0.97

0.98

0.99

powerPC
static

selection

0.98-0.99

0.97-0.98

0.96-0.97

0.95-0.96

Figure 6.1 – Branch classification limit study with correlation depth ranging from
1 to 25 for the PowerPC benchmark

a

c

b

113

We next however, check the validity of the third-level adaptivity motif in branch

classification. Figure 6.1 depicts a limit study of different possible configurations of

branch classification ranging from a correlation depth of 1 to a correlation depth of 25 for

a) a dynamic oracle b) a static oracle, and c) a real selection mechanism for the PowerPC

benchmark. The real selection mechanism is implemented as the bimodal selection

mechanism, similar to the one used in the hybrid studies. Each point represents the

prediction accuracy for a classification method with one component having correlation

depth of x on the x-axis, and the other component having a correlation depth of y on the

y-axis. The components are not restricted in size and each vector has its own unique 2bc

state machine for the bimodal selection mechanism.

Figure 6.1 shows that the dynamic oracle selection mechanism performs better than the

static oracle. This is to be expected since the dynamic oracle represents an upper limit on

prediction that is not likely to be realized. Once again, similar to Section 5.3.1, we

encounter the problem of how to cancel the noise produced by two different lists as

oppose to capturing the real advantage of using two different sizes of correlation. This

problem will be discussed later.

Both the dynamic oracle and the static oracle selection mechanisms depict a jump

in prediction accuracy when using different correlation depth for each component

compared to using the same correlation depth for both components. Using the same

correlation depth for both components is represented by the middle diagonal. This

accuracy jump might lead to the conclusion that third-level adaptivity has merit as a

scheme and not only as a structure. It was also found that the prediction accuracy of two

widely spaced correlation depths, such as 1 and 25 is higher than that of adjacent

114

correlation depths, such as 24 and 25. We know that deeper correlation results in

better prediction. Therefore, having combination of low and high correlation depths

surpass a configuration where both components are of high correlation suggests the merit

of third-level adaptivity as a scheme.

The results presented in the real selection mechanism graph in figure 6.1, however, result

in exactly the opposite conclusion. In the real selection mechanism, there is no

degradation in performance when both components use the same correlation depth. The

real selection mechanism performs as well whether the two components use the same or

different depths of correlation. This suggests that there is no merit attributable to the

third-level path as a branch prediction scheme. Further proving this point, the relation

that deeper correlation results in better prediction holds for the real selection mechanism.

As a result, the best prediction accuracy is obtained for the deepest correlation size – the

best prediction is achieved when both components are of depth 25. There is no advantage

of using two different correlation sizes for the two components in the branch

classification scheme, when a real selection mechanism is employed. When there is no

size restriction on the predictor, there is no advantage to using two different components

at all.

What is it about the dynamic oracle and static oracle limit studies that suggested to a

different assumption? The introduction of two lists enhances the prediction accuracy

even if the two lists are random and have nothing to do with prediction as discussed in

Section 5.3.1. The reason it seems that two very different correlation sizes can enhance

prediction is because those two components are so different from one another. It is clear

that this phenomenon is more pronounced for the dynamic selection oracle than for the

115

static selection oracle. Again, this supports the assertion that the improved accuracy

comes from random lists rather from inherent potential in the third-level branch

prediction scheme.

We were unable to find a way to separate any potential advantage in introducing two

different lists of prediction from the actual advantage held by the third-level scheme. It is

possible that such separation cannot be done and that the only potential merit of the third-

level path lies in a novel real selection mechanism that would expose it. If no such

selection mechanism exists, any merit that it might have exhibited will be moot.

It is clear, however, that known selection mechanisms cannot take advantage of this

elusive inherent advantage of using classification with no limits on resources. However,

it can be inferred from results obtained in Chapter 4 that when a size restriction is

involved, branch classification will work due to the ability of the selection mechanism,

either static or dynamic, to reduce aliasing.

Throughout this dissertation, we demonstrate how the lack of a limit study can result in

misleading conclusions for researchers. This Section shows, however, how a limit study

might itself lead to erroneous conclusions. We advocate using limits studies cautiously.

6.2 Dynamic History Length Fitting

The motivation behind the Dynamic History-Length Fitting (DHLF) is the empirical

observation that different programs achieve maximum prediction accuracy by

116

Figure 6.2 – DHLF comparison in as a scheme and structure

specFP95

0.94

0.95

0.96

0.97

0.98

0.99

1

applu apsi fpppp hydro2d mgrid sw im average

pr
ed

ic
tio

n
ra

te

5

39

10

6311

59

14

36

13

23

14
31

specINT95

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

cc
1

co
m

pr
es

s9
5 go

ijp
eg li

m
88

ks
im

vo
rte

x
pe

rl

av
er

ag
e

pr
ed

ic
tio

n
ra

te

31

14
14

18

14

38
14

1421

14
35

12

3

21

IBM

0.86

0.88

0.9

0.92

0.94

0.96

0.98

powerpc s390 average

global-avg(28)

dhlf -global

global-best

gshare-avg(7)

dhlf -gshare

gshare-best

1

11

1

19

117

employing different sizes of history register [21]. This observation was made before

in [19] without the proper explanation. In Section 4.5 we provided an explanation as to

why predictors have different optimal history sizes for different programs. The example

given that li and go have different optimal history register holds true, as Figure 6.2

depicts. The gshare predictor achieves its best prediction accuracy for the li benchmark

when the history size is set to 14, in comparison to history size of 3 for the go benchmark

for an 8K entries gshare.

To take advantage of this observation, the DHLF dynamically adjusts the size of the

history register during program execution to optimize the register for each program. This

is achieved by dividing the dynamic stream of branches into sub-streams termed steps. In

every other step the length of the history register is evaluated and might change if the

evaluation method finds the change beneficial. The evaluation is done only every other

step to omit the effects of cold starts from getting in the way of the evaluation. The step

is set to 16K branch instructions.

While the DHLF adheres to the empirical results discussed above, an examination of a

limit study indicates that both the li and the go benchmarks could benefit from longer

history sizes. The go benchmark can benefit from a history size of up to 21, and the li

benchmark can use up to 35. This phenomenon is consistent with the relationship

depicted in Figure 4.5 and described in Section 4.6. In other words, more branches and

deeper correlation result in more information, which results in more aliasing. More

aliasing, in turn, tends to reduce prediction. On the other hand, deeper correlation tends

to improve prediction. As a result of those two conflicting relationships, benchmarks

with fewer branches can usually benefit more from deeper correlation depth.

118

Figure 6.2 depicts a limit study and 8K entries gshare that give some insight into the

inherent advantage of using the DHLF scheme and structure. The first three bars

compare the best global scheme across benchmarks (global-avg), the DHLF (dhlf-global),

and the best global history size for each benchmark (global-best), in that order. All of the

first three graphs depict a limit study, and the structures therein were not subject to size

restrictions. Bars four to six, on the other hand, depict the same information, but for

resource limit of 8K entries gshare. This is the same size used in the original DHLF

paper [21]. Results seem to vary from one benchmark to another, however a few

observations are possible. First, on average, the DHLF performs worse than the global-

avg when no resource limit is imposed and better when resource limit is imposed. Notice

that in the global-avg we use an oracle to determine the best history size for each

benchmark. This kind of oracle is not realistic. The comparison between the global-avg

and global-dhlf, though, highlights the role of the DHLF in reducing aliasing. When no

resource is imposed the DHLF has no advantage over the overall best history size. On

the other hand, when resources are limited, and aliasing is a factor, the DHLF gains an

advantage. While this is true across the averages, different benchmarks show different

behavior. For example, for the mgrid benchmark, the DHLF performs better than the

global-avg, even when there are no resource restrictions. Other phenomena might

explain the fluctuation in behavior. The DHLF starts with a short history size and grows

accordingly. It can therefore better bear the negative effect of a cold start. On the other

hand, the dynamic size of the history register can cause a degradation in performance if

the history size keeps thrashing between different history sizes.

119

The second observation derived from Figure 6.2 is that when comparing the DHLF

to the best history size for each benchmark (global-best), the DHLF has no advantage.

Of course, global-best or its restricted counterpart gshare best, is not realizable, because

it uses an oracle to determine the best history size for each benchmark. However,

profiling a dataset can achieve performance very close to an oracle. Not only that, but

using the number of static branches in the program to decide on the depth of correlation

used when running the program, can results in a very good approximation of the oracle

[59]. Using this method doesn’t require profiling but it does require some mechanism in

the ISA to convey to the processor the BHR size decision made by the compiler.

The conclusions drawn here are consistent with results depicted in the original DHLF

paper [21]. Graphing the size of the BHR as a function of time, it was shown that in the

beginning of the program there was fluctuation in the size of the BHR, but that after this

initial fluctuation, the BHR stabilized on a specific size for each benchmark. This

suggests that there is no inherent advantage in changing the size of the BHR dynamically,

but rather that the DHLF takes advantage of the fact that each benchmark as an ideal

BHR size where the best prediction is achieved.

6.3 Paths Comparison

After showing that with known selection mechanisms the third-level path has no merit,

and assuming that the performance gain by third-level structures demonstrated in

previous studies is attributable to reducing aliasing, a comparison between the different

paths is straight forward. It is out of the scope of this dissertation to conduct a thorough

120

compress95

0.8

0.82

0.84

0.86

0.88

0.9

0.92

7 8 9 10 11 12 13 14 15 16

predictor size

pr
ed

ic
tio

n
ra

te

dhlf

gshare

cc1

0.7

0.75

0.8

0.85

0.9

0.95

1

7 8 9 10 11 12 13 14 15 16

predictor size

pr
ed

ic
tio

n
ra

te

dhlf

gshare

go

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

7 8 9 10 11 12 13 14 15 16

predictor size

pr
ed

ic
tio

n
ra

te

dhlf

gshare

ijpeg

0.95

0.96

0.97

0.98

0.99

1

7 8 9 10 11 12 13 14 15 16

predictor size
pr

ed
ic

tio
n

ra
te

dhlf

gshare

li

0.87

0.89

0.91

0.93

0.95

0.97

7 8 9 10 11 12 13 14 15 16

predictor size

pr
ed

ic
tio

n
ra

te

dhlf

gshare

m88ksim

0.95

0.96

0.97

0.98

0.99

1

7 8 9 10 11 12 13 14 15 16

predictor size

pr
ed

ic
tio

n
ra

te

dhlf

gshare

perl

0.7

0.75

0.8

0.85

0.9

0.95

1

7 8 9 10 11 12 13 14 15 16

predictor size

pr
ed

ic
tio

n
ra

te

dhlf

gshare

vortex

0.7

0.75

0.8

0.85

0.9

0.95

1

7 8 9 10 11 12 13 14 15 16

predictor size

pr
ed

ic
tio

n
ra

te

dhlf

gshare

Figure 6.3 a) comparing DHLF to gshare and bi-mode predictors for the SPECINT95
benchmarks

121

apsi

0.83

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

7 8 9 10 11 12 13 14 15 16

predictor size

pr
ed

ic
tio

n
ra

te

dhlf

gshare

applu

0.95

0.96

0.97

0.98

0.99

1

7 8 9 10 11 12 13 14 15 16

predictor size

pr
ed

ic
tio

n
ra

te

dhlf

gshare

fppp

0.85

0.87

0.89

0.91

0.93

0.95

0.97

7 8 9 10 11 12 13 14 15 16

predictor size

pr
ed

ic
tio

n
ra

te

dhlf

gshare

hydro2d

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

7 8 9 10 11 12 13 14 15 16

predictor size

pr
ed

ic
tio

n
ra

te

dhlf

gshare

mgrid

0.98

0.982

0.984

0.986

0.988

0.99

7 8 9 10 11 12 13 14 15 16

predictor size

pr
ed

ic
tio

n
ra

te

dhlf

gshare

swim

0.95

0.96

0.97

0.98

0.99

1

7 8 9 10 11 12 13 14 15 16

predictor size

pr
ed

ic
tio

n
ra

te

dhlf

gshare

s390

0.62

0.67

0.72

0.77

0.82

0.87

0.92

7 8 9 10 11 12 13 14 15 16

predictor size

pr
ed

ic
tio

n
ra

te

dhlf

gshare

powerPC

0.65

0.7

0.75

0.8

0.85

0.9

0.95

7 8 9 10 11 12 13 14 15 16

predictor size

pr
ed

ic
tio

n
ra

te

dhlf

gshare

Figure 6.3 b) comparing DHLF to gshare and bi-mode predictors for the SPECFP95 and
IBM benchmarks

122

comparison between all known branch prediction structures that have been studied as part

of different research paths. Instead, and because of the similarity of the classification

structure to hybrid branch predictors, we have chosen the DHLF branch prediction

structure as a point of comparison for other branch prediction structures.

Figure 6.3 compares the DHLF to gshare and the bi-mode branch prediction structures

for varying size resources. The advantage of the DHLF for small predictor sizes is clear.

This advantage is an indication that when resources are limited and aliasing degrades

prediction, the DHLF improves prediction by reducing aliasing. However, this advantage

is lost for predictors above 0.5KB for most benchmarks. For benchmarks with a large

number of static branches the advantage continues even for a 2KB predictor over gshare.

Contrary to what might be expected from two different branch prediction structures that

implement the same branch prediction scheme, the DHLF and gshare do not converge as

resources increase. Instead the gshare prediction surpasses the prediction achieved by

the DHLF. The lack of convergence might be due to the DHLF filtering large correlation

specFP95

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

7 8 9 10 11 12 13 14 15 16

predictor size

pr
ed

ic
tio

n
ra

te

dhlf

gshare

specINT95

0.85

0.87

0.89

0.91

0.93

0.95

0.97

7 8 9 10 11 12 13 14 15 16

predictor size

pr
ed

ic
tio

n
ra

te

dhlf

gshare

Figure 6.3 c) comparing DHLF to gshare and bi-mode predictor for the SPECINT95 and
SPECFP95 averages

123

sizes out of the PHT in order to alleviate aliasing, but as resources increase, this

filtering becomes unnecessary. A similar phenomenon is present in the filter branch

prediction structure. It might be the case that for different sizes of PHT, the step size

needs to vary in order to alleviate the degradation in performance. Alternatively, it is

possible that changing the BHR causes thrashing in the PHT, which cause this loss in

performance.

6.4 Summary

The conclusions presented in Chapter 5 led us to question the merit of third-level

adaptivity as an orthogonal branch prediction research path to the aliasing path. This

chapter confirms that assertion. Third-level adaptivity does not represent a better branch

prediction scheme, but rather a better branch prediction structure under certain

conditions. A better use of resources, specifically through filtering, leads to more

accurate prediction for small branch prediction structures. Since some branches can be

predicted with a small depth of correlation just as well as with a large depth of

correlation, the small depth of correlation is chosen for filtering purpose. Consequently,

it is important to compare third-level structures to aliasing structures and hybrid

structures. When comparing the bi-mode predictor to the DHLF we observed that the bi-

mode predictor achieves a better prediction accuracy.

A more efficient method of capturing the gain introduced by the DHLF was proposed.

The method sets the depth of the history register for each benchmark, as opposed to

having it constant as it is implemented in current processors, or dynamically changing it

124

as proposed by third-level structures. The drawback of this method is the need to

implement a new ISA instruction to set the length of the history register.

It is important to emphasize that it was not proven that the third-level adaptivity’s lack

the potential to be a better branch prediction scheme, but rather the inability of current

structures to take advantage of any merit that may exist. We specifically showed that

structures known to us do not improve prediction by exploiting the third-level adaptivity,

but rather by drawing upon the underlying concept of reducing aliasing.

125

Chapter 7 - The Do’s and Don’ts of Branch
Predictor Structures

3In this chapter we identify good criteria for building branch predictors. The criteria are

deduced from three different sources. First, previous branch prediction structures in the

literature are considered. This section serves only to summarize the highlights of the

studies discussed previously in Section 2.2.2, and to address any different conclusions

reached in light of studies done in this dissertation. The second source is the group of

studies conducted for this thesis and presented in previous chapters. Those studies reveal

an array of misconceptions regarding branch prediction practices, and should be

considered in future predictors. Lastly, two micro-architectural trends introduced in

previous studies that profoundly impact future branch predictors are considered. We

choose to start from the later.

7.1 Micro-architectural Trends

7.1.1 Wire Delay

Several recent studies have shown that in the near future, wire delay will need to be

considered in the design of future processors [63][64][65]. It was noted that for the most

part wire quality does not degrade and the number of reachable transistors in a fixed

cycle will stay constant. The conclusion of these early studies was that, in fact, there is

no wire problem. However, this conclusion ignored the exponentially increasing number

of transistors inside a chip.

126

It was observed that technology has reached a point where the distance a signal can

travel in one cycle becomes smaller than the width of a chip [63]. The distance a signal

can travel in one cycle compared to the width of a chip has been decreasing rapidly for a

long time. However, such a fact was of little consequence because this distance was

always larger than the width of one chip. This is changing in current technologies and

will continue to deteriorate in the future. This has several immediate implications. First,

global communication between on-chip modules will take longer than one cycle, and the

number of transistors reachable in one cycle will stop increasing. The ever-increasing

disparity between wire and gate delays will cause microarchitects, who have never before

needed to concern themselves with wire latency, to attend to this matter [63].

Building on these observations, a scaling experiment was done on two different

architecture types [64]: an architecture that aims for fast clock cycle, such as Compaq’s

Alpha; and an architecture type that aims for large IPC, such as HP’s PA-RISC. It was

shown that due to the wire technology’s inability to scale, microarchitects will soon face

the unattractive tradeoff between slowing down the clock cycle and smaller IPC. As a

result, both of those architecture types will only be able to sustain performance

improvements of 12.5% annually, a far cry from the annual rate we got accustomed to of

50-60%. The reason is that as feature size shrinks, and wires become slower compared to

gates, the amount of state reached in a cycle decreases.

This new observation has been, for the most part, ignored in the branch prediction

research community. Elaborate structures with sizes of up to 64KB have been proposed

[49]. The assumption that in the future more transistors will be available to the branch

prediction module has given the illusion that aliasing will cease to degrade prediction

127

accuracy in future chip generations. It was shown, however, that in 35nm

technology, expected by the year 2012, it might be that only PHT of sizes between 512

entries and 4K entries will be accessible in one cycle [64]. For these modest sizes, even

benchmarks from SPECFP95, which are traditionally easy to predict and do not suffer

much from aliasing, suffer significantly in performance. For example, a 512 entry PHT

achieves less than 96% prediction accuracy compared to 99% prediction accuracy for an

aliasing free scheme for the hydro2 benchmark (see Figure 4.4). Notice that the aliasing

free ideal accuracy is almost achieved by a PHT of 2K entries. The hydro2 is usually not

included in branch prediction studies since it is easy to predict and usually does not suffer

from performance degradation due to resource constraints. We conclude that even

benchmarks that are currently not considered to run slower due to poor branch prediction,

will suffer performance degradation in the future due to aliasing.

Corporations rarely reveal complete details of the branch prediction structure used in

commercial chips. It is even more rare to find a window into the decision-making

process foregone an actual implementation of a branch predictor. It is, therefore, hard to

evaluate whether the disparity between wire and gate delays has shown itself to be a

problem in present chip designs. One example of an exception to corporate secrecy is the

G4 PowerPC microprocessor. A 2K entry gshare branch predictor was evidently

considered but eventually replaced by a 2K entry bimodal predictor. The reason behind

the switch was to remove the XOR gate in front of the predictor, because it was in the

critical path [58]. Notice that a 2K entry predictor is a very small predictor but was still

in the critical path. As we have seen, it has been suggested that the growing disparity

between gate and wire delays must be taken into consideration by microarchitects in their

128

design of new chips. One study to take this advice in the branch prediction field

discussed the impact of delay on the design of branch predictors [65]. This study showed

that trading prediction gains, which come with increasing the predictor size, with

increasing delay is never a good idea. In other words, the pipeline should never be halted

because a branch instruction is awaiting a decision from the branch predictor even if the

prediction will be more accurate than a prediction produced in one cycle. This is

somewhat intuitive, since halting the pipeline just to get a prediction defeats the purpose

of having a predictor to begin with. After highlighting this impractical tradeoff,

alternatives to improve prediction without increasing the size of the predictor were

investigated [65]. Observing that 57% of dynamic branches have more than one cycle to

be predicted, a cascading look-ahead predictor was suggested. The cascading predictor

uses a small predictor for dynamic branches that need to be predicted in one cycle, while

using a larger predictor to predict branches that have more than one cycle to be predicted.

The cascading branch predictor was able to alleviate the degradation of IPC compared to

a gshare predictor, but it was not able to compensate for it completely. The same study

learned an already used approach of an overriding predictor. The overriding predictor

allows the larger structure to override the prediction made by the smaller structure for a

small misprediction penalty. The overriding approach showed to outperform the

cascading predictor [65].

7.1.2 Software Development

As computers become faster and are able to process more information in less time,

software developers take advantage of the newly acquired processing power to develop

129

ever-more demanding software. This is the main reason why most computers

become obsolete after a few years. The size of programs has been shown to increase

constantly and consequently, the I-cache performance degrades [2]. It is easy to believe

that as code bloats, the number of static branches in the program increase.

The adverse effects of a larger number of static branches in a program should be obvious

by now and is summarized in Figure 4.6. It is peculiar, therefore, that studies which

consider future structures by assuming hardware real estate that will only be available in

the future, are conducted with current and past software4.

The difficulty of predicting what software will be available in the future is obvious.

However one remedy for this difficulty is to choose a set of benchmarks that is especially

heavy with branches as a way of anticipating the increased number of static branches will

be common in future software5. With that in mind, the reader is encouraged to consider

benchmarks that are heavy with static branches like go, gcc, PowerPC, and S390, to

better represent future software than other benchmarks.

7.2 Observing Past Work

The background presented in Section 2.2 highlights the advantages and disadvantages of

current branch prediction structures that aim to reduce aliasing. Those methods are able

to reduce aliasing as a result of following good practices and avoiding the following bad

practices.

4 See chapter 3 for why this dissertation is using the SPEC95 and not the SPEC2000 benchmark suite.

5 While not the first ones to note this, we suspect that the low number of branches present in some of the

SPEC benchmarks does not represent current software, let alone future software that will become available.

130

7.2.1 Good Practices

A few good practices for building a structure to reduce aliasing can be extracted from the

observation of past work that has been done on the subject. The first and foremost of

these practices is reducing negative aliasing. The agree, and bi-mode predictors do so by

splitting the PHT into two. One PHT serves the branches that are mostly taken, and the

other one serves those that are mostly not taken. By splitting the branch streams into

branches that are biased to be taken and branches that are biased not to be taken, negative

aliasing is significantly reduced, and prediction is improved. The classical solution to

reduce aliasing is the introduction of tags into the PHT. This was not found to be cost

effective. The only structure that is close to utilizing associativity is the skew predictor.

The skew predictor achieves pseudo-associativity by means of redundancy. Finally by

filtering easy-to-predict branches out of the PHT, the filter mechanism was able to reduce

aliasing in the PHT, while retaining good prediction for the filtered branches.

7.2.2 Bad Practices

In the past, work done on reducing aliasing in branch prediction has resulted in several

pitfalls. The first of these is that all branch prediction structures that reduce aliasing have

demonstrated redundancy associated with the structure. For example, in the bi-mode

structure, the redundancy is in the form of the choice PHT. The skew predictor has the

same information stored in two or three different places, and so on. Branch prediction

structures that reduce negative aliasing neglect to address the other kind of aliasing—that

131

is, aliasing between instances that do agree and do not agree with the branch’s bias.

This negligence is present in the agree and the bi-mode predictors. When implementing

the scheme in a branch prediction structure, it is essential to retain all the information that

helps the branch prediction scheme achieve its peak performance. The filter mechanism

filters easy-to-predict branches out of the PHT, but at the same time loses the special

instances of those easy-to-predict branches that do not comply with the bias, such as loop

exist branch instance. Consequently, even with a large amount of hardware dedicated to

the filtering mechanism, it will never reach the peak performance of the global scheme it

supposed to implement.

7.3 Studies Done in This Dissertation

7.3.1 The Omniscient Dynamic Selection Mechanism

 Through Chapter 5’s discussion of hybrid predictors, the wonders of the dynamic

selection mechanism were revealed when the need to balance between two unrelated

information arises. The dynamic selection mechanism was proven to be instrumental in

reducing aliasing. Moreover, its ability to reduce aliasing by mapping branches that are

predicted better by component A into component B, the dynamic selection mechanism

was able to map the ‘hybrid branches’ to their respective best component.

It is tempting to conclude that the dynamic selection mechanism in the bi-mode predictor

explains why it performs better than the agree predictor that utilize a static selection

mechanism. However, this will be shown to be a false conclusion. The difference in

performance results from the agree predictor attaching the bias to the BTB. As the size

of the agree predictor grows, the number of entries dedicated to the bias cannot grow

132

since they are attached to the BTB. In other words, the agree predictor throttles the

resources dedicated to the bias, while the bi-mode predictor does not.6

The value of the dynamic selection mechanism may be seen when either a bias bit is not

present in the ISA and a dynamic selection mechanism therefore becomes imperative, or

when there is large disparity of branch behavior between different datasets. Such

disparity is more prevalent when choosing between two different schemes, as in the

McFarling predictor, than when selecting the bias of a branch, as in the bi-mode

predictor.

7.3.2 Compile Time Information

Throughout the history of the branch prediction field, it seems as if a dynamic approach

to data collection and decision making during run time has always prevailed over the

static approach, where the decision making is done during compile time. Dynamic

branch predictors are more accurate than static branch predictors. The bi-mode predictor

outperforms the agree predictor because it was thought to select the bias of the branch

dynamically. And dynamic selection mechanisms perform better than static selection

mechanisms because the best predictor might change throughout the program execution.7

6 The bias/selection throttling effect has been ignored in multiple studies. It degraded the performance of

the bi-mode and YAGS predictors when compared against a branch predictor that utilized value prediction

[66]. We speculate here that it likely caused a similar degradation to the McFarling predictor when

compared to the multi-hybrid predictor [49].

7 For the later two examples, we indicate what was thought before this dissertation showed it not to be the

true.

133

In the rush to dynamically determine more and more information, it has been

forgotten that some information that is very difficult to determine dynamically during run

time can be very easily obtained statically during compile time. In such cases, compile

time optimization can be very useful. The most obvious example of this in the branch

prediction field is the number of static branches present in a program.

As we have seen in Chapter 5, the number of static branches present in a program has a

significant effect on the amount of aliasing present in the PHT. We believe this

information is crucial to tune the size of the BHR for the best tradeoff between aliasing

and correlation.

7.3.3 The Dependence of Correlation on Structure Size

Chapter 4 highlighted the dependence between correlation and aliasing. It is clear now

that deeper correlation entails better prediction. It is also clear that deeper correlation

entails more aliasing. We observed that every program, depending on the amount of

aliasing it experiences, has a unique sweet spot of correlation where it achieves the best

tradeoff between higher prediction due to correlation and lower prediction due to

aliasing. We also observed that some programs, like li and compress, experience very

little aliasing, and therefore can achieve their peak prediction performance by utilizing as

much correlation as possible.

The problem is that the amount of correlation is tightly bound to the size of the predictor.

Take, for example, a gshare structure of 1K entries (0.25KB). The most correlation one

can achieve is 10 deep. As we mentioned before, some programs are best predicted using

less than 10 bits of correlation, but this does not accommodate programs that can utilize

134

more than 10 bits of correlation. Those are forced to use only the 10 bits a 1K entry

gshare can accommodate.

The problem is accentuated in structures that attempt to reduce aliasing like the skew and

bi-mode predictors. The closest bi-mode structure in size to a 1KB entry gshare is a

0.75KB entry bi-mode, out of which 0.25KB entries are dedicated to each choice PHT.

As a result, the most correlation that can be exploited in such a structure is a history of 8

bits deep.

It is therefore beneficial to alleviate, if not eliminate, the correlation depth dependence on

the structure size. Such de-coupling will enable the pursuit of better predictors without

placing limitations on the size of the structure.

135

Chapter 8 - Solutions

This chapter introduces YAGS - a new branch prediction structure that capitalizes on the

criteria and observations introduced in the previous chapters. The chapter goes on to

identify aliasing in the first-level table as the primary impediment of prediction accuracy.

Lastly the chapter proposes a static, profile based, choice PHT to reduce aliasing in the

first-level table. The profile-based choice PHT is presented in the context of YAGS, but

can be incorporated into other predictors as well. The profile based choice PHT not only

reduces aliasing in the first-level structure, but also facilitates transforming YAGS into a

cascading predictor.

8.1 Yet Another Global Structure (YAGS)

In this section we introduce YAGS, a branch prediction structure that implements the

global scheme and that is designed to reduce aliasing. First, we introduce the motivation

behind this predictor and explain the need for a new branch prediction structure after so

many have been proposed already. Then, we introduce YAGS, compare it to previous

branch prediction structures, explain its advantages, and explore its design space.

8.1.1 Motivation

So far it has been observed that the ‘third-level of adaptivity path’ and ‘hybrid path’ are

really just techniques that reduce aliasing. And therefore all branch prediction structures

that implement those paths should be compared to each other and not treated as a separate

path of research in the branch prediction field. Elaborate and large branch prediction

136

structures have caused the illusion that aliasing ceases to degrade performance in

branch prediction structures. Not only does aliasing still degrade performance, but it will

only get worse in future chip technologies. As the disparity between wire and transistors

increases, and the cycle time shrinks, predictors will have to decrease in size in order to

be able to produce a prediction in one cycle. Smaller tables entail a larger number of

aliasing. This problem is exacerbated by the growing code size of applications and might

cause aliasing to significantly degrade performance even for simple predictors like the

bimodal.

 Despite the numerous branch predictors devised to alleviate the negative effects of

aliasing on prediction accuracy, the aliasing problem is not completely solved (Section

4.4). The micro-architectural trends discussed in Section 7.1 are bound to aggravate the

aliasing problem even further in the future. It is clearly necessary to try and further

reduce aliasing by devising future structures that carefully consider such issues as size

and delay.

8.1.2 YAGS

YAGS is based on the observation that some redundant information is stored in the PHT.

For a predictor to be able to reach the full potential of the global branch prediction

scheme, it is enough to store the branch’s bias and those branch instances that do not

comply with the bias. Traditionally, branch predictors have stored all branch instances.

Figure 8.1 depicts a diagram of the YAGS branch predictor. We chose the bimodal

structure to store the branches’ bias and termed it, as in the bi-mode predictor, the choice

PHT. Two direction caches were then added to store the instances of the branch that do

137

not comply with the bias. Each entry in the direction caches contains an address tag,

a history tag, and 2bc state machine. The address tag is needed to distinguish the entry as

belonging to a specific branch. Notice that unlike to traditional caches, the address tag is

taken from the LSBs of the branch address. The reason for this is that the cache is

indexed by the branch address xored with the history register, which leads to a loss of the

address information. Due to the nature of the xor function, aliasing may occur between

two consecutive branches. Using the branch address as the tag will allow aliasing to

occur only in the case of some spatial locality.

The reason for having two direction caches rather than a consolidated one is the aliasing-

reducing property of the choice PHT, discussed in Chapter 5. Having two direction PHTs

allows the choice PHT to move branch instances between them if one of the direction

PHTs is overcrowded with information.

Experiments have shown that an address tag of 6 to 10 bits will suffice. Too small of an

address tag might cause some branch instances to be associated with one branch, in

practice they belonging to another branch. In most cases, 6 to 10 bits of address tags are

enough to identify the branch. Extending the address tag to the size of the word is not

cost effective. In contrast to traditional caches, this risk can be taken since the

information stored in those caches is branch prediction. The worst that can happen is a

wrong prediction; in traditional caches erroneous execution can result.

When comparing YAGS to the bi-mode branch predictor, two distinctions become

apparent. First, the choice PHT is used not only for saving the branch bias but also for

predicting the branch when no special instance of the branch is identified in the direction

caches. Second, since the direction caches only store the special instances of the branch

138

which do not comply with the bias, the direction caches can be much smaller than the

direction PHTs in terms of entries. The problem with having a smaller number of entries

in the direction caches as compared to the choice PHTs is that less history is used to

index the structure and as a result, less correlation is taken advantage of. On the other

hand, utilizing less history means that less information is stored in the direction caches,

which leads to less aliasing.

The addition of the history tag solves this problem, but even more importantly, the

history tags decouple the correlation depth used by the predictor from the size of the

predictor. While in previously proposed predictors the depth of correlation is bound by

the size of the PHT, the introduction of the history tag in the direction caches almost

completely decouples the depth of correlation from the size of the direction caches in

YAGS. Obviously, the same method can be used in other predictors as well, but the size

Figure 8.1 – Diagram for the YAGS predictor

139

of the correlation is more tightly coupled to the size of the predictor in other branch

prediction structures. Table 8.1 shows the size increase for different predictors if a

history tag of increasing correlation is added to them.

Table 8.1. – The relationship between correlation depth and predictor size increment

The configuration of YAGS presented in Table 8.1 includes a 6 bits address tag and

direction caches, which have a quarter the number of entries that the choice PHT has.

While adding 5 bits of history tags to YAGS requires an addition of 55% in size, adding

it to most other predictors would require an addition of 250% to resources. This is

another of the advantages of YAGS.

When a branch shows up in the instruction stream, the choice PHT is accessed. If the

choice PHT indicates “taken,” the “not taken” direction cache is accessed to check if it is

a special case where the prediction does not comply with the bias. If a miss occurs in the

“not taken” direction cache, the choice PHT is used for the prediction. The same happens

if the choice PHT indicates “not taken” but this time the check is done in the “taken”

cache. The choice PHT is addressed and updated as in the bi-mode choice PHT. The

“not taken” cache is updated if a prediction from it was used. Further more, an entry is

of bits gshare Skew bi-mode filter agree YAGS

2 100% 100% 66.6% <100% <100% 22%

3 150% 150% 100% <150% <150% 33%

4 200% 200% 133.3% <200% <200% 44%

5 250% 250% 166.6% <250% <250% 55%

140

added to the “not taken” cache if the choice PHT indicates “taken” and the branch

outcome is “not taken.” The same happens with the “taken” cache.

The classic way to reduce aliasing is to make the cache set associative. Until now, the

introduction of tags was not a feasible solution. YAGS makes the introduction of tags

cost effective. When making the caches set-associative, there is some extra cost for

keeping a correct replacement policy. For example, in a two-way set-associative cache,

one bit for every two entries will suffice to keep track of which entry was replaced last.

We suggest a Least Recently Used (LRU) replacement policy with one exception: an

entry in the “taken” cache which indicates “not taken” will be replaced first to avoid

redundant information. The reasoning behind this is that if an entry in the “taken” cache

is set to “not taken,” this information is already in the choice PHT and therefore is

redundant and can be replaced.

Making the direction caches set associative pays off for selected benchmarks, but overall,

is not cost effective. Reducing the amount of information stored in the direction caches

reduces aliasing in the direction caches to the point that does not contribute much to

performance degradation and does not justify the extra bit associated with a 2-way set

associative and the added latency. Making the direction caches set-associative might

help to reduce aliasing for future programs that have more static branches. The set-

associative option was not investigated any further in this thesis.

Notice that when increasing the size of the direction caches, the size of the history

register can be increased to better exploit correlation between branches. However, when

making the direction caches two-way set-associative, one less bit is used to index them

than if the direction caches were direct-mapped. This loss of correlation has a negative

141

effect on prediction accuracy. In order to maintain the same level of correlation

when comparing two-way set-associative caches against a direct-map caches YAGS of

the same size, one bit of history must be added to the history tag.

8.1.2.1 Prediction Accuracy

YAGS is compared against the gshare and bi-mode predictors. The gshare is the base

predictor and is shown for reference. The bi-mode predictor, on the other hand, has been

established as the best predictor in the ‘aliasing’ path of research, and has been compared

many times to the agree, filter, and skew predictors. In Chapter 5, we compared the bi-

mode to the McFarling predictor and established that the bi-mode predictor is more cost

effective. The McFarling predictor has been established as one of the better predictors in

the ‘hybrid’ path of research.

Figure 8.2 shows the prediction accuracy for gshare, the bi-mode predictor and YAGS.

As can be seen, YAGS outperforms all other structures tested. As the size of the PHT

increases, YAGS’ advantage over the other schemes decreases. This is expected since all

structures examined implement the global branch prediction scheme. As the size of those

structures increases, the aliasing problem in the PHT decreases, and therefore the

performance of all predictors converges.

One of the pitfalls of the SPEC95 benchmark suite is that most traces have a very small

static branch signature [12]. For example, the compress benchmark has only 495 static

branches. Those branches are executed over and over again throughout the course of the

program. Because of this small static branch signature, each branch is more likely to

have a unique entry in the PHT for each history instance. A small static branch

142

cc1

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion dept h

bi-mode
yags
gshare
global

go

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion dept h

bi-mode
yags
gshare
global

co mpress

0.75

0.8

0.85

0.9

0.95

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlation depth

bi-mode
yags
gshare
global

ijpeg

0.85

0.9

0.95

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion depth

bi-mode
yags
gshare
global

l i

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

correlat ion depth

bi-mode
yags
gshare
global

vo rtex

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

correlat ion dept h

bi-mode
yags
gshare
global

m88

0.7

0.75

0.8

0.85

0.9

0.95

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion depth

bi-mode
yags
gshare
global

perl

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion depth

bi-mode
yags
gshare
global

Figure 8.2 a) comparing YAGS for the SPECINT95 benchmarks

143

A pplu

0.75

0.8

0.85

0.9

0.95

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion dept h

applu bi-
mode
applu yags

A psi

0.9

0.95

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion dept h

bi-mode
yags
gshare
global

F ppp

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion depth

bi-mode
yags
gshare
global

H ydro 2

0.85

0.9

0.95

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion dept h

bi-mode
yags
gshare
global

M grid

0.95

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

correlat ion depth

bi-mode
yags
gshare
global

Swim

0.9

0.95

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

correlat ion dept h

bi-mode
yags
gshare
global

po werP C

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
log2 PHT size

bi-mode
yags
gshare
global

S390

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion dept h

bi-mode
yags
gshare
global

Figure 8.2 b) comparing YAGS for the SPECFP95 and IBM benchmarks

144

signature results in a very small amount of aliasing in the PHT, and therefore boosts the

performance of the branch prediction structure.

The gcc, go, and the IBM benchmarks are thus of special interest because of their large

static branch signatures. As can be seen in Figure 8.2, YAGS outperforms the other

structures for the go, gcc and IBM benchmarks. The benchmarks suffers considerably

from destructive aliasing. The gshare scheme for small predictors achieves a 71.7%

correct prediction accuracy while the aliasing-free potential of the global scheme is

97.4% correct prediction accuracy in the case of the S390 benchmark. For about the

same amount of resources that allows gshare to achieve a 71.7% accuracy, YAGS

achieves 85%. The bi-mode, which is designed to reduce destructive aliasing, achieves

only a 78.5% accuracy.

8.1.2.2 Amount of Information Stored in Prediction Structures

The main advantage of YAGS over other predictors is its ability to store less information

without compromising the potential prediction accuracy of the global scheme, as is done

by filter mechanisms. To check on that premise, we tapped the wires

specIN T

0.7

0.75

0.8

0.85

0.9

0.95

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion dept h

bi-mode
yags
gshare
global

specF P

0.85

0.9

0.95

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
correlat ion dept h

bi-mode
yags
gshare
global

Figure 8.2 c) comparing YAGS for the SPECINT95 and SPECFP95 averages

145

Figure 8.3 a) Amount of information stored for the SPECINT95 benchmarks

cc1

0

10000

20000

30000

40000

50000

60000

70000

0 5 10 15 20 25 30 35
correlat ion dept h

gshare

bimode

yags

go

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20 25 30 35
correlat ion dept h

gshare

bimode

yags

co mpress

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35
correlation depth

gshare

bimode

yags

ijpeg

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35
correlat ion depth

gshare

bimode

yags

l i

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35

correlat ion dept h

gshare

bimode

yags

vo rtex

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 5 10 15 20 25 30 35

correlat ion dept h

gshare

bimode

yags

m88

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35
correlation depth

gshare

bimode

yags

perl

0

10000

20000

30000

40000

50000

60000

70000

0 5 10 15 20 25 30 35
correlat ion depth

gshare

bimode

yags

146

Figure 8.3 b) Amount of information stored for the SPECFP95 and IBM benchmarks

A pplu

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30 35
correlat ion dept h

gshare

bimode

yags

A psi

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25 30 35
correlat ion depth

gshare

bimode

yags

F ppp

0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30 35
correlat ion dept h

gshare

bimode

yags

H ydro 2

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35
correlat ion dept h

gshare

bimode

yags

M grid

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35

correlat ion dept h

gshare

bimode

yags

Swim

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30 35

correlat ion dept h

gshare

bimode

yags

po werP C

0

20000

40000

60000

80000

100000

120000

0 5 10 15 20 25 30 35
log2 PHT size

gshare

bimode

yags

S390

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 5 10 15 20 25 30 35
correlat ion dept h

gshare

bimode

yags

147

used to index the different structures in the bi-mode, gshare, and YAGS predictors for

distinct information stored in those structures throughout the program execution. For

every piece of information stored, we checked whether it was duplicated. If the

information tapped was new, we incremented the amount of information stored in the

predictors. For gshare, the line accessing the PHT was tapped. For the bi-mode and

YAGS, we tapped both the choice PHT and the direction PHTs or caches, respectively.

Figure 8.3 shows the amount of information stored in the different predictors. YAGS

consistently stores less information than the bi-mode and gshare predictors. As the depth

of correlation increases in the predictors, the amount of information stored in YAGS

increases very moderately compared to the amount of information stored in the bi-mode

and gshare predictors. As Figure 4.5 demonstrates, YAGS main strength is that less

information translates directly to less aliasing and better prediction accuracy.

It is well known that the bi-mode predictor is more accurate in predicting branches than

the gshare predictor. Though this may be true, Figure 8.3 shows that the bi-mode

predictor stored more information that the gshare predictor. The information gap

Figure 8.3 c) Amount of information stored for the SPECINT95 and SPECFP95 averages

specIN T

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 5 10 15 20 25 30 35
correlat ion depth

gshare

bimode

yags

specF P

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35
correlat ion depth

gshare

bimode

yags

148

between the two predictors does not change considerably across different correlation

depths. This gap is due to the fact that the choice PHT in the bi-mode predictor stores the

bias of the different branches on top of the correlated information stored in the PHTs.

The bi-mode predictor achieves better prediction accuracy than the gshare predictor, not

by reducing aliasing, but by reducing destructive aliasing only. The extra information the

bi-mode stores on top of what the gshare predictor stores indicates that the bi-mode

predictor suffers more aliasing. If we were to check for destructive aliasing, we would

expect the bi-mode predictor to have less than the gshare predictor. Since YAGS has the

same mechanism to reduce destructive aliasing as the bi-mode predictor has, this

comparison holds.

8.1.2.3 Testing Under Context Switching

Throughout consecutive generations of microprocessors, the amount of hardware used for

the branch prediction structures has grown. Ideally, the prediction accuracy should be

proportional to the amount of hardware invested in the structure. One drawback of

increasing the hardware size is the time it takes the branch predictor to reach its peak

performance, otherwise known as a cold start. In the presence of intensive context

switching, the warm-up time of the branch prediction scheme might have a significant

influence on the misprediction rate. Furthermore, due to long warm-up times, some

complex structures might end up achieving less accurate predictions than less

sophisticated structures. It has been shown that a hybrid predictor, composed of gshare

and the bimodal, has good performance in the presence of a context switch [10]. This is

due to a short warm-up time of the bimodal component. Each branch is mapped to only

149

one entry in the PHT of the bimodal structure. Therefore, it takes only a few

executions of a branch for its respective entry to reflect the information stored the branch.

On the other hand, the ghsare structure has to execute a branch several times for each

history instance before it warms up. The potentially large number of history instances,

given by 2history length, will result in a very long warm-up time and that, in return, will

cause the degradation of performance in the presence of context switches. Other

predictors, such as the skew predictors, suffer from the same problem.

On the other hand, one would expect the bi-mode predictor and YAGS to be more

tolerant of context switches. Most of the information in the “not taken” direction PHT of

the bi-mode predictor is “not taken”. So once the choice PHT points to the “not taken”

direction PHT, the probability of a “taken” prediction is very small. Thus, only few

executions of each branch are needed to warm up the choice PHT, which is essentially

the bimodal predictor. After that, it will take more executions to warm up the branch’s

history instances, which do not comply with the branch bias. But for the most part, the

predictor should not perform worse than the bimodal predictor. The same phenomenon

occurs in YAGS. This time the short warm-up time is due to the address tags. There is a

low probability that the tags will match after a context switch. Therefore, until some tags

match, the choice PHT will serve as the predictor.

In a sense, YAGS and the bi-mode predictors are hybrid predictors, which combine the

gshare scheme with the bi-model. In the presence of a context switch, they should

exhibit the short warm-up time of the bimodal predictor.

In order to simulate a context switch, a new trace file was created by interleaving all eight

SPECINT95, the six SPECFP95, and the IBM benchmarks every 60,000 instructions.

150

This number was chosen not to reflect a real context switch interval, but to exagerate

the effect of context switching on the various predictors.

Figure 8.4 shows the performance of the predictors tested in the presence of context

switches. As expected, YAGS performs much better than gshare because of its short

warm-up times. The difference between the accuracy of the different predictors is much

more pronounced in the presence of context switches. The gshare structure would

converge with YAGS only if the PHT was large enough to accommodate most of the

branch instances from all the SPEC95 benchmarks. Without context switches, the

predictor’s performance would converge if the gshare PHT were big enough to

accommodate the benchmark with the largest branch signature.

8.2 In-Depth Analysis

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

100 1000 10000 100000

Predictor size(KB)

P
re

d
ic

ti
o

n
 R

at
e

YAGS
gshare

Figure 8-4 – Context Switching Effect on the Different Predictors

151

YAGS outperforms leading branch predictors because of its ability to reduce aliasing.

How much aliasing still exist in each of YAGS’ structures and the inter-working of the

choice PHT with the direction caches is not clear. We next present a series of studies that

gives an insight to the inter-working of YAGS. We chose to show only the results for the

gcc benchmark because results for other benchmarks are similar and do not result in a

better insight into YAGS.

Figure 8.5 shows the prediction accuracy and the usage of the taken direction cache and

the choice PHT for the gcc benchmark in a grid of four graphs. Results for the not taken

Figure 8.5 – aliased and not-aliased instances usage and prediction accuracy for the choice
PHT and taken direction cache

152

direction cache are not shown for they are very similar to the result of the taken

direction cache.

For the choice PHT, prediction accuracy of not-aliased instances is expectedly higher

than the overall prediction accuracy and the prediction accuracy of the aliased instances.

As the predictor size increases not-aliased prediction accuracy and overall prediction

accuracy converges. The reason is that the percentage of aliased instances is approaching

zero. As the size of the predictor increases, the number of choice PHT hits is decreasing.

The reason is that increase predictor size comes with increased correlation depth. As a

result the number of instances, which do not comply with the bias, increase, and the

direction caches are utilized more heavily. Because a hit in the choice PHT only occur

when there is a miss in the direction cache, the increase utilization of the direction caches

result in a smaller utilization of the choice PHT.

In the direction cache, the number of hits increases as the predictor increase in size. The

reason is an increase utilization of correlation depth and was discussed above. As in the

choice PHT the prediction accuracy of the not-aliased instances is greater than the

prediction accuracy overall for small predictors. The prediction accuracy of the two

converges for larger predictors. Interestingly enough, the prediction accuracy of the

aliased instances increases as the predictor size increases. At certain predictor size it

surpass the prediction accuracy of the not-aliased instances. However, the increase in

accuracy as little effect on the overall prediction accuracy because the number of aliased

instances decreases as the predictor size increases. The explanation for that is hinted in

chapter 4. Notice that aliased instances in some why implement the history only scheme.

In chapter 4 it was shown that with larger correlation the history scheme surpass the

153

global scheme in prediction accuracy. In contrast to what this result might suggest,

a YAGS version that implement the history only scheme doesn’t work as well and the

YAGS that implement the global scheme.

8.3 And Yet More Aliasing

The introduction of the two-level branch predictor [22] made the bimodal branch

predictor obsolete in the eyes of researchers. The promising potential of the two-level

branch predictors led to an outpouring of research into correlating branch predictors.

When aliasing was discovered to degrade performance in the two-level branch predictors,

its negative effect on one-level branch predictors, such as the bimodal structure, was no

longer a priority. While it was established that aliasing in the bimodal structure did not

occur often as in the second-level PHT, it appears that its adverse effect on prediction

was never investigated, and no solution to aliasing in the first-level table was ever

proposed.

The effect of aliasing in one-level branch predictors is of interest for few reasons. For

one, micro-architectural trends, such as increasing code size and decreasing state

reachable in one cycle, might force processors to scale down their branch predictors to

one-level branch predictors. Even if it is possible to avoid the bimodal structure, some

aliasing reducing structures has a bimodal structure embedded in them. Examples for

such predictors are the bi-mode, YAGS and the selection mechanism in most hybrid

154

predictors. If aliasing degrades performance in the bimodal structure, it ought to

degrade the performance of those branch predictors too.

In the bimodal scheme, each branch needs only one entry, compared to the global scheme

with a BHR of size 10, where each branch theoretically needs 1024 entries. This suggest

there will be much less aliasing in the bimodal predictor compared to the gshare

predictor. However, since each aliasing instance in the bimodal predictor adversely

effects all instances of this branch, we expect each aliasing instance in the bimodal

155

cc1

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
correlat ion dept h

bimodal UL bimodal

go

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
correlat ion dept h

bimodal UL bimodal

co mpress

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
correlat ion depth

bimodal UL bimodal

ijpeg

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
correlat ion dept h

bimodal UL bimodal

li

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

correlat ion depth

bimodal UL bimodal

vo rtex

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

correlat ion dept h

bimodal UL bimodal

m88

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
correlat ion dept h

bimodal UL bimodal

perl

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
correlat ion dept h

bimodal UL bimodal

Figure 8.6 a) Aliasing in the bimodal predictor for the SPECINT95 benchmarks

156

applu

0.6

0.65

0.7

0.75

0.8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
correlat ion dept h

bimodal UL bimodal

apsi

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
correlat ion dept h

bimodal UL bimodal

fppp

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
correlat ion depth

bimodal UL bimodal

hydro 2

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
correlat ion dept h

bimodal UL bimodal

mgrid

0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

correlat ion depth

bimodal UL bimodal

swim

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

correlat ion dept h

bimodal UL bimodal

po werP C

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
correlat ion dept h

bimodal UL bimodal

s390

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
correlat ion dept h

bimodal UL bimodal

Figure 8.6 b) Aliasing in the bimodal predictor for the SPECFP95 and IBM benchmarks

157

predictor to have a much more destructive effect than an aliasing instance in the gshare

predictor.

Figure 8.6 depicts the adverse effects of aliasing in the bimodal structure. It compares a

bimodal implementation that has a dedicated entry for each branch (UL- bimodal) to a

regular bimodal structure. The x-axis represents log to the base 2 of the number of

entries for the bimodal structure, but has no significant for the UL-bimodal. For small

tables, aliasing degrades performance for all benchmarks. However, the point where

aliasing ceases to be a problem varies significantly across benchmarks. While for the

compress benchmark, aliasing does not degrade performance for tables as small as 64

bytes, for the s390 benchmark, aliasing persists as a problem even for tables as large as

16KB. If s390 and other benchmarks with large number of static branches represent

future programs, aliasing in one-level branch predictors will significantly degrade

prediction accuracy. But even for the average of the SPECINT95, aliasing degrades

prediction accuracy for 2KB tables.

specIN T

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
correlat ion dept h

bimodal UL bimodal

specF P

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
correlat ion dept h

bimodal UL bimodal

Figure 8.6 c) Aliasing in the bimodal predictor for the SPECINT95 and SPECFP95 averages

158

cc1

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25
direct ion pht correlat ion dept h

yags

yags - UL choice PHT

go

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25
direct ion pht correlat ion dept h

yags

yags - UL choice PHT

co mpress

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25
direct ion pht correlat ion dept h

yags

yags - UL choice PHT

ijpeg

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25
direct ion pht correlat ion dept h

yags

yags - UL choice PHT

li

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25

direct ion pht correlat ion dept h

yags

yags - UL choice PHT

vo rtex

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

direct ion pht correlat ion dept h

yags

yags - UL choice PHT

m88

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25
direct ion pht correlat ion dept h

yags

yags - UL choice PHT

perl

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25
direct in pht correlat ion dept h

yags

yags - UL choice PHT

Figure 8.7 a) Choice PHT aliasing effect in YAGS for the SPECINT95 benchmarks

159

applu

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25
direct ion pht correlat ion dept h

yags

yags - UL choice PHT

apsi

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

0 5 10 15 20 25
direct ion pht correlat ion dept h

yags

yags - UL choice PHT

fppp

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25
direct ion pht correlat ion dept h

yags

yags - UL choice PHT

hydro 2

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 5 10 15 20 25
direct ion pht correlat ion dept h

yags

yags - UL choice PHT

mgrid

0.95

1

0 5 10 15 20 25

direct ion pt correlat ion dept h

yags

yags - UL choice PHT

swim

0.85

0.9

0.95

1

0 5 10 15 20 25

direct ion pht correclat ion dept h

yags

yags - UL choice PHT

po werP C

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25
direct ion pht correlat ion dept h

yags

yags - UL choice PHT

s390

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25
direct ion pht correlat ion dept h

yags

yags - UL choice PHT

Figure 8.7 b) Choice PHT aliasing effect in YAGS for the SPECFP95 and IBM benchmarks

160

Because aliasing in the bimodal predictor degrades prediction accuracy, it could be

expected to similarly degrade the prediction accuracy in two-level branch predictors that

have an embedded bimodal structure. This premise is checked in the context of the

proposed YAGS predictor. Figure 8.7 compares the basic YAGS structure against a

hypothetical YAGS structure with no resource limit on the choice PHT. Notice that the

direction caches in this hypothetical YAGS are still restricted in size. Comparing this

hypothetical YAGS to the regular YAGS enables us to quantify the adverse effects that

aliasing in the choice PHT has on the prediction accuracy of YAGS. As can be seen, the

prediction accuracy degradation due to aliasing in the choice PHT is significant, and for

benchmarks with large numbers of static branches, like the s390, aliasing in the bimodal

structure is only resolved for choice PHTs of 4KB in size. For smaller predictors, the

adverse effects of aliasing in the choice PHT overwhelms the benefits the predictor

achieves from implementing the global scheme via the direction caches.

Obviously, aliasing in the bimodal structure is a prominent source of prediction accuracy

degradation that has so far been overlooked. Finding ways to remove some of the

specIN T

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25
direct ion pht correlat ion dept h

yags

yags - UL choice PHT

specF P

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25
direct ion pht correlat ion dept h

yags

yags - UL choice PHT

Figure 8.7 c) Choice PHT aliasing effect in YAGS for the SPECINT95 and SPECFP95 averages

161

aliasing from the bimodal structure could bring significant benefits to prediction,

especially for smaller size predictors.

8.4 Profile YAGS

Removing aliasing from the choice PHT of YAGS is important for two reasons. First, it

will increase prediction accuracy. Second, it will facilitate a reduction in the size of the

choice PHT compared to the direction caches. This, in turn, facilitates turning YAGS

into a cascading predictor where a small choice PHT is used when only one cycle is

available for prediction. When more than one cycle is available for prediction, the

direction caches can then be accessed.

Attempts to create a dynamic structure that alleviates aliasing in the first-level structure,

in this dissertation, have failed. This failed attempt is described next. Borrowing from

the bi-mode structure, the choice PHT was split into two choice PHTs. One serves

branches that are mostly biased to be taken and the other serves branches that are biased

to be not taken. The determining factor of which choice PHT will server each branch

was whether the branch is a forward or a backward branch. The reasoning behind this

choice is similar to the static branch prediction scheme that states “backward taken,

forward not taken.” However, this attempt failed.

Next, a profiled version of YAGS is presented. The direction caches are similar to the

ones in YAGS. The choice PHT, on the other hand, is replaced by a bit in the branch

instruction that indicates the branch’s bias. Using a profiling bit to help in the prediction

of a two-level branch predictor was described before in the context of an agree like

predictor [67], however, this does not exclude profile YAGS as a novel predictor.

162

cc1

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000 1000000 10000000
predict or size in byt es

prof ile yags

yags

prof ile yags - best

go

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000 1000000 10000000
predict or size in byt es

prof ile yags

yags

prof ile yags - best

co mpress

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000 1000000 10000000
predict or size in byt es

prof ile yags

yags

prof ile yags - best

ijpeg

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000 1000000 10000000
predict or size in byt es

prof ile yags

yags

prof ile yags - best

li

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000 1000000 10000000

predict or size in byt es

profile yags

yags

profile yags - best

vo rtex

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000 1000000 10000000

predict or size in byt es

prof ile yags

yags

prof ile yags - best

m88

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000 1000000 10000000
predictor size in bytes

prof ile yags

yags

prof ile yags - best

perl

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000 1000000 10000000
predict or size in byt es

prof ile yags

yags

prof ile yags - best

Figure 8.8 a) Profile YAGS for the SPECINT95 benchmarks

163

applu

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000 1000000 10000000
predict or size in byt es

prof ile yags

yags

prof ile yags - best

apsi

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

1 10 100 1000 10000 100000 1000000 10000000
predict or size in byt es

prof ile yags

yags

prof ile yags - best

fppp

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000 1000000 10000000
predict or size in byt es

prof ile yags

yags

prof ile yags - best

hydro 2

0.8

0.85

0.9

0.95

1

1.05

1 10 100 1000 10000 100000 1000000 10000000
predict or size in byt es

prof ile yags

yags

prof ile yags - best

mgrid

0.95

1

1 10 100 1000 10000 100000 1000000 10000000

predict or size in byt es

prof ile yags

yags

prof ile yags - best

swim

0.9

0.95

1

1 10 100 1000 10000 100000 1000000 10000000

predict or size in byt es

prof ile yags

yags

prof ile yags - best

po werP C

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000 1000000 10000000
predict or size in byt es

prof ile yags

yags

prof ile yags - best

s390

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000 1000000 10000000
predict or size in byt es

prof ile yags

yags

prof ile yags - best

Figure 8.8 b) Profile YAGS for the SPECFP95 and IBM benchmarks

164

Figure 8.8 compares the regular YAGS with profile YAGS when a test dataset is used for

profiling (profile-yags) and when the same dataset is used for profiling and real

simulations (profile-yags-best). The later is an overestimation and marks the upper

bound that can be achieved by profiling. Surprisingly, the omniscient profile YAGS and

the feasible profile YAGS produce very similar results.

That static selection mechanism work so well with YAGS as opposed to the serving as

the selection mechanism for the McFarling predictor, stems from the underlying

information profiled. With the McFarling predictor, the profiled information indicates

which predictor better predicts the branch. This information is not balanced and is

heavily biased toward either the local or the global component, depending on the

benchmark. On the other hand, with YAGS, the profiled information indicates the

branch’s bias. This tends not to change for different datasets and is fairly balanced

between branches that are biased to be taken, and branches that are biased not to be taken.

Figure 8.8 shows that profiling the branches’ bias for YAGS entails large prediction

benefits for small predictors. The reasons are twofold. First, the cost of the choice PHT

specIN T

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000 1000000 10000000
predict or size in byt es

prof ile yags

yags

prof ile yags - best

specF P

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 10 100 1000 10000 100000 1000000 10000000
predict or size in byt es

prof ile yags

yags

prof ile yags - best

Figure 8.8 c) Profile YAGS for the SPECFP95 and SPECINT95 averages

165

is zero because this information is stored in the branch instruction. Second, there is

no aliasing in the first-level structure. Aliasing was shown in Section 8.2 to considerably

degrade performance of global two-level branch predictors.

As the size of the predictor increases, the benefits of using profile YAGS over YAGS

diminish until they are nonexistent for most benchmarks. It is worthwhile to note the

predictor size where this benefit diminishes. For the applu benchmark the critical size is

as small as 128 Bytes. For the s390 benchmark it occurs for predictors as large as 256KB

in size. On average for the SPECINT95, the critical point is 18KB. This is by far larger

than the conservative estimate of the PHT of 1KB that would be accessible in one cycle

for the 35nm technology available in the year 2012 [64]. For a 1KB PHT, the prediction

accuracy of profile YAGS is 93.9% for the SPECINT95 average compared to only 92.5%

prediction accuracy for YAGS. If the more conservative estimate for future technology is

considered, a PHT of size 0.125KB will be available in the year 2012 and the prediction

accuracy of profile YAGS will be 92.7% compared with only 87.6% prediction accuracy

for YAGS.

The benefit of using profiling to determine the branches’ bias in future technologies is

obvious. However, profiling is not as easy implemented and some major hurdles were

overlooked in the past when profiling was studied in branch predictors. The next section

addresses those problems.

8.5 The Future of Profiling

Profiling has been used for static methods in branch prediction for as long as the branch

prediction field of research has existed. Profiling allows the acquisition of information

166

before the program is run. In contrast, dynamic methods acquire their information

while the program runs. This difference between dynamic and static methods imposes

less time constraints on static profiling than on dynamic methods. The profiled

information is conveyed to the microarchitecture via the ISA. A well-known pitfall of

profiling is that the ISA must have a mechanism to convey the profile information to the

processor. This mechanism usually comes in the form of dedicated bits in the branch

instructions. The lack of such a mechanism requires a change in the ISA. A change to

the ISA is not trivial in most cases and might cause problems with backward

compatibility.

Next, three other pitfalls are discussed that, we think, will force other means of profiling

to be devised. The creators of the SPEC benchmark suite, recognized that different

datasets must be supplied. Most studies, therefore, profile with one dataset and then use

the profiled information to measure the prediction accuracy when running on a different

dataset. More than 97% of the static branches are profiled with the test dataset, and

therefore when running the real dataset those branches already have prediction

information.

8.5.1 Profiling Pitfalls

The first profiling pitfall is that SPEC95 benchmarks are very small programs compared

to today’s software. Additionally, the active regions of the program are used regardless

of the dataset. This is not the case for large programs such as MS-WORD or EXCEL.

The amount of code for those applications is enormous compared to the SPEC95

benchmarks and the active regions of such program will change considerably with

167

different datasets. As a result, coming up with a dataset that will profile most of the

static branches in the program is an almost impossible task. Those un-profiled regions of

the program are not necessary less used. It might be the case that those regions will be

used over and over again by the same user. As a result, this user will experience

considerable slowness when running those un-profiled portions of the applications.

The second pitfall relates to legacy code. Legacy code refers to programs that were

compiled and are running on older implementations of the same ISA. When legacy code

is installed on a new implementation of the ISA that relies on profiling for branch

prediction, it can considerably degrade its performance. This might lead to the

disconcerting situation that an older processor will run legacy code faster than a newer

implementation of the same ISA.

The last pitfall of profiling is the commitment to a branch prediction implementation.

Suppose one version of the ISA is implemented with the McFarling branch predictor

where the selection mechanism relies on profiling. Programs are compiled after profiling

sample datasets for optimal accuracy for the McFarling predictor. A new implementation

of the same ISA cannot change the McFarling predictor to the bi-mode predictor because

previous profiled and compiled programs will suffer considerable performance

degradation. The same problem can occur even if the new processor implements the

McFarling predictor with a different PHT size than the older version.

Those overlooked pitfalls of profiling in branch prediction can be easily generalized to

profiling in different structures of a microarchitecture. This suggests that dynamic

structures should be used because they do not suffer from the pitfalls mentioned above.

However, as we have seen before, due to micro-architectural trends, dynamic structure

168

will be forced to decrease in size and will therefore suffer a reduction in

performance. Profiling, on the other hand, is not limited in size and does not suffer from

aliasing.

8.5.2 Dynamic Profiling

The solution to this problem might be a different way of profiling. Profiling needs to be

done during run time rather then compile time to avoid all the above pitfalls. This can be

done either by the processor or the OS. A simple example might be the bias of a branch.

A bit in the branch instruction indicates whether the branch was profiled or not. If the

branch has not yet been profiled, when the branch is evicted from the BTB, the processor

could interject an instruction to write the branch back into memory with the profile

information obtained by a 2bc attached to the BTB. The first time the program is run, it

might encounter delays due to large dynamic structure. The next time the program is

executed, branches with profile information in the ISA obtained in the previous run will

be predicted by this profile information. This bypasses the delay due to a large dynamic

structures and at the same time avoids the above mentioned pitfalls. This approach was

proposed before albeit serious structure limitations [62].

The profiling done by the processor is restricted to very simple profiling. Some profiling

needs elaborate data structures that are not cost effective to implement in hardware. If

profiling is done by the OS, in a similar manner described for processor profiling,

elaborate data structures can be used and the cost of on-chip dynamic structures can be

avoided. This will require an upgrade to the OS for each processor, but can be easily

169

done. The OS will maintain a list of profiled programs and on every program that

was not profiled, the OS will invoke the profiling module.

Dynamic profiling is not an easy idea to implement. It requires the cooperation of the

microarchitecture and the OS. It is clear that future microprocessors will have to be more

tightly coupled with the OS in order to maintain increasing processor performance.

170

Chapter 9 - Conclusion

9.1 Contributions

4The initial objective of the research leading to this dissertation was to improve branch

prediction accuracy by combining different advances made in the branch prediction field.

In the process of investigating the feasibility of this approach, several myths and

misconceptions were debunked. Throughout this dissertation, those misconceptions have

been clarified, and ways were devised to improve the accuracy of branch predictors.

The branch prediction research community has taken three different paths in its attempts

to improve branch prediction. In an initial attempt to combine the benefits of a hybrid

branch predictor with the benefits of a branch prediction structure which reduces aliasing,

we observed that both predictors showed improved branch prediction for the same

reason– namely reducing aliasing. In a series of studies we consolidated the three

different branch prediction paths by reducing the hybrid and the third-level paths to the

‘aliasing path’. This reduction is done by showing that hybrid predictors improve

prediction by reducing aliasing, and by showing that the third-level of adaptivity is a

filtering mechanism that also reduces aliasing.

In the process of investigating what makes the hybrid path work, we shed light on some

myths in the ongoing debate between static and dynamic selection mechanisms in hybrid

predictors. We found that known dynamic selection mechanisms fail to choose the best

component for each branch dynamically and we questioned whether a branch changes its

best predictor during execution. It was found that the strength of dynamic selection

171

mechanisms does not lie in dynamically choosing the best predictor for each branch,

but in reduction aliasing. The dynamic selection mechanism serves as a load balancer

between the two components of the hybrid predictor. Once one of the components is

congested, the selection mechanism moves some branches to the other component. This

load balancing process reduces aliasing, which in turn translates into better prediction

accuracy. While this role of the dynamic selection mechanism in reducing aliasing has

not been noted before, it has been well established that a static selection mechanism

reduces aliasing by not taking any hardware resources for the selection mechanism and

by reducing information for the reason that only one component is updated for each

branch. For static selection mechanism, we showed that profiling must be done with

aliasing in mind. If profiling is focused on the benefits of using the hybrid scheme

instead of aliasing aware profiling, the degradation in performance can be considerable.

 After concluding that reducing aliasing is the only way to improve prediction in two-

level branch predictors, we categorized the different ways reducing aliasing was done in

the past. The different ways are reducing the information stored in the PHT (and its

simplified case – filtering), reducing negative aliasing, and pseudo-associativity. Studies

conducted for this dissertation were then used to list the attributes found to help

prediction

 We laid out the tradeoff of increasing the size of the BHR, which has been empirically

observed before but never adequately explained. We further showed that the size of the

BHR and the number of static branches, present in a program, have more or less equal

effect on the extent of aliasing. This is true in spite of the fact that the size of the BHR is

the dominant term in the theoretical equation dictating the amount of information stored

172

in the PHT (Section 4.5). By explaining the relationship between correlation and

aliasing, we noted misinterpretations made in the past when two branch predictors that

reduce aliasing, were compared. To take advantage of this observation, we proposed a

way to decouple correlation from the size of the PHT even when the size of the PHT has

fewer than 2BHR Size entries. While this method is not successful in most cases, it was the

basis for further improvement of YAGS. YAGS is a new branch predictor proposed that

takes advantage of lessons learned while gathering the results for this dissertation.

Aliasing in the second level table of two-level branch predictors, and structures to

alleviate the aliasing problem has been the subject of extensive research. However, to

our knowledge, aliasing was never considered in the bimodal structure. We discovered it

degrades performance. Bimodal aliasing currently degrades prediction for programs with

large branch signatures. As program size increases, and the amount of state accessible in

a cycle decreases, this problem is aggravated and most programs will suffer its negative

effects. Since the bimodal structure is used as the choice PHT in the bi-mode and YAGS

branch prediction structures and as a selection mechanism for different hybrid branch

prediction structures, the aliasing problem in the bimodal structure can be expected to

degrade performance for all those structures. We verified this for YAGS.

We propose a static selection mechanism to replace the choice PHT in the YAGS branch

predictor based on profiling. Because we considered aliasing during the profiling

process, and most branches’ bias does not change between different datasets, profiling

YAGS works extremely well even for small size allocation.

The strength of profiling YAGS is not only in a more cost effective use of resources, but

also in its ability to eliminate the choice PHT to nothing. In the future, this ability can be

173

used to transform YAGS and the bi-mode predictors into cascading predictors as a

mean of tolerating the decreasing state accessed in a cycle.

This dissertation does not paint an optimistic picture of the branch prediction field. Even

with generous resource allocation and no limit on the amount of state reached in one

cycle, branch prediction is expected to create the most limiting bottleneck in future

processors [1]. Moreover, code size is increasing [2] and the amount of state reached in a

cycle is decreasing [63][64]. This means that future branch predictors will need to be

smaller, and to predict more branches with better accuracy. This dissertation took the

branch prediction field a step backward, in one sense, by consolidating three different

paths of research into one, and as a result showed that advantages previously assumed

were misleading and will not result in a better prediction. In addition to identifying these

flaws, this thesis has identified and presented the new problem of aliasing in the bimodal

structure. This problem will only get worse with the micro-architectural trends discussed

above.

We hope that these observations will help to better direct future research in the branch

prediction field. Since most of the myths uncovered in this dissertation could have been

avoided by performing an adequate limit study, we look forward to seeing more studies

that give insight into why a particular branch prediction structure/scheme works, moving

beyond ad hoc empirical results which show that a particular branch predictor is more

accurate than previously proposed ones.

On the positive side, we introduced YAGS, a new branch prediction structure that attacks

the aliasing problem. YAGS utilized the criteria that we introduced (Chapter 7). Those

techniques include but are not limited to decoupling correlation depth from PHT size,

174

reducing the amount of information stored in the PHT, and load balancing. We

facilitated the use of YAGS as a cascading predictor by utilizing profiling to determine

the branch’s bias. We stopped short of testing YAGS as a cascading predictor.

We acknowledge that YAGS, similar to previous branch prediction structures, does not

completely solves the aliasing problem nor eliminates control dependency from being the

bottleneck in future processors. However, any improvement in branch prediction

accuracy will help to open up the control dependency bottleneck. For that, we believe

that further research and novel branch predictor structures are needed in order to facilitate

faster processors.

9.2 Future Work

Trends in microarchitecture and software development dictate that control dependency

will continue to be a problem in the foreseeable future. This provides an exciting

opportunity for future research.

Note that while we have shown that hybrid predictors improve prediction accuracy by

eliminating aliasing, we have not ruled out hybrid schemes altogether. Rather we have

pointed out that current hybrid predictors are unable to fulfill this potential. Once

aliasing is eliminated, or a way is found to separate those two competing potentials,

predictors can start taking advantage of the hybrid scheme potential.

The only existing study pertaining to cascading predictors [65] used the gshare structure

and specifically mentioned that it would be beneficial to incorporate a structure that

reduces aliasing with a cascading predictor. One criticism of the cascading predictor

proposed is that it stores redundant information. We believe in the potential of YAGS to

175

serve as a cascading predictor where the choice PHT is eliminated by the use of

profiling information. When another cycle is available for prediction, the direction

caches can than be accessed. While not pursuing this in its entirety, we made the first

step by allowing the first cycle prediction to have no latency, while still taking advantage

of the two-level structure when a second cycle is available for the prediction of the

branch. Note that in order for the bi-mode structure to serve as a cascading branch

predictor, the choice PHT will need to supply predictions, taking the bi-mode structure

one step closer to the YAGS branch predictor.

We predict that compile/profile time information will need to be more closely coupled

with dynamic predictors. This trend is not new and different ISAs incorporate bits in the

ISA to do just that. For example in the IA64 ISA there is one bit in the branch

instructions to indicate whether dynamic or static prediction is to be used for filtering

purposes. Another bit is present to indicate the prediction in case a static prediction is

used. This last bit can be easily used to indicate the branch’s bias in profiling YAGS.

Such compile and profile time cooperation will need to be increased in order for branch

predictors to keep up with future processors. This might require ISA changes, and as

painful as that might be to implement, we feel that it will be necessary. An obvious

example is the loop instruction in the PowerPC ISA, which other ISAs are lacking.

 Happy hunting.

176

Bibliography

[1]. P. Ranganathan, and N. Jouppi. The relative impact of memory latency,
bandwidth and branch limit to microprocessor performance. In Proceedings of the 1st
Workshop on Mixing Logic and DRAM: Chips that Compute and Remember (held in
conjunction with the 1997 International Symposium on Computer Architecture), June
1997.

[2]. R. Uhlig, D. Nagle, T. Mudge, S., Sechrest, and J. Emer. Instruction fetching:
Coping with code bloat. In Proceedings of the 22nd Annual International Symposium on
Computer Architecture, June 1995, pp. 345-356.

[3]. M. Lam, and R. Wilson. Limits of control flow on parallelism. In Proceedings of
the 19th Annual International Symposium on Computer Architecture, May 1992, pp. 46-
57.

[4]. A. Uht. A theory of reduced and minimal procedural dependencies. IEEE
Transaction on Computers, vol. 40, no. 6, June 1991, pp. 681-693.

[5]. E. Dijkstra. Guarded commands, non-determinacy, and formal derivation of
programs. Communication ACM, vol.18, August 1975, pp.453-457.

[6]. P. Hsu, and E. Davidson. Highly concurrent scalar processing. In Proceedings of
the 13th Annual International Symposium on Computer Architecture, June 1986, pp. 386-
395.

[7]. D. Pnevmatikatos, and G. Sohi. Guarded execution and branch prediction in
dynamic ILP processors. In Proceedings of the 21st Annual International Symposium on
Computer Architecture, April 1994, pp.120-129.

[8]. M. Lam, and R. Wilson. Limits of control flow on parallelism. In Proceedings of
the 19th Annual International Symposium on Computer Architecture, May 1992, pp. 46-
57.

[9]. E. Sprangle, R. Chappell, M. Alsup, and Y. Patt. The Agree predictor: A
mechanism for reducing negative branch history interference. In Proceedings of the 24th
Annual International Symposium on Computer Architecture, May 1997.

[10]. P. Chang, M. Evers, and Y. Patt. Improving branch prediction accuracy by
reducing pattern history table interference. In Proceedings of the International
Conference Parallel Architecture and Compilation Techniques. October 1995.

177

[11]. P. Michaud, A. Seznec, and R. Uhlig. Trading conflict and capacity aliasing
in conditional branch predictors. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, May 1997.

[12]. C. Lee, I. Chen, and T. Mudge. The bi-mode branch predictor. In Proceedings of
the 30th Annual ACM/IEEE International Symposium on Microarchitecture, 1997.

[13]. P. Chang, E. Hao, T. Yeh, and Y. Patt. Branch classification: A new mechanism
for improving branch predictor performance. In Proceedings of the 27th Annual
ACM/IEEE International Symposium on Microarchitecture, November 1994.

[14]. S. McFarling. Combining branch predictors. WRL Technical Note TN-36, June
1993.

[15]. A. Talcott, M. Nemirovsky, and R. Wood. The influence of branch prediction
table interference on branch prediction scheme performance. In Proceedings of the 3rd
International Conference on Parallel Architecture and Compilation Techniques, June
1995.

[16]. C. Young, N. Gloy, M. and Smith. A comparative analysis of schemes for
correlated branch prediction. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, June 1995.

[17]. C.C. Lee. Optimizing high performance dynamic branch predictors. Ph. D.
Dissertation, Univ. of Michigan, Ann Arbor, November 1997.

[18]. M. Evers, S. Patel, R. Chappell, and Y. Patt. An analysis of correlation and
predictability: What makes two-level branch predictors work. In Proceedings of the 25th
Annual International Symposium on Computer Architecture, 1998, pp. 52-61.

[19]. S. Sechrest, C. Lee, and T. Mudge. Correlation and aliasing in dynamic branch
predictors. In Proceedings of the 23rd Annual International Symposium on Computer
Architecture, May 1996.

[20]. M. Tarlescu, K. Theobald, and G. Gao. Elastic history buffer: A low-cost method
to improve branch prediction accuracy. In Proceedings of the 1997 International IEEE
Conference on Computer Design, 1997, pp. 82-87.

[21]. T. Juan, S. Sanjeevan, and J. Navarro. Dynamic history-length fitting: A third
level of adaptivity for branch prediction. In Proceedings of the 25th Annual International
Symposium on Computer Architecture, 1998, pp. 155-166.

[22]. T. Yeh, and Y. Patt. Two-level adaptive training branch prediction. In
Proceedings of the 24th Annual ACM/IEEE International Symposium on
Microarchitecture, November 1991, pp. 51-61.

178

[23]. T. Yeh, and Y. Patt. Alternative implementations of two-level adaptive
branch predictions. In Proceedings of the 19th Annual International Symposium on
Computer Architecture, May 1992, pp. 124-134.

[24]. T. Yeh, and Y. Patt. A comparison of dynamic branch predictors that use two
levels of branch history. In Proceedings of the 20th Annual International Symposium on
Computer Architecture, May 1993.

[25]. C. Yound and M. Smith. Improving the accuracy of static branch prediction using
branch correlation. In Proceedings of the 6thInternational Conference on Architectural
Support for Programming Languages and Operating Systems, October 1994, pp. 232-
241.

[26]. R. Nair. Dynamic path-based branch correlation. In Proceedings of the 28th
Annual ACM/IEEE International Symposium on Microarchitecture, 1995, pp. 15-23.

[27]. L. Gwennap. Intel’s P6 uses decoupled super-scalar design. Microprocessor
Report, vol. 9, no.2, February. 16, 1995.

[28]. L. Gwennap. Digital 21264 sets new standard. Microprocessor Report, vol. 10,
no. 14, October. 28, 1996.

[29]. D. Pnevmatikatos, and G. Sohi. Guarded execution and branch prediction in
dynamic ILP processors. In Proceedings of the 21st Annual International Symposium on
Computer Architecture, April 1994.

[30]. I. Chen, C. Lee, M. Postiff, and T. Mudge. Tag-less two-level branch prediction
schemes. Technical Report CSE-TR-306-96, University of Michigan, 1996.

[31]. S. Sechrest, C. Lee, and T. Mudge. The role of adaptivity in two-level adaptive
branch prediction. In Proceedings of the 28thAnnual ACM/IEEE International
Symposium on Microarchitecture, 1995.

[32]. W. Hwu, T. Conte, and P. Chang. Comparing software and hardware schemes for
reducing the cost of branches. In Proceedings of the 16th Annual ACM/IEEE
International Symposium on Microarchitecture, May 1989.

[33]. K. Driesen, and U. Hölzle. Accurate indirect branch prediction. In Proceedings
of the 25th Annual International Symposium on Computer Architecture, 1998, pp. 167-
178.

[34]. K. Driesen, and U. Hölzle. Improving indirect branch prediction with source- and
parity-based classification and cascaded prediction. Technical Report TRCS98- 07,
Department of Computer Science, University of California, Santa Barbara, March 1998.

[35]. J. Smith. A study of branch prediction strategies. In Proceedings of the 8th
Annual International Symposium on Computer Architecture, May 1981, pp. 135-148.

179

[36]. R. Nair. Optimal 2-bit branch predictors. IEEE Transaction on Computers,
vol. 44, no. 5, May 1995.

[37]. S. McFarling, and J.L. Hennessey. Reducing the cost of branches. In
Proceedings of the 13th Annual International Symposium on Computer Architecture, June
1986.

[38]. J. Fisher, and S. Freudenberger. Predicting conditional branch directions from
previous runs of a program. Proceedings of the 5th International Conference on
Architectural Support for Programming Languages and Operating Systems, 1992.

[39]. D. Kaeli, and P. Emma. Improving the accuracy of history-based branch
prediction. IEEE Transaction on Computers, April 1994.

[40]. C. Young, and M. Smith. Improving the accuracy of static branch prediction
using branch correlation. In Proceedings of the 6th International Conference on
Architectural Support for Programming Languages and Operating Systems, 1994, pp.
232-241.

[41]. J. DeRosa, and H. Levy. An evaluation of branch architectures. In Proceedings
of the 14th Annual International Symposium on Computer Architecture, June 1987, pp.
10-16.

[42]. J. Lee, and A. Smith. Branch prediction strategies for branch target buffer design.
IEEE Computer, Jan. 1984, pp.6-22.

[43]. SPEC CPU’95, Technical Manual, August 1995.

[44]. S. Pan. K. So, and J. Rahmeh. Improving the accuracy of dynamic branch
prediction using branch correlation. In Proceedings of the 5th International Conference
on Architectural Support for Programming Languages and Operating Systems, 1992, pp.
76-84.

[45]. Q. Jacobson, E. Rotenberg, and J. Smith. Path-based next trace prediction. In
Proceedings of the 30th International Symposium on Microarchitecture, 1997.

[46]. S. Raches and S. Weiss. Implementation and analysis of path history in dynamic
branch prediction schemes. IEEE Transaction on Computers, vol. 47, no. 8 Aug. 1998.

[47]. A. Eden and T. Mudge. The YAGS branch predictor. In Proceedings of the 31st
International Symposium on Microarchitecture, December 1998.

[48]. P. Chang, E. Hao, and Y. Patt. Alternative implementations of hybrid branch
predictors. In Proceedings of the 28th International Symposium on Microarchitecture,
1995, pp. 252-257.

180

[49]. M. Exers, P. Chang, and Y. Patt. Using hybrid predictor to improve branch
prediction accuracy in the presence of context switches. In Proceedings of the 22nd
International Symposium on Computer Architecture, 1996, pp. 3-11.

[50]. A. Seznec and F. Bodin. Skewed-associative caches. In proceedings of
PARLE’93, May 1993.

[51]. D. Grunwald, D. Lindsay, and B. Zorn. Static methods in hybrid branch
prediction. In Proceedings of the International Conference on Parallel Architecture and
Compilation Techniques, 1998.

[52]. M. Evers. Improving branch prediction by understanding branch behavior. Ph.D.
Thesis, The University of Michigan, 1999.

[53]. D. Burger, T. Austin. The SimpleScalar Tool Set, Version 2.0. Technical Report
TR 1342, University of Wisconsin, June 1997.

[54]. J. Stark, M. Evers, and Y. Patt. Variable length path branch prediction. In
Proceedings of the 8th International Conference on Architectural Support for
Programming Languages and Operation Systems. October, 1998.

[55]. E. Hao, P-Y. Chang , and Y. Patt. The effect of speculatively updating branch
history on branch prediction accuracy, revisited. Proceedings of the 27th Annual
International Symposium on Microarchitecture. November 1994, pp. 228-232.

[56]. S. Jourdan, T-H. Hsing, J. Stark, and Y. Patt. The effects of mispredicted-path
execution on branch prediction structures. In Proceedings of the of the 4th International
Conference on Parallel Architecture and Compilation Techniques, 1996, pp 58-67.

[57]. B. Calder, D. Grunwald, and J. Emer. A system level perspective on branch
architecture performance. In proceedings of the 28th Annual ACM/IEEE International
Symposium on Microarchitecture, pp. 199-206, 1995.

[58]. J. Rypley and D. Holloway. Performance tradeoff in sequencer design on a new
G4 PowerPC microprocessor. In Proceedings of the 1st International Symposium on
Performance Analysis of Systems and Software, 2000, pp. 88-94.

[59]. Virtual OCR reference.

[60]. L. Gwennap. Intel’s MMX Speeds Multimedia. Microprocessor Report, Vol. 10,
No. 3, March 1996.

[61]. J. Brown, S. Persels, and J. Meyer. Branch prediction unit for high-performance
processor. US Patent 5,394,529, Feb 28, 1995. [First filed in 1990.]

181

[62]. T.M. Conte, B.A. Patel and J.S. Cox. Using branch handling hardware to
support profile-driven optimization. In Proceedings of the 27th International Symposium
on Microarchitecture, 1994 pp.12-21.

[63]. M. Horwitz, R. Ho and K. Mai. The future of wires. In Semiconductor Research
Corporation Workshop on Interconnects for Systems on a Chip, May 1999.

[64]. V. Agarwal, M.S. Hirishikesh, S.W. Keckler, and D. Burger. Clock rate versus
IPC: The end of the road conventional microarchitectures. In Proceedings of the 27th
Annual International Symposium on Computer Architecture. June 2000, pp. 248-259.

[65]. D.A. Jimenez, S.W. Keckler, and C. Lin. The impact of delay on the design of
branch predictors. Proceedings of the 33rd International Symposium on
Microarchitecture. December 2000.

[66]. T.H. Heil, Z. Smith and J.E. Smith. Improving branch predictors by correlating
on data values. In Proceedings of the 32nd International Symposium on
Microarchitecture, December 1999.

[67]. H.P. agree patent

