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ABSTRACT 

 

Of Limits and Myths in Branch Prediction 

by 

Avinoam Nomik Eden 

Chair: Trevor N. Mudge 

The need to flush pipelines when miss-predicting branches occur can throttle the 

performance of a pipelined super-scalar microprocessor. It is argued that by the year 2010 

branch prediction will become the most limiting factor in processor performance [1].  A 

plethora of research has been done on the subject of branch prediction.  While many 

branch prediction structures have been proposed, their performance is usually 

demonstrated empirically through simulations that provide little insight into the 

underlying principle that enables their behavior. 

Since the introduction of the two-level dynamic branch prediction scheme, research into 

branch prediction has followed four different paths.  The first attempts to improve predic-

tion by reducing aliasing in the second level table, which was shown to adversely affect 

prediction accuracy.  The second attempts to improve prediction accuracy by combining 

two or more different components in the branch prediction structure.  The third attempts 

to improve prediction by changing the configuration of a particular predictor.  Lastly, the 

fourth, tries to find new schemes to improve branch prediction.  Most papers on research 

along one path ignored comparisons with other paths on the basis that the different paths 

are orthogonal.   
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A set of studies is presented that consolidate the different research paths by showing 

that the advantage gained by most of them is to reduce aliasing.  After showing that 

reducing aliasing is the prevailing factor in prediction gain regardless of which path of 

research is followed, we highlight a set of criteria that a predictor should embrace, to 

have a good prediction.  The criteria emerge from the studies we performed and previous 

work on the subject. 

The set of criteria, a predictor should follow to achieve good prediction accuracy, is used 

to build a new predictor – YAGS.  YAGS outperforms the leading branch predictor 

structures from the different paths of research.  It provides the micro-architect with a set 

of parameters that can be used to meet different restrictions, such as size and latency. 

This work highlights misconceptions that resulted from the work done on the topic.  It 

especially stresses the importance of a relevant limit study for understanding a new 

branch prediction scheme and structure.
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Chapter 1  -   Introduction 

As VLSI technology continues to improve, more resources become available for the 

branch prediction module.  Concurrently, newer high-performance machines are 

implementing deeper pipelines and greater issue-widths.  This, in turn, increases the 

number of branches predicted and not yet retired, and increases the branch misprediction 

penalty.  Code size is expected to increase [2], and the memory state reached in one cycle 

to decrease [63][65].  Although more resources are available to computer architects, the 

decreasing state reached in one cycle dictates the usage of smaller branch predictors, if 

the prediction is going to happen in one cycle.  Thus the need to predict more branches 

with higher accuracy employing a smaller amount of resources continues to grow.   

1.1 The Branch Irony 

The branch instruction is thing that separates a computer from a calculator.  It facilitated 

the leap from simple sequential calculations performed by a calculator to complex 

calculations and tasks performed by computers today. 

At first, computers executed programs sequentially – one instruction was 

executed before the next instruction started.  By the time the instruction following the 

branch was fetched, the outcome of the branch instruction was known and it was clear 

which instruction was to follow.  Micro-architectural mechanisms to speed execution led 

to pipelining and super-scalar cores.  With these innovations, more than one instruction is 

executed concurrently, and possibly, execution is not completed in sequential order.    
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Pipelining and super-scalar architectures have resulted in several complications.  

One of the more prominent ones is the control hazard.  This arises when the instruction 

following a branch is fetched before the branch instruction is fully executed.  When that 

instruction is executing, it is not clear whether the branch is going to be taken or not.  If 

the branch is taken, the address of the next instruction (the branch target address) is not 

yet calculated.  One solution to the control hazard problem is to stop further instruction 

fetching until the branch is finished executing.  This, however, reduces the advantage 

gained by pipelined and super-scalar architectures, and therefore is not a desirable 

solution.  A better solution would be to make an educated guess at the branch direction 

and target address and to follow the execution accordingly.  If the guess is correct, 

pipelining and super-scalar architectures would be allowed to fulfill their potential.  If an 

incorrect guess is made, a recovery mechanism would need to be in place to roll back the 

machine to the state just after the miss-predicted branch finished executing.  This process 

is the process of branch prediction.   

It is estimated that 1 out of 5 instructions is a branch instruction.  Current 

microprocessors demand instructions at a high rate, and attempt to fetch 4 and 6 

instructions per cycle.  With a pipeline of up to 15 stages deep, the number of instructions 

that can be executed concurrently is well over the 5 mentioned above.  In order to feed 

such engines, an accurate branch prediction is needed.  It is argued that by the year 2010 

branch prediction will become the most limiting factor in processor performance, 

surpassing even the limitations imposed by memory systems [1].   
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The branch irony is that the same mechanism that helped computers evolve past the 

functions of a mere calculator becomes the limiting factor for future generations of 

computers. 

1.2 Solutions to the Branch Problem 

A number of ways have been devised to overcome the control flow problem imposed by 

sequential code.  Eliminating false control dependencies allows unnecessary stalls to be 

eliminated [3][4].  Code transformation by compilers to enlarge basic blocks reduces the 

occurrence of some branches.  Loop unrolling, a form of basic block enlargement, is a 

popular technique employed by compilers to alleviate the cost of branches.  Guarded 

(predicated) execution also allows basic blocks to be enlarged [5][6][7].  However, 

methods like guarded execution suffer from the need to change the instruction set 

architecture (ISA), which poses a problem for backward compatibility. 

Another group of techniques relies on branch prediction.  The machine speculates on the 

direction of the branch, and then executes the predicted path.  One way of doing 

prediction is to profile the program and then to include a prediction bit in the branch 

instruction.  This is referred to as static branch prediction.  It suffers from the need to 

change the ISA like guarded executing, which is also done by the compiler.  Dynamic 

branch prediction, on the other hand, records the outcome of the previous branches 

during the run of the program, and based on this statistic, predicts the outcome of the 

following branches.  It has been shown that dynamic branch prediction achieves better 

performance than other methods [8]. 
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In order to overcome the control dependency imposed by conditional branches using 

dynamic branch prediction, the direction of the branch and the target address need to be 

predicted.  In most cases, the target address can be predicted accurately by utilizing a 

branch target buffer (BTB) — a cache that records the target address during the previous 

execution of the branch.  A hit in the BTB ensures a good prediction in the case of a 

direct branch.  The target address of indirect branches is harder to predict, but indirect 

branches constitute a small portion of the overall branches.  This dissertation concentrates 

on predicting the branch direction.  Moreover, this dissertation is limited to dynamic 

branch prediction.  Those dynamic predictors might employ a static method, but pure 

static predictors are ignored. 

1.3 Directions in Dynamic Branch Prediction 

The first branch prediction schemes were static ones, where the branch prediction was 

hard-coded within the processor.  The need for better branch prediction led to dynamic 

branch predictors, where branch prediction is determined by examining past behavior of 

the running program.  The introduction of the bimodal structure was one of the first to 

utilize dynamic branch prediction, and it put the field of dynamic branch prediction on 

the research map [35][36].  Most processors in the past few years have contained a 

dynamic branch prediction module. 

The introduction of two-level dynamic branch prediction [61][22] was a major step in the 

advancement of dynamic branch predictors.  From that point, research in the field has 
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taken four different paths1.  The first path attempted to improve on the two-level 

branch prediction scheme by incorporating different kinds of branch-related information 

into the dynamically collected statistics that decide the prediction.  This will be referred 

to here as the ‘scheme path’.  Once it was understood that aliasing presented a major 

hurdle to correct prediction, numerous branch prediction structures that alleviate the 

aliasing problem were conceived.  The second path of research we will refer to here as 

the ‘aliasing path.’  The third path, the ‘hybrid path,’ is based on the observation that 

different branches are best predicted by different kind of predictors.  Predicting each 

branch with its respective best predictor, should enhance prediction accuracy.  The fourth 

path is the one least studied.  It involves a ‘third-level of adaptivity’.  This claims that 

different branches are better predicted by different configurations of the same branch 

prediction scheme, or that different phases of the program are better predicted by 

different configurations of the same branch prediction scheme.  We termed this path the 

‘third-level’ path, and we note that some papers also claim that the third-level path helps 

prediction by reducing aliasing. 

The different branch prediction research paths have been kept separate in most cases.  

This is apparent in the lack of comparison between the different structures.  For example, 

the agree [9] predictor which is designed to reduce aliasing was never compared to the 

                                                 

1 Using value prediction to predict branches can be viewed as a fifth path that research took, or it can be 

conceived of as part of the scheme path.  In any case, in preliminary studies not presented here, we learned 

that most branches predicted well by incorporating value prediction are predicted just as well by other 

known predictors.  We have therefore chosen not to address branch prediction using value prediction in this 

dissertation. 
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McFarling hybrid predictor [14].  The hybrid and aliasing paths were considered to 

be orthogonal, and a hybrid predictor, where each component reduces aliasing could be 

easily devised.  Another example is the bi-mode predictor.  When it was introduced, there 

was no mention of the classification method (discussed later) despite the striking 

structural similarity between the bi-mode and classification method.  As a result of this 

line of thinking, there is very little knowledge regarding the interaction between the 

different paths. 

Another problem becomes apparent when, in the rush to publish new branch prediction 

structures, researchers often failed to understand the reasons why the branch prediction 

structure worked.  Instead, empirical results showing the superiority of the branch 

predictor have often been presented. These publications often lacked a simple limit study, 

which would have helped explain the underlying reasons why the branch prediction 

structure worked well.  This omission could lead microarchitects to make poor choices of 

the branch predictor structure needed for a microprocessor. 

1.4 Thesis Statement 

The need for accurate branch prediction is increasing as processors implement deeper and 

wider instruction fetching.  Understanding why known branch predictor structures work 

is essential to the decision-making process of the micro-architect.  It is also important to 

find feasible solutions to the branch prediction problem without ignoring constraints 

imposed by the underlying technology. 

This dissertation presents a series of studies aimed at understanding why the different 

paths taken by dynamic branch prediction work, and what sorts of interaction have 
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existed between those paths.  Presented here are results that show an unexpected 

amount of consolidates among the different paths taken in branch prediction.  Those 

results, combined with a detailed analysis of previous studies and a look at trends in the 

underlying technology, lead to a set of criteria that produce an ideal model for a two-level 

dynamic branch prediction structure.  Using those criteria, a new dynamic branch 

prediction structure is constructed that outperforms other known predictors from the other 

three paths.  The microarchitect is presented with different configurations of the new 

predictor that fit different architectures and constraints. 

1.5 Contributions of This Dissertation 

This dissertation makes several contributions to the field of branch prediction.  First, it 

consolidates the hybrid and aliasing research paths in branch prediction by showing that 

most of the advantage gained in combining branch predictors is due to the selection 

mechanism’s ability to reduce aliasing.  The myth that a branch changes its best predictor 

during the execution of a program is refuted.  

Second, this dissertation shows that a dynamic and a properly profiled static selection 

mechanism in hybrid predictors work well for the same main reasons.  They both reduce 

aliasing.  The prevailing factor in increasing prediction accuracy is aliasing reduction.  

The advantages and disadvantages of static and dynamic selection mechanisms are 

highlighted. 

This dissertation also consolidates the third-level and aliasing research paths in the 

branch prediction field.  Showing that most of the advantage gained by the third-level 

branch prediction structures is due to filtering, the third-level  path is reduced to the 
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aliasing path.  An important observation made here is that the same advantage 

depicted in the third-level path can be gained by picking the best history size 

configuration for each benchmark. 

The lessons learned in this dissertation combined with a thorough analysis of the 

advantages and disadvantages of previously proposed branch prediction structures are 

used to draw a set of criteria that branch prediction structures should follow. 

Drawing on this proposed set of criteria, a new branch prediction structures is proposed – 

YAGS.  Utilizing the set of criteria allows YAGS to provide a significant performance 

improvement over existing structures at modest cost.  A comparison between YAGS and 

previously proposed structures is presented. 

A profile version of YAGS is introduced.  This version makes better use of resources by 

allowing the branch bias to be determined statically, but might require some ISA change 

for certain architectures.  Arguably, the best attribute of the profile version of YAGS is 

the ability to use it as a cascading predictor.  A cascading predictor supplies a prediction 

in one cycle and a more accurate prediction after two cycles. 

This thesis stresses the importance of a relevant limit study for research done on branch 

prediction.   Most of the misconceptions/myths revealed in this dissertation resulted 

directly from the lack of a relevant limit study. 

1.6 Organization 

This dissertation is organized as follows:  Chapter 2 elaborates on the four different paths 

discussed above, and walks the reader through previous work performed in each path, 
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highlighting the pros and cons of each method.  Chapter 3 discusses the 

experimental methodology and benchmarks used in the studies. 

The next 3 chapters are each dedicated to one of the four paths discussed above.  Chapter 

4 presents a limit study on the different schemes belonging to the scheme path.  Chapter 5 

investigates what makes a hybrid predictor work well and evaluates the benefits of 

incorporating a hybrid predictor with a structure to reduce aliasing.  Finally, Chapter 6 

investigates the possibilities and limitations of the third-level path. 

The remainder of the dissertation capitalizes on the conclusion of the previous chapters.  

First, Chapter 7 introduces a trend in micro-architecture that has generally been ignored 

within the branch prediction research community.  Utilizing previous work and studies 

done earlier chapters, Chapter 8 summarizes the criteria necessary for a good dynamic 

branch predictor.  This chapter goes on to introduce a predictor that capitalizes on these 

criteria to produce a better prediction compared to previous known predictors.  Chapter 9 

provides a summary and possible future work. 
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Chapter 2  -   Previous Work 

2.1 Prediction Schemes 

4This section walks through previous work done on the scheme path.  While the first two 

subsections discuss one level rather than two level dynamic branch prediction schemes, 

they provide a foundation for the two-level branch prediction schemes discussed in the 

rest of this chapter. 

2.1.1 Bimodal 

A table of two bit saturating counters (2bc) called a pattern 

history table (PHT), indexed by the branch address, was 

proposed early in the history of branch prediction research field 

[35][36].  This was one of the earliest dynamic schemes, and 

was later referred to as the bimodal scheme (Figure 2.1)2.  The 

2bc became the standard state machine and the bimodal branch 

predictor is frequently used as a “lower bound” branch 

prediction benchmark against which to judge other branch prediction structures.  In other 

words, a branch prediction scheme should not, under any circumstances, perform worse 

than the bimodal scheme.  The bimodal attempts to predict the direction of a branch 

according to the past behavior of that branch during program execution.  The 2bc 

                                                 

2 The Figures in Section 2.1 show a diagram for the branch prediction scheme, although those schemes 

were introduced by specific branch prediction structures (see sec 4.1 for more).    

Figure 2.1 - Diagram 
for the bimodal 

Scheme 
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Figure 2.2 
Diagram for the 
history scheme 

provides some hysteresis so that one spurious prediction does not alter the next 

prediction.  The branch should behave the same at least two times consecutively in order 

for the prediction to change.  The bimodal can be seen as capturing the dynamic bias of 

the branch. 

2.1.2 History Only Branch Predictor 

A special case of the global branch prediction scheme is the history 

branch prediction scheme [44] (Figure 2.2). A table of 2bcs, indexed 

by a global history register, provides the prediction.  History branch 

prediction schemes assume that a correlation exists between the last 

n branches and the current branch.  Since the branch address is not 

involved in determining the prediction, the assumption is that the 

correlation works regardless of which branch is involved. In other 

words, if the n branches preceding branch A and branch B behave the same, branches A 

and B will behave the same as well. 

2.1.3 Two-level Adaptive Branch Predictors 

A major milestone in the branch prediction research field was the introduction of the 

local two-level adaptive branch predictor [22].  It was shown to achieve up to 97% 

correct prediction accuracy on the early SPEC89 benchmarks.  Later analysis has shown 

that the SPEC89 benchmarks are not hard to predict, even the bimodal predictor achieves 

over 90% prediction accuracy on the same set of benchmarks.  The authors varied the 

associativity in the history table, and examined different state machines as the predictors 

in the PHT.  This study found that the 2bc state machine performed the best among the 
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state machines tested.  It is important to note that since that study, this assertion has 

not been challenged and the 2bc been accepted as a standard. 

Three different classes of two-level adaptive branch predictors were identified [23], and a 

terminology based on taxonomy was proposed.  For example, the term GAg indicates a 

global history register with a shared (global) PHT.  The size of the PHT is 2history register size 

in this case.  PAg indicates a table of history registers indexed by the program counter, 

where the PHT is shared.  In contrast, PAp indicates a table of history registers, each of 

which has its own PHT.  In practice, the PAp scheme can only be realized for very small 

history sizes.  Separate work showed that PAp is the best predictor and GAg is the worst 

[24].  Notice, however, that GAg consumed the least amount of resources.  

Today, the common opinion 

is that the global family of 

branch prediction can offer a 

better prediction accuracy 

than the local branch predic-

tors for an integer workload 

because the branches in 

integer workloads tend to be 

highly correlated [25].  On the 

other hand, the local family of 

branch predictors offers better 

prediction accuracy for scientific workloads. 

 

 

 

Figure 2.3 - Diagram of the 
global scheme Figure 2.4 - Diagram for the 

local scheme 
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2.1.4 Global Two-level Branch Predictors 

The global two-level branch prediction scheme depicted in Figure 2.3 attempts to predict 

the branch based on the pattern of outcomes of the n preceding branches. When the 

program has a lot of if-then-else statements, the results are usually good.  When the 

global branch prediction scheme was introduced arguments about program behavior, and 

snippets of high-level languages code were used to justify its merit [44].  In trace driven 

simulations it was shown that an implementation of the global branch prediction scheme 

performed better than a bimodal scheme implementation for the same amount of 

resources.   

2.1.5 Local Two-level Branch Predictors 

The local two-level branch prediction scheme shown in Figure 2.4 attempts to predict a 

specific branch according to the last n preceding outcomes of the predicted branch.  A 

common notion is that local schemes are better than global schemes at predicting 

branches in scientific code.  This is attributable to the presence of a large number of loops 

in scientific code.  Having a per branch history register is beneficial for loop constructs. 

2.1.6 Path-Based Branch Predictors 

The correlated schemes described thus far record the branch outcome in the history 

register.  The information reflecting which branches resulted in those outcomes, is 

therefore lost.  The inclusion of this information might be beneficial for prediction 

accuracy.  If the last n branches preceding branch A resulted in a certain pattern, it is not 
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necessarily the case that when a different set of branches precedes branch A form the 

same pattern, branch A will behave the same. 

To rectify this loss of information problem it was suggested that the addresses along the 

path leading to the branch be factored into the information stored in the history register 

[26].  Using the branch address path explicitly captures information about the addresses 

of the branches leading to the one being predicted, and implicitly captures the outcomes 

of the branches on that path as well.  The mechanism proposed is a static mechanism, 

which is performed by software. 

The next development was a dynamic path-based branch prediction mechanism [26].  

This structure is similar to the global two-level branch prediction structure.  It was 

observed that when a branch target address falls inside the branch’s basic block, the 

branch outcome is lost in the history register, because the path leading to the branch is 

identical whether or not the branch was taken.  This led to the idea of using the branch 

target address, instead of the branch address, as the information stored inside the history 

register. 

One weakness of path-based correlation in dynamic branch predictors is that the history 

register needs to hold a lot of information, typically a word per branch, much more than 

the one bit per branch of competing schemes.  Since the most important information are 

the least significant bits (LSBs) of the branch address, only a small portion of the address 

is pushed into the history register. 

Path-based prediction schemes resulted in very similar prediction accuracy as did global 

two-level branch prediction structures of the same size.  However, it was noted that the 
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path-based branch prediction scheme, while requiring about the same amount of 

resources, used less branches for the history than the global branch prediction structure. 

 

2.1.7 Other Schemes 

As a result of the work mentioned so far researchers observed that capturing more 

branch-related information improves the prediction potential of the branch prediction 

scheme.  An attempt was made to identify the branch by the branch address, global 

history, and path-based history [46].  Information related to the above is “exclusive-or” 

(xor) together and used as the index to the PHT.  A slightly better prediction accuracy 

was accomplished than the gshare scheme.  No limit study was performed to assess the 

potential of such a scheme, and the gain in performance is so minute that it could be due 

to experimental error rather to the inherent capability of the prediction scheme. 

2.1.8 Summary 

A trend was established that the more information that is recorded about a branch to 

distinguish it from other branches, the better the prediction accuracy that will be achieved 

for that branch.  However, more information entails more hardware dedicated to the 

branch prediction structure.  Therefore, it might be the case that the best branch 

prediction scheme available does not necessary result in the most cost-effective branch 

prediction structure. 

2.2 Aliasing in Global Predictors 

2.2.1 The Problem 
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Figure 2.5 – Aliasing in the gshare predictor 

The main problem that causes 

prediction degradation in global 

branch prediction structures is 

aliasing [15][16] (Figure 2.5).  

Aliasing occurs when two indices, 

typically formed from history and 

address bits, map to the same entry in 

the PHT.  Since the information 

stored in the PHT entries is either 

“taken” or “not taken,” two aliased 

indices whose corresponding information is the same, will not result in mispredictions.  

We refer to this as neutral aliasing.  On the other hand, two aliased indices with 

contradictory entries might interfere with each other and result in a misprediction.  We 

call this destructive aliasing. 

 

 

 

 

2.2.2 Aliasing Reducing Branch Prediction Structures 

A lot of work has been done to reduce aliasing in the PHT.  In what follows, we describe 

some of the more notable structures and highlight their strengths and weaknesses. 

2.2.2.1 Gshare 
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The first structure to address the aliasing problem in two-

level adaptive branch predictors was gshare [14] (Figure 

2.6).  The observation that the usage of the PHT entries is 

not uniform when indexed by concatenations of the global 

history and the branch address, led to idea of using the xor 

function instead of concatenation to more evenly use the 

entries in the PHT.  Moreover, the usage of the xor function enables more history bits to 

be incorporated into the prediction and as a result, enables the predictor to increase its 

correlation.  Detailed studies have shown that this yields a slight advantage [19]. 

2.2.2.2 Agree Predictor 

The agree predictor displayed in Figure 2.7 assigns a biasing bit to each branch in the 

BTB according to the branch direction just before it is written into the BTB [9].  The 

PHT information is then changed from “taken” or “not taken” to “agree” or “disagree” 

with the prediction of the biasing bit.  The idea behind the agree predictor is that most 

branches are highly biased to be either taken or not 

taken and the hope is that the first time a branch is 

introduced into the BTB it will exhibit its biased 

behavior.  If this is the case, most entries in the PHT 

will “agree,” so that if aliasing does occur it will more 

likely be neutral aliasing, which will not result in a 

misprediction.  This observation suggests redundancy 

in the PHT. 

Figure 2.6 – Diagram for 
the gshare structure 

Figure 2.7 – Diagram for the 
agree structure 
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A patent registered by HP [67] preceded the agree 

predictor in taking advantage of a branch’s biased 

behavior to reduce destructive aliasing by replacing 

destructive aliasing with neutral aliasing.  The agree 

predictor considerably reduces destructive aliasing.  

However, there is no guarantee that the first time a 

branch is introduced to the BTB its behavior will 

correspond to its bias.  When such cases occur, the 

biasing bit will stay the same until the branch is 

replaced in the BTB by a different branch.  Meanwhile, it will pollute the PHT with 

“disagree” information.  Also, there is still aliasing occurring between instances of a 

branch that do not comply with the bias, and instances where the branch does comply 

with the bias.  When a branch is not cached in the BTB, no prediction is available. 

2.2.2.3 Skew Predictor 

The skew branch predictor seen in Figure 2.8 is based on the observation that most 

aliasing occurs not because of a small PHT size, but because of a lack of associativity in 

the PHT.  In other words, the major contributor to aliasing is conflict aliasing and not 

capacity aliasing.  The best way to deal with conflict aliasing is to make the PHT set-

associative, but this requires tags and is not cost-effective.  Instead, the skew predictor 

emulates associativity using a special skewing function [11]. 

The skew branch predictor splits the PHT into three equal banks and hashes each index to 

2bc in each bank using a unique hashing function per bank (f1, f2 and f3).  The prediction 

Figure 2.8 – Diagram for the 
skew structure 
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is made according to a majority vote among the three banks.  If the prediction is 

wrong all three banks are updated.  If the prediction is correct, however, partial updating 

will occur, which means that only the banks that made a correct prediction will be 

updated. 

The skewing function should have inter-bank 

dispersion.  This is necessary in order to make sure 

that if a branch is aliased in one bank, it will not be 

aliased in the other two banks.  This ensures that 

the majority vote will produce a un-aliased 

prediction.  The reasoning behind partial updating 

is that if a bank gives a misprediction when the 

other two give correct predictions, the bank with 

the misprediction probably holds information 

belonging to a different branch.  In order to maintain the accuracy of the other branch, 

this bank is not updated.  

The skew branch predictor tries to eliminate all instances of aliasing and thus all 

destructive aliasing.  Unlike the other methods, it tries to eliminate destructive aliasing 

between branch instances that obey the bias and those that do not.  However, to achieve 

this, the skew predictor stores each branch outcome in two or three banks.  This 

redundancy of 1/3 to 2/3 of the PHT size creates capacity aliasing by putting more 

information in the PHT, but eliminates by a greater degree conflict aliasing, resulting in a 

lower misprediction rate.  However, the increase in size slows warm-up on context 

switches. 

Figure 2.9 – Diagram for the bi-
mode structure 
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2.2.2.4 Bi-Mode Predictor 

The bi-mode predictor shown in Figure 2.9, similar to the agree predictor, replaces 

destructive aliasing with neutral aliasing [12].  The bi-mode PHT gets split into three 

even parts.  One of the parts is the choice PHT, which is just a bimodal predictor (an 

array of 2bcs) with a slight change in the updating procedure.  The other two parts are 

direction PHTs; one is a “taken” direction PHT and the other is a “not taken” direction 

PHT.  The direction PHTs are indexed by the branch address xored with the global 

history.  When a branch is present, its address points to the choice PHT entry, which in 

turn chooses between the “taken” and “not taken” direction PHTs.  The prediction of the 

direction PHT chosen by the choice PHT serves as the prediction.  Only the direction 

PHT chosen by the choice PHT is updated.  The choice PHT is normally updated too, but 

not when it gives a prediction that contradicts the branch outcome and the direction PHT 

chosen gives the correct prediction. 

During operation, branches that are biased to be taken will have their predictions in the 

“taken” direction PHT, and branches that are biased not to be taken, will have their 

predictions in the “not taken” prediction PHT.  So at any given time most of the 

information stored in the “taken” direction PHT entries is “taken” and any aliasing is 

more likely not to be destructive.  The same phenomenon happens in the “not taken” 

direction PHT.  The choice PHT serves to dynamically choose the branches’ biases. 

In contrast to the agree predictor, if the bias is incorrectly chosen the first time the branch 

is introduced to the BTB, it is not bound to stay that way while the branch is in the BTB 

and pollute the direction PHTs with destructive aliasing.  It should be noted, however, 

that the choice PHT takes a third of all PHT resources just to dynamically determine the 
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bias.  It also fails to solve the aliasing problem between instances of a branch that do 

not agree with the bias and instances that do, because both are stored in the same 

direction PHT. 

2.2.2.5 Filter Mechanisms 

Reducing the amount of necessary information stored in the PHT is the main point of 

filter mechanisms [10].  The idea is that highly biased branches can be predicted with 

high accuracy using just one bit.  Easy-to-predict branches are filtered out of the PHT by 

a combination of a bias bit and a saturating counter for each BTB entry, which can be 

seen in Figure 2.10.  When a branch is introduced to the BTB, the bias bit is set to the 

direction of the branch when it is resolved and 

the counter is initialized.  When every branch 

instance is resolved, if the direction of the branch 

is the same as the bias bit, the counter is 

incremented.  If not, the counter is zeroed and the 

bias bit is toggled.  A branch is predicted using 

the PHT if the counter is not saturated.  If the 

counter is saturated, it means that the branch is 

highly biased in the direction indicated by the bias bit, and therefore that the bias bit is 

used as a prediction.  In this case, when the counter is saturated, the PHT is not updated 

with the branch outcome – the saturated counter filters this information from the PHT. 

The size of the counter has to be tuned to the size of the PHT.  If the PHT size is large, 

the amount of filtering needed is small, and therefore the size of the counters should be 

Figure 2.10 – Diagram for the filter 
mechanism structure 
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large.  When a branch is first introduced in the BTB, the counter is initialized.  It 

was found that it is best to initialize the counter to its maximum value so that the filtering 

will start to work immediately.  If the branch is not highly biased, the bias bit will flip 

fairly quickly and the counter will be zeroed.  On the other hand, if the counter is 

initialized to zero and the branch is highly biased, it will take time for the filtering 

mechanism to start working and the PHT will be polluted in the meantime. 

The filter mechanism attempts to eliminate all aliasing instances by considerably 

reducing the amount of information stored in the PHT.  However, this mechanism has 

difficulty predicting instances of highly biased branches, which do not comply with the 

bias.  Due to filtering, as the PHT size increases the predictor will never reach the full 

potential of the global scheme that it implements. 

2.2.3 Summary 

The branch prediction structures discussed above use three techniques to reduce aliasing.  

The first takes advantage of the underlying information stored in the PHT, and converts 

destructive aliasing to neutral aliasing as a means of improving prediction.  The second 

method to remove aliasing is associativity.  Classical associativity (by an inclusion of 

tags) was determined as not cost-effective.  Pseudo associativity, a different way to 

achieve the same effect, was devised.  Third, filtering information selectively allocates 

greater resources for the more important information. 

Those advantages come at a cost.  Most of the structures carry some redundancy.  For 

example in the skew predictor, the same information is stored in up to three different 

counters.  This redundancy can exacerbate the negative effects of a cold start.  In all the 
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above branch prediction structures, certain types of aliasing are neglected or some 

branches’ accuracy is jeopardized. 

2.3 Hybrid Predictors 

The notion that a certain kind of predictor 

better predicts one class of branches, while a 

different kind of predictor better predicts a 

different class of branches led to the idea of 

combining branch predictors.  This class of 

branch predictors are known as the hybrid 

branch predictors. 

Figure 2.11 depicts a general drawing of a 

hybrid branch predictor.  A selection mechanism is used to choose between two or more 

branch predictor structures to be used for the prediction of a specific branch instance. 

2.3.1 Hybrid Branch Predictors 

The first hybrid structure suggested combining the bimodal and gshare structures [14].  

The selection mechanism is a table of 2bcs and is very similar to a bimodal structure.  

The selection counter is updated only if the prediction given by the two predictors is 

different.  If only the bimodal predictor gives a correct prediction, the counter is 

decremented.  The counter is incremented if only the gshare structure gives a correct 

prediction.  If both predictors either give a correct or an incorrect prediction, the selection 

counter is not updated.  Consequently, state 0 and 1 of the 2bc state machine entails a 

selection of the bimodal predictor, while state 2 and 3 result in the use of the gshare 

Figure 2.11 – Diagram of general Hybrid 
Structure 
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structure for prediction purposes.  This hybrid structure was shown to outperform all 

other single schemes known at that time. 

It is interesting to observe the percentage of times each predictor was used.  For most 

benchmarks, the bimodal was used significantly more than the gshare scheme.  This 

might indicate that the this hybrid predictor performs well because it filters the easy-to-

predict branches out of the gshare structure, and not due to the fact that each of its 

components better predict a different class of branches.  This way, a small amount of 

resources are used to predict the easy-to-predict branches, leaving the majority of 

resources to predict the hard to predict branches. 

The same study proposed that a hybrid predictor combine gshare and PAs structures.  

This hybrid predictor is known as the McFarling predictor, named after the author of the 

paper.  The combination of global and local schemes outperformed the bimodal-gshare 

hybrid predictor only for predictors larger than 16KB.  The simulations were done on the 

SPEC89 benchmark suite that is notorious for a small branch signature.  A branch 

classification method was suggested to enable a branch to be predicted by a predictor best 

suited to predict it [13].  Branch classification was based on the observation that branches 

that are highly biased can be predicted well with a short history predictor, while the rest 

of the branches typically require a longer history.  This observation led to a combination 

of predictors with different history lengths.  The classification predictor outperformed the 

gshare scheme.  The selection mechanism for the classification predictor is done via 

profiling. 

The classification predictor does not clearly belonging to just one of the research paths.  

It can be seen instead as a hybrid predictor, and is therefore discussed in this section, but 



 

 

34 

 

can also be seen as belonging to the ‘third-level’ path.  The two components and a 

selection mechanism associate it with the hybrid path.  On the other hand, the two 

different correlation depths of the same branch prediction scheme associate it with the 

third-level path. 

As an alternative selection mechanism to the bimodal structure, the two-level structure 

was proposed [48].  The hybrid predictor under examination was the McFarling predictor.  

The assumption was that since the two-level branch predictor could better predict the 

direction of branches, it would also be better able to select between the different branch 

prediction structures of the hybrid predictor.  It was shown that using a two-level global 

structure to select between the local and global schemes yielded a very small 

improvement.  However, this was not shown to be cost-effective, and the results were far 

from the ideal oracle selection mechanism. 

A conglomeration of predictors was incorporated into the multi-hybrid predictor [49].  

The multi-hybrid consists of the bimodal, two variations of the global predictor, and two 

variations of the local predictor, a loop predictor, and a static predictor.  It was shown to 

have a slightly better prediction accuracy than the bimodal-global and the McFarling 

hybrid predictors when tested under context switching.  No explanation was given as to 

why those particular predictors were chosen, or why there was a need for more than one 

global and local predictor.  The comparison was not done against the original McFarling 

predictor, but rather against a revised version of it, where the selection mechanism was 

tied to the BTB.  As the size of the predictor grew, the selection mechanism size could 

not grow because it was tied to the BTB.  This gave an unfair advantage to the multi-

hybrid predictor because its elaborate selection mechanism had to be tied to the BTB. 
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2.3.2 Selection Mechanisms 

Selection mechanisms for hybrid branch predictors followed the same line of 

development as did single scheme branch predictors.  The classes consist of a static 

selection mechanism, a dynamic per branch selection mechanism, and finally, a two-level 

selection mechanism as discussed above. 

Possibly the only contribution of the multi-hybrid predictor is its selection mechanism 

[49].  Before the multi-hybrid hybrid predictors consisted of only two separate branch 

predictor components.  The multi-hybrid consists of a selection mechanism that can 

select between an arbitrary numbers of predictors. 

This selection mechanism consists of multiple 2bc per entry.  The exact number of 2bc is 

determined by the different components of the multi-hybrid predictor.  The predictor to 

be used is determined by the 2bc with the value of three in it.  If multiple 2bcs in the 

selector entry have the value three, a priority encoder is used to determine which 

predictor to use.  Once the branch is resolved, the 2bc, which corresponds to the 

predictors giving a correct prediction, is incremented.  If one of the predictors, which had 

the value of 3, was correct, all 2bc that would correspond to all other predictors are 

decremented. 

2.4 Third-level of Adaptivity 

It was suggested that having the depth of correlation (i.e. the size of the BHR in the 

global scheme) adapt to the program execution or branch behavior could improve branch 

prediction.  This observation spawned the third-level of adaptivity path. 

2.4.1 Third-level of Adaptivity Structures 
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The first structure suggested was the Elastic History Buffer (EHB) [20]. The EHB 

took branch classification [13] to a finer granularity.  Instead of having the option of 

choosing between two lengths of history register, the EHB gave the option for each 

branch to use its optimal history length.  Moreover, it facilitated filtering of some easy-to-

predict branches from the PHT, by using a profiled bias bit instead of the PHT.  Filtering 

the easy-to-predict branches from the PHT reduces aliasing, which in turn increases 

prediction accuracy.  Profiling determines the history length to use for each branch, and 

requires a modification to the ISA.  As in all profiling, there is no guarantee that the data 

collected during profiling is representative of the actual branch behavior during 

execution.  The EHB structure operates under the assumption that there is an optimal 

history size per branch without investigating the possibility that a branch could have a 

different optimal history size in different phases of the program execution. 

The Dynamic History Length Fitting (DHLF) dynamically determines the size of the 

history size used [21].  DHLF divides the dynamic stream of branches into sub-streams 

termed steps of several thousands instructions.  In every other step, the length of the 

history register is evaluated and might change if the evaluation method finds the change 

beneficial.  The evaluation is done only every other step to omit the effects of cold starts 

from getting in the way of the evaluation method.  The step was set to 16K branch 

instructions.   

In another development, a similar idea was entertained, but instead of using branch 

outcomes, the variable length path branch predictor used target address in the history 

register [54].  Profiling was used to determine how much history to use for each static 
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branch.  The predictor was shown to be especially useful with indirect branches, but 

it was not compared against the EHB [20]. 

2.4.2 Selection Mechanisms 

Similar to selection mechanisms present in hybrid predictors, selection mechanisms for 

third-level of adaptivity can be divided into dynamic and static selection mechanisms.  

While a hybrid static selection mechanism usually only needs one bit of information in 

the ISA’s branch instructions, the presence of third-level of adaptivity requires log2 bits 

of the BHR size.   

Dynamic selection mechanism was not attempted on per branch granularity as in the 

hybrid dynamic selection mechanism.  Instead, the dynamic BHR size is on program 

granularity and is examined and changed every certain number of instructions [21]. 
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Chapter 3  -   Experimental Methodology and 
Benchmark Description 

3.1 Experimental Methodology 

4Throughout this work, trace driven simulations have been used to evaluate 

different branch prediction schemes and structures.  For simplicity’s sake, most 

simulations predict and resolve a branch, and update the branch predictor before fetching 

the next branch.  Although this approach sacrifices some accuracy because not always the 

branch outcome can be used to update the history register before the next branch is 

fetched and predicted, studies have shown that such simulations provide a tight 

estimation to finer, cycle level, simulations [55][56]. 

Scheme Description Design Space Unlimited Size 

Bimodal 
A table of 2bc accessed by the 
branch address 

None # branches 

 

History 
A table of 2bc accessed by a global 
history register 

History size 
from 1 to 64 

2history size 

 

Global 
A table of 2bc accessed by the 
branch address and a global history 
register 

History size 
from 1 to 64 

# branches x 2history size  

Local 

A table of history registers 
accessed by the branch address.  
The result is used with the branch 
address to access a table of 2bc.   

History size 
from 1 to 64 

Number of branches x 
(2history size + # branches) 

 

Path-
Branch 

Same as global but the information 
in the history register is previous 
branch addresses and not their 
outcomes 

History size 
from 1 to 64 

# branches x  
2history size x word size 

Path-
Target 

Same as global but the information 
in the history register is previous 
branch target addresses and not 
their outcomes 

History size 
from 1 to 64 

# branches x  
2history size x word size 

Table 3.1 – Branch Prediction Schemes and Their Attributes 
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All through this dissertation extensive limit studies of branch prediction schemes 

and combinations of multiple schemes were performed.  Table 3.1 depicts the different 

branch prediction schemes considered in the course of this work.  Table 3.1 gives a short 

description, the design space, and the size of the predictor if no size restriction is imposed 

for each branch prediction scheme. 

To facilitate such processor and 

memory intensive simulations, a new 

trace termed the hybrid trace was 

created for each benchmark.  Each 

entry in the hybrid trace contains 

predictions for every type of scheme 

for multiple correlation depth, 

ranging from 0 to 63.  Figure 3.1 depicts the structure used for each entry in the hybrid 

trace.  For example, the 3rd bit in the global variable represents the prediction a global 

branch prediction scheme made with a correlation depth of 3. 

3.2 Benchmarks’ Description 

This dissertation conducted studies on a set of 16 benchmarks.  Eight of these are 

SPECINT95 and six are SPECFP95. Two more of these benchmarks, the s390 and the 

PowerPC, were provided by IBM.  Table 3.2 lists the characteristics of all benchmarks.  

The SPEC95 benchmark suite represents the typical workload a computer might expect.  

The IBM traces are of database applications, and are interesting for their large branch 

footprints compared to the SPEC95 traces. 

typedef struct hybridStruct { 
 unsigned long long globalPred; 
 unsigned long long localPred; 
 unsigned long long pathBranchPred; 
 unsigned long long pathTargetPred; 
 unsigned long long historyPred; 
 unsigned int bimodalPred; 
 unsigned int baddr; 
 unsigned int btarget; 
 unsigned int taken; 
} hybridElement; 
 

Figure 3.1 – Hybrid Trace Structure 
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Table 3.2 - Benchmark Characteristics 

Table 3.3 shows the datasets used as inputs for the different benchmarks.  Each 

SPEC95 benchmark has two datasets.  The first is used in most simulations, while the test 

dataset is used to obtain profiling information when appropriate.  The IBM benchmarks 

were provided as traces and without an accompanying test trace.  As a result, whenever 

profiling information was needed, the first half of the trace was used to obtain profiling 

and the second half was used to obtain simulations statistics.  The reader is therefore 

  SPECFP95 

  Regular Set Train Set 

Benchmark Static Branches Dynamic Branches Indirect Branches Dynamic Branches 

applu 1498 31,843,665 291 17,867,895 
apsi 3006 41,370,429 581 126,828,375 
fpppp 1089 14,550,247 188 4,540,419 
hydro2d 2128 133,675,998 438 238,609,181 
mgrid 1449 13,901,572 274 208,359,079 
turb3d 1626 52,785,185 305 238,609,181 

  SPECINT95 

  Regular Set Train Set 

Benchmark Static Branches Dynamic Branches Indirect Branches Dynamic Branches 

gcc 13,763 49,193,611 3317 52,277,032 
compress95 495 196,295,114 49 6,145,300 
go 7401 147,352,115 3278 80,274,927 
ijpeg 2760 71,798,033 478 173,576,042 
li 1701 233,260,230 315 41,801,717 
m88ksim 1646 160,658,276 343 20,530,078 
perl 3443 191,717,635 647 2,144,594 
vortex 7581 158,719,765 765 238,609,181 

 IBM 

  Regular Set Train Set 

Benchmark Static Branches Dynamic Branches Indirect Branches Dynamic Branches 

s390 21,727 2,360,458 631 1,360,459 
powerpc 16,710 32,497,139 N/A 19,000,001 
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advised to place less confidence in results that used those traces in studies that 

include profiling. 

Benchmark Description Training 
Set 

Test Set 

gcc GNU C compiler version 2.5.3 stmt.i jump.i 
go Computer program playing go short.in 2stone9.in 

compress Data compression program prof.in test.in 
ijpeg Image compression program vigo.ppm speicmun.ppm 
xlisp XLISP interpreter 7queen.lsp train.lps 
vortext Object-Oriented database vortex.35M vortes.in 
M88ksim Motorola 88100 simulator dhry.test.big dcrand.train.big 
perl Train interpreter primes.pl scrabbl.pl 
applu Solves matrix system with pivoting.   
apsi Calculates statistics on temperature 

and pollutants in a grid. 
  

fppp Performs multi-electron derivatives.   
hydro2 Hydrodynamical Navier Stokes 

equations are used to compute 
galactic jets. 

  

mgrid Calculation of a 3D potential field.   
swims390 Solves shallow water equations   
S390 N/A N/A Not specified 
powerPC N/A N/A Not specified  

Table 3.3 – Benchmark description and datasets 

 

The studies in this dissertation were conducted using the SPEC95 benchmark suite.  As 

the name implies, those benchmarks were available in 1995.  A newer version of the 

SPEC is available – SPEC2000.  However, simulations done on the newer benchmarks 

revealed no indication of harder to predict branches, nor a larger number of static 

branches.  For the most part, it seems that SPEC2000 is just a revised version of the 

benchmarks present in the SPEC95 suite.  We therefore continued conducting the studies 

in this dissertation with the SPEC95 as we did before the SPEC2000 became available. 

 



 

 

42 

 

3.3 Performance Metrics 

The studies in this dissertation are evaluated using the metric of branch prediction 

accuracy.  The main disadvantage of this metric is the inability to directly convert 

improvement in branch prediction accuracy to improvements in overall system 

performance.  Overall improvement in system performance can be better achieved by 

using a metric like Cycles Per Instruction (CPI).  Previous studies have shown that a 

strong correlation exists between branch prediction accuracy and overall system 

performance [57][58][59].  As a result, the disadvantage of using branch prediction 

accuracy as a guide to system performance is minimal. 

There are numerous advantages of using branch prediction accuracy as a metric.  Using 

prediction accuracy detaches the evaluation of the branch predictors’ performance from 

system dependent parameters, such as the misprediction penalty.  Moreover, it facilitates 

concentration on improving the branch prediction mechanism without the interference of 

other potential system bottlenecks, such as cache misses. 

In summary, using branch prediction accuracy enables concentration on global factors in 

branch prediction that will facilitate a better branch predictor in every system.   

3.4 Results Presentation 

This dissertation presents 20 possible graphs: the SPEC95 benchmarks (16 different 

benchmarks), the PowerPC benchmark, the S390 benchmark, the arithmetic average of 

the SPECINT95, and the arithmetic average of the SPECFP95. 
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Chapter 4  -   The Scheme of Schemes 

4.1 The Difference Between Schemes and Structures 

4Past work on branch prediction has failed to distinguish clearly between branch 

prediction schemes and branch prediction structures—in fact, those words have been used 

interchangeably.  A branch prediction structure is the mechanism that implements the 

algorithm, which is the branch prediction scheme.  For example, the global branch 

prediction mechanism described in Section 2.2.4 is implemented by many branch 

prediction structures (Sections 2.2.2.1 – 2.2.2.5).  If a branch prediction structure is not 

limited in resources, it will reach the branch prediction scheme’s peak potential.  As a 

result, with no limits on resources, all branch prediction structures implementing the 

same branch prediction scheme will achieve the same prediction accuracy. 

The distinction between branch prediction structures and schemes is instrumental in 

choosing an appropriate branch predictor.  Regardless of how many resources will be 

dedicated to the gshare structure, the gshare structure will never surpass the prediction 

potential of the global branch prediction scheme.  It is important to be aware of the global 

scheme’s limits.  If a certain branch prediction structure approaches the prediction limits 

of the branch prediction scheme, Amdahl’s law dictates that work should be directed 

towards finding new and improved branch prediction schemes, as opposed to finding new 

branch prediction structures that will approach the limits of the branch prediction scheme. 
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Throughout this dissertation, this convention of distinguishing between branch 

prediction structures and branch prediction schemes is followed.  Next, the limits of 

known branch prediction schemes are studied. 

4.2 Limits on Branch Prediction Scheme 

Figure 4.1 displays prediction accuracy as a function of correlation depth for four major 

branch prediction schemes.  The four branch prediction schemes are the global scheme, 

the local scheme, history scheme and the bimodal scheme.  All four schemes are 

discussed in details in Section 2.1.  The graphs are presented for a) the SPECINT95 

benchmarks, b) the SPECFP95 and the IBM benchmarks and c) the SPEC95 averages.  

Notice that the y-axis coordinates are not uniform for all graphs.  For purposes of clarity, 

the grid line is held constant at 1% prediction accuracy for easy comparison.  Correlation 

depth applies to the two-level schemes, but it does not apply to the bimodal scheme, 

which utilizes only one level.  The bimodal plot is therefore constant across correlation 

depth.  Because this is a limit study, there is no limit on resources and therefore the graph 

does not represent resource allocation. 

It is clear that the two-level branch prediction schemes are superior to the bimodal 

scheme.  On the other hand, the history scheme, which doesn’t make use of the branch 

address, surpass the bimodal scheme only for large correlation depths.  The global and 

local schemes surpass the bimodal scheme starting with correlation size of one across 

nearly all benchmarks.  It is therefore imperative to use the two-level scheme to achieve 

high accuracy of branch prediction. 
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The ability of the history scheme to approach the prediction of the global scheme 

raises the question of what causes two-level branch prediction to work.  Traditionally it 
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Figure 4.1 - a) Limits study of common branch prediction schemes for the SPECINT95 
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Figure 4.1 - b) Limits study of common branch prediction schemes for the SPECFP95 and IBM 
benchmarks 
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has been thought that the two-level branch prediction schemes work well because the 

prediction of a branch is correlated to either previous branches in the global scheme, or to 

previous instances of the same branch in the local scheme.  This traditional explanation is 

brought in question in light of ability of the history scheme to outperform the global or 

local scheme for several benchmarks.  Remember that the history scheme applies 

correlation regardless of which branch is in question.  One explanation could be that after 

a certain correlation is encountered, all branches will tend to have the same behavior, 

regardless of which branch is predicted and what branches came before it.  However, one 

could easily draw different conclusions from this, and we refrain from fully addressing 

the topic. 

It is believed that the global branch prediction scheme predicts integer programs 

better than the local branch prediction scheme due to the greater frequency of if-then-else 

statements that will cause branches to correlate to preceding branches.  On the other 

hand, the local scheme predicts scientific programs better than the global scheme due to 

the large loop constructs in the program.  Loops cause branches to be correlated to 
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Figure 4.1 - c) Limits study of common branch prediction schemes for the SPECFP95 and 
SPECINT95 averages 
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previous instances of the same branch.  Therefore, the local scheme will outperform 

the global scheme for scientific code.  The averages of the SPEC95 support this 

conventional wisdom, but it happens only at a correlation depth of 16.  Looking at 

individual benchmarks, on the other hand, this conventional wisdom is not always the 

case.  For example, the go benchmark, which is a prominent integer benchmark for its 

large branch signature, is better predicted by the local scheme.  On the other hand, apsi 

and mgrid, which are scientific benchmarks, are better predicted by the global scheme. 

The limit study presented in Figure 4.1 ignores two major considerations.  The first 
relates to the size of a potential implementation of the scheme.  Due to the mount of 
information stored, the local scheme is more expensive to implement in terms of 
hardware than the global scheme.  For the local scheme correlation needs to be stored for 
every branch compared to only one correlation register for the global scheme.  Of course 
an actual implementation cannot have a history register for each branch and therefore 
different branches must share the same history register.  This aliasing effect will degrade 
performance.  Second, the limit study ignored the warm-up effect.  A static branch 
prediction scheme takes no time to warm up on a context switch, while the bimodal 
scheme needs to warm up 2bc per branch.  The warm-up effect is aggravated for the 
global scheme that needs to warm up multiple 2bcs according to the depth of correlation 
used.  In general, the deeper the correlation utilized, the greater the warm up time.  The 
local scheme suffers even further due to the need to warm up the history register per 
branch.  Nevertheless, Figure 4.1 gives an accurate indication of the maximum prediction 
achievable when implementing a certain branch prediction scheme. 

Another notable observation is that every benchmark reaches its peak prediction 
performance for different correlation depths.  Two extreme examples are the ijpeg 
benchmark that reaches its peak performance for the global scheme at a correlation depth 
of 2, and the cc1benchmark, which peaks at a at correlation depth of 29.  If the 
microarchitect is able to choose the best correlation depth for each program, an overall 
better prediction average can be achieved. 

In general, we can draw the relationship between correlation and prediction accuracy 

from Figure 4.1.  Increasing the size of the history register increases the correlation 

depth, which in turn, increases prediction accuracy.  This relationship has one caveat— it 

holds true only until a certain correlation depth is reached.  For most programs the depth 
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of correlation where this relationship fails is large enough that it is not likely to be 

realized in hardware in the near future.  Therefore, we can accept this relationship as true.  

The discussed drop in prediction accuracy is due to cold start effect and for long 

programs, increases correlation depth will entail increased prediction accuracy for even 

larger correlation depths than depicted in Figure 4.1. 

4.3 Global Branch Prediction Schemes   

When a branch outcome is saved in the BHR, the predictor can tell whether the last few 

branches were taken or not, but it cannot distinguish which branches they were.  If the 

branch address rather than the branch outcome is to be pushed into the BHR, as discussed 

in Section 2.1.6, the predictor will retain this lost information (pathBranch in graphs).  

There is even some loss of information for the pathBranch scheme.  If the target address 

and the fall-through address both falls in the same basic block, the prediction scheme is 

unaware whether the branch is taken or not.  To solve this problem, the pathTarget 

scheme pushes the branch target address instead of the branch address to the BHR as 

discussed in Section 2.1.6. 

Figure 4.2 compares the prediction accuracy of pathBranch and pathTarget schemes 

against the global scheme without the imposition of any resource limitations. As 

discussed above, the pathBranch scheme captures more information about previous 

branches than the global scheme, and the pathTarget scheme captures more information 

than both pathBranch scheme and the global scheme.  It is not clear, however, that 

capturing the extra information always helps prediction accuracy.  Comparing pathTarget 

to pathBranch it becomes clear that in most cases the difference between the two schemes 
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is negligible.  Previous studies have claimed that pathTarget is better than path 

branch because it suffers no loss of information when the branch target address is within 

the basic block of the branch.  However, those studies ignored that pathTarget lost 

information when two or more branches have the same target address.  In a similar 

scenario pathBranch will not lose information. 

The vortex benchmark is the exception in the sense that the pathTarget outperforms the 

pathBranch scheme.  The vortex benchmark demonstrates that the global scheme, while 

under-performing for small correlation depth, outperforms the pathBranch and pathTarget 

schemes for larger depth of correlation.  Moreover, the global scheme is able to reach the 

highest prediction accuracy across correlation depth. 

The limit study presented in Figure 4.2 pushes 32 bit address entries into the BHR.  A 

real implementation of either pathBranch or pathTarget can only push a few of the 

address’ LSB due to hardware restrictions.  This is bound to cause loss of information 

and degradation in the performance of the pathBranch and pathTarget schemes.  

Assuming however, that the pathBranch and pathTarget information is not lost even 

when using as few as 3 LSB of the address, a pathBranch or pathTarget scheme can only 
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Figure 4.2 - a) Limits study of global branch prediction schemes for the SPECINT95 
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Figure 4.2 - b) Limits study of global branch prediction schemes for the SPECFP95 and IBM 
traces 
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use correlation depth of 3 when a 0.5K entry PHT is available.  In comparison the global 

scheme is able to utilize a correlation depth of 9 for the same size PHT.  For the same 

reason, a correlation depth of 4 for the pathBranch and pathTarget is comparable to a 

correlation depth of 12 in the global scheme, and so on.  Figure 4.3 shows the adjusted 

comparison between the pathBranch and pathTarget schemes to the global scheme for the 

SPECINT95 average and the SPECFP95 average, assuming there is no loss in prediction 

for the pathBranch and pathTarget schemes due to the usage of only 3 LSB of the 
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Figure 4.2 - c) Limits study of global branch prediction schemes for the SPECFP95 and 
SPECINT95 averages 
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Figure 4.3 – Limit study of global branch prediction size adjusted for the SPECFP95 and 
SPECINT95 averages.  The study assumes that there is no lost of information when only the 3 LSB 
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address.  From Figure 4.3, it is clear that the pathBranch and pathTarget schemes 

lose their edge when adjusted in size to the global scheme.  In other words, it is more cost 

effective to increase the correlation depth than to retain the path information when no 

limit on resources is imposed. 

This is not an indication that pathBranch and pathTarget under resource restrictions do 

not perform better than the global scheme as indicated by previous studies.  What is 

indicated here is merely that the pathBranch and pathTarget, while performing a little 

better than the global scheme, when adjusted in size as scheme is outperformed by the 

global scheme.  If under size restrictions the pathBranch and pathTarget outperform the 

global scheme for better indexing method or resource utilization, it makes it a better 

structure implementation, not a better scheme.  Therefore, for the rest of the thesis we 

will not conduct studies using the pathBranch and pathTarget schemes as the global 

scheme has emerged as the more cost effective choice.  

4.4 The Effect of Aliasing 

Once the scheme is chosen, the reduction of aliasing is the only known method to 

improve prediction accuracy.  It is therefore beneficial to know how close to fulfilling the 

full scheme’s potential the structures implementing it are.  If there is a gap between the 

scheme’s potential and structures that implement the scheme prediction accuracy, it is 

because of aliasing.  

Figure 4.4 shows the gshare and the bi-mode predictors compared to an aliasing-free 

version of the global scheme.  As expected, as the size of the predictor increases, the 

adverse effects of aliasing diminish.  The critical size where aliasing is no longer a 
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Figure 4.4 - a) The effect of aliasing for the SPECINT95. 
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Figure 4.4 - b) The effect of aliasing for the SPECFP95 and IBM traces. 
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problem varies between different programs, and for some is not even reached for 220 

entries predictor. 

The gshare predictor achieves 93.7% prediction accuracy for a realistic size of 214 

entries, and the bi-mode predictor achieves 95.3% prediction accuracy for the same size 

predictor.  The potential of the global scheme for correlation depth of 14 is 96% 

prediction accuracy.  Both implementations of the global scheme are short of achieving 

the global scheme potential.  The gshare predictor is short by 2.3% and the bi-mode is 

short by 0.7% prediction accuracy.  Traces with a large static branch signature suffer 

more from the degrading effect of aliasing.  The bi-mode predictor is short by 4.1% 

Figure 4.4 - c) The effect of aliasing for the SPECINT95 and SPECFP95 averages. 
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prediction accuracy from the global scheme potential for the go benchmark, and by 

2.7% for the s390 benchmark. 

Whether aliasing is a problem depends on the size of the predictor, the program that is 

running, and the branch prediction structure used.  It is obvious that for a large enough 

predictor aliasing ceases to be a problem.  However, as Section 7.1 will show, predictor 

sizes that were assumed to be realistic for future processors are not.  Moreover, future 

processors will be forced to use smaller predictors than current microprocessors.  This 

trend will aggravate the aliasing problem even further. 

4.5 Correlation vs. Aliasing Tradeoff  

The correlation depth in two level branch prediction schemes is determined by the size of 

the BHR.  The BHR is usually combined with the program counter in some way to index 

the PHT.  Deeper branch correlation is beneficial when resources are unlimited, as 

discussed in Section 4.2.  When the PHT is limited in size, on the other hand, the best 

correlation depth is smaller 

than the equivalent limitless 

one.  Moreover, the best 

correlation depth is program 

dependent as discussed in 

Section 4.4.   

 

As the size of the BHR increases, the correlation depth increases.  This correlates the 

branch in question to a greater number of previous branches, which further separates the 

Figure 4.6– Correlation vs. Aliasing tradeoff tradeoff. 
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current instance of the branch from other instances of the branch.  This was shown to 

improve the prediction in Section 4.2.  On the other hand, increasing the BHR size 

increases the density of information stored in the PHT.  This increases the amount of 

aliasing, which impairs prediction.  Increasing the size of the history register, therefore, 

has two competing effects on prediction as illustrated by Figure 4.5.  

The greater the number of static branches in a program, the greater the amount of 

information the PHT has to store, and therefore the greater the aliasing effect (Figure 

4.6).  This suggests that the more static branches that are in the program, the more 

destructive the aliasing effect is.  Indeed, the benchmarks suffering from aliasing all have 

a high static branch signature.  Such is the case with the s390 with 21,727 branches, the 

PowerPC with 16,710 branches, and the go benchmark with 7,401 branches.  Compress, 

on the other hand, with its 495 branches, does not suffer considerably from aliasing. 

Figure 4.7 depicts the equation dictating PHT capacity, where PHT capacity is the 

possible amount of information that could be stored in the PHT.  From the equation, it 

seems like PHT capacity is dominated by the size of the history since the term is 

exponential.  However, this term of the equation represents an upper bound, and we 

expect that as the history size increases, the percentage of actual patterns out of the 

possible 2history will decrease.  We therefore expect the term 2history to much slower than 

the exponential maximum, and not to entirely dominate the number of branches in this 

equation.  To verify this assertion the amount of unique vectors stored in the PHT was 

Figure 4.7 PHT capacity equation 
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recorded for increasing correlation depth.  Figure 4.8 empirically shows that as the 

depth 
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Figure 4.8 - a) The amount of information to be stored in the PHT compared to the maximum 
possible information for the SPECINT95. 
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Figure 4.8 - b) The amount of information to be stored in the PHT compared to the maximum 
possible information for the SPECFP95 and IBM traces . 
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of correlation increases, the amount of information much slower than the 

exponential maximum possible, as suggested by the upper bound function of Figure 4.7. 

According to equation 4.7, if the number of static branches in a program is large, the size 

of the history register should be small, and vise versa.  It is known that the number of 

static branches in a program varies and therefore, in accordance to the PHT capacity 

equation, the size of the history register should vary as well.  The observation that 

different programs perform better for different history sizes was made before [19].  

However, that work failed to give an explanation for this phenomenon.  Following is an 

example, which illustrates how poor the understanding of the history size tradeoff has 

been thus far.  The bi-mode predictor, a predictor conceived to reduce aliasing, was 

compared against gshare when it was introduced [12].  This comparison reveals the 

problematic fact that different prediction structures, due to their underlying structure, 

utilize different size history register.  So, for example, a 1K entries gshare utilizing 10 

bits BHR is compared to a 0.75K entries bi-mode predictor utilizing 8 bits BHR size.  As 

a result, the bi-mode predictor, which is supposed to reduce aliasing, has less aliasing 

than the gshare predictor.  A better comparison would be to utilize 8 bits BHR in the 1K 

entry gshare.   

4.6 Decoupling Correlation from PHT size 

Traditionally, the depth of the correlation is coupled with the size of the PHT.  For 

example, a gshare predictor with a 1K entry PHT employs 10 bits of correlation.  If a 2K 

entries size PHT is available, 11 bits BHR is used.  The only attempt to decouple the 
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depth of correlation from the PHT size was done by reducing the number of BHR bits 

below the maximum depth of correlation that can be used for a given size PHT [19]. 

It has been shown before that prediction of programs’ branches benefits from deeper 

correlation (Section 4.2).  What might interfere with better prediction when using a 

deeper correlation is aliasing.  Section 4.1 explains why this is the case and concludes 

that benchmarks with small number of static branches would benefit from deeper 

correlation without being as adversely effected by aliasing as might benchmarks with 

large numbers of static branches. 

Because different programs can benefit from different size of correlation, It is beneficial 

to decouple the depth of correlation from the size of the PHT, and provide each program 

its optimal depth of correlation.  Decoupling correlation from the size of the PHT entails 

a BHR of an optimal size regardless of whether it is smaller or larger than the log2 of the 

PHT size.  If 2BHRsize is smaller than the PHT, the rest of the bits indexing the PHT will 

Figure 4.9 - a)  Decoupling correlation from PHT 
size for sizes BHR size less than log2 of PHT size 

Figure 4.9 - b)  Decoupling correlation from PHT 
size for sizes BHR size greater than log2 of PHT size 
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come from the PC only as shown in Figure 4.9.a on the other hand, if 2BHR size is 

greater than the PHT, the BHR will be folded as needed to form an index of size log 2 of 

the PHT, as seen in Figure 4.9.b.  This simple idea has never been considered  
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Figure 4.10 a) Decoupling correlation from PHT size for the SPECINT95 benchmarks 
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Figure 4.10 b) Decoupling correlation from PHT size for the SPECFP95 ande IBM benchmarks 
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because in most studies the size of the PHT and the depth of correlation were considered 

the same. 

Figure 4.10 shows prediction accuracy when varying the BHR depth for different PHT 

sizes.  The different plots represent different sizes of PHT starting from 0.5K entries and 

going up to 32K entries by factors of 2.  Each plot has 9 points where the middle point 

represents the “classical fit” for gshare.  For example, the “classical fit” for gshare with 

PHT 1024 is 10 bits BHR.  The other points on each plot represent BHRs of sizes –1,-2,-

3 and –4 from the “classical fit” as shown in Figure 4.9.a, and +1, +2, +3,and +4 BHR 

size as depicted in Figure 4.9.b.  The plots are ordered by size indicating that an easy way 

of achieving better prediction accuracy is dedicating more resources to the branch 

predictor.  In benchmarks with a large number of static branches like go, s390, and 

PowerPC, it is not a good tradeoff to add more correlation than the “classical fit.”  In fact, 

the smallest BHR always achieve the best prediction.  It is likely that a smaller BHR than 

what is recorded in Figure 4.9 will achieve even better prediction accuracy for those 

benchmarks.  While it is true that more correlation adversely effects prediction in 

Figure 4.10 c) Decoupling correlation from PHT size for the SPECINT95 and SPECFP95 
benchmarks 
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benchmarks with a high number of static branches, notice that as the size of the PHT 

increases, the negative effects seem to fade.  It is possible that even for those 

benchmarks, if the PHT of sizes greater than 32K entries are considered, more correlation 

will become a good choice.   

The perl benchmark is a good example of a benchmark that for small PHT, a large BHR 

is not a good choice, while for larger PHT sizes it is a good choice.  It is expected that for 

most benchmarks a large enough PHT will have the same effect.  

If a certain BHR size needs to be chosen, as traditional implementation of branch 

predictor are required, the size of the BHR needs to be chosen according to the size of the 

PHT.  The SPECINT95 average and SPECFP95 average follow the same path described 

above.  For a 0.5K entries less correlation prevails, while at a PHT of size 32K, more 

correlation turns out to be a good choice. 
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Chapter 5  -   Myths of Hybrid Predictors 

5.1 Issues in Hybrid Predictors 

4Visual comparison between the bi-mode [12] structure and the McFarling hybrid 

predictor [14] reveals a striking similarity, even though the two branch predictors were 

conceived for different purposes.  The bi-mode was created to reduce aliasing, and the 

McFarling predictor to combine the advantages of the local and global branch prediction 

schemes. 

Within the hybrid path, some studies promote a static selection mechanism while others 

studies prefer to use a dynamic selection mechanism.  The advantage of using a static 

selection mechanism over a dynamic selection mechanism is reduction of information 

stored in the predictor in two ways.   First, the selection mechanism does not take 

hardware resources, but conveyed to the branch predictor via the ISA.  Second, since 

each branch only uses one of the hybrid components, it is unnecessary to update both 

components for each branch.  Using a dynamic selection mechanism, on the other hand, 

is useful because some branches might change their best predictor throughout the 

execution of the program. 

This study was initiated in order to better understand how to best combine branch 

predictors that reduce aliasing and hybrid branch predictors.  However, during the 

investigation it was revealed that those two paths are one and the same, as this chapter 

will demonstrate.  First, this chapter will discuss the simulation methodologies used 

specifically for this chapter. 
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5.2 Simulation Methodology 

In all simulations performed for this chapter, the depth of correlation, or the size of the 

history register/s, follows directly from the size of the PHT.  For example, if the global 

component in the hybrid predictor had 1K entries in its PHT, the history register size 

would be 10 bits.  Throughout this chapter, the McFarling local-gshare hybrid predictor 

is used because in preliminary simulations it was found to be  the best true hybrid 

behavior. 

In the limited size simulations, a two-way set associative BTB with 4K entries was used.  

This is large enough to prevent it from being a performance bottleneck and enabled 

concentration on the tradeoffs in the PHTs.    

The McFarling hybrid predictor simulated had two components— a gshare structure 

implementing the global branch prediction scheme, and a PAs structure implementing the 

local branch prediction scheme.  In cases where a dynamic selection mechanism was 

employed, the bimodal structure was used. 

Unless stated otherwise, profiling was done on the same data sets that were used for 

running the simulations.  This enabled us to obtain an upper limit on the prediction 

accuracy.  As is shown in one of this chapter’s studies, it is anticipated that using a 

different data set (the more realistic situation) for profiling would degrade the 

performance of the hybrid predictor with a static selection mechanism. 

5.3 Selection Mechanism 

First, the relative merits of using static versus dynamic selection mechanism to choose 

between the different components of a hybrid predictor are examined.  As noted earlier, a 
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static selection mechanism requires less information to be stored in the predictor 

structure because each branch utilizes only one component.  This reduces contention, 

which reduces aliasing and helps prediction accuracy.  Moreover, hardware resources that 

would have been used for the selection mechanism are now available for increasing the 

size of the predictor’s components.  The main problem with static selection is the 

additional bits needed in the ISA.  Although some ISAs have this bit in place, others will 

require that the ISA be altered.  Dynamic selection mechanisms are thought to have an 

edge over static ones because it has been suggested that the best component for predicting 

a branch can change during the execution of a program. 

5.3.1 The Merit of Dynamic Selection Mechanism 

It is unclear whether there is an inherent benefit in choosing the component used by a 

specific branch dynamically.  If the best component to predict a branch dynamically 

changes during the program run, of course it would be better to dynamically select the 

component used by a branch.  However, if there is no inherent benefit in choosing the 

component used by a branch dynamically, it is better to choose it statically and avoid the 

extra cost of using both components for each branch, and the cost of the selection 

mechanism. 

Figure 5.1 shows the prediction accuracy for a global-local hybrid predictor with 

unlimited resources.  The three plots represent three types of selection mechanisms: per-

branch oracle, per-instance oracle, and an implementation of a real selection mechanism - 

the bimodal.  The per-branch oracle records prediction accuracy for both components. 

When the program terminates, it chooses the best component as the predictor for each 
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branch.  The per-instance oracle gets a prediction from both components, and if 

either of them is correct, it records a correct prediction.  It is interesting to note that the 

per-instance oracle is an overestimation and that even for a randomly generated 

prediction, it probability dictates a 75% correct prediction. 

Determining whether the best component to predict a branch changes during program 

execution is difficult.  One approach to assist in this determination is to slice the dynamic 

stream of a specific branch into n subsets of branch instances, and then to choose the best 

component for each set [52].  The problem with doing this is that a small n leads to an 

optimistic outcome, while a large n might erase the benefit of having a dynamic selection 

mechanism.  Using either a large n or a small n can lead to erroneous conclusions.  

Clearly, it does not matter whether the best component for each branch changes 

throughout the program run if a known selection mechanism cannot identify the best 

component dynamically.   

In our experiments, we used an unbounded hybrid predictor with an unbounded bimodal 

selection mechanism.  This eliminated the adverse effects of aliasing and allowed a check 

on whether the bimodal selection mechanism could capture the changing best predictor 

throughout the program execution.  Figure 5.1 shows that there is no inherent gain in 

using a dynamic selection mechanism.  In other words, if there is a gain to be made in 

changing the component used for each branch during the program execution, the bimodal 

selection mechanism does not capture it.  This is clearly demonstrated in the graphs of 

Figure 5.1 where it can be seen that the bimodal selection mechanism always under-

performs the per-branch oracle.  Moreover, it appears that the bimodal selection 

mechanism makes mistakes in selecting the proper components, which degrades the 
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overall performance.  This phenomenon is accentuated in programs with a large 

number of branches like the S390 and PowerPC.  They display a significant gap  
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Figure 5.1 – a) Testing the potential of static vs. dynamic selection mechanisms in a unlimited 
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Figure 5.1 – b) Testing the potential of static vs. dynamic selection mechanisms in a unlimited 
resource environment for the SPECFP95 and IBM benchmarks 
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between the prediction of the oracle static selection mechanism and the prediction when 

using the bimodal selection mechanism. 

5.3.2 Dynamic vs. Static Selection Mechanism 

Figure 5.1 depicts the inability of the dynamic selection mechanism to dynamically adapt 

to the changing behavior of branches, even if such transient behavior exists.  There does 

not appear to be any advantage to employing dynamic selection mechanisms instead of 

static ones.  It is thus expected that in a limited resource setting, a static selection 

mechanism would outperform a dynamic selection mechanism for the reasons mentioned 

above.  Figure 5.2, however, shows the exact opposite.  In a limited resources setting, the 

hybrid predictor with a dynamic selection mechanism outperforms a hybrid with a perfect 

static selection mechanism. 

Holding the heel of this observation a question is born: What is it about the dynamic 

selection mechanism that boosts the performance of a hybrid predictor with a dynamic 

selection mechanism when working in a size-restricted structure? Alternatively,  
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what is it about the static selection mechanism that in a limited-resource setting degrades 

the performance of a hybrid predictor? 

5.3.3 The Omniscient Dynamic Selection Mechanism 

One possible hypothesis to explain this question is that a dynamic selection mechanism 

reduces aliasing.  For example, consider the case where two branches A and B are both 

better predicted by the global component of the hybrid predictor.  In an unlimited 

resource setting, a dynamic selection mechanism will choose the global component to 

predict them.  In a resource limited setting, branch A will suffer from aliasing, which 

considerably degrades the prediction of its global component.  As a result, the dynamic 

selection mechanism chooses the local component to predict branch A’s outcomes.  

Although both branches A and B are inherently predicted more accurately by a global 

component, branch A will be better predicted by the local component in a limited 

resources environment.  We next examine how much aliasing reduction helps a hybrid 

predictor. 
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SPECINT95 and SPECFP95 averages 



 

 

82 

 

Figure 5.3 shows the extent to which reducing aliasing helps boost the performance 

of hybrid prediction.  It compares a resource bound local-global hybrid predictor 

(hybrid), with a resource bound local-global hybrid (aliasing hybrid), whose selection 

mechanism does not take into consideration the effects of aliasing.  To simulate this 

effect, a run of the local-global hybrid predictor was made with no limits on resources.  

The selection pattern for the entire run was logged and later served as the selection 

mechanism in the limited hybrid version.  The selection mechanism in this case is that for 

the true hybrid behavior with no regards to aliasing, since it was recorded in an aliasing-

free setting.  The conclusion from Figure 5.3 is that a large portion of the benefits brought 

by hybrid predictors with dynamic selection mechanisms comes from reducing aliasing.  

Moreover, comparing the hybrid predictor to an unlimited version of the global scheme 

(UL global), shows that the local-global hybrid predictor never fulfils its promise of 

improving prediction beyond that of a single scheme, even for generous resource 

allocation.  Notice that the difference between UL Hybrid and UL global is the potential 

difference between the hybrid predictor (global-local) and the global scheme.  This 

difference pales in comparison to the difference between UL global and hybrid that 

represents the remaining aliasing after the bimodal selection mechanism was able to 

reduce some of them (the difference between hybrid and aliasing-hybrid). 

In summary, a large portion of the benefits brought by hybrid predictors with dynamic 

selection mechanism comes from reducing aliasing.  Moreover, the benefit of combining 

predictors to increase the potential prediction is questioned in this section, even though 

the studies were conducted in this section ignoring the size overhead of implementing the 

PAs structure (i.e. the table of history registers). 
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Figure 5.3 – a) The role of Hybrid predictors in reducing aliasing for the SPECINT95 benchmarks 
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Figure 5.3 – b) The role of Hybrid predictors in reducing aliasing for the SPECFP95 and IBM 
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5.3.4 Static Aliasing Aware vs. Dynamic Selection Mechanism 

At this point we have shown that both static and dynamic selection mechanisms reduce 

aliasing in hybrid branch predictors.  The former does so by reducing contention in the 

structure and by eliminating the hardware cost in the selection mechanism.  The later 

does so by dynamically distributing the branch stream across the two components, which 

alleviates contention in the PHT.  The dynamic selection mechanism performs much 

better than an ideal static selection mechanism.  In the ideal static selection mechanism, 

profiling was done with no limitation on resources.  This led to branches that are better 

predicted by the global scheme to be mapped to the gshare component, and branches that 

are better predicted by the local scheme to be mapped to the PAs component.  Notice that 

the ideal static selection mechanism does not take aliasing into consideration.   

One way of considering aliasing is to use the actual table size when profiling.  Figure 5.4 

shows the importance of taking into consideration the size of the predictor structure when 

profiling.  When taking size into consideration during profiling, the branches get 
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Figure 5.3 – c) The role of Hybrid predictors in reducing aliasing for the SPECINT95 and 
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distributed not just by their true hybrid behavior, but also by taking aliasing into 

consideration.  Figure 5.4 shows that while a dynamic selection mechanism is better than 

a static selection mechanism with perfect profiling, employing profiling that takes the 

size of the structure into consideration (static limited) results in even better performance 

than dynamic selection.  The fact that the difference between the prediction percentages 

diminishes with size indicates that the difference is due mostly to better aliasing 

reduction.  Using this profiling method combines the advantage of static and dynamic 

selection mechanisms as explained previously. 

The advantages of using a static selection mechanism with aliasing-bound profiling are as 

follows: the branches are distributed among the components according to contention in 

the structure; the selection hardware is eliminated; and only one component is used per 

branch, which further reduces contention. 

5.3.5 Shortcomings of Static Selection 

The question arises whether such good prediction can be achieved when profiling from a 

test data set.  As Figure 5.4 shows, when using a different data set to profile the program, 

the static selection mechanism (static limited test) suffers degradation in performance.  

For small predictors, the static selection mechanism still performs better than the 

dynamic selection mechanism, but the dynamic selection mechanism eventually 

surpasses it. 

This problem can be accentuated when code that is compiled and profiled for a certain 

size of predictor is used to run on a different implementation of the same ISA.  Since 

profiling is done on a different size of predictor than the one, which the code is run 
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Figure 5.4 – a) Dynamic vs. aliasing aware static selection mechanism in hybrid predictors for the 
SPECINT95 benchmarks 
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Figure 5.4 – b) Dynamic vs. aliasing aware static selection mechanism in hybrid predictors for the 
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on, the aliasing reduction will fall below optimal.  This phenomenon might be aggravated 

when the predictor on which the code is run on and the predictor on which profiling was 

done implement different structure/s.  All that is under the assumption that the ISA was 

designed to convey the selection information to the processor.  Otherwise, changing the 

ISA is not inconsequential. 

In summary, there appears to be no reason why a hybrid predictor should utilize a static 

selection mechanism over a dynamic one.  While both dynamic and static selection 

mechanisms reduce aliasing, the static selection mechanism has some shortcomings that 

are hard to make up for. 

5.3.6 In Depth Analysis 

We have shown that the selection mechanism in hybrid predictors enables hybrid 

predictors to outperform some generic two-level predictors by reducing aliasing.  We 

next present a serious of studies that shed light on the behavior of the selection 
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mechanism throughout the program execution.  We choose to only show the results 

for the gcc benchmark.  Results for all other benchmark are similar. 

Figure 5.5 depicts the number of switches each static branch goes through for a perfect 

selection mechanism and a real implementation of the selection mechanism.  The perfect 

selection mechanism is an oracle that after the branch is executed, if the selected 

component miss predicted the branch and the other component predicted the branch 

correctly, the oracle registers a switch.  The real selection mechanism is implemented as 

the bimodal selection mechanism.   Both the perfect and the real selection mechanism are 

simulated with no resource limit and with resource limit of 6 KB entry hybrid predictor.  

Only about 1% of the total static branches show on the x-axis.  The static branches are 

sorted according to the number of switches, and this 1% of static branches represents the 

majority of overall switches. 

 

The perfect selection mechanism 

performs many more switches under 

resource limit as can be seen by 

comparing the perfect-limited and 

perfect-unlimited plots.  The difference 

between those two plots represent the 

amount of work the selection 

mechanism will do to reduce aliasing.  

Similarly, the work the selection mechanism does to reduce aliasing when resources are 

limited can be viewed when comparing the real-limited and real-unlimited plots.  

Figure 5.5 - per branch switches for the 
McFarling hybrid predictor 
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Comparing the real and the perfect selection mechanism, either for limited or 

unlimited resources, reveal the potential of the hybrid predictors that is not realizable by 

the bimodal selection mechanism. 

 

Figure 5.6 displays the accumulated number of switches as the program progresses for a 

limited and unlimited bimodal selection mechanism.  Data was collected for increments 

of 100,000 dynamic instructions.  Each selection mechanism is simulated for history size 

of 3,6 and 9 for both the local and global components.  There is no obvious correlation 

between the accumulated number of switches and the correlation depth.  Correlation 

depth of 3 has the highest number of 

switches followed by correlation depth 

of 6 and 9.  However, this varies 

considerably between different 

benchmarks.  On the other hand, the 

selection mechanism restricted in size 

always has a larger number of switches 

than the unlimited selection mechanism 

with the same size of correlation.  This, 

once again, suggest that a large number of switches is attributed to aliasing. 

 

The linearity of the plots in Figure 5.6 suggests that switches occur throughout the 

execution of the program evenly, and do not just occur in a warm-up phase only.  This 

coincides with a different experiment we run where we employed a dynamic selection 

Figure 5.6 – Accumulated # of switches as 
program progress 
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mechanism in the beginning of the program and froze it after an initial warm-up.  If 

most switches occur only in the warm-up phase, such a mechanism will be able to take 

the advantages of both static and dynamic selection mechanism.  The initial dynamic 

phase will conduct a kind of profiling on the current dataset.  The second phase, the static 

one, will be able to only update one the components for each branch and as a 

consequence reduce the amount of information stored in the PHTs.  This mechanism 

failed to outperform a conventional dynamic selection mechanism.  As figure 5.6 depicts, 

this static-dynamic selection mechanism failed because the dynamic switches occur 

evenly throughout the execution of the program. 

 

Figure 5.7 shows the number of switches performed by the selection mechanism as a 

function of correlation depth for a limited resources and unlimited resources McFarling 

predictor.  Figure 5.6 shows the same date but only for correlation depth of 3,6 and 9, and 

a trend could not be established.  In Figure 5.7, however, the trend is clear.  The number 

of switches decreases as correlation 

depth increases.  For the unlimited 

selection mechanism this decrease in 

switches is moderate and the reason is 

that as the depth of correlation increases, 

the prediction accuracy in both the 

global and local increases.  As the 

prediction accuracy increases, the need Figure 5.7 – number of switches as a function of 
correlation for limited and unlimited predictors 
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for switches decreases. 

 

In the limited resources simulation the decrease in switches as correlation increases is 

much more pronounce than in the unlimited simulations.  On top of the increase in 

prediction accuracy as correlation depth increases, as in the unlimited simulation, the size 

of the predictor increases as well in the limited resource simulation.  The increase in the 

size of the predictor reduces the amount of aliasing, and as a consequence the number of 

switches due to aliasing decreases.  When aliasing cease to be a problem, the limited and 

unlimited resources predictors’ switches converges.  The moderate decrease of switches 

in the unlimited predictor represents the elimination of switches due to increase in 

prediction accuracy as correlation depth increases.  The difference between this moderate 

decrease and the rapid decrease in switches of the limited predictor is due to elimination 

of aliasing. 

 

5.4 The Notion of Hybrid Predictors 

The next issue to address is whether there is an inherent gain in the local-global 

hybrid predictor over a single scheme, or whether the gain realized by the hybrid 

predictor is limited to reducing aliasing.  Figure 5.8 shows the improvement of the 

program’s prediction for each branch (x-axis) when using the local predictor versus the 

global predictor with no limits on resources.  Positive percentages indicate that the branch 

is better predicted by the local scheme, while negative percentages indicate the branch is 

better predicted by the global scheme.  The branches are sorted on the x-axis according to 
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the percentage improvement.  Figure 5.8 shows that the number of branches that 

contribute to the true hybrid behavior of the local-global hybrid predictor is small.  These 

small number of branches will be referred to hereinafter as the hybrid branches.  For most 

branches, the improvement obtained by using the global component instead of the local 

component or vice versa is insignificant.  

Only a few of the hybrid branches are responsible for the improvement of a local-global 

hybrid predictor over a single scheme predictor.  If the predictor component for the other 

branches, which make up the majority, changes dynamically to reduce aliasing, it remains 

to make sure that the hybrid branches are predicted by the component that does it best.  

This will allow the predictor to take advantage of both alias reduction and true hybrid 

behavior.  When employing a static selection mechanism, this can be done at profile time. 

In the case of a dynamic selection mechanism, it seems that an explicit way of indicating 

the appropriate component for the hybrid branches is needed.  However, a study 

conducted but not shown here indicated that the dynamic selection mechanism already 

performs the task of mapping the hybrid branches into their respective best components.  

Attempting to lock the hybrid branches into their respective best components, while 

letting the rest of the branches’ components to be chosen dynamically, resulted in 

degraded performance. 

Despite the potential embedded in hybrid predictors and the ability of the selection 

mechanism to identify the hybrid branches, this potential is not fulfilled.  Performance 

degradation due to aliasing dominates the hybrid potential.
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Figure 5.8 – a) per branch potential of a local-global hybrid predictor for the SPECINT95 
benchmarks 
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Figure 5.8 – b) per branch potential of a local-global hybrid predictor for the SPECFP95 

benchmarks 
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5.5 Updating Policies and Aliasing  

As was mentioned before, a static selection mechanism has serious shortcomings.  One 

mechanism to overcome these shortcomings might be to bring the advantage of the static 

selection mechanism into hybrid predictors with a dynamic selection mechanism.  An 

attempt is made to accomplish this using a modified updating mechanism.  When a 

branch is resolved, the branch predictor is updated with the branch outcome.  In a hybrid 

structure, this entails updating both the global history register and the respective local 

history register, and the PHT for both of the hybrid components.  In order to reduce 

contention in the PHT, the updating mechanism should update only the PHT for the 

component currently selected.  Figure 5.9 depicts the prediction percentage as a function 

of the log2 of the PHT size and the correlation depth for three updating policies.   The 

updating policies are: 1) both, where both PHTs are updated; 2) lgt - stands for Local-

Global hybrid with a “this” updating mechanism.  With the “this” updating mechanism 

only the current PHT pointed by the selection mechanism is being updated; and 3) our 

proposed new updating policy, lgnt - stands for Local-Global hybrid with the “this & 

next” updating mechanism.  This updating mechanism will be described later.  Figure 5.9 

shows that for small size predictors, it is beneficial to update only the current PHT.  This 

update policy reduces the amount of information stored in the PHT and therefore reduces 

contention, which in turn helps the prediction accuracy.  As the size of the predictor 

increases, updating both components helps the prediction accuracy.  This suggests that 

updating both components produces helpful information for prediction.  This observation 

leads to the question of whether this helpful information can be captured without  
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Figure 5.9 – a) Updating policies in hybrid branch predictors for SPECINT95 
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recording double the information for each branch instance.  Notice that for programs with 

large numbers of branches like the S390 and the PowerPC traces, the tradeoff between 

aliasing and incorporating the additional useful information favors adding the useful 

information only for structures of infeasible size. 

The new updating policy (lgnt) described next was developed to resolve the problem 

defined above, and attempted to capture the useful information of the “both” update 

policy, while alleviating contention in the PHT.  The lgnt policy updates only the PHT 

being used currently unless the selection mechanism is in a transition mode where it 

updates both PHTs.  A transition mode is defined when a branch selection points to one 

component in the hybrid predictor, but the branch resolution will shift it to point to the 

other component.  As demonstrated in Figure 5.9, the updating policy achieves good 

prediction for small predictors compared to the other two policies, and does not lose its 

effectiveness for larger predictors.  For traces with a large branch signature like the S390 

and the PowerPC, lgtn stills falls short of the lgt, but it cushions the worst case compared 
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Figure 5.9– c) Updating policies in hybrid branch predictors for SPECINT95 and SPECFP95 
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to the “both” updating policy.  In summary, the lgnt updating policy serves as good 

middle ground between the other two updating policies. 

5.6 Combining Aliasing and Hybrid Paths 

This dissertation shows that the hybrid and aliasing paths are one and the same.  Prior to 

the studies conducted here, it was believed that because those two paths were orthogonal 

that their advantages would be easily combined.  To double check on this premise, we 

next try to combine the hybrid path with the bi-mode predictor.  Figure 5.10 depicts the 

performance of a McFarling predictor, where both the local and global components are 

implemented as a bi-mode structure.  If the hybrid and the aliasing paths were orthogonal, 

such a predictor would have had the potential to take advantage of both paths.   

Specifically, if the selection mechanism is static and uses an unlimited structure when 

profiling, each branch will be mapped to the component which best predicts it.  Within 

each component, the bi-mode structure should perform the task of reducing aliasing.  The 

performance of such predictor is shown in Graph 5.7 under “static-unlim-bimode”.  The 

static-unlim indicates that selection is done statically with profiling performed on a 

structure of unlimited size.  This structure is compared against several other predictors 

and consistently does worse than most.  In fact the static-unlim-bimode consistently 

outperforms the same predictor without the bi-mode structures in each component, 

referred to as static-unlim-normal.  This indicates that the bi-mode structure in each 

component of the McFarling predictor, helps performance by reducing aliasing.  More 

importantly, however, it indicates that using no limit on the structure size during profiling 

degrades performance considerably.  The inability of this combined predictor to 
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Figure 5.10 – a) Combining McFarling and bi-mode predictors for SPECINT95 
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approach the prediction accuracy of the classic McFarling predictor (dynamic-normal) 

demonstrates that contrary to common belief, combining the advantages of the hybrid and 

aliasing paths of research is not trivial. 

5.7 McFarling vs Bi-Mode Predictor 

Finally, after discovering that the main strength of hybrid predictors is reducing aliasing, 

this study makes a direct comparison between one of the most used aliasing reduction 

implementations, the bi-mode predictor, and the McFarling hybrid predictor.  For the 

study conducted here, the McFarling predictor was implemented with a 2K entry BTB.  

The size of the local history registers was accumulated into the overall predictor size.  

However, the BTB tags were not considered when calculating the predictor size.  This 

was done under the assumption that the BTB tags were already in place for predicting the 

branch target address, and therefore could be used for predicting the direction with at no 

extra cost.   
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Figure 5.11 makes a direct comparison between the McFarling predictor and the bi-mode 

predictor.  Two versions of the McFarling predictor are shown.  The first version has 

increasing local correlation depth corresponding to the correlation increase of the global 

history register.  The second version of the McFarling predictor utilizes the best local 

correlation depth for each benchmark.   

The bi-mode predictor outperforms the McFarling predictor for small predictor size 

across all benchmarks.  The size overhead of the local registers, which are part of 

implementing the local scheme, cannot be offset for small predictors, and therefore the 

bi-mode outperforms the McFarling predictor for small predictors.  As the size of the 

predictors increases, the McFarling prediction accuracy caches up with the bi-mode 

predictor.  On average for the SPECINT95 average, the McFarling predictor outperforms 

the bi-mode predictor only for sizes larger than 26KB.  This is much larger than can be 

implemented in future processors, as will be discussed in Chapter 7.  For benchmarks 
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Figure 5.11 – c) McFarling vs. bi-mode for SPECINT95 and SPECFP95 averages 
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with large static branch signatures, such as the s390 and PowerPC, the bi-mode 

predictor outperforms the McFarling predictor even for predictors as large as 180KB. 

5.8 Summary 

This chapter eliminates the notion of the hybrid path as an independent research path in 

branch prediction research.  It shows that most of the gains achieved in hybrid predictors 

are attributable to the ability of the selection mechanism to reduce aliasing, and not to 

true hybrid behavior.  It follows that hybrid predictors should be compared against 

aliasing-reducing structures and vise versa, because they both achieve their goals by 

attacking the same problem.  True hybrid behavior can be attributed to a limited number 

of branches, but both dynamic and properly profiled static selection mechanisms map 

those branches into their respective best components.   It is shown that both dynamic and 

static selection mechanism achieve the same goals, namely, reducing aliasing, in different 

ways.  This chapter also shows that the advantages of dynamic selection mechanisms can 

be applied to static selection mechanisms by a profiling method, and that the advantages 

of static selection mechanisms to the dynamic ones by means of a new updating policy.  

This chapter concludes by comparing the bi-mode predictor with the McFarling predictor.  

This comparison between a well-known aliasing-reducing structure and an equally well-

known hybrid predictor shows that the bi-mode is a considerably better predictor. 
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Chapter 6  -   Filtering Characteristic of the 
Third-Level of Adaptivity 

4Compared to the hybrid research path, the third-level path is understudied.  Those few 

studies that have addressed it show empirical results that prove the respective third-level 

of adaptivity structure outperforms gshare.  It is not clear from those studies whether 

applying a third-level of adaptivity improves prediction because of better usage of 

resources and aliasing reduction, or whether the improvements show that the third-level 

of adaptivity is a better branch prediction scheme.  In this chapter we attempt to answer 

this question. 

The literature describes four third-level-of-adpativity structures.  The first, the Elastic 

History Buffer (EHB), statically determines, via profiling, the correlation size used for 

each static branch [20].  The second, branch classification, decides statically between two 

predetermined correlation sizes for each branch [13].  The third structure, Dynamic 

History Length Fitting (DHLF), dynamically adjusts the correlation size for all the 

branches [21].  Lastly, a variable length path branch predictor was considered [54].  

Similar to the EHB, profiling is used to determine the depth of correlation for each 

branch.  The interested reader should refer to Section 1.5 for a detailed description of the 

above methods. 

Next branch classification and the DHLF are considered.  Limit studies were performed 

for each to determine whether they represent a better branch prediction scheme or just a 

better branch prediction structure.  We didn’t consider the fourth structure, as we 
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consider it to be somewhat orthogonal to other structures, and the improvements 

discussed for this structure were for indirect branches only.  Different branch prediction 

structures can therefore incorporate a similar structure that predicts only the indirect 

branches and enhance the predictors performance.  The EHB was not considered because 

it spans two different research paths.  Not only does the EHB allow each static branch to 

use its best correlation, but it also filters easy-to-predict branches out of the PHT.  This 

places the EHB in both the third-level path and the aliasing path3.  No breakdown of the 

accuracy improvement was given in the EHB study to determine what percentage of the 

prediction improvements is due to filtering and what percentage of it is due to the third-

level of adaptivity scheme employed. 

To the best of our knowledge, all third-level adaptivity structures implement the global 

two-level branch prediction scheme.  All simulations in this chapter, therefore, consider 

only the global two-level branch prediction scheme.  

6.1 Branch Classification 

As was mentioned before, branch classification can be viewed as belonging to the hybrid 

path or to the third-level path.  Using the conclusions drawn in chapter 4, one can get a 

good idea of what makes branch classification work when it has static or dynamic 

selection mechanism. 

                                                 

3 Interestingly enough, since the EHB presented itself as a third-level path, it was not regarded as 

employing filtering as well.  When the filter mechanism was introduced, there was no mention of the EHB, 

or a proper comparison between the filter mechanism and the EHB, which appeared first. 
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We next however, check the validity of the third-level adaptivity motif in branch 

classification.  Figure 6.1 depicts a limit study of different possible configurations of 

branch classification ranging from a correlation depth of 1 to a correlation depth of 25 for 

a) a dynamic oracle b) a static oracle, and c) a real selection mechanism for the PowerPC 

benchmark.  The real selection mechanism is implemented as the bimodal selection 

mechanism, similar to the one used in the hybrid studies.  Each point represents the 

prediction accuracy for a classification method with one component having correlation 

depth of x on the x-axis, and the other component having a correlation depth of y on the 

y-axis.  The components are not restricted in size and each vector has its own unique 2bc 

state machine for the bimodal selection mechanism. 

Figure 6.1 shows that the dynamic oracle selection mechanism performs better than the 

static oracle.  This is to be expected since the dynamic oracle represents an upper limit on 

prediction that is not likely to be realized.  Once again, similar to Section 5.3.1, we 

encounter the problem of how to cancel the noise produced by two different lists as 

oppose to capturing the real advantage of using two different sizes of correlation.  This 

problem will be discussed later. 

Both the dynamic oracle and the static oracle selection mechanisms depict a jump 

in prediction accuracy when using different correlation depth for each component 

compared to using the same correlation depth for both components.  Using the same 

correlation depth for both components is represented by the middle diagonal.  This 

accuracy jump might lead to the conclusion that third-level adaptivity has merit as a 

scheme and not only as a structure.  It was also found that the prediction accuracy of two 

widely spaced correlation depths, such as 1 and 25 is higher than that of adjacent 
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correlation depths, such as 24 and 25.  We know that deeper correlation results in 

better prediction.  Therefore, having combination of low and high correlation depths 

surpass a configuration where both components are of high correlation suggests the merit 

of third-level adaptivity as a scheme. 

The results presented in the real selection mechanism graph in figure 6.1, however, result 

in exactly the opposite conclusion.  In the real selection mechanism, there is no 

degradation in performance when both components use the same correlation depth.  The 

real selection mechanism performs as well whether the two components use the same or 

different depths of correlation.  This suggests that there is no merit attributable to the 

third-level path as a branch prediction scheme.  Further proving this point, the relation 

that deeper correlation results in better prediction holds for the real selection mechanism.  

As a result, the best prediction accuracy is obtained for the deepest correlation size – the 

best prediction is achieved when both components are of depth 25.  There is no advantage 

of using two different correlation sizes for the two components in the branch 

classification scheme, when a real selection mechanism is employed.  When there is no 

size restriction on the predictor, there is no advantage to using two different components 

at all. 

What is it about the dynamic oracle and static oracle limit studies that suggested to a 

different assumption?  The introduction of two lists enhances the prediction accuracy 

even if the two lists are random and have nothing to do with prediction as discussed in 

Section 5.3.1.  The reason it seems that two very different correlation sizes can enhance 

prediction is because those two components are so different from one another.  It is clear 

that this phenomenon is more pronounced for the dynamic selection oracle than for the 
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static selection oracle.  Again, this supports the assertion that the improved accuracy 

comes from random lists rather from inherent potential in the third-level branch 

prediction scheme. 

We were unable to find a way to separate any potential advantage in introducing two 

different lists of prediction from the actual advantage held by the third-level scheme.  It is 

possible that such separation cannot be done and that the only potential merit of the third-

level path lies in a novel real selection mechanism that would expose it.  If no such 

selection mechanism exists, any merit that it might have exhibited will be moot. 

It is clear, however, that known selection mechanisms cannot take advantage of this 

elusive inherent advantage of using classification with no limits on resources.  However, 

it can be inferred from results obtained in Chapter 4 that when a size restriction is 

involved, branch classification will work due to the ability of the selection mechanism, 

either static or dynamic, to reduce aliasing. 

Throughout this dissertation, we demonstrate how the lack of a limit study can result in 

misleading conclusions for researchers.  This Section shows, however, how a limit study 

might itself lead to erroneous conclusions.  We advocate using limits studies cautiously. 

6.2 Dynamic History Length Fitting 

The motivation behind the Dynamic History-Length Fitting (DHLF) is the empirical 

observation that different programs achieve maximum prediction accuracy by  
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Figure 6.2 – DHLF comparison in as a scheme and structure 

specFP95

0.94

0.95

0.96

0.97

0.98

0.99

1

applu apsi fpppp hydro2d mgrid sw im average

pr
ed

ic
tio

n 
ra

te

5

39

10

6311

59

14

36

13

23

14
31

specINT95

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

cc
1

co
m

pr
es

s9
5 go

ijp
eg li

m
88

ks
im

vo
rte

x
pe

rl

av
er

ag
e

pr
ed

ic
tio

n 
ra

te

31

14
14

18

14

38
14

1421

14
35

12

3

21

IBM

0.86

0.88

0.9

0.92

0.94

0.96

0.98

powerpc s390 average

global-avg(28)

dhlf -global

global-best

gshare-avg(7)

dhlf -gshare

gshare-best

1

11

1

19



 

 

117 

 

employing different sizes of history register [21].  This observation was made before 

in [19] without the proper explanation.  In Section 4.5 we provided an explanation as to 

why predictors have different optimal history sizes for different programs.  The example 

given that li and go have different optimal history register holds true, as Figure 6.2 

depicts.  The gshare predictor achieves its best prediction accuracy for the li benchmark 

when the history size is set to 14, in comparison to history size of 3 for the go benchmark 

for an 8K entries gshare. 

To take advantage of this observation, the DHLF dynamically adjusts the size of the 

history register during program execution to optimize the register for each program.  This 

is achieved by dividing the dynamic stream of branches into sub-streams termed steps.  In 

every other step the length of the history register is evaluated and might change if the 

evaluation method finds the change beneficial.  The evaluation is done only every other 

step to omit the effects of cold starts from getting in the way of the evaluation.  The step 

is set to 16K branch instructions. 

While the DHLF adheres to the empirical results discussed above, an examination of a 

limit study indicates that both the li and the go benchmarks could benefit from longer 

history sizes.  The go benchmark can benefit from a history size of up to 21, and the li 

benchmark can use up to 35.  This phenomenon is consistent with the relationship 

depicted in Figure 4.5 and described in Section 4.6.  In other words, more branches and 

deeper correlation result in more information, which results in more aliasing.  More 

aliasing, in turn, tends to reduce prediction.  On the other hand, deeper correlation tends 

to improve prediction.  As a result of those two conflicting relationships, benchmarks 

with fewer branches can usually benefit more from deeper correlation depth. 
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Figure 6.2 depicts a limit study and 8K entries gshare that give some insight into the 

inherent advantage of using the DHLF scheme and structure.  The first three bars 

compare the best global scheme across benchmarks (global-avg), the DHLF (dhlf-global), 

and the best global history size for each benchmark (global-best), in that order.  All of the 

first three graphs depict a limit study, and the structures therein were not subject to size 

restrictions.  Bars four to six, on the other hand, depict the same information, but for 

resource limit of 8K entries gshare.  This is the same size used in the original DHLF 

paper [21].  Results seem to vary from one benchmark to another, however a few 

observations are possible.  First, on average, the DHLF performs worse than the global-

avg when no resource limit is imposed and better when resource limit is imposed.  Notice 

that in the global-avg we use an oracle to determine the best history size for each 

benchmark.  This kind of oracle is not realistic.  The comparison between the global-avg 

and global-dhlf, though, highlights the role of the DHLF in reducing aliasing.  When no 

resource is imposed the DHLF has no advantage over the overall best history size.  On 

the other hand, when resources are limited, and aliasing is a factor, the DHLF gains an 

advantage.  While this is true across the averages, different benchmarks show different 

behavior.  For example, for the mgrid benchmark, the DHLF performs better than the 

global-avg, even when there are no resource restrictions.  Other phenomena might 

explain the fluctuation in behavior.  The DHLF starts with a short history size and grows 

accordingly.  It can therefore better bear the negative effect of a cold start.  On the other 

hand, the dynamic size of the history register can cause a degradation in performance if 

the history size keeps thrashing between different history sizes. 



 

 

119 

 

The second observation derived from Figure 6.2 is that when comparing the DHLF 

to the best history size for each benchmark (global-best), the DHLF has no advantage.  

Of course, global-best or its restricted counterpart gshare best, is not realizable, because 

it uses an oracle to determine the best history size for each benchmark.  However, 

profiling a dataset can achieve performance very close to an oracle.  Not only that, but 

using the number of static branches in the program to decide on the depth of correlation 

used when running the program, can results in a very good approximation of the oracle 

[59].  Using this method doesn’t require profiling but it does require some mechanism in 

the ISA to convey to the processor the BHR size decision made by the compiler. 

The conclusions drawn here are consistent with results depicted in the original DHLF 

paper [21].  Graphing the size of the BHR as a function of time, it was shown that in the 

beginning of the program there was fluctuation in the size of the BHR, but that after this 

initial fluctuation, the BHR stabilized on a specific size for each benchmark.  This 

suggests that there is no inherent advantage in changing the size of the BHR dynamically, 

but rather that the DHLF takes advantage of the fact that each benchmark as an ideal 

BHR size where the best prediction is achieved. 

6.3 Paths Comparison 

After showing that with known selection mechanisms the third-level path has no merit, 

and assuming that the performance gain by third-level structures demonstrated in 

previous studies is attributable to reducing aliasing, a comparison between the different 

paths is straight forward.  It is out of the scope of this dissertation to conduct a thorough 
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Figure 6.3 a) comparing DHLF to gshare and bi-mode predictors for the SPECINT95 
benchmarks 
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Figure 6.3 b) comparing DHLF to gshare and bi-mode predictors for the SPECFP95 and 
IBM benchmarks 
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comparison between all known branch prediction structures that have been studied as part 

of different research paths.  Instead, and because of the similarity of the classification 

structure to hybrid branch predictors, we have chosen the DHLF branch prediction 

structure as a point of comparison for other branch prediction structures. 

Figure 6.3 compares the DHLF to gshare and the bi-mode branch prediction structures 

for varying size resources.  The advantage of the DHLF for small predictor sizes is clear.  

This advantage is an indication that when resources are limited and aliasing degrades 

prediction, the DHLF improves prediction by reducing aliasing.  However, this advantage 

is lost for predictors above 0.5KB for most benchmarks.  For benchmarks with a large 

number of static branches the advantage continues even for a 2KB predictor over gshare. 

Contrary to what might be expected from two different branch prediction structures that 

implement the same branch prediction scheme, the DHLF and gshare do not converge as 

resources increase.  Instead the gshare prediction surpasses the prediction achieved by 

the DHLF.  The lack of convergence might be due to the DHLF filtering large correlation 
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sizes out of the PHT in order to alleviate aliasing, but as resources increase, this 

filtering becomes unnecessary.  A similar phenomenon is present in the filter branch 

prediction structure.  It might be the case that for different sizes of PHT, the step size 

needs to vary in order to alleviate the degradation in performance.  Alternatively, it is 

possible that changing the BHR causes thrashing in the PHT, which cause this loss in 

performance. 

6.4 Summary 

The conclusions presented in Chapter 5 led us to question the merit of third-level 

adaptivity as an orthogonal branch prediction research path to the aliasing path.  This 

chapter confirms that assertion.  Third-level adaptivity does not represent a better branch 

prediction scheme, but rather a better branch prediction structure under certain 

conditions.  A better use of resources, specifically through filtering, leads to more 

accurate prediction for small branch prediction structures.  Since some branches can be 

predicted with a small depth of correlation just as well as with a large depth of 

correlation, the small depth of correlation is chosen for filtering purpose.  Consequently, 

it is important to compare third-level structures to aliasing structures and hybrid 

structures.  When comparing the bi-mode predictor to the DHLF we observed that the bi-

mode predictor achieves a better prediction accuracy. 

A more efficient method of capturing the gain introduced by the DHLF was proposed.  

The method sets the depth of the history register for each benchmark, as opposed to 

having it constant as it is implemented in current processors, or dynamically changing it 
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as proposed by third-level structures.  The drawback of this method is the need to 

implement a new ISA instruction to set the length of the history register. 

It is important to emphasize that it was not proven that the third-level adaptivity’s lack 

the potential to be a better branch prediction scheme, but rather the inability of current 

structures to take advantage of any merit that may exist.  We specifically showed that 

structures known to us do not improve prediction by exploiting the third-level adaptivity, 

but rather by drawing upon the underlying concept of reducing aliasing. 
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Chapter 7  -   The Do’s and Don’ts of Branch 
Predictor Structures 

3In this chapter we identify good criteria for building branch predictors.  The criteria are 

deduced from three different sources.  First, previous branch prediction structures in the 

literature are considered.  This section serves only to summarize the highlights of the 

studies discussed previously in Section 2.2.2, and to address any different conclusions 

reached in light of studies done in this dissertation.  The second source is the group of 

studies conducted for this thesis and presented in previous chapters.  Those studies reveal 

an array of misconceptions regarding branch prediction practices, and should be 

considered in future predictors.  Lastly, two micro-architectural trends introduced in 

previous studies that profoundly impact future branch predictors are considered.  We 

choose to start from the later. 

7.1 Micro-architectural Trends 

7.1.1 Wire Delay 

Several recent studies have shown that in the near future, wire delay will need to be 

considered in the design of future processors [63][64][65].  It was noted that for the most 

part wire quality does not degrade and the number of reachable transistors in a fixed 

cycle will stay constant.  The conclusion of these early studies was that, in fact, there is 

no wire problem.  However, this conclusion ignored the exponentially increasing number 

of transistors inside a chip.  
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It was observed that technology has reached a point where the distance a signal can 

travel in one cycle becomes smaller than the width of a chip [63].  The distance a signal 

can travel in one cycle compared to the width of a chip has been decreasing rapidly for a 

long time.  However, such a fact was of little consequence because this distance was 

always larger than the width of one chip.  This is changing in current technologies and 

will continue to deteriorate in the future.  This has several immediate implications.  First, 

global communication between on-chip modules will take longer than one cycle, and the 

number of transistors reachable in one cycle will stop increasing.  The ever-increasing 

disparity between wire and gate delays will cause microarchitects, who have never before 

needed to concern themselves with wire latency, to attend to this matter [63]. 

Building on these observations, a scaling experiment was done on two different 

architecture types [64]:  an architecture that aims for fast clock cycle, such as Compaq’s 

Alpha; and an architecture type that aims for large IPC, such as HP’s PA-RISC.  It was 

shown that due to the wire technology’s inability to scale, microarchitects will soon face 

the unattractive tradeoff between slowing down the clock cycle and smaller IPC.  As a 

result, both of those architecture types will only be able to sustain performance 

improvements of 12.5% annually, a far cry from the annual rate we got accustomed to of 

50-60%.  The reason is that as feature size shrinks, and wires become slower compared to 

gates, the amount of state reached in a cycle decreases. 

This new observation has been, for the most part, ignored in the branch prediction 

research community.  Elaborate structures with sizes of up to 64KB have been proposed 

[49].  The assumption that in the future more transistors will be available to the branch 

prediction module has given the illusion that aliasing will cease to degrade prediction 
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accuracy in future chip generations.  It was shown, however, that in 35nm 

technology, expected by the year 2012, it might be that only PHT of sizes between 512 

entries and 4K entries will be accessible in one cycle [64].  For these modest sizes, even 

benchmarks from SPECFP95, which are traditionally easy to predict and do not suffer 

much from aliasing, suffer significantly in performance.  For example, a 512 entry PHT 

achieves less than 96% prediction accuracy compared to 99% prediction accuracy for an 

aliasing free scheme for the hydro2 benchmark (see Figure 4.4).  Notice that the aliasing 

free ideal accuracy is almost achieved by a PHT of 2K entries.  The hydro2 is usually not 

included in branch prediction studies since it is easy to predict and usually does not suffer 

from performance degradation due to resource constraints.  We conclude that even 

benchmarks that are currently not considered to run slower due to poor branch prediction, 

will suffer performance degradation in the future due to aliasing.  

Corporations rarely reveal complete details of the branch prediction structure used in 

commercial chips.  It is even more rare to find a window into the decision-making 

process foregone an actual implementation of a branch predictor.  It is, therefore, hard to 

evaluate whether the disparity between wire and gate delays has shown itself to be a 

problem in present chip designs.  One example of an exception to corporate secrecy is the 

G4 PowerPC microprocessor.  A 2K entry gshare branch predictor was evidently 

considered but eventually replaced by a 2K entry bimodal predictor.  The reason behind 

the switch was to remove the XOR gate in front of the predictor, because it was in the 

critical path [58].  Notice that a 2K entry predictor is a very small predictor but was still 

in the critical path.  As we have seen, it has been suggested that the growing disparity 

between gate and wire delays must be taken into consideration by microarchitects in their 
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design of new chips.  One study to take this advice in the branch prediction field 

discussed the impact of delay on the design of branch predictors [65].  This study showed 

that trading prediction gains, which come with increasing the predictor size, with 

increasing delay is never a good idea.  In other words, the pipeline should never be halted 

because a branch instruction is awaiting a decision from the branch predictor even if the 

prediction will be more accurate than a prediction produced in one cycle.  This is 

somewhat intuitive, since halting the pipeline just to get a prediction defeats the purpose 

of having a predictor to begin with.  After highlighting this impractical tradeoff, 

alternatives to improve prediction without increasing the size of the predictor were 

investigated [65].  Observing that 57% of dynamic branches have more than one cycle to 

be predicted, a cascading look-ahead predictor was suggested.  The cascading predictor 

uses a small predictor for dynamic branches that need to be predicted in one cycle, while 

using a larger predictor to predict branches that have more than one cycle to be predicted.  

The cascading branch predictor was able to alleviate the degradation of IPC compared to 

a gshare predictor, but it was not able to compensate for it completely.  The same study 

learned an already used approach of an overriding predictor.  The overriding predictor 

allows the larger structure to override the prediction made by the smaller structure for a 

small misprediction penalty.  The overriding approach showed to outperform the 

cascading predictor [65]. 

7.1.2 Software Development 

As computers become faster and are able to process more information in less time, 

software developers take advantage of the newly acquired processing power to develop 
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ever-more demanding software.  This is the main reason why most computers 

become obsolete after a few years.  The size of programs has been shown to increase 

constantly  and consequently, the I-cache performance degrades [2].  It is easy to believe 

that as code bloats, the number of static branches in the program increase. 

The adverse effects of a larger number of static branches in a program should be obvious 

by now and is summarized in Figure 4.6.  It is peculiar, therefore, that studies which 

consider future structures by assuming hardware real estate that will only be available in 

the future, are conducted with current and past software4.   

The difficulty of predicting what software will be available in the future is obvious.  

However one remedy for this difficulty is to choose a set of benchmarks that is especially 

heavy with branches as a way of anticipating the increased number of static branches will 

be common in future software5.  With that in mind, the reader is encouraged to consider 

benchmarks that are heavy with static branches like go, gcc, PowerPC, and S390, to 

better represent future software than other benchmarks. 

7.2 Observing Past Work 

The background presented in Section 2.2 highlights the advantages and disadvantages of 

current branch prediction structures that aim to reduce aliasing.  Those methods are able 

to reduce aliasing as a result of following good practices and avoiding the following bad 

practices. 

                                                 

4 See chapter 3 for why this dissertation is using the SPEC95 and not the SPEC2000 benchmark suite. 

5 While not the first ones to note this, we suspect that the low number of branches present in some of the 

SPEC benchmarks does not represent current software, let alone future software that will become available. 
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7.2.1 Good Practices 

A few good practices for building a structure to reduce aliasing can be extracted from the 

observation of past work that has been done on the subject.  The first and foremost of 

these practices is reducing negative aliasing.  The agree, and bi-mode predictors do so by 

splitting the PHT into two.  One PHT serves the branches that are mostly taken, and the 

other one serves those that are mostly not taken.  By splitting the branch streams into 

branches that are biased to be taken and branches that are biased not to be taken, negative 

aliasing is significantly reduced, and prediction is improved.  The classical solution to 

reduce aliasing is the introduction of tags into the PHT.  This was not found to be cost 

effective.  The only structure that is close to utilizing associativity is the skew predictor.  

The skew predictor achieves pseudo-associativity by means of redundancy.  Finally by 

filtering easy-to-predict branches out of the PHT, the filter mechanism was able to reduce 

aliasing in the PHT, while retaining good prediction for the filtered branches.   

7.2.2 Bad Practices 

In the past, work done on reducing aliasing in branch prediction has resulted in several 

pitfalls.  The first of these is that all branch prediction structures that reduce aliasing have 

demonstrated redundancy associated with the structure.  For example, in the bi-mode 

structure, the redundancy is in the form of the choice PHT.  The skew predictor has the 

same information stored in two or three different places, and so on.  Branch prediction 

structures that reduce negative aliasing neglect to address the other kind of aliasing—that 
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is, aliasing between instances that do agree and do not agree with the branch’s bias.  

This negligence is present in the agree and the bi-mode predictors.  When implementing 

the scheme in a branch prediction structure, it is essential to retain all the information that 

helps the branch prediction scheme achieve its peak performance.  The filter mechanism 

filters easy-to-predict branches out of the PHT, but at the same time loses the special 

instances of those easy-to-predict branches that do not comply with the bias, such as loop 

exist branch instance.  Consequently, even with a large amount of hardware dedicated to 

the filtering mechanism, it will never reach the peak performance of the global scheme it 

supposed to implement. 

7.3 Studies Done in This Dissertation 

7.3.1 The Omniscient Dynamic Selection Mechanism 

 Through Chapter 5’s discussion of hybrid predictors, the wonders of the dynamic 

selection mechanism were revealed when the need to balance between two unrelated 

information arises.  The dynamic selection mechanism was proven to be instrumental in 

reducing aliasing.  Moreover, its ability to reduce aliasing by mapping branches that are 

predicted better by component A into component B, the dynamic selection mechanism 

was able to map the ‘hybrid branches’ to their respective best component. 

It is tempting to conclude that the dynamic selection mechanism in the bi-mode predictor 

explains why it performs better than the agree predictor that utilize a static selection 

mechanism.  However, this will be shown to be a false conclusion.  The difference in 

performance results from the agree predictor attaching the bias to the BTB.  As the size 

of the agree predictor grows, the number of entries dedicated to the bias cannot grow 
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since they are attached to the BTB.  In other words, the agree predictor throttles the 

resources dedicated to the bias, while the bi-mode predictor does not.6 

The value of the dynamic selection mechanism may be seen when either a bias bit is not 

present in the ISA and a dynamic selection mechanism therefore becomes imperative, or 

when there is large disparity of branch behavior between different datasets.  Such 

disparity is more prevalent when choosing between two different schemes, as in the 

McFarling predictor, than when selecting the bias of a branch, as in the bi-mode 

predictor. 

7.3.2 Compile Time Information 

Throughout the history of the branch prediction field, it seems as if a dynamic approach 

to data collection and decision making during run time has always prevailed over the 

static approach, where the decision making is done during compile time.  Dynamic 

branch predictors are more accurate than static branch predictors.  The bi-mode predictor 

outperforms the agree predictor because it was thought to select the bias of the branch 

dynamically.  And dynamic selection mechanisms perform better than static selection 

mechanisms because the best predictor might change throughout the program execution.7 

                                                 

6 The bias/selection throttling effect has been ignored in multiple studies.  It degraded the performance of 

the bi-mode and YAGS predictors when compared against a branch predictor that utilized value prediction 

[66].  We speculate here that it likely caused a similar degradation to the McFarling predictor when 

compared to the multi-hybrid predictor [49]. 

7 For the later two examples, we indicate what was thought before this dissertation showed it not to be the 

true. 
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In the rush to dynamically determine more and more information, it has been 

forgotten that some information that is very difficult to determine dynamically during run 

time can be very easily obtained statically during compile time.  In such cases, compile 

time optimization can be very useful.  The most obvious example of this in the branch 

prediction field is the number of static branches present in a program. 

As we have seen in Chapter 5, the number of static branches present in a program has a 

significant effect on the amount of aliasing present in the PHT.  We believe this 

information is crucial to tune the size of the BHR for the best tradeoff between aliasing 

and correlation. 

7.3.3 The Dependence of Correlation on Structure Size 

Chapter 4 highlighted the dependence between correlation and aliasing.  It is clear now 

that deeper correlation entails better prediction.  It is also clear that deeper correlation 

entails more aliasing.  We observed that every program, depending on the amount of 

aliasing it experiences, has a unique sweet spot of correlation where it achieves the best 

tradeoff between higher prediction due to correlation and lower prediction due to 

aliasing.  We also observed that some programs, like li and compress, experience very 

little aliasing, and therefore can achieve their peak prediction performance by utilizing as 

much correlation as possible. 

The problem is that the amount of correlation is tightly bound to the size of the predictor.  

Take, for example, a gshare structure of 1K entries (0.25KB).  The most correlation one 

can achieve is 10 deep.  As we mentioned before, some programs are best predicted using 

less than 10 bits of correlation, but this does not accommodate programs that can utilize 
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more than 10 bits of correlation.  Those are forced to use only the 10 bits a 1K entry 

gshare can accommodate.   

The problem is accentuated in structures that attempt to reduce aliasing like the skew and 

bi-mode predictors.  The closest bi-mode structure in size to a 1KB entry gshare is a 

0.75KB entry bi-mode, out of which 0.25KB entries are dedicated to each choice PHT.  

As a result, the most correlation that can be exploited in such a structure is a history of 8 

bits deep. 

It is therefore beneficial to alleviate, if not eliminate, the correlation depth dependence on 

the structure size.  Such de-coupling will enable the pursuit of better predictors without 

placing limitations on the size of the structure. 
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Chapter 8  -   Solutions 

This chapter introduces YAGS - a new branch prediction structure that capitalizes on the 

criteria and observations introduced in the previous chapters.  The chapter goes on to 

identify aliasing in the first-level table as the primary impediment of prediction accuracy.  

Lastly the chapter proposes a static, profile based, choice PHT to reduce aliasing in the 

first-level table.  The profile-based choice PHT is presented in the context of YAGS, but 

can be incorporated into other predictors as well.  The profile based choice PHT not only 

reduces aliasing in the first-level structure, but also facilitates transforming YAGS into a 

cascading predictor. 

8.1 Yet Another Global Structure (YAGS) 

In this section we introduce YAGS, a branch prediction structure that implements the 

global scheme and that is designed to reduce aliasing.  First, we introduce the motivation 

behind this predictor and explain the need for a new branch prediction structure after so 

many have been proposed already.  Then, we introduce YAGS, compare it to previous 

branch prediction structures, explain its advantages, and explore its design space. 

8.1.1 Motivation 

So far it has been observed that the ‘third-level of adaptivity path’ and ‘hybrid path’ are 

really just techniques that reduce aliasing.  And therefore all branch prediction structures 

that implement those paths should be compared to each other and not treated as a separate 

path of research in the branch prediction field.  Elaborate and large branch prediction 
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structures have caused the illusion that aliasing ceases to degrade performance in 

branch prediction structures.  Not only does aliasing still degrade performance, but it will 

only get worse in future chip technologies.  As the disparity between wire and transistors 

increases, and the cycle time shrinks, predictors will have to decrease in size in order to 

be able to produce a prediction in one cycle.  Smaller tables entail a larger number of 

aliasing.  This problem is exacerbated by the growing code size of applications and might 

cause aliasing to significantly degrade performance even for simple predictors like the 

bimodal. 

 Despite the numerous branch predictors devised to alleviate the negative effects of 

aliasing on prediction accuracy, the aliasing problem is not completely solved (Section 

4.4).  The micro-architectural trends discussed in Section 7.1 are bound to aggravate the 

aliasing problem even further in the future.  It is clearly necessary to try and further 

reduce aliasing by devising future structures that carefully consider such issues as size 

and delay.  

8.1.2 YAGS 

YAGS is based on the observation that some redundant information is stored in the PHT.  

For a predictor to be able to reach the full potential of the global branch prediction 

scheme, it is enough to store the branch’s bias and those branch instances that do not 

comply with the bias.  Traditionally, branch predictors have stored all branch instances. 

Figure 8.1 depicts a diagram of the YAGS branch predictor.  We chose the bimodal 

structure to store the branches’ bias and termed it, as in the bi-mode predictor, the choice 

PHT.  Two direction caches were then added to store the instances of the branch that do 
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not comply with the bias.  Each entry in the direction caches contains an address tag, 

a history tag, and 2bc state machine.  The address tag is needed to distinguish the entry as 

belonging to a specific branch.  Notice that unlike to traditional caches, the address tag is 

taken from the LSBs of the branch address.  The reason for this is that the cache is 

indexed by the branch address xored with the history register, which leads to a loss of the 

address information.  Due to the nature of the xor function, aliasing may occur between 

two consecutive branches.  Using the branch address as the tag will allow aliasing to 

occur only in the case of some spatial locality. 

The reason for having two direction caches rather than a consolidated one is the aliasing-

reducing property of the choice PHT, discussed in Chapter 5.  Having two direction PHTs 

allows the choice PHT to move branch instances between them if one of the direction 

PHTs is overcrowded with information.  

Experiments have shown that an address tag of 6 to 10 bits will suffice.  Too small of an 

address tag might cause some branch instances to be associated with one branch, in 

practice they belonging to another branch.  In most cases, 6 to 10 bits of address tags are 

enough to identify the branch.  Extending the address tag to the size of the word is not 

cost effective.  In contrast to traditional caches, this risk can be taken since the 

information stored in those caches is branch prediction.  The worst that can happen is a 

wrong prediction; in traditional caches erroneous execution can result. 

When comparing YAGS to the bi-mode branch predictor, two distinctions become 

apparent.  First, the choice PHT is used not only for saving the branch bias but also for 

predicting the branch when no special instance of the branch is identified in the direction 

caches.  Second, since the direction caches only store the special instances of the branch 
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which do not comply with the bias, the direction caches can be much smaller than the 

direction PHTs in terms of entries.  The problem with having a smaller number of entries 

in the direction caches as compared to the choice PHTs is that less history is used to 

index the structure and as a result, less correlation is taken advantage of.  On the other 

hand, utilizing less history means that less information is stored in the direction caches, 

which leads to less aliasing. 

The addition of the history tag solves this problem, but even more importantly, the 

history tags decouple the correlation depth used by the predictor from the size of the 

predictor.  While in previously proposed predictors the depth of correlation is bound by 

the size of the PHT, the introduction of the history tag in the direction caches almost 

completely decouples the depth of correlation from the size of the direction caches in 

YAGS.  Obviously, the same method can be used in other predictors as well, but the size 

Figure 8.1 – Diagram for the YAGS predictor 
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of the correlation is more tightly coupled to the size of the predictor in other branch 

prediction structures.  Table 8.1 shows the size increase for different predictors if a 

history tag of increasing correlation is added to them. 

Table 8.1. – The relationship between correlation depth and predictor size increment 

 

The configuration of YAGS presented in Table 8.1 includes a 6 bits address tag and 

direction caches, which have a quarter the number of entries that the choice PHT has.  

While adding 5 bits of history tags to YAGS requires an addition of 55% in size, adding 

it to most other predictors would require an addition of 250% to resources.  This is 

another of the advantages of YAGS. 

When a branch shows up in the instruction stream, the choice PHT is accessed.  If the 

choice PHT indicates “taken,” the “not taken” direction cache is accessed to check if it is 

a special case where the prediction does not comply with the bias.  If a miss occurs in the 

“not taken” direction cache, the choice PHT is used for the prediction.  The same happens 

if the choice PHT indicates “not taken” but this time the check is done in the “taken” 

cache.  The choice PHT is addressed and updated as in the bi-mode choice PHT.  The 

“not taken” cache is updated if a prediction from it was used.  Further more, an entry is 

# of bits gshare Skew bi-mode filter agree YAGS 

2 100% 100% 66.6% <100% <100% 22% 

3 150% 150% 100% <150% <150% 33% 

4 200% 200% 133.3% <200% <200% 44% 

5 250% 250% 166.6% <250% <250% 55% 
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added to the “not taken” cache if the choice PHT indicates “taken” and the branch 

outcome is “not taken.”  The same happens with the “taken” cache. 

The classic way to reduce aliasing is to make the cache set associative.  Until now, the 

introduction of tags was not a feasible solution.  YAGS makes the introduction of tags 

cost effective.  When making the caches set-associative, there is some extra cost for 

keeping a correct replacement policy.  For example, in a two-way set-associative cache, 

one bit for every two entries will suffice to keep track of which entry was replaced last.  

We suggest a Least Recently Used (LRU) replacement policy with one exception: an 

entry in the “taken” cache which indicates “not taken” will be replaced first to avoid 

redundant information.  The reasoning behind this is that if an entry in the “taken” cache 

is set to “not taken,” this information is already in the choice PHT and therefore is 

redundant and can be replaced. 

Making the direction caches set associative pays off for selected benchmarks, but overall, 

is not cost effective.  Reducing the amount of information stored in the direction caches 

reduces aliasing in the direction caches to the point that does not contribute much to 

performance degradation and does not justify the extra bit associated with a 2-way set 

associative and the added latency.  Making the direction caches set-associative might 

help to reduce aliasing for future programs that have more static branches.  The set-

associative option was not investigated any further in this thesis. 

Notice that when increasing the size of the direction caches, the size of the history 

register can be increased to better exploit correlation between branches.  However, when 

making the direction caches two-way set-associative, one less bit is used to index them 

than if the direction caches were direct-mapped.  This loss of correlation has a negative 
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effect on prediction accuracy.  In order to maintain the same level of correlation 

when comparing two-way set-associative caches against a direct-map caches YAGS of 

the same size, one bit of history must be added to the history tag. 

8.1.2.1 Prediction Accuracy 

YAGS is compared against the gshare and bi-mode predictors.  The gshare is the base 

predictor and is shown for reference.  The bi-mode predictor, on the other hand, has been 

established as the best predictor in the ‘aliasing’ path of research, and has been compared 

many times to the agree, filter, and skew predictors.  In Chapter 5, we compared the bi-

mode to the McFarling predictor and established that the bi-mode predictor is more cost 

effective.  The McFarling predictor has been established as one of the better predictors in 

the ‘hybrid’ path of research. 

Figure 8.2 shows the prediction accuracy for gshare, the bi-mode predictor and YAGS.  

As can be seen, YAGS outperforms all other structures tested.  As the size of the PHT 

increases, YAGS’ advantage over the other schemes decreases.  This is expected since all 

structures examined implement the global branch prediction scheme.  As the size of those 

structures increases, the aliasing problem in the PHT decreases, and therefore the 

performance of all predictors converges. 

One of the pitfalls of the SPEC95 benchmark suite is that most traces have a very small 

static branch signature [12].  For example, the compress benchmark has only 495 static 

branches.  Those branches are executed over and over again throughout the course of the 

program.  Because of this small static branch signature, each branch is more likely to 

have a unique entry in the PHT for each history instance.  A small static branch  
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Figure 8.2 a) comparing YAGS for the SPECINT95 benchmarks 
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signature results in a very small amount of aliasing in the PHT, and therefore boosts the 

performance of the branch prediction structure. 

The gcc, go, and the IBM benchmarks are thus of special interest because of their large 

static branch signatures.  As can be seen in Figure 8.2, YAGS outperforms the other 

structures for the go, gcc and IBM benchmarks.  The benchmarks suffers considerably 

from destructive aliasing.  The gshare scheme for small predictors achieves a 71.7% 

correct prediction accuracy while the aliasing-free potential of the global scheme is 

97.4% correct prediction accuracy in the case of the S390 benchmark.  For about the 

same amount of resources that allows gshare to achieve a 71.7% accuracy, YAGS 

achieves 85%.  The bi-mode, which is designed to reduce destructive aliasing, achieves 

only a 78.5% accuracy. 

8.1.2.2 Amount of Information Stored in Prediction Structures 

The main advantage of YAGS over other predictors is its ability to store less information 

without compromising the potential prediction accuracy of the global scheme, as is done 

by filter mechanisms.  To check on that premise, we tapped the wires  
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Figure 8.3 a) Amount of information stored for the SPECINT95 benchmarks 
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Figure 8.3 b) Amount of information stored for the SPECFP95 and IBM benchmarks 
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used to index the different structures in the bi-mode, gshare, and YAGS predictors for 

distinct information stored in those structures throughout the program execution.  For 

every piece of information stored, we checked whether it was duplicated.  If the 

information tapped was new, we incremented the amount of information stored in the 

predictors.  For gshare, the line accessing the PHT was tapped.  For the bi-mode and 

YAGS, we tapped both the choice PHT and the direction PHTs or caches, respectively. 

Figure 8.3 shows the amount of information stored in the different predictors.  YAGS 

consistently stores less information than the bi-mode and gshare predictors.  As the depth 

of correlation increases in the predictors, the amount of information stored in YAGS 

increases very moderately compared to the amount of information stored in the bi-mode 

and gshare predictors.  As Figure 4.5 demonstrates, YAGS main strength is that less 

information translates directly to less aliasing and better prediction accuracy.  

It is well known that the bi-mode predictor is more accurate in predicting branches than 

the gshare predictor.  Though this may be true, Figure 8.3 shows that the bi-mode 

predictor stored more information that the gshare predictor.  The information gap 

Figure 8.3 c) Amount of information stored for the SPECINT95 and SPECFP95 averages 
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between the two predictors does not change considerably across different correlation 

depths.  This gap is due to the fact that the choice PHT in the bi-mode predictor stores the 

bias of the different branches on top of the correlated information stored in the PHTs.  

The bi-mode predictor achieves better prediction accuracy than the gshare predictor, not 

by reducing aliasing, but by reducing destructive aliasing only.  The extra information the 

bi-mode stores on top of what the gshare predictor stores indicates that the bi-mode 

predictor suffers more aliasing.  If we were to check for destructive aliasing, we would 

expect the bi-mode predictor to have less than the gshare predictor.  Since YAGS has the 

same mechanism to reduce destructive aliasing as the bi-mode predictor has, this 

comparison holds. 

8.1.2.3 Testing Under Context Switching 

Throughout consecutive generations of microprocessors, the amount of hardware used for 

the branch prediction structures has grown.  Ideally, the prediction accuracy should be 

proportional to the amount of hardware invested in the structure.  One drawback of 

increasing the hardware size is the time it takes the branch predictor to reach its peak 

performance, otherwise known as a cold start.  In the presence of intensive context 

switching, the warm-up time of the branch prediction scheme might have a significant 

influence on the misprediction rate.  Furthermore, due to long warm-up times, some 

complex structures might end up achieving less accurate predictions than less 

sophisticated structures.   It has been shown that a hybrid predictor, composed of gshare 

and the bimodal, has good performance in the presence of a context switch [10].  This is 

due to a short warm-up time of the bimodal component.  Each branch is mapped to only 
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one entry in the PHT of the bimodal structure.  Therefore, it takes only a few 

executions of a branch for its respective entry to reflect the information stored the branch.  

On the other hand, the ghsare structure has to execute a branch several times for each 

history instance before it warms up.  The potentially large number of history instances, 

given by 2history length, will result in a very long warm-up time and that, in return, will 

cause the degradation of performance in the presence of context switches.  Other 

predictors, such as the skew predictors, suffer from the same problem. 

On the other hand, one would expect the bi-mode predictor and YAGS to be more 

tolerant of context switches.  Most of the information in the “not taken” direction PHT of 

the bi-mode predictor is “not taken”.  So once the choice PHT points to the “not taken” 

direction PHT, the probability of a “taken” prediction is very small.  Thus, only few 

executions of each branch are needed to warm up the choice PHT, which is essentially 

the bimodal predictor.  After that, it will take more executions to warm up the branch’s 

history instances, which do not comply with the branch bias.  But for the most part, the 

predictor should not perform worse than the bimodal predictor.  The same phenomenon 

occurs in YAGS.  This time the short warm-up time is due to the address tags.  There is a 

low probability that the tags will match after a context switch.  Therefore, until some tags 

match, the choice PHT will serve as the predictor. 

In a sense, YAGS and the bi-mode predictors are hybrid predictors, which combine the 

gshare scheme with the bi-model.  In the presence of a context switch, they should 

exhibit the short warm-up time of the bimodal predictor. 

In order to simulate a context switch, a new trace file was created by interleaving all eight 

SPECINT95, the six SPECFP95, and the IBM benchmarks every 60,000 instructions.  
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This number was chosen not to reflect a real context switch interval, but to exagerate 

the effect of context switching on the various predictors. 

Figure 8.4 shows the performance of the predictors tested in the presence of context 

switches.  As expected, YAGS performs much better than gshare because of its short 

warm-up times.  The difference between the accuracy of the different predictors is much 

more pronounced in the presence of context switches.  The gshare structure would 

converge with YAGS only if the PHT was large enough to accommodate most of the 

branch instances from all the SPEC95 benchmarks.  Without context switches, the 

predictor’s performance would converge if the gshare PHT were big enough to 

accommodate the benchmark with the largest branch signature. 

8.2 In-Depth Analysis 
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YAGS outperforms leading branch predictors because of its ability to reduce aliasing.  

How much aliasing still exist in each of YAGS’ structures and the inter-working of the 

choice PHT with the direction caches is not clear.  We next present a series of studies that 

gives an insight to the inter-working of YAGS.  We chose to show only the results for the 

gcc benchmark because results for other benchmarks are similar and do not result in a 

better insight into YAGS. 

Figure 8.5 shows the prediction accuracy and the usage of the taken direction cache and 

the choice PHT for the gcc benchmark in a grid of four graphs.  Results for the not taken 

Figure 8.5 – aliased and not-aliased instances usage and prediction accuracy for the choice 
PHT and taken direction cache 
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direction cache are not shown for they are very similar to the result of the taken 

direction cache.   

For the choice PHT, prediction accuracy of not-aliased instances is expectedly higher 

than the overall prediction accuracy and the prediction accuracy of the aliased instances.  

As the predictor size increases not-aliased prediction accuracy and overall prediction 

accuracy converges.  The reason is that the percentage of aliased instances is approaching 

zero.  As the size of the predictor increases, the number of choice PHT hits is decreasing.  

The reason is that increase predictor size comes with increased correlation depth.  As a 

result the number of instances, which do not comply with the bias, increase, and the 

direction caches are utilized more heavily.  Because a hit in the choice PHT only occur 

when there is a miss in the direction cache, the increase utilization of the direction caches 

result in a smaller utilization of the choice PHT. 

In the direction cache, the number of hits increases as the predictor increase in size.  The 

reason is an increase utilization of correlation depth and was discussed above.  As in the 

choice PHT the prediction accuracy of the not-aliased instances is greater than the 

prediction accuracy overall for small predictors.  The prediction accuracy of the two 

converges for larger predictors.  Interestingly enough, the prediction accuracy of the 

aliased instances increases as the predictor size increases.  At certain predictor size it 

surpass the prediction accuracy of the not-aliased instances.  However, the increase in 

accuracy as little effect on the overall prediction accuracy because the number of aliased 

instances decreases as the predictor size increases.  The explanation for that is hinted in 

chapter 4.  Notice that aliased instances in some why implement the history only scheme.  

In chapter 4 it was shown that with larger correlation the history scheme surpass the 
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global scheme in prediction accuracy.  In contrast to what this result might suggest, 

a YAGS version that implement the history only scheme doesn’t work as well and the 

YAGS that implement the global scheme. 

 

 

8.3 And Yet More Aliasing 

The introduction of the two-level branch predictor [22] made the bimodal branch 

predictor obsolete in the eyes of researchers.  The promising potential of the two-level 

branch predictors led to an outpouring of research into correlating branch predictors.  

When aliasing was discovered to degrade performance in the two-level branch predictors, 

its negative effect on one-level branch predictors, such as the bimodal structure, was no 

longer a priority.  While it was established that aliasing in the bimodal structure did not 

occur often as in the second-level PHT, it appears that its adverse effect on prediction 

was never investigated, and no solution to aliasing in the first-level table was ever 

proposed. 

The effect of aliasing in one-level branch predictors is of interest for few reasons.  For 

one, micro-architectural trends, such as increasing code size and decreasing state 

reachable in one cycle, might force processors to scale down their branch predictors to 

one-level branch predictors.  Even if it is possible to avoid the bimodal structure, some 

aliasing reducing structures has a bimodal structure embedded in them.  Examples for 

such predictors are the bi-mode, YAGS and the selection mechanism in most hybrid 
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predictors.  If aliasing degrades performance in the bimodal structure, it ought to 

degrade the performance of those branch predictors too. 

In the bimodal scheme, each branch needs only one entry, compared to the global scheme 

with a BHR of size 10, where each branch theoretically needs 1024 entries.  This suggest 

there will be much less aliasing in the bimodal predictor compared to the gshare 

predictor.  However, since each aliasing instance in the bimodal predictor adversely 

effects all instances of this branch, we expect each aliasing instance in the bimodal 
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Figure 8.6 a) Aliasing in the bimodal predictor for the SPECINT95 benchmarks 
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Figure 8.6 b) Aliasing in the bimodal predictor for the SPECFP95 and IBM benchmarks 
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predictor to have a much more destructive effect than an aliasing instance in the gshare 

predictor. 

Figure 8.6 depicts the adverse effects of aliasing in the bimodal structure.  It compares a 

bimodal implementation that has a dedicated entry for each branch (UL- bimodal) to a 

regular bimodal structure.  The x-axis represents log to the base 2 of the number of 

entries for the bimodal structure, but has no significant for the UL-bimodal.  For small 

tables, aliasing degrades performance for all benchmarks.  However, the point where 

aliasing ceases to be a problem varies significantly across benchmarks.  While for the 

compress benchmark, aliasing does not degrade performance for tables as small as 64 

bytes, for the s390 benchmark, aliasing persists as a problem even for tables as large as 

16KB.  If s390 and other benchmarks with large number of static branches represent 

future programs, aliasing in one-level branch predictors will significantly degrade 

prediction accuracy.  But even for the average of the SPECINT95, aliasing degrades 

prediction accuracy for 2KB tables. 
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Figure 8.6 c) Aliasing in the bimodal predictor for the SPECINT95 and SPECFP95 averages 

 



 

 

158 

 

cc1

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25
direct ion pht  correlat ion dept h

yags

yags - UL choice PHT

go

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25
direct ion pht  correlat ion dept h

yags

yags - UL choice PHT

co mpress

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25
direct ion pht  correlat ion dept h

yags

yags - UL choice PHT

ijpeg

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25
direct ion pht  correlat ion dept h

yags

yags - UL choice PHT

li

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25

direct ion pht  correlat ion dept h

yags

yags - UL choice PHT

vo rtex

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

direct ion pht  correlat ion dept h

yags

yags - UL choice PHT

m88

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25
direct ion pht  correlat ion dept h

yags

yags - UL choice PHT

perl

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25
direct in pht  correlat ion dept h

yags

yags - UL choice PHT

Figure 8.7 a) Choice PHT aliasing effect in YAGS for the SPECINT95 benchmarks 
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Figure 8.7 b) Choice PHT aliasing effect in YAGS for the SPECFP95 and IBM benchmarks 
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Because aliasing in the bimodal predictor degrades prediction accuracy, it could be 

expected to similarly degrade the prediction accuracy in two-level branch predictors that 

have an embedded bimodal structure.  This premise is checked in the context of the 

proposed YAGS predictor.  Figure 8.7 compares the basic YAGS structure against a 

hypothetical YAGS structure with no resource limit on the choice PHT.  Notice that the 

direction caches in this hypothetical YAGS are still restricted in size.  Comparing this 

hypothetical YAGS to the regular YAGS enables us to quantify the adverse effects that 

aliasing in the choice PHT has on the prediction accuracy of YAGS.  As can be seen, the 

prediction accuracy degradation due to aliasing in the choice PHT is significant, and for 

benchmarks with large numbers of static branches, like the s390, aliasing in the bimodal 

structure is only resolved for choice PHTs of 4KB in size.  For smaller predictors, the 

adverse effects of aliasing in the choice PHT overwhelms the benefits the predictor 

achieves from implementing the global scheme via the direction caches. 

Obviously, aliasing in the bimodal structure is a prominent source of prediction accuracy 

degradation that has so far been overlooked.  Finding ways to remove some of the 
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Figure 8.7 c) Choice PHT aliasing effect in YAGS for the SPECINT95 and SPECFP95 averages 
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aliasing from the bimodal structure could bring significant benefits to prediction, 

especially for smaller size predictors. 

8.4 Profile YAGS 

Removing aliasing from the choice PHT of YAGS is important for two reasons.  First, it 

will increase prediction accuracy.  Second, it will facilitate a reduction in the size of the 

choice PHT compared to the direction caches.  This, in turn, facilitates turning YAGS 

into a cascading predictor where a small choice PHT is used when only one cycle is 

available for prediction.  When more than one cycle is available for prediction, the 

direction caches can then be accessed. 

Attempts to create a dynamic structure that alleviates aliasing in the first-level structure, 

in this dissertation, have failed.  This failed attempt is described next.  Borrowing from 

the bi-mode structure, the choice PHT was split into two choice PHTs.  One serves 

branches that are mostly biased to be taken and the other serves branches that are biased 

to be not taken.  The determining factor of which choice PHT will server each branch 

was whether the branch is a forward or a backward branch.  The reasoning behind this 

choice is similar to the static branch prediction scheme that states “backward taken, 

forward not taken.”  However, this attempt failed. 

Next, a profiled version of YAGS is presented.  The direction caches are similar to the 

ones in YAGS.  The choice PHT, on the other hand, is replaced by a bit in the branch 

instruction that indicates the branch’s bias.  Using a profiling bit to help in the prediction 

of a two-level branch predictor was described before in the context of an agree like 

predictor [67], however, this does not exclude profile YAGS as a novel predictor.  
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Figure 8.8 a) Profile YAGS for the SPECINT95 benchmarks 
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Figure 8.8 b) Profile YAGS for the SPECFP95 and IBM benchmarks 
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Figure 8.8 compares the regular YAGS with profile YAGS when a test dataset is used for 

profiling (profile-yags) and when the same dataset is used for profiling and real 

simulations (profile-yags-best).  The later is an overestimation and marks the upper 

bound that can be achieved by profiling.  Surprisingly, the omniscient profile YAGS and 

the feasible profile YAGS produce very similar results. 

That static selection mechanism work so well with YAGS as opposed to the serving as 

the selection mechanism for the McFarling predictor, stems from the underlying 

information profiled.  With the McFarling predictor, the profiled information indicates 

which predictor better predicts the branch.  This information is not balanced and is 

heavily biased toward either the local or the global component, depending on the 

benchmark.  On the other hand, with YAGS, the profiled information indicates the 

branch’s bias.  This tends not to change for different datasets and is fairly balanced 

between branches that are biased to be taken, and branches that are biased not to be taken. 

Figure 8.8 shows that profiling the branches’ bias for YAGS entails large prediction 

benefits for small predictors.  The reasons are twofold.  First, the cost of the choice PHT 
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Figure 8.8 c) Profile YAGS for the SPECFP95 and SPECINT95 averages 
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is zero because this information is stored in the branch instruction.  Second, there is 

no aliasing in the first-level structure.  Aliasing was shown in Section 8.2 to considerably 

degrade performance of global two-level branch predictors.   

As the size of the predictor increases, the benefits of using profile YAGS over YAGS 

diminish until they are nonexistent for most benchmarks.  It is worthwhile to note the 

predictor size where this benefit diminishes.  For the applu benchmark the critical size is 

as small as 128 Bytes.  For the s390 benchmark it occurs for predictors as large as 256KB 

in size.  On average for the SPECINT95, the critical point is 18KB.  This is by far larger 

than the conservative estimate of the PHT of 1KB that would be accessible in one cycle 

for the 35nm technology available in the year 2012 [64].  For a 1KB PHT, the prediction 

accuracy of profile YAGS is 93.9% for the SPECINT95 average compared to only 92.5% 

prediction accuracy for YAGS.  If the more conservative estimate for future technology is 

considered, a PHT of size 0.125KB will be available in the year 2012 and the prediction 

accuracy of profile YAGS will be 92.7% compared with only 87.6% prediction accuracy 

for YAGS. 

The benefit of using profiling to determine the branches’ bias in future technologies is 

obvious.  However, profiling is not as easy implemented and some major hurdles were 

overlooked in the past when profiling was studied in branch predictors.  The next section 

addresses those problems. 

8.5 The Future of Profiling 

Profiling has been used for static methods in branch prediction for as long as the branch 

prediction field of research has existed.  Profiling allows the acquisition of information 
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before the program is run.  In contrast, dynamic methods acquire their information 

while the program runs.  This difference between dynamic and static methods imposes 

less time constraints on static profiling than on dynamic methods.  The profiled 

information is conveyed to the microarchitecture via the ISA.  A well-known pitfall of 

profiling is that the ISA must have a mechanism to convey the profile information to the 

processor.  This mechanism usually comes in the form of dedicated bits in the branch 

instructions.  The lack of such a mechanism requires a change in the ISA.  A change to 

the ISA is not trivial in most cases and might cause problems with backward 

compatibility.   

Next, three other pitfalls are discussed that, we think, will force other means of profiling 

to be devised.  The creators of the SPEC benchmark suite, recognized that different 

datasets must be supplied.  Most studies, therefore, profile with one dataset and then use 

the profiled information to measure the prediction accuracy when running on a different 

dataset.  More than 97% of the static branches are profiled with the test dataset, and 

therefore when running the real dataset those branches already have prediction 

information. 

8.5.1 Profiling Pitfalls 

The first profiling pitfall is that SPEC95 benchmarks are very small programs compared 

to today’s software.  Additionally, the active regions of the program are used regardless 

of the dataset.  This is not the case for large programs such as MS-WORD or EXCEL.  

The amount of code for those applications is enormous compared to the SPEC95 

benchmarks and the active regions of such program will change considerably with 
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different datasets.  As a result, coming up with a dataset that will profile most of the 

static branches in the program is an almost impossible task.  Those un-profiled regions of 

the program are not necessary less used.  It might be the case that those regions will be 

used over and over again by the same user.  As a result, this user will experience 

considerable slowness when running those un-profiled portions of the applications.  

The second pitfall relates to legacy code.  Legacy code refers to programs that were 

compiled and are running on older implementations of the same ISA.  When legacy code 

is installed on a new implementation of the ISA that relies on profiling for branch 

prediction, it can considerably degrade its performance.  This might lead to the 

disconcerting situation that an older processor will run legacy code faster than a newer 

implementation of the same ISA. 

The last pitfall of profiling is the commitment to a branch prediction implementation.  

Suppose one version of the ISA is implemented with the McFarling branch predictor 

where the selection mechanism relies on profiling.  Programs are compiled after profiling 

sample datasets for optimal accuracy for the McFarling predictor.  A new implementation 

of the same ISA cannot change the McFarling predictor to the bi-mode predictor because 

previous profiled and compiled programs will suffer considerable performance 

degradation.  The same problem can occur even if the new processor implements the 

McFarling predictor with a different PHT size than the older version. 

Those overlooked pitfalls of profiling in branch prediction can be easily generalized to 

profiling in different structures of a microarchitecture.  This suggests that dynamic 

structures should be used because they do not suffer from the pitfalls mentioned above.  

However, as we have seen before, due to micro-architectural trends, dynamic structure 
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will be forced to decrease in size and will therefore suffer a reduction in 

performance.  Profiling, on the other hand, is not limited in size and does not suffer from 

aliasing. 

8.5.2 Dynamic Profiling 

The solution to this problem might be a different way of profiling.  Profiling needs to be 

done during run time rather then compile time to avoid all the above pitfalls.  This can be 

done either by the processor or the OS.  A simple example might be the bias of a branch.  

A bit in the branch instruction indicates whether the branch was profiled or not.  If the 

branch has not yet been profiled, when the branch is evicted from the BTB, the processor 

could interject an instruction to write the branch back into memory with the profile 

information obtained by a 2bc attached to the BTB.  The first time the program is run, it 

might encounter delays due to large dynamic structure.  The next time the program is 

executed, branches with profile information in the ISA obtained in the previous run will 

be predicted by this profile information.  This bypasses the delay due to a large dynamic 

structures and at the same time avoids the above mentioned pitfalls.  This approach was 

proposed before albeit serious structure limitations [62]. 

The profiling done by the processor is restricted to very simple profiling.  Some profiling 

needs elaborate data structures that are not cost effective to implement in hardware.  If 

profiling is done by the OS, in a similar manner described for processor profiling, 

elaborate data structures can be used and the cost of on-chip dynamic structures can be 

avoided.  This will require an upgrade to the OS for each processor, but can be easily 
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done.  The OS will maintain a list of profiled programs and on every program that 

was not profiled, the OS will invoke the profiling module. 

Dynamic profiling is not an easy idea to implement.  It requires the cooperation of the 

microarchitecture and the OS.  It is clear that future microprocessors will have to be more 

tightly coupled with the OS in order to maintain increasing processor performance. 
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Chapter 9  -   Conclusion 

9.1 Contributions 

4The initial objective of the research leading to this dissertation was to improve branch 

prediction accuracy by combining different advances made in the branch prediction field.  

In the process of investigating the feasibility of this approach, several myths and 

misconceptions were debunked.  Throughout this dissertation, those misconceptions have 

been clarified, and ways were devised to improve the accuracy of branch predictors. 

The branch prediction research community has taken three different paths in its attempts 

to improve branch prediction.  In an initial attempt to combine the benefits of a hybrid 

branch predictor with the benefits of a branch prediction structure which reduces aliasing, 

we observed that both predictors showed improved branch prediction for the same 

reason– namely reducing aliasing.  In a series of studies we consolidated the three 

different branch prediction paths by reducing the hybrid and the third-level paths to the 

‘aliasing path’.  This reduction is done by showing that hybrid predictors improve 

prediction by reducing aliasing, and by showing that the third-level of adaptivity is a 

filtering mechanism that also reduces aliasing. 

In the process of investigating what makes the hybrid path work, we shed light on some 

myths in the ongoing debate between static and dynamic selection mechanisms in hybrid 

predictors.  We found that known dynamic selection mechanisms fail to choose the best 

component for each branch dynamically and we questioned whether a branch changes its 

best predictor during execution.  It was found that the strength of dynamic selection 
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mechanisms does not lie in dynamically choosing the best predictor for each branch, 

but in reduction aliasing.  The dynamic selection mechanism serves as a load balancer 

between the two components of the hybrid predictor.  Once one of the components is 

congested, the selection mechanism moves some branches to the other component.  This 

load balancing process reduces aliasing, which in turn translates into better prediction 

accuracy.  While this role of the dynamic selection mechanism in reducing aliasing has 

not been noted before, it has been well established that a static selection mechanism 

reduces aliasing by not taking any hardware resources for the selection mechanism and 

by reducing information for the reason that only one component is updated for each 

branch.  For static selection mechanism, we showed that profiling must be done with 

aliasing in mind.  If profiling is focused on the benefits of using the hybrid scheme 

instead of aliasing aware profiling, the degradation in performance can be considerable.  

 After concluding that reducing aliasing is the only way to improve prediction in two-

level branch predictors, we categorized the different ways reducing aliasing was done in 

the past.  The different ways are reducing the information stored in the PHT (and its 

simplified case – filtering), reducing negative aliasing, and pseudo-associativity.  Studies 

conducted for this dissertation were then used to list the attributes found to help 

prediction 

 We laid out the tradeoff of increasing the size of the BHR, which has been empirically 

observed before but never adequately explained.  We further showed that the size of the 

BHR and the number of static branches, present in a program, have more or less equal 

effect on the extent of aliasing.  This is true in spite of the fact that the size of the BHR is 

the dominant term in the theoretical equation dictating the amount of information stored 
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in the PHT (Section 4.5).  By explaining the relationship between correlation and 

aliasing, we noted misinterpretations made in the past when two branch predictors that 

reduce aliasing, were compared.  To take advantage of this observation, we proposed a 

way to decouple correlation from the size of the PHT even when the size of the PHT has 

fewer than 2BHR Size entries.  While this method is not successful in most cases, it was the 

basis for further improvement of YAGS.  YAGS is a new branch predictor proposed that 

takes advantage of lessons learned while gathering the results for this dissertation. 

Aliasing in the second level table of two-level branch predictors, and structures to 

alleviate the aliasing problem has been the subject of extensive research.  However, to 

our knowledge, aliasing was never considered in the bimodal structure.  We discovered it 

degrades performance.  Bimodal aliasing currently degrades prediction for programs with 

large branch signatures.  As program size increases, and the amount of state accessible in 

a cycle decreases, this problem is aggravated and most programs will suffer its negative 

effects.  Since the bimodal structure is used as the choice PHT in the bi-mode and YAGS 

branch prediction structures and as a selection mechanism for different hybrid branch 

prediction structures, the aliasing problem in the bimodal structure can be expected to 

degrade performance for all those structures.  We verified this for YAGS.   

We propose a static selection mechanism to replace the choice PHT in the YAGS branch 

predictor based on profiling.  Because we considered aliasing during the profiling 

process, and most branches’ bias does not change between different datasets, profiling 

YAGS works extremely well even for small size allocation. 

The strength of profiling YAGS is not only in a more cost effective use of resources, but 

also in its ability to eliminate the choice PHT to nothing.  In the future, this ability can be 
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used to transform YAGS and the bi-mode predictors into cascading predictors as a 

mean of tolerating the decreasing state accessed in a cycle. 

This dissertation does not paint an optimistic picture of the branch prediction field.  Even 

with generous resource allocation and no limit on the amount of state reached in one 

cycle, branch prediction is expected to create the most limiting bottleneck in future 

processors [1].  Moreover, code size is increasing [2] and the amount of state reached in a 

cycle is decreasing [63][64].  This means that future branch predictors will need to be 

smaller, and to predict more branches with better accuracy.  This dissertation took the 

branch prediction field a step backward, in one sense, by consolidating three different 

paths of research into one, and as a result showed that advantages previously assumed 

were misleading and will not result in a better prediction.  In addition to identifying these 

flaws, this thesis has identified and presented the new problem of aliasing in the bimodal 

structure.  This problem will only get worse with the micro-architectural trends discussed 

above. 

We hope that these observations will help to better direct future research in the branch 

prediction field.  Since most of the myths uncovered in this dissertation could have been 

avoided by performing an adequate limit study, we look forward to seeing more studies 

that give insight into why a particular branch prediction structure/scheme works, moving 

beyond ad hoc empirical results which show that a particular branch predictor is more 

accurate than previously proposed ones. 

On the positive side, we introduced YAGS, a new branch prediction structure that attacks 

the aliasing problem.  YAGS utilized the criteria that we introduced (Chapter 7).  Those 

techniques include but are not limited to decoupling correlation depth from PHT size, 
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reducing the amount of information stored in the PHT, and load balancing.  We 

facilitated the use of YAGS as a cascading predictor by utilizing profiling to determine 

the branch’s bias.  We stopped short of testing YAGS as a cascading predictor. 

We acknowledge that YAGS, similar to previous branch prediction structures, does not 

completely solves the aliasing problem nor eliminates control dependency from being the 

bottleneck in future processors.  However, any improvement in branch prediction 

accuracy will help to open up the control dependency bottleneck.  For that, we believe 

that further research and novel branch predictor structures are needed in order to facilitate 

faster processors. 

9.2 Future Work 

Trends in microarchitecture and software development dictate that control dependency 

will continue to be a problem in the foreseeable future.  This provides an exciting 

opportunity for future research. 

Note that while we have shown that hybrid predictors improve prediction accuracy by 

eliminating aliasing, we have not ruled out hybrid schemes altogether.  Rather we have 

pointed out that current hybrid predictors are unable to fulfill this potential.  Once 

aliasing is eliminated, or a way is found to separate those two competing potentials, 

predictors can start taking advantage of the hybrid scheme potential. 

The only existing study pertaining to cascading predictors [65] used the gshare structure 

and specifically mentioned that it would be beneficial to incorporate a structure that 

reduces aliasing with a cascading predictor.  One criticism of the cascading predictor 

proposed is that it stores redundant information.  We believe in the potential of YAGS to 
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serve as a cascading predictor where the choice PHT is eliminated by the use of 

profiling information.  When another cycle is available for prediction, the direction 

caches can than be accessed.  While not pursuing this in its entirety, we made the first 

step by allowing the first cycle prediction to have no latency, while still taking advantage 

of the two-level structure when a second cycle is available for the prediction of the 

branch.  Note that in order for the bi-mode structure to serve as a cascading branch 

predictor, the choice PHT will need to supply predictions, taking the bi-mode structure 

one step closer to the YAGS branch predictor. 

We predict that compile/profile time information will need to be more closely coupled 

with dynamic predictors.  This trend is not new and different ISAs incorporate bits in the 

ISA to do just that.  For example in the IA64 ISA there is one bit in the branch 

instructions to indicate whether dynamic or static prediction is to be used for filtering 

purposes.  Another bit is present to indicate the prediction in case a static prediction is 

used.  This last bit can be easily used to indicate the branch’s bias in profiling YAGS. 

Such compile and profile time cooperation will need to be increased in order for branch 

predictors to keep up with future processors.  This might require ISA changes, and as 

painful as that might be to implement, we feel that it will be necessary.  An obvious 

example is the loop instruction in the PowerPC ISA, which other ISAs are lacking. 

 Happy hunting. 
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