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Chapter 1

Introduction

1.1 Motivation

Power consumption is now the major technical problem facing the semiconductor

industry. In comments on this problem at the 2002 International Electron Devices Meet-

ing, Intel chairman Andrew Grove cited off-state current leakage in particular as a limiting

factor in future microprocessor integration [1]. Off-state leakage is static power, current

that leaks through transistors even when they are turned off. It is one of two principal

sources of power dissipation in today’s microprocessors. The other is dynamic power,

which arises from the repeated charge and discharge of the capacitance on the output of

the hundreds of millions of gates in today’s chips.

Until very recently, only dynamic power has been a significant source of power

consumption, and Moore’s law has helped to control it. Shrinking processor technology

has allowed and, below 100 nanometers, actually required reducing the supply voltage, so

reducing the voltage significantly reduces power consumption. Unfortunately, smaller

geometries exacerbate leakage, so static power begins to dominate the power consumption

equation in microprocessor design.
1



1.2 Process Trends

Historically, complementary metal-oxide semiconductor (CMOS) technology has

dissipated mush less power than earlier technologies such as transistor-transistor logic

(TTL) and emitter-coupled logic (ECL). In fact, when not switching, CMOS transistors

lost negligible power. However, the power they consume has increased dramatically with

increases in device speed and chip density. The research community has recognized the

significance of this increase for some time. Figure 1.1 also shows exponential increase

projected for a principal component of static power consumption — sub-threshold leak-

age, a weak inversion current across the device.

The international technology roadmap for semiconductor (ITRS) expects the rate

of this increase to level out in 2005 but to remain substantial nonetheless. In a few years,

total power dissipation from chip static power will exceed the total from dynamic power,
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Figure 1.1: Total chip dynamic and leakage power dissipation trends.  

Two power plots for sub-threshold leakage and dynamic power represent the 2002 projections nor-

malized to those for 2001 published by international technology roadmap for semiconductor (ITRS) [2].

The power increases assume a doubling of on-chip devices every two years in line with Moore’s law.
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and the projected increases in off-state sub-threshold leakage show that it will exceed total

dynamic power consumption as technology drops below the 65nm feature size [3]. As

leakage current becomes the major contributor to total chip power consumption, the indus-

try must reconsider the power equation that limits system performance, chip size, and cost. 

1.3 On-Chip Cache Leakage

The sub-threshold leakage power is now one of the most difficult issues confront-

ing microprocessor designers. On one hand, performance demands require the use of fast

transistors that consume leakage power even when they are turned off. On the other hand,

new applications and cost issues favor designs that are energy efficient. Leakage power is

a problem for all microprocessor circuit components, but it is a particularly important

problem in processor on-chip caches where a large number of potentially high-leakage

cross-coupled inverters — the storage elements of caches — are integrated in great num-

bers.

Moreover, the cache leakage power will be the dominant fraction of total processor

power dissipation, because larger L1, L2, and even L3 on-chip caches are being integrated

on the die. For example, Intel’s Madison processor has 1MB and 6MB on-chip L2 and L3

caches respectively, and the leakage power will be the dominant fraction of total power

consumption of those caches. 

Figure 1.2 shows the dynamic and leakage power trends for 16KB, 32KB, 64KB,

and 128KB direct-mapped caches designed with a 70nm Berkeley predictive technology

model (BPTM) [4] and sub-banking techniques [5]. As the size of the caches increases, the

fraction of the leakage power exceeds that of the dynamic power. While dynamic power is
3



consumed only when those caches are accessed, static leakage power is always dissipated

even though they are not accessed. Therefore, the upper-level (higher number) caches

such as L2 or L3 more severely suffer from leakage power loss because they are only

accessed by lower-level cache misses. For instance, according to our experiment with the

projected 70nm CMOS process [4], leakage power could consume as much as 87% of the

power in 1MB caches if left unchecked [6]. 

1.4 Thesis Contributions

In this thesis, we propose simple but effective circuit and microarchitectural con-

trol techniques to reduce the leakage power of caches while minimizing any attendant per-

formance loss. The emphasis and novelty of these proposed techniques are simple circuits

and simple microarchitectural mechanisms to control those circuits effectively. There is a

0

20

40

60

80

100

16 32 64 128

Cache Size (KB)

O
n

-C
h

ip
 C

ac
h

e 
P

o
w

er
 (

m
W

)

Dynamic
Power

Sub-threshold
Leakage Power

Figure 1.2: On-chip cache dynamic and leakage power trends.  

On-chip caches are designed with the 70nm Berkeley predictive technology model (BPTM) [4] and
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synergy: the proposed circuits help the computer architects simplify the microarchitectural

controls. The emphasis on simplicity is also a key point. Complex microarchitectural tech-

niques are unattractive because they add to validation time, and ultimately time-to-market.

1.4.1 A Low-Leakage, State-Preserving 6-Transistor Memory Cell

To reduce the leakage power dissipation of memory elements, we propose apply-

ing dynamic voltage scaling to 6-transistor memory cells. While the previously proposed

circuit techniques either destroy the memory cell states or have slow wake-up from stand-

by to active mode, our proposal is able to preserve the memory cell states with a fast

wake-up while reducing the leakage power noticeably. These circuit properties also sim-

plify the microarchitectural controls needed for wake-up. 

In this thesis, we also provide detailed circuit simulation results analyzing the leak-

age power reduction as well as characterizing the robustness of the proposed circuit in the

presence of possible noise sources.

1.4.2 Microarchitectural Controls for Low-Leakage Caches

First, we characterize the working sets1 of on-chip L1 caches to investigate effec-

tive microarchitectural controls for the leakage power reduction. According to our analy-

ses, the working sets of both instruction and data caches are quite small. This means that

the rest of the cache may be put into stand-by mode to reduce the leakage power without

significant performance losses. However, the working sets of the data caches change sig-

nificantly in a few thousand-cycle periods while those of instruction caches do not. 

1. A set of cache lines that have been accessed at least once during a specified number of cycles.
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Second, we introduce microarchitectural mechanisms specialized for data and

instruction caches to balance leakage power reduction and performance impact. They are

suggested by our working-set analyses. The two types of caches have very different access

patterns. Therefore, they require a specific control mechanism for each type of cache.

Both techniques take full advantage of the proposed circuit technique. 

Finally, the instruction cache access location patterns obtained from our working-

set analyses are used to support a proposed gated bit-line precharge technique to further

reduce the leakage power from the supply voltage source to the bit-lines, by gating the

precharge clock signal. In this technique, we precharge only a sub-set of cache sub-banks.

We reduce the performance loss that occurs from the cycles taken to initiate a precharge to

a newly accessed sub-bank by precharging the sub-bank predictively. The predictor used

for this technique has only small number of entries, but shows very high accuracies for

most workloads in the entire SPEC2K suite.

1.4.3 Leakage Optimization via Multiple-Threshold Voltage Assignments

First, assuming that there are multiple threshold voltages (VTH’s) available, we

partition a cache into four components, and we present the leakage power and access time

models for each component parameterized by size. Based on these models, we propose

optimization techniques to reduce the leakage power of individual on-chip caches. The

objective of the optimization is to find a set of VTH’s that minimizes the cache leakage

power for a given access time constraint.

Second, we investigate leakage power reduction and access time increase trends

when increasing the VTH’s of the components. We also present VTH trends of each cache

component during the leakage power optimization for various numbers of VTH. These
6



trends will play a key role in guiding future research on the design of low-leakage upper-

level cache circuits.

Finally, we extend the techniques to the leakage power reduction of multi-level

caches under the constraint of maintaining the same average cache memory system perfor-

mance. In this investigation, we exploit cache hit and miss characteristics to optimize the

leakage power of multi-level caches. In contrast, previous work on the cache leakage

power reduction has been focused only on either circuit design or microarchitectural con-

trol aspects.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 introduces the pro-

posed circuit and microarchitectural techniques to reduce the leakage power of static ran-

dom access memory (SRAM) — a major component of caches. Chapter 3 proposes a low-

leakage, state-preserving 6-transistor memory cell circuit using a dynamic voltage scaling

technique. Chapter 4 investigates data cache working set characteristics, and examines

various microarchitectural controls to minimize the cache leakage power and run-time

increase. Chapter 5 shows that the microarchitectural control mechanism used for data

caches does not work well for instructions caches due to different working set characteris-

tics or access patterns, and proposes a more sophisticated control for instruction caches.

Chapter 6 presents cache leakage optimization techniques based on the simultaneous

assignments of multiple-threshold voltages. It evaluates access time impact and leakage

power reduction of the resulting memory system. Chapter 7 contains concluding remarks
7



and suggests future research directions. The appendices provide detailed simulation

parameters, models, and results.
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Chapter 2

Background

This chapter on background work briefly outlines the various research areas that

are relevant work to reducing the sub-threshold leakage power dissipation of static ran-

dom access memory (SRAM). We start by discussing the circuit and device techniques.

We then look at microarchitectural and compiler techniques that combine with the circuit

and device techniques.

2.1 Circuit and Device Techniques

2.1.1 Multi-Threshold CMOS SRAM

The multi-threshold CMOS (MTCMOS) circuit technique was proposed to satisfy

both the requirement of lowering the threshold voltage of transistors and reducing stand-

by sub-threshold leakage current [7]. To increase the circuit speed, low-VTH transistors are

used for logic gates and during long stand-by times (i.e., sleep time), the power supply is

disconnected with high-VTH transistors. This concept was also applied in the proto-design

of MTCMOS memories to reduce the power dissipation of peripheral circuitry as shown

in Figure 2.1 [8, 9].
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In Figure 2.1, the row decoder and data I/O circuitry that require a very high circuit

speed consist of low-VTH transistors. Their power terminals are not connected directly to

the power supply lines — VDD and VSS, but rather to virtual power supply lines — VVDD

and VVDD. The high VTH transistors serve as sleep control transistors and link the real and

virtual power lines.

The MTCMOS technique cannot be applied to the memory cells because the sleep

control transistors cut the power supply off, which destroys the memory cell states. How-

ever, the memory cells are responsible for the majority of leakage power dissipation in an

SRAM. To cut off the leakage power dissipation of memory cell arrays, high-VTH transis-

tors are used as illustrated in Figure 2.1, but this increases the overall memory access time.

Furthermore, MTCMOS does not work below 0.6V, because the high-VTH transistors will

not turn on. Therefore, the MTCMOS cannot be used in sub-1V applications.
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2.1.2 Adaptive Body-Biasing CMOS SRAM

Previously, the adaptive reverse body-biasing or variable threshold CMOS tech-

niques have been proposed to control the leakage current during stand-by mode [10, 11,

12, 13]. Also, methods using forward body-biasing have also been proposed [14, 15, 16].

Recently, a simultaneous application of both the reverse and forward body-biasing tech-

nique has been proposed [17]. 

In general, the sub-threshold leakage current decreases exponentially as VTH

increases, and the adaptive body-biasing technique has the advantage that it reduces the

leakage current exponentially by increasing VTH. The VTH of a short-channel MOSFET

transistor in the BSIM [18] model — a physics-based, accurate, scalable, and predictive

MOSFET SPICE model for circuit simulation and CMOS technology development — is

given by:

(Eq. 2-1)

where VTH0 is the zero-bias threshold voltage, Φs, γ, and θDIBL are constants for a given

technology, Vbs is the voltage applied between the body and source of the transistor,

∆VNW is a constant that models narrow width effects, and VDD is the supply voltage [18,

19]. To increase the VTH, ABB MTCMOS techniques decrease Vbs adaptively. 

Figure 2.2 shows the adaptive reverse body-biasing MTCMOS SRAM circuit pro-

posed in [20]. There are four additional high-VTH transistors — Q1, Q2, Q3, and Q4. In the

active mode, φsleep = VSS is applied and Q1, Q2, and Q3 are turned on and Q4 is turned off.

Then both VVDD and the substrate bias, BP, becomes 1.0V. On the other hand, in the sleep

VTH VTH0 γ Φs Vbs– Φs–( ) θDIBLVDD– ∆VNW+ +=
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mode, φsleep = VDD is applied and Q1, Q2, and Q3 are turned off and Q4 is turned on. In this

case, BP becomes 3.3V, which decreases Vbs resulting in increasing the VTH of PMOS

transistors in the memory cells. The sub-threshold leakage current, which flows from VDD

to VSS through D1 and D2, determines the voltages VD1, VD2, and Vm. Here VD1 denotes

the bias between the source and substrate of the PMOS transistors, VD2 denotes that of

NMOS transistors, and Vm denotes the voltage between VDD and VSS. Although the mem-

ory architecture using the ABB MTCMOS technique reduces a substantial amount of the

leakage power, the transition between the active and sleep modes is very slow because Q2

and Q4 have to drive large substrate capacitances.

As a variant of [20], a technique applying body-biasing to the NMOS transistors of

the memory cells and the access transistor was proposed in [21]. In this technique, an RC

Figure 2.2: ABB-MTCMOS SRAM Circuit. 
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decay circuit controls the body-biasing voltage. If memory cells connected to a word-line

are not accessed for a specified time window, the charge stored in the RC circuit is com-

pletely discharged. As soon as the RC circuit is discharged below a certain specified level,

the body-biasing circuit causes a switch to stand-by mode. Whenever the word-line is

accessed, the charge in RC decay circuit is restored immediately.

The reverse body-biasing technique can reduce the sub-threshold leakage power

via body effect. It avoids affecting the access time by switching to zero body-biasing in

active mode. However, large latency and energy overheads are imposed by the transition

of the body-bias circuit caused by the body Vbs swing and substrate capacitance. Further-

more, this technique becomes less attractive in scaled technologies because the body coef-

ficient γ decreases with smaller dimension, and band-to-band tunneling (BTBT) becomes

enhanced by the reverse body biasing. 

As an alternative solution for this problem, an adaptive forward body-biasing

MTCMOS SRAM was proposed in [22]. Basically, the forward body-biasing technique

uses super high-VTH transistors engineered by super-halo 2-D doping. When the transis-

tors are in active mode, the forward body-biasing is applied to active SRAM cells. This

lowers the VTH of the transistors to enhance the circuit speed of the active SRAM cells

while the high-VTH transistors suppress sub-threshold leakage of the rest of the stand-by

SRAM cells. 

All adaptive body-biasing techniques impose a large voltage swing on the highly

capacitive transistor substrate or body during switching between active and stand-by

modes. This incurs a large dissipation of energy as well as a time penalty during the mode

transitions.
13



2.1.3 Dual-Threshold Voltage CMOS SRAM

In order to reduce the sub-threshold leakage current of digital circuits, dual-thresh-

old voltage CMOS techniques have been investigated [23, 24, 25, 26]. The basic concept

of using dual threshold voltage is to use low-VTH transistors for circuits in the critical

path, and high-VTH ones for the rest of the circuits to suppress unnecessary leakage cur-

rent.

In dual-VTH SRAM design, the low-VTH transistors have been used in the periph-

eral circuits of the caches and the high-VTH for the memory cells [27]. A dual-VTH cell,

with a high VTH for the memory cell core and a low VTH for both the bit lines and word

lines with under-drive, has also been evaluated for the caches with differential low-swing

sensing in a sub-1V VDD regime [28]. However, neither of these techniques can improve

the bit line delay in high-performance processor designs, because they use a single maxi-

mum VDD dictated by gate-oxide wear-out considerations. 

In [29, 30], different dual-VTH cells and cache design choices were investigated

for high performance processors with a single VDD in 130nm technology. Figure 2.3

shows two different SRAM cell design using the dual-VTH technique. As another design

choice, high-VTH transistors can be used for all the 6 transistors in the memory cell. How-

ever, using a cell entirely consisting of high-VTH increases the delay of the cache memory

up to 26% compared to that of the memory designed with the low-VTH transistors accord-

ing to the experimental results presented in [29, 30].
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2.1.4 Gated-Ground CMOS SRAM

The gated-ground or gated-VDD structure was introduced in [31]. This technique

reduces the leakage power by using a high-VTH transistor between VVSS and VSS to turn

off the power of the memory cell when the cell is set to low-power mode as shown in

Figure 2.4. This high-VTH gating transistor significantly reduces the leakage power of the

memory cell circuit because of the stacking effect [32, 33, 34, 35] and the exponential

dependence of the leakage on VTH. It uses 0.2V and 0.4V for low- and high-VTH transis-

tors, respectively and reduces the leakage power by 97% while increasing read time by 8%

with 5% area overhead.

While this method is very effective at suppressing leakage, its main disadvantage

lies in that it loses any information stored in the memory cell when switched into low-

leakage mode. This means that a significant performance penalty may be incurred when

the data in the memory cells are needed — they must be obtained from higher level caches

Figure 2.3: Different 6T SRAM cell designs using the dual-VTH technique. 
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or memory. Furthermore, the stacked transistor to reduce the leakage current is in the crit-

ical path. This results in increased cache access time.

In [36, 37], a single-VTH data-retention gated-ground (DRG) SRAM was pro-

posed. This technique relies solely on the forced-stacking effect to reduce the leakage cur-

rent. To retain the cell state, sophisticated transistor sizing is required, which is sensitive to

noise during sleep mode. This technique reduces leakage power by 40% while increasing

read access time by 4.4% compared to a conventional memory cell designed with 0.25V

VTH. The leakage reduction by this technique is relatively lower than that of the previous

technique that does not provide data-retention capability.

2.1.5 Other CMOS SRAM Techniques

Recently, a couple of other CMOS SRAM cell design techniques for high-perfor-

mance processor caches were proposed to reduce leakage power [38, 39, 40]. All these cir-

cuit techniques rely, for their effectiveness, on the behavior of the microarchitecture. For

Figure 2.4: The gated-ground SRAM circuit. 
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example, the bits in the on-chip L1 data caches are highly biased to state “0” [38, 39], or

the bits in the branch predictor or branch target buffer (BTB) are quite transient and pre-

dictive [40]. The term “transient” means that data that has not been accessed for a suffi-

ciently long time is no longer useful (“decayed” or “dead”), and the term “predictive”

implies that allowing a value to leak away, even if it will be used again, does not harm the

correctness of the execution of the program. Using a decayed value will possibly cause a

misprediction, but that can be corrected by existing hardware. This is a key difference

compared to caches, where using decayed data will lead to incorrect execution of the pro-

gram. 

In [38], high-VTH transistors were asymmetrically used in the SRAM cells for the

selected biased state — “1” or “0.” To compensate for the slow access time of the biased

state, a special sense-amplifier circuit was also proposed. This requires two more transis-

tors per sense-amplifier. To suppress the leakage current from the supply voltage source to

the bit-lines and the access transistors of the SRAM cell arrays, a leakage-biased bit-line

architecture was proposed with the dual-VTH storage cells in [39]. In this technique, gat-

ing the precharge devices floats the bit-lines in inactive sub-banks. This makes the leakage

currents from the bit cells automatically bias the bit-line to a mid-rail voltage that mini-

mizes the bit-line leakage current through the access transistors. 

The leakage reduction of this technique depends on the percentage of zero or one

resident bits in caches. However, the floated sub-bank, by gating the precharge circuits,

requires a finite bit-line recharge time to initiate a new bit-line precharge. This incurs a

processor performance penalty that is around 2.5% according to the reported result.
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In [40], a quasi-static 4-transistor SRAM cell was proposed for the transient and

predictive bits in the memory structure used for the branch prediction. The 4-transistor

cells are about as fast as 6T cells, but they do not store charge indefinitely due to leakage.

Thus, it can only be applied to memories used for prediction that do not affect the correct-

ness of program execution.

2.2 Microarchitectural Techniques

Most microarchitectural and compiler leakage suppression techniques work

together with the circuit techniques presented in Section 2.1. In [31, 41, 42, 43], dynami-

cally re-sizable instruction cache architectures were proposed. The key observation behind

these techniques is that there is a large variability in instruction cache utilization both

within and across programs leading to large energy inefficiency in conventional caches.

While the memory cells in the unused section of caches are not actively referenced, they

leak current and dissipate energy. 

One approach that uses the fact that much of the cache is not actively referenced is

the idea of a dynamically resizing cache. This approach resizes caches to increase or

decrease the number of sets in use in the caches by turning them on and off using the cir-

cuit technique proposed in Section 2.1.4. However, in [31, 41, 42, 43], the states of the

cache cells are lost when the gated-ground transistor is turned off. The techniques require

extra hardware for estimating cache miss rate and the cache resizing factor. The dynami-

cally resizing cache also requires tag bits to be compatible with both small and large

caches. Resizing requires special hardware and extra overhead for controlling the gated-

ground transistor. 
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Finally, there are two sources of increase in the cache miss rate when resizing.

First, resizing may demand re-mapping of data into the caches and incur a large number of

compulsory misses at the beginning of the sense interval1. The resizing overhead depends

on both resizing frequency and sense-interval length. Second, downsizing may be sub-

optimal and result in a significant increase in the miss rate, when the required cache size is

slightly below a given size. The impact on the miss rate is highest at small size caches

when the cache begins to thrash. It was also reported that it might not be possible to down-

size the cache on the fly for some applications, because they experience a large perfor-

mance penalty [36, 37]. The leakage power for such application may not be reduced. Also

these techniques are only applicable to L1 and are very difficult to implemented for other

levels of hierarchy such as L2 or L3.

The approaches proposed in [44, 45, 46, 47] exploit the generational behavior—

temporal locality—of data caches to reduce the leakage power. It turns off a “dead” cache

line if a preset number of cycles have elapsed since it was last accessed. To turn off cache

lines selectively, it also uses the same circuit technique proposed in Section 2.1.4. This

technique incurs a cache miss penalty when the turned-off cache lines are required again.

More sophisticated adaptive techniques to determine the dead cache lines were also pro-

posed to reduce this penalty.

To reduce the leakage power dissipation through the cache bit-lines, two microar-

chitectural prediction techniques were proposed [48, 49] based on the circuit technique in

[39]. In those techniques, they enable a sub-set of cache sub-arrays or sub-banks by gating

bit-line precharge signals selectively. Because the precharge of bit-lines is in the critical

1. The sense interval is the time between consecutive cache resizes.
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path of cache access time, the microarchitectural control mechanism must enable a next

target or to-be-accessed sub-array before it is accessed if any penalty is to be reduced. If it

wakes up a wrong sub-array, the processor must wait until the sub-array is fully precharge.

This usually incurs a one cycle pseudo cache miss-penalty. 

For instruction caches, they exploited both the temporal and spatial locality that

arises when the program counter remains in a specific code region for a while. In [48], a

most-recently-used (MRU) technique is used for predicting the next sub-array to pre-

charge. The most-recently accessed sub-array index is predicted as the next target sub-

array. In [49], a decay counter per sub-array is implemented to capture the recent usage of

the sub-array. The value of the counter is compared to a threshold value every cycle to

determine whether the sub-array is hot or cold. If the counter value is below the threshold,

the sub-array was accessed recently and is likely to be reused soon. Whenever the sub-

array is accessed, the decay counter is reset. Therefore, the sub-array remains precharged

for the next cache access. Otherwise, the sub-array is not likely to be accessed and its bit-

lines are isolated from the supply voltage source.

For data caches, different prediction techniques were proposed because the sub-

array reference locality in data caches is lower than in instruction cache. In [48], a predic-

tor indexed by memory reference instructions is used. Each entry contains the address of a

memory reference instruction and its corresponding sub-array index. In [49], the same

decay counter technique is used, but predecoding of the target sub-array is also employed

to reduce the performance loss. The main idea of this predecoding technique is that for

most of the memory instructions that use displacement addressing mode (address = base

address + displacement), the accessed sub-array is determined by the base address.
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However, the technique in [48] can incur a significant performance loss when the

program counter repeatedly moves back and forth across the sub-array boundary in a loop.

Furthermore, the performance impact of the technique in [49] is heavily reliant on the

assigned threshold value, and, depending on application programs, the ideal threshold

value differs. Determining it requires a very sophisticated algorithm to find an optimal

threshold value for each class of application program.

2.3 Compiler Techniques

In [50, 51], various compiler-based cache leakage optimization strategies were

introduced. Basically, the compiler-based leakage optimization techniques rely on the cir-

cuit techniques proposed in Section 2.1 or a technique that will be proposed in Chapter 3

of this thesis. 

First, a compiler-based technique for instruction caches was proposed in [50]. It is

based on determining the last usage of instructions. Once the last use of the instructions is

detected, the corresponding cache lines are either turned off or switched to the state-pre-

serving sleep state. The instruction cache lines are turned off at the loop granularity level.

When loops are nested and the outer loop is exited, it is assumed that the inner loops will

not be re-visited in the near future. The cache lines that hold the instructions belonging to

the loop are either turned off or switched to the sleep mode. Based on this compile-time

analysis, the compiler inserts the instructions controlling the power mode — active or

stand-by — of the cache lines.

Second, a compiler technique for data caches was proposed in [51]. It is based on

the observation that at a given time only a small fraction of the data cache lines need to be
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active (i.e., the lines that hold the currently used data) and the remaining cache lines can

be placed into leakage-saving mode. Their approach activates a cache line just before the

line is accessed as long as this can be known during the compile-time data-reuse analysis.

After the access is completed, the cache line is turned off.

However, these approaches increase codes sizes due to the inserted cache control

instructions and do not work very well when compiler optimization techniques for instruc-

tion caches, such as loop unrolling, are applied. In addition, this technique for the data

caches is limited to array-based and pointer-intensive applications.
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Chapter 3

Low-Leakage State-Preserving SRAM

The memory cell circuit proposed in this chapter employs a dynamic voltage scal-

ing (DVS) technique to reduce leakage power. In active mode, a nominal supply voltage is

provided to memory cells. However, when the cells are not intended to be accessed for a

long period, they are placed in sleep or drowsy mode. In drowsy mode, a stand-by voltage

in the range of 100~300mV is applied to the memory cells and the leakage power is signif-

icantly reduced due to the decrease in both leakage current and supply voltage [52]. 

Supply voltage reduction is especially effective for leakage power reduction due to

the short-channel effects of drain induced barrier lowering (DIBL). This results in a

super-linear dependence of leakage current on the supply voltage [53]. First, to understand

the leakage power reduction achievable in drowsy mode, we present a sub-threshold leak-

age current analysis of memory cells. Second, we propose a leakage power reduction tech-

nique using dynamic voltage scaling. Finally, we discuss related issues and limits such as

the lower bound of the stand-by supply voltage, wake-up latency and energy, cross-talk

noise susceptibility, and soft-error sensitivity of the proposed circuit technique.
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3.1 Leakage Analysis

To understand the leakage power reduction achievable in drowsy mode, a leakage

modeling analysis is carried out in this section. Figure 3.1 shows a standard 6-transistor

memory cell circuit. This contains the two leakage paths: 1) cell leakage; and 2) bit-line

leakage. In the next generation 70nm technology, the leakage current in the off-state is

dominated by the weak inversion current, which can be modeled as [52, 54]:

(Eq. 3-1)

where λ is a parameter modeling the pseudo-saturation region in weak inversion. In

Figure 3.1, we assume that P1 and N2 are in weak inversion while P2 and N1 are in strong

inversion. When VDD is high enough to keep P2 and N1 in strong inversion, the memory

cell is strongly biased and the voltages VDD and VSS appear on the two cross-coupled

Figure 3.1: Leakage inside a biased static memory cell. 
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inverter nodes. Ignoring the current through N3 and N4, the overall leakage current is the

sum of leakage currents from the off transistors. Here, the bit-line leakage through the

access transistor N3 and N4 is not included in our modeling, because its contribution to the

overall memory cell leakage is less than the cell leakage and it is dependent on the bit-line

precharge technique, which varies widely among static random access memory designs. In

addition, P2 and N1 are in the strong inversion region and only present a small serial resis-

tance. Hence, they also can be ignored in the leakage modeling. Assuming VGSP2 = VGSN1

= VSS and VGSP1 = VGSN2 = VDD, the overall leakage of the 6-transistor memory cell is

modeled as following: 

(Eq. 3-2)

where ISN and ISP are NMOS and PMOS off-transistor current factors that are independent

of VDS in Eq. 3-1.

3.2 Leakage Power Reduction using Dynamic Voltage Scaling

From Eq. 3-2, it can be seen that the leakage current decreases super-linearly with

VDD. Hence, significant leakage power can be reduced in drowsy mode, but a minimum

voltage must be applied to memory cells to maintain correct memory states. Figure 3.2,

shows the sub-threshold leakage power reduction of the memory cell implemented with a

70nm technology as supply voltage is scaled down. The memory cell dissipates 0.065µW

at the 1V nominal supply voltage. However, we can reduce the leakage power of the mem-

ory cell by 92% at the 200mV stand-by supply voltage. 
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We initially ignored the bit-line leakage through the access transistors. However,

total leakage power amounts to 0.072µW if the leakage by bit-lines is included. Compared

with the cell leakage power, the bit-line leakage power through the access transistors is

responsible for approximately 20% of the total leakage power of a memory cell in active

mode. Furthermore, the dynamic voltage scaling technique barely reduces the bit-line

leakage component as shown in Figure 3.2, because it is only effective for the cell leakage

reduction. 

To reduce the leakage power through the access transistors, either high-VTH tran-

sistors should be used or bit-line precharge circuits should be turned off. However, the

former technique increases the memory access time, because high-VTH transistors are

slower than low-VTH ones. The latter requires an additional cycle to initiate a new pre-

charge cycle. The precharge clock signals are asserted every cycle because bit-line pre-

charging and address decoding should be performed concurrently in conventional pre-

charge techniques.
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Figure 3.2: Sub-threshold leakage power reduction of the memory cell. 
26



We sweep the supply voltage from 1 to 0V using HSPICE to derive a minimum

state-preserving voltage as shown in Figure 3.3 where “4T node - 1” and “6T node - 1”

represent nodes holding logic state “1” in a cross-coupled inverter pair consisting of 4

transistors (P1, N1, P2, and N2 in Figure 3.1) and a complete memory cell of 6 transistors

including access transistors (N3, and N4), respectively. The corresponding case for the

nodes holding the logic state “0” is also shown. As the supply voltage is scaled down, the

voltage of both nodes approaches the same level and eventually, they become indistin-

guishable below 100mV range. This implies that the memory cell state has been destroyed.

To keep a meaningful state, one cross-coupled node should maintain logic “1”

while the other should hold logic “0” in the memory cell. However, there is no way to

recover the original logic state once the voltage levels of both nodes become indistin-

guishable. Therefore, the stand-by voltage must be higher than the minimum state-pre-

serving voltage. Furthermore, it should include a margin for process variations such as

VTH and transistor channel length.
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3.3 Low-Leakage and State-Preserving SRAM Architecture

Figure 3.4 illustrates our proposed low-leakage, state-preserving drowsy memory

cell with a supply voltage control mechanism. Based on operating mode — active or

drowsy, the two PMOS transistors, P1 and P2, control the supply voltage of the memory

cells connected to the same power supply rail. When the memory cells are in active mode,

P1 supplies the nominal supply voltage (VDD), and P2 provides the stand-by voltage

(VDDLow). P1 and P2 are controlled by complementary supply voltage control signals

(LowVolt and LowVolt). In addition, there will be negligible supply voltage degradation at

the VVDD node, because PMOS transistors transmit the full supplied voltage unlike

NMOS transistors, which cause a VTH drop.

In drowsy mode, however, the memory cell accesses are not allowed, because the

voltage level of the bit-lines is higher than that of the cross-coupled inverter core node,

which may result in loss of the memory cell state. Moreover, the reduced supply voltage

Figure 3.4: A memory cell with dynamic voltage scaling mechanism. 
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may cause the sense-amplifiers to operate incorrectly, because the memory cells may not

have enough current driving capability to sink the charge stored in the bit-lines.

3.3.1 Wake-up Latency and Energy

When the memory cells are in drowsy mode, it takes a finite amount of time to

restore the voltage level of the VVDD node from stand-by to nominal supply voltage level,

which we refer as “wake-up” latency. Furthermore, it consumes dynamic energy during

the stand-by to active mode change. The drowsy cache line wake-up latency is critical for

L1 caches because it increases the access latency when the processor accesses the lines. A

fast wake-up latency is desirable to minimize the performance loss. Furthermore, the leak-

age saving during stand-by mode must be able to compensate for the wake-up energy

overhead. In fact, the leakage savings must be larger than the wake-up energy overhead.

In a low-leakage memory technique such as adaptive-body biasing, wake-up is

very slow and energy hungry, because the wake-up circuitry drives the body or substrate,

which has a significant amount of the capacitance. Therefore, this technique is not suitable

for L1 caches, which require a fast wake-up with little energy dissipation. The gated-

ground technique for L1 caches destroys the memory cell states when it is put into leakage

saving mode. Turning off a wrong cache line that will be accessed again incurs extra L2

cache accesses resulting in more dynamic energy dissipation and more penalty cycles.

To estimate the wake-up latency, we connected 128 memory cells to the power

supply rail and the voltage control circuitry shown in Figure 3.4. In deep sub-micron tech-

nologies, the delay of the interconnect wires is typically more significant than that of the

gates. To account for this, we modeled the interconnect capacitance and resistance based

on the estimated power supply rail wire length and width using the 70nm technology
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parameters [4]. To estimate a memory cell dimension with 70nm technology, we applied a

linear scaling to an Artisan™ 0.18µm technology memory cell. The detailed power supply

rail wire dimension and interconnect parameters for the HSPICE simulations are summa-

rized in Table A.1 and Table A.2, respectively. 

Figure 3.5 shows the wake-up latencies of the VVDD node as the width of the P1

transistor in the voltage control circuitry shown in Figure 3.4 is increased. We assumed 1V

and 0.25V for the nominal and stand-by supply voltages, respectively. To estimate the

number of cycles required for restoring the supply voltage level of VVDD node, we need to

estimate the clock frequency of a typical processors. According to [55, 56], the cycle time

of the high-end microprocessors has been around 16×FO4 (fan out of four) delay. This

corresponds to 527ps in 70nm technology, and it will approach 12×FO4 in future technol-

ogy [57]. 
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Table 3.1 and Figure 3.6 show the wake-up latency and energy estimated for each

size of the voltage control transistor. We defined the VVDD rise time from 0.25V to 0.99V

as a wake-up latency. The latency number in the parenthesis is normalized to the 12×FO4

delay. The energy number in Table 3.1 includes the dissipation by the circuitry driving the

voltage control transistor. When we use 32× and 64×Lmin size voltage control transistors,

we can restore the full supply voltage level of the VVDD node in 1 or 2 cycles, respectively.

Considering the aggressive assumption on the clock cycle time, the normalized numbers

of cycles in Table 3.1 are conservative. However, the voltage control transistor supplying

stand-by voltage (P2 in Figure 3.4) does not need to be such a wide PMOS transistor (e.g.,

Table 3.1: Wake-up latency and energy of the voltage control transistors. 

16×Lmin 32×Lmin 64×Lmin 128×Lmin 256×Lmin

Latency (ps) 919 (2.33) 473 (1.20) 274 (0.69) 179 (0.45) 132 (0.33)

Energy (fJ) 108 109 116 130 164

Lmin is equivalent to 2λ and the number in the parenthesis is normalized to 12×FO4 delay.
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64×Lmin size), because the latency from active to drowsy mode is not critical for processor

performance. Thus, we can use a minimum size transistor that provides enough current to

sustain the stand-by voltage level of the cache lines.

To estimate the extra area used by the voltage control circuitry, we extracted an

actual cell layout from a memory compiler with the TSMC 0.18µm design rules. This

technology was the smallest feature size available to the academic community at the time

of the experiment. The dimensions of the memory cell are 3.66µm (40λ) × 1.84µm (20λ),

and those for the voltage control circuitry are 3.66µm (40λ) ×1.98µm (22λ) and 3.66µm

(40λ) ×3.42µm (38λ) for 32× and 64×Lmin size voltage control transistors, respectively.

We estimate the extra area by the voltage control circuitry per 128-bit cache line is equiv-

alent to 1.1 (0.87%) and 1.9 (1.48%) extra memory cells for the 32× and 64×Lmin voltage

control transistors, respectively. This relatively low area overhead can be achieved

because of the negligible interconnect overhead in the voltage control circuitry compared

to the 6-transistor memory cell. In fact, a significant amount of the memory cell area is

consumed by local interconnects and spacing between different transistors even though

the actual size of each transistor is small. 

3.3.2 Cross-Talk Noise and Soft-Error Susceptibility

In ultra deep sub-micron technology, the cross-coupling capacitance between

interconnects or nodes are becoming significant. On the other hand, we can suppress more

leakage power as we decrease the supply voltage. However, reducing the supply voltage

also decreases the charged stored in the nodes. This will make the memory cells in stand-

by mode more susceptible to cross-talk noise [58] and soft-errors caused by cosmic radio-

active particles [59].
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We examined the cross-talk noise susceptibility of the drowsy cells in a row by

applying a write operation to the adjacent row that is in active mode. This makes all the

bit-lines, connecting both drowsy and active cells, swing rail-to-rail. According to the

HSPICE simulation shown in Figure 3.7, there is only a slight voltage fluctuation at the

drowsy node - 1 during the write operation to the active row. The voltage level of the

drowsy cell recovers its stand-by voltage level quickly because the cross-coupled inverters

in the drowsy cell keep driving their internal nodes.

We next consider soft error susceptibility. To avoid soft errors, the collected charge

Q at that particular node should be more than Qcritical. If the charge generated by a particle

strike at the node is more than Qcritical, the pulse generated is latched at the node, and

results in a bit flip. This concept of critical charge is generally used to estimate a soft-error

rate (SER). In [60], a technique to estimate the SER in CMOS memory circuits was devel-

oped. In this model an exponential dependence of SER on critical charge was shown as

following:
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(Eq. 3-3)

where Nflux is the intensity of the neutron flux, CS is the area of the cross section of the

node, and Qs is the charge collection efficiency depending on the doping concentration. 

The value of Qcritical is proportional to the node capacitance and the supply volt-

age. Hence, Qcritical at a node will decrease as the supply voltage or node capacitance is

reduced. Assuming that the node capacitance is fixed for the same memory cell, SER is

only proportional to Qcritical. Figure 3.8 shows the Qcritical and leakage power as the sup-

ply voltage decreases. To measure Qcritical, we applied a current pulse to a memory cell

core node for a fixed period of time increasing the magnitude of the current until the bit

flips. At the flipping point, we measured the magnitude of the current and integrated the

current for that time period. As seen in Figure 3.8, Qcritical decreases linearly with the sup-

ply voltage. 
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This shows that memory cells in stand-by mode are more susceptible to soft-errors.

However, we can employ an error detection code mechanism to deal with these errors. In

addition, we can fix errors by fetching correct memory states from the L2 cache or the

external memory as soon as a soft-error is detected in the L1 caches. By using the L2

cache for correction we can avoid the need for more complex error correction codes in the

L1 caches.

3.4 Chapter Summary

In this chapter, we proposed a new low-leakage state-preserving static random

access memory circuit architecture. It is simple but effective at reducing the memory cell

leakage power and has fast wake-up latency and little energy dissipation. It reduces the

memory cell leakage power by 94% at 250mV stand-by voltage with 1 or 2 cycles wake-

up latency depending on the transistor size of the voltage control circuitry. 

The state-preserving capability, fast wake-up latency, and low energy dissipation

during wake-up, allows the computer architect to employ more aggressive L1 cache leak-

age management policies. In the following sections, we will introduce the microarchitec-

tural control policies that manage the L1 caches with the drowsy memory architecture

proposed in this chapter.
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Chapter 4

Drowsy Data Caches

Over a fixed time period, it has been observed that the activity in a data cache is

only centered on a small sub-set of the cache lines. This behavior can be exploited to cut

the leakage power of large data caches by putting the cold cache lines into a state preserv-

ing, low-power drowsy mode. In the state-preserving drowsy caches, the cost of being

wrong — putting a line into drowsy mode that is accessed soon thereafter — is relatively

small compared to the caches that use the state-destroying gated-VDD technique. 

Although the leakage saving of the state-preserving technique is slightly less than

that of the state-destroying one, the only penalty one must contend with is an additional

delay and energy cost for having to wake up a drowsy line. One of the simplest policies

that one might consider is that all lines in the cache — regardless of access patterns — are

put into drowsy mode periodically and each line is woken up only when it is accessed

again. This policy requires only a single global counter generating the periodic drowsy

signal, and no per-line statistics [44]. 

In this chapter, we investigate microarchitectural control mechanisms for putting

L1 data cache lines into their drowsy state and compare them to one another. We argue

that the simple policy of periodically putting the entire cache lines into drowsy mode does
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about as well as a much more complex control policy that tracks accesses to each cache

line.

4.1 Characterizing Working Sets

Table 4.1 shows the working set characteristics of a sub-set of SPEC2K bench-

marks for a 32KB 2-way set associative data cache with 1024 32-byte lines. The observa-

tions of cache activity are made over 2048 cycle periods, which we refer to as 2048 cycle

update windows. (See Appendix B and Table B.1 for the detailed simulation methodology

and parameters, respectively.) The table shows that on most of the workloads, the working

set — the fraction of unique cache lines accessed during an update window (e.g., 2048

cycles) — is relatively small. On average, only 12% of the 1024 32-byte cache lines need

to be in active mode, and the remaining lines can be in drowsy mode at any one time. This

Table 4.1: Data cache working set characteristics. 

benchmark working set number of 
accesses

accesses /
line

accesses / 
cycle

bzip2 7% 820.5 10.9 0.40

crafty 16% 1313.9 8.0 0.64

gcc 34% 2898.8 8.4 1.42

parser 8% 894.4 10.3 0.44

vortex 11% 1319.6 11.4 0.64

ammp 8% 680.3 8.6 0.33

equake 6% 1956.2 29.7 0.96

fma3d 5% 787.6 14.1 0.38

mgrid 16% 907.2 5.6 0.44

swim 12% 368.2 2.9 0.18

AVG 12% 1082.2 8.9 0.40

A 32KB, 2-way set associative cache with 1024 32-byte lines and a 2048-cycle update window are

used.
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has the potential to significantly reduce the static power consumption of the cache. The

downside of the approach is that the wake-up cost has to be amortized over a relatively

small number of accesses between 2.9 (swim) and 29.7 (equake), depending on the work-

loads. (See Table B.2 for the working set characteristics of the entire SPEC2K benchmark

suite.)

The execution factor (EF) computing the expected worst-case execution time

increase for the simple algorithm can be formulated by:

(Eq. 4-1)

All variables except memory impact and wake-up latency are directly from Table 4.1. The

term memory impact can be used to describe how much impact a single memory access

has on overall performance. The simplifying assumption is that any increase in cache

access latency translates directly into increased execution time, in which case the memory

impact is set to 1. Using this formula and assuming a 1 cycle wake-up latency, we get a

maximum of 17% performance degradation for gcc and under 4% for equake. 

One can further refine the model by coming up with a more accurate value for

memory impact. Its value is a function of both the microarchitecture and the workload:

• The workload determines the ratio of the number of memory accesses

to instructions.

• The microarchitecture determines what fraction of wake-up transitions

can be hidden, i.e., not translated into global performance degradation.

EF

accesses
wake-up latency memory impact×

accesses / line
---------------------------------------------------------------------------------- 
 × window size+

window size
---------------------------------------------------------------------------------------------------------------------------------------------------------=
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• The microarchitecture also has a significant bearing on instruction per

cycle (IPC) which in turn determines the number of memory accesses

per cycle.

Assuming that half of the wake-up latencies can be hidden by the microarchitecture, and

based on a ratio of 1.42 of memory accesses per cycle, the prediction for worst-case per-

formance impact for gcc reduces to 12%. Similarly, using the figure of 0.96 memory

accesses per cycle and the same fraction of hidden wake-up transitions, we get a perfor-

mance impact of about 1.5% for equake. The actual impact of the baseline technique is

likely to be significantly lower than the results from the analytical model, but nonetheless,

these results suggest that there is no need to look for prediction techniques to control the

drowsy cache; as long as the drowsy cache can transition between drowsy and awake

modes relatively quickly, simple algorithms should suffice.

Figure 4.1 shows the data cache working set reuse characteristics — the fraction of

accesses that are the same as in the n-th previous window for the sub-set of SPEC2K

benchmarks. (See Table B.3 for the statistics of all the SPEC2K benchmarks.) The results

in the figure specify what fraction of references in a current window are to lines that had

been accessed 1, 2, 8, or 32 windows before. This information can be used to gauge the

applicability of control policies that predict the working set of applications based on past

accesses. As it can be seen, on many workloads (e.g., bzip and gcc), a significant fraction

of lines are not accessed again in a successive window. This implies that past accesses are

not always a good indication of future use. 
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Aside from equake where past accesses do correlate well with future accesses,

most workloads only re-access 40% of the lines between windows and the fractions from

the previous windows decrease dramatically as cycles go on. The implications of this

observation are twofold: If an algorithm keeps track of which cache lines are accessed in a

window, and only puts the ones into drowsy mode that have not been accessed in a certain

number of past windows, then the number of awake to drowsy transitions per window can

be reduced by about 50%. This, in turn, decreases the number of later wake-ups, which

reduces the impact on execution time. However, the impact on energy savings is negative

because a larger fraction of lines are kept in full power mode, and in fact many of those

lines will not be accessed for the next several windows, if at all.
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Figure 4.1: Data cache working set reuse characteristics. 

A 32KB, 2-way set associative cache with 1024 32-byte lines and a 2048-cycle update window are

used. The fractions of accesses that are the same as in the n-th previous window in the current 2K cycle

window size.
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Table 4.2 shows the latencies associated with the different modes of operation. No

extra latencies are involved when an active line is accessed. Hits and misses are deter-

mined the same way as in normal caches for the active cache lines. However, a hit for the

drowsy cache line costs one extra cycle to wake up the line although this wake-up penalty

may be overlapped with the upper memory such as L2 or main memory access latency.

4.2 Policy Evaluation

In this section, we evaluate the different policies with respect to their impact on

run-time and the fraction of cache lines that are in drowsy mode during the execution of

SPEC2K benchmarks. The following parameters can be varied:

• The update window size specifies in cycles how frequently decisions

are made about which cache lines are put into drowsy mode.

• The wake-up latency is the number of cycles for waking up drowsy

cache lines. We consider 1, 2, or 4 cycle transition times since our cir-

cuit simulations indicate that 1 or 2 cycles are reasonable assumptions

— with 4 cycles being a conservative extreme.

Table 4.2: Latencies of accessing a cache line in the drowsy cache. 

Active Drowsy

Hit • 1 cycle
• 1 cycle — to wake-up line
• 1 cycle — to read / write line

Miss
• 1 cycle — to find line to replace
• n cycle — to access upper memory 
hierarchy

• 1 cycle — to find line to replace
• 1 cycle — to wake-up line
• n cycle — to access upper memory 
hierarchy

The 1-cycle wake-up latency shown with a strike-through is overlapped with the upper memory

access latency. 
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• The policy that uses no per-line access history is referred to as the sim-

ple policy. In this case, all lines in the cache are put into drowsy mode

periodically; the period is the window size. The noaccess policy means

that only lines that have not been accessed in a window are put into

drowsy mode.

The detailed simulation methodology and processor parameters are discussed in Appendix

B and Table B.1.

Figure 4.2 shows how the update window size impacts the run-time and the frac-

tion of drowsy lines using a simple policy with an 1-cycle wake-up latency. For clarity, we

are showing only a sub-set of the benchmarks with an average from the entire bench-

marks. As we decrease the update window size, we have a larger fractions of drowsy lines,

which implies that we are able to reduce more leakage power dissipation. However, this

causes run-time increases for the workloads. Also, at the same update window size, the

floating-point workloads show less run-time increase compared to the integer ones,

because the floating-point applications have more temporal locality — accesses remain in

a specific region of the data cache longer according to our experimental results. On the

give processor configuration, the sweet-spot — where the energy-delay product is maxi-

mized — is around 2K cycles for the simple policy with a 1-cycle wake-up latency. 

From the entire SPEC2K benchmarks, the average fractions of drowsy lines are

97%, 93%, 83%, 64%, and 39%, while the average run-time increases are 0.76%, 0.62%,

0.52%, 0.39%, and 0.15% for 512, 2K, 8K, 32K, and 128K update window sizes. The rea-

son for the relatively small impact of the drowsy wake-up penalty on the processor’s per-

formance is due to our use of a non-blocking memory system, which can handle a number
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Figure 4.2: Impact of window sizes on the run-time and fraction of drowsy lines. 

(a) SPEC2K integer benchmarks

(b) SPEC2K floating-point benchmarks

We use a simple policy with 128K, 32K, 8K, 2K, and 512 update window sizes and 1-cycle drowsy-
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of outstanding loads and stores while continuing execution of independent instructions.

Moreover, the drowsy wake-up penalty is usually only incurred with load instructions,

because stores are put into a write buffer, which, if not full, allows execution to continue

without having to wait for the completion of the store instruction. In terms of the average

leakage power reduction, roughly 85% of leakage power can be reduced with a 0.62%

run-time increase when the average fraction of drowsy lines are 93%, and a drowsy cache

line consumes 10% of the leakage power of an awake line.

The impact of increased wake-up latencies is shown in Figure 4.3. The graphs in

the figures show the run-time increases of the processor using a simple policy with 1-, 2-,

and 4-cycle wake-up latencies and 512, 2K, 8K, 32K, and 128K update window sizes.

According to the experimental results, the fraction of drowsy lines remain relatively con-

stant, but the run-time increases linearly as the wake-up latency is increased, because the

extra number of wake-up cycles increases idle cycles in the processor pipeline. For the

512, 2K, 8K, 32K, and 128K update window sizes, the average run-time increases of the

simple policy with the 2-cycle (4-cycle) wake-up latency are 1.6% (3.2%), 1.3% (2.6%),

1.1% (2.2%), 0.8% (1.6%), and 0.3% (0.7%), respectively. The impact on the run-time is

doubled as the wake-up latency is doubled and the run-time increase trend is consistent

with the results of 1-, 2-, and 4-cycle wake-up latencies. To minimize the run-time impact

of the wake-up penalty, it is necessary to use a voltage controller that wakes up the drowsy

cache line as fast as possible, but this increases the area overhead as well as dynamic

power dissipation of the voltage controller — see Section 3.3.1 for the wake-up latency

and energy for the controller. However, the cost of the extra area and energy needed for the

voltage controller is relatively small. Therefore, we will use 1 cycle as a wake-up latency.
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Figure 4.3: Impacts of increased drowsy access latencies. 

(b) SPEC2K floating-point benchmarks

We use a simple policy with 1-, 2-, and 4-cycle drowsy-line wake-up latencies and 512, 2K, 8K, 32K,

and 128K update window sizes.
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Figure 4.4 contrasts the noaccess and the simple policies. The main question that

we are trying to answer is whether there is a point to keeping any per-line statistics to

guide drowsy decisions or if the indiscriminate approach is good enough. We show three

different configurations for each workload on the graph: the noaccess policy with a 2K-

cycle window and two configurations of the simple policy (4K- and 2K-cycle windows).

In all cases, the policy configurations follow each other from bottom to top in the afore-

mentioned order. This means that in all cases, the noaccess policy has the smallest fraction

of drowsy lines, which is to be expected, since it is conservative about which lines are put

into drowsy mode.

The workloads on the graph can be partitioned into two groups: ones on lines

whose slopes are close to the vertical, and ones on lines that are more horizontal and thus

have a smaller positive slope. All the workloads that are close to the vertical are floating

point workloads and their orientation implies that there is very little or no performance

benefit to using the noaccess policy or larger window sizes. In fact, mgrid in the graph has

a slight negative slope, implying that not only would the simpler policy win on power sav-

ings, it would also win on performance. However, in all cases the performance difference

is negligible and the potential leakage power improvement is under 5% in most floating

point applications. The reason for this behavior is the very bad reuse characteristics of data

accesses in these workloads. Thus keeping lines awake (i.e., noaccess policy, or larger

window sizes) is unnecessary and even counterproductive.

This anomalous behavior is not replicated on the integer workloads, where in all

cases the noaccess policy wins on performance, but saves the least amount of power. Does

this statement imply that if performance degradation is an issue then one should go with
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Figure 4.4: Comparisons of noaccess and simple policies. 

(b) SPEC2K floating-point benchmarks

The bottom markers on each line corresponds to the noaccess policy with 2K-cycle window, the

markers above it represent the simple policy with 4K- and 2K-cycle windows, respectively.

(a) SPEC2K integer benchmarks
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the more sophisticated noaccess policy? It does not. The slope between the upper two

points on each line is almost always the same as the slope between the bottom two points,

which implies that the rates of change between the data points of a workload are the same;

the data point for the noaccess policy should be able to be matched by a different configu-

ration of the simple policy. We ran experiments to verify this hypothesis and found that a

window size of 8K of the simple policy comes very close to the coordinates for the noac-

cess policy with a window size of 2K. We find that the simple policy with a window size

of 4K cycles reaches a reasonable compromise between simplicity of implementation,

power savings, and performance. The impact of this policy on leakage energy is evaluated

in Section 4.4.

4.3 Circuits for Microarchitectural Drowsy Cache Controls

Figure 4.5 shows the circuits to support microarchitectural control of drowsy

caches with the circuit technique proposed in Section 3.3. There are a few additions: a

voltage controller, a drowsy set/reset flip-flop, and a word-line gating circuitry for each

standard cache line. To support the drowsy mode, a voltage controller is connected to the

power supply rail (VVDD) of each cache line. This switches the supply voltage of the cache

line between the nominal (active) and stand-by (drowsy) supply voltages depending on the

state of the drowsy set/reset flip-flop — see Figure 4.5 for the signal interconnections

between the components. 

The drowsy set/reset register is a special flip-flop supporting both asynchronous

and synchronous set/reset. (See Figure 4.6 for the circuit schematic.) It is reset by a global

periodic drowsy signal and set by a signal from the final decoder or pre-buffered word-
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Figure 4.5: Circuits to support microarchitectural control of a drowsy cache line. 
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line signal — see Figure 4.5-(a) for the interconnections. QASYNC and QASYNC reflect the

immediate change of the register state by the set and reset signals.) These asynchronous

outputs are required to switch mode of the voltage controller immediately as soon as either

the global periodic drowsy or pre-buffered word-line signal is asserted. However, QSYNC

and QSYNC changes effectively only at the negative edge of the pre-charge clock signal

(CKEQ), because both activating the word-line gating circuitry and reading the drowsy

register state must be synchronized to the pre-charge clock.

The word-line gating circuitry between the final decoder and the word-line driver

is used to prevent accesses of a cache line in drowsy mode, because the supply voltage of

the cache line in drowsy mode is lower than the pre-charged bit-line voltage; unchecked

accesses to the drowsy mode cache line may destroy the memory states. The assertion of a

pre-buffered word-line signal sets the drowsy register. However, the signal should not be

propagated to the word-line driver in the current cycle, because the cache line has not been

woken up yet. In the pulsed word-line technique, the pre-buffered word-line signal is

deactivated before the negative edge transition of the pre-charge clock signal, and the

QSYNC and QSYNC reflect the flip-flop state after the negative edge transition of the clock.

Figure 4.6: Drowsy set/reset flip-flop circuitry. 

QASYNC QASYNC

CKEQ QSYNC

QSYNC

CKEQ

R S

CKEQ
50



Hence, the word-line signal is not propagated in the current cycle, but in the consecutive

cycle when the cache line is awakened.

Whenever a cache line is accessed, the cache controller monitors the condition of

the voltage of the cache line by reading the drowsy flip-flop (QSYNC and QSYNC) that is

always maintained by the nominal supply voltage. If the accessed line is in active mode,

we can read out the cache line without any loss of performance. No performance penalty is

incurred, because the power mode of the line can be checked by reading the drowsy regis-

ter concurrently with the read-out and comparison of the tag. However, if the memory

array has been in drowsy mode, the cache line will be woken up automatically in the next

cycle, and the data can be read out during consecutive cycles.

4.4 Run-time Impact and Leakage Power Reduction

To examine the effectiveness of the proposed technique, we compare our drowsy

cache techniques with a state-of-art cache decay technique [44]. In the cache decay tech-

nique, it is critical to consider the energy penalty from extra L2 cache accesses, because

decayed or dead L1 cache lines result in additional accesses to the L2 cache. We assume

that a 512KB 4-way set associative L2 cache is designed with the sub-banking technique

of [5] to improve both the access time and energy dissipation efficiency of the cache. As a

L2 cache access latency, we use 12 cycles per access. We also estimated the energy dissi-

pation of the L2 cache (653pJ per access) using our modified version of CACTI 3.2 [61]

assuming a 70nm technology and the number of sub-banks that result in the least energy

dissipation per access. 
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To benchmark the two techniques, we compare the normalized leakage energy.

This is the ratio of total leakage energy dissipation by the L1 cache (plus dynamic energy

dissipation from the extra L2 cache accesses for the cache decay technique), divided by

the total leakage energy consumed in the same size regular cache. To calculate the leakage

energy from the leakage power, we need to estimate the cycle time of the processor. We

again use the 12×FO4 delay of Section 3.3.1. The HSPICE simulation with the projected

70nm technology shows that 12×FO4 is around 395ps.

Table 4.3 shows the comparison of the processor run-time impact and the leakage

power reduction between the drowsy data cache and cache decay techniques. We use the

simple policy with a 4K-cycle drowsy window size and 1-cycle wake-up latency for the

drowsy data cache and the 8K-cycle decay window size for the cache decay technique; we

also swept the decay window size to find the optimal window size and we found out that

the optimal window size is 8K, which is the same as that in [44]. The normalized leakage

figures in the parenthesis are re-calculated using the leakage power of the 6-transistor

static memory cell implemented with 300mV high-VTH access transistors. For all the

results in the table, we conservatively assume that there are only 20 tag bits for the 32KB

2-way set associative cache (corresponding to 32 bit addressing) per line, which translates

into 6.9% of the bits in a cache line1. The experimental results show that our implementa-

tion of a drowsy data cache can reduce the total leakage energy consumed in the data

cache by 65% without significant run-time impact (0.57% in average). If the memory cell

is implemented with 300mV high-VTH access transistors, the leakage energy could poten-

tially be reduced by 79% with a few percent increase in cache access time.

1. We assume the tag bits cannot be put into a drowsy state.
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Table 4.3: Run-time increase and normalized leakage power. 

benchmark
run-time increase (%) normalized leakage (%)

drowsy decay drowsy decay

bzip2 0.77 0.38 32 (18) 33

crafty 0.46 1.08 36 (22) 103

eon 0.36 0.13 34 (20) 35

gap 0.46 0.90 37 (23) 29

gcc 0.06 0.00 32 (18) 96

gzip 2.07 1.23 37 (24) 77

mcf 0.66 0.04 36 (23) 34

parser 1.17 1.75 31 (17) 58

perl 0.87 6.97 31 (17) 198

twolf 0.87 0.29 31 (16) 34

vortex 0.25 0.78 49 (39) 112

vpr 0.89 0.84 31 (16) 70

ammp 0.54 0.12 52 (42) 73

applu 0.50 0.00 33 (19) 41

apsi 0.32 0.02 33 (19) 30

art 0.61 0.01 33 (18) 44

equake 0.03 0.04 33 (18) 10

facerec 0.15 0.03 38 (25) 22

fma3d 0.14 0.87 33 (19) 125

galgel 0.31 0.00 34 (20) 68

lucas 0.66 0.00 37 (24) 25

mesa 0.21 0.09 35 (22) 21

mgrid 0.49 0.00 33 (19) 42

sixtrack 0.34 0.18 35 (21) 52

swim 0.61 0.00 34 (20) 34

wupwise 0.20 0.01 33 (19) 34

AVG 0.57 0.64 35 (21) 55

The normalized leakage figures in the parentheses are calculated using the leakage power of the 6-

transistor static memory cell implemented with 300mV high-VTH access transistors.
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Compared with the cache decay technique, the drowsy data cache shows less run-

time impact as well as more leakage energy reduction on average. The drowsy data cache

has relatively uniform leakage reduction over the entire SPEC2K benchmarks while the

decay data cache does not. Furthermore, in some applications such as crafty, fma3d, perl,

and vortex (see the shaded region in Table 4.3), the system using the cache decay tech-

nique dissipates more energy than the regular cache and it shows more run-time impact

due to the relatively high number of extra L2 cache accesses incurred by the premature

turn-off of live cache lines. To prevent these outlier effects, a sophisticated tuning tech-

nique on a per application is required for the cache decay technique. 

In terms of extra hardware, both techniques require additional transistors to control

the power mode of the cache lines. Comparing the access time of caches, the cache decay

technique using gated-VDD memory cells has an additional transistor in its critical path.

Therefore, the access time of our drowsy cache without using high-VTH transistors is

slightly faster than that of the decay cache. In the case that high-VTH transistors are

employed to reduce further leakage power in the drowsy cache, the cache access time of

both techniques will be very similar.

4.5 Chapter Summary

The relative merits of both approaches — drowsy cache and cache decay tech-

niques — depend strongly on the latency and size of L2 caches. If the L2 cache is larger

than 512K bytes, as is common in today’s high performance microprocessors, the perfor-

mance of the drowsy cache approach improves relative to that of the decay cache. Further-

more, in small low-power systems with no L2 cache and in which L1 misses require an
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off-chip access, the drowsy cache approach shows a strong advantage. During our investi-

gations of drowsy data caches we found that our simplest policy—where cache lines are

periodically put into a low-power mode without regard to their access histories—can

reduce the cache’s leakage power consumption by 60-75%. Our comparisons with the

cache decay algorithm, which uses a state-destroying gated-VDD cache to reduce leakage

power, indicate that the drowsy technique not only offers better energy savings but also

lacks the pathological behavior—which can actually increase power consumption—that is

inherent in the gated-VDD based technique.

We believe that our combination of a simple circuit technique with a simple

microarchitectural mechanism provides sufficient leakage power savings at a modest per-

formance impact to make more complex solutions unattractive. Since the cost of mispre-

diction in a drowsy cache is low both in terms of power and performance overhead, it is

especially useful for embedded processors that lack on-chip L2 caches. On a miss, a

drowsy cache need only wake up the drowsy line that is already in the cache as opposed to

gated-VDD based designs, which would have to perform a costly off-chip access to main

memory to re-load the line.
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Chapter 5

Drowsy Instruction Caches

According to the experimental results presented in Chapter 4, we were able to

make two observations on data caches. First, the working sets of the data caches are very

small. Second, more than 60% of working sets in an update time window will not be used

in next consecutive update windows. The first characteristic implies that only a small frac-

tion of data cache lines are needed to be in active mode while the rest of the lines can be in

drowsy mode to reduce the data cache leakage power. This also helps to minimize the per-

formance loss because only a small number of extra penalty cycles are incurred by waking

up the drowsy working sets. 

The second one means that 40% of the working sets put into the drowsy mode will

not need to be woken up soon, and that past accesses are not always a good indication of

the future cache line uses. Furthermore, in the non-blocking data cache for the out-of-

order execution core, a significant fraction of the wake-up latencies could be hidden

because the other load/store instructions or other non-load/store instructions waiting in the

instruction queue can be executed concurrently while waking up the drowsy cache lines;

this makes the memory impact in Eq. 4-1 is relatively low. 

In this chapter, we propose microarchitectural controls for drowsy instruction

caches — as opposed to data caches that were proposed in Chapter 4. We found that while
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our previous algorithm was very effective for data caches, it does not work well for

instruction caches because of different cache access characteristics. It is commonly known

that instruction caches have more spatial and less temporal locality than data caches.

Therefore, it is not surprising that a different cache control policy exploiting more spatial

locality is required to reduce the instruction cache leakage power with a minimum perfor-

mance loss.

5.1 Characterizing Working Set 

According to our experiments, the desirable data cache access characteristics mak-

ing the simple policy work well are not the same for instruction caches, because of the dif-

ferent access patterns. Table 5.1 shows the working set characteristics of a sub-set of the

SPEC2K benchmarks when a 32KB 2-way set associative instruction cache with 1024 32-

Table 5.1: Instruction cache working set characteristics. 

benchmark working set number of 
accesses

accesses /
line

accesses / 
cycle

bzip2 3% 949.8 28.5 0.46

crafty 28% 1285.2 4.5 0.63

gcc 1% 1342.7 137.1 0.66

parser 4% 993.4 25.2 0.49

vortex 21% 994.7 4.6 0.49

ammp 3% 590.1 17.7 0.29

equake 18% 1874.6 10.0 0.92

fma3d 14% 1427.7 10.0 0.70

mgrid 13% 694.2 5.3 0.34

swim 6% 335.8 5.7 0.16

AVG 10% 1005.9 9.8 0.38

A 32KB, 2-way set associative cache with 1024 32-byte lines and a 2048-cycle update window are

used.
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byte lines and a 2048 cycle update window are used. The average working set percentage

of the instruction cache is similar to that of the data cache, but in many workloads such as

crafty, vortex, fma3d, and mgrid, the fractions of the working sets are very high. (See

Table B.4 for the working set characteristics of the entire SPEC2K benchmarks.) 

When a simple policy is employed to reduce the leakage power, the performance

loss of those workloads will be significant because more cache lines need to be woken up

in a fixed time window size. Moreover, the stalls at the front-end machine are directly

translated into the performance loss unlike the non-blocking data caches; the memory

impact in Eq. 4-1 for the instruction caches will be close to 1.

Figure 5.1 shows the instruction cache working set reuse characteristics — the

fraction of accesses that are the same as those in the n-th previous window for a sub-set of

SPEC2K benchmarks. As stated in the previous chapter, the results in the figure specify
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Figure 5.1: Instruction cache working set reuse characteristics. 

A 32KB, 2-way set associative cache with 1024 32-byte lines and a 2048-cycle update window are

used. The fractions of accesses that are the same as in the n-th previous window in the current 2K cycle

window size.
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what fraction of references in a current window are to lines that had been accessed 1, 2, 8,

or 32 windows before. The fractions of the reused working sets from earlier windows in

the instruction cache are much higher than those in the data cache. In fact, the working

sets of instruction caches barely change for long cycles in many workloads like gzip, mcf,

parser, art, lucas, equake, and swim. (See Table B.5 for the statistics of the entire SPEC2K

benchmarks.) In other words, the past access patterns for the instruction cache lines are

good indicators for the future usage of the lines unlike data caches.

Figure 5.2 shows the run-time increase and the fraction of drowsy lines — which

is proportional to leakage power reduction — of workloads using the simple policy with

an 1-cycle wake-up latency and a 4K-cycle update window size, meaning that all cache

lines are put into drowsy mode every 4K cycles. As seen in Figure 5.2, the worst case run-

time increase is as much as 11.49% for crafty and the average run-time increase is 2.74%

for the entire SPEC2K benchmarks even though we used an aggressive 1-cycle wake-up

latency for the 32KB 2-way set associative instruction cache with 1024 32-byte lines. This

is in sharp contrast with the simple policy for the data cache, where the worst run-time

increase is no more than 1.2% and the average is less than 0.6% run-time increase

although the fractions of drowsy lines for both caches are similar.

To investigate the memory impact by waking up cache lines in the instruction

caches, we applied the working set characteristics of the 4K-cycle window size, where the

average percentage of the working sets is 12.7%, to the expected worst-case execution

time increase model from Eq. 4-1. This model gives 3.1% worst-case execution time

increase when the memory impact 1 is assumed, which is very close to the actual average

run-time increase — 2.7%. We confirmed that the memory impact for the instruction
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Figure 5.2: Comparison of drowsy instruction and data caches. 

(a) Run-time increases

(b) Fractions of drowsy lines

We use a simple policy with 4K update window size and 1-cycle drowsy-line wake-up latency — see

Table B.6 for the results of all the SPEC 2K benchmarks.
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cache is close to 1. This means that wake-up penalties are directly translated into the exe-

cution time increase.

5.2 Policy Comparison

Considering the working set characteristics and the high memory impact of the

instruction caches, the noaccess policy — putting only lines that have not been accessed in

a period into drowsy mode — seems to be more promising than the simple policy.

Figure 5.3 shows the run-time increase and the fraction of drowsy line of the noaccess and

simple policies. In this experiments, we used the 128K, 32K, 8K, and 2K update window

sizes and 1-cycle drowsy-line wake-up latency. 

As expected, the noaccess policy performs better in terms of both the run-time

impact and leakage reduction for all workloads and update windows. The noaccess policy

shows 2.36%, 0.85%, 0.10%, and 0.02% average run-time increases with 91.4%, 85.3%,

80.8%, and 78.0% average fractions of drowsy lines, while the simple policy shows

4.03%, 1.75%, 0.55%, and 0.15% average run-time increases with 90.46%, 84.02%,

80.21%, and 77.70% average fractions of drowsy lines for 2K, 8K, 32K, and 128K update

window sizes. Compared to the simple policy, the noaccess policy reduces the run-time

increases by 41.36%, 51.63%, 81.27%, 87.94% with a slight decrease in fractions of

drowsy lines for 2K, 8K, 32K, and 128K update window sizes. 

Comparing the worst case run-time increase and fraction of drowsy lines among

the entire SPEC2K benchmark programs, the simple policy shows 18.8%, 7.8%, 3.0%,

and 0.8% run-time increases with 75.0%, 56.0%, 26.5%, and 2.8% fractions of drowsy

lines while the noaccess policy shows 12.6%, 6.7%, 1.3%, and 0.2% run-time increases
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Figure 5.3: Comparison of noaccess and simple policies. 

(a) SPEC2K benchmark average

(b) SPEC2K benchmark worst case

We compare noaccess and simple policies with 128K, 32K, 8K, and 2K update window sizes and 1-

cycle drowsy-line wake-up latency.
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with 78.5%, 59.0%, 31.5%, and 14.2% fractions of drowsy lines for 2K, 8K, 32K, and

128K update window sizes.

Table 5.2 shows the average, best, and worst run-time increases and fractions of

drowsy line comparison of noaccess and simple policies. The numbers in the left and right

sides represent the results for the noaccess and simple policies, respectively. In almost all

cases, the noaccess policy for the instruction caches outperforms the simple policy while

the noaccess policy in data caches shows smaller fractions of drowsy lines than the simple

policy. 

Table 5.2: Comparison of noaccess and simple policies. 

run-tim increases (%)

2K 8K 32K 128K

AVG
INT 3.24 / 4.43 1.18 / 2.18 0.17 / 0.71 0.03 / 0.20

FP 1.46 / 3.62 0.51 / 1.31 0.03 / 0.38 0.01 / 0.10

BEST
INT 0.02 / 0.05 0.02 / 0.01 0.00 / 0.01 0.00 / 0.01

FP 0.00 / 0.08 0.00 / 0.01 0.00 / 0.01 0.00 / 0.00

WORST
INT 12.63 / 16.40 4.92 / 7.31 1.29 / 2.64 0.16 / 0.80

FP 8.36 / 18.77 6.74 / 7.84 0.54 / 3.00 0.03 / 0.05

fractions of drowsy lines (%)

2K 8K 32K 128K

AVG
INT 91.2 / 89.7 81.8 / 80.0 74.6 / 73.6 69.7 / 69.0

FP 91.7 / 91.1 88.2 / 87.5 86.0 / 85.9 85.2 / 85.1

BEST
INT 99.4 / 99.4 99.3 / 99.2 98.9 / 99.8 98.6 / 98.6

FP 99.5 / 99.5 99.4 / 99.4 99.3 / 99.3 99.2 / 99.3

WORST
INT 78.5 / 75.0 59.00 / 56.00 31.5 / 26.5 14.2 / 12.8

FP 81.7 / 81.7 68.00 / 59.9 46.9 / 46.9 46.7 / 46.7

A 32KB, 2-way set associative cache with 1024 32-byte lines is used. The numbers in the left and

right sides represent the results for noaccess and simple policies, respectively.
63



In the noaccess policy, a per-line access history counter is required. This is expen-

sive: implementing a counter for 4K or 8K cycles requires 12 or 13 extra bits per cache

line. However, the counter can be approximately implemented in a hierarchical way —

one global counter with one two-bit register per cache line. To implement a counter count-

ing 4K cycles, the global counter asserts a signal, fed to 2-bit local counters in all the

cache lines, every 512 cycles. Again, the periodic signal from the global counter increases

the counters in the cache line. Whenever there is any access to a cache line, the counter in

the line is asynchronously reset to “0.” As soon as the counter is set to “3,” implying the

line has not been accessed for 4K cycles, the line is put into drowsy mode. 

5.3 Next Line Early Wake-up

Generally, instruction caches access cache lines sequentially except when branches

are encountered. In many previous studies, the next-line prefetch has been shown effective

for improving cache performance [62, 63, 64, 65, 66]. To reduce the performance loss by

wake-up penalties, the same concept can be applied to drowsy cache lines. As soon as a

cache line in row n that has been in drowsy mode is woken up, the wake-up signal from

the currently woken up cache line awakens the adjacent cache line in row n+1. The imple-

mentation of the next line early wake-up requires only a slight modification of the existing

drowsy cache line design shown in Figure 4.5: the final decoder signal in row n is also

connected to the wakeup node of the drowsy flip-flop in row n+1.

Figure 5.4 shows the run-time increase and the fraction of drowsy lines of the

noaccess and simple policies with the early wake-ups. In this experiment, we also show

the noaccess and simple policies without early wake-up to see whether the simple policy
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Figure 5.4: Comparisons of noaccess and simple next line early wake-up policies. 

(b) SPEC2K floating-point benchmarks

We compare noaccess and simple policies with 128K, 32K, 8K, and 2K update window sizes and 1-

cycle drowsy-line wake-up latency.

(a) SPEC2K integer benchmarks
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with early wake-up performs better than the noaccess policy without early wake-up. As

seen in Figure 5.4, the early wake-up reduces the run-time increases significantly with

only a slight decrease in the fractions of drowsy lines.

Compared to the noaccess policy without the early wake-up, the noaccess with the

early wake-up reduces the run-time increases by 44.4%, 41.4%, 35.6%, and 55.5%,

respectively with negligible decreases in the fractions of drowsy lines for 2K, 8K, 32K,

and 128K update window sizes. In addition, the simple policy with the early wake-up

reduces the run-time increases by 42.5%, 42.8%, 42.5%, and 45.4%, respectively, com-

pared to the simple policy without early wake-up. 

Compared to the simple policy with early wake-up, the noaccess policy without

early wake-up reduces the run-time increases by 16.9%, 67.3%, and 76.9% with 2~4%

more drowsy lines for 8K, 32K, and 128K update window sizes; the simple policy with

early wake-up outperforms the noaccess policy without early wake-up by 7.9% only in the

2K update window size.

In conclusion, the noaccess policy performs better than the simple one due to

higher working set re-use. Moreover, the next line early wake-up — the simplest form of

the prediction for next-accessed cache line — reduces the run-time increases significantly

without compromising the leakage savings. However, the fractions of drowsy lines in the

instruction caches are less than those of data caches. Therefore, to further reduce the leak-

age power, the leakage through the bit-lines and access transistors should also be reduced. 

Unlike data caches, the use of high-VTH transistors for the access transistors in the

6-transistor memory cell may not be a good solution for instruction caches, because the

instruction cache access or cycle time is critical in determining the cycle-time of the pro-
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cessor; this is one of the reasons why direct mapped caches have been preferred to set-

associative caches.

In the following sections, we propose a gated bit-line precharge (or bit-line isola-

tion) technique to further reduce the leakage power of the instruction caches. This tech-

nique reduces the leakage power through the bit-lines and access transistors. To minimize

the performance overhead, we also propose a next sub-bank predictor that allows proces-

sors to precharge the predicted next sub-bank in advance.

5.4 Gated Bit-Line Precharge

5.4.1 On-Demand Gated Bit-Line Precharge

Several researchers have proposed the use of sub-banks as a means of reducing

dynamic power consumption in caches. In [5], a cache is partitioned into several sub-

banks (or sub-arrays), and on each access only a limited set of sub-banks are checked for

their contents. This approach reduces the dynamic power consumption at the cost of

slightly increasing the cache access time due to the additional decoder logic needed to

index the sub-banks. 

In [39], a gated bit-line precharge technique is applied to sub-banks to reduce the

leakage power by the bit-lines. It cuts off the leakage paths from the supply voltage to the

bit-lines by turning off the precharge circuits; see Figure 3.1 for the leakage path.

Figure 5.5 shows a 32KB, 2-way set associative sub-banked cache organization support-

ing on-demand gated bit-line precharge. The cache consists of 4 8KB sub-banks and the

precharge clock signal is applied to only one active sub-bank through the signal gating cir-
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cuit. Hence, only the bit-lines in the active sub-bank are precharged, and those in inactive

sub-banks are floated by the gated precharge circuits. 

However, when a processor leaves the currently accessing sub-bank and initiates

an access to a different sub-bank that has been in the inactive mode it should wait at least

one cycle for the bit-lines in the sub-bank to be fully precharged. Since the address decod-

ing and the bit-line precharging should be done concurrently and the sub-bank index can

be identified only after the address decoding, a processor performance penalty is incurred;

we call this technique on-demand gated bit-line precharge.

Figure 5.6 shows the run-time increases of a 32KB, 2-way set associative instruc-

tion cache of 8×4KB, 4×8KB, and 2×16KB sub-banks with an 1-cycle penalty to initiate

the precharge of a newly accessed sub-bank that has been in the inactive mode. According

to the results, the use of on-demand gated bit-line precharge can result in the 23.3%,

Figure 5.5: Cache organization supporting on-demand gated precharge. 

A 32KB, 2-way set associative instruction cache of 4×8KB sub-banks is assumed. 
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21.7%, and 19.1% (fma3d) worst case run-time increases. The average performance losses

are 3.8%, 3.3%, and 2.6%, for 8×4KB, 4×8KB, and 2×16KB sub-bank, 32KB 2-way set

associative instruction caches, respectively. 

As the size of the sub-bank increases, the performance loss decreases because a

larger sub-bank can cover more cache accesses without transitions to another sub-bank. In

some workloads, the run-time increases is zero or approaches zero due to small size of the

code foot-print — all the executed code fits into one or two sub-banks, and some perfor-

mance penalties are hidden by the cache misses. (See Table B.7 for the entire SPEC2K

benchmark results.)

5.4.2 Characterization of Sub-Bank Transitions

The high run-time increase of some workloads with the on-demand gated bit-line

precharge is unacceptable for the high-performance processors. These performance losses
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Figure 5.6: Run-time increases of on-demand gated precharge. 

A 32KB, 2-way set associative instruction cache and 8×4KB, 4×8KB, and 2×16KB sub-banks are

used with a 1-cycle penalty to initiate a new precharge of a sub-bank. 
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are incurred when cache accesses transit from one sub-bank to another. However, we can

predictively initiate precharges of the next sub-bank one cycle ahead to eliminate this per-

formance loss. 

To design the predictor, we need to identify the sources of these sub-bank transi-

tions. The fundamental insight is that the transitions between sub-banks are often corre-

lated with the specific types of instructions. For example, the program counter, which is

the instruction cache access index or pointer, remains in small cache regions for relatively

long periods of cycles as a result of loops. On the other hand, there are often abrupt

changes of the cache access pointer when subroutines are called or subroutines return to

the caller routines. On the other hands, most conditional branches stay within the current

cache region and it is less common that these branches jump across page boundaries. 

Figure 5.7 shows the sources of sub-bank transitions. “UCOND”, “COND”,

“BOUNDARY”, and “DIFF_WAY” represent the sub-bank transitions from unconditional

and conditional — including direct and indirect — jumps, by sequential accesses between

two adjacent sub-bank boundaries, and by sequential accesses of next sets in different

ways, respectively. It is obvious why the jumps in the first two categories — “UNCOND”

and “COND” incur the sub-bank transitions. However, “BOUNDARY” and

“DIFF_WAY” needed more explanation. 

When the cache access pointer reaches the last line of one sub-bank (e.g., row

“255” in the 8KB sub-bank “0”), the next sequential access will be to the first line of the

other sub-bank (e.g., line “0” in the sub-bank “1”). This is an example of the “BOUND-

ARY” case. In “DIFF_WAY”, a different sub-bank is accessed during a sequential access

of the program code. This happens when the sequence of code lines are not loaded into a
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sub-bank sequentially but spread across different cache ways. For example, the code was

originally loaded sequentially in the cache lines, but some lines were replaced and then

reloaded into different ways having the same cache set indices.

In both SPEC2K integer and floating-point workloads, the unconditional jumps are

responsible for 40% of the sub-bank transitions in averages. The sequential accesses of the

next sets in different ways also cause 40% of the transitions. However, lucas, in which the

size of the code foot-print is very small, is different. The conditional jumps and the

sequential accesses between two sub-bank boundaries are the dominant sub-bank transi-

tions, because lucas keeps looping between two sub-bank boundaries. In swim execution

stays in one sub-bank for 95% of the execution cycles, and the sequential accesses of a

next set in a different way are responsible for most of the sub-bank transitions.
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Figure 5.7: Source of bank transitions. 

A 32KB, 2-way set associative instruction cache of 8×4KB sub-banks with a perfect branch predictor

is used.
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5.4.3 Predictive Gated Bit-Line Precharge

According to our analyses on sub-bank transitions, a significant fraction of them

are triggered by unconditional jumps caused by sub-routine calls and returns, or by access-

ing sets in different ways during sequential accesses of cache lines. Therefore, these tran-

sition points (or addresses) from one sub-bank to another in the instruction caches are

quite predictable. 

The basic idea of the next target sub-bank predictor is as follows. When an instruc-

tion triggering the transitions is encountered (e.g., from the sub-bank 0x6 to 0x2), a next

target sub-bank predictor index (e.g., 0x7e) is generated from the cache set index of the

previous cycle access (e.g., 0x7f) and the sub-bank index of the current cycle one (e.g.,

0x6). With the predictor index, the target sub-bank index (e.g., 0x2) is stored in the pre-

dictor. (See Figure 5.8 for how to generate the predictor index.) When the cache set of

0x7f in the sub-bank 0x6 is accessed in later cycles, the pointer gives the next target

sub-bank index — 0x2. Since the instructions cache equipped with a single port only

allows the processor to access a single cache line in a cycle, the set address instead of the

individual instruction address is enough to detect the sub-bank transitions and to index

predictors.

Figure 5.9 shows the run-time increase vs. the predictor accuracy for a sub-set of

SPEC2K integer and floating-point workloads. These workloads are selected for the illus-

tration because they showed poor performance while the rest of the workloads showed

negligible run-time increases. We used a 32KB, 2-way set associative instruction cache of

8×4KB sub-banks with 64-, 128-, 256-, 512-, and 1K-entry predictors. As we increase the
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number of the predictor entries, the average accuracy increases by 75.5%, 79.7%, 82.7%,

85.4%, and 87.3% with the 3.3%, 0.93%, 0.74%, 0.63%, 0.54%, and 0.44% average run-

time increases for 64-, 128-, 256-, 512-, and 1K-entry predictors, respectively. Compared

to the run-time increase without the predictors — on-demand gated bit-line precharge, the

proposed predictor reduces the run-time increases by 72%, 78%, 81%, 84%, and 87% for

64-, 128-, 256-, 512-, and 1K-entry predictors, respectively.

With a 64-entry predictor, which was the smallest size predictor we configured, we

could reduce the run-time increases of equake, fma3d, mesa, bzip2, crafty, parser, and vor-

tex from 14.3%, 21.7%, 13.8%, 16.1%, 5.0%, 8.2%, and 15.0% to 3.70%, 4.40%, 0.8%,

0.03%, 2.36%, 0.31%, and 5.90%, respectively. For those workloads, we reduce the run-

Figure 5.8: Next sub-bank predictor index generation. 

A 32-bit address space with a 512-set and 32-byte block size cache is assumed. The number in the

square represents the bit position index.
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Figure 5.9: Run-time increase vs. predictor accuracy. 

(b) SPEC2K floating-point benchmarks

A 32KB, 2-way set associative instruction cache and 8×4KB sub-banks with 64-, 128-, 256-, 512-,

and 1K-entry predictors are used.

(a) SPEC2K integer benchmarks
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time increases by 74%, 80%, 94%, ~100%, 53%, 96%, and 61%, respectively. These

results prove that a small size predictor is also very effective at reducing the performance

loss of the gated bit-line precharge. 

Theoretically, this technique reduces the bit-line leakage power by 87.5% in the

8×4KB sub-bank instruction cache, because only one sub-bank is precharged among 8

sub-banks. However, it takes a finite time until the floated bit-line conditions are balanced

[39, 41]. Therefore, the actual bit-line leakage saving is less than 87.5%.

In our previously proposed technique [76, 77], we used a content addressable

memory (CAM), which is very expensive, to store and match the full address bits of

instructions for the next target sub-bank predictor. However, it turns out that we can

achieve a similar accuracy with much simpler structure requiring less hardware.

When a sub-bank transition occurs by accessing a different way of a set during the

sequential access of the instruction cache, the cache access pointer returns from that sub-

bank to the next sequential cache set in the original sub-bank. In this case, the cache

access pointer stays in the different way (or sub-bank) for at most a couple of cycles

before returning to the original sub-bank. 

In addition, it is not uncommon for the cache access pointer to leave the current

sub-bank and come back to it in a few cycles due to conditional branch misprediction

recovery. However, turning off the precharge circuits of the original sub-bank and turning

them on again a few cycles later is detrimental to both performance and energy saving.

Furthermore, all those transient cases stress the next target sub-bank predictors.

To reduce the performance loss for the above two cases, we can turn off a sub-bank

a few more cycle later even though the cache access pointer leaves the sub-bank or the
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precharge signal is turned off. This can be easily implemented by adding a counter to the

gated pre-charge circuits as shown in Figure 5.10. As soon as the precharge signal is

turned off, the counter starts to decrease. When the counter reaches “0,” the precharge

clock signal is gated and turned off. The sub-bank precharge circuits are turned on until

the counter value becomes “0”.

As we increase the counter interval or sub-bank turn-off delay period, we will be

able to cut more performance loss, because, this allows several sub-banks to be turned on

for a short period of time. We have more chance of transition to a turned-on sub-bank.

However, we will get less leakage savings, because the saving is inversely proportional to

the number of turned-on sub-banks.

Figure 5.11 shows the run-time increase vs. the fractions of turned-on sub-banks

for the sub-set of SPEC2K integer and floating-point workloads shown in Figure 5.9. In

this experiment, we increased the turning-off delay period by 1, 2, 4, 8, 16, and 32 cycles

with the same cache configuration used in Figure 5.9. As we increase the delay period, the

average fractions of turned-on sub-banks increases are 13.2%, 13.8%, 14.7%, 16.0%, and

17.6%, and the run-time decreases are 0.74%, 0.72%, 0.66%, 0.62%, 0.45%, and 0.32%

for the 1-, 2-, 4-, 8-, 16-, and 32-cycle counter intervals with a 128-entry predictor. Com-

Figure 5.10: Gated precharge clock circuit with a decay counter. 
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Figure 5.11: Run-time increase vs. fraction of turned on sub-banks. 

(b) SPEC2K floating-point benchmarks

A 32KB, 2-way set associative instruction cache and 8×4KB sub-banks with 64-, 128-, 256-, 512-,

and 1K-entry predictors are used.

(a) SPEC2K integer benchmarks
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pared to the run-time increase without the turn-off delay period, the proposed technique

reduces the average run-time increases by 2.11%, 10.90%, 16.73%, 39.73%, and 57.35%,

respectively with at most a 4.4% increase in the fraction of turn-on sub-banks for the 2-, 4-

, 8-, 16-, and 32-cycle counter intervals. 

In general, as we increase the turn-off delay period or counter interval, we can cut

more performance loss while increasing the fractions of turned-on sub-banks. Also, seeing

the run-time decrease trends, the counter interval should be more than 8 cycles to be effec-

tive at reducing the performance loss of those workloads showing poor run-time behavior.

This implies that the poor performance of the predictor for some workloads is caused by

conditional branches, and that the number of cycles to resolve the conditional branches is

more than 8 cycles.

5.5 Run-time Impact and Leakage Power Reduction

Table 5.3 shows the run-time increase and the normalized leakage power of the

proposed techniques — the noaccess drowsy policy with the early wake-up and with gated

bit-line precharge. A 32KB, 2-way set associative instruction cache and 8 4KB sub-banks

with a 32K-cycle update window size are used for the noaccess policy, and a 1K-entry pre-

dictor, and a 16-cycle turn-off delay period for the gated bit-line precharge is used. 

On average, the noaccess policy with the 32K-cycle update window shows only a

0.07% run-time increase with the 60% leakage power reduction. In the worst case, vortex

shows the 0.85% performance loss with the 21% leakage power saving. When we employ

the gated bit-line precharge as well as the noaccess policy, the average run-time increase is
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Table 5.3: Run-time increase and normalized leakage power. 

benchmark
run-time increase (%) normalized leakage (%)

noaccess w/ GBP noaccess w/ GBP

bzip2 0.05 0.04 31 17

crafty 0.62 2.01 72 61

eon 0.06 2.79 53 43

gap 0.03 0.62 53 41

gcc 0.03 0.03 30 16

gzip 0.04 0.11 30 17

mcf 0.00 0.01 28 14

parser 0.01 0.09 31 17

perl 0.16 1.55 64 53

twolf 0.11 0.19 50 36

vortex 0.85 3.84 79 69

vpr 0.01 0.02 31 16

ammp 0.07 0.07 34 19

applu 0.01 0.01 33 19

apsi 0.11 1.32 43 30

art 0.00 0.01 28 13

equake 0.00 1.10 41 30

facerec 0.01 0.17 30 16

fma3d 0.53 2.78 66 56

galgel 0.00 0.00 28 13

lucas 0.00 0.00 29 14

mesa 0.04 0.24 42 30

mgrid 0.00 0.00 41 27

sixtrack 0.01 0.11 37 24

swim 0.01 0.00 32 17

wupwise 0.01 0.17 40 26

AVG 0.07 0.38 41 28

GBP stands for gated bit-line precharge. A 32KB, 2-way set associative instruction cache of 8×4KB

sub-banks with a 1K-entry predictor and a 16-cycle gated bit-line precharge turn-off delay are used.
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0.38% — less than 0.5% performance loss — while reducing 72% of the leakage power.

In the worst case, vortex shows a 3.84% performance loss with a 31% leakage saving.

In particular, bzip2, gcc, mcf, parser, vpr, applu, art, galgel, lucas, and swim —

nearly the half of the entire SPEC2K workloads — show negligible or no performance

losses while achieving more than 80% leakage power reduction for the combined tech-

nique. In terms of the area overhead, the 1K-entry next target sub-bank predictor requires

less than 1.2% the number of bits of the 32KB, 2-way set associative instruction cache.

Finally, we adopted the same cache line control policy for our drowsy instruction

caches as the cache decay technique. Therefore, in terms of the run-time increase, our pro-

posed state-preserving drowsy technique is much better at the same update window size

because of the reduced penalty. Even though the cache decay technique works well in

terms of the leakage reduction, it may not be suitable for the instruction caches. It

increases the cache access time because the power gating circuitry is in the critical path of

the SRAM read. The access time of instruction caches is more critical than that of data

caches in determining the cycle time of the processor and translates directly into processor

performance. But our proposed technique does not increase the access time of the cache.

5.6 Chapter Summary

First, we demonstrated that the application of the simple policy used for data

caches did not work well for instruction caches due to different cache access patterns.

According to our analysis on the instruction cache working sets, the previous access his-

tory of cache lines was a good indicator for the future usage of the lines. We compared the

run-time increases and fractions of drowsy lines for both noaccess and simple policies.
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The results show that noaccess policy is better in terms of both run-time increases and

fractions of drowsy lines.

Second, we proposed to use a next line early wake-up technique to further reduce

the performance loss, based on the insight that a significant fraction of instruction cache

accesses are sequential. This scheme reduces the performance loss by more than 40%

compared to the noaccess policy without the early wake-up.

Third, to further reduce the leakage power from the bit-lines, we proposed using a

gated bit-line precharge technique. However, the on-demand gated bit-line precharge

increases the run-time increase up to 21%. To reduce the performance loss, we proposed a

next sub-bank predictor which reduced the average run-time increase by more than 70%

with 64 entries. Furthermore, there is a larger design space to be explored that may

improve the accuracy of the predictor.

Finally, the combination of the noaccess policy with early wake-up and gated bit-

line precharge reduces the leakage power by 72% with less than 0.5% performance loss.

The extra resources needed by the combined techniques are around 2% of the 32KB 2-

way set associative cache area.
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Chapter 6

Leakage Power Optimization for Multi-Level Caches

Traditionally, only two VTH's have been available in high-performance semicon-

ductor process technologies, allowing cache designers limited flexibility to suppress leak-

age current. Thus, to reduce leakage, the focus has been on dynamic circuit and

microarchitectural techniques similar to those we have explored in the previous chapters. 

However, due to the increasing importance of sub-threshold leakage current, the

number of available VTH’s in future semiconductor process technologies will increase.

Next generation 65nm processes are expected to support 3 VTH's and future processes are

likely to provide designers with even more VTH choices. This increase provides new flex-

ibility for leakage power reduction methods, allowing new trade-offs between the VTH of

different parts of a cache and between different levels in the cache hierarchy. The avail-

ability of additional VTH's suggests a new examination of the trade-off between cache size

and VTH to reduce sub-threshold leakage power loss. 

In this chapter, we present optimization techniques to reduce the leakage power of

on-chip caches assuming that there are multiple VTH’s available. First, we show a cache

leakage optimization technique that examines the trade-off between access time and leak-

age power by assigning distinct VTH's to each of the four main cache components —

address bus drivers, data bus drivers, decoders, and SRAM cell arrays with sense-amplifi-
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ers. Second, we show optimization techniques to reduce the leakage power of L1 and L2

on-chip caches without affecting the average memory access time. 

The key results are: 1) 2 high VTH's are enough to minimize leakage in a single

cache1; 2) if the L1 cache size is fixed, increasing the L2 size can result in much lower

leakage without reducing average memory access time; 3) if the L2 size is fixed, reducing

L1 size can result in lower leakage without loss of the average memory access time; and 4)

smaller L1 and larger L2 caches than are typical in today’s processors result in significant

leakage and dynamic power reduction without affecting the average memory access time.

6.1 Concept

In general, L1 caches are more frequently accessed than L2 caches. This implies

that the overall microprocessor memory system performance is more affected by the

access time of L1 caches. In contrast, the memory system performance impact from the

access time of L2 caches is relatively small compared to that by the L1 caches. Further-

more, the fraction of leakage power in total cache power becomes more significant than

that of dynamic power, because the leakage power is constantly consumed in the L2

caches; dynamic power of an L2 cache is dissipated only when there is an L1 cache miss

initiating the L2 cache access. 

This observation suggests a new approach for optimizing the leakage power of

cache memory systems while minimizing the access time impact. To optimize the leakage

power of the cache memory system under access time constraints, we present systematic

approaches to VTH assignment and cache memory hierarchy configuration. Our study is

limited to hierarchies consisting of L1, L2 caches, and main memory. However, our

1. A 3rd VTH is assumed for the processor.
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approach is readily extended to systems with more cache levels. 

First, we examine the optimization of the leakage power of individual on-chip

cache memories that can be achieved if more than one VTH is used. We show how many

independent VTH’s are needed for effective leakage power reduction and how much VTH

can be increased with a minimal increase of cache access time. Second, we show that L1

and L2 cache miss characteristics under SPEC2K workloads allow us to reduce total leak-

age as well as total dynamic power dissipation while maintaining the same overall average

memory access time in the cache memory system.

6.2 Circuit Modeling Methodology

To examine trade-offs between leakage power and access time of a microprocessor

cache memory system, we need cache access time and leakage power models. Rather than

starting from the scratch, we could have built on a widely used cache memory model

called “CACTI” [61]. This model estimates access time, dynamic energy dissipation, and

area of caches for given cache configuration parameters such as total size, line size, asso-

ciativity and number of ports. 

However, it is based on an outdated 0.8µm CMOS technology and it applies linear

scaling to obtain the figures for smaller process technologies. Also, it does not support

access time and leakage power models for multiple VTH’s. To address these shortcomings,

we designed caches with the 70nm Berkeley predictive technology [4], in anticipation of

the next generation of process technology, and derived our leakage power and access time

models based on HSPCE simulations.
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Caches were designed with sizes ranging from 16KB to 1024KB. The bit-lines and

word-lines were segmented to improve access time, and sub-banks were employed to

reduce dynamic power dissipation [5] as well. (See Table 6.1 for the cache sub-bank con-

figuration.) The caches were broken into four components for the purposes of assigning

distinct VTH’s: address bus drivers, data bus drivers, decoders, and 6T-SRAM cell arrays

with sense-amplifiers. Figure 6.1 illustrates the cache sub-bank organization used in this

study. For simplicity, we assume that one distinct VTH can be assigned to each component. 

The circuit styles and the “W/L” ratios of transistors for the circuits are the same as

those in the CACTI model but optimized for the 70nm technology. For address and data

bus interconnects, we employed an “H-tree” topology and inserted repeaters on each

branch of the buses to optimize the access time of the caches. The interconnect capaci-

tance and resistance for the long wires such as bit-lines, word-lines, address, and data bus

wires are estimated by the predictor in [4].

Table 6.1: Cache organizations for each cache size. 

cache size 
(KB)

# of sub-
banks

sub-bank 
size (KB)

sub-bank organization

bit-lines word-lines

16 4
4 256 128

32 8

64 4
16 512 256

128 8

256 4

64 1024 512512 8

1024 16
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Extensive HSPICE simulations were run to obtain leakage power and access time

(or delay) models of wide ranges of cache sizes and VTH’s for their four components. We

considered VTH’s between 200mV and 500mV in steps of 50mV at 1V nominal supply volt-

age. We measured the leakage power and access time of each cache component separately.

6.2.1 Leakage Power Models

Figure 6.2 shows VTH vs. leakage power of the 7×128, 8×256, and 9×512 row

decoders that we designed. The HSPICE simulation results shown in Figure 6.2 agree with

the exponential decay in leakage power with the linear increase of VTH that is characteris-

tic of general CMOS circuits:

(Eq. 6-1)

To obtain an approximated analytic equation for leakage power as a function of VTH, we

measured the leakage power of the decoders at each discrete VTH point, and we applied an

Figure 6.1: Cache sub-bank components. 
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exponentially decaying curve fitting technique to the measured leakage power as follow-

ing:

(Eq. 6-2)

where A0, A1, and a1 are constants derived by using Origin 6.1, a scientific graphing and

analysis software curve-fitting package [67]. Less than 0.001 R-square error is guaranteed

for each fitted curves. 

The rest of the cache components — address driver, data driver, and 6T SRAM cell

array — show the same leakage power trend characteristics as the decoder in Figure 6.2;

the leakage power decreases exponentially with the linear increase VTH. Therefore, the

identical curve-fitting technique can be applied for those components to derive approxi-

mated analytic leakage power models like Eq. (6-2). All the curve fitting coefficients are

shown in Appendix C.
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Figure 6.2: Leakage power dissipation of 7×128, 8×256, and 9×512 decoders. 
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Once all the approximated analytic leakage power models for each component are

derived for a cache size, the total leakage power of the cache can be approximated as a

sum of the leakage power of all the components. Assuming that we can apply four distinct

VTH’s, the analytic approximated equation for leakage power, LP is:

(Eq. 6-3)

where VTH1, VTH2, VTH3 and VTH4 represent the VTH’s for address bus drivers, data bus

drivers, decoders, and 6T-SRAM cell arrays, respectively. Each exponential term evalu-

ates the leakage power dissipation of one of the four cache components. 

6.2.2 Access Time Models

Figure 6.3 shows VTH vs. delay time of the 7×128, 8×256, and 9×512 row decod-

ers that we designed. Basically, the CMOS circuit delay of deep sub-micron short-channel

transistors is:

(Eq. 6-4)

where k, L, and α1 are constants depending on the technology and transistor sizes. The

measured delay time trends in Figure 6.3 agree with the Eq. (6-4). However, the circuit

delay or access time also fits very well to an exponential growth function with a very

small exponent over our range of interest; it was also convenient for some of our optimiza-

tions to approximate delay this way.

1. α was around 2 in sub-micron technology, but it has been decreased to about 1.3 in the current 
generation deep sub-micron technology.

LP VTH1 … VTH4, ,( ) A0 A1e
VTH1 a1⁄–

… A4e
VTH4 a4⁄–

+ + +=

Tdelay

k L V⋅ ⋅ DD

VDD VTH–( )α
----------------------------------=
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To obtain an approximated analytic equation for delay time as a function of VTH,

we measured the delay time of the decoders at each discrete VTH point, and we applied an

exponentially growing curve fitting technique to the measured delay time as following:

(Eq. 6-5)

where B0, B1, and b1 are constants derived from the same technique and R-square error

range used for the leakage power models.

Similar to the decoder case, the rest of the cache components show the same delay

trend characteristics for the linear increase of VTH as shown in Figure 6.3. Hence, the

same curve-fitting technique can be applied for those components to derive approximated

analytic delay time models like Eq. (6-5) as functions of VTH. All the curve-fitting coeffi-

cients are presented in Appendix C. 

Once all the approximated analytic delay time models for each component are

extracted for a cache size, total delay time or access time of the cache can be approximated
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as a sum of the delay time of all the cache components. Assuming that we can apply four

distinct VTH’s, the analytic approximated equation for the access time, AT is:

(Eq. 6-6)

where VTH1, VTH2, VTH3 and VTH4 represent the VTH’s for address bus drivers, data bus

drivers, decoders, and 6T-SRAM cell arrays, respectively and each exponential term eval-

uates the delay time of of of the four cache component. 

We also define baseline caches in which the VTH of all the cache components is set

to a low-VTH (200mV). Figure 6.4 shows the access time and the leakage power of base-

line caches. The cache access time grows logarithmically and the leakage power increases

linearly with the cache size. Those trends agree with those of earlier studies on SRAM

design. In Figure 6.4, we assume a direct-mapped cache organization and consider only

the leakage power of data arrays.
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6.3 A Single Cache Leakage Optimization

6.3.1 Leakage Power Optimization with Multiple VTH Assignments

In this section, we present a leakage power optimization technique assuming that

we can assign multiple VTH’s to a cache. To find the minimum leakage power of caches

using maximum four distinct VTH’s under a specified target access time constraint, AT, we

formulate the problem as followings:

(Eq. 6-7)

(Eq. 6-8)

where VTH1, VTH2, VTH3, and VTH4 represent the VTH’s for address bus drivers, data bus

drivers, decoders, and 6T-SRAM arrays.

There exist numerous combinations of VTH1, VTH2, VTH3, and VTH4 satisfying a

specific target access time. Among those VTH combinations, we find a quadruple of VTH1,

VTH2, VTH3, and VTH4 producing minimum leakage power using a numerical optimiza-

tion method (e.g., Matlab’s fmincon function); we considered any VTH combination that

satisfies a specified access time error range within 5%. We can then refine this to obtain an

optimal set of VTH’s with only 2 or 3 distinct VTH’s by modifying the objective and con-

straint functions accordingly.

Assuming that we can assign distinct VTH’s to each component of the cache, it is

important to determine how many VTH’s are cost-effective because an extra mask and pro-

cess step are needed for each additional VTH. To examine the dependence of the optimiza-

min LP VTH1 … VTH4, ,( ) A0 A1e
VTH1 a1⁄–

… A4e
VTH4 a4⁄–

+ + +=
 
 
 

constraints: AT VTH1 … VTH4, ,( ) B0 B1e
VTH1 b1⁄

… B4e
VTH4 b4⁄–

0.2 VTH1 VTH2 VTH3 V, , , TH4 0.5≤ ≤
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tion results on access time, we sweep the target access time from the fastest possible

(assigning a low VTH (200mV) to all the cache components) to the slowest possible

(assigning a high VTH (500mV) to all the cache components). The following are the VTH

assignment schemes we examined in this study:

• Scheme I: assigning a high-VTH to all the cache components including

address bus drivers, data bus drivers, decoders, and 6T-SRAM cell

arrays.

• Scheme II: assigning a high-VTH only to 6T-SRAM cell arrays and

assigning a default- or low-VTH (200mV) to the rest of the transistors.

• Scheme III: assigning a high-VTH to 6T-SRAM cell arrays and assign-

ing a different high-VTH to the peripheral components — address bus

drivers, data bus drivers, and decoders of the cache.

• Scheme IV: assigning four distinct high VTH’s to all four cache compo-

nents.

In Figure 6.5, we plot the normalized minimum leakage power and VTH at differ-

ent target access times (125%, 150%, 175%, and so forth) for 16KB caches of schemes I

and II; the parenthesized I and II in Figure 6.3 represent the scheme I and II, respectively.

In the graph, the normalized minimum leakage power and the access time of 100% corre-

spond to the access time and the leakage power of a 16KB baseline cache designed with a

low VTH (200mV) for all the four cache components — the fasted but leakiest cache. The

125% access time in the x-axis means that the cache is 25% slower than the baseline

cache. 
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According to the trends shown in Figure 6.5, the leakage power decreases expo-

nentially as the VTH increases. The optimization results for the caches of different sizes

show almost identical normalized minimum leakage power and VTH trends to those of the

16KB caches in Figure 6.5 as long as the same VTH assignment scheme is applied. Com-

paring two schemes, we can reduce more leakage power at the same access time point

with the scheme II in the 100% ~ 140% normalized access time range. However, the

scheme I shows better leakage power reduction beyond the 140% normalized access time

point.

Figure 6.6 shows the normalized minimum leakage power and VTH vs. normalized

access time trends for a 16KB cache of scheme III. In Figure 6.6, the VTH of SRAM cell

arrays represented as array in the graph starts to increase first. This implies that the

SRAM cell arrays that are responsible for the most significant fraction of total cache leak-

age power while it has the least impact on increasing the total cache access time. After the

VTH of the SRAM cell arrays are saturated to the maximum allowed point (500mV), the
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VTH of the peripheral components labeled as peri in the graph is increased further to

reduce more leakage power in the peripheral components. However, this just increases the

access time without much further cache leakage reduction.

This leakage power and VTH vs. access time trends also explain the leakage opti-

mization results shown in Figure 6.6: scheme II shows a better optimization result in

100% ~ 140% normalized access time range than scheme I, but it does not beyond the

140% access time point. As stated, scheme I assigns a high-VTH to all the cache compo-

nents. It sacrifices more access time by increasing the VTH of the peripheral components

with less leakage reduction gain at the same access time point. But scheme II assigns the

high-VTH only to the SRAM cell arrays that are responsible for more significant fraction

of total cache leakage power with less access time increase. However, scheme II cannot

reduce leakage power further beyond the 140% access time point, because the leakage

power by the peripheral components becomes substantial beyond this point.
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Figure 6.7 shows the normalized minimum leakage power and VTH vs. normalized

access time trends for a 16KB cache of scheme IV. In scheme IV, we can assign up to 4

distinct VTH’s for leakage power optimization. According to the results shown in

Figure 6.7, the VTH of 6T-SRAM cell arrays start to increase first similar to the scheme III

case. Among the peripheral components, the VTH for the decoder starts to increase last.

This implies that the decoder has the least significant impact on the leakage power but it

has the most significant impact on the overall cache access time; the address and data bus

drivers show middling impact on both leakage power and access time compared to the 6T-

SRAM cell array and the decoder. These VTH trends suggest how cache components

should be implemented to optimize direction for cache leakage power reduction.

Figure 6.8 compares the leakage power trends of schemes I, II, III, and IV for a

16KB cache. As expected, we can reduce more leakage power while achieving the same

access time by having more VTH’s to control. However, as the target access time is

increased to more than the 140% point in scheme II, the cache dissipates more leakage
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power than one employing scheme I. This implies that the cache peripheral components

consume non-negligible leakage power. Also, the leakage power by those components

becomes substantial when we cut down the leakage power of the 6T-SRAM array signifi-

cantly. Furthermore, the slowest cache access time point of scheme II ends around 150%

for small size caches. This means that the peripheral components also play important roles

in both cache leakage power and access time. In other words, increasing the VTH of 6T-

SRAM cell arrays alone gives a diminishing return at some point without reducing the

leakage power further. This is why caches of scheme I give even better results than those

of scheme II as VTH increases. 

Table 6.2 presents the normalized cache leakage power of schemes II, III, and IV

to that of scheme I. The shaded numbers highlight the case such that caches of scheme II

consume more leakage power than those of scheme I. The caches of scheme III and IV

always show 38% ~ 74% better leakage optimization results than those of scheme I at the

same constrained access time point. Other noticeable results are that there is a negligible
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difference between caches of schemes III and IV in terms of leakage power reduction,

which implies that 2 distinct high VTH’s or caches of scheme III are enough for the leak-

age optimization.

6.3.2 Trade-Offs between Leakage Power and Access Times

One observation made from these experimental results is that we may not need to

use very high VTH (e.g., 500mV at 1V supply voltage) because this impedes the circuit

speed unnecessarily without further leakage power reduction. Seeing the leakage reduc-

tion trends in Figure 6.5~Figure 6.8, we can reduce a significant amount of leakage power

with only a modest increase of the access time (e.g., roughly up to ~120% of the normal-

ized access time point). 

Figure 6.9 shows a general trend in leakage power vs. access time. In the “fast /

leaky” region, we can reduce the leakage power dramatically with a small sacrifice of the

access time. On the other hand, we can hardly reduce the leakage power further by

Table 6.2: Normalized leakage power of scheme II, III, and IV to scheme I. 

cache size
(KB)

125% AT 150% AT 175% AT

II III IV II III IV II III IV

16 0.50 0.41 0.40 1.64 0.40 0.38 N/A 0.42 0.40

32 0.61 0.41 0.37 2.23 0.37 0.32 N/A 0.35 0.34

64 0.48 0.46 0.45 0.94 0.47 0.44 3.07 0.49 0.46

128 0.46 0.42 0.39 1.23 0.41 0.37 N/A 0.41 0.38

256 0.57 0.57 0.57 0.79 0.56 0.54 2.21 0.60 0.62

512 0.47 0.46 0.44 0.81 0.44 0.43 2.69 0.46 0.48

1024 0.33 0.32 0.30 0.82 0.28 0.26 N/A 0.30 0.29
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increasing VTH after some point (e.g., 120% normalized access time point) while access

time increases significantly. 

Depending on the cache design goals or constraints such as size, access time, and

static/dynamic power budgets, any point in Figure 6.9 can be chosen for the leakage

power optimization. However, we can calculate a point whose tangential slope equals to

negative “1” in the graph shown in Figure 6.9, and we call this the inflexion point of the

cache leakage power and access time — in other words, this point can be regarded as an

optimal leakage / access time trade-off point. This tangential slope should be obtained

based on the normalized leakage power and access time; the normalized values have no

associated unit.

Table 6.3 summarizes the normalized cache leakage power and the normalized

access time at their inflexion point. This is also good indication for how many VTH’s are

good enough to control the leakage power effectively. The normalized access time and

normalized leakage power are based on the leakiest leakage power and the fastest access

Figure 6.9: Leakage / access time trade-off point. 
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time of caches designed with a low VTH (200mV) for all the cache components. According

to these results, we can reduce more leakage power at a faster access time point as we

increase the number of distinct VTH’s. Two high-VTH appears to be the “sweet spot.”

More than two does not buy much.

6.4 Two-Level Cache Leakage Optimization

In a microprocessor memory system, the average memory access time [69] is a key

metric for measuring the overall memory system performance. To evaluate the perfor-

mance, it is essential to examine the cache miss characteristics of realistic application pro-

grams because the performance is also strongly dependent on L1 and L2 cache miss rates

as well as access times. In our study, we assume that the memory system hierarchy con-

sists of separate L1 instruction and data caches with a unified L2 cache.

As stated in the beginning of this section, the overall memory system performance

can be measured or compared with the average memory access time (AMAT) represented

by:

Table 6.3: Normalized access time and leakage power at inflexion points. 

cache size
(KB)

normalized AT normalized LP

I II III IV I II III IV

16 1.24 1.15 1.15 1.16 0.15 0.12 0.12 0.11

32 1.24 1.13 1.14 1.15 0.15 0.14 0.12 0.11

64 1.25 1.18 1.18 1.19 0.15 0.12 0.12 0.11

128 1.24 1.16 1.16 1.17 0.15 0.12 0.12 0.11

256 1.24 1.20 1.20 1.20 0.15 0.12 0.12 0.11

512 1.23 1.18 1.18 1.18 0.15 0.11 0.12 0.13

1024 1.23 1.15 1.15 1.16 0.14 0.09 0.09 0.09
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(Eq. 6-9)

where Miss Penalty TimeL2 is the external memory access and data transfer time. In addi-

tion, the local miss rate1 is used as the Miss RateL2. This local miss rate can be quite large

for L2 caches because the total number of L2 cache accesses is equal to the total number

of L1 cache misses, which is small.

Similarly, we define the average memory access energy (AMAE) to compare the

dynamic energy dissipation of each memory system configuration. Assuming that the L1

cache is accessed every cycle, the AMAE represents the average energy dissipation per

access in the entire microprocessor memory system that includes L1, L2 and main mem-

ory. We can estimate AMAE, as follow:

(Eq. 6-10)

where Hit Energy is average energy dissipation per access. For Miss Penalty EnergyL2, we

assume a 2-channel 1066Hz 256MB RAMBUS DRAM RIMM module whose sustained

transfer rate is 4.2GB/s [72] to derive the main memory access time and dynamic energy

dissipation per access. Though the sustained transfer rate is quite high, we should also

consider the RAS/CAS latency of the memory, which is about 20ns. For the energy dissi-

pation per access, we used the number given in [73] — 3.57nJ per access.

To obtain L1 and L2 cache miss rates, we use the SimpleScalar / Alpha 3.0 tool set

[68], a suite of functional and timing simulation tools for the Alpha AXP ISA. In addition,

we collected the results from all 25 of the SPEC2K benchmarks [70] to perform our eval-

1. This rate is simply the number of misses in a cache divided by the total number of memory 
accesses to this cache.

AMAT Hit TimeL1 Miss RateL1
Hit TimeL2 Miss RateL2 Miss Penalty TimeL2×+( )

×+=

AMAE Hit EnergyL1 Miss RateL1
Hit EnergyL2 Miss RateL2 Miss Penalty EnergyL2×+( )

×+=
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uation. (See Appendix B for the detailed microarchitectural simulation methodology.) We

completed the execution for each benchmark application to get reliable L2 cache miss

rates, because L2 cache accesses are far less frequent than L1 cache accesses; an insuffi-

cient number of L2 accesses may result in unrepresentatively higher L2 cache miss rates.

Table 6.4 shows the L1 and L2 cache miss rates for 16KB, 32KB, and 64KB L1

caches, respectively. We used direct-mapped L1 instruction caches and 4-way set associa-

tive L1 data caches. Also, we used 8-way set associative L2 caches. For simplicity, each

L1 cache miss rate is obtained by the sum of the number of total instruction and data cache

misses divided by the sum of total instruction and data cache accesses; a 16KB L1 means

instruction and data caches are each 16KB in size. Since an L2 miss rate is a function of

the L1 cache miss rate, we measure the separate L2 cache miss rates for each L1 cache

size configuration. Those cache miss characteristics will definitely affect the leakage opti-

mization direction of two-level cache memory system.

Table 6.4: L1 and L2 cache miss rates. 

L1 size
(KB)

miss rate
(%)

L2 size
(KB)

miss rate
(%)

16 3.3%

128KB 34.2%

256KB 32.2%

512KB 30.6%

1024KB 25.5%

32 2.5%

256KB 40.3%

512KB 38.2%

1024KB 31.8%

64 1.5%
512KB 41.6%

1024KB 35.6%
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6.4.1 L2 Cache Leakage Power Optimization

Since a cache’s contribution to leakage power is dominated by its size, we will

examine the leakage power optimization of the L2 caches, first. Consider a conventional

cache memory hierarchy of 16KB and 128KB for L1 and L2 caches respectively, designed

with low-VTH (0.2V) devices. With a fixed L1, reducing the leakage of the L2 by increas-

ing VTH makes the AMAT of the cache system becomes slower, because of the access

time (or hit time) increase of the L2 cache. However, we are able to maintain the same

AMAT and reduce the leakage power of the L2 by increasing its size to reduce its miss

rate. The main memory access penalty is quite significant. Hence, even a slight reduction

of L2 cache miss rates results in a significant improvement of the AMAT. We note that

although area was one of the most important design constraints in the past, this trend is

changing and power is becoming an equally important constraint in many situations [74].

Figure 6.10 shows the leakage power vs. AMAT of L2 caches with a fixed size L1

cache of 16KB. The leakage power optimization for individual caches is based on the

scheme III requiring 2 distinct high VTH’s. Assuming that the AMAT of a 128KB L2

cache as a base, we compare the leakage power of other caches at the same AMAT point;

see the dotted vertical line in Figure 6.10. As can be seen from the plots, the AMAT can be

maintained while the leakage power can be reduced by replacing a 128KB L2 with a

256KB L2 cache that is intentionally slowed down by increasing its VTH to reduce leak-

age of the larger L2 cache. 

This replacement with the double-sized L2 cache reduces the leakage power by

70%. If we employ a 512KB L2 cache, we can reduce the leakage power by 85% com-
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pared to the fastest but leakiest 128KB L2 cache with the same AMAT. Similarly, the use

of a 512KB L2 cache can further reduce leakage compared to the 256KB cache; see the

dashed vertical line in Figure 6.10. As an alternative design space exploration, we can

pick a point showing a faster AMAT and less leakage reduction with a larger L2 caches.

In addition, the employment of larger L2 caches also reduces the average dynamic

power of the memory system because the larger L2 caches reduce the number of external

memory accesses consuming a significant amount of dynamic energy. Table 6 summarizes

the results for the normalized leakage power and normalized average memory access

energy for each L1 cache size designed using scheme III at a fixed AMAT. To compare

leakage power and AMAE, the following standard cache configurations were used:

128KB L2 with 16KB L1, 256KB L2 with 32KB L1, and 512KB L2 with 64KB L1. The

shaded numbers represent the baseline L2 configuration, leakage power, and AMAE.

Table 6 gives the somewhat counter intuitive results that we can reduce both leakage

power and AMAE by employing larger L2 caches while maintaining a constant AMAT.
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Figure 6.10: L2 leakage power optimization at the fixed L1 size. 
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6.4.2 L1 Cache Leakage Power Optimization

It is hard to improve the L1 cache miss rates further because they are already quite

low for 16KB, 32K, and 64KB caches in the case of SPEC2K benchmarks. Hence, the

access time of caches is the dominant factor in determining the AMAT. However, the

access time of 64KB L1 cache can increase by 48% compared to a 16KB L1 cache,

because access time is very sensitive to size for small caches. Essentially, cache access

time increases logarithmically with size, but has a steeper slope for smaller caches than for

larger caches. This observation confirms why the AMAT of a cache hierarchy with a

smaller L1 cache can be faster than one with a larger L1 caches for a certain range of

cache sizes (e.g., 16KB~64KB). 

Figure 6.11 shows the leakage power vs. the AMAT of 16KB, 32KB, and 64KB

L1 caches using scheme III each with a fixed L2 cache of size 512KB. Like the compari-

son performed in Section 6.4.1, the leakage power of different caches is compared at the

Table 6.5: L2 cache normalized leakage and AMAE at the fixed L1 size. 

L1 size 
(KB)

L2 size 
(KB)

normalized 
leakage

normalized 
AMAE

16

128 1.00 1.00

256 0.31 1.01

512 0.15 0.99

32

256 1.00 1.00

512 0.11 0.98

1024 ~0.00 0.89

64
512 1.00 1.00

1024 0.01 0.95
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same AMAT point. The plots show that leakage power can be reduced by replacing a

64KB L1 cache with a 32KB L1 cache that is intentionally slowed down by increasing its

VTH’s to reduce the leakage power, and the resulting cache memory system still has the

same AMAT; see the dotted vertical line in Figure 6.11. Similarly, a slowed 16KB cache

with increased VTH’s can replace a 32KB without changing the AMAT of the L1/L2 hier-

archy. The new system consumes much less leakage power; see the dashed vertical line in

Figure 6.11. 

Table 6.6 shows the results for normalized leakage power and AMAE for each fast

but leaky L1 cache sizes using scheme III with fixed AMAT’s. The comparisons were per-

formed in the same manner as Table 6.6. The shaded numbers represent the baseline L2

configuration, leakage power, and AMAE. According to the comparisons, we can reduce

both leakage power and AMAE by employing smaller L1 caches. This is the complement

of the case for L2 caches, where the leakage of the overall memory system can be reduced

by increasing their size. 
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Figure 6.11: L1 leakage power optimization at the fixed L2 size. 
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It should be noted, these results are only valid within the specific set of sizes and

simulation environment given in this chapter. First, a 4KB L1 cache will have a cache

miss rate that is much higher than a 16KB cache, but its access time will not be suffi-

ciently smaller to make the trade-off worthwhile. Also, the normalized AMAE is rather

high because the total power fraction of L1 caches is relatively small compared to L2

caches. Second, the cache foot-prints of the SPEC2K benchmark programs are fairly small

compared to the real-world larger size applications. This results in quite high cache miss

rates for small size L1 caches as shown in Table 6.4. Third, the operating system (OS)

context-switching is not considered due to the limited simulation environment. The con-

text switching is usually known to increase the cache miss rates because cache flushing1

increases cold start misses. Hence, all those stated factors must be considered to obtain

more reliable cache leakage power optimization results with the proposed techniques. 

1. There are numerous cache management techniques for the efficient context switching other than 
this.

Table 6.6: L1 cache normalized leakage and AMAE at the fixed L2 size. 

L2 size 
(KB)

L1 size 
(KB)

normalized 
leakage

normalized 
AMAE

256
32 1.00 1.00

16 0.06 0.95

512

64 1.00 1.00

32 0.19 0.62

16 0.02 0.59

1024

64 1.00 1.00

32 0.12 0.64

16 0.02 0.62
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6.5 Chapter Summary

In this chapter, we examined the leakage power and access time trade-off trends

where multiple VTH’s are allowed. We used curve fitting techniques to model leakage

power and access time. Our results show that 2 distinct VTH’s for caches are sufficient to

yield a significant reduction in leakage power. Such an arrangement can reduce the leak-

age power up to 91%; see the scheme III in Table 6.3 for an SRAM cache without signifi-

cantly increasing access time. We also show that smaller L1 and larger L2 caches than are

typical in today’s processors result in significant leakage and dynamic power reduction

without affecting the average memory access time. Given that the processor core may

need a distinct VTH, and each of the caches may need up to two VTH’s (scheme III) we

could require up to five distinct VTH’s. 

In this work, we assume that we have two-level on-chip caches. Recently, how-

ever, microprocessors with three-level caches are being deployed, and their L2 and L3

cache sizes are much larger than the caches discussed here. For future work, we will inves-

tigate leakage power optimization in a multi-level cache hierarchy that include L2 and L3

caches.
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Chapter 7

Conclusion

As feature sizes shrink to increase integration density, threshold voltages decrease

to reduce circuit delay, and more bits are integrated into on-chip caches to improve mem-

ory system performance, the leakage power of on-chip caches will dissipate a substantial

amount of total microprocessor power consumption. In this thesis, various circuit and

microarchitectural approaches were proposed to reduce the on-chip cache leakage power.

They were evaluated and compared to previously proposed techniques. 

7.1 Thesis Summary

First, we proposed a new low-leakage, state preserving static random access mem-

ory architecture. This technique reduces the leakage power by 94% at a 0.25V stand-by

voltage with 1 or 2 cycle wake-up latency. It also requires only the addition of a small

amount of voltage control circuitry. The estimated extra area required to implement the

voltage control circuit used to wake up a 128-bit cache line in 1 cycle is approximately

1.48%.

Second, we proposed the drowsy L1 data caches with the simple policy of periodi-

cally putting the entire cache lines into drowsy mode and we demonstrated that this simple

policy does about as well as a policy that tracks access history of cache lines. The pro-
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posed cache system reduces the L1 data cache leakage power by 80% with less than 1%

run-time increase. 

Third, we found out that the policy used for data caches does not work well for

instruction caches. After the analyses of instruction cache working sets, we concluded that

the noaccess policy is more suitable for instruction caches. We also proposed an early

wake-up technique. This reduces the average run-time increase of the noaccess policy

without the early wake-up by more than 40%. The proposed technique reduces the L1

instruction cache leakage power by 60% with negligible (0.07%) run-time increase. 

To further reduce the leakage power from the supply voltage source to the bit-

lines, we also proposed a predictive gated bit-line precharge technique. When combined

with the early wake-up noaccess policy, it reduces leakage power by a further 13% with an

average 0.3% run-time increase. Compared to the “cache decay” technique, the proposed

instruction caches and data caches show less run-time increase and more leakage savings

overall. The weakness of the cache decay technique is that it may increase the overall

energy consumption, because it incurs additional upper-level memory system accesses,

which results in significant dynamic power dissipation. In addition, this technique is sensi-

tive to the amount of energy consumption by the upper-level cache system and the update

window size — an incorrect decision about turning off caches incurs the additional upper-

level cache accesses.

Finally, we proposed the leakage power optimization techniques for multi-level

caches at the circuit and microarchitectural boundary. To investigate the optimization

techniques, we developed leakage power and access time models as functions of the
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threshold voltages and cache sizes. With those models, we performed various leakage

power and memory system performance trade-off studies. 

In most cache sizes, the optimization results reduce the leakage power more than

80% with less than 20% access time increases. Furthermore, implementing larger on-chip

L2 caches with smaller L1 caches can significantly reduce both the static leakage and

dynamic power at the same time. For instance, using a leakage optimized 512KB L2 cache

instead of an unoptimized 256KB one with a 32KB L1 caches for both cases, reduces the

L2 cache leakage power by 90% while maintaining the same average memory system per-

formance. In addition, using a leakage optimized 16KB L1 cache instead of an unopti-

mized 32KB one with a 256KB L2 cache for both cases, decreases the L1 cache leakage

power by 94% while maintaining the same average memory system performance.

7.2 Future Directions

7.2.1 Low-Leakage and State-Preserving 6-Transistor Memory

The proposed low-leakage, state-preserving memory circuit increases the noise

susceptibility from cross-coupling and particle strikes due to the reduced supply voltage

used for the memory cells in drowsy mode. Although the probability of those errors is

extremely small, the charge stored in a cell decreases as the feature size shrinks. This

increases the soft error rate even for memory cells in the active mode. Therefore, to pre-

vent a system crash from corrupted bits, we need to consider including error correction

mechanisms in each cache line of L1 caches. 

Finally, the proposed circuit technique requires an additional power supply source

for the drowsy mode. The stand-by voltage is lower than the nominal supply voltage and it
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will thus be more affected by power supply line fluctuation and IR drops. Instead of using

dual supply voltage sources, we can generate a stand-by voltage from the nominal supply

voltage source with a more sophisticated form of voltage controller implemented in each

cache line. 

7.2.2 Microarchitectural Controls for Low-Leakage Caches

First, an open question remains as to the role of adaptability in determining the

window size. We found that for a given machine configuration, a single static window size

of 4K cycles performs adequately on all of the SPEC2K benchmarks. However, the opti-

mum varies slightly for each workload, thus making the window size adaptive would

allow a finer power-performance trade-off. Furthermore, in the same workload, we may

need a different update window size depending on the workload execution phase. 

Second, a major drawback of the drowsy technique for instruction caches was non-

negligible performance losses for some workloads. But we proved that a simple next-line

early wake-up was quite effective at reducing the performance losses. Hence, to further

reduce the performance losses, we can use a more sophisticated next-line early wake-up

technique based existing prefetching techniques. This will reduce the run-time increase, as

well as allow us to use a smaller update window size to more leakage power even further.

Finally, we can refine the predictive gated precharge technique by using a more

sophisticated predictor, although the current predictor performs very well for most work-

loads. One may consider a state-of-the-art branch predictor technique.
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7.2.3 Leakage Optimization via Multiple Threshold Voltage Assignments

First, the proposed leakage optimization technique applies multiple threshold volt-

ages at a component (e.g., decoder block) granularity; one component is allowed to have

only one threshold voltage. However, to further optimize the circuit speed, we can selec-

tively employ the high threshold devices within the components. To speed up the circuit,

low threshold voltage transistors can be used for the circuits on the critical path of the

component while high threshold voltage ones are used for those not on the critical path.

This will require a more complex leakage power and circuit delay models, but will yield

further reduction in overall leakage

Second, we can apply cycle-accurate microarchitectural simulators to leakage opti-

mized multi-level caches to examine the memory system performance after the optimiza-

tion. To do this, we need a more accurate model converting the access time of the designed

cache to the equivalent number of L2 cache access latency cycles, because the number of

cycles of the L2 cache access latency involves the bus-width between the L1 and L2

caches, and the memory protocol between the caches.

7.2.4 Gate Oxide Leakage

During the final phase of the research described in this thesis, the effect of gate

oxide leakage becomes a concern that rivalled sub-threshold leakage. A recent publication

of ours details this trend [80]. Many of the optimization techniques developed here can be

“replayed” with gate oxide thickness as the design parameters. This remains an interesting

goal for further study.
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Appendix A

Supply Voltage Rail Wire Parameters

The estimated height and width of one memory cell in 70nm technology is 1.42µm

by 0.72µm and 128 memory cells are connected to a supply voltage rail wire.

The wire interconnect capacitance and resistance in Table A.2 are derived from [4] with

the given wire dimensions in Table A.1.

Table A.1: The supply voltage rail wire dimension parameters. 

width space length thickness height

0.14µm 1.42µm 183.18µm 0.35µm 0.20µm

Table A.2: The supply voltage rail wire interconnect parameters. 

capacitance (Kdielectric = 2.2) resistance

Cground Ccouple Ctotal R Rtotal 

21.30fP 2.30fP 25.89fP 408.16fP 74.77



Appendix B

Processor Simulation Methodology and Results

The architectural simulator used in this study is derived from the SimpleScalar/

Alpha 3.0 tool set [68], a suite of functional and timing simulation tools for the Alpha

AXP ISA. Simulation is execution-driven, including execution down any speculative path

until the detection of a fault, TLB miss, or branch misprediction. Specifically, we

extended sim-outorder to reflect the performance impact of waking up the drowsy cache

lines or sub-banks in the L1 data and instruction caches. The processor simulation param-

eters are listed in Table B.1. The processor microarchitectural parameters model a high-

end microprocessor similar to an Alpha 21264. We augment it with a generous supply of

functional units, aggressive main memory, L1 caches, and a register file with a latency to

reduce the execution variability due to resource constraints and memory latencies. To per-

form our evaluation we collected results from all 25 of the SPEC2000 benchmarks [70].

Table B.1: Processor simulation parameters. 

Out of Order Execution
4-wide fetch / decode / issue / commit, 64 RUU, 32 LSQ, spec-
ulative scheduling

Functional Unit 
(latencies)

4 integer ALUs (1), 2 floating point ALUs (2), 1 integer 
MULT/DIV (3/20), 1 floating point MULT/DIV/SQRT (4/12/
24), 2 general memory ports

Branch Prediction
combined bimodal (4K-entry) / gshare (4K-entry) w/ selector 
(4K-entry), 32-entry RAS, 512-entry 4-way BTB, at least 11 
cycles for branch misprediction recovery

Memory System (laten-
cies)

32KB 2-way 32-byte block L1 inst (1) and data caches (1), 
512KB 4-way 64-byte block unified L2 cache (12), 128-entry 
fully associative inst and data TLB (28/28) main memory (80/
8)
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All SPEC programs were compiled for a Compaq Alpha AXP-21264 processor using the

Compaq C and Fortran compilers under the OSF/1 V4.0 operating system using full com-

piler optimizations (-O4). The simulations were run for 100 million instructions using the

SPEC reference inputs. We used the utility Early SimPoints [71] to pinpoint program loca-

tions of peak performance so that we can find simulation region that most stress in partic-

ular instruction and data caches.

In addition, we present the full SPEC2K benchmark microarchitectural simulation

results for the experiments in the main thesis chapters, because only a sub-set of the results

were shown to reduce clutter in the figures and tables.      
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Table B.2: Data cache working set characteristics. 

benchmark working set number of 
accesses

accesses /
line

accesses / 
cycle

bzip2 7% 820.5 10.9 0.40

crafty 16% 1313.9 8.0 0.64

eon 15% 1685.7 10.7 0.82

gap 5% 1531.8 28.3 0.75

gcc 34% 2898.8 8.4 1.42

gzip 8% 1264.5 15.0 0.62

mcf 8% 264.4 3.3 0.13

parser 8% 894.4 10.3 0.44

perl 10% 842.4 8.3 0.41

twolf 8% 476.0 5.5 0.23

vortex 11% 1319.6 11.4 0.64

vpr 11% 361.5 12.6 0.66

ammp 8% 680.3 8.6 0.33

applu 12% 833.6 6.8 0.41

apsi 10% 1115.1 11.0 0.54

art 14% 336.0 2.4 0.16

equake 6% 1956.2 29.7 0.96

facerec 7% 884.6 13.2 0.43

fma3d 5% 787.6 14.1 0.38

galgel 34% 1594.6 4.6 0.78

lucas 8% 385.1 4.7 0.19

mesa 8% 1452.0 17.2 0.71

mgrid 16% 907.2 5.6 0.44

sixtrack 15% 980.5 6.2 0.48

swim 12% 368.2 2.9 0.18

wupwise 9% 1181.3 13.2 0.58

AVG 12% 1082.2 8.9 0.40

A 32KB, 2-way set associative cache with 1024 32-byte lines and a 2048-cycle update window are

used.
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Table B.3: Data cache working set reuse characteristics. 

benchmark n=1 n=2 n=8 n=32

bzip2 34% 19% 8% 3%

crafty 61% 47% 24% 9%

eon 64% 51% 40% 25%

gap 52% 28% 17% 11%

gcc 3% 0% 0% 0%

gzip 39% 30% 23% 17%

mcf 8% 4% 2% 2%

parser 35% 26% 17% 10%

perl 33% 21% 13% 10%

twolf 36% 15% 7% 3%

vortex 54% 36% 10% 5%

vpr 52% 39% 20% 11%

ammp 25% 15% 7% 1%

applu 19% 2% 2% 2%

apsi 50% 30% 25% 23%

art 8% 1% 1% 1%

equake 98% 97% 95% 95%

facerec 39% 26% 13% 9%

fma3d 38% 14% 2% 0%

galgel 52% 23% 0% 0%

lucas 19% 5% 5% 5%

mesa 77% 67% 61% 54%

mgrid 32% 10% 3% 2%

sixtrack 64% 56% 41% 25%

swim 41% 0% 0% 0%

wupwise 56% 47% 38% 29%

AVG 40% 25% 15% 11%

A 32KB, 2-way set associative cache with 1024 32-byte lines and a 2048-cycle update window are

used. The fractions of accesses that are the same as in the n-th previous window in the current 2K cycle

window size.
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Table B.4:  Instruction cache working set characteristics. 

benchmark working set number of 
accesses

accesses /
line

accesses / 
cycle

bzip2 3% 949.8 28.5 0.46

crafty 28% 1285.2 4.5 0.63

eon 26% 1386.5 5.3 0.68

gap 15% 1492.3 9.6 0.73

gcc 1% 1342.7 137.1 0.66

gzip 3% 1467.5 41.0 0.72

mcf 1% 225.1 34.4 0.11

parser 4% 993.4 25.2 0.49

perl 18% 742.4 4.0 0.36

twolf 9% 619.7 6.4 0.30

vortex 21% 994.7 4.6 0.49

vpr 4% 1117.8 25.3 0.55

ammp 3% 590.1 17.7 0.29

applu 7% 679.4 9.0 0.33

apsi 16% 1096.4 6.7 0.54

art 1% 423.2 44.1 0.21

equake 18% 1874.6 10.0 0.92

facerec 3% 941.1 35.6 0.46

fma3d 14% 1427.7 10.0 0.70

galgel 1% 1133.3 214.7 0.55

lucas 2% 655.5 30.2 0.32

mesa 17% 1367.7 7.7 0.67

mgrid 13% 694.2 5.3 0.34

sixtrack 13% 1030.7 8.0 0.50

swim 6% 335.8 5.7 0.16

wupwise 13% 1285.3 9.4 0.63

AVG 10% 1005.9 9.8 0.38

A 32KB, 2-way set associative cache with 1024 32-byte lines and a 2048-cycle update window are

used.
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Table B.5: Instruction cache working set reuse characteristics. 

benchmark n=1 n=2 n=8 n=32

bzip2 81% 70% 41% 15%

crafty 64% 49% 20% 3%

eon 58% 41% 31% 20%

gap 49% 31% 17% 10%

gcc 71% 62% 45% 0%

gzip 96% 94% 87% 76%

mcf 93% 90% 83% 75%

parser 92% 87% 73% 53%

perl 33% 19% 7% 4%

twolf 16% 3% 0% 0%

vortex 43% 25% 5% 1%

vpr 95% 92% 76% 50%

ammp 77% 63% 27% 1%

applu 99% 99% 99% 99%

apsi 73% 63% 54% 50%

art 99% 99% 97% 91%

equake 99% 98% 98% 98%

facerec 82% 72% 61% 59%

fma3d 21% 5% 0% 0%

galgel 91% 82% 59% 57%

lucas 100% 100% 100% 100%

mesa 92% 86% 76% 64%

mgrid 76% 73% 72% 72%

sixtrack 98% 96% 91% 83%

swim 99% 99% 99% 99%

wupwise 80% 74% 59% 54%

AVG 66% 57% 45% 38%

A 32KB, 2-way set associative cache with 1024 32-byte lines and a 2048-cycle update window are

used. The fractions of accesses that are the same as in the n-th previous window in the current 2K cycle

window size.
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Table B.6: Run-time increase and leakage reduction comparison. 

benchmark
run-time increase (%) normalized leakage (%)

instruction data instruction data

bzip2 1.06 0.77 96 93

crafty 11.49 0.46 65 86

eon 10.79 0.36 65 88

gap 6.32 0.46 79 95

gcc 0.10 0.06 99 66

gzip 1.15 0.89 96 93

mcf 0.05 0.66 99 93

parser 1.34 1.17 96 92

perl 8.47 0.87 73 91

twolf 2.45 0.87 83 92

vortex 8.58 0.25 70 90

vpr 1.10 0.89 95 90

ammp 0.56 0.54 96 93

applu 0.52 0.50 93 89

apsi 7.44 0.32 81 91

art 0.03 0.61 99 87

equake 8.96 0.03 82 94

facerec 1.59 0.15 97 95

fma3d 0.11 0.66 98 93

galgel 0.08 0.31 99 70

lucas 2.74 0.57 87 89

mesa 6.27 0.21 81 93

mgrid 3.18 0.49 84 85

sixtrack 2.74 0.34 87 87

swim 0.15 0.61 94 89

wupwise 7.15 0.20 84 92

AVG 2.74 0.57 87 89

We use a simple policy with 1-cycle drowsy-line wake-up latency and 4K-cycle update window size

for both the 32KB 2-way set associative instruction and data caches.
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Table B.7: Run-time increases of on-demand gated precharge. 

benchmark
run-time increases

8×4KB 
sub-banks

4×8KB
sub-banks

2×8KB 
sub-banks

bzip2 2.0% 0.8% 0.8%

crafty 16.6% 16.1% 14.4%

eon 7.3% 5.0% 3.2%

gap 7.4% 6.8% 5.1%

gcc 0.1% 0.0% 0.0%

gzip 6.1% 3.9% 3.9%

mcf 0.7% 0.7% 0.0%

parser 2.1% 1.6% 1.4%

perl 8.8% 8.2% 7.7%

twolf 1.2% 1.0% 0.6%

vortex 16.4% 15.0% 12.9%

vpr 0.6% 0.6% 0.0%

ammp 0.8% 0.8% 0.0%

applu 0.0% 0.0% 0.0%

apsi 8.4% 7.4% 7.0%

art 0.0% 0.0% 0.0%

equake 17.8% 14.3% 7.1%

facerec 1.9% 1.9% 1.3%

fma3d 23.3% 21.7% 19.1%

galgel 0.0% 0.0% 0.0%

lucas 0.0% 0.0% 0.0%

mesa 14.5% 13.8% 11.3%

mgrid 0.2% 0.2% 0.2%

sixtrack 4.7% 3.7% 2.7%

swim 0.0% 0.0% 0.0%

wupwise 1.2% 0.2% 0.2%

AVG 3.8% 3.3% 2.6%

We use the 32KB, 2-way set associative instruction and data caches.
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Appendix C

Cache Leakage and Delay Model Coefficients

Table C.1: Address bus leakage and delay model coefficients. 

cache size 
(KB)

leakage delay

A0 A1

(×10-3)

a1

(×10-3)

B0 

(×10-12)

B1

(×10-12)

b1

(×10-3)

16 0.00 34.33 40.86 74.00 29.72 218.76

32 0.00 71.61 40.90 106.92 39.29 208.18

64 0.00 39.24 40.86 89.02 32.82 216.49

128 0.00 81.84 40.90 145.75 42.90 197.87

256 0.00 44.14 40.86 133.63 35.89 207.89

512 0.00 92.07 40.90 254.46 43.79 179.25

1024 0.00 187.92 40.91 486.24 66.96 166.30

Table C.2: Decoder leakage and delay model coefficients. 

cache size 
(KB)

leakage delay

A0 A1

(×10-3)

a1

(×10-3)

B0 

(×10-12)

B1

(×10-12)

b1

(×10-3)

16 0.00 97.39 40.41 94.524 37.246 199.49

32 0.00 194.82 40.41 94.524 37.246 199.49

64 0.00 243.70 40.00 67.932 54.359 218.48

128 0.00 487.46 40.00 67.932 54.359 218.48

256 0.00 765.56 39.70 130.71 52.610 207.02

512 0.00 1531.12 39.70 130.71 52.610 207.02

1024 0.00 3062.24 39.70 130.71 52.610 207.02
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Table C.3: SRAM array leakage and delay model coefficients. 

cache size 
(KB)

leakage delay

A0 A1

(×10-3)

a1

(×10-3)

B0 

(×10-12)

B1

(×10-12)

b1

(×10-3)

16 0.00 1.25 41.60 60.98 103.17 279.83

32 0.00 2.50 41.60 60.98 103.17 279.83

64 0.00 5.01 41.58 121.96 206.34 279.83

128 0.00 10.01 41.58 121.96 206.34 279.83

256 0.00 19.86 41.66 243.92 412.69 279.83

512 0.00 39.72 41.66 243.92 412.69 279.83

1024 0.00 79.44 41.66 243.92 412.69 279.83

Table C.4: Data bus leakage and delay model coefficients. 

cache size 
(KB)

leakage delay

A0 A1

(×10-3)

a1

(×10-3)

B0 

(×10-12)

B1

(×10-12)

b1

(×10-3)

16 0.00 13.55 41.62 26.30 10.25 221.36

32 0.00 54.18 41.62 58.93 20.04 201.37

64 0.00 54.18 41.62 41.32 13.34 215.10

128 0.00 216.73 41.62 96.97 24.27 188.59

256 0.00 108.35 41.62 85.62 16.67 199.68

512 0.00 433.40 41.62 203.24 26.98 168.73

1024 0.00 1083.54 41.62 433.07 51.53 160.31
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