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ABSTRACT 

 

Embedded systems must simultaneously deliver high performance and low energy 

consumption. Meeting these goals requires customized designs that fit the requirements 

of the targeted applications. This philosophy of tailoring the implementation to the 

domain applies to all subsystems in the embedded architecture. For the memory system, 

which is a key performance bottleneck and a significant source of energy consumption, 

generic caching strategies are insufficient.  The system requires specialized cache 

structures that match the manner in which programmers use data. Since different data 

subsets exhibit varying degrees of locality, a partitioned cache offers the best opportunity 

to optimize performance and energy consumption for all memory accesses. 

In this dissertation, I explore several different methods that utilize partitioning for an 

energy-efficient, high performance data cache. Region-based caching, which replaces a 

unified data cache with multiple caches optimized for stack, global, and heap references, 

serves as the starting point for this research. 

I begin by addressing energy consumption in the level one data cache. Drowsy 

region-based caches combine static and dynamic energy reduction techniques to 

simultaneously lower both sources of energy consumption. This combination performs 

better than the sum of its parts because the separate region caches allow us to use 

different degrees of drowsy caching. I then show how additional cache partitioning can 

 xiv 



further reduce energy consumption, presenting a scheme to identify highly local data in 

the heap region and route their accesses to a smaller cache. 

I also study methods for improving memory system performance. The effectiveness 

of data prefetching can be increased by partitioning the cache in a manner that isolates 

data that prefetch well. Finally, I discuss how to reallocate data within region-based 

caches to eliminate unnecessary cache misses. 
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CHAPTER 1 

INTRODUCTION 

 

Embedded designers face the challenge of delivering high performance within a 

restrictive energy budget. These constraints force designers to reconsider their approach 

to system design. General purpose systems optimize common cases to provide acceptable 

performance and energy consumption for all applications—in essence, these systems treat 

all applications as equal. Because embedded systems typically execute programs from a 

single domain, a better embedded design approach is to optimize the system to the 

behavior of its target applications. This methodology sacrifices adaptability for 

significant improvements in performance and energy consumption.  

Architects focus a significant amount of effort on memory system design. As on-chip 

caches occupy increasingly greater die area, power consumption within the memory 

hierarchy grows in importance—caches may consume over 40% of a chip’s overall 

power [77]. The memory system is also a significant performance bottleneck due to the 

growing gap between processor and DRAM speeds [76][108]. Caches provide one 

solution, offering fast, low power accesses for data with high locality. However, a general 

cache architecture, which works well for a variety of data, is not the best approach for all 

accesses. A unified cache implicitly treats all data the same, but programmers use 

different types of variables in different ways, leading to distinct locality characteristics 
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for each data subset. However, within each class of data, the usage typically remains 

consistent across applications. 

We can therefore apply the embedded design concept of an application-specific 

system to the design of the memory subsystem. Tailoring an entire system to a particular 

application domain sacrifices programmability because other applications will suffer. 

However, the consistency of memory behavior across applications allows us to optimize 

the memory hierarchy to the behavior of given subsets. Current systems use very general 

caches, splitting memory references only according to instructions versus data [41]. As an 

alternative, further specialization of memory structures to better match usage 

characteristics of the data they hold can both improve performance and significantly 

reduce total energy expended.  

Partitioning the cache according to reference behavior can have another benefit: we 

can selectively apply optimizations to those subsets on which they work well. Hardware 

optimizations typically involve tradeoffs between energy and performance, with most 

techniques attempting to improve one area while minimizing the impact on the other. In 

caches, these tradeoffs are often due to a data subset on which a technique is not as 

effective; the penalty for those data is severe enough to significantly impact the overall 

performance or energy consumption of an application. In some cases, all data benefit 

from an optimization, but the improvements are greater for some data. For example, 

drowsy caching [31][57][58], a technique for reducing static energy consumption, works 

best on low locality data that remains idle for long periods of time. In other cases, the 

optimization is completely useless for a data subset and should only be applied where 

effective. Prefetching techniques [21][26][45][47][54][55][81][85][94][96][97][113], 
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which improve performance by anticipating and eliminating cache misses, are effective 

for data that exhibit predictable access patterns but not for random accesses. In both 

cases, partitioning the cache so that differing degrees of optimization can be applied to 

the appropriate data sets can improve the effectiveness of these techniques. 

One form of heterogeneous memory, region-based caching [32][33][67][70], 

replaces a single unified data cache with multiple caches optimized for global, stack, and 

heap references. This approach works well precisely because these types of references 

exhibit different locality characteristics. Furthermore, many applications are dominated 

by data from a particular region, and thus greater specialization of region structures 

should allow both quantitative (in terms of performance and energy) and qualitative (in 

terms of security and robustness) improvements in system operation. This approach 

slightly increases required chip area, but using multiple, smaller, specialized caches that 

together constitute a given “level” of a traditional cache hierarchy and only routing data 

to a cache that matches those data’s usage characteristics provides many potential 

benefits: faster access times, lower energy consumption per access, and the ability to turn 

off structures that are not required for (parts of) a given application. 

Our work focuses on the promise of this general approach to data cache design. We 

perform detailed analysis of memory reference behavior to identify data subsets for 

which given techniques work well. In some cases, we find that a region-based partition 

allows for substantial benefit. We also find other instances in which stretching or 

redefining the boundaries of our partitions achieves even greater benefits. 

The remainder of this dissertation is organized as follows. Chapters 2 and 3 provide 

additional introductory material relevant to this research. In Chapter 2, we discuss related 

 3 



work in the areas of energy and performance improvement for cache designs. We focus 

primarily on techniques affecting the level one data cache but reference other relevant 

methods as well. Chapter 3 outlines the experimental framework used throughout this 

work. We provide an overview of the simulator infrastructure used to model our proposed 

improvements as well as a discussion of the benchmarks we used to evaluate those 

techniques. 

Chapters 4 and 5 present methods for reducing energy consumption in cache 

partitioning. In Chapter 4, we explore the application of drowsy caching [31][57][58] to 

region-based caching. We demonstrate that the combination of the two can be more 

effective than either alone, as partitioning the cache allows us to apply different degrees 

of drowsy caching to different regions of data [32][33]. Chapter 5 addresses the caching 

of the heap region, the most difficult region of data to manage in a cache structure. This 

chapter shows that the heap region often possesses greater locality than previously 

thought. We propose a method for tailoring the heap cache to each application, allowing 

us to accommodate cases in which the entire heap caches well as well as instances in 

which only a fraction of the heap possesses good locality [33][34][35]. 

Chapter 6 shifts the focus of the dissertation from energy to performance, showing 

that partitioning the cache can also improve methods for reducing application run time. 

We demonstrate that prefetching [21][26][45][47][54][55][81][85][94][96][97][113] is 

most effective when applied only to a subset of the data. We analyze data reference 

patterns to determine which data prefetch well and show how region-based caching 

affects the impact of different hardware prefetch algorithms. 
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Region-based caching implicitly assumes that the data is placed in the appropriate 

region at compile time. Chapter 7 challenges that assumption, examining data for which 

the reference characteristics do not match the expectations for its region. We discuss the 

relocation process for incorrectly placed data, examining the issues involved in 

identifying and remapping these structures in the compiler. 

Chapter 8 concludes the dissertation. We summarize the contributions of this work 

and offer some potential directions for future research. 
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CHAPTER 2 

RELATED WORK 

 

Caches provide fast memory accesses by temporarily storing data believed to 

currently be in use [96]. These memories operate on two principles: spatial locality, 

which states that data near the currently accessed address are most likely to be accessed 

in the near future, and temporal locality, which states that recently accessed addresses are 

likely to be accessed again in the near future. In this chapter, we focus on techniques for 

improving the energy and performance of the data cache, typically the level one (L1) data 

cache. In several cases, similar techniques have been proposed for the instruction cache; 

we only briefly mention those methods where applicable. Approaches that address lower 

levels of the memory hierarchy receive similar treatment. This chapter highlights the 

research most relevant to our work. For an in-depth discussion of several techniques not 

covered here, see Brehob’s dissertation [13]. 

In Section 2.1, we explore methods for reducing cache energy consumption, 

addressing both dynamic and static energy. We emphasize previous papers on cache 

partitioning for dynamic energy savings and state-preserving techniques for static energy 

savings. Section 2.2 discusses techniques for improving cache performance, focusing on 

three main areas: splitting the cache to reduce access latency, improving locality through 

data placement, and removing misses through data prefetching. 
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2.1 Reducing Cache Energy Consumption 

2.1.1 Dynamic Energy Consumption 
 

Techniques for reducing dynamic energy consumption rely on the fact that the energy 

dissipated per access is proportional to the cache size. Most of these approaches therefore 

partition the cache to allow memory references to access smaller structures. Sahuquillo 

and Pont discussed several of these techniques in their survey paper [92]. 

Partitioning techniques fit in one of two categories: vertical or horizontal. Vertical 

partitioning adds a level between the L1 and the processor; these structures provide low-

power accesses for data with temporal locality, but typically incur many misses, 

increasing average observed L1 latency. Su and Despain first proposed line buffers, 

output latches that store the most recently accessed cache line or lines [102]. On a 

memory reference, the buffer is checked first and the cache is accessed only on a buffer 

miss. Ghose and Kamble modify this approach by adding multiple buffers to capture 

more accesses and accessing the buffers in parallel with the L1 cache [36]. Filter caches 

[60] perform the same operation on a slightly larger scale, using small direct-mapped 

caches to capture recent accesses and reduce cache activity. Chang et al. developed a 

two-level filtering scheme that both exploits temporal locality and uses a partial tag check 

to determine which ways of a set-associative cache will not hit [20]. One example of a 

vertical partitioning technique in which the additional level resides between the first and 

second level caches is the victim cache, which attempts to capture the locality in recently 

evicted lines [55]. This technique aims primarily to improve performance, not energy 

consumption. 
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Horizontal partitioning divides entities at a given level in the memory hierarchy into 

smaller segments. For example, cache sub-banking [36][102] divides cache lines into 

smaller segments. Memory references are routed to the proper segment, which is the only 

one that draws power. Abella and Gonzalez combine sub-banking with data placement 

techniques to exploit locality and improve energy efficiency [1]. They also vary supply 

and threshold voltages across the banks to reduce static energy consumption as well. Hu 

et al. take a slightly different approach with an asymmetric set-associative cache in which 

each way of the set is a different size [44]. A hit in one of the smaller, faster ways can 

immediately terminate accesses to the larger ways, thus saving energy per access. 

Horizontal partitioning techniques that consider the access behavior of applications 

can further reduce dynamic energy consumption. Huang et al. route stack accesses to a 

dedicated structure that is tailored to their reference characteristics and optimized for 

energy efficiency [46]. Region-based caching [67][69] replaces a unified data cache with 

heterogeneous caches optimized for global, stack, and heap references. On a memory 

reference, only the appropriate region cache is activated. Relatively small working sets 

for stack and global regions allow those caches to be small, dissipating less power per 

access. The region-based paradigm can be extended to other areas of the memory system; 

for example, Lee and Ballapuram propose partitioning the data TLB by semantic region 

[70]. We cover region-based caching in much greater detail in Chapter 4. 

We choose to partition the cache horizontally to avoid the performance penalties 

common in vertical partitioning techniques. Splitting a cache level—in our case, the first 

level data cache—also allows us the freedom to exploit behavior within a data subset. 

Most work in this area either fails to consider access behavior or concentrates on stack 
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data because it caches well. We use horizontal partitioning to improve the caching 

behavior of the heap, the region that typically exhibits the worst locality.  

Reconfigurable caches can create virtual partitions to reduce dynamic energy 

consumption. Ranganathan et al. present a method for dynamically partitioning set-

associative caches—for example, a 4-way 1 MB cache can be reconfigured into four 

direct-mapped partitions of 256 KB, two 2-way partitions of 512 KB each, or two 

partitions in which one of the partitions is a 3-way, 768 KB cache [89]. They also 

propose an organization in which the tags are extended to the maximum possible size to 

accommodate multiple partitions; this organization does not require a set-associative 

cache. The authors note that one of the partitions could be allocated to a specific task 

such as prefetching, which essentially foreshadows the work we discuss in Chapter 6. 

Balasubramonian et al. describe a reconfigurable memory hierarchy that detects phase 

changes and reconfigures the cache appropriately [7]. The physical cache has only one 

level but acts as a virtual two-level, non-inclusive cache hierarchy. The size, latency, and 

associativity of each level are all programmable. This technique improves performance in 

a typical two-level cache hierarchy; when extended to three levels to address future cache 

designs, it offers lower energy consumption. 

Other reconfigurable caches can dynamically resize the available resources. Albonesi 

disables inactive cache ways to reduce switching activity and lower dynamic energy 

dissipation [4]. His approach allows application-specific as well as finer-grained control 

over cache resources. Motorola’s M-CORE architecture also features a programmable 

cache that can be dynamically resized to reduce energy consumption [74]. Other 

customizable options include the write policy and data streaming extensions. Yang et al. 
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explore both static and dynamic resizing of cache resources to reduce energy 

consumption [110][111]. They offer the ability to disable either unused sets or unused 

ways to save energy. 

Our work uses caches that are reconfigurable at a higher level than the work 

discussed above. When partitioning the heap, as discussed in Chapter 5, we maintain two 

structures—a small cache for high locality data and a larger cache for low locality data. If 

an application does not require both caches, we can disable the large cache to save 

energy. This cache uses logic similar to other reconfigurable structures. 

Other partitioning methods employ more novel approaches to the reduction of 

dynamic energy consumption. Some techniques seek to disable the costly tag checks that 

consume significant amounts of energy in data caches. Petrov and Orailoglu use a 

reconfigurable cache that allocates a single partition for tagless accesses to predictable 

blocks [86]. Their work more generally partitions the cache based on the reuse 

characteristics of data references, concentrating on instructions in nested loops. They use 

static compiler analysis to identify instructions that exhibit data reuse, either individually 

(i.e., a single instruction accesses the same address or cache line in multiple loop 

iterations) or across instructions (i.e., multiple instructions access the same cache line). 

Ashok et al. employ compiler-managed address speculation to enable tagless cache 

accesses for power reduction [6]. Their caches use static compile-time information about 

memory access times and patterns to reduce redundancy in memory accesses. 

Hezavei et al. present circuit-level techniques for reducing dynamic energy 

consumption in SRAM designs [42]. Divided bit lines use shorter, segmented bit lines to 

decrease latency and bit line capacitance and allow for a split row decoder to further 
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reduce energy. Pulsed word lines minimize the time that the word lines—and therefore 

the SRAM cells—are active by deactivating the word lines before they make a full 

voltage swing, once again increasing speed and lowering energy consumption. Isolated 

bit lines isolate the sense amplifiers attached to the bit lines as soon as they detect a 

sufficient voltage difference, thus preventing a full voltage swing. 

2.1.2 Static Energy Consumption 
 

As transistor feature sizes have decreased in new circuit technologies, managing static 

energy consumption has become an increasingly important issue. Techniques that reduce 

static energy in caches must account for the fact that stored data must either remain 

persistent or be easily recovered. Solutions to the static energy problem encompass both 

circuit and architectural approaches; our work uses a combination of both. 

The simplest circuit technique for static energy reduction is gated-Vdd [88], which 

turns off unused cache lines to eliminate leakage current. Gated-Vdd effectively reduces 

static energy at the cost of lower application performance; each time a cache line is 

turned off, the data it holds is destroyed and must be fetched from the next level of the 

memory hierarchy. Methods that preserve memory state place inactive lines into a low-

power mode; these approaches save less energy than gated-Vdd, but perform significantly 

better. Nii et al. propose a technique for lowering static energy by dynamically varying 

the source voltage to the transistor body [79]. This technique does maintain memory 

state, but the leakage savings are somewhat offset by the increased supply voltage, and 

the transition time between active and low-power modes may be prohibitively high. 

Other techniques employ self reverse biasing [10] or voltage scaling [109] to reduce 

static energy without loss of data. 
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Architectural management can improve the efficiency of these circuit techniques. 

Cache decay [56] tracks cache line usage to determine when a line is dead and then gates 

the supply voltage to turn the line off. The decay interval is approximated by associating 

a small local counter with each line and incrementing it after a given number of cycles. 

The line is turned off when the counter saturates; an access to the line resets the counter. 

Yang et al. present a method for recognizing and disabling unused sets in set-associative 

instruction caches [110]. Zhou et al. only disable the cache data array, not the tag array 

[114]. Keeping the tag array active allows them to rapidly determine the performance 

effect of keeping more lines active and tailor their line-disabling policy accordingly. 

Drowsy caching [31][57][58] applies the interval-based technique used in cache 

decay to state-preserving leakage reduction. Rather than turn inactive lines off after a 

certain interval, drowsy caches scale the supply voltage to place lines in a low-power 

state. We discuss this technique in greater detail in Chapter 4, using cache partitioning to 

allow more precise management of the drowsy policy for lower energy consumption. 

Li et al. exploit data reuse in the cache hierarchy to reduce leakage energy [73]. They 

apply both state-preserving and state-destroying leakage reduction methods to L2 sub-

blocks when the data also exists in the L1. They also vary the point at which blocks are 

turned off and reactivated. The authors evaluate five different methods, varying the level 

of aggressiveness for leakage reduction as well as the type of technique used. 

2.2 Improving Cache Performance 

2.2.1 Cache Partitioning 
 

In Section 2.1.1, we discussed research on partitioning the cache to achieve lower 

energy consumption; a different body of work uses partitioned caches to reduce cache 
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latency. Several papers focus on exploiting the reference characteristics of stack data, 

which typically has a small working set and displays good locality. Machines like the 

HP3000 Series II [11], the CRISP processor [9][29], and the Hobbit processor [5] contain 

caches specifically for stack references; in all cases, the stack cache is the only data cache 

in the processor. In later work, stack data are routed to cache-like structures customized 

to exploit their reference characteristics. Cho et al. use a decoupled stack cache that 

forwards $sp-relative accesses in which the stack pointer does not change and features 

wider ports to take advantage of the contiguous accesses that are common in that region 

[25]. The stack value file [68] is a register file treated as a circular buffer that adds 

extensions to improve performance in the stack region. The architecture recognizes $sp-

relative accesses early in the pipeline and morphs these accesses into register moves. The 

stack value file also contains additional status bits to avoid unnecessary reads and writes 

when the stack size changes. Although we employ a typical cache for stack data, these 

techniques are orthogonal to our work and may further improve application performance. 

Techniques specifically addressing non-stack data are less common. In their analysis 

of the CRISP stack cache [29], Ditzel and McLellan note that global variables are also 

well suited to caching. The pointer cache [26] stores mappings between heap pointers and 

targets, but the structure is intended as a prefetching aid, not a data cache. Intel’s 

StrongARM SA-1110 processor [48] uses a mini-cache in addition to the main data cache 

for storing streaming data with little or no temporal locality. Note that region-based 

caching [67][69] also improves performance slightly; the partitioning scheme allows for 

reduced associativity and therefore lower access times in each of the regions. Further 
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cache partitioning, as discussed throughout this dissertation, allows us to use smaller 

caches with lower latency. 

Other partitioning techniques aim to improve or ensure good locality in cache 

accesses. The annex cache [51] is a vertical partitioning scheme similar to the victim 

cache that filters memory references to reduce conflict misses. All data must essentially 

prove in the annex cache that they possess sufficient locality to reside in the main cache. 

Other approaches use dynamic partitions to eliminate conflicts. Dahlgren and Stenstrom 

discuss a reconfigurable software-controlled cache that can be remapped into virtual 

areas that cannot conflict [27]. Suh et al. perform a similar task by using analytical 

models that accurately predict cache miss rates to partition the cache into dedicated per-

process regions [104]. 

The idea of partitioning the cache among multiple processes has become more 

prevalent with the advent of simultaneous multi-threading (SMT) and chip 

multiprocessor (CMP) systems. Iyer discusses a method for assigning and enforcing 

priorities for different data streams in a CMP platform [50]. One priority enforcement 

method is cache partitioning using both dynamic and static techniques. Kim et al. use 

partitioning to implement fairness in a CMP between threads sharing the L2 cache [59]. 

They propose several fairness metrics, correlate them with execution time, and develop 

an algorithm to optimize the cache behavior. Hsu et al. evaluate multiple performance 

targets for partitioning shared caches in CMPs [43]. They show that the optimal 

partitioning varies significantly depending on the performance target and that thread-

aware allocation of cache resources is necessary to approximate that optimal partition. 
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Region-based caching may not work well on these systems, as the presence of multiple 

applications accessing each region will likely increase conflict in each region cache. 

Some studies use separate caches to capture both spatial and temporal locality. 

Gonzalez et al. present a dual data cache for use with vector data [39]. They use a locality 

prediction table to steer references to one of the two caches. Lee et al. use a similar split 

cache with variable fetch and eviction policies [72]. They use a larger fetch size for the 

spatial cache, a fully associative structure with large cache blocks. In the smaller, direct-

mapped temporal cache, they selectively retain lines that demonstrate frequent temporal 

reuse during program execution. 

We address an area that has not been extensively researched in Chapter 6: partitioning 

to improve a technique that, by itself, improves cache performance. Ranganathan et al. 

note that a partition can be set aside for prefetched data in a set-associative cache; 

however, they employ virtual partitions in a unified cache [89]. We treat the new partition 

as a separate region. 

2.2.2 Data Placement 
 

A significant amount of work focuses on remapping data without partitioning the 

cache. These techniques typically aim to either reduce cache conflicts or improve spatial 

locality. One method we see for conflict prevention is a form of page coloring, an 

operating system technique that assigns the same color to two pages if they map to the 

same location in a physically-indexed cache. Bugnion et al. use compile-time information 

to allow applications to request a particular coloring policy in the operating system [15]. 

Sherwood et al. use both compiler and hardware methods to modify page colors for 

improved locality [93]. Rivera and Tseng take a different approach to reducing conflict 
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misses, modifying the base addresses or dimensions of array structures accessed in loops 

at compile time [90].  

A large number of techniques focus on the placement of data in the cache to improve 

locality and reduce misses. Many of them perform this task at compile-time, looking at 

the overall reference behavior of the program to determine which objects fit best together 

and which should not be mapped to the same sets. Chilimbi et al. reorganize the members 

of data structures to increase locality [23]. Small structures are split to allow hot fields to 

fit in the same cache block, while larger structures are rearranged to place fields that 

share temporal locality close together. Palem et al. also seek to place data with temporal 

locality close together; they remap the entire data layout of an application at compile time 

to achieve this goal [83]. Ailamaki et al. focus on database systems, grouping all values 

of a particular attribute within the same page [3]. We can apply methods similar to these 

in region-based caches, as shown in Chapter 7. We identify objects for which the locality 

differs from typical data in that region, and use compiler feedback to direct the data 

allocation to the correct region. 

Cache-conscious data placement [18] works similarly to region-based caching in that 

it breaks data into stack, global, heap, and constant regions. The authors use profiling to 

identify temporal relationships between objects and place them appropriately to reduce 

conflict.  They do not rearrange stack and constant data, but the placement of those 

regions guides the placement of other variables. They also partition objects into popular 

and unpopular sets, using unpopular data to fill spaces between popular objects. 

There are also a significant number of runtime techniques for improving locality. 

Kistler and Franz focus on reorganizing pointer-based data structures, clustering 
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members that are accessed near the same time and reordering data within cache lines to 

reduce load latency on a miss [61]. In a later study, they explore dynamic code 

optimization in concert with their data layout techniques [62]. Johnson and Hwu split the 

cache into macroblocks—regions of data larger than a single line in which the access 

behavior is statistically uniform—and use the access patterns of those macroblocks to 

determine the movement of data within the cache [52]. Their scheme bypasses data that is 

expected to have little reuse in the cache. They later added a structure to detect spatial 

locality by tracking accesses to adjacent blocks, fetching multiple blocks when locality is 

high [53]. Chilimbi explores two different methods for improving data locality. In one 

study, he identifies hot data streams—reference subsequences exhibiting a high degree of 

regularity—and uses these streams to cluster data [24]. In a different paper, he and Larus 

employ a garbage collection utility to gather run-time information about reference 

patterns [22]. Based on the garbage collection results, they can place data with high 

temporal affinity together via copying. 

Ding and Kennedy use both compile time and runtime optimizations to reorganize 

data and code for improved locality [28]. Once the structure of the data is known, they 

insert code that reorganizes that data. In some cases, data accesses are reordered to 

promote better temporal reuse; in others, the data itself is moved to improve spatial reuse. 

Srinivasan et al. explore criticality as an alternate metric for determining data 

placement.  Previous work has shown that some loads are more critical to the 

performance of programs running on dynamically scheduled processors [98]. The authors 

later showed that criticality, although a significant program property, is not strong enough 

to override locality in the organization of a traditional cache hierarchy [99].  
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Tyson et al. show that selectively allocating cache lines can improve application 

performance [105]. They show that a small percentage of loads account for the majority 

of cache misses and mark those references as cacheable/non-allocatable (C/NA), 

prohibiting them from invoking the cache allocation policy. C/NA loads can be identified 

statically or dynamically; the dynamic scheme uses a two-bit predictor. 

2.2.3 Prefetching 
 

Prefetch techniques attempt to hide the latency of cache misses by anticipating the 

misses and fetching the data prior to the actual memory reference. Prefetch methods vary 

widely, and no single technique has been shown to optimize performance in all cases. 

Vanderwiel and Lilja summarize several prefetch algorithms in their survey paper [106]. 

Hardware prefetching techniques observe the dynamic behavior of a program and 

predict prefetch addresses accordingly.  The simplest hardware prefetchers are sequential 

methods that exploit basic spatial locality. Next sequential prefetching (NSP) [96] is the 

most straightforward prefetch algorithm—on an access to block n, prefetch blocks n+1 

through n+p, where p is the prefetch degree (i.e., number of blocks to prefetch). Smith 

discusses several variations on this policy, including prefetching on every access, 

prefetching only on misses, and using a tag bit [37] to filter prefetch accesses. Jouppi 

uses NSP to fetch data streams into dedicated prefetch buffers that ensure prefetched data 

do not cause cache conflicts [55]. The caches and buffers are referenced in parallel; on a 

cache miss that also misses in the buffers, the least recently used buffer is filled starting 

from the miss address. 

More complex techniques can recognize strided access patterns in which the blocks 

are not necessarily contiguous. These methods must typically maintain a record of 
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reference activity to predict program behavior. Chen and Baer use a reference prediction 

table (RPT) to track access patterns and generate prefetch requests [21]. Each RPT entry 

contains a field to indicate the confidence of the corresponding prefetch prediction. When 

combined with an additional program counter and branch predictor, the RPT can run 

ahead of the actual program and prefetch more aggressively. Palacharla and Kessler 

combine Jouppi’s prefetch buffers with a predictor for detecting regular strides [81]. 

They also add a filter to reduce the number of useless prefetches. Iacobovici et al. present 

a scheme for handling data streams with multiple distinct strides that follow a regular 

pattern [47]. They use a two-state table that can track up to four distinct strides. 

To handle irregular access sequences like those seen in pointer-based data structures, 

more complex methods are required. Chen and Baer extend the RPT to correlate their 

reference predictions with the branch history [21]. Hu et al. use a similar correlating 

prefetcher that is indexed by cache tag rather than instruction address [45]. This resource-

efficient predictor outperforms larger address-based prefetchers. Solihin et al. employ a 

user-level memory thread to implement their correlating prefetcher [97]. The thread runs 

on either the DRAM or the memory controller and prefetches data directly into the L2 

cache. 

Markov prefetchers [54] model the probabilities of addresses occurring consecutively 

in the miss stream. A full Markov model uses a weighted graph but is too inefficient to 

realize in hardware, so Joseph and Grunwald approximate the graph with a four-way 

table using LRU replacement. The MRU way of each set represents the address of 

highest priority. Sherwood et al. combine a Markov predictor with stream buffers to 

reduce conflicts [94]. 
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Other specialized techniques focus solely on pointer-based applications. Collins et al. 

present an architecture that contains a dedicated cache to store pointer transitions [26]. A 

separate thread runs ahead of the user program and relies on the pointer cache to generate 

prefetches. This cache can also serve as a value predictor for difficult loads, allowing the 

runahead thread to proceed more efficiently. 

A number of novel schemes attempt to improve the quality of prefetching by 

combining it with other techniques. Peir et al. use an adaptive cache that identifies unused 

blocks to use as sites for prefetched data [85]. This scheme allows the cache to closely 

approximate a global LRU policy—in other words, a fully-associative cache—rather than 

a set-associative one. Lai et al. use a similar technique to predict dead blocks, but they 

combine their dead block predictor with a correlating prefetcher that indicates which data 

to prefetch when another block becomes dead [65]. This method provides effective 

prefetching for difficult patterns such as pointer references.  

Kumar and Wilkerson introduce a spatial footprint predictor that identifies spatial 

locality in applications that do not prefetch well using standard techniques [64]. The 

predictor identifies which portions of a line will be used before being evicted. This 

technique allows cache lines to remain small while accurately predicting which data 

should fill them. Zhang and Gupta reduce memory traffic by transferring prefetched 

values in compressed form [113]. They use frequent value compression on the most 

significant bits of the prefetched data, relying on data in which the prefix contains all 

zeroes or ones, or on pointer addresses that reference the same block. 

Software prefetching techniques typically employ compile-time analysis to detect 

reference patterns and augment programs accordingly. Callahan et al. use special prefetch 
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instructions to reduce cache misses [19]. They use a simple heuristic to prefetch array 

variables in program loops—when the array index contains the innermost loop variable, 

prefetch the next array location. This method was refined to remove prefetches for data 

likely to be present in the cache. Klaiber and Levy also use prefetch instructions in 

program loops, although they do not restrict their prefetching to array accesses [63]. The 

prefetched data are routed to a fully-associative buffer. 

Pointer-based prefetching is more difficult to address in software, as prefetches 

cannot be scheduled before the effective address computation. Cahoon and McKinley 

successfully handling these accesses by using jump pointers—additional pointers that 

connect objects that are not directly linked but are often referenced together [17]. The 

additional pointers improve the quality of prefetching but add overhead that limits the 

overall performance impact. Roth and Sohi more selectively employ jump pointers, 

identifying four separate prefetch idioms to handle different types of data structures [91]. 

Some methods employ both hardware and software to generate effective prefetches. 

Ortega et al. primarily use software techniques, adding prefetch instructions and 

aggressively prefetching into registers to bypass load instructions [80]. A hardware assist 

tracks history to enable stride-based prefetching and to act as a filter that eliminates 

unnecessary prefetches. Wang et al. take an opposite approach, using compiler hints to 

regulate an aggressive hardware prefetcher [107]. The hints cover issues such as the 

number of lines to prefetch and indicate when a reference accesses pointer-based 

structures. 
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CHAPTER 3 

EXPERIMENTAL FRAMEWORK 

 

This chapter presents the infrastructure used for the experiments discussed in 

subsequent chapters. In Section 3.1, we describe our simulation environment, 

highlighting both the models we used and the configuration choices we made. In Section 

3.2, we discuss the benchmarks we ran to evaluate our proposed optimizations. 

3.1 Simulation Environment 
 

All of our experiments use a modified version of the SimpleScalar ARM target [16]. 

ARM microprocessors, such as the Intel StrongARM SA-11xx [48][77] and XScale [49] 

series, are extremely common in embedded devices, including handhelds, cellular 

phones, and GPS devices. Our simulations use an in-order processor model based on the 

Intel StrongARM SA-110 [77]; the parameters for the execution engine are shown in 

Table 1. 

To estimate the energy consumption of our benchmarks, we use Wattch [14] to 

calculate dynamic energy and HotLeakage [112] to calculate static energy. Wattch pre-

computes the energy dissipation for various architectural events and then counts the event 

occurrences to determine the total energy. This simulation module models different 

degrees of clock gating to allow an assessment of the energy-saving impact of such 
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Parameter Value 
Issue policy In-order 
Fetch width 1 
IFQ size 8 
Decode width 1 
Issue width 1 
Commit width 1 
Branch predictor Not taken 
Integer ALU/multiplier 1 
FP ALU/multiplier 1 
Memory port(s) 
available to CPU 1 

Table 1: SimpleScalar simulation parameters for baseline architectural model, which is based on the Intel 
StrongARM SA-110 [77] 

 
techniques. We use the cc2 mode, which assumes aggressive, ideal clock gating—in 

other words, the circuit dissipates no energy when turned off—and therefore provides an 

excellent estimate of an application’s dynamic energy consumption. The cc3 mode also 

models aggressive clock gating, but it assumes that a constant fraction of the dynamic 

energy is dissipated when a circuit is inactive. Since some of our studies involve 

techniques for reducing static energy dissipation, we use the more detailed static energy 

model in HotLeakage. This program contains a detailed drowsy cache model used by 

Parikh et al to compare state-preserving and non-state-preserving techniques for leakage 

control [84]. HotLeakage tracks the number of lines in both active and drowsy modes and 

calculates leakage energy appropriately. It also models the energy of the additional 

hardware required for drowsy caching. HotLeakage contains device parameters and 

scaling factors for several different technology sizes; when this tool is integrated with 

SimpleScalar, Wattch and Cacti use these same values. We use 70 nm technology with an 

operating voltage and temperature of 0.9 V and 300 K (27° C), respectively. Rather than 

using the maximum possible frequency for this technology, we slow the clock to 1.7 GHz 

to allow reasonable cache access latencies and reduce dynamic energy consumption. 
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Parameter Value 
Line size (all caches) 32 bytes 
Baseline L1 data 
cache configuration 

32 KB, direct-mapped, 
single-ported 

Baseline L1 data cache hit latency 0.914 ns (2 cycles) 
Stack/global L1 data  
cache configuration 

4 KB, direct-mapped, 
single-ported 

Stack/global L1 data cache hit latency 0.3 ns (1 cycle) 
L1 instruction cache configuration 16 KB, 32-way set associative 

L1 instruction cache hit latency 2.683 ns (1 cycle, assuming 
pipelined instruction cache) 

L2 cache configuration 512 KB, unified inst./data, 
4-way set associative 

L2 cache hit latency 6.99 ns (12 cycles) 

Main memory latency 88 cycles (first chunk) 
3 cycles (inter chunk) 

Memory bus configuration 8 bytes wide, fully pipelined 

Table 2: Memory system configuration for our simulations. The table contains information for a basic 
unified cache as well as our region-based cache configurations, in which the heap cache uses the same 
configuration as the baseline L1 data cache. We use Cacti 3.2 [95] to calculate the access latencies. 

 
Table 2 shows the parameters for our memory model, giving the latencies and 

configurations for the caches we use throughout our experiments. We use Cacti 3.2 [95] 

to calculate cache access times. Note that our baseline 32 KB cache, which is the same 

size as the heap cache in our region-based cache configurations, requires two cycles on a 

hit. The level 2 cache is used as a common backup storage in all configurations to ensure 

a fair comparison between the various configurations, as in previous region-based 

caching studies [67][70]. 

3.2 Benchmarks 
 

To assess the effectiveness of our proposed changes, we run applications from 

MiBench [40]. MiBench is a freely available embedded benchmark suite developed at the 

University of Michigan; this workload is intended as an alternative to the EDN 

Embedded Microprocessor Benchmark Consortium (EEMBC) suite [30]. Like the 

EEMBC benchmarks, MiBench reflects the fact that the embedded domain covers a wide 
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Description # dyn. 
insts 

# dyn. 
loads/ 
stores 

% insts 
accessing
Memory 

Automotive 
basicmath Simple math functions 4.41E+09 1.11E+09 25.1%
bitcount Tests bit manipulation abilities 1.14E+09 1.83E+08 16.0%
quicksort Sorts large string array 1.08E+09 1.75E+08 16.2%
susan.corners 3.15E+07 9.98E+06 31.6%
susan.edges 7.93E+07 2.30E+07 29.0%
susan.smoothing

Image recognition algorithm; contains  
different phases to recognize corners 
and edges and to smooth image 6.06E+08 1.80E+08 29.7%

Consumer 
jpeg.encode 1.58E+08 3.93E+07 24.9%
jpeg.decode 

JPEG image compression/ 
decompression 3.66E+07 1.12E+07 30.7%

mad MPEG audio decoder 4.28E+08 1.11E+08 26.0%
tiff2bw Convert TIFF image to black and white 2.14E+08 5.83E+07 27.3%
tiff2rgba Convert TIFF image to RGB format 2.60E+08 1.02E+08 39.0%
tiffdither Dither TIFF bitmap 1.19E+09 2.58E+08 21.7%
tiffmedian Convert image to reduced color palette 8.32E+08 2.07E+08 24.9%
typeset Typeset HTML document 9.15E+08 3.17E+08 34.6%
Office 
ghostscript Postscript language interpreter 1.31E+09 3.76E+08 28.8%
ispell Spell checker 1.60E+09 4.45E+08 27.8%
rsynth Text to speech synthesis program 1.45E+09 4.98E+08 34.3%
stringsearch Searches for given words 6.52E+06 1.46E+06 22.5%
Network1

dijkstra Dijkstra’s shortest path algorithm 4.43E+08 1.25E+08 28.3%
patricia Routing table application 1.10E+09 2.60E+08 23.6%
Security 
blowfish.encode 1.32E+09 3.89E+08 29.5%
blowfish.decode 

Blowfish block cipher encryption/ 
decryption using variable length key 1.32E+09 3.89E+08 29.5%

pgp.encode 5.67E+07 1.31E+07 23.1%
pgp.decode 

Pretty Good Privacy (PGP) public key  
sign/verify algorithm 1.22E+08 2.83E+07 23.1%

rijndael.encode 5.62E+08 1.84E+08 32.7%
rijndael.decode 

Rijndael encryption/decryption—
national Advanced Encryption Standard 5.29E+08 1.72E+08 32.6%

sha Secure hash algorithm 1.88E+08 3.67E+07 19.5%
Telecomm 
adpcm.encode 8.53E+08 1.00E+08 11.7%
adpcm.decode 

Variation of Pulse Code Modulation; 
achieves 4:1 compression of PCM data 7.07E+08 1.00E+08 14.2%

CRC32 32-bit cyclic redundancy check (CRC) 3.25E+09 9.85E+08 30.3%
FFT Fast Fourier Transform 1.02E+09 2.46E+08 24.1%
FFT.inverse Inverse Fast Fourier Transform 6.82E+08 1.68E+08 24.6%
gsm.encode 4.55E+09 1.38E+09 30.3%
gsm.decode 

Standard for voice encoding/decoding  
used in Europe 1.84E+09 3.68E+08 20.0%

  AVERAGE 26.1%

Table 3: MiBench applications listed by category. We provide a brief description of each application, the 
total dynamic instruction count, and the total number and overall percentage of memory references. These 
applications have similar reference percentages to the MediaBench suite [66]. We run precompiled ARM 
binaries from the MiBench website and use the large input data sets in all simulations. 

                                                 
1 The CRC32, sha, and blowfish applications are also relevant to the Network category, but are shown 
here as part of the Security and Telecommunications suites. [40] 
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range of applications. It contains six separate categories, each one targeting a different 

area of the embedded space—automotive and industrial control, consumer devices, 

network applications, office automation, data security, and telecommunications. 

Table 3 lists the applications in the MiBench suite2, providing a brief description of 

each application as well as their execution length and memory usage. We run 

precompiled ARM binaries available from the MiBench web page 

(http://www.eecs.umich.edu/mibench); all applications were compiled using GCC 

version 2.95.2 on a Debian Linux 2.2.18 workstation with optimizations enabled [40]. 

The applications exhibit a fairly wide range of behavior, with dynamic instruction counts 

ranging from 6.5 million for stringsearch to over 4.5 billion for gsm.encode. We use 

the large input data sets in all cases. These benchmarks are not memory-intensive, as the 

third and fourth columns show. On average, about 26% of all instructions access 

memory. That figure is low compared to the percentage of memory references in the 

SPEC CPU2000 benchmarks [101], but is comparable to the reference percentage in 

MediaBench [66], a multimedia and telecommunications benchmark suite. Lee and 

Tyson show that the SPEC and MediaBench applications average 56% and 24% memory 

references, respectively, using the SimpleScalar portable ISA (PISA) [67]. In later 

chapters, we will explore the memory usage of these applications in greater detail. 

                                                 
2 MiBench includes two applications, lame and sphinx, which we were unable to simulate without errors 
and therefore have not included in this table or our experiments. 
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CHAPTER 4 

DROWSY REGION-BASED CACHES 

 

Schemes for improving energy consumption typically target either static or dynamic 

energy, trading a small penalty in one area for significant gains in the other. In this 

chapter, we present a technique for simultaneously reducing static and dynamic energy 

consumption in the level 1 data cache. We show that the combination of region-based 

caching and drowsy caching is particularly effective because each technique amplifies the 

effect of the other. This research draws from two of our previous publications [32][33]. 

In Section 4.1, we provide an in-depth look at region-based caching [67][69], the 

basis for this research. We then present a similar exploration of drowsy caching 

[31][57][58] in Section 4.2. Section 4.3 shows how the combination of these two 

techniques provides more benefits than either technique alone. In Section 4.4, we show 

how region-based caching allows us to tune the aggressiveness of our drowsy caching 

policy. Section 4.5 summarizes the chapter. 

4.1 Region-Based Caching 
 

Region-based caching leverages the reference characteristics of compiler-defined data 

regions to reduce dynamic energy consumption. Figure 1 shows the different regions 

common to most architectures; we provide the MIPS and ARM memory maps for  
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Figure 1: Run-time memory map for the MIPS and ARM architectures (adapted from [69]) 

 
comparison. The stack and heap regions contain different sets of dynamically allocated 

data. Stack data contain the activation records of function calls. The overall size of this 

region varies with the function call depth, but only a single stack frame is active at any 

time, keeping the working set small. Objects allocated via functions such as malloc() 

in C reside on the heap, which is usually the region with the largest footprint. These two 

regions often share the same memory space, as shown in the figure. The global region 

holds statically allocated data available at all levels of the program; the size of its 

working set tends to lie between that of the stack and heap regions. The previous work on 

region-based caching showed that, typically, the stack region holds the data with the most 

locality, global data has a moderate degree of locality, and data in the heap region has 

very low locality [67][69][70]. Because we use an ARM-based simulator model, we 
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focus on the ARM memory map in this work. The ARM architecture features two 

additional regions: the rarely accessed environment (env) region and the text region. The 

text region must be accessed prior to global references because the base addresses of the 

global data are compiled as part of the text space. Therefore, global data references 

require two instructions—a PC-relative load to fetch the base address, and an additional 

load to read the actual value. The ARM architecture also provides a second heap region, 

placed after the env region, to prevent collisions between stack and heap data. 

Previous work shows that although the stack region is the smallest of the three major 

semantic data regions, it is usually the most frequently accessed [67][68].  Figure 2 shows 

the percentage of dynamic memory references to each region for applications in the 

MiBench benchmark suite. As in the original work [67], about 70% of references are to 

stack and global data; however, our target applications feature a different access 

distribution across these regions. Stack references are still the most prevalent, averaging 

51% of the dynamic references in MiBench applications. Heap accesses total 23% of the 

dynamic reference count, while global accesses comprise 18%. The text and env regions 

are insignificant, accounting for 7% and 0.9%, respectively. By contrast, Lee and Tyson 

showed a distribution of approximately 40% stack accesses, 30% heap accesses, and 30% 

global accesses in MediaBench applications [67]. Differences in benchmark suites and 

instruction set architectures lead to the discrepancies between access percentages.  

Note that the reference behavior of these applications varies widely in many cases. 

For example, the adpcm benchmark references global data almost exclusively; recall that 

global accesses first require a load from the text region, which explains the high 

percentage of text references. The tiff benchmarks operate on large amounts of 
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Figure 2: Reference characteristics by region for MiBench benchmark suite 

 
dynamically allocated data, so their reference behavior is dominated by heap accesses—

in the extreme case, tiff2rgba, 98.8% of the dynamic references go to the heap region. 

The sha benchmark is the most stack-bound of our applications, with 99.3% of its 

dynamic references accessing stack data. 

Region-based caching [67][69] leverages the reference characteristics of stack and 

global data to horizontally partition caches and reduce dynamic energy consumption. As 

shown in Figure 3, small caches are added at the level of the L1 data cache. Stack and 

global region accesses are directed to the appropriate caches; all other data accesses go to 

the L1, as usual. Since most remaining accesses are to heap data, with a small number of  
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Figure 3: Memory design for region-based caching (from [69]) 

 
accesses to text and read-only data, we refer to the L1 as the heap cache in region-based 

caching. On a memory reference, only the appropriate region cache is activated and 

draws power.  

Because the stack and global regions have relatively small working sets, their 

accesses can be routed to small caches without a significant performance penalty. Since 

most data references fall in those two regions, region-based caching significantly reduces 

average dynamic power per access. Also, splitting the references eliminates inter-region 

conflicts, thus allowing each region cache to employ lower associativity to reduce access 

time. 

The downside to region-based caching is that it increases static energy consumption, 

as shown below. Our region caching system uses a 4 KB L1 stack cache, a 4 KB L1 

global cache, and a 32 KB heap cache; all three are direct-mapped. We compare this 

configuration against a baseline direct-mapped 32 KB unified cache. Figure 4 shows 
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Figure 4: Energy consumption of region-based caches compared to single 32 KB direct-mapped L1 cache. 
In the first two bars, the white area shows the portion of energy consumption due to the stack and global 
caches. In the third bar, the darker bottom portion shows what fraction of the total energy is dynamic 

 

 

Figure 5: Performance of region-based caches compared to single 32 KB direct-mapped L1 cache 

 
relative energy consumption for the region caches. Three vertical bars are presented for 

each application, indicating the change in leakage energy, switching (dynamic) energy, 

and total cache energy. Each of these numbers is normalized to the corresponding value 

for the baseline; for example, the static energy bars show the ratio of static energy 

consumption in our region-based caches to the static energy consumption in the baseline. 

Within the left two bars, the white portion indicates the fraction of energy consumed by 
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the stack and global caches. In the third bar, we show the breakdown of static and 

dynamic energy contributing to the total cache energy. The first bar shows that leakage 

energy increases in our region-based caches by an average of 22.4% due to the two extra 

caches, which together are one fourth the size of the baseline cache. However, this 

increase is offset by a savings of 51.5% in dynamic energy, resulting in a 5.1% total 

energy savings compared to the unified baseline cache. Our overall savings are less than 

Lee and Tyson show in the original region caching study [67]; they report an average 

power savings of 54%. However, their study assumes 0.35um process technology 

parameters and therefore ignores leakage power [87], putting our results in line with 

theirs. These numbers also differ from the results we reported in an earlier paper [33], in 

which we showed a 23.6% reduction in total energy for region-based caches. In that 

work, we optimistically assumed single-cycle cache latencies for all caches at a 5.6 GHz 

clock frequency. For this research, we reduced the clock frequency to 1.7 GHz to provide 

more realistic memory timing. Since dynamic energy dissipation is proportional to clock 

frequency, lowering the frequency also lowered the dynamic energy and thus increased 

the impact of static energy on the overall cache energy. 

Figure 5 shows the relative performance impact of region caching on these 

applications. In most cases, we see small speedups. The increased capacity of our region 

caching configuration and the faster stack and global caches improve memory latency. 

Nonetheless, we have not tuned the cache sizes for MiBench applications, and other 

configurations may yield larger speedups. On average, we experience a speedup of 1.1% 

for region caches vs. the 32 KB unified baseline cache. A single application, quicksort, 

suffers a slowdown of 20.1% due to a large increase in global misses. 

 33 



 

Figure 6: L2 energy consumption for system using region-based caches compared to system using single 
32 KB direct-mapped L1 cache 

 
One potential concern is that region-based caching may increase energy consumption 

in the level 2 data cache if an application’s stack and global data do not fit well in the 

smaller caches. An increase in misses in these regions leads to more L2 accesses and may 

also raise the program’s execution time. Of the 34 applications we studied, 3 experienced 

more stack misses with region-based caches and 17 experienced more global misses. 

However, as shown in Figure 6, region-based caching only causes a minimal increase in 

L2 energy consumption. The misses primarily affect dynamic energy consumption, which 

increases significantly in some applications—up to 98 times the baseline level (in sha, a 

stack-intensive benchmark). However, static energy dominates in the level 2 cache, as it 

is a large, infrequently accessed structure. The static energy consumption is proportional 

to the program runtime; we see that both experience the same average decrease, 1.1%. 

Overall, region-based caching causes a 1.0% decrease in the total energy dissipated in the 

L2 cache. 
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Figure 7: Drowsy cache line (adapted from [58]) 

4.2 Drowsy Caching 
 

We can use any of the static energy reduction methods discussed in Chapter 2 to 

combat the static energy increase in region-based caches. We choose drowsy caching 

[31][57][58] because it is a state-preserving technique and therefore has relatively little 

impact on performance. We use the dynamic voltage scaling implementation first 

proposed in Flautner et al [31]. Figure 7 shows the hardware to implement a drowsy 

cache line—a drowsy bit, a voltage control mechanism, and a word line gating circuit. 

The voltage controller switches the line’s supply voltage between high (active) and low 

(drowsy) values depending on the drowsy bit state. The word line gate prevents accesses 

while in drowsy mode, avoiding destruction of a drowsy line’s data. When accessed, a 

drowsy line’s bit is cleared, returning the supply voltage to its active value. If tags are 

kept drowsy, they may need to be awakened, thus increasing wakeup latency. Direct-
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mapped caches derive no benefit from keeping tags awake since there is only one line per 

index. We model direct-mapped caches and assume drowsy tags. 

Flautner et al [31] present two policies for setting the per-line drowsy bits. In the 

simple policy, all lines become drowsy after a certain number of cycles—the update 

interval. In the noaccess policy, only lines not accessed within the interval become 

drowsy. The simple policy reduces leakage power more effectively than the noaccess 

policy, since the former moves lines from active to drowsy more aggressively. However, 

it is locally oblivious, and may increase execution time when lines soon to be accessed 

are placed into drowsy mode. Flautner et al. [31] find a minimal difference in 

performance among policies. 

4.3 Drowsy Region-Based Caching 
 

Figure 8 and Figure 9 show simulation results for drowsy caching and region-based 

caching for a representative subset of the MiBench suite. Here the baseline is again a 32 

KB direct-mapped unified cache, but made drowsy with a 4K-cycle update interval. In 

Figure 8, the left three bars for each application indicate relative total energy for 32 KB 

unified caches with update intervals of one cycle (always drowsy), 2K cycles, and 8K 

cycles. The right two bars show relative total energy for drowsy region caches with a 4K 

cycle update interval. For the first of these, only the heap cache is drowsy, whereas for 

the second, all three region caches are drowsy. Changing the update interval has little 

impact on total energy consumption of the unified 32 KB direct-mapped cache. Leakage 

energy increases as the update interval grows, but dynamic energy remains almost 

constant. In contrast, going from a drowsy unified cache to a drowsy region cache 

configuration yields greater energy savings. Making just the heap cache drowsy yields a 
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Figure 8: Energy consumption for varying drowsy intervals and drowsy region caches compared to a 32 
KB drowsy L1 with 4K-cycle interval 

 

Figure 9: Performance for varying drowsy intervals and drowsy region caches compared to a 32 KB 
drowsy L1 with 4K-cycle interval 

 
12% energy savings, whereas making all regions drowsy brings total savings up to 45%. 

As with the unified cache, changing update intervals for the region caches has a minimal 

effect on total energy.  

Figure 9 shows the performance impact of changing update intervals or adding region 

caches, using the same baseline—a 32 KB direct-mapped unified cache with a 4K-cycle 

update interval. One visible trend is that performance improves for larger update 

intervals, at the expense of slightly higher total energy consumption. If region-based 

caching is not used for these applications, any of the larger intervals represents a 

reasonable design choice.  
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Figure 10 and Figure 11 show the relative effectiveness of region caching and drowsy 

caching both alone and as a combination. The figures compare energy and performance 

of a baseline 32 KB direct-mapped unified L1 cache to a drowsy version with a 4K-cycle 

update interval and to our region cache configuration (4 KB stack cache, 4 KB global 

cache, and 32 KB heap cache) under three different drowsiness schemes—no drowsiness, 

only the heap cache drowsy, and all three regions drowsy. Figure 10 shows total cache 

energy compared to the non-drowsy, unified baseline. The combination of region and 

drowsy caching significantly reduces overall energy consumption. A drowsy heap cache 

with standard stack and global caches reduces total energy by 63%, and making all region 

caches drowsy reduces energy by 77%. Drowsy caching alone reduces total energy by 

58%; region caching alone reduces total energy by only 5%. 

As expected, our results show that drowsy caching has the greatest impact on the 

heap cache, the largest of the three region caches. However, combining the techniques 

increases leakage energy over drowsy caching alone, especially when the stack and 

global caches are not drowsy. When all regions are drowsy, the increased cache capacity 

leads to an increase of about 10% in leakage energy. 

Figure 11 shows that the performance impact of combining techniques is very small. 

Since drowsy caching has a negligible impact on performance, the runtime penalty is 

effectively equal to the cost of region caching—about 1%. Performance drops in only a 

few applications; FFT, quicksort, and rijndael.encode are shown in the figure, but 

basicmath, dijkstra, FFT.inverse, rijndael.decode, and tiffmedian also suffer 

performance losses. In all cases, the cause is a dramatic increase in global cache misses. 
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Figure 10: Energy consumption of combined region and drowsy caching 
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Figure 11: Performance of combined region and drowsy caching 

 
Region and drowsy caching function well together, and our figures demonstrate this, 

but they do not highlight the techniques’ ability to perform better together than 

individually. In the comparisons performed above, which use a non-drowsy 32 KB direct-

mapped cache as the baseline, our experimental results show that the reduction in energy 

from the combined techniques is greater than the sum of reductions for each technique 
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alone—77% versus 63% (58%+5%). To understand why, we examine how region 

caching achieves its 5% energy reduction. Region caches are very effective at reducing 

dynamic energy, achieving a 51% reduction, but this decrease is offset by an increase of 

22% in static energy. The total energy saved is thus smaller—5% on average. However, 

drowsy caches effectively eliminate most static energy dissipation, including the extra 

static energy from the additional region caches. When we count the number of cache 

lines not in drowsy mode, the unified drowsy cache averages 9.5 non-drowsy lines per 

execution cycle versus only 8.2 for drowsy region caches, because the latter organization 

increases the effectiveness of the drowsy selection hardware. This figure illuminates how 

the techniques work well together. The removal of inter-region conflicts allows data to 

remain in the cache longer. The longer a block avoids eviction, the more likely it is to 

remain drowsy, as the block must return to active mode before being replaced. 

4.4 Optimizing Drowsy Intervals 
 

Splitting the caches by region groups together data with similar locality. Highly local 

data tends to stay active for a short period of time and then become inactive for a much 

longer stretch. At that point, we can safely place those lines into drowsy mode without 

their being accessed in the near future. By contrast, in data with little locality, multiple 

accesses to a line in a short interval are rare, meaning that once a line is accessed, it is 

unlikely to be accessed again for many cycles. Capitalizing on these traits advocates 

moving such lines into drowsy mode soon after being accessed.  

Region-based caching already allows us to be more aggressive with drowsy caching 

policies because it splits the reference stream and ensures that each cache only sees a 

portion of the total data accesses. If we further consider the locality characteristics of 
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each region, we see that we can be very aggressive with the lines in the heap cache, 

which tend to be referenced rarely, and still relatively aggressive with the lines in the 

stack cache once we know they have become inactive. Highly aggressive drowsy caching 

could benefit more from the noaccess policy, which would ensure that active lines remain 

active during the time when they are highly active. 

Increasing the aggressiveness of our drowsy caching policy means decreasing the 

update interval, and this change has a positive effect on the circuit overhead of the 

drowsy cache as well. A shorter interval implies a smaller cycle counter. If the interval 

shrinks to one—meaning that a line is put into drowsy mode directly after being 

accessed—the structure of the drowsy cache line also changes. The drowsy bit is no 

longer necessary, since each line is either active or drowsy. It is true that such an 

aggressive policy will increase the number of accesses that must pay the penalty for 

switching a cache line from drowsy to active. However, the performance penalty should 

be offset by an equally significant energy reduction. 

Figure 12 highlights the difference in energy between typical drowsy caches with a 

large update interval and aggressive, always drowsy caches. We compare a 4K-cycle 

update interval to a 1-cycle interval for both a single L1 data cache and for our typical 

region-based caching configuration, using a non-drowsy 32 KB direct-mapped cache as 

the baseline. This graph primarily shows the added benefit of combining drowsy and 

region caches. When the cache configurations are identical, total power consumption is 

similar across interval sizes. Reduced interval size has a significant impact on leakage 

power. For a 1-cycle interval, leakage energy is 29% less than it is with a 4K-cycle 

window, leading to a 1.6% decrease in total energy, as shown in the figure.  
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Figure 12: Comparison of large and small windows 

 
As noted above, varying the update interval has little effect on total power for both 

unified and region caches. However, the effect on performance is somewhat more 

pronounced. To find the best interval for each cache, we vary the interval from 1 to 8K 

cycles and plot the resulting energy/performance curves, shown in Figure 13 and Figure 

14. All energy and runtime values are averages over all applications. To test region 

caches, we use a 4K-cycle interval for two of the caches and vary the interval of the third. 

We choose the interval at the “knee” of the curve—the point at which the speedup 

decreases more than the energy consumption. As shown in Figure 13, 512 cycles is the 

best interval for a unified L1 cache. For region caches, as shown in Figure 14, the ideal 

interval differs for each region—512 cycles for the stack and heap, 256 cycles for the 

global region.  
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Figure 13: Energy-performance curve for varying drowsy intervals in a unified L1 data cache 
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Figure 14: Energy/performance curves for varying drowsy intervals in region-based caches 
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The data shows that aggressively applying drowsy caching to global data has the 

smallest effect on performance. Since the global region is accessed the least of the three 

major regions, it follows that it should experience the fewest wakeups. The surprising 

result from this data is that heap and stack data impact performance similarly under 

drowsy caching. Their worst-case penalties are similar—3.1% for the heap, 3.0% for the 

stack—and their ideal interval is the same. This result suggests that some heap data 

possess a similar degree of locality to stack data, an idea we explore further in Chapter 5.  

Note that we still only require one counter to implement multiple drowsy intervals as 

long as the intervals remain powers of 2. The structure of binary counters ensures that an 

n-bit counter contains an (n-1)-bit counter, an (n-2)-bit counter, and so on. For a counter 

that resets every 2m cycles (m < n), all we require is additional logic to recognize when 

the m low-order bits of the n-bit counter overflow. With an increased emphasis on wire 

delays as technology shrinks [2][75][82], there is some question as to which organization 

makes more sense: a single, central counter sending drowsy signals to all region caches, 

or a separate counter placed close to each cache to minimize wire length. Investigating 

this issue is beyond the scope of this dissertation.  

Our optimum drowsy intervals for each cache are average intervals and are therefore 

not tailored to individual application behavior. Given the wide variance in reference 

behavior shown in Figure 2, we could likely benefit more from application-specific 

intervals. However, such an approach would require the ability to program the interval 

counters. We choose to statically define the intervals for all programs to avoid this 

overhead. 
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4.5 Summary 
 

In this section, we have shown that the combination of two techniques for reducing 

memory system energy, region-based caching and drowsy caching, can have a benefit 

that is greater than the sum of their parts. Both methods achieve significant reductions in 

their targeted domains—dynamic energy for region-based caches, leakage energy for 

drowsy caches. Because region-based caching splits the reference stream into groups with 

similar locality, the activity of the separate caches is well defined. Drowsy caching 

exploits the periods of inactivity seen in both high and low locality data to remove the 

static energy penalty inherent in region-based caching. The result is a significant 

reduction in total energy consumption—as high as 77%—with a minimal performance 

penalty. 

 45 



 
 
 
 
 

CHAPTER 5 

HEAP CACHING STRATEGIES 

 

Region-based caching exploits the locality of stack and global data to reduce energy 

consumption. However, the heap region, the most difficult region of memory to manage 

well in a cache structure, limits the effectiveness of this technique. In this chapter, we 

explore a simple modification to demonstrate the benefits of further specialization: large 

and small heap caches. Applications that do not need a large cache save energy by using 

the smaller structure and turning off the larger. The remaining applications can save 

energy by keeping frequently used “hot” data in the smaller, lower-energy cache. This 

work was first presented in our second paper on drowsy region-based caches [33], and 

further explored in later work [34][35]. 

In Section 5.1, we discuss how to identify hot heap data from a data-centric 

perspective. We begin with a detailed analysis of heap data characteristics to determine 

the best heap caching strategy and cache size, and then show how our methods impact 

energy and performance. Section 5.2 approaches this problem from a different 

perspective, analyzing the characteristics of memory instructions that access the heap. 

Section 5.3 summarizes the chapter. 
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Figure 15: Miss rate by region in MediaBench applications for varying cache sizes and configurations 
[67]. The stack and global regions display high hit rates in very small caches, but in the heap region, miss 
rate increases linearly with cache size. 

5.1 Data-Centric Heap Caching 
 
The chief difficulty in caching heap data is that they typically exhibit low locality and 

have a large footprint. Figure 15 [67] plots miss rate by region versus cache size for 

applications in the Mediabench suite [66]. As the figure shows, stack and global data 

cache well even in small structures. We can approach a 99% hit rate on stack accesses 

with a very small cache, and global data only require slightly greater cache capacity. 

However, the miss rate of heap accesses decreases linearly as cache size doubles, 

suggesting that heap data possess poor locality and thus do not cache well. Figure 16, 

taken from Lee and Ballapuram [70], shows the address footprint distribution of different 

regions in the cjpeg application. Each point represents a cache hit at a given address, 

with the high order address bits plotted on the y-axis and the low order address bits on the 

x-axis. As the figure shows, heap references cover a much wider range of unique 

addresses than either of the other two regions; note that this statistic implies that heap 

accesses will suffer significantly more compulsory cache misses than stack or global  
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Figure 16: Address footprint distribution of different regions in cjpeg [70]. Each point represents a cache 
hit at a particular address. The top graph shows stack accesses; the bottom graph, global and heap accesses. 
Heap references cover a much wider range of unique addresses than either stack or global data. 

 
accesses. Lee and Ballapuram also note that benchmarks from the SPEC2000 integer 

suite [101] exhibit much larger heap footprints than MiBench applications, suggesting 

that heap working sets tend to expand faster than working sets of other regions [70]. 

These figures only tell part of the story. Figure 15 gives the average caching behavior 

of a group of benchmarks, but gives no insight into the behavior of individual programs. 

Figure 16 demonstrates how well a particular application caches data in each region, but 

does not show if these trends hold true for multiple applications. Based on these two 

 48 



figures, it would be easy to assume that all heap data shows similar characteristics. 

However, we show that the characteristics of heap data vary widely from application to 

application. The trends we show suggest a customizable solution will be the most 

effective way to cache heap data. 

5.1.1 Heap Data Characteristics 
 

We begin by examining the locality characteristics of heap data. Table 4 assesses the 

significance of the heap region within each target application, looking at its overall size 

and number of accesses relative to the other semantic regions. The second and third 

columns of the table show the number of unique block addresses accessed in the heap 

cache and the number of accesses to those addresses, respectively. Since our simulations 

assume 32B cache blocks, 1 KB of data contains 32 unique block addresses. The fourth 

and fifth columns show this same data as a percentage of the corresponding values for all 

regions (i.e., the fourth column shows the ratio of unique data addresses in the heap 

region to all unique data addresses in the application). We can see several cases that bear 

out the previous assertions about heap data: they have a large footprint and low locality. 

In these applications, the heap cache accesses occupy a much larger percentage of the 

overall footprint than of the total accesses. The most extreme cases are applications such 

as FFT.inverse and patricia in which heap accesses account for over 99% of the unique 

addresses accessed throughout the programs but comprise less than 7% of the total data 

accesses. This relationship holds in most applications; heap accesses cover an average of 

65.7% of the unique block addresses and account for 29.8% of the total data accesses. In 

some cases, we see a correlation between footprint size and number of accesses—

applications with few heap lines and few accesses, like pgp.encode, and applications  
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Benchmark # unique 
addresses

Accesses to
 heap cache 

% total unique 
addresses 

% total 
accesses

adpcm.encode 69 39971743 27.6% 39.9%
adpcm.decode 68 39971781 27.0% 39.9%
basicmath 252 49181748 61.2% 4.5%
blowfish.decode 213 39190633 39.0% 10.2%
blowfish.encode 212 39190621 38.9% 10.2%
bitcount 112 12377683 42.7% 6.7%
jpeg.encode 26012 10214537 99.2% 29.3%
CRC32 90 159955061 41.1% 16.7%
dijkstra 347 44917851 19.7% 38.3%
jpeg.decode 1510 7036942 90.2% 62.9%
FFT 16629 15262360 99.2% 8.6%
FFT.inverse 16630 14013100 99.2% 6.3%
ghostscript 59594 56805375 98.0% 15.3%
ispell 13286 28000346 96.5% 6.4%
mad 2123 40545761 82.3% 36.4%
patricia 110010 16900929 99.9% 6.6%
pgp.encode 298 252620 7.4% 1.9%
pgp.decode 738 425414 44.9% 1.5%
quicksort 62770 152206224 66.7% 12.9%
rijndael.decode 229 37374614 31.0% 21.7%
rijndael.encode 236 35791440 40.0% 19.6%
rsynth 143825 104084186 99.2% 21.4%
stringsearch 203 90920 18.2% 6.2%
sha 90 263617 20.9% 0.7%
susan.corners 18479 9614163 97.1% 63.6%
susan.edges 21028 22090676 99.1% 62.3%
susan.smoothing 7507 179696772 97.0% 41.7%
tiff2bw 2259 57427236 92.1% 98.5%
tiffdither 1602 162086279 83.1% 62.8%
tiffmedian 4867 165489090 53.0% 79.8%
tiff2rgba 1191987 81257094 100.0% 98.5%
gsm.encode 302 157036702 68.0% 11.7%
typeset 168075 153470300 98.0% 49.0%
gsm.decode 285 78866326 55.6% 21.5%
 AVERAGE 65.7% 29.8%

Table 4: Characteristics of heap cache accesses in MiBench applications, including total footprint size, 
total number of accesses, and relative contribution of heap data to the overall data footprint and reference 
count 

 
with a large percentage of both cache lines and accesses, like tiff2rgba. A few outliers 

buck the trend entirely, containing frequently accessed heap data with a relatively small 

footprint; dijkstra is one example.  

We see that about half of the applications have a fairly small number of lines in the 

heap, with 16 of the 34 applications containing fewer than 1000 unique addresses. The 

adpcm application has the smallest footprint, using 69 and 68 unique addresses—just 
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over 2 KB of data—in the encode and decode phases, respectively. The typical 32 KB L1 

heap cache is likely far larger than these applications need; if we use a smaller heap 

cache, we can dissipate less dynamic power per access with a minimal effect on 

performance. Since heap cache accesses still comprise a significant percentage of the 

overall data accesses, this change should have a noticeable effect on the dynamic energy 

consumption of these benchmarks. Shrinking the heap cache will also reduce its static 

energy consumption. Previous resizable caches disable unused ways [4][111] or sets 

[110][111] in set-associative caches; we can use similar logic to simply disable the entire 

large heap cache and route all accesses to the small cache when appropriate.  

Shrinking the heap cache may reduce the energy consumption of the remaining 

benchmarks, but the resulting performance loss may be too great to tolerate for 

applications with a large heap footprint. However, we can still gain some benefit by 

identifying a small subset of addresses with good locality and routing their accesses to a 

smaller structure. Because we want the majority of references to dissipate less power, we 

should choose the most frequently accessed lines. The access count gives some sense of 

the degree of temporal locality for a given address.  

Usually, a small number of blocks are responsible for the majority of the heap 

accesses, as shown in Table 5. The table gives the number of lines needed to cover 

different percentages—50%, 75%, 90%, 95%, and 99%—of the total accesses to the heap 

cache. We can see that, on average, just 2.14% of the cache lines cover 50% of the 

accesses. Although the rate of coverage decreases somewhat as you add more blocks—in 

other words, the first N blocks account for more accesses than the next N blocks—we 

still only need 5.84% to cover 75% of the accesses, 13.2% to cover 90% of the accesses,  
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% unique addresses needed to cover given 

percentage of heap cache accesses Benchmark # unique 
addresses 50% 75% 90% 95% 99% 

adpcm.encode 69 1.45% 2.90% 2.90% 2.90% 2.90%
adpcm.decode 68 1.47% 1.47% 1.47% 1.47% 1.47%
basicmath 252 3.97% 25.40% 48.02% 55.56% 61.90%
blowfish.decode 213 0.94% 1.41% 2.35% 26.76% 55.87%
blowfish.encode 212 0.94% 1.42% 2.36% 26.89% 56.13%
bitcount 112 0.89% 1.79% 2.68% 3.57% 3.57%
jpeg.encode 26012 0.10% 0.65% 2.91% 38.19% 87.28%
CRC32 90 2.22% 3.33% 4.44% 4.44% 4.44%
dijkstra 347 0.29% 18.16% 39.19% 49.57% 63.11%
jpeg.decode 1510 4.77% 12.32% 31.85% 44.11% 59.47%
FFT 16629 0.05% 0.14% 4.82% 40.67% 85.33%
FFT.inverse 16630 0.05% 0.14% 13.02% 44.00% 86.51%
ghostscript 59594 0.01% 0.04% 0.56% 6.64% 57.49%
ispell 13286 0.09% 0.23% 0.46% 0.68% 1.29%
mad 2123 1.32% 2.64% 9.70% 14.88% 24.54%
patricia 110010 0.02% 0.06% 0.32% 36.64% 86.03%
pgp.encode 298 0.67% 1.01% 3.69% 6.71% 26.85%
pgp.decode 738 0.27% 0.41% 1.08% 2.30% 29.67%
quicksort 62770 0.02% 0.04% 0.15% 22.08% 49.13%
rijndael.decode 229 1.31% 2.18% 6.55% 31.44% 57.21%
rijndael.encode 236 1.27% 2.97% 7.63% 32.63% 56.78%
rsynth 143825 0.00% 0.00% 0.01% 1.28% 77.33%
stringsearch 203 17.24% 42.86% 59.61% 65.52% 72.91%
sha 90 1.11% 2.22% 3.33% 3.33% 8.89%
susan.corners 18479 0.03% 3.02% 11.04% 14.87% 32.66%
susan.edges 21028 0.02% 4.92% 15.13% 20.22% 30.42%
susan.smoothing 7507 0.01% 0.09% 13.72% 30.25% 44.11%
tiff2bw 2259 10.27% 15.41% 24.26% 29.39% 37.05%
tiffdither 1602 9.43% 19.60% 25.72% 29.59% 40.76%
tiffmedian 4867 4.03% 10.89% 16.72% 20.81% 47.83%
tiff2rgba 1191987 0.04% 0.11% 57.39% 78.69% 95.73%
gsm.encode 302 2.32% 3.97% 5.96% 7.62% 10.60%
typeset 168075 5.55% 15.41% 25.53% 33.02% 60.12%
gsm.decode 285 0.70% 1.40% 4.21% 5.96% 30.53%

AVERAGE (all apps) 2.14% 5.84% 13.20% 24.49% 45.47%
AVERAGE (>1k unique addrs) 1.99% 4.76% 14.07% 28.11% 55.73%

Table 5: Number of unique addresses required to cover different fractions of accesses to the heap cache in 
MiBench applications. The data show that a small number of lines account for the majority of heap cache 
accesses, indicating that some of these lines possess better locality than previously believed. This trend is 
more apparent in applications with large heap cache footprints 

 
24.49% to cover 95% of the accesses, and 45.47% to cover 99% of the accesses. The 

percentages do not tell the whole story, as the footprint sizes are wildly disparate for 

these applications. However, the table also shows that in applications with large 

footprints (defined as footprints of 1000 unique addresses or more), the percentage of 
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addresses is lower for the first two coverage points (50% and 75%). This statistic implies 

that we can identify a relatively small subset of frequently accessed lines for all 

applications, regardless of overall footprint size. 

Since a small number of addresses account for a significant portion of the heap cache 

accesses, we can route these frequently accessed data to a smaller structure to reduce the 

energy consumption of the L1 data cache. Our goal is to maximize the low-power 

accesses without a large performance penalty, so we need to judiciously choose which 

data to place in the hot heap cache. To estimate performance impact, we use the Cheetah 

cache simulator [103] to find a lower bound on the miss rate for a given number of input 

data lines. We simulate fully-associative 2 KB, 4 KB, and 8 KB caches with optimal 

replacement [8] and route the N most frequently accessed lines to the cache, varying N by 

powers of 2. We use optimal replacement to minimize conflict misses and give a sense of 

when the cache is filled to capacity; the actual miss rate for our direct-mapped hot heap 

cache will be higher., Table 6, Table 7, and Table 8 show the results of these simulations 

for 2 KB, 4 KB, and 8 KB caches, respectively. We present only a subset of the 

applications, omitting programs with small heap footprints and a worst-case miss rate less 

than 1% because they will perform well at any cache size. 

Unfortunately, these simulations suggest little about how to split the heap cache. In 

most cases, the miss rate rises precipitously for small values of N, but levels off around N 

= 512 or 1024. This result reflects the fact that most accesses are concentrated at a small 

number of addresses. However, miss rate alone does not establish the suitability of a 

given caching scheme for heap data. Applications in which these accesses comprise a 

high percentage of total data references are less likely to tolerate a high miss rate. 
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Miss rate for given N value Benchmark 128 256 512 1024 2048 4096 8192 
jpeg.encode 0.2% 0.8% 1.8% 2.5% 2.5% 2.5% 2.5% 
dijkstra 4.2% 8.0% 8.0% 8.0% 8.0% 8.0% 8.0% 
jpeg.decode 0.4% 0.9% 1.7% 2.8% 2.8% 2.8% 2.8% 
FFT 0.1% 0.1% 0.2% 0.3% 0.4% 0.8% 1.4% 
FFT.inverse 0.1% 0.1% 0.2% 0.3% 0.5% 0.8% 1.5% 
ghostscript 0.0% 0.2% 0.3% 0.5% 0.6% 0.6% 0.8% 
ispell 0.2% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 
mad 0.7% 1.6% 2.4% 2.4% 2.4% 2.4% 2.4% 
patricia 0.7% 1.3% 1.8% 1.9% 2.0% 2.0% 2.1% 
quicksort 0.0% 0.0% 0.1% 0.1% 0.1% 0.2% 0.2% 
rsynth 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 
stringsearch 1.8% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 
susan.corners 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.2% 
susan.edges 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.2% 
susan.smoothing 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
tiff2bw 2.5% 3.8% 4.7% 5.7% 5.7% 5.7% 5.7% 
tiffdither 0.4% 0.8% 1.3% 1.6% 1.6% 1.6% 1.6% 
tiffmedian 0.5% 1.2% 2.0% 3.4% 3.5% 3.4% 3.4% 
tiff2rgba 2.5% 3.8% 4.6% 6.1% 7.1% 7.1% 7.1% 
typeset 1.4% 2.6% 2.7% 3.0% 3.4% 4.0% 5.0% 

Table 6: Miss rates for a fully-associative 2 KB cache using optimal replacement for different numbers of 
input addresses, N. These results establish a lower bound for the miss rate when caching these data. 
Applications shown either have a large heap footprint, which we define as a footprint of at least 1000 
unique addresses, or a worst-case miss rate above 1% 

 
Miss rate for given N value Benchmark 128 256 512 1024 2048 4096 8192 

jpeg.encode 0.0% 0.3% 0.9% 1.4% 1.5% 1.5% 1.5% 
dijkstra 0.0% 2.7% 2.7% 2.7% 2.7% 2.7% 2.7% 
jpeg.decode 0.0% 0.3% 0.7% 1.4% 1.5% 1.5% 1.5% 
FFT 0.0% 0.0% 0.1% 0.1% 0.3% 0.6% 1.3% 
FFT.inverse 0.0% 0.0% 0.1% 0.2% 0.4% 0.7% 1.4% 
ghostscript 0.0% 0.0% 0.0% 0.1% 0.2% 0.3% 0.4% 
ispell 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 
mad 0.0% 0.8% 1.6% 1.6% 1.6% 1.6% 1.6% 
patricia 0.0% 0.3% 0.5% 0.6% 0.6% 0.6% 0.7% 
quicksort 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.2% 
rsynth 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 
stringsearch 0.2% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 
susan.corners 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 
susan.edges 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 
susan.smoothing 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
tiff2bw 0.0% 2.5% 3.9% 5.0% 5.0% 5.0% 5.0% 
tiffdither 0.0% 0.5% 1.1% 1.3% 1.3% 1.3% 1.3% 
tiffmedian 0.0% 0.8% 1.3% 2.9% 3.0% 3.0% 3.0% 
tiff2rgba 0.0% 2.5% 3.1% 4.6% 5.8% 5.8% 5.8% 
typeset 0.0% 0.1% 0.2% 0.5% 0.9% 1.4% 2.3% 

Table 7: Miss rates for a fully-associative 4 KB cache using optimal replacement for different numbers of 
input addresses. Applications are the same set shown in Table 6 
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Miss rate for given N value Benchmark 128 256 512 1024 2048 4096 8192 

jpeg.encode 0.0% 0.0% 0.2% 0.6% 0.6% 0.7% 0.7% 
dijkstra 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
jpeg.decode 0.0% 0.0% 0.2% 0.7% 0.7% 0.7% 0.7% 
FFT 0.0% 0.0% 0.0% 0.1% 0.3% 0.6% 1.2% 
FFT.inverse 0.0% 0.0% 0.0% 0.1% 0.3% 0.7% 1.4% 
ghostscript 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.2% 
ispell 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
mad 0.0% 0.0% 0.8% 0.9% 0.9% 0.9% 0.9% 
patricia 0.0% 0.0% 0.1% 0.2% 0.3% 0.3% 0.3% 
quicksort 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 
rsynth 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 
stringsearch 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 
susan.corners 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 
susan.edges 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 
susan.smoothing 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
tiff2bw 0.0% 0.0% 2.4% 3.6% 3.7% 3.7% 3.7% 
tiffdither 0.0% 0.0% 0.6% 0.8% 0.8% 0.8% 0.8% 
tiffmedian 0.0% 0.0% 0.2% 1.9% 2.0% 2.0% 2.0% 
tiff2rgba 0.0% 0.0% 0.5% 1.7% 3.2% 3.3% 3.3% 
typeset 0.0% 0.0% 0.0% 0.0% 0.2% 0.6% 1.3% 

Table 8: Miss rates for a fully-associative 8 KB cache using optimal replacement for different numbers of 
input addresses. Applications shown are the same set shown in Table 6 

5.1.2 Split Heap Heuristics 
 

Section 5.1.1 motivates the need for two separate heap caches, one large and one 

small, to accommodate the needs of all applications. As shown in Table 4, many 

applications have small heap footprints and therefore do not require a large heap cache; in 

these cases, we can disable the large cache and place all heap data in the smaller 

structure. This approach will reduce dynamic energy by routing accesses to a smaller 

structure and reduce static energy by decreasing the active cache area. Applications with 

large heap footprints are more likely to require both caches to maintain performance. We 

showed in Table 5 that most heap references access a small subset of the data; by keeping 

this hot data in the smaller structure, we can save dynamic energy. In all cases, we can 

further lower static energy consumption by making the caches drowsy. 
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In order to gain the maximum benefit from split heap caching, we would like to route 

as many accesses as possible to a small cache. The Cheetah simulations discussed above 

indicate that varying the cache size will not have a dramatic effect on performance, so we 

choose the smallest cache size studied—2 KB—and route the 256 most accessed lines to 

that cache when splitting the heap. This approach should give us a significant energy 

reduction without compromising performance. We statically determine which data to 

route based on a profiling run of the application; in practice, the compiler would perform 

this task. Our approach assumes the existence of separate heap allocation functions to 

allocate objects to different regions of memory. Frequently accessed heap structures 

reside in their own heap, allowing us to maintain the bounds-checking mechanism used in 

region-based caches to route data to the appropriate cache. The ARM architecture, which 

contains two regions for heap data, as shown in Figure 1, is particularly well suited to this 

approach. Other architectures must set aside a portion of the existing heap for highly 

local data, perhaps reserving the upper addresses of the region for this use. 

We use a simple heuristic in this work to show the potential effectiveness of our 

caching strategies. A more refined method that effectively incorporates miss rate 

estimates as well as footprint size and access percentages would likely yield better 

results. However, determining an appropriate heuristic is difficult. We explored more 

complex metrics for determining which data to route with little success. Our initial 

attempt at heap partitioning used access intervals for each cache line; if a majority of 

accesses to a line occurred within a small interval, we considered the line “hot” and 

routed it to the small cache [33]. This method generated prohibitively large profiles, and 

the heuristic often chose hot data too aggressively, thus dramatically increasing conflicts 
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and reducing performance. Determining the appropriate capacity for the hot heap cache is 

problematic, however, because that capacity is application-dependent. Determining the 

right amount of data to reroute requires explicitly simulating different input data sets for 

the hot heap cache, as we did in the Cheetah simulations shown earlier. This problem 

clearly requires further investigation. 

Although we only consider static data mapping in this dissertation, dynamically 

mapping lines to the hot heap cache might also yield further benefits. Dynamic mapping 

would allow us to further customize the caching strategy and exploit the varying behavior 

of different program phases. The downside to this approach would be the complexity of 

implementation and the hardware overhead required. 

5.1.3 Experiments 
 

Figure 17 and Figure 18 show simulation results for region-based caches using three 

different heap cache configurations:  a large (32 KB) unified heap cache, a small (2 KB) 

unified heap cache, and a split heap cache using both the large and small caches. We 

present normalized energy and performance numbers, using a single 32 KB direct-

mapped L1 data cache as the baseline. Because all region-based caches are direct-mapped 

to minimize energy consumption, we use a direct-mapped baseline to ensure a fair 

comparison. We consider the most effective configuration to be the cache organization 

with the lowest energy-delay product ratio [38]. 

For applications with a heap footprint under 1000 lines, the split cache is 

unnecessary. Figure 17 shows the results from these applications. Figure 18, which shows 

applications with large heap footprints, adds the energy and performance numbers for the 

split cache. As expected, using the small heap cache and disabling the large offers the  
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Figure 17: Energy (top graph) and performance (bottom graph) results for MiBench applications with 
small heap footprints (less than 1000 unique addresses) using region-based caches with large and small 
unified heap caches. The baseline is a 32 KB direct-mapped unified L1 data cache. Speedups for the large 
heap cache are due to reduced conflicts between regions 
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Figure 18: Energy (top graph) and performance (bottom graph) results for MiBench applications with large 
heap footprints (greater than 1000 unique addresses) using three different heap cache configurations: a 
large unified heap cache, a small unified heap cache, and a split heap cache employing both large and small 
caches. The baseline is a 32 KB direct-mapped unified L1 data cache. Speedups for the large heap cache 
are due to reduced conflicts between regions 
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best energy savings across the board. Most applications consume over 70% less energy in 

this case; however, some applications suffer significant performance losses, most notably 

susan.corners and susan.edges. 20 of the 34 applications in the MiBench suite 

experience performance losses of less than 1% or slight speedups, including ghostscript, 

mad, patricia, rsynth, and susan.smoothing—all applications with large heap 

footprints. This result suggests that heap data in these applications have good locality 

characteristics and are frequently accessed while present in the cache. Another 

application, quicksort, suffers significant performance losses for all configurations due to 

an increased number of global misses, and therefore still benefits most from using the 

small heap cache. In all of these cases, we gain substantial energy savings with virtually 

no performance loss, reducing overall energy consumption by up to 86%. Several 

applications actually experience small speedups, a result of reduced conflict between 

regions and the lower hit latency for the smaller cache. 

For applications that suffer substantial performance losses with the small cache alone, 

the split heap cache offers a higher-performance alternative that still saves energy. The 

most dramatic improvements can be seen in susan.corners and susan.edges. With the 

large heap cache disabled, these two applications run more than twice as slow; with a 

split heap cache, they experience small speedups. Other applications, such as FFT and 

tiff2rgba, run close to 30% slower with the small cache and appear to be candidates for a 

split heap cache. However, the energy required to keep the large cache active 

overwhelms the performance benefit of a split heap, increasing the energy-delay product. 

Figure 19 shows simulation results for drowsy heap caching configurations. In all 

cases, we use the ideal drowsy intervals derived in [33]—for the unified heap caches, 512  
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Figure 19: Energy (top graph) and performance (bottom graph) results for MiBench applications with large 
heap footprints (greater than 1000 unique addresses) using three different heap cache configurations: a 
large unified heap cache, a small unified heap cache, and a split heap cache employing both large and small 
caches. The baseline is a 32 KB direct-mapped unified L1 data cache with a 512-cycle drowsy interval; all 
region caches use ideal drowsy intervals derived in [33] 
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cycles; for the split heap cache, 512 cycles for the hot heap cache and 1 cycle for the cold 

heap cache. The stack and global caches use 512 and 256 cycle windows, respectively. 

We assume a 1 cycle latency for transitions to and from drowsy mode. Note that drowsy 

caching alone significantly reduces energy for these benchmarks [33]. 

Although all caches benefit from the static energy reduction offered by drowsy 

caching, this technique has the most profound effect on the split heap caches. Since the 

applications with small heap footprints do not require a split cache, the figure only shows 

the larger benchmarks. Drowsy caching all but eliminates the leakage energy of the large 

heap cache, as it contains rarely accessed data with low locality and is therefore usually 

inactive. Since the small cache experiences fewer conflicts in the split heap scheme than 

by itself, its lines are also less active and therefore more conducive to drowsy caching. 

Both techniques are very effective at reducing the energy consumption of these 

benchmarks. Drowsy split heap caches save up to 69% of the total energy, while the 

small caches alone save between 72% and 81%. Because drowsy caching has a minimal 

performance cost, the runtime numbers are similar to those shown in the previous figure. 

The small cache alone and the split heap cache produce comparable energy-delay values 

for several applications; ispell is one example. In these cases, performance-conscious 

users can employ a split heap cache, while users desiring lower energy consumption can 

choose the small unified heap cache. 

Shrinking the large heap cache further alleviates its effect on energy consumption. 

The data remaining in that cache is infrequently accessed and can therefore tolerate an 

increased number of conflicts. Figure 20 shows simulation results for two different split 

heap configurations—one using a 32 KB cache for cold heap data, the other using an  
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Figure 20: Energy (top graph) and performance (bottom graph) results for MiBench applications with large 
heap footprints (greater than 1000 unique addresses) using three different heap cache configurations: a 
small unified heap cache, and split heap caches using either a 32 KB cache or an 8 KB cache for low-
locality heap data. The baseline is a 32 KB direct-mapped unified L1 data cache with a 512-cycle drowsy 
interval; all region caches use ideal drowsy intervals derived in [33] 
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8 KB cache—as well as the 2 KB unified heap cache. All caches are drowsy. The unified 

cache is still most efficient for the majority of applications, but shrinking the cold heap 

cache narrows the gap between unified and split heap configurations. Applications such 

as susan.corners and tiff2rgba, which contain a number of accesses to the cold heap 

cache, see the greatest benefit from this modification, with tiff2rgba consuming 32% less 

energy with the smaller cold heap cache. Overall, these applications save between 62% 

and 73% of the total energy. 

5.2 Instruction-Centric Heap Caching 
 

To this point, we have focused on analyzing heap data to determine how best to cache 

them. When only a subset of the data displays good locality, we use access frequency to 

identify hot data to store in a smaller cache. We now approach the same problem from a 

different angle—rather than looking at the locality characteristics of a particular line, we 

examine the references themselves. One advantage is that an instruction-based profile is 

often virtually independent of the program input. Although the data may affect how often 

a particular instruction executes, most programs follow the same general execution and 

therefore display the same relative behavior. Choosing hot data through their referencing 

instructions exploits locality in a different manner. Regularly accessed cache lines have 

high temporal locality. We cannot necessarily say the same about the targets of frequently 

executed memory instructions, as each instruction can access many addresses. However, 

this method effectively leverages spatial locality, as a single load often accesses 

sequential locations. Tight inner loops of program kernels display this behavior when 

accessing arrays or streams.  
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% memory instructions needed to 
cover given 

percentage of heap cache accesses Benchmark # memory 
instructions 

50% 75% 90% 95% 99% 
adpcm.encode 171 1.2% 1.8% 1.8% 1.8% 1.8%
adpcm.decode 173 1.2% 1.7% 1.7% 1.7% 1.7%
basicmath 373 1.1% 4.8% 8.6% 10.5% 18.2%
blowfish.decode 325 1.2% 2.2% 2.5% 2.8% 2.8%
blowfish.encode 325 1.2% 2.2% 2.5% 2.8% 2.8%
bitcount 244 0.4% 0.8% 1.2% 1.6% 1.6%
jpeg.encode 1406 1.1% 3.0% 6.5% 8.9% 15.3%
CRC32 329 0.9% 1.2% 1.5% 1.5% 1.5%
dijkstra 383 0.8% 1.0% 1.3% 5.7% 14.4%
jpeg.decode 1192 1.2% 2.6% 4.9% 6.8% 11.8%
FFT 329 5.2% 11.2% 17.0% 20.4% 24.3%
FFT.inverse 327 4.9% 11.3% 17.7% 21.4% 25.1%
ghostscript 7501 0.2% 0.3% 1.5% 4.1% 13.5%
ispell 649 2.3% 4.2% 7.1% 10.8% 18.3%
mad 1043 2.9% 4.5% 7.2% 11.2% 15.0%
patricia 420 3.3% 10.7% 20.5% 23.8% 26.7%
pgp.encode 1119 0.4% 0.5% 2.1% 4.8% 22.5%
pgp.decode 1022 0.4% 0.6% 1.2% 2.7% 17.7%
quicksort 337 2.4% 5.9% 10.4% 12.5% 14.8%
rijndael.decode 540 13.7% 22.2% 27.4% 29.3% 31.1%
rijndael.encode 617 11.2% 18.3% 22.5% 24.1% 25.3%
rsynth 889 2.2% 4.2% 5.5% 7.6% 15.0%
stringsearch 210 1.9% 7.1% 11.9% 15.7% 21.9%
sha 276 1.1% 1.4% 1.8% 1.8% 8.0%
susan.corners 691 4.2% 8.0% 15.6% 18.5% 21.1%
susan.edges 878 6.8% 13.4% 21.5% 25.3% 28.6%
susan.smoothing 517 0.4% 0.6% 0.6% 0.6% 0.6%
tiff2bw 1036 0.4% 0.7% 1.1% 1.4% 1.8%
tiffdither 1314 0.6% 0.9% 2.8% 4.3% 6.8%
tiffmedian 1359 0.7% 1.0% 1.5% 1.8% 3.0%
tiff2rgba 1154 0.8% 1.6% 2.6% 2.9% 3.1%
gsm.encode 736 3.0% 5.3% 7.1% 8.2% 13.5%
typeset 17235 0.6% 1.9% 3.8% 6.7% 16.2%
gsm.decode 555 0.9% 1.4% 2.9% 3.4% 7.6%

AVERAGE 2.4% 4.7% 7.2% 9.0% 13.3%

Table 9: Number of memory instructions that reference the heap required to cover different fractions of 
accesses to the heap cache in MiBench applications. As with the data itself, a small number of loads and 
stores account for the majority of heap cache accesses 

 

5.2.1 Heap Access Characteristics 
 

In Table 5, we showed that a small number of blocks are responsible for the majority 

of heap accesses. This trend is even more apparent for memory instructions, as shown in 

Table 9. Just 2.4% of the loads and stores to the heap cache cover 50% of the accesses—a 
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similar figure to the 2.1% of heap addresses required to cover the same percentage of 

accesses. The numbers do not increase greatly as we look at different coverage points, 

with approximately 13% of the memory instructions accounting for 99% of the heap 

references. These results reflect the oft-quoted maxim that programs spend 90% of their 

time in 10% of the code. Note that the number of instructions accessing the heap cache 

remains fairly consistent across applications, unlike the size of the heap data footprint. 

Our studies show that a small percentage of loads and stores access multiple regions. 

The data suggest that we can treat heap references in a similar manner to heap data 

when determining how to cache this region. Because a small number of instructions 

account for most accesses, we can move their targets to a smaller cache, maintaining a 

larger cache for the remaining references. Note that only identifying the most frequently 

executed memory instructions will not sufficiently capture the appropriate accesses. 

Other memory references that share the same targets must also access the hot heap cache. 

Choosing appropriate instructions involves an iterative routine that ceases when the set of 

target addresses overlaps with no remaining references. In practice, we use the method 

discussed in Section 5.1 to route data to a separate structure once instruction targets are 

identified; those targets use a separate heap allocator and are placed in their own region. 

5.2.2 Experiments 
 

Figure 21 shows some preliminary results from this approach. As in Figure 17 and 

Figure 18, we compare three non-drowsy cache configurations: a large (32 KB) unified 

heap cache, a small (2 KB) unified heap cache, and a split cache employing both large 

and small caches. We use the 128 most executed load instructions as a starting point for 

routing data between the caches. The figure shows a subset of the MiBench applications,  
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Figure 21: Energy (top graph) and performance (bottom graph) for a subset of MiBench applications using 
different non-drowsy heap cache configurations. The baseline is a 32 KB direct-mapped unified L1 data 
cache. The hardware configurations are the same as in Figure 17 and Figure 18, but in the split heap cache, 
data are routed to the hot heap cache based on the frequency of the accessing instructions, not references to 
specific blocks 
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Figure 22:  Energy (top graph) and performance (bottom graph) results for a subset of MiBench 
applications using different drowsy heap cache configurations. The baseline is a 32 KB direct-mapped 
unified L1 data cache with a 512-cycle drowsy interval. The hardware configurations are the same as in 
Figure 19, but in the split heap cache, data are routed to the hot heap cache based on the frequency of the 
accessing instructions, not references to specific blocks 
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as the space requirements for the memory instruction profiles currently prevents the 

execution of some of the larger applications. Therefore, the small unified heap cache 

unsurprisingly represents the ideal design point for the benchmarks shown. For the most 

part, the results for the split heap configuration are similar to those shown in Figure 17 

and Figure 18, with energy savings ranging between 1% and 16%. 

In Figure 22, we evaluate drowsy heap cache configurations using the same routing 

methodology. As with the data shown in Figure 19, the addition of drowsy caching 

significantly improves the energy consumption of the split cache, leading to comparable 

results for the small cache and split cache in several cases. Energy savings range from 

48% to 67% in the split heap caches for the applications shown. 

5.3 Summary 
 

In this chapter, we evaluated a new multilateral cache organization designed to tailor 

cache resources to the individual reference characteristics of an application. To ensure 

that all applications perform well, we maintain two heap caches: a small, low-energy 

cache for frequently accessed heap data, and a larger structure for low-locality data. In 

most applications, the heap footprint is small and the data possesses good locality 

characteristics, allowing us to save energy by disabling the larger cache and routing data 

to the smaller cache. Those applications that do have a large heap footprint can use both 

heap caches, routing a frequently-accessed subset of the data to the smaller structure. 

Adding drowsy caching to our split heap cache eliminates most of the static energy 

dissipation and provides even greater savings. 
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CHAPTER 6 

PREFETCHING WITH REGION-BASED CACHES 

 

Thus far, our focus has been the reduction of energy consumption through intelligent 

cache partitioning. Partitioning the cache can also improve schemes that target memory 

system performance, such as prefetching. Data prefetching reduces cache miss effects by 

anticipating data access patterns and fetching data prior to its use. However, aggressive 

hardware prefetching methods may over-speculate, caching unnecessary data. In this 

chapter, we explore prefetching in region-based caches and show how isolating data with 

predictable access patterns can improve prefetch algorithms. 

In Section 6.1, we discuss methods for assessing prefetch effectiveness, focusing on a 

taxonomy that classifies prefetches into several distinct categories to quantify their 

impact on cache misses and bus traffic. We then use the taxonomy to evaluate four 

prefetch algorithms on MiBench applications. In Section 6.2, we use this information to 

form a new region-based cache organization for prefetching. We then present our 

experimental results in Section 6.3. Section 6.4 summarizes the chapter. 

6.1 Evaluating Prefetch Effectiveness 
 

To be effective, prefetches must be timely and accurate, and have good coverage. 

However, these goals are often at odds with one another. Data prefetched long before it is 
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accessed can evict active blocks from the cache, creating additional misses. Aggressive, 

highly speculative prefetch methods can also cache unnecessary data. However, failure to 

prefetch early enough diminishes prefetch usefulness and adds overhead to the program 

execution. To improve data prefetching mechanisms, we must determine how well they 

meet the goals outlined above, what data they prefetch well, and where their 

inefficiencies lie.  

6.1.1 Metrics for Prefetch Effectiveness 
 

A number of metrics exist for measuring the effectiveness of prefetch algorithms. 

Commonly used metrics include statistics such as misses, traffic, and cycles per 

instruction (CPI) that assess the effect of prefetching on the entire system. Gross 

performance measures do give a broad sense of a prefetcher’s overall impact, but they 

provide little insight into whether that algorithm can be improved. 

Since prefetching tries to eliminate stall cycles due to cache misses, many papers use 

metrics that compare prefetch numbers to miss totals. To calculate these figures, 

prefetches are classified as “good” or “bad.” A good prefetch fetches data that is 

referenced before it is evicted from the cache; a bad prefetch does not. Consider a cache 

that generates M misses without prefetching and a prefetch algorithm that produces G 

good prefetches and B bad prefetches in that same cache. The coverage of the prefetch 

algorithm is (G / M)—the ratio of good prefetches to misses. The accuracy of the 

prefetch algorithm is G / (G + B)—the fraction of all prefetches classified as good. These 

metrics can identify prefetch algorithms that over-speculate. Because aggressive 

prefetchers base their predictions on reference stream history or simple heuristics, they 

may choose addresses that eliminate no misses. 
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These metrics rely on the flawed assumption that every good prefetch replaces a miss. 

In fact, a prefetch that eliminates a cache miss for its target address may cause a miss for 

the block the prefetch replaced, leaving the total number of misses unchanged. Such 

prefetches also increase traffic between cache levels and may even generate additional 

prefetches, some of which might be classified as “good.” The number of good prefetches 

can therefore exceed the baseline miss count, resulting in a nonsensical coverage value 

greater than one. We therefore see that ineffective prefetch algorithms can still have good 

coverage and accuracy. 

Srinivasan et al. address these issues with the Prefetch Traffic and Miss Taxonomy 

(PTMT) [100]. PTMT is an event-driven system that evaluates prefetch algorithms by 

tracking accesses and replacements for each prefetched block and the block it replaces. 

By simultaneously simulating two identical caches, one of which uses prefetching (pf-

cache) and one that does not (conv-cache), PTMT can quantify the effects of individual 

prefetches on cache misses and traffic. The taxonomy identifies ten separate prefetch 

cases, as shown in Table 10. Those cases are then broadly classified into four categories 

that replace the simplistic “good/bad” characterization: useful, useless, polluting, and 

side-effect. Table 11 shows each category and the cases it covers. A useful prefetch 

replaces a miss without increasing traffic. The replaced block is either evicted from the 

conv-cache or prefetched into the pf-cache before its next access. Useless prefetches do 

not change the number of misses and increase traffic by one line per prefetch. Some 

useless prefetches fetch data that remained available in the conv-cache—blocks that were 

evicted from the pf-cache by other prefetches. In these cases, no misses can be saved. 

Other useless prefetches trade a miss to the prefetched block for a miss to the replaced  
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pf-cache outcomes conv-cache outcomes Extra Case x (prefetched) y (replaced) x (prefetched) y (replaced) Traffic Misses

1 hit miss hit hit 2 1 
2 hit prefetched hit hit 1 0 
3 hit don’t care hit replaced 1 0 
4 hit miss miss hit 1 0 
5 hit prefetched miss hit 0 -1 
6 hit don’t care miss replaced 0 -1 
7 replaced miss don’t care hit 2 1 
8 replaced prefetched don’t care hit 1 0 
9 replaced don’t care don’t care replaced 1 0 

Table 10: Prefetch cases for PTMT classification [100]. PTMT relies on simultaneous simulation of two 
caches—one with prefetching (pf-cache), one without (conv-cache)—to determine if each prefetch 
improves or degrades miss and traffic numbers. The taxonomy classifies prefetches based on the outcome 
of the next reference to each prefetched and replaced block. The table does not show the 10th PTMT case, 
side-effect prefetches, because such prefetches only occur in LRU set-associative caches 

 
Category Cases Extra 

Traffic
Extra 

Misses
Useful  5, 6 0 -1 
Useless  2, 3, 4, 8, 9 1 0 
Polluting 1, 7 2 1 
Side-Effect 10 1 1 

Table 11: Prefetch categories that encompass each of the 10 PTMT cases [100]. Useful prefetches replace 
misses without increasing traffic. Useless prefetches have no effect on the overall miss count and increase 
traffic by one line per prefetch. Polluting prefetches increase both cache misses and memory traffic. Side-
effect prefetches occur only in LRU set-associative caches; these prefetches cause unexpected evictions by 
reordering the LRU stack 

 
block, thus leaving the miss rate unchanged. The last type of useless prefetch prefetches 

data that are never referenced before their eviction. Polluting prefetches increase both 

cache misses and traffic, causing an extra miss for both the block they evict and the block 

they prefetch. The last PTMT category, side-effect prefetches, only occur in set-

associative caches with LRU replacement. Because prefetched blocks move to the MRU 

way of their set, they may re-order the LRU stack and evict blocks that would otherwise 

remain in the cache. Each side-effect prefetch causes an extra miss and an extra line of 

traffic for the improperly evicted block. Note that the first six prefetch cases qualify as 

“good” prefetches when calculating coverage and accuracy. However, only two of the six 

cases are useful prefetches. 

 73 



PTMT has some limitations. Blocks that are not referenced or evicted before the 

program completes are not classified. Experiments run on several SPEC CPU2000 

benchmarks indicate that unclassified prefetches can account for over 50% of all 

prefetches [12]. Also, some prefetches—particularly those that occur early in a program 

run—fill empty, invalid lines and therefore cause no eviction. We can classify these 

prefetches by determining the correct outcome for an invalid or dead block as follows: 

• If the prefetched data is the first valid data in a given block, treat the “replaced 

block” as if it was replaced in the conv-cache, leading to a “don’t care” 

outcome in the pf-cache. This prefetch is therefore a case 3, 6, or 9 prefetch. 

• If the prefetched block is never referenced or replaced, treat it as if it were 

replaced in the pf-cache, leading to a “don’t care” outcome in the conv-cache. 

This prefetch is therefore a case 7, 8, or 9 prefetch. 

• If the replaced block is never referenced or replaced, treat it as if it were 

replaced in the conv-cache, leading to a “don’t care” outcome in the pf-cache. 

This prefetch is therefore a case 3, 6, or 9 prefetch. 

 

PTMT also does not directly address prefetch timeliness. An access to a prefetched 

block that is still in-flight is treated as a hit; additional state is necessary to determine if 

that hit is delayed or not. Blocks that are prefetched too early are replaced in the pf-cache 

prior to their next access, making the corresponding prefetch a case 7, 8, or 9 prefetch. 

We do not explicitly consider the effects of prefetch chains within PTMT. Three 

prefetch cases—case 2, 5, and 8—list “prefetched” as the outcome for the replaced block 

in the pf-cache. Each of these prefetches is therefore chained to another prefetch, which 
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may in turn chain to other prefetches. Srinivasan et al. [100] show that the regular 

expression (2,5,8)(2)*(1,3) describes all prefetch chains—each case 2, 5, or 8 prefetch 

starts a chain of at least two prefetches that ends with a case 1 or case 3 prefetch. Any 

additional prefetches in the middle are case 2 prefetches. Only prefetch chains starting 

with case 5 prefetches may be useful; all others contain useless or polluting prefetches. 

The usefulness of such chains depends on their overall length. As shown in the next 

section, none of our target applications contain any case 5 prefetches, so we can safely 

ignore chain effects. 

6.1.2 Evaluation of Existing Prefetch Algorithms 
 

In this section, we use PTMT to evaluate the effectiveness of several existing prefetch 

algorithms. We use the following four hardware prefetch mechanisms:  

• Next sequential prefetching (NSP) [96]:  Also known as one block 

lookahead, NSP relies on spatial locality and predicts that an access to block x 

will be followed by an access to block x+1. We prefetch only on a cache miss. 

• Tagged next sequential prefetching (tNSP) [37]: tNSP is a variation of NSP 

that associates a tag bit with each block. The bit is initially zero and is set to 

one on any access; it is reset to zero when the block is evicted. An access that 

causes the tag to transition from zero to one—the first access to a block after a 

demand fetch or prefetch—generates a prefetch to the next sequential block. 

• Stride prefetching using a reference prediction table (RPT) [21]: The RPT is 

designed to exploit regular accesses in program loops. Figure 23 shows its 

basic layout. The RPT is a direct-mapped, cache-like structure that is indexed 

by instruction address. Each entry contains the last referenced address  
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Figure 23: Layout of the reference prediction table (RPT) [21]. The RPT is a cache-like structure indexed 
by instruction address. For each memory instruction, the RPT tracks the last referenced address 
(prev_addr) and the difference between the last two addresses (stride). On a reference, the RPT adds the 
prev_addr and stride fields to generate an address prediction and also calculates a new stride. The state 
field tracks the number of consecutive successful predictions and determines if prefetches are issued 

 
(prev_addr) and difference between the last two addresses (stride), as well as 

a two-bit state encoding of this instruction’s past prefetch history. On each 

data reference, the RPT computes the actual stride between addresses and 

compares it to the stride field, updating that field on a mismatch. State 

transitions are based on that comparison; two consecutive mismatches place 

the predictor in a “no prediction” state. In any other state, the RPT prefetches 

from address (prev_addr + stride). Chen and Baer discuss three different 

RPT configurations: basic, lookahead, and correlating. The lookahead 

scheme uses an extra program counter (the LA-PC) to run ahead and generate 

prefetches to improve timeliness. A branch predictor facilitates this operation. 

The correlated RPT tracks previous branch history and maintains two  
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Figure 24: Sample miss address stream and associated Markov graph. Each edge represents the probability 
of the connected addresses appearing consecutively 

 

 
Figure 25: Table used to approximate a Markov graph in hardware using LRU replacement [54]. The 
MRU way of each set holds the address with the highest transition probability. On a miss, up to four 
prefetch predictions are issued to the prefetch request queue, with the most likely address given the highest 
priority. When the memory bus is free, the address at the head of the queue is fetched from the L2 cache 
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prev_addr and stride fields, ostensibly for inner and outer loops. We use the 

basic configuration in this work. 

• Markov prefetching [54]: A Markov prefetcher uses the miss address stream 

to generate multiple prefetch predictions. A pure Markov model tracks the 

probability of two addresses appearing consecutively, as shown in Figure 24. 

The edges of the graph represent the transition probabilities from one miss 

address to the next; for example, the probability of a miss to block A being 

followed by a miss to block E is 0.25. Since maintaining a full Markov graph 

in hardware is inefficient, Joseph and Grunwald advocate approximating the 

Markov graph in a table with LRU replacement, with the MRU way of each 

set holding the address with highest transition probability. As shown in Figure 

25, each set corresponds to a single miss address and contains up to four 

potential prefetch targets. If a miss address is present in the Markov table, up 

to four prefetch requests are submitted to the prefetch request queue, a 

prioritized list of potential prefetch targets. The MRU address generates the 

highest priority request, which can only be superceded by CPU demand 

fetches. When the memory bus is free, the address at the head of the queue is 

sent to the L2 cache. 

 
We use a 512-entry RPT, as in Chen and Baer’s work [21]; since the prev_addr and 

stride fields each require four bytes and each entry uses two state bits, this structure is 

roughly equivalent to a 4 KB direct-mapped cache. The Markov prefetcher uses a 1 MB 

table, as in Joseph and Grunwald’s paper [54], that resides in the L2  cache. We prefetch 

directly to the L1 cache, which contradicts the results of several studies. Nesbit and Smith 
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note that prefetching beyond the L2 cache has little benefit because prefetching at higher 

cache levels tends to increase cache pollution [78]. However, these benchmarks are less 

memory-intensive than applications used in previous prefetching studies. Also, our cache 

architecture minimizes cache pollution and allows us to benefit from prefetching at the 

highest level of the cache. 

We begin with the results of our PTMT evaluation, shown in Figure 26 through 

Figure 29. For all simulations, we used a 32 KB direct-mapped cache with 32-byte 

blocks. The overhead of tracking prefetch information in some applications led to 

prohibitively long runtimes. The figures therefore show a subset of the MiBench 

applications. At this point, only half of the benchmarks run to completion with the RPT, 

so we only show applications that complete successfully. 

The figures show the breakdown of PTMT cases for each prefetch algorithm. Overall, 

we see that the RPT prefetches best, averaging 78.3% useful prefetches. Because most 

embedded kernels contain loops that access data streams or arrays with regular strides, 

the RPT correctly predicts most of these accesses. NSP and tNSP also perform well with 

MiBench applications, containing 49% and 63.7% useful prefetches, respectively. The 

Markov prefetcher, which is best suited to irregular access patterns that are typically not 

found in embedded applications, is the least effective of the four, with only 31.9% useful 

prefetches. Judging by the raw prefetch numbers, it appears that the Markov prefetcher 

aggressively fetches too many blocks. The variance in prefetch effectiveness across 

application argues for an application-specific approach to prefetching. 

In Figure 30 through Figure 33, we evaluate the same applications using region-based 

caches, with mixed results. Because the small caches increase conflict misses in the stack 
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Figure 26: PTMT evaluation for next sequential prefetching (NSP) in a unified 32 KB L1 data cache. The 
figure shows the fraction of prefetches that fit into each PTMT case for a subset of MiBench applications. 
Applications in which NSP works effectively contain a higher percentage of case 5 and 6 prefetches 
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Figure 27: PTMT evaluation for tagged next sequential prefetching (tNSP) in a unified 32 KB L1 data 
cache. The figure shows the fraction of prefetches that fit into each PTMT case for a subset of MiBench 
applications. Applications in which tNSP works effectively contain a higher percentage of case 5 and 6 
prefetches 
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Figure 28: PTMT evaluation for prefetching using a reference prediction table (RPT) in a unified 32 KB 
L1 data cache. The figure shows the fraction of prefetches that fit into each PTMT case for a subset of 
MiBench applications. Applications in which the RPT works effectively contain a higher percentage of 
case 5 and 6 prefetches 
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Figure 29: PTMT evaluation for Markov prefetching in a unified 32 KB L1 data cache. The figure shows 
the fraction of prefetches that fit into each PTMT case for a subset of MiBench applications. Applications 
in which the Markov prefetcher works effectively contain a higher percentage of case 5 and 6 prefetches 
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Figure 30: PTMT evaluation for NSP in region-based caches. The figure shows the fraction of prefetches 
that fit into each PTMT case for a subset of MiBench applications. Applications in which NSP works 
effectively contain a higher percentage of case 5 and 6 prefetches.  
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Figure 31: PTMT evaluation for tNSP in region-based caches. The figure shows the fraction of prefetches 
that fit into each PTMT case for a subset of MiBench applications. Applications in which tNSP works 
effectively contain a higher percentage of case 5 and 6 prefetches.  
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Figure 32: PTMT evaluation with region-based caches for the RPT in region-based caches. The figure 
shows the fraction of prefetches that fit into each PTMT case for a subset of MiBench applications. 
Applications in which the RPT works effectively contain a higher percentage of case 5 and 6 prefetches.  
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Figure 33: PTMT evaluation with region-based caches for Markov prefetching in region-based caches. The 
figure shows the fraction of prefetches that fit into each PTMT case for a subset of MiBench applications. 
Applications in which the Markov prefetcher works effectively contain a higher percentage of case 5 and 6 
prefetches. 

 

 83 



and global regions, the number of prefetches increases as well. Some applications and 

algorithms benefit from the partitioned references. For example, sha, which generates 

few useful prefetches (26.8%) using tNSP in a 32 KB cache, sees mostly useful 

additional prefetches in region-based caches, raising that percentage to 86.2%. In other 

cases, the prefetch algorithms become overly aggressive. The adpcm applications 

experience a drop from 43% to 3% useful prefetches using NSP with the two 

configurations. On average, tagged NSP (65.9% useful prefetches) and Markov 

prefetching (34.1% useful) improve slightly with region-based caches, while the NSP 

(47.8% useful) and RPT (72.1% useful) algorithms are less effective. 

To determine which regions prefetch best, we examine the percentage of useful 

prefetches in each region cache in Figure 34 through Figure 37. Note that some 

applications show zero bars for the Markov prefetcher. In most cases, that value implies 

that no prefetches were generated for that cache; the exception is adpcm.decode, in 

which stack prefetches were generated, but none of them were useful. 

For both flavors of next sequential prefetching (NSP and tNSP), the stack 

experienced the highest percentage of useful prefetches—67.5% and 69.0%, 

respectively—because stack data typically possess a small, highly local working set. The 

RPT is most effective (79% useful prefetches) in the global region, implying that 

structures referenced in a regular pattern reside in the global space. We see that for all 

mechanisms except the ineffective Markov prefetcher, the percentage of useful stack 

prefetches is consistently around 66%. The usefulness of prefetches in other regions 

varies more widely across algorithms. 
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Figure 34: Fraction of useful prefetches in each region cache for NSP. For this algorithm, the stack 
prefetches most effectively, with close to 70% of stack prefetches classified as useful. However, the 
percentage of useful prefetches in each region varies dramatically according to the reference characteristics 
of each application 
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Figure 35: Fraction of useful prefetches in each region cache using tNSP 
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Figure 36: Fraction of useful prefetches per region using the RPT 
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Figure 37: Fraction of useful prefetches per cache using Markov prefetching 
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6.2 Prefetch Region Implementation 
 

As shown in Section 6.1, some data are better suited to prefetching than others. In 

some cases, a single region fits well with a prefetch mechanism, as the stack does with 

next sequential prefetching. In others, the effective subset is spread across regions. 

However, we do consistently see that only a fraction of prefetches are effective; 

eliminating the remaining prefetches can undoubtedly improve application performance. 

The region-based caching simulations suggest that separating conflicting data may 

improve prefetch effectiveness. We can therefore partition the cache to isolate data that 

generate the most effective prefetches. For each block, we calculate the percentage of 

useful prefetches and route blocks with a majority of useful prefetches to a separate 

cache. This approach excludes data that prefetch poorly and also ensures that prefetched 

data do not conflict with other regions. A dedicated partition for selectively prefetched 

data can reduce useless and polluting prefetches, thus limiting cache pollution. 

This scheme is somewhat similar to prefetch buffering, as both use structures 

specifically for prefetched data [55][81][94]. However, prefetch buffers are limited. They 

typically target data streams and only allow accesses to the head of the buffer. Our 

scheme uses a cache to store the prefetch targets, which allows random accesses and 

accommodates any prefetch mechanism. Furthermore, we profile applications to identify 

prefetchable data and ensure that only those data access the prefetch region. Prefetch 

buffers can use filters to reduce overly aggressive prefetching, but they typically use 

heuristics that may not identify useful data. 

The major issue with a prefetch region is the routing of accesses to the new cache. 

One possible approach is to allocate all prefetchable data structures in a separate area of 
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memory. The techniques we present in Chapter 7 can be adapted to move these data to 

the new region. This approach would allow us to continue using a simple bounds 

checking mechanism to determine which cache to access. A less desirable alternative is to 

check both the prefetch cache and appropriate region cache in parallel. This approach, 

while less complicated at the compiler level, is much less energy efficient and therefore 

impractical. 

6.3 Experiments 
 

In the following sections, we analyze the effects of prefetching on MiBench 

applications. We focus primarily on performance, using three metrics: overall execution 

time, miss rate, and memory cycles per instruction (MCPI). As we show in the sections 

below, the impact of prefetching on overall performance is minimal for these applications 

because they cache well and use relatively few memory instructions. However, the two 

memory-specific metrics highlight the ability of these techniques to improve performance 

in the memory system alone. We believe this work will grow in importance as the gap 

between memory and processor speeds continues to widen. 

6.3.1 Prefetch Mechanisms 
 

Figure 38 shows the effects of prefetching on overall performance, both with and 

without region-based caches. The baseline is a 32 KB unified L1 cache without 

prefetching. With the unified L1 data cache, all four prefetchers change the overall 

performance by less than 1%, usually offering a slight improvement. The Markov 

prefetcher, which is the least effective, increases application runtime by an average of 

0.2%. In the region-based cache configurations, performance improves somewhat due to 
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Figure 38: Relative execution time for prefetch mechanisms, with and without region-based caching. The 
baseline is a 32 KB direct-mapped unified L1 data cache 
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Figure 39: Relative MCPI for prefetch mechanisms, with and without region-based caches. The baseline is 
a 32 KB direct-mapped unified L1 data cache 
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Figure 40: Miss rate for prefetch mechanisms, with and without region-based caching 

 
the reduced latency of the stack and global caches. The prefetch algorithms have a 

minimal effect, improving performance in most cases by less than 1%. The performance 

trends are similar for the memory system alone, as shown in Figure 39. The figure shows 

the MCPI of these applications relative to a 32 KB unified L1 data cache without 

prefetching. In most cases, prefetching slightly improves memory system performance, 

with an average MCPI reduction of approximately 1% for both unified and region-based 

caches. Region-based caching alone reduces MCPI by 29%. 

Prefetching offers little performance improvement because the applications cache so 

well that there are few misses to replace. Figure 40 shows the miss rate of our application 

subset, with and without prefetching, and also with and without region-based caching. 

Only one of the ten applications, tiff2bw, has a baseline miss rate worse than 1%, and in 

several cases, the baseline miss rate is below 0.1%. On average, these applications have a 
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miss rate of 0.4% in a unified 32 KB cache without prefetching. The figure does show 

that the prefetch mechanisms can remove a significant number of existing misses. NSP 

lowers the average miss rate to 0.3%, while tNSP and the RPT reduce that figure to 0.2%. 

In the application with the worst miss rate, tiff2bw, tNSP and RPT reduce the miss rate 

from 1.4% to 0.2%. Although we may not achieve the same degree of success in more 

memory-intensive applications, these results show potential for improvement. The 

region-based caches slightly increase the miss rate for most applications, as stack and 

global data experience more capacity misses in the smaller caches. In some cases, notably 

the adpcm applications, we see that prefetching actually causes more misses by placing 

more pressure on the stack and global caches. On average, all prefetchers except Markov 

reduce the miss rate in region-based caches, with the RPT effectively reducing misses in 

all ten applications.  

Prefetching also has little effect on data cache energy consumption, as shown in 

Figure 41. Recall that, given our simulation parameters, static energy dominates L1 cache 

energy consumption. Since static energy is proportional to program runtime, the minimal 

change in performance translates to a minimal change in energy. The RPT configurations 

do consume more energy—on average, 30.5% with a unified L1 cache and 14.5% with 

region-based caches—because of the additional table. As Figure 42 shows, the effect on 

the L2 cache energy consumption is even smaller, because static energy consumption 

comprises an even higher fraction of the energy dissipated by the large, infrequently 

accessed L2. 
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Figure 41: Relative energy consumption of prefetch mechanisms, with and without region-based caching. 
The baseline is a 32 KB direct-mapped unified L1 data cache 
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Figure 42: Relative energy consumption of L2 cache for prefetch mechanisms, with and without region-
based caching. The baseline configuration uses a 32 KB direct-mapped unified L1 data cache 
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Figure 43: Fraction of useful prefetches using a separate prefetch region, with and without region-based 
caches. Further cache partitioning dramatically increases the percentage of useful prefetches 

6.3.2 Prefetch Region Analysis 
 

We now examine the results of adding a separate prefetch region, as discussed in 

Section 6.2. In all cases, the prefetch cache is a 4 KB direct-mapped structure, the same 

size as the stack and global caches. As Figure 43 shows, selectively prefetching to a 

separate partition increases the fraction of useful prefetches. Some applications show zero 

values with the Markov prefetcher, indicating that no suitable prefetch candidates exist 

for those applications. Refining the prefetch target heuristic to include a minimum 

number of blocks might allow us to improve Markov prefetching in these programs. 

In most applications, a clear majority of prefetches are useful, with several 

applications generating over 90% useful prefetches. NSP experiences the greatest 

improvement of the four algorithms, with 86.4% and 85.1% useful prefetches in unified 
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and region caches, respectively—an improvement of 37% in each case. For tNSP, useful 

prefetches increase to 70% (6% improvement) and 87.6% (22% improvement) in unified 

and region caches. For the RPT, the algorithm with the least room for improvement, 

useful prefetches increase to 85.3% (7% improvement) and 86.6% (14% improvement). 

And in the Markov prefetcher, the least effective of the four, partitioning allows the 

majority of the prefetches to be useful—57.3% (25% improvement) and 52.9% (19% 

improvement). 

Despite the improvement in prefetch quality, the performance of these applications 

remains relatively unchanged. Figure 44 shows the relative execution times of the 

application subset using a separate prefetch cache. Most applications remain within 1% 

of the baseline; however, susan.corners and susan.edges suffer significant 

performance losses. In Chapter 5, we showed that these same applications ran much 

slower with a small heap cache due to increased heap conflicts. The small prefetch cache 

has the same effect. 

The relative MCPI results shown in Figure 45 are more promising, showing 

significant improvement in memory system performance. The prefetch cache allows all 

applications to use fewer memory cycles  per instruction than the baseline. The RPT 

actually improves the most, with an average relative MCPI of 0.799 in the unified L1 

cache—an 18.7% improvement—and 0.596 in the region-based L1 cache—a 9.9% 

improvement. In the unified and region caches, NSP improves by 13.7% and 2.8%, tNSP 

improves by 20% and 5.2%, and Markov prefetching improves by 6.7% and 4.3%. 

The miss rate numbers shown in Figure 46 are worse than the baseline, as expected. 

As shown in Figure 40, region-based caches increase the overall miss rate slightly 
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Figure 44: Relative execution time for split prefetch caches, with and without region-based caching. Note 
that some applications do not complete successfully, leaving blank spaces in the graph. The baseline is a 32 
KB direct-mapped unified L1 data cache 
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Figure 45: Relative MCPI for prefetchers using split prefetch caches, with and without region-based 
caching. Note that some applications do not complete successfully, leaving blank spaces in the graph. The 
baseline is a 32 KB direct-mapped unified L1 data cache 

 95 



0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

ad
pc

m.en
co

de

ad
pc

m.de
co

de

dij
ks

tra mad

pg
p.e

nc
od

e

str
ing

se
arc

h
sh

a

su
sa

n.c
orn

ers

su
sa

n.e
dg

es

tiff
2b

w

AVERAGE

M
is

s 
ra

te

32K/4K NSP 32K/4K tNSP 32K/4K Markov 32K/4K RPT
Region/4K NSP Region/4K tNSP Region/4K Markov Region/4K RPT  

Figure 46: Miss rate for split prefetch caches, with and without region-based caching 

 
because the smaller stack and global caches increase capacity misses; the prefetch cache 

has the same effect. The overall performance numbers show that these additional misses 

are not significant. The worst case miss rate—for the mad application, using tNSP in 

region-based caches—is only 3.5%, with an average miss rate between 0.4% and 1.2%. 

The additional cache does increase energy consumption, as shown in Figure 47. 

susan.corners and susan.edges dissipate significantly more energy because of their 

dramatically increased runtimes. However, when the performance is roughly equivalent 

to the baseline, the smaller prefetch cache reduces energy consumption due to its lower 

dynamic energy cost. dijkstra and mad are two examples. 

To see the overall effect of the prefetch cache on performance, we show the relative 

MCPI for the RPT, the most successful prefetch mechanism, in Figure 48. The figure 

shows four separate L1 data cache configurations: a unified 32 KB cache, a unified cache  
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Figure 47: Relative energy consumption for split prefetch caches, with and without region-based caching. 
The baseline is a 32 KB direct-mapped unified L1 data cache 
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Figure 48: Relative MCPI for the RPT, using four L1 data cache configurations--a single unified 32 KB 
cache, a unified cache with a 4 KB prefetch cache, region-based caches with 4 KB stack and global caches, 
and region-based caches with an additional 4 KB prefetch cache 
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with an additional 4 KB prefetch cache, region-based caches with 4 KB stack and global 

caches, and region-based caches with the additional prefetch cache. These data show that 

partitioning the cache increases the benefit of prefetching. Prefetching alone reduces 

MCPI by just 1.4%; adding the prefetch cache to the unified configuration improves 

MCPI by an average of 20.1%. Partitioning the cache by region offers a more dramatic 

improvement of 30.5%, but we again see that the prefetch cache further reduces memory 

cycles with an average MCPI reduction of 40.4%, a 9.9% reduction over region-based 

caching alone. 

6.3.3 Energy Efficient Prefetching 
 

Because MiBench applications access memory infrequently and cache well, our 

prefetch schemes have little effect on performance. However, prefetching effectively 

eliminates misses when those misses are present. If we reduce the cache sizes to lower 

energy consumption, we can use prefetching to reduce the resulting performance loss. 

The additional prefetch cache will slightly increase energy consumption but will have a 

greater effect on the miss rate, providing an energy-efficient cache with good 

performance. For the following simulations, we shrink the region-based caches to 1 KB 

for stack and global data, and 4 KB for heap data. The prefetch cache size remains 4 KB. 

We evaluate the same four prefetch algorithms—NSP, tNSP, Markov, and the RPT. 

Figure 49 shows the overall performance for these simulations. Note that smaller 

caches alone improve performance because all three region caches now have single-cycle 

accesses. We once again see that susan.corners and susan.edges perform poorly 

because of increased heap misses. However, in most other cases, prefetching allows us to 

maintain reasonable performance, offering improvements in many cases. The most  
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Figure 49: Relative execution time for prefetching in small region cache configurations (1 KB stack and 
global caches, 4 KB heap cache), with and without an additional 4 KB prefetch cache. The baseline is a 32 
KB direct-mapped unified L1 data cache 
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Figure 50: Relative MCPI for prefetching in small region cache configurations (1 KB stack and global 
caches, 4 KB heap cache), with and without an additional 4 KB prefetch cache. The baseline is a 32 KB 
direct-mapped unified L1 data cache 
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dramatic example is dijkstra, which runs 4.7% slower with the small caches. Three of the 

four prefetchers offer a speedup over the baseline, which becomes more significant when 

the prefetch cache is added. In the best case, dijkstra runs 6.1% faster than the baseline 

using the RPT with the prefetch cache. 

We see the effect of prefetching on the memory performance of these small caches in 

Figure 50. Again, the small caches alone improve memory performance with single-cycle 

accesses; without prefetching, these applications have an average MCPI that is 35.4% 

lower than a 32 KB unified cache. However, prefetching further reduces memory cycles. 

In dijkstra, the RPT combined with a prefetch cache reduces MCPI by 47.8%, a 22.5% 

improvement over the small caches alone. On average, prefetching with the split caches 

reduces MCPI by 38.5% using NSP, 43.1% using tNSP, 47.2% using the RPT, and 

35.5% using Markov prefetching. 

As we see in Figure 51, the prefetch cache typically reduces miss rate in these smaller 

caches. The additional partition further reduces capacity misses for all caches. The best 

example is adpcm.encode, which has the worst baseline miss rate—5.7%—of any of 

these applications. Without the prefetch cache, NSP slightly increases the miss rate to 

6.0%. The other three prefetchers reduce the miss rate: 5.5% for tNSP, 4.9% for the RPT, 

5.3% for Markov prefetching. When the prefetch cache is added, the Markov prefetcher 

actually performs worse, with a 5.7% miss rate that matches the original value, but the 

other three prefetchers offer significantly lower rates: 3.1% for NSP, 1.7% for tNSP, and 

0.4% for the RPT. As the figure shows, all prefetchers except Markov improve average 

miss rate, and the prefetch cache lowers the miss rate in all cases. 
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Figure 51: Miss rate for prefetching in small region cache configurations (1 KB stack and global caches, 4 
KB heap cache), with and without an additional 4 KB prefetch cache.  
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Figure 52: Relative energy consumption for prefetching in small region cache configurations (1 KB stack 
and global caches, 4 KB heap cache), with and without an additional 4 KB prefetch cache. The baseline is a 
32 KB direct-mapped unified L1 data cache 

 
In Figure 52, we see that these schemes save a significant amount of energy. The 

small caches alone offer the best energy savings, reducing L1 cache energy by 79.7% in 

these applications. For the same subset, our typical region-based caches consume only 
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1.7% less energy. As in the larger caches, prefetching increases the energy consumption. 

The increase is very slight without adding the prefetch cache, as the additional dynamic 

energy dissipation makes little impact. The RPT is again the exception, as the additional 

prefetch table reduces the energy savings to 74.5%. With the prefetch cache, we do save 

less energy, but the consumption is still significantly lower than our unified baseline: 

69.3% for NSP, 68.8% for tNSP, 65.2% for the RPT, and 71.2% for the Markov 

prefetcher. 

6.4 Summary 
 

In this chapter, we discussed how partitioning the cache allowed us to improve 

performance by increasing the effectiveness of data prefetching. Although the effect on 

program runtime is minimal due to the low memory access frequency and good locality 

of MiBench applications, prefetching in region-based caches eliminates many of the 

misses that are present. With the addition of a separate cache for prefetched data, we can 

refine the effectiveness of our prefetch mechanisms, leading to even greater 

improvements in memory system performance. Because prefetching can significantly 

reduce cache misses, we can reduce the cache size to improve energy efficiency. 
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CHAPTER 7 

DATA PLACEMENT IN REGION-BASED CACHES 

 

Region-based caching relies on the idea that programmers use data differently within 

applications. If a pattern of data usage is repeated at various points throughout a program, 

that pattern should be coded as a function and the data allocated as local variables. 

Structures that depend on runtime information are dynamically allocated on the heap. 

Data that must be visible to multiple functions is allocated in the global region. These 

different usage patterns across regions lead to varying degrees of locality, which region 

caches utilize to reduce energy consumption. However, this cache architecture relies on 

one tenuous assumption: programmers will always place data in the correct regions. If a 

programmer uses data in an unexpected manner, the semantic regions may possess 

locality characteristics that are not well-suited to region-based caches, leading to a 

performance loss. In this chapter, we discuss the ramifications of bad data usage and 

explore solutions to this problem. 

In Section 7.1, we explain how to move misplaced data to the proper region at 

compile time. In Section 7.2, we analyze a single application, quicksort, to show how 

data relocation can eliminate performance losses due to bad placement. Section 7.3 

summarizes the chapter. 
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7.1 Moving Data Between Regions 
 

As discussed in Chapter 2, previous work on data movement typically focused on 

reorganizing data to either improve their locality characteristics or to reduce conflicts 

[3][18][22][23][24][52][53][62][83]. Our approach targets conflict misses; we want to 

use the existing locality in certain data sets to determine in which cache they should 

reside. The targeted data may hurt application performance because their locality is poor 

or their footprint is large. For example, a sparse local array, which has little locality, 

should be allocated on the heap instead of the stack. On the other hand, data with good 

locality are wasted in a large cache. In Chapter 5, we discussed how to identify hot data 

in the heap and relocate them to a dedicated cache. Finally, an application dominated by 

references to one region may benefit from moving some references to reduce the 

footprint size of that region and alleviate pressure on that region cache. For example, if a 

stack-intensive program uses multiple large local arrays, allocating one of those arrays 

globally may improve the overall cache hit rate. Note that a single structure may be 

enough to fill a small cache; an array of thirty-two integers, each of which uses thirty-two 

bits, consumes 1 KB—one quarter of the stack cache capacity. 

Given the appropriate compiler feedback, we can identify those structures for which 

the locality does not fit the cache and place them in the appropriate region. Low-locality 

data must reside in the heap cache, the only structure large enough to tolerate random 

access behavior. Data with good locality can fit in either the stack or global region. Stack 

data typically has a smaller working set, so the footprint size can determine which region 

is most appropriate for highly local data. In practice, we believe that most moves will  
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Figure 53: Memory map showing necessary modifications to allow allocation of heap data within stack 
and global regions. Moving heap data to the global region requires that the base of the heap be moved to a 
higher address, leaving a buffer in the global area for dynamically allocated data. Moving heap data to the 
stack requires the function using that data to allocate extra space in its stack frame. Both cases use a second 
dynamic allocator with the ability to access these regions 

 
involve either heap or stack data. The low frequency of accesses to the global region 

reduces the impact that sparse global structures would have on system performance. As 

noted, we have already shown evidence of highly local data in the heap; it stands to 

reason that, in some applications, the stack possesses poor locality. 

Moving data between regions requires code transformations that, in some cases, 

introduce additional overhead. We discuss the requirements for each region below. 

• Moving heap data: We first addressed this issue in Chapter 5. In those 

experiments, we use a second heap allocator to place objects in their own “region” 

and route them to a dedicated cache. The additional dynamic allocator is 

necessary because the size of a heap structure is typically unknown at compile 
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time. If the programmer defines a maximum size for all heap items, we can 

statically allocate that amount of space, but that situation is unlikely and 

inefficient. Moving hot heap data into existing regions is relatively 

straightforward. For the global region, statically allocating extra buffer room at 

the end of the predefined region will allow space to allocate heap objects. As 

shown in the memory map in Figure 53, this modification is simple when the 

global and heap regions border one another—the base of the standard heap region 

must simply be moved to a higher address. Moving heap data to the stack requires 

the function allocating the data to create a stack frame with enough space to hold 

the dynamically allocated object. 

• Moving stack data: Stack data movement depends on the nature of the function 

accessing those data. Recursive functions must allocate data on the heap, as a 

global variable referenced by a recursive function would be overwritten on each 

function call. Non-recursive functions can reallocate local variables in either the 

heap or global regions. Moving data from the stack to the global region simply 

requires moving the variable declaration—and therefore its allocation—outside of 

the function body. Moving a variable from the stack to the heap is slightly more 

complex and does introduce some overhead, as shown in Figure 54. In this brief 

example, a local array of integers is reallocated on the heap. Allocating the array 

requires a call to malloc() in the function prologue;  the array is de-allocated in 

the function epilogue using free(). The overhead of these calls will negate 

some of the savings from reduced cache misses. Note that we may move sparse 

local structures onto the heap even if they are used by non-recursive functions. 
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Figure 54: Example function showing the changes required to allocate local variables on the heap. Part (a) 
shows the original function, which uses an array, arr, of thirty-two integers. In part (b), arr is allocated 
on the heap, with the local array replaced by a local pointer. This change incurs the overhead of calls to 
malloc() and free() in the function prologue and epilogue, respectively 

 

• Moving global data: Global data can be handled similarly to stack data, with no 

recursive usage to restrict relcation. Moving this data to the stack simply requires 

that the variable be declared inside a function rather than externally. Moving this 

data to the heap requires a call to malloc()at the beginning of the program and 

a call to free()at the end. 

7.2 Benefits of Data Relocation 
 

To demonstrate the benefits of these proposed changes, we use a single application, 

quicksort. This application reads a list of three-dimensional vectors into an array, 

computes the distance from the origin for each vector, and then sorts the array based on 

that distance using the qsort() library function in <stdlib.h>. Unlike most 

MiBench applications, quicksort experiences a significant performance loss—20.1%—

when using region-based caches in place of a unified 32 KB L1 data cache. The cause of 

this slowdown is a significant increase in stack and global misses, as shown in Table 12.  
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 Cache configuration
Region Unified Region 

% change
in misses 

Stack 572309 795582 39% 
Global 756 300838 397% 
Heap 276893 156355 -44% 
TOTAL 849958 1252775 47% 

Table 12: Misses by region in quicksort for unified and region cache configurations. The percent change 
in misses is the difference between the two configurations, using the unified configuration as a baseline 

 
The table lists the misses by region for both the unified cache and region cache 

configurations. We see that, as expected, misses drop significantly for the data accessing 

the heap cache when the L1 data cache is partitioned. Because the stack and global data 

access separate caches, these data experience fewer conflicts, leading to a 44% reduction 

in misses. However, the small stack and global caches significantly increase the number 

of misses in those regions—by 39% and 397%, respectively. Note that the raw increase in 

global misses is on the same order of magnitude as the increase in stack misses (300,082 

additional global misses, 223,273 additional stack misses). Overall, L1 data cache misses 

increase by 47%. This increase only slightly affects the L2 cache activity, with L2 misses 

increasing by 0.4%. 

We can use the data movement strategies discussed in Section 7.1 to reduce pressure 

on the smaller caches. After profiling the program, we can identify which regions 

experience the most misses and which data structures are primarily responsible for those 

misses. The compiler can then use the miss profile to allocate data in the appropriate 

regions. To approximate this process, we profile the references for each cache block and 

determine which blocks experience the greatest increase in misses. We then manually 

determine the new addresses for the offending blocks and direct the simulator to reroute 

those accesses accordingly. This approximation does have some flaws. First, we 

manually place data without knowing the actual order in which it will be allocated. The  
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 Cache configuration 

Region Unified Region Region 
+ move

% change 
in misses 

Stack 572309 795582 613430 7% 
Global 756 300838 837 11% 
Heap 276893 156355 164915 -40% 
TOTAL 849958 1252775 779182 -8% 

Table 13: Misses by region in quicksort, taking data movement into account. The percent change in 
misses is the difference between the configuration with data movement and the baseline unified cache. We 
reallocate problematic global and stack blocks on the heap to reduce conflicts in the smaller caches 

 
actual cache activity—particularly conflicts involving relocated data—may therefore 

differ from the simulation. Also, we do not consider the overhead involved moving items 

to the heap, most notably the pointer accesses and calls to malloc() and free(). 

Our analysis of quicksort shows that in the global region, a few blocks account for 

the majority of the additional misses. For the stack, most of the additional misses are 

concentrated in a contiguous 1 KB region near the lowest possible stack pointer address, 

implying that the stack experiences the most conflicts when the program is at its greatest 

function call depth. We map each of these blocks into an unused heap location to 

approximate their reallocation. As Table 13 shows, reallocating these problematic blocks 

on the heap eliminates the extra misses. The stack and global regions do still experience 

more misses than in the unified cache, but the increases are more reasonable—7% and 

11%, respectively. Since the heap now contains more data, the number of heap cache 

misses is slightly higher with the relocated data than in the basic region configuration. 

However, that region still experiences 40% fewer misses than it does in the unified cache. 

Overall, region-based caches with appropriate data movement reduce the number of L1 

cache misses by 8%. 
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Figure 55: Relative energy and performance values for region-based caches with and without data 
movement. The baseline is a 32 KB direct-mapped cache. Relocating problematic stack and global blocks 
to the heap reduces conflict misses and improves the overall performance. However, the relative energy 
consumption remains high because the relocated blocks access the heap cache, which dissipates more 
dynamic energy per access than the smaller stack and global caches 

 
Figure 55 shows the relative performance and energy values for quicksort using 

region-based caches with and without data movement. The baseline is a direct-mapped, 

32 KB unified L1 cache. The leftmost bars show the relative performance for these two 

configurations. As expected, removing the additional misses dramatically improves 

application performance, leading to a modest speedup of 3.5% with the appropriate data 

placement. The one downside to this strategy is that L1 data cache energy consumption 

remains higher than the baseline value. Recall that region-based caches decrease dynamic 

energy per access by directing most accesses to smaller structures; the tradeoff is higher 

static energy dissipation per cycle due to the additional cache capacity.  With standard 

placement, the longer runtime leads to a 48.7% increase in static energy over the 

baseline, causing the application to consume 18.4% more total energy in the L1 cache. 
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With the new placement, the static energy consumption is only 20.6% higher than the 

baseline. However, since references to the relocated blocks access the heap cache, not the 

smaller stack or global caches, we fail to achieve the expected dynamic energy reduction. 

The new placement leads to a 18.4% decrease in dynamic energy, significantly less than 

the 63.9% decrease that standard region placement provides. The overall L1 energy 

consumption is 10.1% higher than the baseline with this configuration. 

7.3 Summary 
 

In this chapter, we discussed the problems that arise when data locality characteristics 

do not match the region in which they are allocated. Identifying these misplaced data and 

reallocating them in the appropriate region is relatively straightforward given the 

appropriate compiler feedback. As our case study of the quicksort application shows, 

these techniques can eliminate unnecessary misses caused by bad data usage, allowing all 

applications to reap the performance benefits of region-based caches. 
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CHAPTER 8 

CONCLUSIONS 

 

8.1 Summary of Contributions 
 

This dissertation explores techniques for reducing energy consumption and memory 

latency through intelligent cache partitioning. Using region-based caches as a starting 

point, we show how splitting the cache allows us to increase the effectiveness of well-

known cache optimizations. We also perform a detailed analysis of data reference 

characteristics in MiBench, our target application suite, to discover further opportunities 

for improvement. 

We show in Chapter 4 that drowsy caching and region-based caching, two 

complementary techniques for reducing data cache energy, are each more effective when 

combined. Partitioning the cache by region allows us to tune the drowsy caching policy 

to the locality characteristics of each subset. In turn, drowsy caching can remove the 

static energy penalty due to the additional region caches. The result is a cache with low 

static and dynamic energy consumption that performs comparably to less energy-efficient 

configurations. 

In Chapter 5, we debunk the assumption that all heap data possess poor locality. Our 

analysis identifies applications in which the entire region caches well, and we find that in 
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other applications, a subset of the heap data exhibits good locality. We use this 

knowledge to further reduce cache energy consumption by tailoring the cache resources 

to the demands of each application. We maintain two heap caches, one small, one large, 

and disable the larger cache when possible for energy savings. When both caches are 

active, we can save up to 73% in cache energy consumption; when the large cache is 

inactive, our maximum savings increase to 81%. 

In Chapter 6, we shift our focus to memory system performance. Although we find 

little room for improvement in applications that cache extremely well, we demonstrate 

how splitting the cache can help us prefetch data more effectively. Classifying individual 

prefetches allows us to identify data that prefetch well and route their accesses to a 

dedicated cache, thus increasing the percentage of useful prefetches. We also show that 

our approach to prefetching allows us to tolerate a smaller cache that produces more 

conflicts but saves energy consumption. By further partitioning region-based caches, we 

can reduce MCPI by up to 40% or save over 70% in energy consumption. 

Chapter 7 offers a discussion on improving data locality by relocating misplaced data 

to the appropriate region. We show how, given the appropriate compiler feedback, we 

can identify and reallocate these data with a small amount of overhead. A case study of 

the quicksort application demonstrates the effectiveness of data relocation for 

eliminating unnecessary cache misses. 

8.2 Future Directions 
 

One possible area for future work is the refinement of our heap caching policy. We 

believe that the instruction-based selection of hot heap data may ultimately hold more 

promise than the data-centric approach and plan to explore this topic further. We also 
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wish to investigate dynamic techniques to identify hot heap data so that we can account 

for differing behavior across program phases. Finally, the studies we ran using Cheetah 

suggest we can significantly lower the heap cache miss rate by reducing conflicts within 

it. Improving the data layout in that cache could significantly improve performance. 

We believe there is also ample room to further explore prefetching in region-based 

caches. We would like to evaluate our prefetch methods in memory-intensive 

applications to see if the promise shown in Chapter 6 extends to applications that do not 

cache as well. In addition, we want to develop prefetch algorithms that are tailored to the 

reference characteristics of a particular region. The stack shows the most promise, as its 

accesses are regular and easily predictable. We can avoid write misses when a stack 

frame is first allocated by validating the cache lines covered by that frame; since the 

program will write new data into those locations, the contents of the cache do not matter. 

Actual prefetches are necessary once the stack grows larger than its dedicated cache; at 

this point, new frames overwrite old data, and we can prefetch that data when the 

offending frame is deallocated to ensure that the stack experiences fewer misses as it 

returns from function calls. Further analysis of reference characteristics in other regions 

may yield prefetch strategies for those areas as well. 

A final direction for future work is to implement the compiler support required for 

each of these hardware techniques. This dissertation assumes the existence of a compiler 

that, using profile-directed feedback, can identify data locality characteristics and 

reallocate that data appropriately, whether it be to a second heap, a separate prefetch 

region, or one of the existing regions. In reality, this tool does not exist, and designing it 

is a non-trivial task worthy of substantial research.  
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